

[2011]

Title: N3Sim : Simulator for diffusion-based molecular
 communications in Nanonetworks
Author: Iñaki Pascual
Date: June 2011
Director: Dr. Albert Cabellos-Aparicio
Director’s Department: Arquitectura de Computadors (DAC)
Co-Director: Ignacio Llatser Martí
Co-Director’s Department: Arquitectura de Computadors (DAC)
Degree: Informatics Engineering
School: Facultat d'Informàtica de Barcelona (FIB)
University: Universitat Politècnica de Catalunya (UPC)
 BarcelonaTech

N3Sim: Simulator for diffusion-
based molecular communications

in Nanonetworks

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
BS

TR
A

CT

2

ABSTRACT

Nanotechnology is enabling the development of devices in a scale ranging from
one to a few hundred nanometers, known as nanomachines. How these nanomachines
will communicate is still an open debate. Molecular communication is a promising
paradigm that has been proposed to implement nanonetworks, i.e., the
interconnection of nanomachines. The peculiarities of the physical channel in
diffusion-based molecular communication require the development of novel models,
architectures and protocols for this new scenario, which need to be validated by
simulation.

With this purpose, N3Sim, a simulator for diffusion-based molecular
communication has been developed. N3Sim allows simulating scenarios where
transmitters encode the information by releasing molecules into the medium, thus
varying their local concentration. N3Sim models the movement of these molecules
according to Brownian dynamics, and it also takes into account their inertia and the
interactions among them. Receivers decode the information by sensing the particle
concentration in their neighborhood.

The benefits of N3Sim are multiple: the validation of channel models for
molecular communication and the evaluation of novel modulation schemes are just a
few examples.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

N
TE

N
TS

3

CONTENTS

1. INTRODUCTION. .. 6

1.1. CONTEXT. ... 6

1.2. DIFFUSION-BASED MOLECULAR COMMUNICATION IN NANONETWORKS. 6

1.3. PROJECT DEVELOPMENT. .. 10

1.4. GOALS. ... 10

2. STATE OF THE ART. .. 12

3. REQUERIMENTS ANALYSIS .. 14

3.1. REQUERIMENTS ELICITATION STRATEGY. .. 14

3.2. NON FUNCTIONAL REQUERIMENTS. ... 16

3.2.1. RELIABILITY. ... 16

3.2.2. MODIFIABILITY. ... 16

3.2.3. EXTENSIBILITY. ... 16

3.2.4. USABILITY. ... 16

3.3. FUNCTIONAL REQUERIMENTS. .. 17

3.3.1. SIMULATION SPACE. .. 17

3.3.2. COLLECTIVE DIFFUSION. .. 17

3.3.3. EMITTER. ... 17

3.3.4. RECEIVER. .. 18

3.3.5. INITIAL BACKGROUND CONCENTRATION. ... 18

4. SPECIFICATION. ... 19

4.1. USE CASE MODEL. .. 19

4.2. CONCEPTUAL MODEL. ... 20

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

N
TE

N
TS

4

5. DESIGN AND IMPLEMENTATION ... 23

5.1 INTRODUCTION .. 23

5.2 THREE LAYER ARCHITECTURE .. 24

5.3 PACKAGE STRUCTURE .. 24

5.4 IMPLEMENTATION. .. 26

5.4.1 USER INTERFACE LAYER. .. 26

5.4.3 DOMAIN LAYER .. 28

5.4.4 DATA LAYER. .. 41

5.5 ELECTROSTATIC FORCES .. 42

5.6 N3SIM VIDEO PLAYER (N3SVIDEO). ... 43

6. COLLISION DETECTION ALGORITHM .. 44

6.1. INTRODUCTION .. 44

6.2. STATE OF THE ART ... 44

6.3. IMPLEMENTATION ... 48

6.4. COST ANALYSIS .. 51

7. RESULTS. ... 53

7.1. BROWNIAN MOTION ... 53

7.2. SPACE LIMITS ... 54

7.3. NOISE ... 55

7.4. COLISSIONS. ... 56

7.5 INERTIA ... 57

7.6. ELECTRICAL FORCES. .. 58

8. FUTURE WORK. ... 59

8.1. PACKAGE STRUCTURE .. 59

8.2. ELECTRICAL FORCES. .. 62

8.3. BOUNDARIES. ... 63

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

N
TE

N
TS

5

8.4. EXTENSION TO 3D. ... 63

9. CONCLUSIONS. .. 64

9.1. ACHIEVING GOALS. .. 64

9.2. PROJECT DEVELOPMENT. .. 66

9.3. STUDY OF THE MOLECULAR COMMUNICATION CHANNEL. 66

9.4. PERSONAL ASSESSMENT. ... 67

10. REFERENCES .. 68

ANNEX I : PUBLICATIONS DERIVED FROM THIS PROJECT .. 70

ANNEX II : QUICK START GUIDE .. 71

ANNEX III : USER GUIDE .. 77

ANNEX IV : LIST OF PARAMETERS ... 88

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 IN
TR

O
D

U
CT

IO
N

.

6

1. INTRODUCTION.

1.1. CONTEXT.

The project began in the DAC (Departament d’Arquitectura de Computadors of
the Universitat Politècnica de Catalunya) within the group N3Cat (NaNoNetworking
Center of Catalonia). N3Cat collaborates with the Georgia Institute of Technology in
the study of communication among nanomachines (nanonetworks).

Molecular communication is a promising type of communication among
nanomachines [1]. N3Cat recently prepared the paper [2] which proposes an end-to-
end model for molecular communication among nanomachines.

It is not feasible to validate the theoretical model of communication channel
through direct experimentation. So the group proposed to build a simulator to validate
the theory and characterize the channel. This simulator, N3Sim, is the subject of this
project

1.2. DIFFUSION-BASED MOLECULAR COMMUNICATION IN
NANONETWORKS.

.

Richard Feynman, Nobel Prize in Physics in 1965, settled the basics of
nanotechnology in his famous lecture "There's plenty of room at the bottom" made in
1959. He explained his vision of how humans would create increasingly smaller and
more efficient devices in the future. It was not until 15 years later, in 1974, that the
term nanotechnology was coined to express the technology capable of working with
materials at the atomic level.

Since then, the concepts of nanotechnology were developed slowly until
nanotechnology investigation received a new impetus at the beginning of this century.
The impetus is largely the result of technology development, which has provided
techniques that allow working at the nanoscale. Some examples are the microchip
industry, research on DNA and development of nanomaterials such as graphene and
carbon nanotubes.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 IN
TR

O
D

U
CT

IO
N

.

7

Currently nanotechnology is defined as the technology that deals with
techniques that allow developing devices in the scale of one to a few hundred
nanometers. At this scale nanomachines are defined as autonomous units that are
able to perform a simple computation, actuation or sensing task [1].

With the increasing research in nanotechnology, nanonetworking becomes an
emerging field. Nanonetworks are networks of nanomachines that may work
collaboratively by communicating with each other and / or with a control system of a
larger scale.

Communication among nanomachines will allow them to perform more
complex tasks than a single nanomachine can do, and to extend their workspace. The
workspace of a nanomachine is intrinsically very small, but most of the potential
applications of nanomachines require operating on an area of higher scale. The
solution for this contradiction is the work of a large number of nanomachines that can
communicate in some degree to coordinate their work.

In-body drug delivery is an example of possible nanonetworks applications. The
idea is that nanomachines working inside the human body could administer drugs
according to the measurements, made by other nanomachines, of variables that
determine the patient's condition. With this purpose nanomachines capable of
detecting levels of certain substances and nanomachines able to produce and deliver
drugs should work together.

Biodegradation, water and air quality monitoring, advanced fabrics and
materials or defense against biological attacks are other examples of applications of
nanonetworks [1].

Three different strategies in the development of nanomachines are presented
in [1]: the top-down approach, the bottom-up approach and the bio-hybrid approach.
The top-down approach is based on the increasing miniaturization of
electromechanical devices. The bottom-up approach is based on the construction of
nanomachines from basic blocks, which would be molecules. The bio-hybrid explores
the possibilities of building nanomachines from existing biological structures. A cell can
be seen as a nanomachine that performs sensing, production, control and locomotion
tasks.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 IN
TR

O
D

U
CT

IO
N

.

8

Figure 1.1. Approaches for the development of nano-machines. [1].

Figure 1.2. Bio-hybrid approach. Functional architecture mapping between nano-machines of a micro or
nano-robot and nanomachines found in cells [1].

The main types of communication in nanonetworks are electromagnetic and
molecular. Following the bio-hybrid approach, molecular communication is the most
promising type of communication for nanonetworks.

One way to transport the information in molecular communication is by
diffusion. Diffusion is the random movement that any particle suspended particle in a
fluid experiments. The information may be encoded in the molecule and it is
transported from one nanomachine to another by diffusion or in the concentration of
suspended particles in the fluid. In the latter case the emitter modifies the
concentration by releasing or absorbing particles, and diffusion transports this change
of concentration. An example of this case is the calcium ion signaling to intercellular
communication observed in the human body. The model developed in [2] is based on
the latter.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 IN
TR

O
D

U
CT

IO
N

.

9

Diffusion is the process by which particles suspended in a fluid experience a
random endless movement. The basic diffusion process is based on Brownian motion.
Brownian motion was first described by Jan Ingenhousz in 1785 when he observed the
irregular movement of coal dust particles on the surface of alcohol. Nevertheless
Brownian motion is traditionally regarded as discovered by the botanist Robert Brown,
from whom it takes its name. In 1827, Brown described the jittery motion of minute
particles ejected from pollen grains suspended in water.

This movement is due to interactions among the fluid particles, which are in
continuous motion, and the suspended particles. The microscopic dynamics of this
process is extremely complex. It was Einstein in 1905 who first suggested equations to
describe this process from a macroscopic point of view. Einstein's equation describes
the diffusion as a stochastic process in which the movement of a set of particles for a
time T due to Brownian motion follows the equation:

Where Xrms is the root-mean-square of the displacement in the direction of the
X-axis and D is the diffusion coefficient, defined as

Where K is the Boltzman constant, T is the temperature, R is the suspended
particle radius and υ is the fluid viscosity.

The same can be applied to the Y-axis and the Z-axis, as each dimension has an
independent contribution to the displacement.

However, Einstein equations are valid only for suspended particles that have no
interaction among them. When there are interactions among particles the diffusion,
diffusion equations must be modified and the process is known as collective diffusion.
Among the forces that may alter the diffusion process are the collisions between
particles, electrical and chemical forces. The size of the suspended and fluid particles
may also alter the diffusion.

These effects may increase or reduce the displacement of suspended particles,
processes known as superdiffusion and subdiffusion, respectively.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 IN
TR

O
D

U
CT

IO
N

.

10

1.3. PROJECT DEVELOPMENT.

This project begins with a general description of a simulator that allows
studying the communication channel described in [2]. But there are still questions
without answer. Questions about the diffusion process, about the molecular
communication channel itself and about how this channel can be modeled with a
simulator.

The N3Sim group decided to develop the simulator by incremental prototypes,
and use these prototypes to help solving the previous doubts and gradually implement
the functionalities that are decided as necessary.

1.4. GOALS.

The N3Sim group meets once a week for about half a year to discuss about the
communication channel, the diffusion process and the simulator. At the same time,
experiments with the simulator are carried out that help drawing conclusions about
the molecular communication channel. These conclusions in turn help define the
specifications of the simulator.

•

This main goal of this project is to build a simulator that allows

•

Validating the model of molecular communication channel proposed in
[2]. In this model the channel model is divided in three modules:
emission, diffusion and reception. The goal is to model the module B,
the diffusion process, leaving for future developments the other two
modules.

•

Study the physical layer of the molecular communication, so that
modulations of the signal and communication mechanism can be
proposed.

Characterize the diffusion-based molecular communication channel
measuring its main metrics [9].

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 IN
TR

O
D

U
CT

IO
N

.

11

Figure 1.3. The three modules of the molecular communication channel described in [2]. N3Sim is initially
built to model the module B (diffusion process) but open to incorporate the other two modules.

The simulator must be modifiable and extensible enough, so that in the future
it is possible to include the modules A (transmitter) and C (receiver) proposed in [2].

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 S
TA

TE
 O

F
TH

E
A

RT
.

12

2. STATE OF THE ART.

Nanonetworks and molecular communication are rather new research fields.
Because of this there are few applications of simulation for this field.

It is easy to find simulators of diffusion based on Brownian motion. Most of
them have an educational point of view. Some examples are the applets that can be
found at:

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets

http://www.chm.davidson.edu/vce/kineticmoleculartheory/diffusion.html / brownian / brownian.html.

A very interesting example is shown in [15]. However, these applications are
merely displays and do not incorporate the concepts of emitters and receivers, neither
collective diffusion, because they are based only on Brownian motion diffusion

.

Figure. 2.1. Simulator of diffusion based on Brownian Motion from
http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/brownian/brownian.html.

The two most interesting applications found are the simulator developed by
Michael Moore (available at http://www.ics.uci.edu/ ~ Mikeman /) and NanoNS [14].
Michael Moore simulator studies the diffusion including a transmitter and a receiver.
But the simulation is performed for only one molecule, it is not valid for the simulation

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets�
http://www.chm.davidson.edu/vce/kineticmoleculartheory/diffusion.html%20/%20brownian%20/%20brownian.html�
http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/brownian/brownian.html�

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 S
TA

TE
 O

F
TH

E
A

RT
.

13

of the diffusion of a set of particles. Besides, it models diffusion based only on
Brownian motion.

NanoNS is the most advanced simulator we have found. A very interesting
aspect of this simulator is that it has been built as a module of the NS network
simulator (Network Simulator, see http://www.nsnam.org/) which will facilitate the
future study of higher layers of the molecular communication model.

However, NanoNS has three drawbacks to the goals of this project. First, it
models diffusion but not collective diffusion. Second, it uses Fick’s laws of diffusion.
Fick’s laws of diffusion works with the flux of particles between adjacent volume. This
is a useful higher abstraction of the diffusion process, but it does not allow studying
some parts of the physical layer of the molecular communication. For instance, it is not
possible to observe the noise inherent to molecular communication using Fick’s laws.

The third drawback is that NanoNS joins the diffusion process and the reception
process in one equation which is used by the simulator algorithms. From the point of
view of the goals of this project this is not appropriate. On the other hand N3Sim is
developing only the diffusion process and it makes easier making changes.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
EQ

U
ER

IM
EN

TS
 A

N
A

LY
SI

S

14

3. REQUERIMENTS ANALYSIS

3.1. REQUERIMENTS ELICITATION STRATEGY.

As explained in chapter 1.3, when the project started, the objectives and
requirements of the project were quite clear. However there were still some
unanswered questions regarding the collective diffusion, the communication channel
and how to implement it in a simulator. For instance, the space, should it be limited?
There was not an answer at the beginning.

The method used to answer these questions and define the requirements has
been a spiral development including a phase of rapid prototyping. Prototypes are used
to find the software functionalities.

Figure 3.1 shows the steps of the spiral developing
that has been used in the project. The spiral development of the project along with the
rapid prototyping is used to define the requirements.

Figure.3.1. Spiral development including a phase of rapid prototyping.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
EQ

U
ER

IM
EN

TS
 A

N
A

LY
SI

S

15

For instance, regarding the question of open or closed simulation space, both
possibilities were implemented and graphs were obtained as in Figure 3.2. The
received signal when pulses of molecules are emitted in a limited space increases its
amplitude as time increases. It follows that it is necessary to model an open space.
While on the other side, to meet the requirement of initial background concentration
described in section 3.3.5, a closed space is required. The resolution to this
contradiction is explained in the

Figure.3.2. The open model is more useful for the study of molecular communication. But a problem for
the requirement to simulate a background concentration.

Once a week the group discussed the results of the experiments carried out
with the simulator and proposed next features for the simulator.

section 5.4.3.2.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
EQ

U
ER

IM
EN

TS
 A

N
A

LY
SI

S

16

3.2. NON FUNCTIONAL REQUERIMENTS.

3.2.1. RELIABILITY.

In this project, reliability implies that the simulator must reproduce as faithfully
as possible the laws of collective diffusion which are the basis of molecular
communication. It means that no errors are acceptable in any case.

Since the simulator will be a research tool, if this requirement was not
accomplished, the results of the work carried out with this simulator could be
invalidated

3.2.2. MODIFIABILITY.

.

Modifiability is an essential requirement due to the spiral development
explained in section 3.1.

3.2.3. EXTENSIBILITY.

 Moreover, some functionalities have been implemented and
later discarded or modified.

It is a very important requirement because the second objective outlined in
section 1.4 indicates that the simulator must be capable to be extended to include
models for receivers and transmitters

3.2.4. USABILITY.

 as described in [2].

Studying the communication channel implies running a large number of
simulations. In this project, usability refers to facilitate this task to the user. Facilitate
the entry of the simulation parameters and automate the execution of multiple
simulations where possible

.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
EQ

U
ER

IM
EN

TS
 A

N
A

LY
SI

S

17

3.3. FUNCTIONAL REQUERIMENTS.

An overview of the features of the simulator is the following. The simulator
models a space (2D or 3D) that contains a collection of particles moving according to
the laws of diffusion. The user should be able to place transmitters that vary the
concentration of a given particle in its immediate environment and receivers that can
measure the concentration at their location.

In the overview above, there are four key elements : simulation space,
diffusion, transmitter and receiver. Below are the requirements for each of these
elements

3.3.1. SIMULATION SPACE.

.

The simulation space was initially defined as 2D to facilitate fast prototyping.
The space must contain a set of particles, a set of emitters and a set of receivers.
Particles must be modeled as spheres. It must be possible to set an initial
concentration of particles. This requirement is discussed in section 3.3.5.

3.3.2. COLLECTIVE DIFFUSION.

The simulator has to model the collective diffusion, initially taking into account
two components of collective diffusion: Brownian motion and collisions. Collisions will
be modeled as elastic collisions. The design must allow adding other components of
collective diffusion in the future, i.e. electrostatic forces

3.3.3. EMITTER.

.

The system must allow placing any number of particle emitters at any point of
the simulation space. It has to implement a basic transmitter which only emits, or
absorbs, particles to the medium, in order to modify the concentration in their
environment. There will be a number of predefined emission patterns and the user
must be also able to define custom emission patterns.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
EQ

U
ER

IM
EN

TS
 A

N
A

LY
SI

S

18

In addition, emitters must be implemented in a way that allows the future
addition of more complex models. The point is to include future models for the
emission process described in [2

3.3.4. RECEIVER.

].

As for the emitters, a basic model that does not interfere in the diffusion
process is required. And in the future it must be possible to extend the application
with more complex receivers in order to study the reception process proposed in [2].

The simulator has to allow placing any number of receivers at any point of the
simulation space. Receivers should measure the concentration of particles in their

3.3.5. INITIAL BACKGROUND CONCENTRATION.

environment.

One of the requirements is that it must be possible to place an initial
concentration of particles in the simulation space to study how this affects the
diffusion of particles.

This has important implications for the simulator. Simulation space must be
limited because otherwise a background concentration would imply an infinite number
of particles. But, a priori, it is not known whether it is more realistic to simulate an
open or a limited space. If it were necessary to model an open space, mechanisms to
simulate an open space in a limited space must be designed and implemented.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 S
PE

CI
FI

CA
TI

O
N

.

19

4. SPECIFICATION.

4.1. USE CASE MODEL.

Figure 4.1. Use Case Diagram of N3Sim.

The interaction between actors and system is very simple. There is only one
actor, the user, and the only functionality offered by the system is running a
simulation. The interaction between user and system is also very simple. The user runs
the simulation and gets an ok or error output.

Figure 4.2. sequence diagram for the use case “Run Simulation”.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 S
PE

CI
FI

CA
TI

O
N

.

20

4.2. CONCEPTUAL MODEL.

The conceptual model shown in figure 4.3 is intended to solve the functional
requirements outlined in section 3.3.

The class Space exists to meet the requirements of the simulation space
described in section 3.3.1. Class Space defines a 2D rectangular space defined by the
attributes xSize and ySize. It also contains a set of elements of the class Particle, a set
of elements of the class Emitter and a set of elements of the class Receiver.

To meet the requirement of modeling collective diffusion, described in section
3.3.2, the class Space provides the methods makeBMStep and solveCollisions. The
method makeBMStep moves the particles according the brownian motion for a time
of value timestep. The method solveCollisions modifies these movements by
calculating and solving the collisions that occur. Particle displacement information is
stored in the variables nextX and nextY of each particle. Once all the effects of
diffusion have been applied, the actual movement of particles is performed by the
method updatePositions. This method assigns to the variable x of each particle the
value of the nextX variable and the value of variable nextY to the variable y.

The progress of time is controlled by the class Simulator that contains the value
of a timestep. The class Simulator has a method start that initiates and controls the
simulation. Time advances in steps of value defined by the variable timestep and at
each timestep the method calls the needed operations to simulate diffusion.

The abstract class Boundary is used to define the limits of the space. The
classes VerticalBoundary and HorizontalBoundary extend the class Boundary and
allow implementing a rectangular space. The class SphereBoundaryCollision is used to
model collisions of spheres and boundaries. This is the way a limited space is modeled.

The interface Emitter serves to meet the requirement of section 3.3.3. This
interface contains a single method: emit. This method takes as parameters the current
time and the list of particles. An emitter is characterized by an emission function

The interface Emitter is implemented in several classes that extend an abstract
class named SphereEmitter. The class

 that
calculates the number of emitted particles as a function of time.

SphereEmitter models the type of emitter used
in this project. It has a fixed position in space defined by the variables x and y.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 S
PE

CI
FI

CA
TI

O
N

.

21

SphereEmitter has a radius of influence, defined by the emitterRadius variable, which
defines the circular area in which the emitter may place, or absorb from, particles.

This structure supports an interface which allows the future implementation of
any other type of emitter. The only condition for a future emitter is that it implements
a method emit. The simulator will work with the new class without further
modifications as long as it implements the method emit.

To meet the requirement of section 3.3.4 the interface Receiver has been
created with a single method named count. This method receives the set of particles of
the space to measure the concentration in the receiver workspace. Just as the
interface Emitter, this structure allows the future incorporation of any structure as a
receiver as long as it implements the method count.

Receivers implemented in this project have a fixed position in space defined by
the variables x and y. Two types of receiver have been implemented. One that
measures the concentration in a circular area defined by the variable radius, the
SphericalReceiver, and another one that measures the concentration in a rectangular
area, the CubeReceiver.

To meet the requirement of section 3.3.5, a limited space has been designed
using the classes Space and SphereBoundaryCollision as explained earlier in this
section. In addition, to simulate an open space in a limited space the method
updatePositions is used. This method decides which particles cross the space as if an
open space were implemented. Details of the implementation of this technique are
described in section 5.3.4.2.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 S
PE

CI
FI

CA
TI

O
N

.

22

Figure 4.3. Class diagram.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

23

5. DESIGN AND IMPLEMENTATION

5.1 INTRODUCTION

The requirements elicitation strategy explained in section 3.1, the fast
prototyping and spiral development, have largely determined the project
implementation.

The need to develop working prototypes in short periods of time (fast
prototyping) combined with the fact that end users could use different OS (especially
Linux and Windows) are the reasons for implementing the program in Java. Java is an
OOL appropriate to implement the model proposed in chapter 4. Besides, Java is cross-
platform, thereby reducing the prototype development time. Java is the programming
language the student has the most experience with, fact that also helps in reducing the
developing time.

For the implementation, a three-layer architecture has been chosen because it
allows to separate very well the two layers (user interface layer and data layer) that
will be very simple (and in the future may be completely different) from the domain
layer that will contain the "intelligence" of the system. This is explained in the
following section 5.2.

In section 5.3, the overall package structure is described and its
implementation is detailed in section 5.4.

Finally in sections 5.5 and 5.6 there is a brief explanation of two prototypes that
were developed but were not included in the current version of N3Sim, although they
may be integrated into future releases. One is the inclusion of electrostatic forces in
the collective diffusion, which is explained in section 5.5. The other is a prototype of a
simple video player that reads a file generated by the application and shows the
process of diffusion. This prototype is explained in section 5.6.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

24

5.2 THREE LAYER ARCHITECTURE

This project combines two kinds of objectives outlined in section 1.5, a long-
term one and a short-term one. In the long term the objective is to develop a program
that contains whatever is necessary to model molecular communication based on
collective diffusion. In the short term the goal is that the application can be used by a
particular group of users to perform simulations to help them validate the theoretical
studies in the field of molecular communication based nanonetworks.

But in the long run this application may take several paths that are yet to
decide. The data and the user interface layers could be completely modified. N3Sim
may become a model of a superior application such as the NS-3. As matter of fact, as
explained in chapter 2, it has recently been published a molecular communication
simulator which is indeed a module for the NS-2. Another possibility is to develop
N3Sim as a stand-alone application with a graphical interface. Or it could be developed
as a library that can be used by other developers.

The three-layer architecture is well suited for this project because it allows to
separate the two layers that have to be very simple and that in the future may be
completely different (user interface layer and data layer) from the domain layer.
Currently, the user interface and data layers just read and write text files. The domain
layer is the one that contains the intelligence of the system, the one that models the
diffusion process. Therefore, in our case the three-layer architecture fulfills for the
requirements of modifiability and extensibility.

5.3 PACKAGE STRUCTURE

Figure 5.1 shows a diagram of the layers of the project. Both the domain layer
and the data layer have a controller class that makes them independent from the
other layers.

Figure 5.1 shows the three-layer architecture together with the package
structure of the simulator.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

25

Figure 5.1. Three-layer architecture and package structure of N3Sim.

As discussed in the previous section, the project has focused its efforts on
developing the domain layer because it contains the "intelligence" of the system, the
molecular communication model. So, both the user interface layer and the data are
very simple. These layers interact with the user and the system just by reading (user
interface layer) and writing to file (data layer). They are implemented in a single
package each.

The domain layer follows the structure described in the conceptual model
presented in section 4.2, with the difference that a controller package is included to
separate the domain layer from the user interface layer.

In the domain layer the main package is the package space. It contains two
classes: Space and Simulator. Simulator has a start and stop method and an object of
class space. It is the class that controls the movement of space (it controls the time and
the operations to be applied to space at each time.)

The class Space contains the data structures with the components of the space
and provides the necessary operations to modify it according the diffusion principles.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

26

The remaining packages (particle, emitter, receiver, boundaries) are auxiliary packages
used by the class space to model its components.

5.4 IMPLEMENTATION.

5.4.1 USER INTERFACE LAYER.

The previous section has already given an overview of the implementation. This
section will explain in more detail the packages and classes of each layer.

As explained in section 3.1, the project requires a simple user interface that
allows fast prototyping and is oriented to research users. To do this the chosen option
has been to use a text configuration file editable by the user. In this file the values of
all possible variables of the simulations are defined.

The application expects to receive the name of the configuration file (with full
path if the configuration file is not in the same folder as the executable) as the first
parameter. For instance:

 $ java -jar NanoSim.jar myConfigFile.cfg

The variables in the configuration file are separated into four groups for clarity:
simulation, space, transmitters and receivers variables. Annex IV includes a list of all
possible variables of a simulation with a brief explanation.

In addition, to launch multiple simulations in a simple way, there is a keyword,
param, that can be used as value for any parameter. In this case, the execution
command must include the variable values (in the same order they are placed in the
configuration file). In this way the user can automate the launching of simulations
combining the configuration file with scripts.

For example, let’s imagine we want to run two simulations where the variable
timestep takes values 1 and 2 and the results of each simulation must be stored in
folders named timestep-1 and timestep-2 (results folders are defined by the variable
outPath). As the values of all other variables are the same for both simulations, the

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

27

same configuration file can be used just setting the values of outPath and timestep to
param and running the two simulations like this:

 $ java -jar N3Sim.jar configFile.cfg timeStep-1 1

 $ java -jar N3Sim.jar configFile.cfg timeStep-2 2

These two commands can be put together in a script like the following:

 PARAM1_LIST=(1 2)

 for i in ${PARAM1_LIST[@]}; do

 java -jar N3Sim.jar configFile.cfg myTest-${i} $i

 done

This system can be used in more complex simulation automations. For instance,
if in the example above we want to repeat each simulation N times to obtain average
values and eliminate noise, this can be done by modifying the script as follows:

#/bin/bash

 N=10

 PARAM1_LIST=(1 2 5 10)

 for ((j = 0 ; j < $N; j++)); do

 for i in ${PARAM1_LIST[@]}; do

 java -jar N3Sim.jar myConfigFile.cfg myTest-${i}-${j} $i

 done

 done

Annex II, shows a few examples of how to use scripts to automate simulations.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

28

The user interface layer is implemented in a single package, ui. Figure 5.2 shows
the structure of the package. The class UI contains the method main and the class
fileUI is an auxiliary class to read from file. The class UI communicates with the domain
layer through the class Controller (see Controller package, section 5.4.3.7

Figure 5.2. Class diagram of package ui.

Neither the user layer nor the rest of layers of the application control errors of
the input (with minor exceptions). This decision has been taken to support the fast
prototyping and because the user profile allowed to do so.

).

5.4.3 DOMAIN LAYER

5.4.3.1 OVERVIEW

The goal of the domain layer is to implement the process of diffusion. The layer
has been implemented as a package (package domain) containing seven subpackages:

Package controller: to separate ui and domain layers. It offers operations to
create the simulation space and run a simulation with appropriate parameters.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

29

Package space: is the heart of the simulator. It contains the class Space that
represents the simulation space with its components (particles, emitters, receivers)
and the class Simulation that moves the space, which means that it controls the
modifications of the space by the diffusion process over time.

The packages receiver, particle, emitter, and boundary are auxiliary packages
used by the class Space for the representation of the space.

5.4.3.2 PACKAGE SPACE

The package collision is used to model the effect of collisions among suspended
particles in the diffusion process.

Figure 5.3 shows the class diagram of the package space. The aim of this
package is to be the main package of the domain layer. It has two classes: Space and
Simulator. Simulator is responsible for the dynamic part, it controls the time, the
operations applied to space and it is also responsible for the communication with the
data layer. The class Space contains the representation of the simulation space: the
space with boundaries and the sets of particles, transmitters and receivers.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

30

Figure 5.3. Class diagram of package space.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

31

The class Simulator controls the time, so it has the attributes _time, which is
the current time, _endTime, which is the total time of simulation and _timeStep. The
attribute _simulationSystemTime is the system time used to get information on the
cost in time of different parts of the simulation. This information, and other, is stored
in the file info.log.

Since the class Simulation is also responsible for communication with the data
layer it has the two boolean attributes _infofile and _graphics, to decide whether to
create video and information files.

The Simulator class also has an attribute of type Space. This means it contains
the simulation space. Simulator applies the operations that the class Space offers to
model the diffusion process and to obtain the necessary information, basically the
measures of the receivers.

The Simulator class has a start and stop method because it is the future
candidate to become a thread. This way it will be possible to run different simulations
in parallel. This functionality is not in the requirements and has not yet been
implemented, but it has been shown to be a future possibility and is a good structure
to separate the dynamic and static part. The start method initializes the space and
controls the progress of time. Time progresses by leaps of time, timesteps (value
defined by variable _timestep). Each timestep the method performs the appropriate
operations to model the diffusion process and get the information needed which is
sent to the data layer to be written to file.

The class Space models the space its elements. So it has a list of particles,
_particleList, a list of emitters, _emitterList and a list of receivers, _receiverList.

The boolean attribute _boundedSpace controls whether the space will be open
or limited. If it is limited then the _ySize and _xSize attributes define the limits of space
which is a rectangle defined by the opposite corners (0, 0) and (_xSize, _ySize).

The space limits are implemented using the classes of the package boundary.
These classes represent boundaries or walls. Particles must rebound on these walls.
This is done using the package collision where a new class, SphereBoundaryCollision
implements the interface Collision. This solution allows using the boundaries in the
future to model obstacles (may be interesting to know how obstacles influence
diffusion) or using to model more complex receivers o emitters. Currently, only
horizontal and vertical boundaries have been implemented as they were the only
necessary to model a rectangular space. The class Space has a list of vertical
boundaries, _verticalBoundariesList attribute, and another list of horizontal
boundaries, _horizontalBoundariesList attribute. Although so far there are only two of

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

32

each, using lists will allow an easier implementation of obstacles or other objects that
may use boundaries. Just by inserting a boundary in the list of boundaries the
simulator will calculate and solve any rebound of particles on the boundary since the
mechanisms of creating walls and their behavior in the simulation are already
implemented

Figure 5.4 shows the signal at the receiver for two scenarios : open and limited
space. The conclusion is that for some simulations a limited space is not appropriate.
But in order to work with a background concentration (requirement explained in
section 3.3.5) an open space would mean an infinite number of particles. For this case
it was proposed to simulate the operation of the open model in the closed model. The
solution is to pretend that a certain amount of particles are allowed to go through the
limits of the space (actually they are deleted from the set of particles)

Figure.5.4. Comparison of signal received for open and closed space.

.

One way to achieve this effect is that the particles that rebound on the limits
have a probability to go through the space limits. This way the results shown in figure
5.5 were obtained. The figure shows the signal in the case of open space and in cases
of limited space with probability 0.5, 0.6, 0.7, 0.8 and 0.9 of crossing the border. The
figure shows that this implementation allows the background concentration to remain
stable. The peak signal and the time it arrives are not affected. Yet the tail of the signal
is distorted and it is difficult to adjust it using probability.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

33

Figure 5.5. Received signal in the case of open space (OB5000) compared with signals received in a
limited space which simulates open space by probability of particles to cross space limits.

Another way to simulate the open space in a limited space method is based on
measuring the particle concentration in the areas close to the limits of the space. Then
it is possible to calculate how many particles should cross the limits. This method has
proven to be more accurate. The signal tail is much closer to the one obtained in open
space and can still fit more by adjusting the value of the width of the area near the
border to study. Figure 5.6 compares the results of received signal for open space and
for limited space with different area widths (35, 75 and 100 nm in a limited space of
2000 x 2000 nm)

. As it can be observed, the differences with respect to the scenario of
open space are almost imperceptible.

Figure 5.6. Received signal in the case of open space (OB5000) compared to signals received in an
enclosed space which simulates open space.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

OB5000

OB500-0.6

OB500-0.7

OB500-0.8

OB500-0.9

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

OB5000

CR1000F-35

CR1000F-70

CR1000F-100

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

34

5.4.3.3 PACKAGE PARTICLES

Figure 5.7 shows the class diagram for the package particles. The package
contains an abstract class, Particle, from which other classes inherit. This class contains
the basic methods and variables that the simulator

Figure 5.7. Class diagram of package particle.

 needs to apply the diffusion
process.

This class contains the attributes _x, _y, _nextX and _nextY and the method
updatePosition that are used by all components of the diffusion process. The

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

35

attributes _x and _y represent the position at the beginning of the timestep and
_nextY and _nextX represent the position at the end of the timestep. The idea is that,
starting from the initial position, the various components of diffusion modify the final
position according their own laws. Each timestep, once all components have
performed diffusion, the simulator must call the method updatePosition so that the
particles actually move, which means that particles change their position, _x takes the
value of _nextX and _y takes the value of _nextY.

In addition, in order to implement the inertia component of diffusion it is
necessary to know the speed at the previous timestep. This value is stored in variables
and _previousVy and _previousVx. At the end of each timestep the method
updatePositions updates these values.

Since it was decided to model the particles as spheres, the first class that
inherits from the class Particle is the class Sphere, which represents a sphere but in
two dimensions. The only required attribute for this class is the radio, _radius, used to
calculate the collisions among particles.

Finally, for three dimensional scenarios the class Sphere is extended to the class
Sphere3D. For this case it is necessary to include the variables of the three dimensions
and redefine the method updatePositions.

In addition, there are auxiliary methods (getMinX, getMinY ...) and classes
(ParticleXComparator, ParticleMinXComparator) used to sort the list of particles and
to estimate whether the paths of two particles cross

5.4.3.4 PACKAGE EMITTERS.

.

The package emitters contains classes to model emitters that meet the
functional requirements outlined in section 3.2.

Figure 5.8 shows the class diagram of the package emitters. The package has an
interface that has a single method: emit. Using this interface allows that any class that
implements this interface can be used by the simulator as an emitter. This is very
useful for the future development of the simulator because it may be necessary to
model more complex emitters as shown in the paper [2].

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

36

Figure 5.8. Class diagram of package emitter.

The method emit takes two parameters, time and the list of particles in space.
The emitter knows for a given time how many particles it must emit or absorb. The
method does not return any value, but its results are reflected in the variations that
occur in the list of particles.

The abstract classes ParticleEmitter and SphereEmitter implement the
interface emitters in a general way, defining attributes and methods needed but do
not specify the waveform of the emitter.

Emitters have a fixed location defined by the attributes _x and _y. Emitters
have too a radius of influence defined by the attribute _emitterRadius. Emitters
release or absorb particles only between times defined by the attributes _startTime
and _endTime.

The class SphereEmitter implements the method emit but using private
methods (visible only in the package), one to absorb particles and another to release
particles. This way, in order to create an emitter with a particular waveform it is only
necessary to extend this class and to implement the method getNumParticles. This
method should return the number of particles to be released or absorbed or a given
time, this is, the waveform. Following this explanation, four emitters with different

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

37

waveforms have been implemented. Three with a predefined waveform (PulseEmitter,
RectangularEmitter and NoiseEmitter) and another that reads the waveform from a
text file created by the user.

5.4.3.5 PACKAGE RECEIVERS

Figure 5.9 shows the class diagram of the package receivers. As in the package
emitters

, the package receivers has an interface that has a single method: count. Using
this interface allows that any class that implements this interface can be used by the
simulator as a receiver. This is very useful for the future development of the simulator
because it may be necessary to model more complex receivers as shown in the paper
[2].

The interface emitter is implemented through the abstract class Receiver. The
attribute _name is used to identify the receiver. For each receiver the simulator
creates a text file with the receiver's name and the extension .csv. The attributes _x
and _y define the location of the receiver. The boolean attribute absorb determines
whether the receiver absorbs the particles found in its area of influence or it just
behaves as a transparent receiver.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

38

Figure 5.9. Class diagram of package receiver.

The method count calculates the concentration in the receiver’s area of
influence by counting the number of particles that are located into its area. The
method receives the list of particles as a parameter.

The two classes that directly extend the abstract class Receiver,
SphericalReceiver and SquareReceiver differ in the area of influence. The class
SphericalReceiver has a circular area defined by the attribute _radius, and the class
SquareReceiver has a rectangular area defined by the attribute _halfSide.

For three dimensional scenarios the class SphericalReceiver has been extended
to the class SphericalReceiver3D. In this case, it is necessary to include

5.4.3.6 PACKAGE BOUNDARIES

an attribute for
the z location and redefine the method count.

The package boundaries aims to model walls in the simulation space. These
walls are used as space limits and may be used in the future to model obstacles.
Another future use of boundaries may be as building blocks of more complex objects,
especially considering the modeling of more sophisticated transmitters and receivers
as described in [2].

The main function of these walls is that the particles should rebound on them.
There is no method in the classes of the package to implement this functionality.
Rebounds are modeled in the package collisions by the class SphereBoundaryCollision.

Figure 5.10 shows the class diagram of this package. There is an abstract class
with two methods, getYMin and getXMin, to get the minimum y and x dimension.
These methods are useful when sorting items to find collisions.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

39

Figure 5.10. Class diagram of package boundaries.

5.4.3.7 PACKAGE CONTROLLER

The aim of this package is to separate the user interface and domain layers. The
package has a single class, which this class provides the user interface layer methods to
create a simulation, to add receivers and transmitters and to start the simulation

5.4.3.8 PACKAGE COLLISIONS

.

Figure 5.12 shows the class diagram of the package collisions. The package
collisions has two goals. The first one is to model the collisions among particles and
among particles and walls (the limits of the system) offering the necessary methods to
calculate and solve them. The second goal is to compute and solve the set of collisions
that will occur in the simulation space during a timestep.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

40

Figure 5.12. Class diagram of package collisions.

The static class Collisions is in charge of the second goal. To do so it has the
method solveCollisions that receives as parameter the simulation space. This way the
class Simulation (let’s remember that it is the main class that controls the simulation
process and contains an object of type Space) can use this method directly to solve the
collisions.

This second goal is the most complex one from the point of view of
algorithmics. Because of its extension and complexity, it is explained in a separate
chapter, Chapter 6.

Regarding the first goal, the representation of collisions, it is done with the rest
of the classes of the package. Like in other packages, an interface has been used that
has the operations that the collisions solving algorithm needs. This way, in the future
new types of collisions (i.e. collisions among particles and spheres) may be added just
by implementing the interface.

The two operations of the interface are getTime, which calculates the time at
which the collision occurs, and solveCollision that modifies the path and speed of the
particles involved in the collision. The first one is necessary because the collision
algorithm must find all the possible collisions and resolve in the first place

 the one with
lower collision time.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

41

5.4.4 DATA LAYER.

The purpose of this layer is to write to file the simulation results and the
simulation information. For this a single package with two classes has been
implemented. Figure 5.13 shows the class diagram of the package data

Figure 5.13. Class diagram of package data.

.

The class DataInterface is the connection with the domain layer and uses the
class DataWritter to write to file. For each file that should be handled the class
DataInterface creates an instance of the class DataWriter associated with that file. By
default error and simulation information files are created. The class DataInterface
offers the method addWriter to create any other file needed by the simulator.

The class Datawriter, besides the constructor method that opens the file and
another method that closes it, provides the method writeLine to write a String to the
file. The class DataInterface has a map that associates each file name to the instance
of the class that corresponds to that file. DataInterface acts as an intermediary
between the domain layer and the Datawriter instances.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

42

5.5 ELECTROSTATIC FORCES

Although it was not within the initial requirements of the project, modeling the
electrostatic forces among particles is the next step in the modeling of the collective
diffusion. At the end of the project, the effect of such forces has been included in the
simulator. However the results have not yet been validated by the group N3Cat, so it is
considered a beta version.

This chapter briefly describes the theoretical bases and implementation of this
module.

If the suspended particles have electric charges, they are subject to the laws of
electrostatics. The electrical forces among them must be considered because these
forces will cause particles to move. On the other hand, a particle moving within a fluid
receives a resistance which is a function of particle’s speed and other variables.

As an effect of electrostatic forces each particle is subject to the sum (vector) of
the forces exerted on it by the rest of particles. According to Coulomb's law, these
forces are worth:

Where K is Coulomb's constant (9·109 Nm2/C2), q is the particle’s electric
charge and r is the distance between particles.

On the other hand, if a force acts on a particle within a fluid, this particle will
reach a maximum speed. In our case, as the Reynolds number is much less than 1, the
Stokes formula can be applied

:

Where r and v are the radius and particle velocity respectively and η is the
dynamic viscosity of the fluid. Solving for v

we obtain:

This way we know the speed that the electrostatic forces produce on particles.
Multiplying by the time, the particle displacement is obtained, which is added to the
displacement caused by Brownian motion.

Section 7.5 shows results obtained with this prototype.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 D
ES

IG
N

 A
N

D
 IM

PL
EM

EN
TA

TI
O

N

43

5.6 N3SIM VIDEO PLAYER (N3SVIDEO).

N3SVideo is a small prototype built with C + +, OpenGL and Qt to help visualize
the simulations made with N3Sim.

During the development of the project it was thought interesting to have an
intuitive visual tool to help analyze the results of simulations.

The way it works is quite simple: if the graphics variable is set to true, N3Sim
writes in a text file a representation of the simulation. This representation consists
primarily of the boundaries and then, for each timestep, a list of the position of all
particles. N3SVideo simply reads the file and, for each timestep, draws all the particles.

N3SVideo was helpful to better understand the simulations and to debug the
application. However, it is in a very early stage and so far its development is not
anticipated. Figure 5.14 shows some screenshots of the

Figure 5.14. Screenshots of N3Sim Video that show three phases of a diffusion process.

application.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

44

6. COLLISION DETECTION ALGORITHM

6.1. INTRODUCTION

The problem of detecting collisions between n bodies with random movement
is known and studied in algorithmics. It is well known because the cost of these
algorithms is very high and it is a bottleneck of the applications that have to implement
it.

Besides dealing with the interaction of n bodies, in itself a problem of cost
O(n2), the problem of collisions has an added complication. Collisions must be solved in
order of time, and each collision changes the trajectory of the particles involved. This
means that there are new potential collisions.

Finding the next collision is, in principle, an algorithm with cost O (n2) because
each particle must be checked for collisions with all the others. This, together with the
high number of collisions that occur, becomes a bottleneck in the application.

On the other hand, we must bear in mind that the process is basically
sequential. It is not possible to parallelize any significant part of the algorithm because
until a collision is solved it is not possible to find the next one.

6.2. STATE OF THE ART

Yet, there are algorithms that try to reduce costs by leveraging the temporal
and spatial coherence of collisions, as explained in section 6.2. Section 6.3 explains the
implementation of the collision detection algorithm done in N3Sim. Finally in section
6.4, a study of the costs of the implemented algorithm is shown.

The CD (Collision Detection) problem is well known and studied in computer
science because it is used in many graphical applications and simulators.

Collision detection algorithms can be divided into two groups: a priori and a
posteriori.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

45

A priori means that from the current positions and velocities of particles the
next collisions are calculated and solved in time order. So, the collision is found before
it occurs.

The a posteriori method divides the trajectories into time frames. When
moving to a new frame the application checks if any of the bodies overlap, overlapping
indicates a collision.

In the a posteriori method, the time between frames must be small enough so
that is unlikely to lose a collision, as shown in figure

6.1.

Figure 6.1. If the time between frames in a a posteriori algorithm is too large some collisions may be
missed. In the figure, the particles should collide but the algorithm does not detect it.

The first non-functional requirement of this project is reliability. It is not easy to
implement an a posteriori algorithm that guarantees in any condition that no collision
is missing. So N3Sim will implement an a priori algorithm. Since it is a research project,
the results could be in doubt if some collisions were missed.

The post method is however very useful in the case of bodies of complicated
geometry and relatively slow moving. Calculating collision trajectories may be very
expensive while finding the overlap of two bodies is a lot easier.

A well known example of an a posteriori algorithm is the Baraff's algorithm,
also known as sweep and prune. An example of implementation can be found in [7].
This implementation is interesting because it shows the advantages between a naive
algorithm and an algorithm that exploits the spatial and temporal coherence of
collisions. Figure 6.2 compares the costs of collision of each of the two methods

A naive solution to the collision detection problem is just to iterate through all
pairs of objects, testing possible collisions, choosing the first one, solving it, move all

.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

46

particles to the time of this collision and repeat the process until end time is reached.
The time complexity of the algorithm is nc·O(n2) in all cases, where nc is the number of
collisions and n is the number of objects.

Spatial coherence is the property that objects are more likely to collide with
other objects in its neighborhood. This means that at any given time, the number of
colliding object pairs is much smaller than the total number of pairs.

Temporal coherence means that the scene changes relatively little over small
time intervals. This means that algorithms can typically reuse calculations from
previous frames in order to avoid unnecessary recomputation.

Figure 6.2. Comparison of results using a naive algorithm and Baraff's algorithm. Extracted from the
thesis of Sam Stokes [7]

Baraff's algorithm first takes advantage of spatial coherence. The goal is, for
each frame, to detect all the collisions and then solve them. The algorithm sorts the
bodies by the lower x coordinate of the body, as shown in Figure 6.3. Then, performing
an appropriate iteration over the bodies list (must check each body with all the
others), most of the pairs of objects can be easily dismissed. As explained in figure 6.3,
for two bodies to overlap (which means they have collided) it is necessary (but not
sufficient) that their projections on each axis overlap. When looking for collisions, each
object is compared only with the followings in the sorted list. It is easy to see that at
the time that the current object we are comparing does not overlap with another
object, it is sure that it will not overlap with all the following objects of the sorted list.
In this way we can rule out a priori a large number of pairs of objects.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

47

Figure 6.3. The position of a body in the sorted list is given by its minimum x dimension. As can be seen in
the figure, for two colliding bodies is necessary but not sufficient, that their projections on each axis
overlap.

Baraff’s algorithm takes advantage of the temporal coherence in the following
way. After solving the collisions of a frame, the bodies list must be sorted again
because objects have changed their positions. Since the changes are small and the list
is almost sorted, in this case is more efficient to use a sorting algorithm like insertion
sort.

Other algorithms use a different approach. The algorithms in [4] and [5] divide
the space into subspaces and work on each of them separately (or in relation to its
neighbors). This way, the algorithms take advantage of spatial coherence. However,
these algorithms are quite complicated because they must take into account new
events arising when a body enters in another subspace. On the other hand, it seems
that in these algorithms it is important to choose the appropriate cell size, and it does
not seem to be an obvious problem at all. Given the need for fast prototyping, such
algorithms have been ruled out

.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

48

6.3. IMPLEMENTATION

It has been decided to implement a variation of Baraff algorithm. This variation
allows using it as an a priori algorithm. This variation is needed because, as discussed
in the previous section, the a posteriori methods may miss collisions. On the other
hand, Baraff's algorithm is a well known algorithm, efficient, proven and not too
complex to implement.

Algorithms that divide space in subspaces have been discarded for N3Sim,at
least for the first implementation, because they are much more complex. For instance,
an important aspect in the effectiveness of these algorithms is the choice of the size of
the subspaces. A formula to calculate the subspace side is given in [5] but there is no
explanation on how it is obtained. Adjusting and finding the appropriate value for each
simulation can be an additional problem that we have preferred to avoid. Keep in mind
that the goal in implementing the algorithm was to have a prototype as soon as
possible, although the efficiency was not the higher.

The modification of the Baraff’s algorithm to use it as an a priori algorithm has
two parts. In the first place, instead of searching the overlap between two objects, we
will look for the overlap between their trajectories. Second, to use the temporal
coherence is-necessary to save all possible collisions found into a data structure in
which the collisions are sorted by time.

Figure 6.4 shows that for two particles to collide it is necessary (but not
sufficient) that the projections of their trajectories overlap on each axis. It is just the
same reasoning

 of the Baraff’s algorithm (see figure 6.3), just changing bodies by the
trajectories of the bodies.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

49

Figure 6.4. Spheres sorted by the minimum x coordinate of their trajectories. Notice that initial position
of sphere 1 is greater than the initial position of sphere 2. But the minimum x dimension of sphere 1 is
less than that of the sphere 2. It can be seen that for two particles to collide it is necessary that their
projections on each axis intersect.

Following this analogy, the algorithm is implemented as objects but considering
the trajectories of the spheres. The first step is to sort the particle list by the minimum
x dimension of particle trajectories. As in Baraff's algorithm, each sphere is tested
against the next ones in the list, discarding all of the following when the trajectories of
two spheres and do not overlap.

Collisions are stored in a data structure type Min Heap, which we call collisions
queue, where the order criterion is the time of the collision. This way, the cost to
obtain the next collision is always O(1).

Once the collisions queue has been created the algorithm consists in obtaining
the next collision and solving it until the queue is empty.

Once a collision is solved, a new problem must be faced. The problem is that
solving a collision means that the trajectories of the spheres involved in the collision
change and this has two effects. First, the list of spheres is not sorted, and secondly
the collisions that had been found that involved the spheres of the recently solved
collision are no longer valid and these spheres may have new collisions too.

To solve the first problem it is evident that the list of spheres must be sorted
again. As in Baraff’s algorithm, an insertion sort algorithm is used because the list is

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

50

almost sorted (just need to order two spheres and they are almost at the right position
in the list).

Regarding the second problem, in the first place all collisions involving the
spheres of the solved collision must be deleted from the collisions queue. Search
through the collisions queue to delete such collisions would have a high time cost.
Instead of doing such search, a tag system is used. Each sphere has a tag, an integer
that is incremented each time the sphere is in a collision that is solved. On the other
hand each collision has two tags, one per sphere. These tags take the value of the tag
of the sphere when the collision is created. Then, when a collision is retrieved from the
collision queue to be solved, if the collision tags and the sphere’s tag do not match it
means that these spheres have been in a previous collision and then the current
collision must be discarded and the next one must be solved. This way, the cost of
discarding collisions is O(1).

Finding the new collisions for the spheres involved in a collision means to
compare the sphere with the rest of the spheres in the sorted list (as it is done in the
first part of the algorithm) and to save the new collisions into the collisions queue. The
cost of this step is O(nlogn), O(n) to compare the sphere with the spheres in the list
and O(logn) to save each collision in the collisions queue.

Finally the data structures that store collisions have been modified to improve
the memory costs. The problem that leads to these changes was that in simulations of
large timesteps and high number of collisions there were too many false collisions
(collisions with invalid tags as explained in the previous section). These produced that
the collisions queue grew too much.

To avoid this problem, a list of collisions is associated with each sphere. This list
is deleted and recalculated when a particle has a collision. This way, the memory cost
is kept constant.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

51

6.4. COST ANALYSIS

The collision algorithm explained in the previous section can be outlined as
shown in the table of costs in figure 6.6

Stage

.

Operation Time Cost

1 Pre-processing

1a Sort Sphere List O(n)

1b Create collisions queue O(n2logn)

2 Processing

2 While collisions queue is not empty nc iterations

2a Obtain first collision O(1)

2b Solve collision O(1)

2c Sort Sphere List O(n)

2d Delete invalid collisions O(1)

2e Find new collisions O(nlogn)

Figure 6.6. Scheme of the collision detection algorithm and time costs associated with each stage (n =
number of spheres; nc = number of collisions

).

From the figure 6.6 it follows that the cost of a simulation timestep is:

As in the original Baraff’s algorithm, there is a pre-processing cost. It is very
high but then the cost of a single collision is reduced from O(n2) (for a naive algorithm)
to O(nlogn).

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 A
LG

O
RI

TH
M

52

and

Figure 6.7. Time cost graph of N3Sim (ms per collision).

The number of collisions, nc, is aprox:

Where c is the concentration of particles and t is the simulation time. If we
consider a fixed space, the particle concentration is proportional to the number of
particles, then

The memory cost depends on the number of collisions. As earlier outlined in
this chapter, the number of collisions depends linearly on the number of particles,
concentration and time. For N3Sim time is the time of a timestep, ts, because is the
time the algorithm will store the collisions.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 20000 40000 60000 80000 100000 120000

ti
m

e
(m

s)

Number of particles

Time cost per collision

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
ES

U
LT

S.

53

7. RESULTS.

7.1. BROWNIAN MOTION

The first feature that was implemented was the simulation of Brownian motion
as a major component of diffusion.

Figure 7.1 shows a comparison between results obtained with the simulator
and expected results according to the theory of Brownian motion. Specifically,
compared with formula No. 17 [8]. Both graphs match except for the fact that the
signal obtained with the simulator has noise.

This is because the formula used is based on Fick's laws that define the
diffusion as a function of the concentration gradient. This means that it does not
account for the individual movements of each particle, and because of that noise is not
observed. N3Sim has been used to study the channel noise, as shown in section 7.3
and [9].

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
ES

U
LT

S.

54

Figure 7.1. Comparison between the signal obtained with the simulator (blue) with the expected signal
(red) according to Fick's laws of diffusion.

Figure 7.2. Diffusion pattern of Brownian motion.

7.2. SPACE LIMITS

One of the first problems to be solved was how to implement the limits of the
system. Figure 5.1 of section 5.4.3.2 shows that an open space is more appropriate.

But in order to work with a background concentration (functional requirement
specified in section 3.3.5) the space should be limited because open space with
background concentration would mean an infinite number of particles. In this case it
was proposed to simulate the operation of the open space in a limited model. This was
achieved by allowing an amount of particles to go through the space limits.

Section 5.4.3.2 explains how this simulation was performed. Figure 7.3 shows a
comparison between the received signal in an open space (in blue) and a limited space
that simulates the open space (in red).

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
ES

U
LT

S.

55

Figure 7.3. Comparison between the signal received at an open space (in blue) and a limited space that
simulates the open space (in red).

7.3. NOISE

Noise is an important aspect to consider in a communication channel. In the
case of molecular communication there is noise just for the fact of measuring
concentrations in a medium that is not completely homogeneous. Figure 7.5 shows the
signal received by a receiver in an environment where there is a constant total
concentration. The noise is not observed by any external disturbance but for the same
communication channel characteristics. Although the total concentration is constant,
the local concentration depends on the random movement due to the brownian
motion and therefore it is not constant.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

open space

simulated

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
ES

U
LT

S.

56

Figure 7.4. Noise of the background concentration.

Nora Garralda of N3Cat studied in [9] the noise in this channel of
communication, using N3Sim.

7.4. COLLISIONS.

One of the conclusions obtained with N3Sim is that collisions only affect the
values of diffusion when the particle concentration is very high.

Figure 7.5 compares the signals received in simulations with and without
collisions with receivers at different distances.

0

10

20

30

40

50

60

70

80

0
90

00
18

00
0

27
00

0
36

00
0

45
00

0
54

00
0

63
00

0
72

00
0

81
00

0
90

00
0

99
00

0
10

80
00

11
70

00
12

60
00

13
50

00
14

40
00

15
30

00
16

20
00

17
10

00
18

00
00

18
90

00
19

80
00

20
70

00
21

60
00

22
50

00
23

40
00

24
30

00

pa
rt

ic
le

s

time

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
ES

U
LT

S.

57

Figure 7.5. Received signals at 0 (red and blue), 200 (green and yellow) and 500nm from emitter for
simulations with and without collisions respectively.

7.5 INERTIA

Inertia combined with initial velocity of particles produces a wave as shown in Figure
7.6.

Figure 7.6. Inertia simulation with initial velocity.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
ES

U
LT

S.

58

7.5. ELECTROSTATIC FORCES.

The prototype that includes the effect of electric forces in the diffusion process shows
that the pattern of diffusion is more homogeneous as shown in Figure 7.7. Perhaps this
can lead to a decrease of noise. However, this prototype has not been validated yet
and these effects have not been studied.

Figure 7.7 Four stages of the diffusion process by electrical forces.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 F
U

TU
RE

 W
O

RK
.

59

8. FUTURE WORK.

In the short term, it would be interesting to develop the following tasks:

• Modify packages’ structure of domain layer to improve modifiability.

• Validate implementation of electrical forces.

• Implement a new functionality: that users could create Boundary objects.

• Expand the application into three dimensions.

8.1. PACKAGE STRUCTURE

Spiral development, when adding functionalities to already functional

prototypes, also creates a non-wanted effect against the modifiability requirement.

For example: some functionalities that began as simples and they are included into a

certain class, step by step they are growing up, until it is better to restructure the code

so classes and modules do not grow up too much or in an inconsistent way what

damages modifiability. It has also happened that functionalities starting as separated

code parts, later on they have shown elements in common and it would be convenient

to take them out from where they are and put them together to create new classes or

modules. If these kinds of changes are not done, project’s modifiability is going to be

affected.

A study has been done at the end of the project about which would be

recommendable changes on current implementation. The main change, explained in

this section, is to modify the packages structure of the domain layer.

Figures 8.1 and 8.2 show the structure of current packages and the proposed

structure respectively. As you can see, the structure appears quite altered but actually

changes are reorganization of packages so it is not a change hard to do.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 F
U

TU
RE

 W
O

RK
.

60

Figure. 8.1. Current package structure of the domain layer.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 F
U

TU
RE

 W
O

RK
.

61

Figure. 8.2. Proposed package structure of the domain layer.

The main package at current structure is the package space that contains two
classes: Simulator and Space. The class Simulator is the one candidate to be a thread,
it has a start method, a stop method and an object of space class. This class controls
the space movement (with the control of the timestep and the operations that have to
be applied to space at each time), while the class Space contains the data structures
containing space components and all that necessary operations to modify it. The other
packages (particle, emitter, receiver, boundaries) are auxiliary packages used by class
Space.

At current implementation the class Space has grown up too much because it
has assumed the simulation of diffusion effects. This structure is heritage of the very
first prototypes where data structures and operations were simples. It seems natural
that those operations that modify the space were implemented in the class Space.
Over time, it has been observed that it complicates too much the class Space, that it is
a class with already many elements.

The suggested solution is the structure shown in figure 8.2. In this figure, the
package space has been separated in two packages, simulation and space. The
package simulation would keep controlling time and it would have an attribute of the
type Space. The package space would have the data structures that contain the space
elements: particles, emitters, receivers and boundaries.

The forces that model the effects of diffusion would have their own package.
These forces would offer a static operation that would receive an object of the class
Space as parameter. This way, it would be possible to apply the effects of diffusion to

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 F
U

TU
RE

 W
O

RK
.

62

the space from the class Simulator, and the class Space would not have to know
anything about diffusion laws (attributes and operations).

It will be necessary as well to do the same with attributes and operations
referred to Brownian motion and inertia.

8.2. ELECTRICAL FORCES.

And should be included the effect of electric
forces as another package.

It would also be convenient to have two additional forces to model two actions.
One is to simulate the infinite space. The other one is to do several tests about the
space state. For example, to check that there is no particle out of the space limits (in
case of limited space) or that two particles are not overlapping (if including collision
effect). Currently these operations are responsibility of the class Space as well. This
structure is more modifiable and extensible.

Part of this change has already been done; it has been created the package
collision to model collisions among particles. However it is still necessary to pass the
attribute _activeCollisions (which decides whether to apply the collision as part of the
diffusion) to the class Simulator and make the call to the class Collisions directly from
the class Simulator class instead of using the method checkCollisions of the class
Space.

It is still necessary to make the same change for Brownian motion, inertial
forces, electrostatic forces and also to simulate infinite space.

If particles used for communication have electric charge, as is the case of
signaling with calcium ions (Ca++), it is necessary to consider the effect of electric
forces in the diffusion process. As explained in section 5.5, there is already a beta
version of N3Sim that implements this functionality. However, it is necessary to
perform simulations and study the results to validate the model. On the other hand, it
is also necessary to receive feedback from users to modify the simulator so it best suits
the needs of simulation.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 F
U

TU
RE

 W
O

RK
.

63

8.3. BOUNDARIES.

A new functionality that would be interesting to implement is that the user can
place boundaries into space in order to simulate obstacles. It is known that the
existence of obstacles slows down the diffusion process. It may be interesting to have
the right tools to characterize this effect through simulations.

When limits of system were modeled, the package boundary was created
already considering this functionality. To implement it, it is only necessary to modify
the user interface, so users can define boundaries, and implement the method that
creates them and includes them in the boundaries list of the Space.

There is no need for more changes in the simulator. When a boundary is in the
boundaries list of the class Space, the simulator will just make calculations of collisions
with these boundaries.

In any case it might be interesting, and it would be discussed with users, to
provide new functionalities to boundaries. For example, they could enable or disable
or function as permeable membranes.

8.4. EXTENSION TO 3D.

Currently N3Sim has already been started to extend to three dimensions. As
can be seen in the particle, receiver and emitter packages, there are some classes that
implement these elements in 3D. But so far it has only been modeled Brownian motion
and in an open space

To finish N3Sim implementation in three dimensions is necessary to do the following:

• To implement the class Boundary in 3 dimensions. The boundaries are no
longer straight lines but plans.

• To implement the algorithms of collisions between spheres and spheres and
between spheres and boundaries in three dimensions.

• To implement emitters to hand out emitted particles in a volume of influence.

• To modify the user interface and the configuration file to pick up the additional
variables needed for the above.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

N
CL

U
SI

O
N

S.

64

9. CONCLUSIONS.

This chapter evaluates the project from four points of view that correspond to
the sections of the chapter. First, it evaluates the achievements of the objectives and
requirements set out in chapters 1 and 3. Second, it values the development of the
project itself. Third, results of the study of the communication channel are shown.
Finally there is a personal assessment that reflects on what this project has brought to
the student.

9.1. ACHIEVING GOALS.

The project achieved the objectives set out in section 1.4. The first objective
was achieved because a simulator that models the diffusion process of the
communication channel proposed in [2] has been built. And this simulator has been
used to study and characterize the channel. The results of these studies were
published in [5] [6] [7] [8] and [9]. In addition the simulator has been published under
the GPL on the website of N3Cat, along with related publications and user guides.

To achieve the second objective the simulator has been implemented keeping
in mind the non-functional requirements of modifiability and extensibility. It has been
planned that the simulator can easily include future classes to model the transmission
and reception processes that complete the definition of the communication channel
[2]. As explained in section 5.4.3.4, to include a new model of emitter it is only
necessary that the class that implements it has a method emit. The same applies to
receivers, receivers only have to implement a method count (5.4.3.5).

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

N
CL

U
SI

O
N

S.

65

Figure. 9.1. Screenshot of N3Sim website.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

N
CL

U
SI

O
N

S.

66

9.2. PROJECT DEVELOPMENT.

Development of the project has been very dynamic; from February 2010 until
July 2010 the group worked on the basis of weekly meetings usually involving four to
eight people from N3Cat. During this period, the simulator was built and began the
work to characterize the communication channel.

After this period, some improvements in the simulator were implemented and
more work on the study the communication channel was done. Finally, some papers
[5] [6] [7]. [8], the Master Thesis by Nora Garralda [9] and this report were written.

The way the project has been developed, with many prototypes, made me
think and learn about the organization of a software project. Making good use of the
features that give us the software development tools and organizing properly are two
keys to a fast and quality development.

9.3. STUDY OF THE MOLECULAR COMMUNICATION CHANNEL.

Part of N3Sim working group has made a considerable effort studying the
molecular communication channel. Using the simulator they were able to perform the
experiments needed to obtain information on the basic parameters of a
communication channel.

Below some of these results are discussed. You can delve into this subject in
the papers [6] [7] and [8] and Garralda Nora's thesis [9].

The simulations proved that the molecular diffusion-based channel has the LTI
(Linear Time Invariant) property. A Linear Time-Invariant (LTI) channel fulfills the
superposition principle, as well as maintains its features over time.

The transmission of several pulse shapes has been simulated. From the
simulations two conclusions arise: i) the optimal pulse shape is a spike, a very narrow
pulse, which gives the lowest pulse width at the receiver and thus the highest
achievable bandwidth, and ii) the shape of the transmitted pulses is not important,
since the total energy received is not shape dependent.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 C
O

N
CL

U
SI

O
N

S.

67

The values of which follow the bandwidth and the gain of the channel have also
been studied. In Figure 9.3 shows the values compared with electromagnetic
communication channel [8].

Figure 9.2. Molecular vs Wireless EM Channel Comparison [8].

It has also been studied and characterized the noise that is inherent in the
Brownian motion diffusion (Particle Counting Noise). It has also concluded that the
observations are consistent with the theories discussed in [4].

9.4. PERSONAL ASSESSMENT.

My evaluation cannot be other than excellent. Participation in this project has
given me many things. I have learned about programming tools like Java and Eclipse
and SVN. I have worked with a great team with whom I have learned and discussed
about programming, physics, chemistry, biology and nanotechnology. And I have
actively participated in a project whose outcome is already used in research.

I take this opportunity to express my gratitude to all members of the group
N3Cat and especially those who have worked on the project N3Sim: Dr. Josep Solé
Pareta, Dr. Ian F. Akyildiz, Dr. Eduard Alarcón-Cot, Dr. Albert Cabellos-Aparicio, Ignacio
Llatser Martí, Massimiliano Pierobon, and Nora Garralda Torres. I have been very
fortunate to have the chance to work with this great team.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
EF

ER
EN

CE
S

68

10. REFERENCES

[1] I. F. Akyildiz, F. Brunetti, and C. Blazquez, “Nanonetworks: A new communication
paradigm”, Computer Networks, vol. 52, no. 12, pp. 2260–2279, 2008.

[2] M. Pierobon and I. F. Akyildiz, “A physical end-to-end channel model for
nanonetworks”, IEEE Journal on Selected Areas in Communications, vol. 28, no. 4, pp.
602–611, 2010.

[3] A. Einstein “On the movement of small particles suspended in a stationary liquid
demanded by the molecular kinetic theory of heat.”, Ann.d.Phys. 17(1905)549-560.

[4] Pierobon, M. and Akyildiz, I. F., "Diffusion-based Noise Analysis for Molecular
Communication in Nanonetworks", to appear in IEEE Transactions on Signal
Processing, 2011.

[5] Llatser, I., Pascual, I., Garralda, N., Cabellos-Aparicio, A., Alarcón, E., "N3Sim: A
Simulation Framework for Diffusion-based Molecular Communication", IEEE TCSIM
Newsletter, Issue 08 March 2011, pg. 3.

[6] Llatser, I., Pascual, I., Garralda, N., Cabellos-Aparicio, A., Pierobon, M., Alarcón, E.
and Solé-Pareta, J., "Exploring the Physical Channel of Diffusion-based Molecular
Communication by Simulation" submitted for publication at IEEE GLOBECOM 2011,
March 2011.

[7] Garralda, N., Llatser, I., Cabellos-Aparicio, A., Pierobon, M., “Simulation-based
Evaluation of the Diffusion-based Physical Channel in Molecular Nanonetworks”, in
Proc. of the 1st IEEE International Workshop on Molecular and Nano Scale
Communication (MoNaCom), held in conjunction with IEEE INFOCOM, April 2011.

[8] Llatser, I., Alarcón, E., Pierobon, M., “Diffusion-based Channel Characterization in
Molecular Nanonetworks”, in Proc. of the 1st IEEE International Workshop on
Molecular and Nano Scale Communication (MoNaCom), held in conjunction with IEEE
INFOCOM, April 2011.

[9] Nora Garralda “Diffusion-based Physical Channel Identification for Molecular
Nanonetworks”, Master Thesis 2010, Departament d’Arquitectura de Computadors,
Universitat Politècnica de Catalunya.

[10] Ho Kyung Kim, Leonidas J. Guibas, and Sung Yong Shin, “Efficient Collision
Detection among Moving Spheres with Unknown Trajectories”, Algorithmica (2005)
43: 195–210.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 R
EF

ER
EN

CE
S

69

[11] Hu Qi-tu, Deng Xiao, Zhang Xiao-ling, “Simulation on random motion of numerous
spheres with collision-event-driven approach”, Aug. 2009, Volume 6, No. Bbb 8 (Serial
No.57), Journal of Communication and Computer, ISSN 1548-7709, USA.

[12] Baraff, D. (1992), “Dynamic Simulation of Non-Penetrating Rigid Bodies, (Ph. D
thesis) ”, Computer Science Department, Cornell University, pp. 52–56

[13] Sam Stokes “Collision detection in the simulation of rigid body motion” Computer
Science Tripos Part II , Robinson College, September 29, 2005

[14] E. Gul, B. Atakan, O. B. Akan, "NanoNS: A Nanoscale Network Simulator
Framework for Molecular Communications", Nano Communication Networks Journal
(Elsevier), Vol. 1, No. 2, pp. 138-156, June 2010.

[15] Tenn Francis Chen, Gladimir V. G. Baranoski “BSim: A System for Three-
Dimensional Visualization of Brownian Motion”, School of Computer Science ,
University of Waterloo , Ontario, Canada.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 I
: P

U
BL

IC
A

TI
O

N
S

D
ER

IV
ED

 F
RO

M
 T

H
IS

 P
RO

JE
CT

70

ANNEX I : PUBLICATIONS DERIVED FROM THIS PROJECT

• Llatser, I., Alarcón, E., Pierobon, M., “Diffusion-based Channel Characterization
in Molecular Nanonetworks”, in Proc. of the 1st IEEE International Workshop
on Molecular and Nano Scale Communication (MoNaCom), held in conjunction
with IEEE INFOCOM, April 2011. (*)

• Garralda, N., Llatser, I., Cabellos-Aparicio, A., Pierobon, M., “Simulation-based
Evaluation of the Diffusion-based Physical Channel in Molecular
Nanonetworks”, in Proc. of the 1st IEEE International Workshop on Molecular
and Nano Scale Communication (MoNaCom), held in conjunction with IEEE
INFOCOM, April 2011. (*)

• Llatser, I., Pascual, I., Garralda, N., Cabellos-Aparicio, A., Pierobon, M., Alarcón,
E. and Solé-Pareta, J., "N3Sim: A Simulation Framework for Diffusion-based
Molecular Communication," IEEE TC on Simulation, No. 8, pp. 3-4, March 2011.
(*)

• Llatser, I., Pascual, I., Garralda, N., Cabellos-Aparicio, A., Pierobon, M., Alarcón,
E. and Solé-Pareta, J., “Exploring the Physical Channel of Diffusion-based
Molecular Communication by Simulation”, submitted for publication, March
2011.

• Nora Garralda “Diffusion-based Physical Channel Identification for Molecular
Nanonetworks”, Master Thesis 2010, Departament d’Arquitectura de
Computadors, Universitat Politècnica de Catalunya.

(*) Available at http://www.n3cat.upc.edu/n3sim

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
 :

Q
U

IC
K

ST
A

RT
 G

U
ID

E

71

ANNEX II : QUICK START GUIDE

OVERVIEW

The goal of this quick start guide is to give the reader the minimum instructions to install N3Sim
(version0.7) and run a simple simulation. Sections Installation, Running N3Sim and Output explain the
basic steps to run a simulation. In section Next Step: Automating Simulations, short indications to
automate multiple simulations are given. In order to get a deeper knowledge of N3Sim, reading the User
Guide is highly recommended.

CONTENTS

• Installation.
• Running N3Sim.
• Output.
• Next Step: Automating Simulations
• Example 1
• Example 2

INSTALLATION

• The only prerequisite is Java JRE 1.6.
• Download the jar file N3Sim.jar and the configuration file N3Sim.cfg from here and save them

in your N3Sim folder.

RUNNING N3SIM

• Edit the values of the parameters in the downloaded configuration file (N3Sim.cfg) in order to
suit your needs. A list of parameters together with a short explanation of them is available
here.

• Type the following command from the N3Sim folder in your console:

> java -jar N3Sim-0.7.jar myConfigFile.cfg

Tip: for heavy simulations it might be a good idea to increase the Java memory to a higher
value, such as 1024 MB.

> java -jar -Xms1024m -Xmx1024m N3Sim-0.7.jar myConfigFile.cfg

http://www.n3cat.upc.edu/tools/n3sim/download�
http://www.n3cat.upc.edu/tools/n3sim/ParameterList.php�

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
 :

Q
U

IC
K

ST
A

RT
 G

U
ID

E

72

• When the simulation is completed, you just need to check your results (see the next
section Output).

OUTPUT

Once the simulation has finished, the application will have created a folder under the N3Sim folder with
the name specified by the variable outPath in the configuration file. Inside this folder, the following files
may be found:

• A file simulation.txt with the parameters and values used in the simulation.
• A file receiver_name.csv for each receiver in the simulation. These files have two columns; the

first one contains the time steps in nanoseconds, and the second one represents the number of
particles measured by the receiver at the corresponding time step.

• Debugging files info.log (optional) and error.log.
• Video file graphic.ns1 (optional), to be used with NSVideo.

NEXT STEP: AUTOMATING SIMULATIONS

• Read example 1 and/or example 2.
• Modify your configuration file and build your script.
• Run the script.
• Check your results.

EXAMPLE 1

Let's assume that we want to run several 2-dimensional simulations with particle radius 1, 2, 5
and 10, and we want to repeat each of them 10 times. When using the key word "param" as value for
any of the parameters in the configuration file, the program will read its value from the parameters list
of the execution command (in the same order that they appear at the configuration file). In this
example, we give the value "param" to the variables outPath (so that each simulation has a different
folder) and sphereRadius, as shown in Figure 1. Then, a script such as the one shown in Figure 2 will
execute all the required simulations automatically.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
 :

Q
U

IC
K

ST
A

RT
 G

U
ID

E

73

Figure 1. Configuration file used to launch simulations with different values of the parameter
sphereRadius.

N3Sim CONFIG FILE

SIMULATION PARAMS

outPath=param
graphics=false
infoFile=true
activeCollision=false
BMFactor=1
inertiaFactor=0
time=200000
timeStep=1000

SPACE PARAMS

boundedSpace=true
constantBGConcentration=false
constantBGConcentrationWidth=0
xSize=2500
ySize=2000
D=1
bgConcentration=10
sphereRadius=param

EMITTER PARAMS

emitters=1
emitterRadius=100
x=1000
y=500
startTime=1000
endTime=2000
initV=0
punctual=false
concentrationEmitter=false
color=white
emitterType=1
amplitude=1000

RECEIVER PARAMS

receivers=1
name=rx500
x=1500
y=500
absorb=false
accumulate=false
end=true

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
 :

Q
U

IC
K

ST
A

RT
 G

U
ID

E

74

Figure 2. Script to automate simulations for a list of values of a parameter and repeat each simulation 10
times.

EXAMPLE 2

Let's assume that we want to run several 2-dimensional simulations combining several values for the
particle radius (values 1, 2, 5 and 10) with several values for the diffusion coefficient D (0.5, 0.6, 0.7, 0.8
and 0.9). When using the key word "param" as value for any of the parameters in the configuration file,
the program will read its value from the parameters list of the execution command (in the same order
that they appear at the configuration file). In this example, we give the value "param" to the
variables outPath (so that each simulation has a different folder), sphereRadius and D, as shown in
Figure 3. Then, the script shown in Figure 4 will execute all the required simulations automatically.

#!/bin/sh

This script will launch 10 simulations for each value of the PARAM1_LIST.
Simulations results will be stored in folders named "myTest-i-j", where i
is the effective value of the PARAM1_LIST for each simulation and j
is the 1 to 10 repetition for each i.

N=10
PARAM1_LIST=(1 2 5 10)

for ((j = 0 ; j < $N; j++)); do

for i in ${PARAM1_LIST[@]}; do

java -jar N3Sim.jar myConfigFile.cfg myTest-${i}-${j} $i

done

done

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
 :

Q
U

IC
K

ST
A

RT
 G

U
ID

E

75

Figure 3. Configuration file used to launch simulations combining different values of the parameters
sphereRadius and D.

N3Sim CONFIG FILE

SIMULATION PARAMS

outPath=param
graphics=false
infoFile=true
activeCollision=false
BMFactor=1
inertiaFactor=0
time=200000
timeStep=1000

SPACE PARAMS

boundedSpace=true
constantBGConcentration=false
constantBGConcentrationWidth=0
xSize=2500
ySize=2000
D=param
bgConcentration=10
sphereRadius=param

EMITTER PARAMS

emitters=1
emitterRadius=100
x=1000
y=500
startTime=1000
endTime=2000
initV=0
punctual=false
concentrationEmitter=false
color=white
emitterType=1
amplitude=1000

RECEIVER PARAMS

receivers=1
name=rx500
x=1500
y=500
absorb=false
accumulate=false

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
 :

Q
U

IC
K

ST
A

RT
 G

U
ID

E

76

Figure 4. Script to automate simulations combining a list of values of a parameter with a list of values for
another parameter.

#!/bin/sh

These script will launch simulations combining values of PARAM1_LIST
with values of PARAM2_LIST.
Simulations results will be stored in folders named "myTest-i-j"
where i and j are the values of the parameters.

PARAM1_LIST=(1 2 5 10)
PARAM2_LIST=(0.6 0.7 0.8 0.9)

for i in ${PARAM2_LIST[@]}; do

for j in ${PARAM2_LIST[@]}; do

java -jar N3Sim.jar myConfigFile.cfg myTest-${i}-${j} $i $j

done

done

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

77

ANNEX III : USER GUIDE

OVERVIEW

N3Sim is a simulation framework for diffusion-based molecular communication in nanonetworks, a bio-
inspired paradigm
based on the use of molecules to encode and transmit information.

N3Sim simulates a set of nanomachines which communicate through molecular diffusion in a fluid
medium. The information to be sent by the emitter nanomachines modulates the rate at which they
release particles to the medium. The variation in the local concentration generated by the emitters
propagates throughout the medium. The receivers are able to estimate the concentration of particles in
their neighborhood by counting the number of particles in the environment. From this measurement,
they can decode the transmitted information.

This is the user guide for the version 0.7 of N3Sim. It includes a general description of the simulator in
sections Current Features and N3Sim Block Diagram. Installation and execution instructions may be
found in sections Installation, Running Simulations, Output and Automating Simulations. Finally, more
specific concepts about the simulator are explained in the remaining sections.

Contents

• Current Features
• Roadmap
• N3Sim Block Diagram
• Installation
• Running Simulations
• Output
• Automating Simulations
• 3-Dimensional Simulations
• Time and Time step
• Anomalous Diffusion Components
• Simulation Space
• Simulating an Infinite Space
• Emitters
• Receivers

CURRENT FEATURES

N3Sim is a prototype still under development. Some of its features are therefore under testing and are
not available in the current released version (v0.7). For instance, the influence of electrostatic forces in
diffusion is not included in v0.7, and 3-dimensional simulations are only possible when the particles
move according to Brownian motion in an unbounded space.

The current features of N3Sim are:

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

78

• Brownian motion and components of anomalous diffusion: particle inertia and elastic collisions
for 2-dimensional space. (A prototype that includes the electrostatic forces among particles is
currently under testing.)

• All components of diffusion can be activated/deactivated.
• Bounded or unbounded space.
• Initial background homogenous concentration (finite or infinite space).
• Any number of emitters and receivers.
• Predefined released patterns for each emitter.
• Input file (.txt) defined by the user containing a released pattern for each emitter.
• 3-dimensional simulation (only for Brownian motion an unbounded space).

ROADMAP

The current stable version of N3Sim is v0.7. Some of the new features that will be included in next
versions are:

• v0.8: electric forces as a component of anomalous diffusion.
• v0.9: obstacles in the simulation space.
• v1.0: complete 3-dimensional simulations.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

79

N3SIM BLOCK DIAGRAM

Figure 1 shows a block diagram of the steps needed to run a simulation.

Figure 1. N3Sim block diagram

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

80

First, the user communicates with the simulator using a configuration file and, optionally, a script. In the
configuration file, the user specifies the values of all the simulation parameters. These parameters
include the number and location of emitters and receivers, the waveform of the emitter, the size of the
emitted particles and the diffusion coefficient of the medium, amongst others. Some of these
parameters can be left unspecified and can be defined using a script; this allows the user to run multiple
simulations automatically with only one configuration file and one script. This is useful to easily evaluate
the influence of a specific parameter (e.g., the number of transmitted particles) in the system output.

Next, the diffusion simulator takes the configuration file and the automation scripts as input and
performs the actual simulation. The diffusion simulator writes its results to files. To do so, it creates a
new folder with the simulation name and in this folder creates one file per receiver and some other files
with the simulation information. The receiver files are text files in csv format, they contain the
concentration measured by each receiver as a function of time. Last, another set of scripts may be used
to organize the results from several receivers and graphically represent them into a single plot.

INSTALLATION

N3Sim is a Java runnable jar file. It is OS-independent as long as the Java VM is installed in the system. In
order to use N3Sim, Java 1.6 or higher is required. If you do not have Java in your system, you may
download it from here.

In order to install N3Sim, just download the executable jar file and the configuration file from here.

RUNNING SIMULATIONS

In order to run a simulation with N3Sim, you first need to edit the values of the simulation parameters.
To do so, just open the text file N3Sim.cfg previously downloaded, which has all the parameters set to
their default values. You may edit them in order to fit your requirements and then save the
configuration file with the desired name. A list of parameters together with a brief explanation of them
is available here. A more comprehensive explanation of some of the parameters can be found in the
following sections of this guide.

Once the configuration file has the desired values, enter the following command in a Unix shell or
Windows command prompt from your N3Sim directory::

> java -jar N3Sim-0.7.jar myConfigFile.cfg

For simulations with a high number of particles, you may want to increase the amount of Java memory
up to, e.g., 1024M.

> java -jar -Xms1024m -Xmx1024m N3Sim-0.7.jar myConfigFile.cfg

This will start the simulation. Once it is complete, just check its results (see section Output).

http://www.java.com/en/download/index.jsp�
http://www.n3cat.upc.edu/tools/n3sim/download.php�
http://www.n3cat.upc.edu/tools/n3sim/ParameterList.php�

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

81

OUTPUT

Once the simulation has finished, the application will have created a directory under the N3Sim folder
with the name specified by the parameter outPath in the configuration file. Inside this folder, the
following files may be found:

• A file simulation.txt with the parameters and values used in the simulation.
• A file receiver_name.csv for each receiver in the simulation. These files have two columns; the

first one contains the time steps in nanoseconds, and the second one represents the number of
particles measured by the receiver at the corresponding time step.

• Debugging files info.log (optional) and error.log.
• Video file graphic.ns1 (optional), to be used with NSVideo.

AUTOMATING SIMULATIONS

Often user is interested in performing multiple identical simulations in order to compute the average
results, or to check how the results change depending on the values of one or more parameters.

N3Sim provides the following mechanism to facilitate the execution of multiple simulations. In the
configuration file, one or more parameters can take the key value "param". In this case, the program
expects to receive these parameters from the execution command (in the same order that they are in
the configuration file.) For instance, if the value "param" is given to the parameters time and timeStep,
the simulation may be executed as follows:

> java -jar N3Sim-0.7.jar myConfigFile.cfg 2000 5

which is equivalent to give the values time=2000 and timeStep=5 in the configuration file.

In this way, scripts can be used to launch multiple simulations with different parameters. An example:
let's imagine we want to run several 2-dimensional simulations combining different values of particle
radius (1, 2, 5 and 10 nm) with several values of diffusion constant D (0.5, 0.6, 0.7, 0.8 and 0.9 nm^2/ns).

By using the word "param" as the value for any parameter, the program will read its value from the
parameters list of the execution command (in the same order that they appear in the configuration file).

In this example, we give the value "param" to the parameters outPath (so that each simulation has a
different folder), sphereRadius and D, as shown in figure 2. Then, the script shown in figure 3 will run
the multiple simulations.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

82

Figure 2. Configuration file used to launch simulations combining different values of the parameters
sphereRadius and D.

N3Sim CONFIG FILE
SIMULATION PARAMS
outPath=param
graphics=false
infoFile=true
activeCollision=false
BMFactor=1
inertiaFactor=0
time=200000
timeStep=1000

SPACE PARAMS
boundedSpace=true
constantBGConcentration=false
constantBGConcentrationWidth=0
xSize=2500
ySize=2000
D=param
bgConcentration=10
sphereRadius=param

EMITTER PARAMS
emitters=1
emitterRadius=100
x=1000
y=500
startTime=1000
endTime=2000
initV=0
punctual=false
concentrationEmitter=false
color=white
emitterType=1
amplitude=1000

RECEIVER PARAMS
receivers=1
name=rx500
x=1500
y=500
absorb=false
accumulate=false
end=true

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

83

Figure 3. Script to automate simulations combining lists of values of two parameters.

3-DIMENSIONAL SIMULATIONS

N3Sim was primarily developed for 2-dimensional scenarios. In the current version, 3-dimensional
simulations are possible only under the following conditions:

• Unbounded simulation space
• No collisions among the emitted particles
• Emitter type 5 (see section Emitters)
• Receiver type 3 (see section Receivers)

A specific configuration file for 3-dimensional scenarios, N3Sim3D.cfg, is available. Although the general
N3Sim configuration file can also be used for 3-dimensional simulations, it is easier to use the specific 3D
configuration file. In this file, the parameters have a predefined value that fulfills the above conditions
for 3-dimensional simulations (e.g., boundedSpace = false), and the parameters that may be changed by
the user are underlined for easier identification. The template configuration file for 3-dimensional
simulations may be downloaded here.

TIME AND TIMESTEP

The total time of the simulation is set with the parameter time. Time is discrete in the simulator, which
advances time by steps (time steps). At each time step, emitters release particles, the simulator moves
the released particles according the laws of diffusion, and receivers measure the concentration at their
location. Both the parameters time and timeStep must be integers and their unit is nanoseconds.

#!/bin/sh

These script will launch simulations combining values of PARAM1_LIST
with values of PARAM2_LIST.
Simulation results will be stored in folders named "myTest-i-j",
where i and j are the values of the parameters.

PARAM1_LIST=(1 2 5 10)
PARAM2_LIST=(0.6 0.7 0.8 0.9)

for i in ${PARAM2_LIST[@]}; do

for j in ${PARAM2_LIST[@]}; do

java -jar N3Sim.jar myConfigFile.cfg myTest-${i}-${j} $i $j

done

done

http://www.n3cat.upc.edu/tools/n3sim/download.php�

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

84

An important question is: which is the best time step for a simulation? In order to answer it, several
criteria must be taken into account. First, it must be noticed that the signal measured by receivers will
have a resolution of one time step. The user must thus decide which is the maximum timestep so that
the obtained results are useful.

On the other hand, in general, the higher the time step the shorter the simulation running time.
However, there are several other factors which limit the maximum value of the time step, which are
detailed as follows.

First, when modeling Brownian motion and/or inertia, if the time step is too large particles may move in
a single time step a long distance, compared to the emitter-receiver distance. The mean distance that
particles travel in a time step is sqrt(2*DiffusionConstant*timestep), according to the theory of
Brownian motion . In order for the simulation to give reasonably correct results, this value should not
exceed the 25% of the distance between emitter and receiver (or the minimum distance between an
emitter and a receiver, if there is more than one of them).

For simulations that include collisions among particles, it is still true that the longer the time step, the
shorter execution time. However, using a longer time step may cause the number of collisions which
happen in every time step to rapidly increase. In this cases, using a smaller time step may result in a less
memory consuming simulation and faster execution times.

A useful criteria to check whether the time step used is too large is to perform the same simulation with
a smaller time step. If the results are not the same, it means that the time step used in the first
simulation was too large. The smaller valid time step is of about 0.0001 nanoseconds.

ANOMALOUS DIFFUSION COMPONENTS

N3Sim models anomalous diffusion with four components: Brownian motion, particle inertia, collisions
among particles and electrostatic forces.

Electrostatic forces are not yet included in the current version. There is a prototype that includes this
component of diffusion, but it is still under testing and has not been released yet.

All the other components can be enabled or disabled. Collisions are activated by the
parameter activecollisions, which may be found in the configuration file. Brownian motion and particle
inertia may be enabled/disabled through the parameters BMFactor and inertiaFactor, respectively.

Brownian motion models the basic diffusion process which causes the random movement of the
emitted particles at every time step. Brownian motion is modeled as a Gaussian random parameter with
zero mean and whose root mean square displacement in each dimension after a time t is
sqrt(2*DiffusionConstant*timestep). N3Sim multiplies this displacement by the parameter BMFactor.
Therefore, if BMFactor is zero no Brownian Motion is performed.

The parameter inertiaFactor accounts for the inertia of particles. At every time step, N3Sim adds a
displacement equal to the velocity of the previous time step multiplied by this factor. So, as with
Brownian motion, if the inertiaFactor is zero, the particles will have no inertia.

SIMULATION SPACE

The simulation space contains the particles, emitters and receivers. Particles are modeled as spheres
and its radius is set with the parameter sphereRadius.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

85

The simulation space can be bounded or unbounded. This is controlled by the parameter
boundedSpace. If it is true, a rectangular bounded space is simulated. The left/bottom corner of the
space is (0,0) and the right/top corner is set at the values of parameters xSize and ySize. In this case, the
emitted particles rebound at the space limits (even if the parameter activeCollision is set to false).

The simulation space can be filled before the simulation starts with an initial background concentration.
This is set with the parameter bgConcentration, which must be an integer. The units of the background
concentration are the number of particles per 10000 nm2

SIMULATING AN INFINITE SPACE

. If bgConcentration is not zero, the simulation
space must be bounded (boundedSpace = true).

When running simulations with a bounded space, an undesired effect may appear. As emitters release
particles, the background concentration will increase indefinitely. Figure 4 shows the signal at a receiver
for the same simulation with bounded and with unbounded space. With bounded space (blue line) the
tail of the signal is higher than with unbounded space (red line), because of the increase in the
background concentration over time.

Figure 4. Comparison of a simulation with bounded and with unbounded space.

However, if the initial background concentration is set to a non-zero value, the simulation space must be
bounded. In order to avoid this problem, N3Sim offers a mechanism to simulate an infinite space while
using a bounded space. This mechanism deletes some particles close to the space bounds, as if they
were leaving the space bounds. To activate this mechanism, the parameter constantBgConcentration
must be set to true.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

86

A few considerations to be taken into account in order to get the best results follow First, the space
dimensions and the proper location of emitters and receivers is crucial. If, for instance, we want to run a
simulation with one receiver and one emitter, the distance between the receiver and the space bounds,
and between the emitter and the space bounds, must be at least twice the distance between the
emitter and the receiver. Otherwise, the simulation of an infinite space will not be realistic.

Second, an important parameter used to adjust this mechanism is constantBGConcentrationWidth. As a
rule of thumb, the value of this parameter must be the 2% of the minimum value between the
parameters xSize and ySize (see section Simulation Space). If this value is increased, the tail of received
signals will be artificially reduced; and if it is decreased, the tail will be increased. In any case, if the size
of the space and the location of emitters and receivers have the values indicated in the section above,
this parameter has very little influence and the simulation of infinite space is good enough for most
cases.

EMITTERS

The location of an emitter is defined by the parameters x and y in the configuration file. Every emitter
has an influence area, which means that the emitter can only release or absorb particles within this
area. This area is a circle (or a sphere in 3 dimensions) and its radius is the value of the parameter
emitterRadius.

If the emitter tries to emit/absorb more particles than the capacity of its influence area, N3Sim will
emit/absorb as many as possible and a message will be written at the error.log file. This message will
include the actual number of particles released/absorbed.

Each emitter has an associated waveform that defines the number of particles to be released/absorbed
at each time step. Moreover, every emitter has a start time and end time (parameters startTime and
endTime). The emitter will emit/absorb particles, according to its waveform, only when the simulation
time is greater or equal than startTime and lower than endTime.

There are five types of emitters. Three of them have a predefined waveform, and they have a parameter
named amplitude. The amplitude is the number of released particles every 100 ns. For instance, if the
time step is of 400 ns and 1000 particles must be released at every time step, the parameter amplitude
must be set to a value of 250.

The three emitters with a predefined waveform are:

• Type 1: emits a fixed number of particles at every time step.
• Type 2: emits particles following a rectangular waveform. For this emitter, two additional

parameters exist: period and timeOn. These parameters indicate, respectively, the period of
the square wave and amount of time within a period in which the emitter is releasing particles
(as many as indicated by the parameter amplitude).

• Type 3: emits particles following a white noise waveform.

Type 4 emitters read the waveform of the signal to be transmitted from a text file. In this text file, every
line represents a time step, beginning at startTime. At every time step, the number of particles
indicated by the corresponding line are emitted. If the total number of lines of the text file is lower than
the number of time steps between startTime and endTime, zeros are assumed. The parameter file
indicates the filename where the waveform is defined (including relative or absolute path). Another
parameter for this emitter is scaleFactor. Emitters multiply the number of particles specified in the file

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 II
I :

 U
SE

R
G

U
ID

E

87

by this factor in order to obtain the number of particles to emit, which is useful to automate
simulations.

Finally, Type 5 emitters are equivalent to type 4, but in a 3-dimensional simulation space. For this
emitter, the z location must be set using the parameter z in the configuration file.

RECEIVERS

The receive location is defined by the parameters x and y in the configuration file. Receivers count the
number of particles in its area (or volume) at every time step. This number is written to the receiver
result files (see section Output)

There are three types of receivers. First, Type 1 receivers are square receivers, and their size is defined
by the square side (parameter side). Second, Type 2 receivers are circular, their size is defined by their
radius (parameter rradius). Last, Type 3 receivers (to be used in 3-dimensional simulations) are spherical
receivers and the counting volume is also defined by its radius (parameter rradius).

Receivers may just count the particles inside their area (or volume), or they may also absorb these
particles. This is controlled with the parameter absorb. Finally, the accumulate parameter controls
whether the receiver output corresponds to the instantaneous particle count (accumulate=false), or to
the accumulated particle count since the beginning of the simulation (accumulate=true).

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 IV
 :

LI
ST

 O
F

PA
RA

M
ET

ER
S

88

ANNEX IV : LIST OF PARAMETERS

OVERVIEW

This document contains a short description of all the parameters used in the configuration file of N3Sim
(version 0.7). For a more detailed explanation of parameters please read the User Guide.

The units of the parameters are nanometers (nm) and nanoseconds (ns), unless otherwise stated. Also
the values of the parameters are assumed to be real numbers, unless specified.

In the configuration file, parameters are organized in four sections:

• Simulation parameters
• Space parameters
• Emitter parameters
• Receiver parameters

SIMULATION PARAMETERS

• outPath: name of the folder where the result files will be stored. Both absolute and relative (to
the execution directory) paths may be used.

• graphics (true/false): if the value is true, N3Sim will create a visualization file to be used with
NSVideo. NSVideo is still an unreleased prototype. Therefore, this parameter should be set to
false.

• infoFile (true/false): if the value is true, N3Sim will create a file with information of the
simulation at each time step, i. e., number of particles, number of collisions, time instants, etc.
It may be used for debugging purposes.

• activeCollision (true/false): if set to true collisions among the emitted particles are modeled.
Otherwise, the emitted particles are assumed to be transparent to each other and never
collide.

• BMFactor (0 to 1): the particle displacements due to Brownian motion are multiplied by this
factor. The default value is 1.

• inertiaFactor (0 to 1):controls the amount of inertia of the emitted particles. If set to zero,
particles have no inertia. Otherwise, at each time step, the particle speed is equal to its speed
in the previous time step multiplied by inertiaFactor.

• time (integer, ns): total time of the simulation.
• timeStep (integer, ns): duration of each time step.

SPACE PARAMETERS

• boundedSpace (true/false): if set to false, an unbounded space is simulated. Otherwise, a
rectangular bounded space is simulated. The bottom left corner of the space has the
coordinates (0,0) and the top right corner coordinates correspond to the values of the
parameters xSize and ySize. If an initial background concentration is set (bgConcentration
greater than zero), boundedSpace must be set to true.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 IV
 :

LI
ST

 O
F

PA
RA

M
ET

ER
S

89

• constantBGConcentration (true/false): if set to false, it has no effect on the simulation. If set to
true (this can only be done when boundedSpace is also set to true), N3Sim will simulate an
infinite space.

• constantBGConcentrationWidth (integer, nm): value used to adjust the simulation of infinite
space when the space is bounded. Must be an integer between 0 and 10% of min(xSize, ySize).
5% is an acceptable value in most cases.

• xSize (nm, integer): horizontal size of the simulation space (see parameter boundedSpace).
• ySize (nm, integer): vertical size of the simulation space (see parameter boundedSpace).
• D (nm/ns2): diffusion coefficient.
• bgConcentration (integer): number of particles per 10000 nm2. The simulation space will be

filled with this initial background concentration before the simulation starts. If boundedSpace
is false, bgConcentration must be set to zero.

• sphereRadius (nm): radius of the emitted particles.

EMITTER PARAMETERS

• emitters: number of emitters in the simulation

Every emitter has the following parameters:

• emitterRadius (nm): radius of the influence area of the emitter. The influence area determines
the area where particles are released/absorbed. If there are not enough particles to absorb, all
the particles in the area will be absorbed and a warning message will be logged in the file
error.log. Moreover, if the particles to be released do not fit within the influence area, as many
as possible will be released and a message will also be logged in the file error.log.

• x (nm): horizontal position of the emitter.
• y (nm): vertical position of the emitter.
• startTime (ns): the emitter releases/absorbs particles when the current time is greater or equal

than startTime.
• endTime (ns): the emitter releases/absorbs particles when the current time is less than

endTime.
• initV (nm/ns): initial velocity of the released particles, in nm/ns. If the parameter punctual is

set to false, the initial particle direction is the line from the emitter location to particle location.
If punctual is set to true, then initV must be set to zero.

• punctual (true/false): if set to true, particles are released at exactly the emitter location. If set
to false, particles are emitted in a random location within the influence area. If activeCollision
is set to true, punctual must be set to false.

• concentrationEmitter (true/false): if set to false, the amplitude parameter (see below)
indicates the number particles released by the emitter at every time step. If set to true,
amplitude indicates the number particles present in the influence area of the emitter at every
time step.

• color: color of the emitted particles. Used by the application NSVideo. Since NSVideo is still an
unreleased prototype, the value white must always be used.

• emitterType (integer, 1 to 5): there are 5 types of emitters. Depending on the emitter type,
some other parameters must be included in the configuration file. A short description of each
emitter type and its additional parameters follows:

o Type 1: emits a fixed number of particles at every time step.
Additional parameters for type 1 include:

 amplitude: number of released particles every 100 ns. E.g., if the time step is
of 400 ns and 1000 particles must be released at every time step, amplitude
must be set to 250.

N3Sim: molecular communication simulator 2011

Ch
ap

te
r:

 A
N

N
EX

 IV
 :

LI
ST

 O
F

PA
RA

M
ET

ER
S

90

o Type 2: emits particles following rectangular waveform.
Additional parameters for type 2 include:

 amplitude: see type 1.
 period (ns): wave period.
 timeOn (ns): part of the wave period in which the particles are released (as

many as the parameter amplitude indicates).
o Type 3: emits particles following a white noise waveform.

Additional parameters for type 3 include:
 amplitude: see type 1.

o Type 4: reads the waveform of the signal to be emitted from a text file. In this text file,
every line represents a time step, beginning at startTime. At every time step, the
number of particles indicated by the corresponding line are emitted. If the total
number of lines of the text file is lower than the number of time steps between
startTime and endTime, zeros are assumed.
Additional parameters for type 4 include:

 file: name of the text file (including relative or absolute path).
 scaleFactor: the number of particles specified in the file is multiplied by this

factor (useful to automate simulations).
o Type 5: equivalent to type 4 emitter, but in a 3-dimensional simulation space. In

addition to the parameters for type 4 emitters, the following parameter must be
defined:

 z (nm): z coordinate of the emitter location.

RECEIVER PARAMETERS

• receivers: number of receivers in the simulation

Every receiver has the following parameters:

• name: receiver name. The measurements of this receiver will be saved to a file named
name.csv.

• x (nm): horizontal position of the receiver.
• y (nm): vertical position of the receiver.
• absorb (true/false): if set to true, after the receiver measures the particles in its influence area

at every time step, they will be deleted.
• accumulate (true/false): if set to true, the output signal measured by the receiver at each time

step corresponds to the accumulated number of particles measured from the simulation start.
If set to false, it corresponds to the number of particles measured in the current time step.

• receiverType: (integer, 1 to 3): there are 3 types of receivers. Depending on the receiver type,
some other parameters must be included in the configuration file. A short description of each
receiver type and its additional parameters follows:

o Type 1: the detection area of the receiver is a square.
Additional parameters for type 1:

 side (nm): side of the square that defines the detection area.
o Type 2: the detection area of the receiver is a circle.

Additional parameters for type 2:
 rradius (nm): radius of the circle that defines the detection area.

o Type 3: the detection volume of the receiver is a sphere (to be used only in 3-
dimensional simulations).
Additional parameters for type 3:

 z (nm): z coordinate of the receiver location.
 rradius (nm): radius of the sphere that defines the detection volume.

	Title: N3Sim : Simulator for diffusion-based molecular communications in Nanonetworks
	ABSTRACT
	CONTENTS
	INTRODUCTION.
	Context.
	DIFFUSION-BASED MOLECULAR COMMUNICATION IN nanonetworks.
	PROJECT DEVELOPMENT.
	GOALS.

	STATE OF THE ART.
	REQUERIMENTS ANALYSIS
	REQUERIMENTS ELICITATION STRATEGY.
	noN funcTional Requeriments.
	RELIABILITY.
	MODIFIAbiliTY.
	EXTENSIbilITY.
	USABILITY.

	funcTional Requeriments.
	SIMULATION SPACE.
	COLLECTIVE DIFFUSION.
	EmiTTER.
	ReceIVER.
	INITIAL Background concentration.

	SPECIFICATION.
	USE CASE Model.
	Conceptual Model.

	DESIGN AND IMPLEMENTATION
	5.1 INTRODUCTION
	5.2 THREE LAYER ARCHITECTURE
	5.3 PACKAGE STRUCTURE
	5.4 IMPLEMENTATION.
	5.4.1 USER INTERFACE LAYER.
	5.4.3 DOMAIN LAYER
	5.4.3.1 Overview
	5.4.3.2 PACKAGE SPACE
	5.4.3.3 PACKAGE PARTICLES
	5.4.3.4 PACKAGE EMITTERS.
	5.4.3.5 PACKAGE RECEIVERS
	5.4.3.6 PACKAGE BOUNDARIES
	5.4.3.7 PACKAGE CONTROLLER
	5.4.3.8 PACKAGE COLLISIONS

	5.4.4 DATA LAYER.

	5.5 ELECTROSTATIC FORCES
	5.6 N3SIM VIDEO PLAYER (N3SVIDEO).

	COLLISION DETECTION ALGORITHM
	6.1. INTRODUCTION
	6.2. STATE OF THE ART
	6.3. IMPLEMENTATION
	6.4. COST ANALYSIS

	RESULTS.
	BROWNIAN MOTION
	SPACE LIMITS
	NOISE
	COLLISIONS.
	INERTIA
	ELECTRostatic FORCES.

	FUTURE WORK.
	PACKAGE STRUCTURE
	ELECTRICAL FORCES.
	BOUNDARIES.
	EXTENSION to 3D.

	CONCLUSIONS.
	ACHIEVING GOALS.
	PROJECT DEVELOPMENT.
	STUDY OF THE MOLECULAR COMMUNICATION CHANNEL.
	PERSONAL ASSESSMENT.

	REFERENCES
	ANNEX I : PUBLICATIONS DERIVED FROM THIS PROJECT
	ANNEX II : QUICK START GUIDE
	Overview
	Contents
	Installation
	Running N3Sim
	Output
	Next Step: Automating Simulations
	Example 1
	Example 2

	ANNEX III : USER GUIDE
	Overview
	Current Features
	Roadmap
	N3Sim Block Diagram
	Installation
	Running Simulations
	Output
	Automating Simulations
	3-Dimensional Simulations
	Time and TimeStep
	Anomalous Diffusion Components
	Simulation Space
	Simulating an Infinite Space
	Emitters
	Receivers

	ANNEX IV : LIST OF PARAMETERS
	Overview
	Simulation Parameters
	Space Parameters
	Emitter Parameters
	Receiver Parameters

