
Further Improvements of an existing IPv6 Network

Mobility Test-bed

JosepMaTomàs Sanahuja

Munich (Germany)
September 2010 - March 2011

Tutor: Jaime M. Delgado Mercé
Barcelona School of Informatics - FIB

Universitat Politècnica de Catalunya - UPC

TriaGnosys GmbH
Supervisors: Àngels Via Estrem and Eriza Ha�d Fazli

Agraïments

A tots aquells que al llarg d'aquests últims anys han fet possible que seguís endavant en els
moments més difícils i de necessitat, moltes grácies a tots vosaltres.

A tu Joan que durant 3 anys has estat el meu cap en el departament del TSC, per tota la
�exibilitat otorgada al llarg d'aquests anys i l'ajut prestat quan l'he hagut de menester. Han
estat uns tres anys els quals en guardaré molt bons records, gràcies per tot.

Gràcies també Antonio per aquests tres anys al departament del TSC. Han estat tres anys
dels que n'estic molt content de haver pogut viure i aprés. Gràcies.

Voldria agraïr a la Núria Castell. Al llarg de l'últim període de la carrera t'he tingut com a
professora de Inteligéncia Arti�cial i he pogut mantindre converses sobre el com encarar la meva
carrera en un llavors, valorar possibilitats per a fer un màster, tràmits per a beques a Japó i
�nalment la possibilitat de realitzar el projecte de �nal de carrera (PFC) a l'extranger a Múnic,
Alemanya. Ha estat una molt bona experiéncia de la qual sempre en mantindré un bon record i
de la qual sempre me'n sentiré privilegiat de haver-la viscut.

Agraïr a l'Ãngels i a l'Eriza per el seu ajut i suport en la tasca dins el projecte. També
agraïr les recomanacions del meu tutor Jaime Delgado en el redactat �nal de la memòria.

Finalment agraïr a tota la meva familia per el suport donat al llarg d'aquests anys.

A la meva àvia Pepeta que no vaig arribar mai a conèixer. Al meu avi Rafel Tomàs que en
pau descansi. Al meu avi Blai Sanahuja que ens va deixar farà un any, ell sempre va procurar
per la meva educació i benestar, sempre, sempre en va tenir cura i �ns els seus últims dies en
mantingué. Estic segur que n'estaries orgullós i n'estaries cofoi. En els últims dies abans que ens
deixèssis et vaig dir:

�Estigues tranquil per què tiraré endavant i me'n ensortiré�

A dia de avui et puc dir:

�He complert, i continuaré tirant endavant, pots estar-ne segur. Res és impossible si amb
esforç i voluntat un hi persisteix, tard o d'hora sempre se'n acaba obtenint resultat�

I �nalment a les dues persones que ho han donat tot per a mi en aquesta vida i que tant de
sacri�ci han fet, les dues persones per a les quals el meu present i el meu futur ho són i ho han
estat sempre tot per a ells. A el meu pare i a la meva mare.

�Gràcies�

Contents

List of Figures v

Abbreviations vii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 3

1.3 Report Structure . 4

2 IPv6 Overview 5

2.1 Introduction . 5

2.2 Basic characteristics of IPv6 . 5

2.3 Introduction to Mobility IPv6 protocol . 8

2.3.1 Mobile IPv6 protocol . 8

3 Testbed Current Status 11

3.1 Introduction to NEWSKY testbed architecture 11

3.1.1 NEWSKY background . 11

3.1.2 NEWSKY testbed architecture . 12

3.2 Introduction to SANDRA scenario . 12

3.2.1 SANDRA goals . 12

3.2.2 SANDRA architecture and test-bed . 13

3.3 Aim of traversing IPv6 tra�c over a satellite IPv4 network 15

3.4 Relevant and non relevant tra�c types in SANDRA 15

i

4 Mobility + IPv4 Traversal 17

4.1 Considered Protocols as a solution for SANDRA 17

4.1.1 M6T protocol . 17

4.1.2 DSMIPv6 . 19

4.1.3 NeXT . 20

4.2 Protocol comparison . 24

4.3 NeXT as option chosen . 26

5 Testbed Automation 31

5.1 IPv6 Network Mobility Testbed Architecture - Technical features 31

5.2 How the IPv6 Network Mobility Test-bed was switched on 33

5.3 Considered options for the automation . 34

5.3.1 Use of Cron + Bash scripts: . 34

5.3.2 Use of /etc/rc.local + Bash scripts: . 35

5.3.3 Use of /etc/rc.local + Java GUI + Bash scripts 37

5.4 Final option: Use of /etc/rc.local + Java GUI + Bash scripts 38

5.4.1 Di�erent features of the Java GUI . 38

5.4.2 Where are the scripts located and how are they executed ? 41

6 NeXT software architecture/design 43

6.1 NeXT �rst protocol version design . 43

6.2 New NeXT requirements in SANDRA scenario 44

6.3 Two di�erent NeXT design approaches . 46

6.3.1 NeXT multiprocess . 47

6.4 Threads Introduction . 53

6.4.1 What is a Thread . 53

6.4.2 Why using threads? . 55

6.4.3 What is pthread library? . 55

6.5 NeXT threads . 56

6.6 NeXT design chosen . 60

7 Test Cases 61

7.1 Case 1 . 61

7.2 Case 2 . 63

8 Conclusions and future Work 67

8.1 Conclusions . 67

8.2 Future work . 68

9 References and Bibliography 69

List of Figures

2.1 IPv6 header format . 6

2.2 Mobility protocol (1) . 8

2.3 Mobility protocol (2) . 9

3.1 NEWSKY test-bed architecture . 12

3.2 SANDRA topology . 13

3.3 SANDRA architecture . 14

3.4 Air tra�c network . 15

3.5 Inmarsat coverage Area . 16

3.6 SANDRA tra�c . 16

4.1 M6T deployment . 18

4.2 Outer packet in MR and Outer packet in HA . 18

4.3 Packet in HA after UDP decapsulation is done by M6T entity, the outer IPv6
header is the NEMO header . 18

4.4 Packet in CN . 19

4.5 NeXT . 20

4.6 NeXT headers with IPv6 and mobility legend . 21

4.7 NeXT steps from MN to NeXTSlave . 22

4.8 NeXT steps from CN to MN . 23

v

4.9 SANDRA scenario with NeXT . 26

4.10 Flow packet . 27

5.1 Testbed Architecture . 32

5.2 Cron table entry format . 34

5.3 Cron prede�ned variables . 35

5.4 Rc.local �le . 36

5.5 Java GUI . 38

5.6 Flow Checking Nodes Status . 39

5.7 Flow Start Node . 40

5.8 Flow Stop Node . 41

5.9 Stop VM command . 41

5.10 Flow Reboot Node . 42

6.1 NeXT real world architecture . 43

6.2 NeXT real world using satellite link . 44

6.3 NeXT64 Master �ow . 45

6.4 NeXT46 Master �ow . 46

6.5 Multiple instances . 48

6.6 Multiple instances with libnet�lter . 49

6.7 NeXT multipleprocess architecture . 49

6.8 NeXT launcher �ow . 50

6.9 Interfaces hardcoded . 52

6.10 Interfaces hardcoded with dynamism . 52

6.11 PID Handshaking . 53

6.12 UNIX thread . 54

6.13 Thread Memory . 55

6.14 Thread Memory . 56

6.15 NeXT multiprocess table linkage . 57

6.16 NeXT threads table linkage . 58

6.17 NeXT threads SIGNALS . 59

7.1 extract of iptables man Linux page - Marking Section 64

7.2 extract of iptables man Linux page - Matching Section 64

7.3 Mip6d.conf interfaces with BID . 65

Abbreviations

AOC Aircraft Operational Communications
APC Air Passenger Communications
API Application Programming Interface
AR Access Router
ARv6 Access Router version 6
ATM Air Tra�c Management
ATS Air Tra�c Service
BC Binding Cache
BGAN Broadband Global Area Network
BU Ack Binding Update Acknowledgment
CoA Care-of Address
CN Correspondent Node
CPU Central Processing Unit
DSMIPv6 Double Stack
ESA European Space Agency
FTP File Transfer Protocol
GUI Graphical User Interface
HA Home Agent
HoA Home Address
IPsec Internet Protocol Security
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IRIS Internet Routing in Space
L-DACS L-band Digital Aeronautical Communication System
MIPv6 Mobile Internet Protocol v6
MN Mobile Node
MNN Mobile Node Network
MR Mobile Router
NAPT Network Address Protocol Translation

vii

NAT Network Address Translation
NEMO Network Mobility
NEWSKY Networking the Sky for Aeronautical Communications
NeXT Network Crossing via Translation
OS Operating System
PC Personal Computer
PID Process Identi�er
Ra Router advertisement
RAM Random-access memory
RFC Request for comments
ROHC Robust Header Compressor
SANDRA Seamless Aeronautical NETWORKING throughout the integration of Data links

Radios and Antenas
ScGW Security Gateway
SESAR Single European Sky ATM Research
VDL2 Virtual Drum Line
VLAN Virtual Lan Area Network
VM Virtual Machine
WiMAX Worldwide Interoperability for Microwave Access

Chapter 1

Introduction

This �nal project report is the result of the work done in the Full Internship made within
TriaGnoSys GmbH company in Munich, Germany.

1.1 Motivation

The overall air transportation sector is currently under signi�cant stress. With the demand in
aircraft operations expected at least to double by the 2025 time frame, there are well-founded
concerns that current air transportation systems will not be able to accommodate this growth.
Existing systems are unable to process and provide �ight information in real time, and current
processes and procedures do not provide the �exibility needed to meet the growing demand.
New security requirements are a�ecting the ability to e�ciently move people and cargo. In
addition, the growth in air transportation has provoked community concerns over aircraft noise,
air quality and airspace congestion. In summary, with the tools and procedures in use today,
the e�ective increase of air tra�c will be fundamentally limited and it is already approaching
its limits. Focusing on communications related aspects, the following high-level requirements
can be identi�ed, in order to allow future systems to be compatible with the expected air-tra�c
increase:

• Pilots situation awareness shall be improved

• Capacity at airports, today one of the main limiting structural factors, shall be increased

• ATS shall be primarily based on highly reliable data communication

• AOC data tra�c shall strongly increase for e�cient airline operations

1

1.1. Motivation

• Passengers and cabin communications systems shall be further developed

• Safety critical applications shall need diverse means to reach ground for global availability
and higher reliability

• A simpli�cation of on-board network architecture shall need convergence of protocols and
interfaces

To cope with these issues, new communication concepts are being developed in SESAR, in
the AOC/APC domains. They aim at the de�nition of an access to an open system.This results
in a collection of communications technologies targeted at speci�c operational settings. This rep-
resents a considerable extra burden to be carried by the aircraft, should the new radio links be
implemented in stand-alone equipments. Moreover, although it has been suggested that the new
systems will eventually replace the legacy communications systems, the likelihood is that there
will be a lengthy period where aircraft will be �tted with all of the systems for global interoper-
ability.This is the forecast expressed by SESAR, and the additional airborne equipment required
during this transition phase severely threatens the realization of the future communications vi-
sion. Hence, a di�erent approach aiming at a broader level of integration is needed to achieve
the required increase of capacity, safety, security and e�ciency of air transportation operations
while at the same time keeping complexity and cost of on-board networks and equipments within
a sustainable level.

To enable e�cient exchange of information in aeronautical communications, the di�er-
ent available and future communication link technologies need to be interconnected, form-
ing a global heterogeneous aeronautical communication network. Several European research
projects are being undertaken with the goal to develop improved communication infrastructure
for aeronautical communications. Among them is the project NEWSKY (Networking the SKY,
http://www.newsky-fp6.eu) which aims at developing ATM networking concept based on IPv6
protocol stack. Within this project, TriaGnoSys was responsible for developing an IPv6-based
network test-bed to simulate network handover between a satellite and a terrestrial communica-
tion link.

What has been mentioned is indeed the truly integrated modular approach for a global aero-
nautical network and communication architecture proposed by SANDRA (Seamless Aeronautical
Networking through integration of Data links Radios and Antennas).

As NEWSKY project was nearly to end, the test-bed was going to su�er some internal
modi�cations, for example the addition of IPsec capabilities introducing IPsec Security Gateways.
SANDRA project was the chosen one to de�ne the new test-bed con�guration.

This project have had four main parts. The �rst one is the automation of an IPv6 Mobility
test-bed. This test-bed was designed and used in order to simulate handovers between di�erent
networks and assure that network connectivity in the aircraft still remained. It will be explained
in chapter 4. This test-bed was previously build under the scope of another project done before.
Di�erent options to automate the test-bed and make the whole process of launching or manag-
ing it quicker were considered, however, only one option has been chosen. Apart from that a
Graphical User Interface to manage the test-bed main functions has been implemented. This
GUI provides an usable and an easy interactive way to work with the test-bed.

2

1. Introduction

During the project some the test-bed functionalities, con�gurations and services have been
continue being modi�ed. As an example given, some weeks before my project started the test-
bed architecture changed, some IPsec functionalities were added and some new entity nodes
were added (IPsec Security Gateways (IPsec ScGW), they are explained in later sections). This
addition of new entities modi�ed the behavior and purposes of some existing nodes within the
test-bed, for instance, before the addition of ScGWs a node acted as a server, after this addition
it no longer acted as server because other node take its responsibility of acting as a server.
Therefore some new services had to be moved from node to node (apache server, ftp server and
so on ...).

The second part of the project has been a whole process of analysis. During this process
RFC's and papers were read, all these papers were about technologies that represented an alter-
native to NeXT protocol. NeXT protocol is the software I have worked with, modi�ed, extended
and improved. A comparison between the di�erent protocols and NeXT have been done, the
aim of this comparison has been to �nd the most appealing and suitable protocol to deploy in
the SANDRA scenario which was not yet de�ned, an approach of SANDRA architecture was
available during the project realization. NeXT is the protocol that has been chosen to be de-
ployed in SANDRA, therefore NeXT has needed to be modi�ed and extended according to what
SANDRA topology and architecture de�nes.

The third part has been the process of design and implementation of the new version of NeXT
protocol adapted to SANDRA topology. All new NeXT requirements have de�ned, di�erent
technologies have been considered as a resource to use (e.g thread libraries), then two designs
have been thought. Design 1 represents a valid solution that with some modi�cations turns
into Design 2 which uses a di�erent technology from Design1, the reasons to this is explained
in chapter 6. In this third process the implementation task it is also included, the Design1 and
Design2 implementation has been performed, section 6 gives more details about that.

And �nally the last part in this project, the fourth part. It has been the documentation part
of the software within the company and also the �nal report.

It has to be said that, despite it is not mentioned in the report, RFC's from ROHC protocol
has been read because at the beginning one task scheduled to be ful�lled was to made some
coding modi�cations to an existent ROHC source code, its code was studied but no action was
taken. It was considered as a non task for my project. Apart from that during the project XFRM
technology was investigated but �nally not used because XFRM was linked to DSMIP protocol
and it will be seen that DSMIP is discarded as a valid option.

1.2 Goals

The principal aim of this project is to:

1. Automate and improve an existing IPv6 Mobility test-bed

2. Improve an existing protocol named NeXT which main function is to translate packets
from IPv6 to IPv4 and viceversa.

3. Allow NeXT and Robust Header Compressor protocols to work together at the same time
in the test-bed without any problems.

3

1.3. Report Structure

1.3 Report Structure

A brief explanation of how the report is structured will be given for an easy understanding to all
person that in a close future want to base its work projects into this project report. The report
�rst talks about the motivation of the project and mentions from an existent general scope that
have been worked with. Tasks that have been done within this project are also mentioned in
the Motivation section. Afterwards chapter 2 and chapter 3 introduces technology background
that have been used. Chapter 2 and chapter 3 have no relation between them, the �rst one
talks about IPv6 technology which is used in the whole project, a brief description of some of its
features are explained, whereas chapter 3 talks about the existing and the upcoming architecture
in which the NeXT protocol is going to be deployed. This last chapter is very important because
it introduces the test-bed architecture and changes that this testbed su�ered and was going to
su�er, but also it is important because some important decisions in terms of the new NeXT
protocol design were based taking the test-bed topology architecture into account.

Bear in mind one thing, chapter 2 and chapter 3 describes technologies that in this project
have been used, however, other technologies will be introduced in other chapters in order to justify
things and give a better comprehension of some aspects. This project is mainly about NeXT
protocol and an IPv6 Mobility test-bed, however, NeXT protocol is deployed in the test-bed and
both use other technologies for speci�c cases.

Chapter 4 introduces the analysis process of choosing the most appealing protocol option
to be considered for the coming SANDRA test-bed scenario. Some aspects of protocols are
explained, there are also some comparisons between them and some conclusions.

Chapters 1 to 3 are more theoretical, whereas chapter 4 introduces the analysis process in
the project.

Chapter 5 is about the test-bed Automation, it is explained the problem that there was,
options considered and actions taken, some theory about some technologies is also given. Chapter
6 is a chapter that joins the design and implementation process in NeXT new version. In chapter
4 an introduction to old NeXT �rst version was given, in chapter 6 a more technical explanation
is given focused on the implementation aspects. An introduction to threads is also given.

In chapter 7 some test cases are explained. Chapter 8 with conclusions and future work and
�nally chapter 9 introduces references and bibliography.

4

Chapter 2

IPv6 Overview

The Internet Engineering Task Force (IETF) has been developing Internet Protocol version 6
since the 1990s, this protocol is expected to replace in a midterm the current IPv4 due to the
scarce of new available addresses to assign, its address space is nearly to �nish in a few years.
Nowadays some companies and organizations are getting involved in the use of IPv6, an example
given is the Olympic games of China where public net services used IPv6.

2.1 Introduction

IPv6 uses a 128-bit address, whereas IPv4 uses only 32 bits. It means the new IPv6 address
space supports 2128 (about 3.4x1038) addresses. This expansion provides considerable �exibility
in allocating addresses and routing tra�c. As address size in IPv6 is 128 bits it solves the problem
of scarcity address space in IPv4. It also adds the feature that addresses can be auto con�gured,
multicast routing has been improved and new address type has been introduced, called Anycast
address explained in 2.1.

2.2 Basic characteristics of IPv6

2.2.0.1 Header

The IPv6 header has a �xed length of 40 bytes, 32 bytes are for addresses and 8 bytes for general
header information. The header of an IPv6 packet is speci�ed in RFC 24601. Figure 2.1 shows
the IPv6 format.

5

2.2. Basic characteristics of IPv6

Figure 2.1: IPv6 header format

1. Version (4 Bits). Internet Protocol version number. In this case is 6.

2. Tra�c Class (1 Byte). This �eld replaces the Type of Service �eld in IPv4. Facilitates
the handling of real-time data and any other data that requires special handling.

3. Flow Label (20 Bits) This �eld distinguishes packets that require the same treatment, in
order to facilitate the handling of real-time tra�c: routers keep track of �ows so they can
process packets belonging to the same �ow more e�ciently because they do not have to
reprocess each packet's header.

4. Payload Length (2 Bytes). Length of the IPv6 payload counting the extension headers.

5. NeXT Header(1 Byte). Identi�es the type of header immediately following the IPv6
header.

6. Hop Limit(1 Byte). Expresses a number of hops permitted to reach the destination node.
Every forwarding node decrements the number by one.

7. Source Address(16 bytes). It contains the address of the node that generates the packet.

8. Destination Address(16 bytes). It contains the address of the destination node.

6

2. IPv6 Overview

Many �elds that are considered �Options� in IPv4 are considered as �Extension Headers� in
IPv6. Extension Headers can be from zero to more extension headers in a packet but they are
always between the IPv6 header and the next layer header. For further details consult IPv6 RFC
2460a

2.2.0.2 Adressing

IPv6 has 3 types of addresses:

• Unicast address: unicast address uniquely identi�es a single interface of an IPv6 node
within the scope of the unicast address type. Depending of the pre�x the address can be:

� Link-local : Is for use on a single link. Its pre�x is fe80 and it can be used for auto
con�guration mechanisms, for neighbor discovery and others.

� Site-Local : Its pre�x is fec0. The address contains subnet information. It can only
be routed within the site, therefore routers can not route packets outside the site. A
site could be de�ned as a network area scope.

� Global : It uniquely identify a node all over the world and are structured as Aggregat-
able Global Unicast Addresses2.

• Multicast: It comprises a group of addresses, this address can have di�erent scopes.
Packets that are sent to a multicast address, are sent to all addresses that takes part in
the multicast group.

• Anycast: It is assigned to multiple interfaces (usually in multiple nodes). It can not
be di�erentiated from a Global address, all nodes that have an Anycast address type
con�gured are the only ones to identify it as Anycast type address. When a packet is sent
to an Anycast address it is sent only to one of them, usually the nearest one.

An IPv6 address consists of three parts: a global routing pre�x, a subnet ID, and an interface
ID. The addresses are written as follows: IPv6 address/pre�x length

Addresses are divided into eight 16-bit hexadecimal blocks, separated by colons, an example
is given:

2001:5c0:1505:6101:0000:0000:0000:3

IPv6 addresses can be simpli�ed as follows:

• Leading zeros can be simpli�ed by skipping them.

• Consecutive zeros can be replaced by a semicolon but it can only appear only once in an
IPv6 address.

After the transformation the IPv6 address looks like as follows:

2001:5c0:1505:6101::3

7

2.3. Introduction to Mobility IPv6 protocol

2.3 Introduction to Mobility IPv6 protocol

Every node has an IPv6 globally unique address and a link local address. These addresses are
related to the router in the network they are connected, thus when the node changes its point
of attachment, IPv6 global unique addresses and link local addresses change.

When the address changes the existent connections terminate because they can not be main-
tained. This happens because connections such as TCP are characterized by the address and
ports of each one. It means that the information related with the interface (the one that
changes its point of attachment) changes and the other edge can not reach it because it has the
old con�guration address. A new connection with the new con�guration must be opened.

Mobile IPv6 overcomes this issue and allows maintaining the existing connections the mobile
node that moves to a new network is communicating with. Section 2.3.1 explains brie�y how
Mobile IPv6 protocol works.

2.3.1 Mobile IPv6 protocol

When a node moves to a new network it acquires a new address, called Care-of Address (CoA)
from the new local router. A CoA is a temporary address that the mobile device acquires when
it joins to a foreign network. It identi�es the current point of attachment to the internet and
makes it possible to connect from a di�erent location without changing its permanent address,
the Home Address (HoA). When the mobile device moves to a new network it also maintains
HoA. When a node enters to a new network the IPv6 Mobility protocol works as follows:

Figure 2.2: Mobility protocol (1)

Before explaining how the IPv6 Mobility protocol works some terminology will be introduced
for a better comprehension.

• Care-of Address (CoA): It has been explained in the initial section paragraph.

• Home Address (HoA): Is the permanent address that identi�es the point of attachment to
the mobile node's home network.

8

2. IPv6 Overview

• Home Network: Network to whom a mobile node belongs, the one that con�gures its
permanent address (the HoA).

• Foreign Network: Network in which a mobile node is operating when away from its home
network.

• Home Agent: Node that stores information about mobile nodes whose permanent home
address is in the home agent's network.

• Binding Update: Packet that creates or renew an association of the HoA with a CoA.

• Binding Cache: Table maintained by a node. It contains the current bindings (associations)
for mobile nodes.

• Binding Update Acknowledgment: Con�rmation of the BU packet.

• Correspondent Node: Node that communicates with a mobile node that is out of its own
network.

The following steps correspond to �gure 2.2:

1. Address auto con�guration, called Care-of Addresses.

2. The node sends a Binding Update (BU) to the HA, it binds the CoA to the HoA in the
HA which is in the Home network. If the node does not know the HA it uses HA discovery
process.

3. When the HA receives the BU, it stores in the Binding Cache (BC) and sends back a
Binding Update Acknowledgment.

After receiving the BU Ack, the mobile node (mobile device) must use the Return Routability
Process in order to send packets to the Correspondent Node. The following steps are related to
this process. Figure 2.3 illustrates them.

1. The node sends a Home test Init (HoTI) message indirectly to the correspondent node,
tunneling the message through the Home Agent.

Figure 2.3: Mobility protocol (2)

9

2.3. Introduction to Mobility IPv6 protocol

2. The mobile node sends a Care-of Test Init (CoTI) message directly to the correspondent
node.

3. The correspondent node sends a Home Test (HoT) message in response to the HoTI mes-
sage.

4. The CN sends a Care-of Test (CoT) message in response to the CoTI message.

After doing this process the nodes can communicate directly using Routing Optimization
(RO) instead of using HA. When a node is in a foreign network it sends packets from its care-of
address and includes the mobile node's Home Address in a Home Address option.

One advantage of using RO is that it frees the HA from tra�c, HA tunnel interfaces tends
to become a bottleneck.

10

Chapter 3

Testbed Current Status

3.1 Introduction to NEWSKY testbed architecture

3.1.1 NEWSKY background

The development of e�cient aeronautical communication systems is currently a predominant
topic in view of the expected saturation of ATM communications by 2020-2025 due to air traf-
�c increase. In addition, the envisaged paradigm shift in ATM as developed in SESAR and
the existing high market demand for passenger communications are the driving factors for the
modernization of aeronautical communications.

It is foreseen that di�erent services, data links and networking solutions will be deployed.

Di�erent services with highly diverse requirements shall coexist and partly or totally share
the aeronautical network infrastructure. No single service on its own justi�es the cost implication
of a new communication system. Trends for the di�erent aeronautical services include:

• Air Tra�c Services (ATS): It will be primarily based on highly safety-related data com-
munication whereas voice communication will be mostly used as fallback solution

• Airline Operational Communications (AOC) data tra�c: It will strongly increase for e�-
cient airline operations

• Air Passenger Communications (APC) systems: They foreseen to be further developed to
meet passengers expectations of on-board broadband communication services.

According to both SESAR and the Future Communications Study jointly performed by
Eurocontrol and FAA under Action Plan 17, these services will use ground-based, satellite-based,
aircraft-to-aircraft and airport communication systems to ful�ll the requirements: a satellite link
(new standard developed within ESA IRIS program), an airport link (WiMAX), a high data
rate air-ground link (L-DACS-1/2) and support of legacy data links (e.g. VDL2). In addition,
further data links for APC are expected to be deployed.

11

3.2. Introduction to SANDRA scenario

3.1.2 NEWSKY testbed architecture

Figure 3.1 shows the old NEWSKY test-bed architecture. It has not got any IPsec Security
Gateways nor IPsec functionalities.

Figure 3.1: NEWSKY test-bed architecture

A further explanation of this type of topology is done in section 3.2.2.

3.2 Introduction to SANDRA scenario

3.2.1 SANDRA goals

The SANDRA concept consists of the integration of complex and disparate communication media
into a lean and coherent architecture that:

• Provides and manages seamless service coverage across all airspace domains and all aircraft
classes

• Sustains growth in the service market and enables easy plug-in of future radio technologies
through modularity and con�gurability

• Is upgradeable, easy recon�gurable and radio technology independent

• Is distributed and instantiated into consistent ground-based and airborne sub-networks
ensuring full interoperability. SANDRA covers from RF and avionics components up to
the middleware layer of the on-board network, assembled and integrated under the most
stringent safety and security requirements. Ultimately, SANDRA pursues the architectural
integration of aeronautical communication systems using:

- Well-proven industry standards like IP, IEEE 802.16 (WiMAX), DVB-S2, Inmarsat
SwiftBroadBand

12

3. Testbed Current Status

- A set of common interfaces

- Standard network protocols having IPv6 as �nal uni�cation point to enable a cost-
e�cient global and reliable provision of distributed services across all airspace domains
and to all aircraft classes.

3.2.2 SANDRA architecture and test-bed

Figure 3.2 shows how SANDRA topology is in a laboratory environment. The upper box on the
left is a lab environment that emulates a real scenario. The most right box of the picture can be
considered as a black box, what happens inside it is transparent to us. It is the one that provide
network access to the technology services such as satellite links (INMARSAT). The most left box
is the one that corresponds to the airplane and that is also emulated in a laboratory environment.
Keep in mind that the current testbed architecture is not like the one of the picture, but in a
close future it should be something alike.

Figure 3.2: SANDRA topology

In �gure 3.2 a box labeled IMR can be identi�ed. IMR is an entity attached to MR that
manages interface and tra�c information transparent to MR. Its mainly task is to take control of
interfaces con�guration. For instance, IMR determines that interface eth1 from MR is con�gured
to be used with AR_Ku, it also handles situations where interfaces in MR go down and have to
be reassigned to another AR_ link.

13

3.2. Introduction to SANDRA scenario

The current architecture of the testbed which I have dealt with is the one shown in �gure
3.3.

Figure 3.3: SANDRA architecture

In orange there is respective Security Gateways establishing a secured tunnel between them,
and over that tunnel MR-HA establishes its own tunnel for mobility purposes, in blue color.

This current architecture is an approach of what SANDRA test-bed would be in a close
future. IPsec3 capabilities were being added meanwhile I started working with the testbed.
In section 5.1 this topology is explained more deeply, however, the basics has been previously
explained in chapter 2, so please refer to this chapter to be familiar with Mobility concept.

Internet Protocol Security (IPsec) is a protocol suite for securing Internet Protocol (IP) com-
munications by authenticating and encrypting each IP packet of a communication session. IPsec
also includes protocols for establishing mutual authentication between agents at the beginning
of the session and negotiation of cryptographic keys to be used during the session.

IPsec capabilities have been introduced due to the will of adding security in the tra�c �ow
and Mobility signaling (both in MR for Binding updates and Binding acknowledgments). All
tra�c behind IPsec Security Gateways is encrypted and decrypted in the end edge IPsec Security
Gateway.

In section 7.1 from chapter 8, a matter related with IPsec will be explained. However, bear in
mind that IPsec is a topic out of the scope of this project. All knowledge about IPsec have been
acquired by listening some conversations between the workmate in charge of the IPsec project and
its supervisor, and also by some other technical questions to him because of his modi�cations
within the testbed. Apart from that some of my tasks related with test-bed automation and
NeXT protocol have made me deal with some speci�c IPsec aspects that will be explained in
section 7.2.

14

3. Testbed Current Status

3.3 Aim of traversing IPv6 tra�c over a satellite IPv4 network

IPv6 has not arrived in satellite communications yet. Thus IPv6 packets have to be sent through
the IPv4 satellite link. Looking at �gure 3.3 an aircraft network can be identi�ed, it is the one
behind MR and which is not attached to any AR.

In real world it would look like in �gure 3.4.

Figure 3.4: Air tra�c network

The satellite IPv4 network used and considered for the project is the INMARSATBGAN4

(BroadBand Global Area Network) which has 3 Inmarsat-4 satellites. Satellite communication
have an advantage; its wide coverage area of each satellite which covers all over the world.
However, they have some disadvantages: the atmosphere and the ionosphere add errors that
provoke packet loses. In �gure 3.5 the coverage area of Inmarsat can be appreciated.

3.4 Relevant and non relevant tra�c types in SANDRA

One thing that SANDRA project stands for is to de�ne a model that allows both IPv4 and
IPv6 coexist during the transition process of the IPv6 instauration all around the world. It is
important that fact because there is still a huge amount of IPv4 devices and tra�c applications,
thus they do not support IPv4 and an infrastructure has to be given to those devices. See �gure
3.6

IPv4 tra�c (either public or private) can be tunneled by IPsec version 4 tunneling, it was
proven by the person working in the IPsec project. IPsec version 4 tunneling means that IPv4
tra�c is tunneled by both IPsec ScGW. When a packet reaches one SecGw an outer IPv6 header
is added to the packet (apart from the IPsec header), those headers are only removed when the
packet reach the other SecGW, it is when IPv4 is used again. An issue shows up if this is done,
but only if private IPv4 addresses are used due to uniqueness address aspect. That is solved by
creating a pool of IPv4 private addresses in both networks sides behind each SecGW. This pool
allocates a speci�c rang of addresses and its purpose is to avoid addresses con�icts.

15

3.4. Relevant and non relevant tra�c types in SANDRA

Figure 3.5: Inmarsat coverage Area

Figure 3.6: SANDRA tra�c

16

Chapter 4

Mobility + IPv4 Traversal

4.1 Considered Protocols as a solution for SANDRA

In this section it will be discussed the most suitable protocol option to deploy and adapt to the
needs of the SANDRA project (see 3.2). A list of nowadays existent protocols has been considered
to its deployment in SANDRA. A deep study of them has been performed, its documentation
(RFC's and other public available documentation resources) has been read. It has also been done
determining its applicability in SANDRA scenario, its time-e�ort costs and �nally drawbacks and
advantages of them.

4.1.1 M6T protocol

M6T is a protocol that allows transporting IPv6 data over an IPv4 network, in our case of study
a satellite link. See �gure 4.1 for a better understanding. M6T does the following steps:

1. It provides an IPv6 interface to the node in order to let MIPv6 do Mobility (e.g. do NEMO
encapsulation).

2. M6T entity in MR adds an UDP header and an extra outer IPv4 header to allow UDP
tunneling.

3. M6T entity in HA decapsulates the packet by erasing the outer IPv4 and UDP headers

4. The decapsulated packet passes to the MIPv6 from Home Agent and it decapsulates the
NEMO IPv6 outer headers

17

4.1. Considered Protocols as a solution for SANDRA

Figure 4.1: M6T deployment

5. Once NEMO headers have been erased, HA routes the packet to the appropriate IPv6 CN
node.

The aim of M6T is to provide an easy, adaptive and simple solution to let IPv6 packets
traverse IPv4 networks. This solution works in Linux only, for further details see 5.

The following �gures show which is the packet's structure in each point of the path to its
destination, taking the MR as origin and the CN as destination.

Figure 4.2: Outer packet in MR and Outer packet in HA

Figure 4.3: Packet in HA after UDP decapsulation is done by M6T entity, the outer IPv6 header
is the NEMO header

MR knows where the HA is because it is de�ned in the mip6d.conf �le from the Linux
MIPv617 daemon.

18

4. Mobility + IPv4 Traversal

Figure 4.4: Packet in CN

4.1.2 DSMIPv6

DSMIPv6 6 is a protocol that stands for Dual Stack Mobile IPv6 and aims at extending the Mobile
IPv6 and NEMO Basic Support protocols to support movements in IPv4 networks. DSMIPv6 is
an extension of the Mobile IPv6 protocol thus it follows standards which is always a good asset.

What DSMIPv6 seeks is to save the use of two Mobility protocols, IPv4 and IPv6. Using
both at the same time will probably lead into a non stable situation of con�icts. As an extension
it provides two main modi�cations in Mobile IPv6 headers structure. A brief introduction to
DSMIPv6 will be given, for further details see 6.

DSMIPv6 also consider cases where a mobile node moves into a private IPv4 network and
gets con�gured with a private IPv4 care-of address. In these scenarios, the mobile node needs
to be able to traverse the IPv4 NAT in order to communicate with the HA. IPv4 NAT traversal
for Mobile IPv6 is presented in 6.

In DSMIPv6 it is assumed that the HA can be reached through a global and unique IPv4
address. It can happen that is con�gured with a private address, therefore a NAT will be needed.

The typical scenarios where DSMIPv6 acts will be introduced:

• Scenario 1: IPv4-only foreign network

� In this scenario the mobile node is located in a network where it can only provides an
IPv4 CoA.

• Scenario 2: Mobile node behind a NAT

� In this scenario, the mobile node is in a private IPv4 foreign network that has a NAT
device connecting it to the Internet. If the home agent is located outside the NAT
device, the mobile node will need a NAT traversal mechanism to communicate with
the home agent.

• Scenario 3: Home agent behind a NAT

� In this scenario the thing is even more complicated because the HA is located in an
IPv4 private network, thus the communication between the MN and the HA is more
complex. However there is the assumption that the HA has a global IPv4 address
that make it reachable around all over the Internet. This global IPv4 address is not
physically con�gured in an interface in HA, it is con�gured in a device that supports
NAPT and stores HA routing information.

• Scenario 4: Use of IPv4-only applications

19

4.1. Considered Protocols as a solution for SANDRA

� In this scenario the mobile node is located in an IPv4/IPv6 network capable, however,
it uses some application that requires IPv4 tra�c.

• Scenario 5: IPv6 and IPv4-enabled networks

� In this scenario, the mobile node should prefer the use of an IPv6 care-of address for
either its IPv6 or IPv4 home address.

4.1.3 NeXT

NeXT is a protocol created and owned by TriaGnoSys GmbH company in Munich, Germany. The
main aim of NeXT protocol is allowing the transmission of IPv6 packets through IPv4 links (i.e.
Satellite). This is done by translating IPv6 headers to IPv4 and again to IPv6 after traversing
these links.

It can also work the other way round, to traverse IPv6 networks with IPv4 packets.

Figure 4.5: NeXT

NeXT consists of two main entities,

• NeXTMaster

• NeXTSlave

20

4. Mobility + IPv4 Traversal

Both NeXTMaster and NeXTSlave consist of two sub-entities

• NeXTMaster = NeXT64Master and NeXT46Master

• NeXTSlave = NeXT64Slave and NeXT46Slave

NeXT64 entity translates IPv6 tra�c into IPv4 tra�c and NeXT46 entity translates IPv4
tra�c into IPv6.

In �gure 4.6 the legend for the di�erent types of packets used in �gures 4.7 and 4.8 are
shown.

Figure 4.6: NeXT headers with IPv6 and mobility legend

Figure 4.7 shows in a real world scenario which are the steps that NeXT does when MN
starts talking to CN and MN is in a foreign network:

1. A node (MN) generates the the �rst packet of a session, the destination is CN outside of
the current MN network, thus the packet is sent to MR

2. When MR receives the packet it applies NEMO protocol to the packet (adding an extra
IPv6 outer header). Afterwards it looks for an entry in the translation table(structure that
holds the information required to translate the packet from one IP version into other), as
it is the �rst packet of the session it does not �nd any entry matching the packet. Then a
new entry is created and addresses and ports are assigned.

3. When an entry for the new packet is created the packet is sent with the IPv6 addresses
and original ports as shown in �gure 4.6.

4. The packet reaches NeXTSlave, it looks for an entry in the table, as it does not �nd any
entry it reads the IPv6 addresses from the packet and also the ports, then it creates a new
entry for the packet.

5. The packet is translated and sent to the HA (remember that there is NEMO header in the
packet).

21

4.1. Considered Protocols as a solution for SANDRA

6. The packet reaches the HA, due to in step 2 an outer IPv6 Header was included by NEMO
using as source address the MR's HoA and as a destination address the HA's HoA. When
the packet arrives to HA it decapsulates the packet (removes the NEMO outer header which
includes the Home Addresses previously mentioned) it reads the CoA form the packet and
searches it within its Binding cache (BC), if it is found in the BC then is routed to the CN.

Figure 4.7: NeXT steps from MN to NeXTSlave

Figure 4.8 show in a real world scenario which are the steps that NeXT does when CN starts
talking to MN and MN is in a foreign network:

1. CN sends IPv6 packet to MN

2. Packet goes to HA

3. HA consults its BC and if the destination is found adds NEMO outer header (it includes
source and destination HoAs)

4. HA forwards the packet to the destination HoA(MR HoA)

5. NeXT64Slave in AR receives the packet

22

4. Mobility + IPv4 Traversal

Figure 4.8: NeXT steps from CN to MN

7. NeXT64Slave looks in the table if there is any entry that match the packet, as it does
not �nd any NeXT64Slave sends a signaling packet to the NeXTMaster with the addresses
and ports in IPv6 and asking to NeXTMaster an allocation of a IPv4 address. NeXTSlave
knows the master address due to it is speci�ed in a con�guration �le, however, the address
is also provided by the �rst packet that NeXTMaster sends to NeXTSlave to start an
exchange of tra�c data. For further details about this con�guration please see �gure 4.10.

8. NeXTMaster assigns a IPv4 address and ports and creates a new entry in its table structure.

9. NeXTMaster sends a request ack to NeXTSlave with the new information.

10. When NeXTSlave receives the information, it creates a new entry in the translation table
and translates the header. Bear in mind that this packet that is going to be sent does not
contain any IPv6 address since IPv6 address have been previously stored in NeXTMaster
when the signaling request packet was sent.

11. NeXTSlave sends the packet

12. NeXTMaster receive the packet and translates it

23

4.2. Protocol comparison

13. NEMO protocol removes the outer IPv6 NEMO header, and forward to its recipient.

NeXT protocol uses libnet�lter_queue library. Libnet�lter_queue is an userspace library
providing an API to packets that have been queued by the kernel packet �lter. It is part of
a system that deprecates the old ip_queue /libipq mechanism. Libnet�lter_queue has been
previously known as libnfnetlink_queue. It allows receiving queued packets from the kernel
nfnetlink_queue subsystem and also issuing verdicts and/or reinjecting altered packets to the
kernel nfnetlink_queue subsystem.

NeXT stands for an e�cient way of using IPv4 links bandwidth. One kind of IPv4 link that
nowadays is used is satellite links. It provides communication in vast areas where other technolo-
gies and mechanisms can not, for example in transatlantic airplanes �ights. However, despite
satellite links are currently thought as an appealing solution to intercommunicate (specially in
the skyline) it has one feature, using a satellite link is expensive in terms of time/tra�c usage.
NeXT introduces tra�c overhead saving by how it translates IPv6 packets into IPv4 format.

NeXT saves space bandwidth on using the satellite link due to how it translates packets
from IPv6 to IPv4. NeXT does save space by sending at �rst all the IPv4 and IPv6 information
required to NeXTSlave to do a mapping between the two IP versions (IPv6 address with ports
85000 and 86000 corresponds to the IPv4 address 184.67.9.5). When the NeXT Slave has a
mapping entry in itself data structure the following packets from the �ow only carry IPv4 infor-
mation (IPv6 mobility headers also) due to IPv6 information had been previously stored in the
NeXTMaster and NeXTSlave. It is not just UDP encapsulation, it is something more e�cient
than this.

4.2 Protocol comparison

A list of drawbacks and advantages will be given for two of the three protocols introduced. M6T
is not considered for the following reasons.

In the earlier process of analyzing its features I thought that it was not worth to consider it
anymore because it was something alike to NeXT protocol and furthermore it added a constant
overhead into the satellite link. What is considered as overhead is the outer IPv4 and the UDP
headers added to the original packet.

A satellite link is something very expensive in terms of tra�c usage, normally whoever uses a
satellite link will be normally paying for an amount of tra�c consume through the link. Therefore
adding always 28 bytes of extra headers was not an appealing matter, NeXT solution managed
even better and in an e�cient way this issue.

This is why for that reason M6T will not be considered in this comparison and pros and
cons. DSMIPv6 and NeXT will be the only ones.

Pros and Cons for DSMIPv6 protocol are shown below.

Advantages :

• Allow v4 CoA

24

4. Mobility + IPv4 Traversal

• Allow v4 HoA

• Is a Standard

Disadvantages :

• DSMIPv6 implementation is buggy

• Can't run MultipleCoA-patched implementation + NEMO

• NAT traversal is not implemented

• Overhead with UDP addition

The DSMIPv6 implementation that exists and has been considered in this analysis is the one
from Nautilu67. One of the drawbacks says that the MultipleCoA-patched implementation and
NEMO patch cant not work together. There is not so much information about this drawback, it
is only mentioned in its o�cial website. Therefore it has been deduced that MultipleCoA-patched
implementation and NEMO patch cant not work together due to how they are installed. Both
of them are patches to the Linux kernel that add and replace lines from it, It can happen that
there can be and overlapping of some kernel lines, therefore some functionalities of those patches
can not work properly.

In the test-bed, one very important feature was the use of multiple addresses, it was a must.
Multiple-CoA had to be present in the test-bed. Moreover NEMO was also a feature of the
testbed that was a must, on the top of that, they were both already installed in the testbed. For
that reason it was an important drawback that subtracted points into consideration to DSMIPv6.

Apart from that DSMIPv6 implementation performance was not quite stable. It showed so
many troubles with handovers performance making the whole system unstable because after a
serie of repetitive handovers the DSMIPv6 software crashed. There were other bugs such as some
con�guration policies de�ned by DSMIPv6 that were not removed after exiting from it. Having
a stable behavior was something sought and DSMIPv6 didn't seem to provide it.

Nowadays DSMIPv6 implementation hasn't got some functionalities, for example DSMIPv6
lacks of NAT traversal implementation. However, not all about DSMIPv6 is negative, it has
positive features like the possibility of using a CoA v4 address and the dynamism it introduces
because it makes possible to have only one Mobile IP protocol deployed. DSMIP is being also
considered by companies such as Qualcomm whose Smart Mobility team is developing a solution
based on the Dual Stack Mobile IP (DSMIP).

Pros and Cons for NeXT protocol are shown below.

Advantages :

• Reliability of its functionality

• Satellite bandwidth performance

Disadvantages :

• It is not a Standard

25

4.3. NeXT as option chosen

4.3 NeXT as option chosen

NeXT protocol has been �nally the chosen option for its deployment in the SANDRA scenario.
It allows having Multiple-CoA and NEMO running at the same time. Furthermore it guarantees
an e�cient use of the satellite link bandwidth as it has been explained in section 4.1.3.

Adopting NeXT for the SANDRA project has its implications and a deep process on analysis
has to be performed. NeXT has two main entities, NextMaster and NextSlave. It was �rst
implemented as a one-to-one channel, it means NeXTMaster entity only communicates with
NeXTSlave entities, a one-to-one speech. However within SANDRA this change due to its
architecture.

Figure 4.9: SANDRA scenario with NeXT

What comes now is the whole analysis that was made to determine how NeXT would look
like if it would have been used in SANDRA and which new requirements would appear as a result
of this process.

An explanation of �gure 4.9 will be given next. Figure 4.9 shows the SANDRA topology
scenario using NeXT. In this case what is on the right side of TriaGnoSys router is an emulation
of SANDRA scenario but emulated inside TriaGnoSys network. TriaGnoSys router acts as an
ARv4 that leads to an IPv4 network. Within this IPv4 network there are some ARv6 that
correspond each one to a speci�c Regional Area IPv6 Network. A Regional Area Network is
an IPv6 Network that can be related whether to a geographic area or a type of service. Lets
suppose that there are two mobile nodes (two mobile devices) that have paid for some satellite
data bandwidth and also for a certain time duration. Lets identify the two mentioned mobile
nodes as device A (DA) and device B (DB). DB has paid for a better and quicker access to the
network than DA. DB then is supposed to have better speed than DA. DA has paid for service
A and DB has paid for service B. When packets from DA reaches MR, they are sent via the link
that is associated to the type of service, service A in this case. Then packets reach TriaGnoSys
ARv4 and some polices are consulted to determine to which ARv6 the packet has to be sent.

Looking to �gure 4.9 there is a Mobile Network attached to a MR. In the Mobile Network
there are di�erent nodes that use di�erent contexts, by di�erent contexts we mean there are

26

4. Mobility + IPv4 Traversal

Figure 4.10: Flow packet

di�erent needs of using one speci�c resource or another (L-band, Ku-band, WiMax2,..) depending
on the requirements in �ow tra�c type. So in some how we depend of what IMR tells us, on
which information it provides allowing to con�gure Policy Rules, NEMO, and NeXT Master in
MR.

• NeXT Master needs to know the interface information to establish a binding socket channel
with NeXT Slave, i.e. NeXT Master needs (1) a local interface on the MR with an IPv4
address (IPv4 CoA) of the respective IPv4 access network (can be virtual I/F), and (2)
the IPv4 address of the respective NeXT slave. This channel is used to exchange signaling
and data.

• Assuming this, it is supposed that IMR (an entity attached to MR that manages interface
and tra�c information transparent to MR) provides the information required. The follow-
ing �ow chart illustrate what is exchanged since MR request information resource to the
IMR, and to when all is properly con�gured.

Figure 4.10 shows a �owchart that describes the steps taken to allow the MR receiving some
router advertisements from a regional ARv6 which it has not any bound yet with. The steps are
the following:

27

4.3. NeXT as option chosen

1. MR asks for information (makes a resource request �Resource Req 1�) to IMR

2. IMR issues according resource request to the respective access network (chosen by either
MR or the IMR)

3. ARv4 (ground station) replies giving a CoAv4

• CoAv4 can be public

• CoAv4 can be private (NAT required in IMR or in access network)

4. With allocation of an CoAv4, the IMR needs to decide which virtual interface is set-up
between IMR and MR (VLAN, ppp,...). CoAv4, VLANx, and AccessNetwork information
is sent within the Ack to the MR.

5. MR receives the Ack from IMR

6. MR con�gures a CoAv4 and it con�gures a new interface. Now NeXTMaster (in MR) can
establish a channel communication with NeXTSlave (in Regional ARv6).

7. NeXTMaster sends a packet with information to NeXTSlave using a src IPv4 address (the
CoAv4) and a destination IPv4 address (the NeXTSlave IPv4 addr.).

8. NeXTSlave doesn't know about NeXTMaster, but Master does (it knows AccessNetwork/Ground
Station, thus public address v4 of NeXTSlave is deduced (it is likely that there is a
NAT before the NeXTSlave that must be con�gured accordingly to pass packets from
the NeXTMaster to the proper NeXTSlave)

9. MR link hasn't got a CoAv6 yet, it is provided by Router Advertisements (Ra). However
router advertisement 1 (Ra1) and router advertisement 2 (Ra2) can not reach MR till
NeXTSlave knows about NeXTMaster.

10. Ra1 and Ra2 are discarded by the Arv6 because it doesn't know what to do with them.
After NeXTSlave knows about Master router advertisement 3 (Ra3) is sent.

11. MR receives the Ra3 and con�gures an CoAv6 (NEMO does this).

12. Afterwards MR con�gures IPv6 policing rules to route the respective tra�c over the newly
set-up (virtual) interface. The MR also need to transmit the applicable reverse policy
routing rules to the HA.

Which NeXTSlave shall be used by the NeXTMaster depends on a-priori assumptions w.r.t.
where the ARv6 is located in the ground network for a given access network, i.e. it should be
con�gured and de�ned by the user. Example: If the assumption is that the ARv6 of the Ku-band
access network lies in Region 1, then it must be con�gured in the NeXTMaster that for all CoAv4
belonging to the Ku-band access network the NeXTSlave belonging to the ARv6 in Region 1 is
used. This ensures:

(a) The CoAv6 address allocated to the respective MR interfaces are belonging to the respective
ARv6, which ensures that also the return packets (CN -> MNN) are routed over the correct
ARv6

28

4. Mobility + IPv4 Traversal

(b) NeXT packets are sent from the NeXTMaster to the right NeXTSlave.

Further, there a several options that could be considered for the case when an access network
and accordingly the resources already allocated on it become unavailable, however, it is out of
the scope of my project considering them.

But why NeXTSlave is said to be placed in ARv6s? The reason is the following one. Apart
from ARv6s, the only feasible candidate to think for hosting NeXTSlave is the HA. However,
placing NeXTSlave in HA means that there is no possible way at all to route the packets through
a speci�c region network area due to the lack of routing information. Thus turning into an
impossible task to guarantee that a packet traverses a speci�c Region network. That is why by
using ARv6 it can be provided within router advertisements pre�xes addresses to con�gure an
IPv6 CoA which solves the routing problem.

29

Chapter 5

Testbed Automation

In the previous chapter 3 the testbed architecture has been introduced taking NEWSKY and
SANDRA scenarios into account. However, this testbed description in chapter 3 is more theoreti-
cal and conceptual rather than technical, thus I will make a description of the di�erent test-bed's
features. For instance, which software is running the testbed or which OS is hosting. This will
be helpful to situate oneself when testbed automation features and decisions are mentioned in
later paragraphs of this chapter.

5.1 IPv6 Network Mobility Testbed Architecture - Technical fea-
tures

The IPv6 Network Mobility Test-bed consists of:

• 1 CN (Correspondent Node)

• 1 MNN (Mobile Node Network)

• 1 HA (Home Agent)

• 2 AR (Access Router)

• 1 MR (Mobile Router)

• 2 IPsec Security Gateways (ScGW)

31

5.1. IPv6 Network Mobility Testbed Architecture - Technical features

Figure 5.1: Testbed Architecture

The current architecture of IPv6 Network Mobility Test-bed is shown in Fig 5.1

Both HA, MR and the two AR's are Virtual Machines (VM) created with XEN. These
four VM's are hosted in the same physical node inside the testbed. The name of its node is
Humboldt. Virtual machines let test scenarios easily and they are also easy to move between
physical machines. In a �nal instance they appear as independent machines to the software it is
being run.

The MNN is a VMWare VM located in a node named ubuntu2. It represents either a whole
network, or a device attached to a network which aims to send data through MR. The ubuntu2
node acts as a MNN Ipsec ScGW encrypting all the incoming tra�c from MNN and decrypting
the tra�c coming from MR whose �nal destination is MNN. The IPsec functionality is out of
the scope of this project, therefore it will mainly be mentioned when some aspects related with
IPsec need some justi�cation.

The CN is also a VMWare VM. The CN has a FTP server and an Apache web server
installed, therefore it mainly acts as a service provider. CN is hosted in a node named Zuse
which acts as a CN IPsec ScGW, encrypting all the incoming tra�c from the CN and decrypting
the tra�c coming from HA whose �nal destination is CN.

All the nodes in the testbed use either Linux Red Hat Distribution, or Linux Ubuntu 8.04
hardy release. Its power in terms of CPU frequency and RAM are the typical of a Pentium 3 /
Pentium 4 node, that means if a software shows good performance in the testbed (it consumes a
few RAM and CPU resource) its deployment in more modern physical nodes will show and even
more good performance. Thus e�ciency and scalability of the software will be demonstrated.

The Xen hypervisor is a layer of software running directly on computer hardware replacing
the operating system thereby allowing the computer hardware to run multiple guest operating
systems concurrently. It provides support for x86, x86-64, Itanium, Power PC, and ARM pro-
cessors. This allow Xen to run on a wide variety of computing devices. It currently supports

32

5. Testbed Automation

Linux, NetBSD, FreeBSD, Solaris, Windows, and other common operating systems as guests
running on the hypervisor. Xen hypervisor is a free solution licensed under the GNU General
Public License.

5.2 How the IPv6 Network Mobility Test-bed was switched on

As I have mentioned in section 5.1 the IPv6 Network Mobility Test-bed consists of three physical
nodes, Zuse, Ubuntu2 and Humboldt. This last one is the one that hosts MR, HA, AR1 and
AR2 VM's. Zuse and Ubuntu2 acts as a ScGW and each one hosts its VM's, CN and MNN.

The IPv6 Network Mobility Test-bed runs mainly four protocols, Mobile IPv6, Network
Mobility (NEMO), a TriaGnoSys protocol called NeXT and IPsec.

Due to the deployment of these protocols and other functionalities to reach a certain �nal
simulation performance behavior there were some con�guration commands and some scripts that
required manually execution. There were also some con�guration commands and scripts that
were used in such a way that either in restart, or boot mode they were launched automatically.
The way of making them launch automatically was specifying them in the /etc/rc.local Linux
script.

Rc.local is a standard script in Linux distributions, which means it is common in almost all
the Linux distribution releases that nowadays exist. This script is executed after all the other
init scripts, so all the initialization lines can be put in there, this means whatever daemon that
is initialized in the boot step will be started before the rc.local. Once rc.local is called it is put
in the execution background.

Humboldt node use /etc/rc.local to con�gure some internal things. VM have been decided
to be run manually via a script and also from a Graphical User Interface.

A node can go down for many reasons:

• An outage

• A manual reboot of the node

• A non desirable halt (Eg. When an execution by accident of a countdown switch o�)

• The node gets broken and it has to be replaced

For all those reasons, this way of proceeding for the restart of whether a node or all the
nodes1 lead into a scenario where the person who had to restart some nodes had to spent some
time on it. He had to switch on the node, start typing commands and launching scripts.

Avoid spending time on things that can be skipped is something valuable in an investigation
environment, thus the way of how the testbed was launched was not convenient.

1From now on when I say �all the nodes� I will be referring to both physical nodes and VM's, in case of talking

about only VM's or physical nodes these last two terms will be employed for that purpose

33

5.3. Considered options for the automation

5.3 Considered options for the automation

A new way for automation had to be developed. It came out that one of the new requirements had
to minimize the human interaction in the con�guration steps and by just pressing or rebooting a
node, this one con�gured itself. Therefore the user interaction with the testbed reduced to what
mattered, investigation and research.

For that reason I thought which would be the feasible and optimal way of doing a better
startup automation, three options were considered. Those options will be explained in details in
the following subsections 5.3.1 5.3.2 and 5.3.3

5.3.1 Use of Cron + Bash scripts:

Cron is a time-based job scheduler in Unix-like computer operating systems. The name cron
comes from the word "chronos", Greek for "time".Cron enables users to schedule jobs (commands
or shell scripts) to run periodically at certain times or dates. It is commonly used to automate
system maintenance or administration, though its general-purpose nature means that it can be
used for other purposes, such as connecting to the Internet and downloading �les, for instance
using wget or curl commands.

Cron makes use of what it is called crontab table, a system �le that contains the command
or scripts to be periodically launched given a scheduling con�guration. Each user can have its
own table, making not possible to other users to modify it, the root user has its own table too.

The crontab table can have various crontab entries, each entry has �ve �elds for specifying
day , date and time followed by the command to be run at that interval. However those �elds
can be replaced by an equivalent namespace or typo, for instance to deploy a task every month
it can be speci�ed by typing '@monthly' in the scheduling task �eld.

The following �gure from below 5.2 describes the syntax of a crontab entry, showing the 5
scheduling �elds and also the command �eld.

Figure 5.2: Cron table entry format

However as it has been mentioned there are some special prede�ned values which can be
used to replace the Cron scheduling expression.

The asterisk in �elds indicates to cron that any value is acceptable.

34

5. Testbed Automation

Figure 5.3: Cron prede�ned variables

The intention of the automation is to make hardly all the existent con�guration processes
start automatically in the startup, therefore by looking in the �gure 5.3 it can be deduced that
the appealing feature of Cron for the test-bed automation is the prede�ned variable @reboot.
@reboot can be useful if there is a need to start up a server or daemon under a particular user,
and the user does not have access to con�gure init to start the program. Tasks launched by
Cron inherits the permissions and ownership of the user who have con�gured the crontable and
is assigned to it.

In all testbed nodes there are some con�guration scripts �les, those scripts determine the
node behavior. All those con�guration scripts are backed up in a Subversion repository enabling
a quickly reestablishment of the them in a new node in case of a node failure.

By considering Cron as a valid solution it implies that every con�guration script in every
node has to be manually added into the crontab �le using an editor. This means that if for some
reason the table's content empties then entries have to be added again. Besides An extension of
cron is the ability to specify a time as "@reboot", this means there are some versions of cron that
don't support it. It can be considered as a drawback, and it has to be said that the intention is
to work with standards.

5.3.2 Use of /etc/rc.local + Bash scripts:

In section 5.2 a brief description of /etc/rc.local has been done. As it has been explained rc.local is
an standard way of launching commands and processes when a node starts up. As /etc/rc.local
script is the last one in being launched it can be guaranteed that all system environment is
properly started, for instance the system network environment.

In rc.local a list of either commands or processes can be speci�ed in a decreasing cascade
order, that means the �rst lines are the �rst ones in being launched. For each command line
in rc.local �le a shell is created in the background for its execution (normally a bash shell, it
can depend of con�gurations), however, unless you do not specify the command to be launched
in the background (specifying with & symbol), rc.local will deploy the command execution and
wait for a response to continue interpreting the following lines.

Choosing whether launching a script or command in the background or in a established
sequence depends of the behavior to be expected, like Command in Line 2 needs that Command

35

5.3. Considered options for the automation

in Line 1 had previously con�gured some behavior. It can be said a matter of prerequisites and
requirements.

A typical /etc/rc.local structure is the following one from below:

Figure 5.4: Rc.local �le

The �le starts with a shebang line, the one that says �#!/bin/sh -e �. In computing, a
shebang line is the character sequence consisting of the characters number sign and exclamation
point (#!), when it occurs as the �rst two characters in the �rst line of a text �le. In this case, the
program loader in Unix-like operating systems parses the rest of the �rst line as an interpreter
directive and invokes the program speci�ed after the character sequence with any command line
options speci�ed as parameters.

After the command lines the script terminates with the exit command with a 0, saying it
successfully exits from the script.

As it has been mentioned, testbed nodes have various con�guration scripts, some of them can
be speci�ed in the /etc/rc.local �le, but there are others that are better not to because depending
on which scenario it is intended to perform a simulation there will be some con�guration scripts
that will be load and others that won't. Besides, there are scripts that needs input values that
de�ne for example packet delay, interfaces and other parameters.

That means there is the need of human interaction to in a �nal instance con�gure the testbed
for a scenario that requires an speci�c behavior.

It can be said that there are mainly two scenarios, each one with its correspondent scripts
and con�guration �les. These two scenarios are:

• Simulating a satellite link using tc command, adding delay to the packets.

• Using BGAN satellite link.

36

5. Testbed Automation

The steps to be followed in order to perform the automation process are:

• Some con�guration �les are added to the /etc/rc.local

• Once the node is either rebooted or started up the con�guration �les in /etc/rc.local are
sequentially launched.

• The user executes a bash script from the command line

This last point of the list, �executing a bash script from the command line� is the step in
which there is human interaction with the system in terms of con�guration actions. An example
of a scenario simulation base case will be now introduced.

Base case:

Given an scenario using Satellite emulation link, scripts A, B, C and D are de�ned in the
/etc/rc.local. All the testbed nodes are rebooted. Then afterwards launching a script, it doesn't
matter if it is whether from local computer or Humboldt. This script will make a series of
question asking for speci�c behavior matters, such as, �¾Do you want to apply packet �ltering¾`,
if the answer is a�rmative then some parameters to the packet �ltering are suggested for the
system. Afterwards the user is able to choose whether accept the suggestion or de�ne its owns
parameters. This series of questions establish a speci�c con�guration for the whole testbed
behavior.

Once the user has answered all the questions, a list of all the options previously chosen is
shown and the user is asked to con�rm if all the parameters and options are okay. In case of
selecting �No� the user has the option to modify the parameters and options he wants.

Until this step there has been no orders to any of the testbed nodes, what has been done is to
store the options chosen by the user in variables. That means that only after the user con�rmation
remote commands using ssh are sent to the di�erent nodes of the testbed to successfully launch
the scripts that determine a behavior.

5.3.3 Use of /etc/rc.local + Java GUI + Bash scripts

The third option considered for the testbed automation is the implementation of a Java Graphic
User Interface (GUI). This Java GUI checks the node's status under request and manages the
start, reboot, and shutdown of them either one per one or by various at same time.

In sections 5.2 and 5.3.2 /etc/rc.local has been widely explained so its features and where-
abouts will not be discussed again in this section.

What this option o�ers as a new feature is the use of a Graphic Interface to manage all the
nodes (start, reboot, shutdown), this means that to a user non familiar with shell environments
it becomes easier to manage nodes because of the GUI, with just one mouse click the nodes are
controlled.

The main di�erence between this option an the one in section 5.3.2 is the absence of a script
asking the user input data in order to determine the �nal behavior. Instead of that there is a
GUI. This option aims to provide a better user interface usage.

37

5.4. Final option: Use of /etc/rc.local + Java GUI + Bash scripts

Figure 5.5: Java GUI

5.4 Final option: Use of /etc/rc.local + Java GUI + Bash scripts

Three possible options have been described as a solution for the IPv6 Network Mobility Testbed.

1. Use of Cron + Bash scripts

2. Use of /etc/rc.local + Bash scripts

3. Use of /etc/rc.local + Java GUI + Bash scripts

One of the requisites was that the usage of the testbed con�guration, switching either physical
nodes or VM's on had not to be a hard task. For that reason the use of a Java GUI (third solution)
has been decided as the best option for those purposes.

5.4.1 Di�erent features of the Java GUI

In section 5.3.2 it was said there were two main di�erent scenarios behaviors, �Simulating a
satellite link and �BGAN satellite link�. It was mentioned that the testbed uses some XEN VMs,
depending of which scenario behavior has to be tested those XEN VMs will need a di�erent

38

5. Testbed Automation

con�guration �le (.cfg) to be loaded. In this .cfg �le there are all the information of the VM, the
OS image (img) it uses, which interfaces has to be con�gured, MAC addresses to ensure they are
unique and there is no con�ict, also which bridges are con�gured and other things.

However, as the NEWSKY project was going to �nish within some weeks and the testbed
architecture was going to change in a close future it was �nally decided not to devote some many
time in that. Therefore some decisions were taken. One of them was the decision of letting
as precon�gured the Satellite emulated link behavior, that means the VMs starts automatically
with the correspondent .cfg �le, in the GUI there is no option to change that, however in a future
extension and adaptation of the GUI to the new SANDRA testbed architecture it could be done.

A node is supposed to be up if it ful�lls the following requirements:

1. It is reachable through the network (3 ICMP packets are sent using ping -c 3)

2. All the processes within a list are running in the node

The �ow from below, �gure 5.6 exempli�es how the status of a node is checked.

Figure 5.6: Flow Checking Nodes Status

To check if whether a process is running or not a shh connection is deployed and afterwards
a Unix command is executed. This Unix command tries to identify a nameprocess in the remote

39

5.4. Final option: Use of /etc/rc.local + Java GUI + Bash scripts

node, the name of the process is the one that is extracted from lprocess.get(i). The line from
below describes what has been explained in this paragraph.

ssh root@ha.newsky ps -e | grep " + lprocess.get(i) + " | tr -s /" /" | cut -d /" /" -f5

The following �ow chart �gure 5.7 shows the �ow when a start action is called from the GUI.
Bear in mind that in the Create HA VM box in the inner code it is established to use Satellite
Link Emulation con�gure �le (.cfg). In a future extension it can be programmed a functionality
to change among this and the other.

Figure 5.7: Flow Start Node

The following �ow chart �gure 5.8 shows the �ow when a stop action is called from the GUI.
In the box �Shutdown XEN ID VM � a shutting down action is performed in Humboldt node.

Humboldt node allocates di�erent VMs in its domain, so what is done in the �Shutdown
XEN ID VM � box is once the identi�er of the VM within Humboldt is captured it is used to
identify the VM to be stopped. The command to stop the XEN VM is the one in �gure 5.9.

40

5. Testbed Automation

Figure 5.8: Flow Stop Node

Figure 5.9: Stop VM command

The �ow chart from �gure 5.10 exempli�es the case when a node is being requested to be
rebooted. If the node is not available because it is down then it can not be rebooted, otherwise
the rebooting process is followed

5.4.2 Where are the scripts located and how are they executed ?

Hardly all the scripts in a node are located in a speci�c path folder directory, this guarantees the
scripts to be stored in the subversion, making it possible to easily reestablish all the scripts �les
in case of a major disaster. It can be said that they are all centralized in a directory instead of
being spread along the node path directory tree.

In section 5.3.3 it has been explained that scripts are previously prede�ned in the /etc/rc.local
script �le. Two things have to be considered, one is that the actual con�guration takes into ac-
count that as a precon�gured con�guration is being used then the required scripts are de�ned in

41

5.4. Final option: Use of /etc/rc.local + Java GUI + Bash scripts

Figure 5.10: Flow Reboot Node

the /etc/rc.local. The other thing to take into account is that it is easily feasible to extend and
modify the code to make that instead of de�ning some scripts in the /etc/rc.local they �nally
become executed by the GUI application by evoking them remotely.

The Java GUI app can be executed from outside the testbed, there is no need of launching
it from a testbed node. However some previous steps are needed to be followed. Those steps are
mainly con�guring a reliable shh key intercommunication channel. It is achieved by creating an
own ssh key certificate8 copy it to the testbed nodes the computer will connect and also copy
the ssh key-certi�cates from the testbed nodes to the local computer.

Another step that needs to be done is copy the java GUI �les from the subversion trunk or
from one of the testbed nodes that has the java �les in there.

42

Chapter 6

NeXT software architecture/design

In this chapter some aspects of NeXT �rst version (the previous one to my project) design will
be explained for a better comprehension. Which changes have to be introduced into NeXT �rst
version in order to adapt it to the new SANDRA scenario will be also explained. And �nally,
two di�erent NeXT new design approaches will be described.

6.1 NeXT �rst protocol version design

As it has been mentioned in section 4.3 in a previous chapter, NeXT �rst code was thought
for a one-to-one communication, it means NeXTMaster has only communication exchange with
one NeXTSlave and viceversa. NeXTMaster only sees NeXTSlave and this last one only sees
NeXTMaster.

Figure 6.1 shows an example of NeXT deployment in a typical topology network in real
world.

Figure 6.1: NeXT real world architecture

43

6.2. New NeXT requirements in SANDRA scenario

Figure 6.2: NeXT real world using satellite link

Figure 6.2 shows a scenario using a satellite link within TriaGnoSys GmbH company network,
using an AR with NAT as an entry gateway to the company network.

NeXT uses some resources in order to make the translation from IPv6 packet to an IPv4
packet and the way round. These resources are related with processes identi�ers, addresses
information and also some data structures that holds the information required to have an IPv6-
IPv4 mapping as commented in section 4.1.3.

NeXT64(either NeXT64_Master or NeXT64_Slave) and NeXT46 (either NeXT64_Slave
or NeXT46_Slave) holds its own data structure which is in charge of keeping the information
required for a packet translation (one way IPv6 to IPv4 for NeXT64 and the other way, IPv4 to
IPv6 for NeXT46).

Apart from that NeXT uses SIGNALS9 to let NeXT46 entity and NeXT64 entity exchange
information among them. Moreover SIGNALS are used for a proper termination of NeXT pro-
tocol under demand, when an order of termination is sent to NeXTMaster this one sends a
noti�cation to its NeXTSlave interlocutor saying that it is going to go down until new noti�ca-
tion. NeXTSlave then cleans its context related with its NeXTMaster interlocutor.

Some �ows, will be shown to give a glance of how NeXT works, but just as example given.
Please see �gures 6.3 and 6.4

6.2 New NeXT requirements in SANDRA scenario

As mentioned in section 4.3 NeXT has been chosen as the option to be deployed in SANDRA
scenario. As a result of this it can be seen in �gure 4.9 how does NeXT look like in this new
scenario. Things to point out, assuming that only one MR is being considered, are:

1. There are multiple NeXTMaster instances in the same MR

2. There is one NeXTSlave in each Region Network Area (see �gure 4.9)

44

6. NeXT software architecture/design

Figure 6.3: NeXT64 Master �ow

What do this two last points mean? It means that the way NeXT worked before in its
�rst release version is not longer valid anymore due to the existence of multiple NeXTMaster
instances in MR. In section 6.1 it has been said that NeXT was originally thought of a one-to-one
protocol, this has some coding implications in terms of NeXT own resources management and
NeXT inter-entities communication (NeXT46-NeXT64 communication �ow).

As an example given, if NeXT46 wanted to communicate some information to NeXT64 it
looked in the Linux process list by using the command ps piped with other commands, and it
searched for a process called �NeXT64_Master�. This proceeding didn't represent a problem
of behavior in a one-to-one mode operation, however, as MR has turned into an entity with
multiple NeXTMaster instances the proceeding previously explained would be problematic and
would lead to a non stable behavior and performance. For instance, for a better comprehension in
the following example it is assumed that MR has two NeXTMaster instances (2 x NeXT64Master
and 2 x NeXT46Master), lets call them:

• NeXT64Master_1

• NeXT64Master_2

• NeXT46Master_1

• NeXT46Master_2

45

6.3. Two di�erent NeXT design approaches

Figure 6.4: NeXT46 Master �ow

Imagine that NeXT46Master_1 wants to send a SIGNAL to its NeXT64Master, NeXT64Master_1
in this case. If the original way of sending signals (searching a process with name �NeXT64_Master�)
is used then there is no 100% guarantee that the SIGNAL will reach NeXT64Master_1, because
there will be two processes in Linux with the same name, so the behavior will be random, either
NeXT64Master_1 or NeXT64Master_2 will received the SIGNAL.

This last example given can be applied to some other resources within NeXT code during
the process of NeXT adaptation in SANDRA scenario and its new requirements.

To sum up this section, it has to be said that the main and new requirement to take into
account is the existence of multiple NeXTMaster instances in MR. This introduces the manage-
ment of multiple connections with di�erent NeXTSlaves placed in di�erent region network areas
and it also introduces the fact that multiple resources from di�erent NeXTMaster instances will
be held in MR.

6.3 Two di�erent NeXT design approaches

The starting point for a �rst reasoning was the necessity of MR to host multiple NeXTMasters,
one NeXTMaster per each NeXTSlave placed in one region area network.

What would happen if there would be only one instance of NeXTMaster? NeXTMaster
would be listening only to one queue giving the fact that it is only allowed to listening into one

46

6. NeXT software architecture/design

queue. Thus, it is likely that some policy routing would need to be replicated in order to know
to which interface and thus CoAv4 address packets are routed to. This option didn't was not
easy going in terms of internal NeXT code interface con�guration and it was not as intuitive and
simpler as the options considered in sections 6.3.1 and 6.5.

Apart from this last one considered option two other approaches were thought, they are
explained in the following sections 6.3.1 and 6.5. The �rst intention and, after analyze all the
new requirements, was to develop a design for NeXT using threads. However, I was not sure at all
if it would be possible due to technology reasons. Programming with threads usually introduces
a factor of complexity at coding, shared memory is one positive feature of threads and also an
advantage but it is sometimes tricky. For these reasons I thought that it would be appealing
and very appropriate to think of a previous design to NeXT threads, a design as good as this
last one that serve as an intermediate solution. A design that allows leading to a NeXT threads
design without many modi�cations and in case of non success allows a rollback to the previous
design solution (6.3.1).

These two approaches have been developed and implemented. NeXT threads implementation
was nearly 100%accomplished. Shared memory problems were dealt and overcame, but there
was an issue that made the NeXT protocol having a non correct behavior, however the issue was
not clear enought to determine its cause. It is explained in section 6.6.

6.3.1 NeXT multiprocess

¾How many instances of NeXTMaster can there be in MR? The answer to this question in this
approach is:

One NeXTMaster instance process per each MasterY - SlaveY communication pair. (See
section 6.5)

As it has been mentioned in section 4.1.3 NeXT protocol uses libnet�lter_queue library,
NeXT is a protocol that grab packets and makes modi�cations to them. In terms of design and
implementation it means both NeXT64 and NeXT46 entities are listening to a speci�c kernel
queue which holds packets, the process for storing one packet in a speci�c kernel queue (nfqueue)
is made by using iptables and ip6tables.

Those two lines are an example of how packets are redirected to a speci�c nfqueue. QUEUE_MAST64
is a de�ned variable that holds a value extracted from a xml con�guration �le, it is an int value
specifying the nfqueue number identi�er.

• a = "ip6tables -A OUTPUT -o "+IFACE4+" -j NFQUEUE �queue-num "+QUEUE_MAST64;

• system(a.c_str());

-j NFQUEUE �queue-num is the sintaxis used in ip6tables to specify the nfqueue number.

Adding this libnet�lter_queue library feature in the �gure 6.5 turns it into �gure 6.6. In
�gure 6.6 it can be seen that each NeXTMaster instance (NeXT64Master and NeXT46Master)

47

6.3. Two di�erent NeXT design approaches

Figure 6.5: Multiple instances

listens to a di�erent nfqueue, each entity is only permitted to listen to only one nfqueue due to
technology restrictions. One nfqueue is used for NeXT64Master and another for NeXT46Master.
Using multiple instances allow to do that. Of course what it has been explained for NeXTMaster
entity is equally valid to NeXTSlave. Doing in that way it can be guaranteed that all NeXT
instances will grab the correct packets, thus preventing from any possible problem on sending
and forwarding packets to the right destination.

Identi�er numbers of nfqueue in NeXTSlave in �gure 6.6 can be perfectly numbered from
1 due to the fact that as they are usually in di�erent nodes that hosts NeXTMaster instances,
there is no possible con�ict. However to make it more clear they have been numbered from
7. The concept of multiple NeXTMaster instances has been introduced, multiple launches of
NeXTMaster (multiple processes).

In order to turn NeXT into a multiprocess protocol a new architecture design was developed,
taking the need of allowing an easy transition to threads design into account.

In �gure 6.7 there is a main process named �NeXT�, NeXT main process in the picture, this
is the launcher of the new NeXT version protocol, a binary �le. NeXT main process creates as
many child processes as ARs in Regional Network Area the MR has to deal with. This �gure
takes as an example the launching of only NeXTMaster entities, various NeXTSlave entities can
also be launched. NeXTMaster entities are used in the following explanations, but keep in mind
that NeXTSlave could also be used NeXTSlave instead.

Each child process is in charge of launching its NeXT64 and NeXT46 entity, bear in mind
that each child process corresponds to a speci�c NeXTMaster entity bound to a certain regional
AR with a NeXTSlave entity. NeXTMaster_1 entity is bound to NeXTSlave_1 entity in re-
gional AR_1, there can not be any NeXTMaster entity apart from NeXTMaster_1 bound to
NeXTSlave_1.

48

6. NeXT software architecture/design

Figure 6.6: Multiple instances with libnet�lter

Figure 6.7: NeXT multipleprocess architecture

Once NeXT Main process �nishes to create its child processes it terminates itself because
there is no longer necessity of its use. When child processes �nish launching their NeXT entities
they terminates themselves too, like their parent. Why then creating one child process for each
AR to be bound? The answer is simple, I have said that the intention was to develop a design
architecture solution that allows an easy transition to a NeXT design architecture using threads.
It will be explained in more details in section 6.5 but the main reason to create a child process
to launch a pair of NeXT64 and NeXT46 is to create a dedicated memory space to this two
processes instead of sharing the memory space with others NeXT instances.

Some technical NeXT whereabouts will be introduced in later paragraphs within this section,

49

6.3. Two di�erent NeXT design approaches

Figure 6.8: NeXT launcher �ow

50

6. NeXT software architecture/design

however, it is recommended to �rst have a glance of how NeXT multiprocess �ow looks like.

Figure 6.8 shows the �ow chart that illustrates NeXT new version main steps. Three main
parts can be di�erentiated from the �ow:

1. Check of parameters

2. Removal of iptables rules and kill of previous existent NeXT instances

3. Addition of iptables rules, creation and launching of NeXT instances

The �rst one is related with the integrity of the parameters given as input to the NeXT
launcher. To execute NeXT launcher the following command is typed in a shell:

• ./NeXT start 3 master sat 1

�./NeXT� refers to the launcher binary, �start� refers to the operation mode, �3� de�nes the
debug messages level of the protocol, �master | slave � de�nes the mode entity of NeXT, sat
| emul de�nes whether NeXT will have satellite or satellite emulation con�guration. Number
�1� de�nes the number of NeXT instances to be launched. Those are the parameters that the
launcher deals with.

In the check of parameters part, those given parameters are checked whether they ful�ll the
required format or not. If there is any of them that do not match then an error is prompted
saying what data input is expected to be received.

After this integrity checking parameter part, whether NeXT has to be stopped or restarted
is checked. It deletes possible iptables established from a previous NeXT execution. How it is
known that a previous execution of NeXT has been deployed? When either a NeXT64 or NeXT46
instance is launched its PID process are stored in �les within the system, this fact allows the
launcher to read those �les, to obtain the pid process and afterwards kill them. If there is
no �le with PID information no NeXT instance is killed. If the operation mode is stop after
deleting iptables rules and kill all NeXT instances it �nishes its execution. If operation mode is
restart then instead of �nishing its execution it begins adding new rules to iptables and creating
child processes to launch NeXT instances. It makes this last two steps as many times as NeXT
instances had been de�ned as an input parameter to the NeXT launcher. While the number of
NeXT instances are less than the number given, the NeXT launcher will continue creating child
processes. When the NeXT launcher �nishes at creating child processes, it terminates itself. It
has been said that there is no need of maintaining its memory anymore.

An xml con�guration �le is used by NeXT launcher, it provides interfaces information, pre�x
and addresses information and it also provides the nfqueue number identi�ers that NeXT64 and
NeXT64 entity will use in the iptables. This xml �le has an important role within NeXT which
is to add dynamism to the code. NeXT �rst version had interface management hardcoded, this
means that there was a prede�ned set of interfaces within the code. This fact implied that
as a result of having interfaces management hardcoded, multiple instances of NeXT was not
possible because all NeXT launched instances would share the same interface mapping (the one

51

6.3. Two di�erent NeXT design approaches

hardcoded) and each instance needs a di�erent interface con�guration in order to work. This
hardcoding of the interfaces was done by de�ning in a �.h� �le a set of interfaces using de�nes10,
as this �le is included in almost all the �les they can be used.

NeXT uses pugixml11, it is a light-weight C++ XML processing library. It is developed and
maintained since 2006 and has many users. All code is distributed under the MIT license, making
it completely free to use in both open-source and proprietary applications. NeXT protocol is
coded in C language, however the NeXT launcher is coded in C++, and it is the NeXT launcher
that uses pugixml, to C �les it is something transparent. The reason for using C++ in the
launcher instead of C language is due to the intention of using threads, using the C library
pthread.h, in NeXT threads an encapsulation using this library was made in order to make the
code more object oriented.

Leaving this matter of pugixml usage, in order to add this dynamism to NeXT the following
modi�cations were done, �gure 6.9 shows a portion of the original code in the �.h� �le previously
mentioned.

Figure 6.9: Interfaces hardcoded

To add dynamism extern variables are used, they get the value from upper c �les (NeXT64
and NeXT46 entities which received the information as input parameters, the ones read from
the xml con�guration �le). In �gure 6.10 it can bee seen.

Figure 6.10: Interfaces hardcoded with dynamism

When an extern variable is declared, the compiler is told that the variable was de�ned
elsewhere. The compiler is told that a variable by that name and type exists, but the compiler
should not allocate memory for it since it is done somewhere else. The extern keyword means
"declare without de�ning". In other words, it is a way to explicitly declare a variable, or to force
a declaration without a de�nition. When a #de�ne is done it allocates memory that remains
until the program �nishes its execution.

It exists a xml con�guration �le per each NeXT working mode, an xml �le is loaded depending
on the parameters given to the NeXT launcher execution: ./NeXT start 3 master sat 1 If master
and sat then Satellite master mode is loaded. All the possible modes are listed below:

• Satellite master

52

6. NeXT software architecture/design

• Satellite slave

• Satellite emulation master

• Satellite emulation slave

Before this NeXT multiprocess approach NeXT had four launching scripts, each one for each
of its working mode. In this scripts some parameters had also to be given. So, whenever NeXT
had to be launched it had to be thought which scripts was the correct one. Now, by using the
NeXT launcher this is reduced to a only one binary �le.

In the earlier paragraphs of this section it has been mentioned the use of process number
identi�er (PID) in order to both kill NeXT instances running and send a SIGNAL to a speci�c
NeXT entity. This PID information was stored in �le systems and read by NeXT64 and NeXT46
entities. Sending a SIGNAL to a speci�c NeXT instance now is not as easy as searching one
name process, now it is done by reading the PID from a �le in the system, this introduces one
problematic situation which is �¾How can it be guaranteed that the �le that holds the PID has been
created¾`. If the �le has not been created then there is no way of reading the PID of the entity
it is intended to send SIGNALS. It is solved by applying something similar to a handshaking
process. Figure 6.11 shows how it is done.

Figure 6.11: PID Handshaking

6.4 Threads Introduction

6.4.1 What is a Thread

A thread is an application task that is executed by a host computer at the same time as others.
It is an independent stream of instructions that can be scheduled to run as such by the oper-
ating system. For instance, imagine a main program (threadi.bin) that contains a number of

53

6.4. Threads Introduction

Figure 6.12: UNIX thread

procedures. Then imagine all of these procedures being able to be scheduled to run simultane-
ously and/or independently by the operating system. That would describe a "multi-threaded"
program. In �gure 6.12 an UNIX process structure and an UNIX THREAD is shown.

Threads shares memory among themselves, it means almost all variables and information
are shared. Threads can have its private data though. In �gure 6.13 shows in large scale this
last assertion.

Things to bear in mind about threads:

• Has its own independent �ow of control as long as its parent process exists and the OS
supports it

• May share the process resources with other threads that act equally independently

• Dies if the parent process dies

• Is "lightweight" because most of the overhead has already been accomplished through the
creation of its process.

• Changes made by one thread to shared system resources (such as closing a �le) will be seen
by all other threads.

• Reading and writing to the same memory locations is possible, therefore requires explicit
synchronization.

54

6. NeXT software architecture/design

Figure 6.13: Thread Memory

6.4.2 Why using threads?

It has become a growing up option during last decade and it provides appealing performance
results in multithreading capable nodes and nowadays almost all nodes are multithreading. It
allows to have a better resource management.

Historically, threading was �rst exploited to make certain programs easier to write. If a
program can be split into separate tasks, it's often easier to program the algorithm as separate
tasks or threads. NeXT didn't match this description since what it did was follow a sequence
of instructions for treating a packet. The idea of using threads in NeXT was to save space in
terms of memory and a better performance taking advantage of nowadays multithreading nodes
capabilities.

Why saving space? NeXT new version needs to launch multiple NeXTMaster entities, this
means for each NeXTMaster entity there is a memory space to be allocated, depending of the
cardinality of the #NeXTMaster entities this can become something critical if the number of
ARs is big enought.

6.4.3 What is pthread library?

Pthreads are a set of C language programming types and procedure calls that NeXT threads
uses.

55

6.5. NeXT threads

Hardware vendors have implemented their own proprietary versions of threads for years.
These implementations di�ered substantially from each other making it di�cult for programmers
to develop portable threaded applications. In order to take full advantage of the capabilities pro-
vided by threads, a standardized programming interface was required. For UNIX systems, this
interface has been speci�ed by the IEEE POSIX 1003.1c standard (1995). Implementations ad-
hering to this standard are referred to as POSIX threads, or Pthreads. Nowadays most hardware
vendors now o�er Pthreads in addition to their proprietary API's. The latest version is known
as IEEE Std 1003.1, 2004 Edition.

6.5 NeXT threads

Figure 6.14: Thread Memory

Figure 6.14 shows the NeXT thread design architecture, it can be appreciated that it is
similar to the one in NeXT multiprocess (see section 6.7). In NeXT threads both NeXT Main
Process and child processes remains alive until a terminate signal is sent. The reason is that as
a thread uses the process memory space, if its process (the one that has created it) disappears
then the thread has not memory space.

NeXT64 and NeXT46 entity have each one a data structure that holds the information
required to translate packets from IPv6 to IPv4 and viceversa. This data structures follows the
concept of extern variables explained in section 6.3.1, they are de�ned as global variables in
NeXT64 and NeXT46 entities (both has it declared with the same name) and whenever someone
wants to use this data structure it has to declare it as extern. In NeXT multiprocess design this
means that every data structure is unique and there is no con�ict of names due to the fact that
NeXT64 is a process and NeXT46 is another independent process. The result is the following
one from the �gure 6.16, there is a link or union between NeXT64 and NeXT library (inside is
called �extern type_data_structure name�), and another link di�erent between NeXT46 and the
NeXT library. These di�erent links avoid name con�icts with the data structure.

However in NeXT threads there is one big problem, both NeXT64 and NeXT46 have a
data structure declared with the same name �struct tab table� in a global way. As in threads

56

6. NeXT software architecture/design

environment there is the shared concept introduced in section 6.4.1, both declarations generates
a �name con�ict declaration� because there are two variables with the same name, �struct tab
table� from NeXT64 sees the one from NeXT46 and viceversa. It also happens with the methods
in the NeXT library as it can be seen in the �gure 6.16.

In order to solve this problem, I thought of two options:

1. Use a common table for both NeXT64 and NeXT46

2. Declare one �struct tab� with a unique name, �struct tab table� for NeXT64 and �struct
tab table_4� for NeXT46

The �rst option was thought because of the shared memory feature, this allowed the two
entities share the same resource and it simpli�ed some code aspect modi�cations in NeXT library.
However, sharing the same resource had the following implications:

• Same resource for both entities makes the concurrency of reads and writes raise, (this adds
such a level of complexity that the number of reads and writes in the data structure are
less than if two data structures are used due to locks for data integrity).

• NeXT64 �struct tab table� had an order inside its speci�cation of each of its �elds. NeXT46
�struct tab table� had other order.

Point two implied that almost all the code had to be changed, and there was no guarantee
that it would have worked because there were so many things to be changed. NeXT code made
a strong use of its data structure that hosts the information required for packets translation,
thus it was like rewriting a big portion of the code. Doing this would have represented that
identifying bugs in case of showing them up would have been di�cult. The priority was to have
a working NeXT solution in time. This option mention decreased the overall of writes and reads
in a certain period time due to the �ghting for the common resource and locking aspects.

Figure 6.15: NeXT multiprocess table linkage

57

6.5. NeXT threads

Figure 6.16: NeXT threads table linkage

Declare one �struct tab� with a unique name, �struct tab table� for NeXT64 and �struct tab
table_4� for NeXT46 was what was more feasible and was developed in a �nal term. Within
NeXT library there were some methods exclusively used by NeXT64 and others only used by
NeXT46, this allowed a di�erentiation between �struct tab table� for NeXT64 and �struct tab
table� for NeXT46.

There was a problem with the �le descriptor variable, it happened the same problem as the
�struct tab table�. There was a global �le descriptor variable de�ned in NeXT64 named fd_log,
but there was another global �le descriptor variable named fd_log in NeXT46. Due to the shared
memory concept there was a name collision. For that reason the di�erentiation between fd_log
in both NeXT64 and NeXT46 was done, but only in those two. The �le descriptor variable is
used in a function inside the NeXT library methods, this method is:

• int WriteLog(DebugLev debglev, char *str,...)

Inside this function an extern FILE *fd_log is done. To solve the problem the WriteLog
function had to change, turning into:

• int WriteLog(DebugLev debglev, FILE* fd_log, char *str,...)

Therefore, the fd_log variable had to be spread among the methods that used the WriteLog
function in order to be used, extern variable was not used anymore.

There is a well known saying that says, try not to merge SIGNALS and threads because it
tends to be very tricky and a good performance and correct execution of the code can never be
guaranteed. SIGNALS with threads is not something very recommended, at least there are so
many opinions about that. One of the main reasons, not the only one, is the following one. If
there are three threads, let's say T1, T2, T3, waiting to a speci�c SIGNAL, let's say SIGUSR1
SIGNAL. If the three threads have been created in the same process then, if a SIGUSR1 is

58

6. NeXT software architecture/design

intended to be sent to T1, it can not be done the assumption that the SIGNAL will reach T1.
The result will be something random. When a thread is created in a process the process is the
one that handles SIGNAL reception. Whenever the process receives a SIGNAL it looks if there
is some thread waiting to this speci�c type of SIGNAL, SIGUSR1 in our case. If the process
has the information that there is at least one thread waiting to the speci�c type of SIGNAL, the
process delivers the signal randomly to one of the threads that are waiting to the SIGNAL.

By dividing the memory space for each NeXT pair the problem scale is reduced to two
threads, both NeXT64 and NeXT46 share some SIGNALS type, thus en emulation of SIGNAL
proceeding was done.

Figure 6.17: NeXT threads SIGNALS

In �gure 6.17 it can be seen the design with this new SIGNAL emulation. The way it works
is the following one.

• NeXT64 creates the NeXTalarm thread which periodically sends information of the MR to
NeXTSlave in order to keep the communication alive and its status. This information is
sent via UDP packets upon NeXTalarm request.

• NeXT NeXT64 creates the NeXTrequest thread and when NeXT46 receives a request from
NeXTSlave, NeXT46 noti�es the NeXTrequest thread that a request has been stored in it
and that it can read it now. This noti�cation is sent by using �pthread_cond_signal(pthread_cond_t
*cond)� pthread function and an emulation of semaphores with locks. For further infor-
mation visit the �pthread_cond_signal(3) Linux man page�.

59

6.6. NeXT design chosen

• NeXTrequest thread reads the request, makes its local tasks and notify NeXT46 that it
has �nished and that it can continue again with its tasks.

• NeXtrequest thread waits for another noti�cation

Doing like this the SIGNAL behavior is emulated. It has to be said that SIGNAL emulation
of SIGTERM was not implemented. There were some strange behaviors such as that after
NeXTMaster had sent the �rst packet (the one that tells NeXTSlave some information about
NeXTMaster) to its NeXTSlave, no routers advertisements were observed. Instead of router
advertisements there were some packets that seemed UDP data packets but they were considered
by the NeXTMaster as router advertisements (Ra) when in the Wireshark sni�ng tool they didn't
appear as Ra. My guess is that the problem was due to a shared resource within the code, in
charge of handling requests.

6.6 NeXT design chosen

NeXT multiprocess has been chosen as the �nal option. It is simpler than NeXT threads, it
works, and it can be easily extended, modi�ed, adapted and also maintained. NeXT threads im-
plementation implied a non easy going code and a code not easily maintainable. However thread
technology can contribute to good performance in a future NeXT version which is something
good to consider in a close future. One of the objectives was to make NeXT and ROHC working
together at the same time in the test-bed and it has been accomplished.

Robust Header Compression (ROHC) is a standardized method to compress the IP, UDP,
RTP, and TCP headers of Internet packets. It performs well over links where the packet loss
rate is high,such as wireless links.

In streaming applications, the overhead of IP, UDP, and RTP is 40 bytes for IPv4, or 60
bytes for IPv6. For VoIP this corresponds to around 60% of the total amount of data sent. Such
large overheads may be tolerable in wired links where capacity is often not an issue, but are
excessive for wireless systems where bandwidth is scarce.

There is information in headers that can be predicted, there is information that is always the
same, there is other information that can be predicted such as the sequence number of a packet
in a speci�c �ow. However there is other information that can not be predicted because there is
no pattern to predict. ROHC take advantage of this dynamic �elds in headers to save space, it
converts them into a sequence number in the compressor and the decompressor interprets them.

ROHC compresses these 40 bytes or 60 bytes of overhead typically into only 1 or 3 bytes
by placing a compressor before the link that has limited capacity, and a decompressor after that
link. The compressor converts the large overhead to only a few bytes, while the decompressor
does the opposite. In SANDRA scenario using NeXT the compressor was placed at MR and the
decompressor at HA. ROHC headers are placed in lower bits than NeXT headers, thus NeXT
headers are applied after ROHC protocol is applied to the packet. It can be said that NeXT
headers acts as a tunnel carrying ROHC headers. Both MR and HA can act as either compressor
or decompressor.

60

Chapter 7

Test Cases

The test cases that will be analyzed are two, Case1 (7.1) and Case2 (7.2). Initially There were
more test cases, however all of them could be summarize as Case 1 (7.1), so they were not
speci�ed in the report. Test cases analyzed are structured as follows.

An explanation of which is the Aim of doing the test in the speci�c case is initially presented.
There is afterwards an enumerated list of steps describing the con�guration of the scenario and
the steps that are taken to produce changes in that behavior. After this list it is shown the
expected results of the testing and the real results observed after applying all steps in the testing.
Finally there is a technical discussion about real results observed, and if it does not match with
the expected results an explanation of why both two results do not match is given.

In this report a �gure of the current test-bed was previously presented, it is �gure 5.1.
Consulting �gure 5.1 allows to follow easily explanations given after the results observed part in
the speci�c case. It also helps on the understanding of the initial con�guration of the test-bed
speci�ed in the enumerated list. It is recommended to consult �gure 5.1, it can be used as
support material.

7.1 Case 1

Aim of the test case: Demonstrate that with a starting scenario where two ARv4 are up and
tra�c pass through them, if one AR goes down tra�c is redirected to the other AR link.

1. MR-AR1 and MR-AR2 links using IPv4 are up.

2. Ping from MNN SCgW to CN SCgW.

61

7.1. Case 1

3. Disconnect either AR1 or AR2 link.

• Result expected: Tra�c goes through the remaining link.

• Result observed: There is tra�c from MNN SCgW to MR but there is no tra�c from MR
to ARs.

The result observed is due to a known bug in the mip6d software. But before explaining
what this bug is about some aspects about mip6d software are going to be introduced for a
better understanding. When MR con�gures a Care-of address (CoA) after receiving Ra from
AR, a tunnel interface is created automatically by the mip6d software, this tunnel will be named
from now on tun1. Tun1 is the NEMO tunnel, the one that has the MR Home Address and HA
Home Address. Assume that tun1 is the NEMO tunnel that MR-AR1 link uses, all packets that
have a CoA con�gured from AR1 pre�x are routed to tun1 NEMO tunnel. MR-AR2 link has its
own NEMO tunnel too, this tunnel will be named from now on tun2. Theoretically all mobility
signaling packets between MR and HA traverses its correspondent NEMO tunnel interface. Thus
BU related to MR-AR1 link goes through tun1 and BU related to MR-AR2 link goes through
tun2.

However, all Binding Updates (both from MR-AR1 and MR-AR2 link) go only through one
NEMO tunnel. This tunnel is the �rst one con�gured by mip6d. This means that all mobility
signaling is routed via one NEMO tunnel. This is the bug in mip6d software that causes the
�nal result to not matching with the result that was expected.

Theory about the mip6d bug has been explained, now it will be explained how it can be
identi�ed that this bug is the cause of why when one MR-ARx link is put down then data tra�c
disappear in the remaining MR-ARx link.

Starting from point one from the enumerated list from above (AR1 and AR2 links are up...),
there are two version4 links up. Then afterwards it comes step 2 (Ping from MNN SCgW to CN
SCgW...), tra�c starts to pass through AR links. But suddenly one MR-ARx link is put down,
it means that one NEMO tunnel disappears, therefore the only path that mobility signals had to
go through disappear . It can be easily checked by listing the Binding Cache in HA and the BU
list in MR. In MR it appears that the BU related with the remaining MR-AR link appears as it
has errors (it could not be delivered to HA) due to the NEMO tunnel it was using disappeared.
As HA has not an updated BC, when a packet coming from the remaining NEMO tunnel reaches
HA, HA looks into its BC and searches for an entry that matches to the packet CoA. As the entry
related with this CoA has expired (because no new BU renewal signaling arrived), HA discards
the packet because it has no information to route the packet with the CoA to a recipient.

This mip6d bug has a known solution that can be applied, at least it is commented in the
mip6d mailing list that this solution works. To solve the problem some patches would have to be
applied. There was scarcity of time when this bug was identi�ed, and as the results of applying
the patches were not fully reliable, those patches were not deployed in order to have the testbed
operative and allow to modify some of its resources that implied having the test-bed operative.

62

7. Test Cases

7.2 Case 2

Aim of the test case: Demonstrate that two instances of NeXTMaster works together in MR.

1. MR-AR1 and MR-AR2 links using IPv4 are up.

2. Server-PT LFN (MN) pings Server-PT-CN (CN)

3. MN ScGw pings CN ScGw

4. Add a mark to packets with ip6tables

5. Put AR1 down

• Result expected when AR1 and AR2 are up: IPsec tra�c from MN goes via MR-AR1 link
and UDP tra�c goes through MR-AR2 link.

• Result observed when AR1 and AR2 are up: IPsec tra�c from MN goes via MR-AR1 link
and UDP tra�c goes through MR-AR2 link.

• Result expected when AR1 is down and AR2 is up: There is no IPsec tra�c in MR-AR1
link and UDP tra�c goes through MR-AR2 link.

• Result observed when AR1 is down and AR2 is up: IPsec tra�c from MN goes via MR-
AR1 link and UDP tra�c goes through MR-AR2 link.

This test case introduces an important and interesting aspect related with an IP �eld header
which changes from IPv4 to IPv6. This �eld is the Type of Service in IPv4, in IPv6 it replaced
by the IPv6 header �eld Type of Class. Type of service �eld was used to identify if a packet was
from a speci�c service and then do some actions according to that fact. Type of service marking
is supported by iptables, a snapshot of the Linux iptables man page is shown in �gure 7.1 and
�gure 7.2.

The �eld Type of Service marking was not supported in the ip6tables version installed in the
Linux running in the test-bed, thus marking packets in Type of Service �eld was not possible.

This �eld was important in order to di�erentiate two type of tra�c packets:

• IPsec type packets coming from MN going to CN.

• UDP type packets coming from MN SCgW going to CN SCgW.

When a packet from MN enters to the Security Gateway the outer IPv6 header is encrypted
by IPsec, thus the IPv6 �eld Type of Service can not be read. When the packet is encrypted an
outer IPv6 header is added but with the SCgW addresses (MN SCgW as source address and CN
SCgW as destination). This kind of tra�c it can only be identi�ed as IPsec tra�c because after
the new outer IPv6 header there is an IPsec header.

63

7.2. Case 2

Figure 7.1: extract of iptables man Linux page - Marking Section

Figure 7.2: extract of iptables man Linux page - Matching Section

If tra�c goes from one SCgW to the other SCgW and this tra�c is not mobility signaling
(BU) then no IPsec encryption is done and if a ping is done it can be identi�ed as UDP tra�c.

To overcome this another option in IPv6 ip6tables is used, this option is -j MARK �set-

mark , it is used to add a kernel mark to the packet. The following lines shows the ip6tables
rules added to the MR node in order to mark the packets and di�erentiate the tra�c and route
it to a speci�c MR-ARx link.

#Non Ipsec Marking packets

• ip6tables -A PREROUTING -t mangle -s 2001:5c0:1505:6101::/64 -d 2001:a:1::/64 -j MARK
�set-mark 150

64

7. Test Cases

Figure 7.3: Mip6d.conf interfaces with BID

#IPsec Marking packets

• ip6tables -A PREROUTING -t mangle -s 2001:5c0:1505:6101::/64 -d 2001:a:1::/64 �protocol
esp -j MARK �set-mark 100

Mip6d software uses mip6d.conf, in this �le there are interfaces and other aspects related
to mobility. One of them is the interface information and its Bid identi�er number (BID), the
one used in �set-mark option. It can be appreciated below in �gure 7.3 how the BID is used in
mip6d.conf �le.

When MR-AR1 link is put down then the tra�c that went via this link is discarded because
mip6d can not identify the IPv6 interface with BID 100 in charge of Mobility, the one mip6d is
listening to. For that reason as mip6d doesn't �nd any match it discards packets that should
go via MR-AR1 link. Tra�c in MR-AR2 continues because mip6d has still an operative IPv6
interface to listen with a valid CoA.

65

Chapter 8

Conclusions and future Work

8.1 Conclusions

The main objective of this project was to adapt NeXT to the new requirements and topology
introduced by SANDRA and guarantee that it worked with ROHC protocol running at the same
time. Before choosing NeXT others protocols were considered but discarded. In my opinion,
nowadays an e�cient solution for IPv4 link traversal for IPv6 packets has to be developed.
DSMIP is a very attractive concept, and it introduces good enough ideas, however, it makes the
same mistake as M6T which is the non controlled addition of IPv4+UDP header if not in all in
almost all packets. This have a signi�cant impact in terms of e�ciency in IPv4 links such as
Satellite links in which bandwidth is very important and also time/price of consume.

NeXT overcome this issue, NeXT adds IPv4+UDP header in its IPv4 packets, it is true,
however, the amount of bytes that traverses the IPv4 link is fewer than other existing protocol
solutions due to NeXT �rst sends in the �rst packet all IPv6 information needed to make the IP
version translation . This allows to send later packets with fewer bytes. Sooner or later there will
be a protocol that would have together the best characteristics of both DSMIPv6 and NeXT,
until then NeXT stands for being the most appealing option.

The process of adapting NeXT to the new scenario has been achieved. It has been proven
that Robust Header Compressor protocol and NeXT worked together without any problem. It
was tested by using a VoIP application (linphone) with headphones and microphones between
CN and MN. The new NeXT version is more dynamic than before, the fact of having extracted
the interfaces from the code and made them exchangeable adds a dynamic and independent
factor that allow NeXT to easily adapt to news scenarios with exchangeable interfaces in a real
scenario.

The other main objective was to automate the test-bed in order to reduce human interaction.
The option chosen, a Graphical User Interface (GUI) has been proved as an appealing solution

67

8.2. Future work

and has shown positive results. It provides an interface to the �nal user of something that is
technical indeed but it can be seen as something less complex and easy to manage. This GUI is
not a �nal release, it is a young tool that has been conceived, a tool thought for being extended
and also easy maintained and modi�ed for other purposes (e.g. changes in the test-bed topology
architecture, process of passing from NEWSKY project to SANDRA project).

8.2 Future work

The Graphic User Interface is a tool that can be extended and adapted to new test-bed topolo-
gies. Some functionalities in the current GUI were discarded due time and objectives, the main
objective was to de�ne an initial and operative base tool. Actions such as changing the type of
the link that the MR uses can be done from the GUI (this function was implemented but was
not full operative).

Other tasks that can be done is to provide SNMP capabilities to the test-bed nodes for an
easy monitored control.

The test-bed uses XEN hypervisor, it uses XEN VM thus these VM has a limitation of 8
interfaces each one. This is a technical limitation documented in XEN web page that limits the
testbed because it only allows to have two NEMO tunnel interfaces, this has been explained
in section 7.1. It would be of interest to �nd a way to replace the two interfaces dedicated to
Mip6d, the idea would be to use tap interfaces. A tap is a loopback interface that works in layer
2. Some attempts were done to make it work but they were unsuccessful.

An extension to the current NeXT implementation could be adding the functionality of
launching and speci�c NeXT instance bound to an AR instead of always relaunching all previously
de�ned in the xml con�guration �le.

One of the objectives that has not been ful�lled is turning NeXT into threads due to technical
reasons. Turning it into threads is something appealing however, things such as easy code
upkeeping and code easy to understand have to be considered to decide whether it is worth or
not.

NeXT is an e�cient technology applied to IPv4 traversal, and it is without any doubt a
solution that can help into the intermediate process of migration from IPv4 to IPv6.

68

Chapter 9

References and Bibliography

References

1. RFC 2460, Internet Protocol, Version 6 (IPv6) Speci�cation

2. RFC 2374, An IPv6 Aggregatable Global Unicast Address Format

3. RFC 4301, Security Architecture for the Internet Protocol

4. http://www.inmarsat.com/Services/Land/BGAN/default.aspx

5. http://natisbad.org/m6t/

6. RFC 5555, Mobile IPv6 Support for Dual Stack Hosts and Routers

7. http://www.nautilus6.org/

8. Linux man page �ssh-keygen�

9. Linux man �page signal�

10. http://www.cprogramming.com/reference/preprocessor/de�ne.html

11. http://pugixml.org/

69

Bibliography

12. RFC3095 (ROHC)

13. RFC 3963 (NEMO)

14. RFC 3775 (Mobile IPv6)

15. Understanding IPv6, Author: Joseph Davies, Microsoft Press (Book)

16. Programming with POSIX(R) Threads, Author: David R. Butenhof (Book)

17. Quadern de Laboratori de Xarxes de Computador (Book)
Autors: Llorenç Cerdà-Alabern i José M. Barceló-Ordinas
Departament d'Arquitectura de Computadors, Enginyeria en Informàtica
Ref. 44301

18. Xarxes de Computadors, Conceptes bàsics (Book)
Autor: Llorenç Cerdà Alabern
Edicions UPC

19. Linux IPv6 Stack Implementation Based on Serialized Data State Processing (Paper)
Hideaki YOSHIFUJI, Kazunori MIYAZAWA, Masahide NAKAMURA, Yuki SEKIYA, Hi-
roshi ESAKI, Jun MURAI.
VOL.E87-B,NO.3 MARCH 2004

20. USAGI IPv6 IPsec Development for Linux (Paper)
Mitsuro Kanda, Kazunori Miyazawa, Hiroshi Esaki

21. Versatile IPv6 Mobility Deployment with Dual Stack Mobile IPv6 (Paper)
Romain Kuntz, Jean Lorchat

22. IPv6 IPsec and Mobile IPv6 implementation of Linux (Paper)
Kazunori Miyazawa, Masahide Nakamura

23. Air Tra�c Management Network Based on IPv6 Protocol Stack (Paper)
Eriza Ha�d Fazli, Àngels Via Estrem, Núria Riera Díaz

24. IP Overhead Comparison in a Test-bed for Air Tra�c Management Services (Paper)
Eriza Ha�d Fazli, Àngels Via Estrem, Núria Riera Díaz, Sèbastien Du�ot, Markus Werner

25. The concept of robust header compression, ROHC (White Paper)
EFFNET AB

26. An introduction to IP header compression (Wite Paper)
EFFNET AB

27. Mobile IPv6 Technology Review (Document)
Lancaster University

70

9. References and Bibliography

28. IPv6 Networking Over Satellite For Mobile User Group (Paper)
Àngels Via Estrem, Axel Jahn

29. http://umip.linux-ipv6.org/index.php?n=Main.HomePage, [mip6d webpage]

30. http://www.cplusplus.com

31. http://stackoverflow.com

32. http://www.triagnosys.com

33. http://www.debian.org

34. http://www.linuxquestions.org

35. http://www.xen.org

36. http://www.netbeans.org

37. http://www.eclipse.org

38. http://live.gnome.org/Dia

Note:
- All RFC in both References and Bibliography have been read
- (Links last visit - 23-03-2011)

71

