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Chapter 1

Introduction

1.1 Motivation

In recent years, the Internet traffic has grown following an exponential behaviour as figure
shown in [1] and it is expected to continue in future. One of the reasons is the key role assumed
by information technologies. Internet users are consuming more bandwidth than ever. In
particular, a real revolution involved the way people can communicate, leaded by two major
factors: the huge success of mobile communications and the birth of new forms of information
to be exchanged. People can communicate every time and everywhere, exchanging e-mails,
browsing hypertexts, buying things online, accessing all kinds of information in huge databases,
downloading music, movies and other multimedia contents.

Internet Users in the World
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Figure 1. Internet traffic growth prediction

This rapidly rising eagerness for network bandwidth stimulates new advances in optical
technologies. Optical networks offer fast, readily available bandwidth at reduced costs. They are
ideal for broad range of Internet applications, including high-quality video delivery for
entertainment purposes.

Advances in lightwave communications technology over the past several years created the
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opportunity to share the enormous optical bandwidth among multiple users in local,
metropolitan, and wide area networks.

1.2 Goal and related work

A key component of optical networks is the switching node that allows routing the data flows
along the correct destinations. The aim of this project is to implement a generic optical
burst/packet switching node architecture, describing contention resolution techniques and trying
to define an optimal solution. Optical networking paradigms based on statistical multiplexing,
such as Optical Burst Switching or Optical Packet Switching, require the adoption of suitable
contention resolution mechanisms at the optical nodes due to packets/bursts attempting to get
access to the shared output channel at the same time. In the most general case of multi-fiber
output links, contentions can be solved by exploiting different domains —namely space,
wavelength and time- and by applying an optimal scheduling policy.

The simulator developed in this thesis will study two different scheduling policies: delay
oriented, which tries to schedule packets with the smaller delay available, and gap oriented
which tries to minimize the void remaining before the packet scheduled. In both cases void
filling and no void filling algorithms will be considered. Void filling algorithms are those that
allow scheduling a packet in a void even when other packets have been scheduled later in the
same output channel, while non void filling algorithms only allow scheduling packets into the
final void of each channel.

The project includes a study of the impact of a Limited Wavelength Conversion and analyzes its
repercussion on cost and power consumption, depending on the number and the type of
converters used. By simulation, we try to define some guidelines to minimize the contribution to
the total cost and consumption due to the converters.

This thesis will describe contention resolution techniques that have been studied at the
Electronics Department from the University of Bologna in Chapter 2. In chapter 3, the need of
an evaluation of cost of an optical burst/packet switching node is explained. Afterwards, chapter
4 focuses on the simulator that allows obtaining the simulation results that are shown in chapter
5. And finally, chapter 6 presents some conclusions.
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Chapter 2
Scheduler design for optical burst/packet switching

Switching takes place on the nodes of the network and its objective is to allow the transmission
of information from the source node to the destination node. In classical networks there are two
main switching techniques: circuit switching and packet switching. The first one finds its typical
application in telephony, where each communication is associated to a circuit and the second
one in Internet, where data are broken down into packets. Switching concepts can be used in
optical networks. The main techniques in the field of optical switching [3] are:

* Optical circuit switching
* Optical burst switching
* Optical packet switching
* Optical code switching

All these techniques use WDM technology (Wavelength Division Multiplexing), exploit the
wavelength multiplexing and can be implemented in dynamic mode, by using optical switches
associated with a control plan to allow rapid reconfiguration of the network. However,
implementation of optimal solutions requires more complex and faster hardware.

Although the different techniques available, this thesis focuses on Optical Burst Switching
(OBS) and Optical Packet Switching (OPS).

2.1 OBS/OPS Scheduling

Optical Packet Switching [2] is based on the same statistical multiplexing concepts as its
electronic counterpart, resulting in a more efficient resource utilization than the optical circuit
switched networks. On the other hand, Optical Burst Switching aims at improving wavelength
utilization with respect to circuit switched optical networks while adopting more feasible
dynamic wavelength management techniques, resulting in a medium term solution. The basic
idea behind OBS is to set up a wavelength path through the network on the fly reserved to a
large data flow, called burst. The burst is transferred transparently along this path, which is reset
at the end of the transfer.

The main differences between OPS and OBS are:

* In OBS control information for each burst is typically transmitted in advance on a
separate channel and in OPS, it is inserted in header in front of the packet.

* Typically no buffering is implemented at any intermediate node in OBS.

* Bursts are built as aggregates of packets, thus a larger time-scale is considered.

9
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2.2 Contention resolution in optical burst/packet switching
nodes

Optical networking techniques require the adoption of suitable contention resolution
mechanisms at the optical nodes. The main problem arises that packets attempt to get access to
the shared switching and transmission resources at the same time. In optical technologies
queuing techniques cannot be used as in electronic networks, due to the lack of optical RAMs.
Exploiting three domains [4] can solve this problem:

* Space, transmitting packets on different wavelengths of the same fiber at the same time.

*  Wavelength, transmitting packets on different wavelengths. If the output wavelength is
different from the input one, converters are needed.

* Time, using delay lines as an optical buffer, in order to delay packet transmission.

In this case, the chosen solution is based on algorithms being able to proactively schedule
the transmission of the packets in order to avoid contention as much as possible. The algorithms
calculate the exact time when the transmission of the packet must success.

2.3 Model of a switching node architecture

The general architecture of an optical packet switch is presented in figure 2 [5], showing the
main functional blocks:

* Input interfaces, used to demultiplex the wavelengths on incoming fibers, to
synchronize packets and to tap some optical power, in order to extract the header

* Optical space switch, a switching matrix used to physically interconnect the input and
output ports

* Delay line buffer, used to solve contentions in the time domain

*  Output interfaces, used to insert a new header and to multiplex wavelengths back to the
fiber

* Electronic control logic, used to perform header processing and routing table lookup

10
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Figure 2. Structure of an optical switching node

When a burst/packet arrives at the node, the scheduler must select three parameters: the
output fiber, the output wavelength and the time when the packet will be transmitted, and
therefore the delay required if any.

In electronic packet switching, contention resolution in the time domain is based on a store-
and-forward scheme, where contending packets are stored in a queue as long as the output port
is available again. Optical queuing may be realized with a number of fiber coils of given length
used as delay lines, it takes some time for a packet injected inside a long fiber trunk to come out
at the other side. This optical buffer is not completely equivalent to a conventional queue. The
main difference is that, while a packet may be stored as long as needed into an electronic
memory, it cannot stay within the optical buffer for longer than an amount of time given by the
propagation delay inside the delay line utilized. In case such delay is not long enough, either
another contention resolution is performed or the packet is lost.

An optical buffer is made by B fiber delay lines with different lengths providing delays
which are multiple of a basic delay unit D, also called buffer granularity. In the B fiber delay
lines, the zero-delay is included, so the packet can be delayed from D to (B-1)-D or not be
delayed.

() .

\

\%

t  ttD 2D ., t%+(B-1)D

Figure 3. An example of optical fiber delay lines buffer
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2.4 Key parameters for contention resolution

The key parameters that should be taken into account to design the node architecture are the
following:

* The number of fibers per output link: F

*  The number of wavelengths per fiber: W

* The wavelength conversion capability, in terms of the number of wavelengths per
conversion waveband: L

* The number of available wavelength converters per output interface: R

* The number of delays: B and the delay unit: D

* The type of scheduling algorithm that are explained in the next point: D-type VF, D-
type NoVF, G-type VF and G-type NoVF

These parameters determine the dimensions of the scheduling space S, with cardinality:

* |S|=B-W-F in case of Full Wavelength Conversion

e |S/=B-L-F in case of Limited Wavelength Conversion

The term channel is normally used in this work, refers to each wavelength in each fiber, so
there are C= W - F or C = L - F different channels in both cases.

2.5 Channel and Delay Selection algorithms (CDS)

Once the output channel is known, there are three parameters that the scheduler should be able
to select, the output fiber, the output wavelength and the delay. The way to find them depends
on the algorithm, which are explained in 2.5.2. First of all, it would be useful introduce some
concepts briefly.

2.5.1 Concept of Gap

Optical hardware issues pose a number of constraints to the scheduling problem. The most
obvious one is time constraints related to the discrete characteristics of the FDLs, as packets can
only be delayed to a finite subset of delays. Therefore, voids or gaps will appear between
scheduled packets. As a consequence, efficiency can be significantly reduced because of this
discrete nature. On the other hand, depending on the nature of wavelength converters available,
a packet may not be transmitted to any wavelength in a given fiber.

12
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2.5.2 Algorithms: D-type VF, D-type NoVF, G-type VF and
G-type NoVF

Depending on the performance parameter to be optimized (delay, loss probability,
computational complexity) several scheduling choices are presented, leading to two different
classifications of scheduling algorithms:

* Delay-oriented algorithms (D-type), aimed at transmitting the packet with the smallest
possible delay.

* Gap-oriented algorithms (G-type), aimed at transmitting the packet with the smallest
possible void between packets (and increasing the channel efficiency).

* Without void filling (noVF), the burst/packet can only be scheduled in every wavelength
after the last burst/packet scheduled previously.

* With void filling (VF), the burst/packet can be scheduled in every wavelength after the
last one and between two bursts/packets scheduled previously.

In this thesis the four possible combinations will be analyzed: G-type noVF, D-type noVF,
G-type VF and D-type VF [8].

13
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Chapter 3

Evaluation of the cost of optical burst/packet
switching nodes

This chapter provides an explanation about node costs and it focuses on the impact of limited
optical wavelength conversion. One of the objectives of this thesis is to analyze converter costs,
depending on the type and the number of these devices.

3.1 Node Cost Evaluation

Some previous studies [5][6] propose frameworks for evaluating the cost of a switching matrix.
It is not easy because the technology required to build OPS/OBS nodes is still partially
immature and detailed data from telecom manufacturers are not available.

These works focus on three cost components:

* CAPEX considers the cost of both the optical components and the production process.

* Footprint is a measure of the physical space occupied by the switching fabric.

* Power consumption, the level of power dissipated by a node, evaluated as being
proportional to the number of active devices.

In this thesis, the impact of a limited optical wavelength conversion is studied. The goal is
to identify the optimal number of converters in order to provide performance similar to those of
a switching matrix node with an infinite number of converters. We try to compare the cost and
power consumption of these devices depending on the configuration of the node.

3.2 Impact of limited optical wavelength conversion

Wavelength converter represents a fundamental component of the switching node architecture.
Nevertheless, wavelength conversion requires expensive devices. The overall cost is related to
the number of converters required.

Converters are fixed, each A;, corresponds to a specific Aoy, Or tunable devices, meaning that
given A, the single converter may provide a certain range of A,y that depends on A;,. It depends
on whether the LASER used as pump in the converters is tunable or not.

There is another conversion classification. If A, can be any wavelength, we call this Full-
range Wavelength Conversion (FWC), that provides maximum flexibility in the access to the
switching resources. If A,y is somehow limited, we call this Limited-range Wavelength
Conversion (LWC). Full-range converters are generally more complex and expensive.

14
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In this work we assume that converters with a tunable LASER are FWC and if theLASER is
not tunable the conversion is from a specific wavelength to another specific one.

15
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Chapter 4

The simulator structure

The overall aim of this project is to develop a modular simulator, able to provide an evaluation
of the performance of the optical packet switch. The simulator extends an existing one, by
optimizing the management of the data structures and by introducing limited wavelength
conversion. The event generation is very similar to the one seen in previous works, with some
new features added. In particular, voids management has been improved in order to allow faster
simulations, thus allowing for more detailed results thanks to the possibility to simulate a larger
number of packets .

4.1 Scheduling problem formulation

The scheduler in the OPS node has to decide the output fiber, the output wavelength and the
instant when an arriving packet will be transmitted. This chapter presents the simulator that
performs these functions. The first thing that it requires is to know the scheduling points in
every fiber and wavelength, all the instants when the packet could be transmitted. In an ideal
scheduling matrix, the total number of scheduling points at time ¢, is:

di (t,)=t, +d; (1)

where i=0,...,B-1 and ¢, is the instant when actual data will arrive at the configured switching
matrix. dy is the zero-delay, the packet is transmitted at the instant when it arrives considering
the switching matrix propagation time negligible.

All these points are candidates if another packet is not supposed to be transmitted on that
moment but only in case of unlimited wavelength conversion. If conversion is limited, besides
these conditions, before considering a point as a candidate it must be proved that there is a free
converter if necessary. For the time being we assume an unlimited wavelength conversion. In
point 4.3, the changes to have an optical packet switching with a limited conversion are
explained.

Finally, the scheduling time window is defined as
dp (fa) =dp-1 (ta) + Ly (2)

where L), is the maximum length of the packet.

16
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The voids or gaps on each output channel are arranged in a logical list, for a total of C lists
per output interface. Each gap in the list is represented by an element including the void starting
time b and ending time e. Lists are ordered chronologically. When the channel is absolutely free
(no packets have been scheduled) the list includes a single void filling the whole scheduling
time window.

Therefore, assuming K voids are present on a given channel ¢ € [1:C], the corresponding list
looks like V. = {(bc1,€c1)seres (DeksCik)se-rs (bexsecx)}, Where b is the beginning gap and e the
ending gap. Gaps in the same channel will be consecutive and non-overlapping.

(B—1)D | Ly

(][l( /(I::I (]] (ty) ([_" /(I‘.‘;' "/f'i[..l’u ] d:li’u : d/'))”(l}
Figure 4. Example of buffer status at time t,

Figure 4 is an example of buffer status at time #,[7]. In this case B =5, C=4 and Ly, = 3D
(with D = 1). The gap lists for every channel are the following:

V= 1{(0,0.2), (0.6, 0.8), (1.8, 2.4), (3.3, 3.9), (6.8, 7.0)}
V,=1{(0.3,0.5), (0.9, 1.6), (2.2, 7.0)}
V;=1{(0.4, 1.5), (2.5, 7.0)}

Vy=1{(0.4,0.9),(2.2,2.7), (3.8, 7.0)}

The simulator must choose the correct point where the packet should be scheduled. The
scheduling points are founded by checking channels availability at every di(¢,) and if the packet
fits on suitable voids. Finally, the optimal point is chosen based on the policy of the CDS
algorithm selected.

This exhaustive search would require high computational complexity and time consumption
if it is done sequentially, especially when there is a large number of output channels. Therefore,
the search problem is decomposed into a series of tasks that can be executed in parallel.

17
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Figure 5. Schematic of the scheduling logical sub-blocks

The figure 5 shows the logical blocks that execute this process. Firstly, the Search function
finds the entire candidate scheduling points, which satisfy the conditions for every channel, and
using the Select function, the simulator chooses the best one. Then, the following subsections
explain in greater detail how these two blocks work.

4.1.1 The Search function

The objective is to find scheduling points, applying a function ' (V,, d, t,, x) that checks, for
every possible insertion point d;, with i = 0 ... B-1, if is suitable to accommodate the incoming
packet (packet length x) consulting the lists V.. Collect all the suitable points into a temporary
vector A(t,, x).

First, this function calculates a vector with two components, for every channel ¢ and delay i:

F Ve d;, t, x)=HV,, d, t, x), T(Ve, d;, t, X)) 3)

The first component is also called Hails and corresponds to the gap that would be left before
if the packet is scheduled in channel c at delay i. And the second one is called 7ails and is the
gap that would be left after the packet. The values are calculated with:

H(V., d, t, x)=d{t,)-be 4)
V., d;, t,, x) = e — d{ta)—x ()
if ey > di(ta) and bck < di(ta) +x (6)(7)
otherwise H(V,. d; t, x)=1T(V,, d t, x)=—0 ®)

18
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In the example of figure 4, the corresponding values are in the following table 1. The length
of the incoming packet is x = 0.3, #, = 0 and the results are:

w(c,i)| i=0 i=1 i=2 i=3 i=4
c=1/(0,-0.1) —o0 ({:2,:0.0) —o0 —o0
c=2| —oo (0.1,0.3) (—0.2,4.7) (0.8,3.7) (1.8,2.7)
c=3| —oo (0.6,0.2) —o0 (06,3.7) (1.5,2.7)
e= 1 —o0 —o0 (—0.2,0.4) —o0 (0:2,2.7)

Table 1. Values assumed by (H(V,, d;, t,, x), T(V,, d;, t,, x)) for the reference example of Figure 4

Therefore, before including a scheduling point into the list of possible values the following
validity test will be used:

(H(c,i),T(c,i)) € A(t,x) if H(c,))>0 and T{(c,i)=0 9

Which, applied to the previous example, will provide a vector A(¢,, x) with elements, those with
two non-negative components.

Finally, algorithms that do not use void filling need only to maintain the horizon
information for each channel. This means that lists V. at time ¢, for the example above would
be:

Vi =1{(6.8,7.0)} V,=1{2.2,7.0)} Vi=1{(2.5,7.0)} Vi=1{(3.8,7.0)}

and the rest of values shown in table XXX would be all — co.

4.1.2 The Select function

This block chooses the best scheduling point out of the vector 4(¢,, x) using the select function

S(A(ts x)) = (co, io) (10)

that depends on the algorithm adopted.

G-type Algorithms.

The objective is to find the minimum gap that would be created between the incoming packet
and the preceding one.
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In case many scheduling points provide the same residual gap, the one with smaller delay
will be selected. In case there are still more than one result, it can be chosen randomly.

D-type Algorithms.

In this type of algorithms, the function chooses the scheduling point with minimum delay,
measuring the distance between each potential scheduling point and the end of the scheduling
time window dg(¢,), reduced by the residual gap measured by H(c, i)

D(c,i)=dB (ta)—di (ta)-H(c,i) (11)

Then, the optimal scheduling point is such that

D(co, i9) = max D(c, i) (12)

In case several channels provide the smallest delay, the one with smaller residual gap will
be chosen. Finally if still many channels provide the same solution, a random choice can be
made.

VF and NoVF Algorithms.

The formulation for VF and NoVF are similar. The best scheduling point must satisfy the same
conditions in both cases, the difference is that in NoVF algorithms only the gaps after the last
packets scheduled in every channel can be candidates and in VF algorithms all the gaps
included on A4(¢,, x) are valid.

Moreover, in this thesis G-type VF algorithm is only minimizing the gap before the packet
scheduled (Head), but not taking into account the void remaining after the packet (Tail). This
can lead to lower channel efficiency.

As an illustration, figure 6 shows the best scheduling points depending on the algorithm
selected.
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Figure 6. Possible scheduling solutions for the example on Fig. 4 assuming an incoming
packet with x = 0,3: (1) G-type VF with minimum ending gap or with best fit; (2) G-type VF
with minimum starting gap, D- type VF with minimum starting gap; (3) D-type VF with
minimum ending gap; (4) D-type noVF; (5) G-type noVF.

4.2 Gap control and data updating

Another important point of the simulator is the gap management that must be constantly
updated. The following structure represents a gap:

struct gap {
double tstart; /* time the gap starts */

double tend; /* time the gap ends */
gap ‘*prev; /* pointer to previous gap */
gap ‘*next; /* pointer to next gap */

¥

In order to keep track of the gaps in every channel, two arrays of pointers are used.

struct gap *lista_gap[NMAXOUT][NMAXFIBPEROUT][NMAXWDM];

struct gap *gp[NMAXOUT][NMAXFIBPEROUT][NMAXWDM][MAXFDL];

The first array has pointers to the first gap in every outwavelength of every fiber of every output
port sorted by time. And the second one has pointers to the gap in every channel and delay. In
our example, the pointers would be the following:
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When a packet is scheduled, new gaps are created. Then, the gap list must be updated just
moving to the gap where the packet have been placed and checking the place that occupies the
packet in the gap:

* In the middle of the gap: Two new gaps will appear, before and after the packet.
* At the beginning of the gap. New gap after the packet.

* At the end of the gap. New gap before the packet.

* Filling the whole gap. It is enough to link the previous and the next gap.

The function of the simulator that performs all this steps is the update gaplist:

int update gaplist(double tempo, double duration, int out, int fib, int wl, int delay)
After current time has been updated, it is also important to change the pointers to gaps in
every channel and delay. In this work, a new update gp function has been created, in order to
manage pointers in a faster and effective way.

void update gp(double tempo){

struct gap *g;
g=(struct gap *)malloc(sizeof(struct gap));
int t;

for(i=0;i<numout;i++) {
for(j=0;j<numfib;j++) {
for(k=0;k<numwdm;k++) {
for(I=0;1<numfdl;l++) {

g=1gp[i][i][k][1];

t=1;

while(g==NULL) {g=gp[i][j][k][t+1];
t++;}

while(((g->tstart<tempo+1*T)& &(g->tend<tempo+1*T))) {g=g->next;}

if(g->tstart<tempo+1*T) gplil[1k][1]=g;
else if(g->tstart<tempo+(1+1)*T) eplil[j1kI[1]=g;
else if(I==(numfdI-1)) eplil[j1kI[1]=g;
clse epliIGIKII=NULL;

22



Simulation of switching architectures for Optical Packet Switched network —

if(I+1<numfdl){
if((gplil[1(k][I+1]!I=NULL)&&(gp[i][j1[k][1]'=NULL)) {
if(gpli][j1(k][1+1]->tstart<gp[i][j][k][1]->tstart) {
gplil[1(k](+1T=gp[il51TkI1T;
i

Instead of deleting the whole list and return to find all the first gaps in every channel and
delay, this function uses old pointers. It assumes that the new pointed gap must be the same or
subsequent to the previously pointed. In this way, having to check all the previous gaps is
avoided. If the first gap satisfies the conditions, the pointer remains the same. Otherwise, the
following gaps will be checked in order to find the correct one. The efficiency is even better as
time goes on. In addition, if a pointer has been updated and its value has changed, the pointer of
the next delay is initialized with this value because the previous gaps are not candidates. This
process is repeated for every delay in every channel.
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The implementation of wavelength conversion in the switching matrix impacts on the
algorithm. In order to control the number of converters available, we create a matrix (Table 2)
which has the indexes of the input/output wavelength in rows and columns. This matrix is
initialized with the total number of converters available to move from a given input to a given
output wavelength the matrix is called.

num_conv[NMAXWDM+1][NMAXWDM+1];

There are our types of converters as explained in Table 2.

Minhow |0 1 2 w-1 W
0 Noi Noz N Nor
1 Nio Niz Nip-1 Nir
2 N20 N21 N2 - N2F
N b N Ny-1F
w-1 W-10 W-1 1 W12
w Nro Nr1 Np» Ne it Nep
No conv
Nconvl o
Nconv2  No conversion is needed
Nconv3  Number of converters that can convert between specific wavelengths
Neonv4 | Number of converters that can convert a specific wavelength to all of them

Number of converters that can convert any wavelength to a specific one

Number of converters Full-to-Full, that can convert between all wavelengths

Table 2. Appearance of matrix num_cony created in order to control the number of converters

available
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We can assume that type 1 converters are fixed, because given A, the single converter may
provide a certain A,y In all other cases the converters are tunable, given A;,, the single
converter may provide a certain range of A, that depends on Ay

Another classification refers to the range of A, of a converter. There are Full-range
conversion and Limited-range conversion. According to this, types 1 and 3 are Limited-range
converters, and types 2 and 4 Full-range converters.

This thesis focuses on type 1, Specific-to-Specific wavelength converters and type 4, Full-
to-Full wavelength converters.

When the number of converters is limited, to find a channel and delay available for a packet
is not enough to be transmitted. If a wavelength conversion is necessary, a converter capable of
carrying out the conversion must be free. In order to avoid this problem, the Select function has
been modified. Instead of applying the Search function for every output wavelength and fiber to
find matrix A(z,, x), the search is made only for those output wavelengths for which conversion
is not necessary or if there is at least a converter availabl. Search _conv is the function that
handles this check. It searches first the converters which can run fewer combinations of
conversion, then it searches the converters that are more flexible.

int search _conv(int inwdm, int outwdm) {
int ¢=0; // It remains = 0 if no conversion is needed

if(inwdm!=outwdm) {
if(num_conv[inwdm][outwdm]>0) { // N in->out case |
c=1;
} else if(num_conv[inwdm][numwdm]>0) { // N in->F case 2

c=2;

} else if(num_conv[numwdm][outwdm]>0) { / N F->out case 3
c=3;

} else if(num_conv[numwdm][numwdm]>0) { / N F->F case 4
c=4;

} else { // No converters available
c=-1;

}

H

return c;

}

The type of converter for every possible output channel is stored in a matrix:

conv_type[i][j] = search conv((int)lista_eventi->lung_onda,j);

Then, if a converter is available, the Search function is called to find the scheduling points
for that channel, fiber-wavelength. Otherwise, the corresponding values of A(#, x) become -o.
The use of limited number of converters reduces the scheduling choices, the algorithm may
schedule a packet to a subset of all the scheduling points that an unlimited wavelength
conversion could choose.
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Once the output channel is chosen, it should be a way to simulate that the converter
becomes occupied and, after a while, it is set free. For this purpose there are two new functions:

void sel_conv(int conv_t, int inwdm, int outwdm) {

switch(conv_t) {

case 1:
num_conv[inwdm][outwdm]--;
break;

case 2:
num_conv[inwdm][numwdm]--;
break;

case 3:
num_conv[numwdm][outwdm]--;
break;

case 4:
num_conv[numwdm][numwdm]--;
break;

H
i

This function reduces the number of converters depending on the output channel where the
packet has been scheduled. Then, a new event is created, in the same way that new packets
arrival, simulating the time the packet will leave thus freeing the converter.

Meanwhile, the simulator is able to attend other events. When the time of freeing the
converter comes, it will be necessary to call the following function that increases the
corresponding number of converters.

void set_free conv(int conv_t, int outwdm){

if(conv_t==1){ // N in->out case 1
num_conv[lista_eventi->input][outwdm]++;

telse if(conv_t==2){// N in->F case 2
num_conv[lista_eventi->input][numwdm]++;

yelse if(conv_t==3){// N F->out case 3
num_conv[numwdm][outwdm]++;

telse if(conv_t==4){// N F->F case 4
num_conv[numwdm][numwdm]++;

}

4.3 Packet arrivals generation and event management

In case of Limited Wavelength Conversion, there are two types of events. We use the word
event to refer to a new packet arrival and to setting free a converter. When these events are
created, as explained below, theyare arranged in a chronological order in an event list:

struct evento *lista_eventi; /* pointer to the first element of the event list sorted by time*/
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struct evento { /* structure representing an event */
double time; /* time of arrival */
double lung; /* packet length */
short input; /* input where the packet appears */
short fiber; /* fiber of the input/output */
short lung_onda; /* wavelength of arrival */
short tipo; /* type of event */

evento *punt;  /* pointer to the next event */

15
The function responsible for event management is manage_events:

void manage events(){
int testvar=0;
//manage events while list isn't NULL
while(lista_eventi!=NULL){

switch(lista_eventi->tipo) {
case ARRIVAL:
tempo=lista_eventi->time;
update_gp(tempo); /*Update gap pointers to new time™*/
/* Next arrival generation and insertion in the event list */
if(pac_sim<pacch) {
generator mml(lista_eventi->input, lista_eventi->fiber,
lista_eventi->lung_onda,&tprossimo,&lpacch);
insert_event(tprossimo,lpacch,lista_eventi->input,lista_eventi->fiber,
lista_eventi->lung_onda,ARRIVAL);
pac_sim++;

/* output generation and wavelength selection™®/
out=randinteger(numout);

if (sel_fib_wdm(out,tempo,lista_eventi->lung,&rit ass,&tau,&fib,&lout)==0){
/*selects delay, fiber & wavelength */

sel _conv(conv_type[fib][lout],(int)lista_eventi->lung_onda,lout);
double conv_time;
conv_time= lista_eventi->lung; //conversion time in seconds

insert_event(tempo+conv_time,lista_eventi->lung,
lista_eventi->lung_onda,conv_type[fib][lout],lout, FREE CONV);

update_gaplist(tempo,lista_eventi->lung, out, fib, lout, rit_ass);
tfreeout[out][fib][lout]=tempo-+(double)rit_ass*T+lista_eventi->lung;
telse { pacch persi++;}

eliminate event();
break;

case FREE CONV:
set_free conv((int)lista_eventi->fiber, (int)lista_eventi->lung_onda);
eliminate _event();
break;
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At arrival event, the gap pointers are updated, a new packet arrival is generated and inserts
in the event list. Then a random generator selects the output and the select function finds the
best channel to schedule the packet. If the select is not successful the packet is lost.

At free_conv event, as explained already, the converter is set free.

The arrival generation starts when the main function produces the first arrivals for every
input calling the first _arrivals() function. Input traffic is made of variable length data payloads,
arriving as a Poisson process. The function generate first pack (double *I) returns the length of
the first packet generated:

void generate first pack(double *1) {
/* generates length of the first packet at time t=0%/

double length;
int lung_in_byte;

length=-log(1-ran2(&seed))*lungmedia;

lung_in byte=(int)(length*GIGABITSEC/8+1);
*|=length;
H

Then, insert first_arrival(double length,short in,short fib, short wl) creates the first event
structure and inserts it in the event list lista event by means of the function
insert_first_arrival(double length,short in,short fib, short wl). A similar procedure is used to
generate arrivals for the remaining inputs, but a different function is used to insert them into the
list of events (insert _event(double tempo, double Ilunghezza,short in, short fib, short
| _onda,short tipo_ev)). This functions checks the time of arrival and inserts the event into the
list, chronologically ordered.

After the first packets have been generated, the function manage events() is called from the
main. This function, which will be analyzed later in this thesis, checks if there are still packets
to be scheduled and, in case the number of generated packets is lower than the number of total
packets to simulate, uses the function generator _mml (int ingress, int fiber, int | _onda, double
*prox_arrivo, double *lun) to generate an interarrival time and an exponentially distributed
length for the next packet. Then, these data is used to create an event, and the function
insert_event(double tempo, double lunghezza,short in, short fib, short | onda,short tipo_ev)
allocates it into the correct position from the event list.
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Chapter 5

Simulation results

In this chapter the simulation results are presented. They are referred to a generic optical packet
switching node with either Limited or Unlimited Wavelength Conversion. The following input
parameters allow us to design the node architecture:

*  The number of input/output ports /0O

* The number of fiber per output link F

* The number of wavelengths available in each fiber W
*  The number of delays B and the delay unit D

* The traffic payload per wavelength

* The average payload size

* The chosen scheduling algorithm: either D or G-type, with or without void filling

5.1 Unlimited Wavelength Conversion

The first simulations refer to the case of a node with unlimited wavelength conversion
capability, giving a large enough value to the number of converters. So a packet will never be
lost due to lack of converters.

In order to compare different cases, the cardinality is kept constant at |S| = B-W-F' = 64 has
been used in all simulations. As we have considered the case of a single fiber per link, the
scheduling space can be expressed as |S| = B-W.

The traffic load per wavelength is 0.8 and the average payload size is chosen, depending on
the single channel bit-rate, in order to have an average transmission time in the order of 1 us.
The results show the packet loss probability as a function of the buffer delay unit D normalized
to the average payload length (1000 in this study). It is clear that D is a key parameter in the
buffer design, and it must be accurately chosen.
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The figures demonstrate that large values of W are preferable to a high value of B.

Nonetheless these results show that a little buffering in the time domain is still important,
since the case with no delay (B = 1) is not the best. In this case, the loss probability is
independent of the change of delay unit D. This constant value corresponds to the theoretical
result of calculating the Erlang’s B formula for 64 servers and 51.2 Erlangs of offered traffic
(0.8 Erlang per wavelength).

The optimal performance of both D and G algorithms is W =32, B =2.

5.1.2 Void Filling algorithms
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Loss Probability
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D (normalized)
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Figure 9. Packet loss probability as a function of D for a switch with D-type VF algorithm,
|S|=64, F=1, 5.000.000 of packets and R=500.
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Figure 10. Packet loss probability as a function of D for a switch with G-type VF algorithm,
|S|=64, F=1, 5.000.000 of packets and R=500.

Results with VF are very similar in both D and G algorithms. The main difference that can
be found when comparing them to noVF simulations is that, in this case, loss probability keeps

decreasing when delay unit becomes bigger. There is not an optimal value D, the bigger it is the
smaller is the loss probability.

5.2 Limited Wavelength Conversion

First, we have considered three cases, with |S’| = 16 and D-type NoVF algorithm, where only
one type of converter is used in order to find the optimal number of converters of each type. The
following graphics show the results:
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Figure 11. Optimal number of each type of converters to achieve minimum packet loss
probability in case of D-type NoVF algorithm, F=4, W=2, B=8, 5.000.000 packets
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Figure 12. Optimal number of each type of converters to achieve minimum packet loss

probability in case of D-type NoVF algorithm, F=4, W=4, B=4, 5.000.000 packets

- 250 7
©
5, 200 4
[ o
E2 150 4
a9
3 2 100 4
- p— U
S~ 50 d I l
=)
0 T T T T
Nconvl  NconvZ  Nconv3  Nconv4
Converter type
Figure 13. Optimal number of each type of converters to achieve minimum packet loss

probability in case of D-type NoVF algorithm, F=4, W=8, B=2, 5.000.000 packets
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A higher number of converters Full-to-Full are required in case of large values of W and for
large values of B, since it is necessary to convert many packets from wavelength to another.
Graphs prove that converters of type 1 and 4, Specific-to-Specific and Full-to-Full respectively,
lead to the best results. They represent the most extreme cases and from now on, so as to
simplify, we work with these two types.

For the cases W=2 B=8 and W=8 B=2, we studied the cost and consumption of these
devices.

5.2.1 Power Consumption

The objective of these simulations is to find the probability of a converter being used,
calculated as the average amount of time any converter is converting a packet. The goal is to
understand if it is possible to have a significant saving in used power if converters are turned off
when they are not used.

For each simulation has been used only one type of converters, both Full-to-Full converters
and those that only can convert from an specific wavelength to another specific one, always
using optimal amounts. There is a difference between power consumption of these two types of
converters. Wavelength converter consumption depends mainly on laser power required and the
control electronics. Consumption due to a single converter is [3]:

Pconverter = PLASER + Pmanagement electr. (1 3)

It is clear that a tunable laser consumes more than a fixed wavelength laser. So a Full-to-
Full converter that needs a tunable laser, dissipate more power than those that only can convert
from an specific wavelength to another specific one.

PrASER tunable > PLASER fixed (14)

Therefore,

PFull-to-Full converter ~ PSpeciﬁc-to-Speciﬁc converter (1 5)
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Figure 14. Number of converters occupied probability in case of D-type NoVF algorithm,
F=4, W=2, B=8, 5.000.000 packets and 16 Specific-to-Specific converters.
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Figure 15. Number of converters occupied probability in case of D-type NoVF algorithm,
F=4, W=2, B=8, 5.000.000 packets and 20 Full-to-Full converters.
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Something important is that all graphics have a Gaussian behaviour. In addition, this
behaviour depends on the traffic conditions and not on the type or number of converters as long
as they are enough to provide the “amount of conversion” needed. In case W=2 B=8, it is more
probable that 6 devices are running and if W=8 B=2 the number is 44.

At this point, it is easy to approximate the average power consumption as the consumption
of the converters weighted but the probability that a certain number of them is used, to calculate
the average power consumption.

Pavg = Zi=OA..NconV(i : prObi ' Pdevice) (16)

The results are:

Average Power Consumption

By turning off converters

Converters always working

W=2 B=8 Full-to-Full
converters

6,340863368 - Pryiito-Full

20 - Pruli-to-Full

W=2 B=8 Specific-to-Specific
converters

6,305124708 : PSpeciﬁc-to-Speciﬁc

16 - PSpeciﬁc-to-Speciﬁc

W=8 B=2 Full-to-Full
converters

44,76024082 - Pryji-to-Full

70 - Pryjicto-Fult

W=8 B=2 Specific-to-Specific

44,7409878 : PSpeciﬁc-to-Speciﬁc

224 - PSpeciﬁc-to-Speciﬂc

converters

Table 3. Comparison of Average Power consumption depending on weather or not are turned off

It is obviously better to turn off converters when are not being used, obtaining energy
savings from 20% to 65%.

Furthermore, for a given node configuration the only difference between using each type of
converter lies in single device power consumption. Although the total converters number is
clearly different depending on type, the average number of converters used is almost exactly the
same, since it depends on the traffic profile and not on the type of converters.

Given that Pruiito-Full converter 18 higher then Pgpecific-to-specific converter, @ conclusion that we could
previously imagine is that a node with Full-to-Full converters consumes more than those made
with Specific-to-Specific.
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5.2.2 Cost

The cost of a converter of a generic optical packet switching node is given by [3]:

Cconverter - CLASER+ Cinterferometer + 3 'Cinterconnexion (17)

This section tries to find out which option has a lower cost, using only one type of converter
or mixing both. As in power consumption, we can make a cost comparison because a Full-to-
Full converter is more expensive than a Specific-to-Specific one, because requires a tunable
LASER. Likewise we can say that:

CLASER tunable > CLASER fixed (18)

Consequently,

CFull-to-Full converter CSpcciﬁc-to-Speciﬁc converter (1 9)

To combine both types of converters, we start with the optimal amount of one of them and
none of the others. The first value decreases until zero as the second one increases. And then,
we do the same but with the other optimal value.
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16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14

Nconvl/Nconv4

Figure 18. Packet loss probability mixing Full-to-Full and Specific-to-Specific converters,
starting with S-to-S optimal number, and D-type NoVF algorithm, F=4, W=2, B=8.
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Figure 19. Packet loss probability mixing Full-to-Full and Specific-to-Specific converters,
starting with F-to-F optimal number, and D-type NoVF algorithm, F=4, W=2, B=8.
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Figure 20. Packet loss probability mixing Full-to-Full and Specific-to-Specific converters,
starting with S-to-S optimal number, and D-type NoVF algorithm, F=4, W=8, B=2.
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Figure 21. Packet loss probability mixing Full-to-Full and Specific-to-Specific converters,
starting with F-to-F optimal number, and D-type NoVF algorithm, F=4, W=8, B=2.

We try to find the best combination for each configuration node, searching a minimum loss
probability and the lower number of converters used to get it, especially of Full-to-Full
converters because they have a higher cost. Table 4 shows the results:

Loss Probability Total Cost
Rsoecibc o specitn £ 0,0102704 14-Csos + 2-Craor
NFull-to-Full = 2
W=2 B=8
NSpeciﬁc—to—Specif} =1 6 0,0 1 03 5 86 1 6 . CS_[Q_S
NFull-to-Fu = 0
NSpeciﬁc—to—Speciﬁc =0
0,0102224 20-Cro-
NEull-to-Fu = 20 frot
Nipecific-to-Specific = 168
NFull—to—Full =56 0900 10524 168- CS—to-S + 56- CF-to-F
W=8 B=2 _
NSpeciﬁc—to—Speciﬁi_ 224 0,00 10622 224- CS—to—S
NFull-to-Fu = 0
NSpeciﬁc—to—Speciﬁc =0
NFull-to-Full =70 0,00 10686 70- CF-to-F

Table 4. Cost of converters with optimal number of F-to-F, S-to-S converters and mixing both

It can be seen that the cost increases with the number of wavelengths used, that is intuitive
since the more the wavelengths the more the conversions needed. Given that Full-to-Full
converters are more expensive, the best option is to mix both types of converters. It is clear that
it is cheaper to use only Specific-to-Specific converters, but this solution offers a higher loss
probability.
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Chapter 6

Conclusions

In this project we have studied contention resolution problem of an Optical Packet Switch. After
analyzing results with Gap oriented and Delay oriented policies, we concluded that in Void
Filling algorithms is better to have more delays than a big number of wavelengths, unlike in
NoVF cases. Time domain becomes important when packets can be scheduled not only after the
last packet. It is also worth noting that G-type offers better results when NoVF is used, while D-
type becomes better with VF. This can be explained by the fact that, when packets can only be
scheduled at the last gap (NoVF), channel efficiency is more important in order to have low loss
probabilities. Although, when we use VF algorithms it is more significant to fill gaps with the
smaller delay possible.

Moreover, the thesis focuses on an approximate evaluation of cost and power consumption
due to wavelength converters. These devices are an important part of an optical switch,
exploiting wavelength conversion for contention resolution. Results demonstrate that the
probability function of having a certain number of converters occupied have a Gaussian
behaviour. These graphics also show that it is possible to save power consumption by turning
off converters when they are not being used. Finally, the best choice is mixing converters that
can convert between two specific wavelengths and converters capable of converting to any
wavelength in order to reduce cost.
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/* SIMULATION OF AN OPTICAL PACKET SWITCHING NODE SCHEDULER*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <unistd.h>
#include <sys/time.h>

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IA2 40692
#define IQ1 53668
#define 1Q2 52774
#define IR1 12211
#define IR2 3791

#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

#define ARRIVAL 1
#define FREE CONV 2

#define INFINIT 1000000
#define INFINITO 1e38

#define LMAXMEDIAIP 5000
#define LMIN 32

bytes */

#define GIGABITSEC 2.5¢9

#define CONVERSIONSPEED 2.5¢9

#define FALSE 0
#define TRUE 1

#define NSTADI 1
#define MAXFDL 128
#define MAXMAXRIT (MAXFDL-1)

#define NMAXOUT 16
#define NMAXFIBPEROUT 16
#define NMAXWDM 64

/* definition of constants used in ran2 */

/* type of event used */
/* type of event used */

/* infinite integer */
/* infinite real */

/* maximum average length of arriving packets */
/* minimum average length of arriving packets, in

/* transmission speed */

/* conversor speed of optical wavelength
converters®/

/* maximum number of FDL */
/* maximum delay (units) fornito dal buffer
monostadio */

/* maximum number of inputs and outputs */
/* maximum number of fibers per input/output */
/* maximum number of wavelengths per fiber */

43



Simulation of switching architectures for Optical Packet Switched network —

#define TOTFIBERS (NMAXFIBPEROUT*NMAXOUT) /* maximum number of input/output fibers */

#define G_VF 1

#define G_NoVF 2

#define D_VF 3

#define D_NoVF 4

/* algorithm used */

#define min_lungmedia (LMIN*8/GIGABITSEC) /* min and max length of packets in seconds */
#define max lungmedia (4*LMAXMEDIAIP*8/GIGABITSEC)

#define step_byte (4*LMAXMEDIAIP)-LMIN)/300
#define STEP (step_byte*8)/GIGABITSEC

#define NSTEP 300

struct evento {
double time;
double lung;
short input;
short fiber;
short lung_onda;
short tipo;

evento *punt;

}7

struct gap {
double tstart;

double tend;
gap *prev;
gap *next;
55

/* structure representing an event */
/* time of arrival */

/* packet length */

/* input where the packet appears */
/* fiber of the input/output */

/* wavelength of arrival */

/* type of event */

/* pointer to the next event */

/* structure representing a gap */
/* time the gap starts */

/* time the gap ends */

/* pointer to previous gap */

/* pointer to next gap */

/* GLOBAL VARIABLES*/

/*

int pacch;
double Tbyte;
double carico;
double lungbyte;
int numout;
int numfib;
int numwdm;
int  pol;

int  numfdl;
int nconvl;
int nconv2;
int nconv3;
int nconv4;

(INPUT VARIABLES) */

/* number of packets to be simulated */
/* granularity in bytes */

/* input load */

/* average length in byte */

/* number of inputs/outputs */

/* number of fibers per input/output */
/* number of wavelengths per fiber */
/* indicates the chosen politic to choose output wavelength */
/* number of FDL */

/* number of conversors type 1-to-1 */
/* number of conversors type 1-to-N */
/* number of conversors type N-to-1 */
/* number of conversors type N-to-N */

/*

double lungmedia;
double T;
double lambda;
long seed;

int MAXRIT;
int test;

int lastwl=0;

(GENERAL USE VARIABLES) */

/* average length in seconds */

/* granularity in seconds™®/

/* average frequence of poisson arrivals®/
/* seed for the random number generator*/
/* maximum delay = numfdl-1 */
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/% (STATE VARIABLES) */

struct evento *lista_eventi; /* pointer to the first element of the event list sorted by time*/
double tfreeoutNMAXOUT]|[NMAXFIBPEROUT][NMAXWDM]; /* array of times when output
channels are free*/

double uscita mm1[NMAXOUT][NMAXFIBPEROUT][NMAXWDM];

double ting mmI[NMAXOUT][NMAXFIBPEROUT][NMAXWDM];

double Headsf]NMAXFIBPEROUT][NMAXWDM][MAXFDL]; /* Remaining gaps for every
channel(fiber&wave) and every delay */

double TailsfNMAXFIBPEROUT][NMAXWDM][MAXFDL];

double AUX[NMAXFIBPEROUT][NMAXWDM][MAXFDL];

int num_conv[NMAXWDM+1][NMAXWDM+1]; /*number of conversors of every type*/
int conv_type[NMAXFIBPEROUT][NMAXWDM]; /*type of conversor choosen for every fiber
and wavelength*/

struct gap *lista_gap[NMAXOUT][NMAXFIBPEROUT][NMAXWDM]; /* pointer to the first
gap in every out, fiber, wavelength, sorted by time */

struct gap *gp[NMAXOUT][NMAXFIBPEROUT][NMAXWDM][MAXFDL]; /*pointer to the gap in
every chanel and delay */

/* (CONTROL VARIABLES) */
double Ipacch;

double tprossimo, tempo;

int pac_sim; /* number of simulated packets */

int rit_ass; /* assigned delay in T units*/

int 1,j,k,1;

double tr_tot off;
double tr_tot smalt=0;

int out; /* chosen output */

int fib; /* chosen fiber */

int lout; /* chosen wavelength*/

double tau; /* variable containing, for each packet, added length*/

double tau_tot;

int pacch_senzaconv;
int pacch_persi; /* number of lost packets */

FILE *fl; /*output files*/

struct timeval monitortime;

double tempo_conv1[100¥*(NMAXWDM-1)*(NMAXWDM)]; /*total time for every number of occupied
type 1 conversors*/

double tempo_conv4[500]; /* total time for every number of occupied type 4 conversors*/

double oldtimel;
double oldtime4;

int convl_occupati; /*total number of occupied type 1 converters*/
int conv4_occupati; /*total number of occupied type 4 converters*/
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double ran2(long *idum) { /* generates random double between 0 and 1 */
int j;
long k;

static long idum2=123456789;
static long 1y=0;

static long iv[NTAB];

double temp;

if (*idum <= 0) {
if (-(*idum) < 1) *idum=1;
else *idum = -(*idum);
idum2=(*idum);
for (j=NTAB+7;j>=0;j--) {
k=(*idum)/1Q1;
*idum=IA 1*(*1dum-k*1Q1)-k*IR1;
if (*idum < 0) *idum += IM1;
if § <NTAB) iv[j] = *idum;
}
iy=iv[0];
i
k=(*1dum)/IQ1;
*idum=IA1*(*idum-k*I1Q1)-k*IR1;
if (*idum < 0) *idum += IM1;
k=1dum?2/1Q2;
idum2=I1A2*(idum2-k*1Q2)-k*IR2;
if (idum2 < 0) idum?2 += IM2;
j=iy/NDIV;
iy=iv[j]-idum2;
iv[j] = *idum;
if iy < 1) iy += IMM1;
if ((temp=AM*iy) > RNMX) return RNMX;
else return temp;

H
/* */
int randinteger (int temp) { /* provides a random number between 0 and temp-1
with a uniform probability distribution.*/
double casuale;
int out;
float div;
casuale=ran2(&seed);
div=(float)1/temp;
out=(int)(casuale/div);
return out;
H
/* */
double calc_tau(int del,double t,double tout) { /* calculates length of the next packet */

double tau=0.0;
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if(del>0) tau=(double)del*T-(tout-t);
return tau;

H

/* */

void open_files(){

fl=fopen("results.txt","a");

i
/% */

void init vars(){
test=0;
pacch_senzaconv=0;
Ipacch=0;
tprossimo=0.0; tempo=0.0;
tau_tot=0;
lun_totale=0;
pacc_ritardati=0;
pacch_persi=0;

/*initializes variables that memorize results */

for(j=0;j<=MAXMAXRIT;j++) distr_rit[j]=0;
for(i=0;i<numout;i++){
for (j=0;j<numfib;j++){
for(k=0;k<numwdm;k++) {
scelta_wdm[i][j][k]=0;
lun_tot smaltita[i][j][k]=0;
lun_tot eff smalt[i][j][k]=0;
perdita_per lam[i][j][k]=0;
1
for(j=0;j<=NSTEP;j++) lung_pacch_persi[j]=0;
for(j=0;j<=NSTEP;j++) lung_pacch_generati[j]=0;

/* initialize arrays and lists */

for(i=0;i<numout;i++) {
for(k=0;k<numfib;k++) {
for(j=0;j<numwdm;j++) {

ting mml[i][k][j]=0; /* inizialize to zero the time od arrival af first packets

to enter M/M/1 generator™®/
tfreeout[i][k][j]=0; /* void commutator */
lista_gap[i][k][j]=(struct gap *)malloc(sizeof(struct gap));
ista_gap[i][k][j]->tstart=0; /* initializes gap lists*/
lista_gap[i][k][j]->tend=INFINITO;
lista_gap[i][k][j]->prev=NULL,;
lista_gap[i][k][j]->next=NULL;
for (1=0;1<numfdl;1++){

gplil[k][jI[1]=lista_gap[i][k][j]; /*assign gap pointers
to the corresponding channel®/

}
}

lista_eventi=NULL; /* initializes event list as void*/

for(i=0;i<numwdm;i++){
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num_conv[i][numwdm]=nconv2;
num_conv[numwdm][i]=nconv3;

for(j=0;j<numwdm;j++){
num_conv[i][j]=nconvl;
}
H

num_conv[numwdm][numwdm]=nconv4;
for(i=0;i<=(nconv1*(numwdm-1)*(numwdm));i++) tempo_conv1[i]=0;
for(i=0;i<=nconv4;i++) tempo_conv4[i]=0;

oldtime1=0;

oldtime4=0;

convl_occupati=0;
conv4_occupati=0;

H
/* */
void generate first pack(double *1) { /* generates length of the first packet at time t=0%*/
double length;
int lung_in_byte;
length=-log(1-ran2(&seed))*lungmedia;
lung in byte=(int)(length*GIGABITSEC/8+1);
*]=length;
H
/* */

void insert_first arrival(double length,short in,short fib, short wl) {

}

/*

lista_eventi=(struct evento *)malloc(sizeof(struct evento));
lista_eventi->time=0.0; /* insert first arrival */
lista_eventi->lung=length; /* in the event list, void before */
lista_eventi->input=in;

lista_eventi->fiber=fib;

lista_eventi->lung_onda=wl; /* next events will be insert in order */
lista_eventi->tipo=ARRIVAL,;

lista_eventi->punt=NULL;

*/

void insert_event(double tempo, double lunghezza,short in, short fib, short 1 onda,short tipo_ev) {

struct evento *wl,*w2,*w3;

w3=(struct evento *)malloc(sizeof(struct evento));

w3->time=tempo;

w3->lung=lunghezza; /* reserve space and create new event*/
w3->input=in;

w3->fiber=fib;

w3->lung_onda=| onda;

w3->tipo=tipo_ev;
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if(lista_eventi->time>w3->time) {  /* control if the new event */

w3->punt=lista_eventi; /* will be at the beginning of the list*/
lista_eventi=w3;
H
else {
wl=lista_eventi; /* inizialize two pointers */
w2=lista_eventi->punt; /* in order to move the list */
while((w2!=NULL)&&(w2->time<=w3->time)) {
wl=w2; /* move list */
w2=w2->punt;
}
wl->punt=w3; /* insert the new event sorted by time*/
w3->punt=w2;
H

*/

void first_arrivals(){

/* generate first arrival for input 0,0,0 */

generate_first pack(&lpacch);
uscita_mm1[0][0][0]=Ipacch;
insert first arrival(lpacch,0,0,0);
pac_sim=1;
lun_tot_offerta[0][0][0]=Ipacch;

/* first arrivals for the rest of inputs */

i
/*

for (i=0;i<numout;i++)
for (j=0;j<numfib;j++)
for (k=0;k<numwdm;k-++){

if (i==0)&&(j==0)&&(k==0)){}

else{
generate_first pack(&lpacch);
uscita_mml[i][j][k]=lpacch;
insert_event(0.0, Ipacch,i,j,k, ARRIVAL);
pac_sim++;
lun_tot offerta[i][j][k]=lpacch;

*/

void eliminate_event() {

H

/*

struct evento * w3;

if(lista_eventi->punt == NULL) {printf("Total time = %1.10f secs\n",lista_eventi->time);
w3=lista_eventi->punt; /* eliminate the first event from the list */

free(lista_eventi); /* updating the pointer */

lista_eventi=w3;

*/

void generator mm1(int ingresso,int fiber, int 1 onda,double *prox_arrivo,double *Iun) {

double tuscita;
double tinter, lunghezza;
int lung_in_byte;
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tinter=-log(1-ran2(&seed))/lambda; /* generate interarrival time */
lunghezza=-log(1-ran2(&seed))*lungmedia; /* and exponential length */
lung in_byte=(int)(lunghezza*GIGABITSEC/8+1);  /* trasform length into bytes */

if((ting_mmI[ingresso][fiber][l_onda]+tinter)>=uscita_mm1[ingresso][fiber][l_onda])
tuscita=ting_mm/1 [ingresso][fiber][l_onda]+tinter;
else tuscita=uscita_mm/l[ingresso][fiber][l onda];

ting_mm/[ingresso][fiber][l onda]+=tinter
uscita_mml[ingresso][fiber][l onda]=tuscita+lunghezza;

*prox_arrivo=tuscita; /* fornisce 1 dati in uscita */

e

FORZATO A PROCESSO DI POISSON PURO
e B e e e S S A

*prox_arrivo=ting_mm/[ingresso][fiber][l onda];
*lun=lunghezza;

*/

void minimax(int minormax, int *fib, int *wave, int *delay, int *numvalues, double
G[NMAXFIBPEROUT][NMAXWDM][MAXFDL], int numfib, int numwdm,int numfdl ){

/*Function providing coordinates of mins (if first parameter is zero) or maxs (any other value) of a

given 3D array, as well as the number of minimums or maximums (numvalues). Pointers *fib, *wave*,
*delay will store coordinates of mins/maxs*/

int 1,j,k, tempnum,;

double value;

tempnum=0;

if (minormax==0){ /* find the minimum positive or null value */
value=INFINITO;

for (k=0;k<numfdl;k++)
for (i=0;i<numfib;i++)

for (j=0;j<numwdm;j++){
if (Gli][j1[k]<value)&&(GIi][jl[k]>=0)){
value=G[i][j][k];
tempnum=0;
fib[tempnum]=i;
wave[tempnum]=j;
delay[tempnum]=k;
tempnum++;

H

else if ((G[i][jl[k]==value)&&(G[i][j1[k]>=0)){
fib[tempnum]=i;
wave[tempnum]=j;
delay[tempnum]=k;

tempnum++;
}
}
}
else { /*find the maximum */
value=-1;
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for (i=0;i<numfib;i++)
for (j=0;j<numwdm;j++)
for (k=0;k<numfdl;k++){
if (GIHIGIKT>value)&&(GLIIITKI>=0){

value=G[i][j][k];
tempnum=0;
fib[tempnum]=i;
wave[tempnum]=j;
delay[tempnum]=k;
tempnum-+-+;

}

else if ((G[i][j][k]==value)&&(G[i][j1[k]>=0)){
fib[tempnum]=i;

wave[tempnum]=j;

delay[tempnum]=k;

tempnum-+;

H

}
}

*numvalues=tempnum;

i
/% */

void search_function(int tempout, int fib, int wl, int delay, double ta, double duration){

if ((gp[tempout][fib][wl][delay]==NULL)||(gp[tempout][fib][wl][delay]>tstart>=ta+delay*T+duration)||
(gp[tempout][fib][wl][delay]->tend<=ta+delay*T)){ /*Wrong delay gap...*/

Heads[fib][wl][delay]=-INFINITO;
Tails[fib][wl][delay]=-INFINITO;

telse{

Heads[fib][wl][delay]=tatdelay*T-gp[tempout][fib][wl][delay]->tstart;

if ((delay==0)& & (Heads[fib][wl][delay]>=0)) Heads[fib][wl][delay]=0;

Tails[fib][wl][delay]=gp[tempout][fib][w]][delay]->tend-ta+delay* T-duration;
}

AUX[fib][wl][delay]=-INFINITO;

if ((Heads[fib][wl][delay]>=0)&&(Tails[fib][wl][delay]>=0)){

switch(pol){
case G_VF:
AUX([fib][wl][delay]= Heads[fib][wl][delay]+Tails[fib][wl][delay]; /* creates matrix to
be minimized/maximized at the select function*/
break; /* it is not exactly H, as if T is negative H value is
not useful*/
case G_NoVF:

if (gp[tempout][fib][wl][delay]->tend==INFINITO) /*No packets scheduled after the gap...*/
AUX][fib][wl][delay]= Heads[fib][wl][delay];
break;

case D_VF:
AUX[fib][wl][delay]=(numfdI-1)*T +max_lungmedia-delay*T-Heads[fib][wl][delay];

/*AUX takes value of matrix D*/
break;

51



Simulation of switching architectures for Optical Packet Switched network —

case D NoVF:
if (gp[tempout][fib][wl][delay]->tend==INFINITO){ /*No packets scheduled after the gap...*/
AUX][fib][wl][delay]= delay+Heads[fib][wl][delay];

§
break;

i
/% */

int delay case_tie(int numvalues,int *c ){
/* function selecting the minimum with a smaller delay, or a random value if many minimums have the
same delay*/

int numofminc=0;

int mindel[numvalues];

int minc=INFINIT;

int i;

for (i=0;i<numvalues;i++){
if (c[i]<minc){ /*for to generate a vector with all minimum values*/
minc=c[i];
mindel[0]=i;
numofminc=1;
} else if (c[i]==minc){
mindel[numofminc]=i;

numofminc++;
}
} //end for
return mindel[randinteger(numofminc)];
H
/* *

int search_conv(int inwdm, int outwdm) {
int c=0;  // It remains = 0 if no conversion is needed

if(inwdm!=outwdm) {
if(num_conv[inwdm][outwdm]>0) { // N in->out case 1

c=1;
} else if(num_conv[inwdm][numwdm]>0) { // N in->F case 2
c=2;
} else if(num_conv[numwdm][outwdm]>0) { // N F->out case 3
c=3;
} else if(num_conv[numwdm][numwdm]>0) { / N F->F case 4
c=4;
} else { // No converters available
c=-1;
}
H
return c;
H
/* */

void sel_conv(int conv_t, int inwdm, int outwdm) {

switch(conv_t) {
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case 1:
num_conv[inwdm][outwdm]--;
tempo_convl[convl occupati]=tempo_convl[convl occupati] + (lista_eventi->time -

oldtimel);
convl_occupatit++;
oldtimel=lista_eventi->time;
break;
case 2:
num_conv[inwdm][numwdm]--;
break;
case 3:
num_conv[numwdm][outwdm]--;
break;
case 4:
num_conv[numwdm][numwdm]--;
tempo_conv4[conv4_occupati]=tempo_conv4[conv4 occupati] + (lista_eventi->time -
oldtime4);
conv4_occupati++;
oldtime4=lista_eventi->time;
break;
H
H
/* */

void set_free conv(int conv_t, int outwdm){

if(conv_t==1){ // N in->out case 1
num_conv[lista_eventi->input][outwdm]++;
tempo_convl[convl occupati]=tempo_convl[convl occupati] + (lista_eventi->time -
oldtimel);
convl occupati--;
oldtimel=lista_eventi->time;
telse if(conv_t==2){// N in->F case 2
num_conv[lista_eventi->input][numwdm]++;
yelse if(conv_t==3){ // N F->out case 3
num_conv[numwdm][outwdm]++;
telse if(conv_t==4){// N F->F case 4
num_conv[numwdm][numwdm]-++;
tempo_conv4[conv4 occupati]=tempo_conv4[conv4 occupati] + (lista_eventi->time -

oldtime4);
conv4_occupati--;
oldtime4=lista_eventi->time;
}
H
/* */

int sel_fib_wdm(int tempout,double t,double duration,int *del, double *tau, int *outfib, int *outwdm){
int numvalues=0;
int tempvalue;
int found;

int a[numfib*numwdm*numfdl],b[numfib*numwdm*numfdl],c[numfib*numwdm*numfdl];

for (i=0;i<numfib;i++){
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for(j=0;j<numwdm;j++){
conv_type[i][j] = search_conv((int)lista_eventi->lung_onda,j);

if (conv_type[i][j] == -1) { // there isn't any converter free, all the values of AUX for
this fiber and out wavelength to -infinito

for (k=0;k<numfdl;k++) {
AUX[i][j][k]=-INFINITO;
}

} else {
for (k=0;k<numfdl;k++){
search_function(tempout,i,j,k,t,duration);

}

}
i

switch(pol){
case G_VF:

minimax(0,a,b,c,&numvalues, AUX,numfib,numwdm,numfdl); /*find minimum values in
matrix Heads™*/

if (numvalues==0) {return 1;}

if (numvalues>1){ /*more than one minimum value, choose the one*/
tempvalue=delay case_tie(numvalues,c); /*with smaller delay. If there is more than one */
*outfib=a[tempvalue]; /*select randomly among them */

*outwdm=Db[tempvalue];
*del=c[tempvalue];

telse if (numvalues==1){
*outfib=a[0];
*outwdm=b[0];
*del=c[0];

H

break;

case G_NoVF:

minimax(0,a,b,c,&numvalues, AUX,numfib,numwdm,numfdl); /*find minimum values in
matrix Heads™*/

if (numvalues==0) {return 1;}

if (numvalues>1){ /*more than one minimum value, choose the one*/
tempvalue=delay case_tie(numvalues,c); /*with smaller delay. If there is more than one */
*outfib=a[tempvalue]; /*select randomly among them */

*outwdm=b[tempvalue];
*del=c[tempvalue];

telse if (numvalues==1){
*outfib=a[0];
*outwdm=b[0];
*del=c[0];

H

break;

case D _VF:
minimax(1,a,b,c,&numvalues, AUX,numfib,numwdm,numfdl); //finds max values in matrix D
if (numvalues==0) return 1;
else{
*outfib=a[0];
*outwdm=b[0];
*del=c[0];
H
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break;

case D NoVF:
minimax(0,a,b,c,&numvalues, AUX,numfib,numwdm,numfdl); /* finds min values in matrix
AUX containing delays */
if (numvalues==0) {return 1;}
if (numvalues==1){
*outfib=a[0];
*outwdm=b[0];
*del=c[0];
telse if (numvalues>1){
tempvalue=0;

for (1=0;1<2;i++){
if (Heads(a[i]][b[i]][c[i]]<tempgap)&&(Heads[a[i]][b[i]][c[i]]>0)) {

tempgap=Heads[a[i]][b[i]][c[i]];
tempvalue=i;

h

*outfib=a[tempvalue]; /*select the one with smaller gap*/
*outwdm=Db[tempvalue];
*del=c[tempvalue];

H
if(lista_eventi->lung_onda==*outwdm) pacch_senzaconv-++;
break;
return 0;
H
/* */

void update _gp(double tempo){
/*after current time has been updated, pointer to gaps in every channel and delay

must be updated--- */

struct gap *g;
g=(struct gap *)malloc(sizeof(struct gap));
int t;

for(i=0;i<numout;i++) {
for(j=0;j<numfib;j++) {
for(k=0;k<numwdm;k++) {
for(I=0;1<numfdl;l++) {
g=1gp[i][i][k][1];
=1
while(g==NULL) {g=gp[i][jI[k][t+1];
t++;

>

while(((g->tstart<tempo+1*T)& & (g->tend<tempo+1*T))){

g=g->next;
H
if(g->tstart<tempo+1*T) gplil[j1k][1]=g;
else if(g->tstart<tempo+(1+1)*T) gp[i][j1[k][1]=g;
else if(I==(numfdI-1)) eplil[j1kI[1]=g;
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else gp[i][IKIII=NULL;

if(I+1<numfdl){
if((gpl]GIKI[IH+1]!=NULL)&&(gp[i][jI[k][1]'=NULL)){
if(gp[i[1IKI[1+1]->tstart<gp[i][j1[k][1]->tstart){
gpi][IkI[+1]=gp il [1[kI[1];
}

/* */

int update gaplist(double tempo, double duration, int out, int fib, int wl, int delay){
/*procedure to update the list of gaps in every channel after a packet is scheduled*/
struct gap *gl,*g2,*g3;

while (lista_gap[out][fib][wl]->tend <= tempo) {
gl=lista_gap[out][fib][wl];
lista_gap[out][fib][wl]=lista_gap[out][fib][wl]->next;
free(gl);
§
lista_gap[out][fib][wl]->prev=NULL;
g2=lista_gap[out][fib][wl1];
while (g2->tend < tempo+delay*T){
if (g2->next!=NULL) g2=g2->next;
else {
return 0;

}
i

/*if the gap where the packet will be put isn't the last, keep the others in g3*/
if (g2->next!=NULL) g3=g2->next;
else g3=NULL;

if ((tempo-+delay*T > g2->tstart) && (tempo-+delay* T+duration < g2->tend)){
/* packet in the middle of a gap */
gl=(struct gap *)malloc(sizeof(struct gap));
gl->tend=g2->tend;
gl->tstart=tempo-+delay*T-+duration;
g2->tend=tempo+delay*T;
g2->next=gl;
gl->prev=g2;
if (g3!=NULL) {
g3->prev=gl;
}

gl->next=g3; /*link the rest of gaps (if there are more) */

}

if ((tempo-+delay*T == g2->tstart) && (tempo-+delay* T+duration < g2->tend)){
/*packet at the beginning of gap*/
g2->tstart=tempo-+delay*T+duration;

}

56



Simulation of switching architectures for Optical Packet Switched network —

if ((tempo-+delay*T > g2->tstart) && (tempo+delay*T+duration == g2->tend)){
/*packet at the end of the gap™/
g2->tend=tempo+delay*T;

i

if ((tempo-+delay*T == g2->tstart) && (tempo-+delay* T+duration == g2->tend)){
/*packet filling a whole gap*/
gl=g2;
if (g2->prev!=NULL){
g2=g2->prev;
g2->next=g3;
yelse{
if (g3 '=NULL)
g3->prev=NULL;
lista_gap[out][fib][wl]=g3;
i
free(gl);

return 0;

}

/* */

void manage events(){

int testvar=0;

//manage events while list isn't NULL
printf("START MANAGING EVENTS\n");
while(lista_eventi!=NULL){

switch(lista_eventi->tipo) {
case ARRIVAL: /* starts the management of event ARRIVO */
tempo=lista_eventi->time; /* aggiornamento della variabile tempo */
update_gp(tempo);
/* generates next arrival and insert it in the event */
if(pac_sim<pacch) {
generator mml(lista_eventi->input, lista_eventi->fiber,lista_eventi-
>lung onda,&tprossimo,&lpacch);
insert_event(tprossimo,lpacch,lista_eventi->input,lista_eventi->fiber,lista_eventi-
>lung onda,ARRIVAL);
pac_sim++;

/* generazione dell'uscita e selezione della lunghezza d'onda */
out=randinteger(numout);
/*Update gap pointers to new time™*/
if (sel_fib wdm(out,tempo,lista_eventi->lung,&rit_ass,&tau,&fib,&lout)==0){ /
/*selects delay, fiber & wavelength */
sel _conv(conv_type[fib][lout],(int)lista_eventi->lung_onda,lout);
double conv_time;
conv_time= lista_eventi->lung; //conversion time in seconds

/*gettimeofday(&monitortime,NULL);
double timel = (double)monitortime.tv_sec+(monitortime.tv_usec)/1000000.0;*/

insert_event(tempo+conv_time,lista_eventi->lung,lista eventi-
>lung onda,conv_type[fib][lout],lout, FREE CONYV);

scelta_wdm[out][fib][lout]++;
lun_tot eff smalt[out][fib][lout]+=lista_eventi->lung;
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update gaplist(tempo,lista_eventi->lung, out, fib, lout, rit_ass);

/*gettimeofday(&monitortime,NULL);

double time2 = (double)monitortime.tv_sec+(monitortime.tv_usec)/1000000.0;
if((pac_sim%(pacch/100))==0) {

printf("Time: %.6f\n",time2-timel);

y*/

tfreeout[out][fib][lout]=tempo+(double)rit ass*T+lista eventi->lung;
telse { pacch persi++;

i

eliminate event();

/*stampa su stderr lo stato della simulazione */

if((pac_sim%(pacch/100))==0) {
fprintf(stderr,"%d\r",pac_sim/(pacch/100));
fflush(stderr);

I
break;

case FREE_CONV:
set_free conv((int)lista_eventi->fiber, (int)lista_eventi->lung_onda);

eliminate _event();
break;

}

} /* end switch, end while */

[Hemmaee MAIN MAIN MAIN */

int main(int arge, char **argv){

clock tt ini, t fin;
double secs;

t_ini = clock();

int c;

pol = 4; numout=2;numfib=4;numwdm=8;numfdl=2;Tbyte=1000;pacch=5000000; lungbyte=1000;
carico=0.8; seed=2; nconv1=0; nconv2=0; nconv3=0; nconv4=70;

//getoptions
while ((c = getopt (argc, argv, "a:p:fiw:d:g:n:l:c:s:heizjik")) 1=-1) //: if value is required afer optio
switch (c){
case 'a": //algorithm
pol = atoi(optarg); //add option for constant random seed!!!!
break;
case 's": //constant seed
seed = time (NULL);
break;
case 'p': // input/output ports
numout = atoi(optarg);
break;
case 'l'' / average length in bytes
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lungbyte = atoi(optarg);
break;
case 'f': /mumber of fibers per in/output
numfib = atoi(optarg);
break;
case 'w'": //number of wavelengths per fiber
numwdm = atoi(optarg);
break;
case 'd": /mumber of fiber delay lines
numfdl = atoi(optarg);
break;
case 'g': //granularity in bytes
Tbyte = atoi(optarg);
break;
case 'n': /number of packets to be simulated
pacch = atoi(optarg);
break;
case 'c": //traffic load
carico = atoi(optarg);
break;
case 'h'":
nconvl = atoi (optarg);
break;
case '1":
nconv?2 = atoi (optarg);
break;
case 'j":
nconv3 = atoi (optarg);
break;
case 'k':
nconv4 = atoi (optarg);
break;
§
T=Tbyte*8/GIGABITSEC;
lungmedia=lungbyte*8/GIGABITSEC; /* trasforms average length from bytes to seconds */
lambda=carico/lungmedia; /* calculates arrivals frequence for MM1 generator */
MAXRIT=numfdI-1;

init_vars();
first_arrivals();

manage events();

double pe=(double)pacch_persi/pacch;
printf(" packet av. length: %f // granularity: %f // \n ",lungbyte, Tbyte);
printf(" loss probability: %1.10g\n",pe);

t_fin = clock();

secs = (double)(t_fin - t ini) / CLOCKS PER SEC;
double tt1=0;
double tt4=0;

if(nconvl !=0){
for(i=0;i<=(nconv1*(numwdm-1)*(numwdm));i++) {
printf("%d convertitori tipol occupati durante %1.10f secondi\n",i, tempo_conv1[i]);
tt1=tt1+tempo_conv1[i];
}
printf(" tt1= %1.10f secondi\n",tt1);
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i

if(nconv4 !=0){
for(i=0;i<=nconv4;i++) {
printf("%d convertitori tipo4 occupati durante %1.10f secondi\n",i, tempo_conv4[i]);
tt4=ttd-+tempo_conv4[i];
}
printf(" tt4= %1.10f secondi\n",tt4);

}

return 0;
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