

TREBALL DE FI DE CARRERA

TÍTOL DEL TFC: Integració d’un modul d’audio en software de
transmissió de video d’alta qualitat / Audio module integration into high
quality video transmission software

TITULACIÓ: Enginyeria Tècnica de Telecomunicació, especialitat
Sistemes de Telecomunicació

AUTOR: Gerard Castillo Lasheras

DIRECTOR: Jesús Alcober Segura

DATA: 6 de maig de 2011

Títol: Integració d’un modul d’audio en software de transmissió de video d’alta
qualitat

Autor: Gerard Castillo Lasheras

Director: Jesús Alcober Segura

Data: 6 de maig de 2011

Resum

A continuació es presenta el projecte de fi de carrera “Audio module integration
into high quality video transmission software”.

Aquest projecte consta de la implementació d’un mòdul d’audio dins del
sistema de transmissió de video d’alta qualitat, del software anomenat
UltraGrid.

Per a aconseguir aquest objectiu es realitza l’estudi de quina arquitectura de
so, dins de les disponibles conegudes específiques per al núcli Linux, és la
més adequada. A més a més, de l’estudi de com es generen les mostres de so
des de tots els dispositius capturadors que intervenen, a fi que aquest sistema
sigui compatible amb tots els dispositius que s’usen als escenaris que es
mostraràn. A més a més del protocol i encapçulament d’aquestes dades per tal
d’assegurar-ne la bona adaptació dins els sistema i fer-lo el màxim compatible
per a diferents dispositius, formats, mostrejos i altres treballs futurs.

Aquesta arquitectura de so escollida ha de permetre la integració del sistema
de videconferència UltraGrid amb les tarjetes de so integrades a l’ordinador.
Així com permetre, el màxim possible, la captura i reproducció a temps real,
així com sincronitzada amb el flux de video generat en paralel. Per tant, s’ha
d’assegurar que es disposa d’una sèria de drivers i llibreries per a treballar-hi.

Es comprobarà que es podrà transmetre so mostrejat a qualitats màximes, les
disponibles en funció de la pròpia tarjeta de so. Fins a generar fluxes
específics com vocoders els quals permeten certa compressió, per tal de
només transmetre veu, si es requereix.

Finalments es comprovarà el correcte funcionament del projecte i com es
prova en casos reals.

Title: Audio module integration into high quality video transmission software

Author: Gerard Castillo Lasheras

Director: Jesús Alcober Segura

Date: 6 de maig de 2011

Overview

In this document, the bachelor thesis called “Audio module integration into high
quality video transmission software” is presented.

This project consists on the implementation of an audio module into the high
quality video transmission system, called UltraGrid.

To reach the objectives there is realized the study of which sound
architechture, from all availabe known specific for Linux kernel, is the more
appropiate. Also, the study of how are the audio samples generated from all
involved capture devices, to do the whole system compatible with all the used
devices into the shown scenarios. Furthermor, there is studyed the protocol
and encpasulatin method of the audio data generated to ensure a good
adaptation into the system and making it compatible for different devices,
formats, sample rates and other future works.

This selected architechture has to permit the videoconference system UltraGrid
with all computer sound card devices. And, as maximum as possible, the
capture and playout at real-time, being synchronized with the video stream
parallel generated. So, there has to be ensured that there are drivers and
libraries to work with.

There will be demonstrated that it could be transmitted at highest qualities
permitted by the maximum offered by the sound card. Also, there will be
generated specific streams, like vocoders, that will permit some compression to
transmitt only voice, if it is required.

Finally this is checked the proper project functioning and how it is prooved in
real cases of use.

ACKNOWLEDGEMENTS

Als meu pare i la meva mare, els meus germans Sara i Eduard, a Laura
Carreras i als amics que m’han donat suport fins al final.

A Francisco Iglesias i Pedro Lorente per els seus cops de mà i correccions
durant el projecte.

A la resta de treballadors d’i2cat que m’han donat suport en algún moment del
projecte, així com per consells o proves i testejos.

A David Cuenca i Davide Vega per a donar-me un cop de mà i consells, quan
vaig començar amb el projecte.

I, finalment, a totes aquelles persones que han fet possible que aquest projecte
es fes realitat, d’una forma o altre.

Gràcies a tots.

 ÍNDEX

!"#$%&'(#!%"))*!
(+,-#.$/*)! $.0!.1/%2/#+./3#,#./%2/#+./,$#))4!
)! 04/-56789:))) 4!
*);! 0<=8696>?858>98)) 4!
*)4! +�)) 4!
"#$#"! %&!'()*+,-.*/### 0!
"#$#1! %&!2'34(!'3-(!3/5!)63/ ### 0!
"#$#$! 7*+*,'!(/6*5./8## 9!
"#$#0! %&!:3/5;.5-<## =!

*)@! &<A<:BC/,D=<6))) E!
"#0#"! %.)-*'>### =!
"#0#1! ?7@ABCDE!&?7@A&@AC&?7@AFG&!H*'43-)!!!!!!I!FJ((6<!6*4J3/5./8########### K!
"#0#1#"! FJ((6<!7*4J3/5./8 ##L!

"#0#$! F34J+(!'3-(!3/5!:.-)!J('!)34J+(### M!
"#0#$#"! F34J+(!'3-(##M!
"#0#$#1! N.-!5(J-<!O:.-)!J('!)34J+(P##"Q!

*)F! 3:58BG<>AH/BD=<6/B>=/I<=86/96>?858>98))**!
*)E! %J85B:<>A/3KL:8G/M%)3)N)))*F!

(+,-#.$/;)! &.3($!-#!%"/%2/#+./#.(+"!(,O/,--$%,(+)))))))))))))))))))))))))))) *P!
;)*! %Q789:<I8L)))*P!
;);! #R8/#8L:/398>B5<6))*P!
1#1#"! F*,/5!63J-,'(')##"K!
1#1#"#"! R(/3%F!&(S.6(###"K!
1#1#"#1! &(6TU./T!N+36T438.6 ###"L!
1#1#"#$! V/-(+!%&!F*,/563'5###"L!

1#1#1! F6(/3'.*)##"L!
;)4! 'C:5BS5<=)));*!
1#$#"! W*-3+!8(/('3-(5!:3/5;.5-<!O63)(!*2!,)(P ##11!
1#$#1! V/.-.3+!)-3-(##11!
1#$#$! C,5.*!.4J+(4(/-3-.*/ ###1$!

;)@! O<>DT/36D>=)));F!
1#0#"! N,22('./8###19!
1#0#1! X('/(+Y)!Z*: ###1K!
1#0#$! [(/('.6!\FF!2,/6-.*/3+.-> ###1K!
1#0#0! [(/('3-./8!<.8<!3/5!+*;];3-('!43'T)!;.-<!\FF##1L!
1#0#9! 7+.(/-AF('S('!CJJ'*36<!]!F*,/5!&3(4*/) ###1L!
1#0#=! CUFC!-.4(##$"!

(+,-#.$/4)! -$%-%3.&/3%O'#!%"))) 44!
4)*! UD??85<>A/B>=/L6D598L/LK>9R56><VB:<6>)))44!
4);! ,O3,/<><:<BC<VB:<6>)))4@!
$#1#"! [(/('.6!6*/2.8,'3-.*/!O63J-,'(AJ+3>*,-P##$K!

4)4! !>JD:W6D:JD:/QD??85/JB5BG8:85/GB><JDCB:<6>))4P!
4)@! -CDA<>/A8>85B:<6>))4X!
$#0#"! &,3+ ##$L!
$#0#1! C]+3;##$L!
$#0#$! V@C]C&?7@##$M!

4)F! ,O3,/J56A5BGG<>A)))4Y!
$#9#"! B(^,()-./8!)-3-,)!./2*'43-.*/ ###$M!

4)E! (BJ:D58/L<=8))@*!

4)P! -CBK6D:/L<=8)))@;!
(+,-#.$/@)! ,'&!%/!Z-$%0.Z."#3))) @F!
@)*! [8>B+3/,D=<6/Z6=DC8))@F!
@);! [8>B+3/,D=<6/Z6=DC8/\<:R/,O3,W*EQ<:L))F*!
@)4! &0/:6/,O3,)))F*!
@)@! UCB9]GBA<9/:6/,O3,))F;!

(+,-#.$/F)! #.3#!"S/^/0,O!&,#!%")) F4!
F)*! ZDL<9OBQ/B:/(<:<OBQ)))F4!
F);! ,D=<696>?858>98/98>:58/D><:)))F4!
F)4! OBQ/L98>B5<6))F@!

(+,-#.$/E)! ."0!$%Z."#,O/!Z-,(#))) FF!
(+,-#.$/P)! (%"(O'3!%"3/,"&/2'#'$./1%$_3))) FP!
$.2.$."(.3))) FY!
,($%"`Z3)) E4!
,"".[/,)/3J889R/96GJB>=<>A/M,a/CB\WbaCB\N))) EP!
,"".[/U)/&<A<:BC/BD=<6/LBGJC8/5B:8L))) P*!
,"".[/()/-BKC6B=/:KJ8L))) P4!
,"".[/&)/!>L:BCC<>A/'QD>:D/*c)c@O#3/\<:R/UCB9]GBA<9d/"I<=<B/B>=/'C:5BS5<=/
M3#,UO./BD=<6/I85L<6>N))) PF!
,"".[/.)/UBL<9/B>=/<><:<BC/'ZO))) PY!
,"".[/2)/,O3,/O!3#!"Sd/%-#!%"3d/-O,`U,(_/,"&/(,-#'$./.[,Z-O.3))))) XF!
,"".[/S)/(6>?<AD5<>A/,O3,/JCDAa<>))) YF!
,"".[/+)/-(Z/M=<A<:BC/BD=<6N/<>:85?B98))) YP!

SUMMARY OF FIGURES

Fig. 1.1 Difference between face-to-face versus room-to-room1!
Fig. 1.1 Display resolutions ...4!
Fig. 1.2 Colour encoding possibilities ..5!
Fig. 1.4 Low sample rate ...17!
Fig. 1.5 Resulting waveform..17!
Fig. 1.6 Sine wave ...17!
Fig. 1.7 Higher sample rate ...18!
Fig. 1.8 Resulting waveform..18!
Fig. 1.9 Low bit depth ..19!
Fig. 1.10 Higher bit depth ..19!
Fig. 1.10 RTP payload format showing two (partial) lines of video....................13!
Fig. 1.11 SMPTE HD-TV Standards combination ...14!
Fig. 1.12 The fundamental architecture of the GNU\Linux operating system....15!
Fig. 2.1 Initial scenario...19!
Fig. 2.2 Intermediate scenario with first audio option ..19!
Fig. 2.3 Final scenario with Blackmagic card ..20!
Fig. 2.4 Capture side high abstraction diagram...24!
Fig. 2.5 Receive side high abstraction diagram...24!
Fig. 2.6 A FIFO Buffer or Queue ...25!
Fig. 2.7 Three fragments buffer sound ..28!
Fig. 2.8 Direct acces to devices. Little complexity on Kernel model..................29!
Fig. 2.9 Kernel complexity increase. Multiple connections via Kernel.29!
Fig. 2.10 Multi-stream access via Sound Daemon. ...30!
Fig. 3.1 Graphical timing of the whole involved process34!
Fig. 3.2 Example ALSA buffering ..37!
Fig. 3.3 Capture side diagram ...41!
Fig. 3.4 Playout side diagram..43!
Fig. 4.1 RTP audio packets captured by WireShark..45!
Fig. 4.2 Captured WireShark image with exhaustive explanation46!
Fig. 4.3 Audio Configuration XenaHS capture card...47!
Fig. 4.4 Graphical timing WireShark captured packets. Audio and Video.........47!
Fig. 4.5 Graphical timing Wireshark captured packets. 6 audio channels.........48!
Fig. 4.6 Graphical timing Wireshark captured packets. 2 audio channels.........49!
Fig. 4.7 Bandwidth proportion..49!
Fig. 4.8 XenaHS to ALSA scenario ...49!
Fig. 4.9 Different options XenaHS to ALSA scenario ..50!
Fig. 4.10 6 channles 24 bits to 2 channels 16 bits...51!
Fig. 5.1 Audioconference centre unit scenario ..53!
Fig. 5.2 Graphical explanation of software ndex selector..................................54!
Fig. 7.1 Relationship and commitments ..58!

INTRODUCTION 1

INTRODUCTION

As the main title explains, this project is involved in the integration of an audio
module into high quality video transmission software.

The basic software is called UltraGrid [1], known as the first high quality
transmission software for real time and uncompressed data.

The objective of this project is to improve the software involved, making it a
complete multimedia software capable of working at the highest quality
available depending on the context requirements, for example transmitting a
real time opera from Liceu [2] to another theatre or using it for a
videoconference, having both, video and audio, but always being able to
choose one or both of them.

Here appear the project difficulties to solve, such as working at high audio
sample rates or which audio format suits better for any virtual conference,
among others and how to configure the whole audio module parameters. All
these problems need to achieve minimum quality or to ensure the high quality
possible of the equipment based, because of this is not the same to do the
transmission of a violinist from a theatre than a familiar videoconference. So, a
study of what quality, delay or bit rate suits better for every case will be required
to solve the main problem of the project, always trying to reach the real time
specifications and also being compatible with all hardware/devices used in the
scenario.

In high quality video/audio transmission appears a different concept that is not
doing only a face-to-face conference, like using Skype [3] . It is doing a room-to-
room conference, which is the main goal of UltraGrid. Those scenarios seem so
similar but have notable differences. For example, doing a face-to-face
conference there is no need to reach high quality in video or audio stream, while
the speakers could understand what they are watching and listening to, there is
no need to improve for more quality. But, if a room-to-room is being done, as
normal, the maximum quality available is required.

!
Fig. 7.1 Difference between face-to-face versus room-to-room

Audio module integration into high quality video transmission software 2

The example shown above explains graphically the differences between face-
to-face and room-to-room. For a face-to-face there is no need to transmit video
at high quality (FullHD [4]) and with a simple vocoder [5] the human voice is
quite fine understood. While transmitting a room-to-room media it requires as
much quality as possible, like transmitting 4K (4 times FullHD resolution) of
video resolution and an audio quality like Blu-Ray.

This bachelor thesis is organized in four main parts:

1. Introduction.
2. Review of the state of the art and description of the technical approach

deployed in this project.
3. Proposed solution and audio module generated.
4. Test, validation, conclusions and future works.

The introduction section is focussed on describe the problem description and
this short explanation of the organization of the project.

During the second part, a short concepts list related to this project are
described, concretely the European parent project, the basic concepts, the
software involved and the test scenario that is going to be used. Then the
technical approach deployed in this project will be described and will be helpful
in how to implement the required audio module, understanding the problem to
solve and its difficulties. This is how audio is digitized in capture side, treated,
transmitted, then received, processed and reproduced.

In the third section there is the proposed solution using the most generic option
to understand how audio module can be integrated into the other technologies
available and trying to be as much as compatible as it can be, showing the
problems that appears when trying to stream synchronous audio with video and
at real-time, and trying to solve more problems that will appear, like all projects
in development.

In the last part will be described three real scenarios where the project has been
tested and validated. Also the environmental impact, the conclusions of this
project, and then new research lines.

REVIEW OF THE STATE OF THE ART 3

CHAPTER 1. REVIEW OF THE STATE OF THE ART

This chapter is focused in the main concepts involved. Trying to give the
necessary information to understand the objective and purposes of the project.
Explaining the parent project, the concept of videoconferencing, high definition,
and digital sound and its treatment to process and transmit.

1.1 V3 Project

i2cat Foundation [6] has a research project called V3 [7] , which goal is to
develop a experimental super high-quality system platform, regardless the
display resolution, video and videoconference over advanced Internet networks.
Nowadays there is not any platform of video of 4K resolutions for the user, and
any platform of videoconference of high definition without compression
implemented with free code or open source.

1.2 Videoconference

A videoconference is enabled by a system that is able to transmit and receive
simultaneous and synchronous video and audio in real time between points that
are far from each other, through the network.

The videoconference systems and, in general, interactive systems, and have
strict requirements on time. One of the most important is the delay, which could
break the interactivity between users. If we want an interactive conversation, we
should have a delay of less than 150 ms (or 300 ms of RTT).

The goal of these systems is to enable an interactive communication between
each other, like people do it in a face-to-face way.

1.3 HDTV

When we talk about High Definition Television [8] , we have the goal to have a
better image than traditional analogue television. The quality and the clarity of
an image depend on the resolution. High definition signal is digital and its
aspect ratio is 16:9 rather than 4:3 in traditional television that offers a wide
display of pictures.

Audio module integration into high quality video transmission software 4

1.3.1 HD resolution

High Definition standard describes four different models depending on the
resolution of each image and the number of frames per second (fps). These are
the 1280x720 HDTV (Standard 720p) or HD Ready, the 1920x1080 HDTV
(Standards 1080p and 1080i) or Full HD and the 3840x2160 SHD. Their
progression are quadratic, in a way that the format SHD (Super High Definition)
and its equivalent in U.S 4k (2048x1080), represents four times the format Full
HD or its equivalent 2k (2048x1080), that at the same time represents almost 4
times the size of the traditional television PAL or NTSC.

Fig. 1.1 Display resolutions

1.3.2 HD frame rate and scan

Another important thing in video is the frame rate; the responsible of the
receiver brain perceives motion with static images. Frame rate is the number of
images displayed per second. Experimental studies prove that our visual
perception starts when viewing a movement displayed around 20 fps or more.
In video there are two ways of displaying images:

Progressive scanning (p): where each scan displays every line in the image
raster sequentially from top to bottom. Possible frame rate are 23.98 / 24 / 25 /
29.97 / 30 / 60 depending of the zone.

Interlaced scanning (i): where each scan displays alternate lines (even or odd
per field) in the image raster, and two complete scans are therefore required to

REVIEW OF THE STATE OF THE ART 5

display the entire image. Each scan is called field. Possible field rate are 50 /
59,94 / 60.

1.3.3 Colour encoding

A colour encoding is necessary for processing the image and then beeing able
to reproduce in other equipment. There are some theories about colour
encoding, which we only will explain a few aspects.

Usually RGB (Red, Green, and Blue) [9] encoding is used in electronic systems.
This system assigns an equal weight for the primary colours (red, green and
blue). With this encoding, it is possible to represent almost all visual colours in a
black background.

Another colour space is YUV. YUV [11] is a way of encoding RGB [10] that
offers some advantages. Firstly was thought for black and white compatibility,
because YUV differs between luma component (Y), the brightness (1.1), and
the chrominance (U and V), the colour. U is the difference between blue and
luma (1.2). V is the difference between red and luma (1.3).

Y = 0,299 R + 0,587 G + 0,114 B (1.1)
U = -0,147 R – 0,289 G + 0,436 (1.2)
B = 0,492 (B – Y) V = 0,614 R – 0,515 G – 0,100 B = 0,877 (R - Y) (1.3)

Fig. 1.2 Colour encoding possibilities

Since the human visual system is much more sensitive to variations in
brightness than colour, a video system can be optimized by devoting more
bandwidth to luma than to the colour difference components. In that sense,
appear the 4:2:2 schemes that require two-thirds of the RGB bandwidth. This
reduction results in almost no visual difference as perceived by the viewer. 4:2:2
are sometimes used in High Definition video.

Audio module integration into high quality video transmission software 6

1.3.4 HD bandwidth

The minimum bandwidth needed to assure that all the information can be
transmitted at the same speed that is generated with propose of assuring that
there will not be any kind of delay (no information stored). It can be calculated
using the following formula:

BW = height x width x bits/pixel x fps x (Y+U+V)/ 4

1.4 Digital Audio

First of all, to get introduced into the digital audio concepts, a short outline of
history is required to understand the context. Then, the basic concepts are
exposed.

1.4.1 History

In the electrical communications history, the first reason for sampling a signal
was to interlace samples from different telegraphy sources, and convey them
over a single telegraph cable. Telegraph time-division multiplexing (TDM) was
transmitted in an early age, in 1853 by Moses G. Farmer, an American inventor.

In 1903, the electrical engineer W. M. Minerused used an electro-mechanical
commutator for time-division multiplex of multiple telegraph signals, and also
applied this technology to telephony. He obtained intelligible speech from
channels sampled at a higher rate of 3500–4300 Hz; below this was
unsatisfactory. This was TDM, but used with pulse-amplitude modulation (PAM)
instead of PCM.

In 1926, Paul M. Rainey of Western Electric patented a facsimile machine,
which transmitted its signal with 5-bit PCM, encoded by an opto-mechanical
analog-to-digital converter. The machine wasn’t produced.

British engineer Alec Reeves, unconscious of the previous tasks, conceived the
use of PCM for voice communication in 1937 while he was working for
International Telephone and Telegraph in France. He explained the theory and
its advantages, but no practical use worked. Reeves filed for a French patent in
1938, and his U.S. patent was awarded in 1943.

The first transmission of speech by digital techniques was the SIGSALY
vocoder encryption equipment used for high-level Allied communications during
World War II from 1943. At this year, the Bell Labs researchers who designed
the SIGSALY system became conscious of the use of PCM binary coding as
already proposed Alec Reeves. In 1949, Ferranti Canada built a working PCM
radio system for the Canadian Navy's DATAR system, which was able to
transmit digitized radar data over long distances.

REVIEW OF THE STATE OF THE ART 7

PCM, in the late 1940s and early 1950s, also used a cathode-ray coding tube
with a plate electrode with encoding perforations. In the same way as using an
oscilloscope, the beam was swept horizontally at the sample rate while the
vertical deflection was controlled by the input analogue signal, causing the
beam to pass through higher or lower parts of the perforated plate.

The plate collected or passed the beam, causing current variations in binary
code, one bit at a time. Rather than natural binary, the grid of Goodall's later
tube was perforated to produce a glitch-free Gray code, and produced all bits
simultaneously by using a fan beam instead of a scanning beam.

The National Inventors Hall of Fame has honoured Bernard M. Oliver and
Claude Shannon as the inventors of PCM, as described in 'Communication
System Employing Pulse Code Modulation', U.S. Patent 2,801,281
(http://www.google.com/patents?vid=2801281) presented in 1946 and 1952 and
awarded in 1956. Another patent by the same title was filed by John R. Pierce
in 1945, and issued in 1948: U.S. Patent 2,437,707
(http://www.google.com/patents?vid=2437707). All of them published "The
Philosophy of PCM" in 1948. [14]

Furthermore, pulse-code modulation (PCM) was used in Japan by Denon in
1972 for the mastering and production of analogue phonograph records, using a
2-inch quadruplex-format videotape recorder for its transport, but this was not
used as a consumer product.

1.4.2 PCM/RAW, DPCM/DM/ADPCM/SND Formats
 & Speech companding

Pulse Code Modulation (PCM), developed in 1939, is a standard method for
digitizing analogue audio signals. This format is an uncompressed, raw bit
stream, linear (transmitted in a linear series meaning that the stream of the
signal is sequential rather than random, the amplitude of both the of the input
stream and output stream remain at a fixed ratio and a sinusoidal wave input
source will result in a sinusoidal wave output signal at the same frequency),
signed two’s complement, fixed point encoded data file.

A PCM encoder (ADC) may sample analogue sound from 8,000 times per
second (8 KHz) and use 8-bits to represent each sample. It is usually used at
44.1 KHz and 16-bit resolution to match CD Audio standards, and can encode
at 96 KHz and 24-bit approximately, it will also depend on the device. The
procedure uses only two alternating pulse values (1 and 0) duplicating binary
code.

This codec makes a raw (RAW) data file (no header or footer information
describing sample rate, sample resolution, monaural or stereo) and provides us
with only 256 possible amplitude values (based on 8-bit binary numbering).
When the codec is set to sample at the Audio CD level at 44.1 KHZ sample rate

Audio module integration into high quality video transmission software 8

(44,100 samples per second), with 16-bit resolution per sample (65,536
possible amplitude levels), this results in a file that requires 1,411 Kbps (kilobits
per second, or 1.4MB) bit rate for the representation/playback of one second of
stereo music. This result is obtained with the following formula:

Throughput (Bytes/s) = (sampling rate) x (bit depth) x (number of channels) / 8

DPCM, Differential Pulse Code Modulation, is a PCM codec that limits the
amplitude difference between samples in order to improve data transmission
efficiency. DPCM accomplishes this by predicting the next value after a sample
and then encodes the difference between the predicted value and the actual
value. SND can sometimes be a header less format. PCM digital sampling
requires very active and accurate cut-off filters (“brick wall filter”) in order to
block a signal in excess of half the sampling frequency (Nyquist theorem [15]).

Delta Modulation is related to DPCM. However, DM uses a low quantization
rate to indicate the slope of the amplitude of the signal (direction) so the
prediction by DPCM will be more accurate.

1.4.2.1 Speech Companding

Logarithmic quantization of analog signal, as opposed to linear encoding, is also
known as companding [16].

Companding is simply a system in which information is first compressed,
transmitted through a bandwidth-limited channel, and expanded at the receiving
end. It is frequently used to reduce the bandwidth requirements for transmitting
telephone quality speech, by reducing the 13-bit codewords to 8-bit codewords.
Two international standards for encoding signal data to 8-bit codes are A-law
and µ-law. A- law is the accepted European standard, while µ-law is the
accepted standard in the United States and Japan. This system is described by
international standard G.711 [17].

Where circuit costs are high and loss of voice quality is acceptable, it
sometimes makes sense to compress the voice signal even further. An ADPCM
algorithm is used to map a series of 8-bit !-law or A-law PCM samples into a
series of 4-bit ADPCM samples. In this way, the capacity of the line is doubled.
The technique is detailed in the G.726 standard [18].

The human auditory system is believed to be a logarithmic process in which
high amplitude sounds do not require the same resolution as low amplitude
sounds. The human ear is more sensitive to quantization noise in small signals
than large signals. A-law and µ-law coding apply a logarithmic quantization
function to adjust the data resolution in proportion to the level of the input signal.
Smaller signals are represented with greater precision – more data bits – than
larger signals. The result is fewer bits per sample to maintain an audible signal-
to-noise ratio (SNR).

REVIEW OF THE STATE OF THE ART 9

Rather than taking the logarithm of the linear input data directly, which can be
computationally difficult, A- law/µ-law PCM matches the logarithmic curve with a
piece-wise linear approximation. Eight straight-line segments along the curve
produce a close approximation to the logarithm function. Each segment is
known as a chord. Within each chord, the piece-wise linear approximation is
divided into equally size quantization intervals called steps. The step size
between adjacent codewords is doubled in each succeeding chord. Also
encoded is the sign bit for the original integer. The result is an 8-bit logarithmic
code composed of a 1-bit sign bit, a 3-bit chord, and a 4-bit step.

The sound file is also characterized by how many channels (mono or stereo)
there are. Usually all signals eventually are combined into a single bit stream
and are interleaved with each other (placed as follows in stereo mode:
…LRLRLR..., where L is the left channel and R is de right channel).

For more information about speech companding refered to A- law/µ-law see
ANNEX A.

PCM streams have two basic properties that determine their fidelity to the
original analog signal: the sampling rate, which is the number of times per
second that samples are taken; and the bit depth, which determines the number
of possible digital values that each sample can take.

1.4.3 Sample rate and bits per sample

To enable computers and hard disk recorders to capture sounds, those sounds
must be digitized. Digitized audio consists on a series of individual fixed frames
that are interpreted by our brains as a continuous signal, many "snapshots" that
we hear as continuous sound.

1.4.3.1 Sample rate

The frequency in which these audio snapshots are taken is referred to as the
sample rate. The more snapshots are taken, the more detailed is the sound.
These pictures illustrate how sampling works:

In Fig. 1.5 is showed a sine wave with a frequency of one cycle per second. Fig.
1.3 represents the sample rate; in this case six samples per second, or 6Hz.

Fig. 1.5 Sine wave Fig. 1.3 Low sample rate Fig. 1.4 Resulting waveform

Audio module integration into high quality video transmission software 10

Each red line represents a snapshot of the sine wave at that single moment in
time. Combining the snapshots appears Fig. 1.4.
There's not much resemblance to a sine wave. In fact, increasing the frequency
of these waveforms to an audible pitch, the tonal difference would be amazing;
the sine wave would be soft and dull, while Fig. 1.4 waveform would sound
bright and piercing.
To get a better representation of a sine wave, appears the need to increase the
sample rate. Changing the rate from 6Hz to 10Hz, is noticed a much better
result:

Obviously, the more samples per second, the more the resulting waveform
resembles the original.
In the world of digital audio recording, the most common sample rates are
44.1kHz and 48kHz; both significantly faster than the examples above.
On the golden edge of digital recording, sample rates of 96kHz-192kHz are
beginning to appear. The higher the sample rate is, the greater the bandwidth or
frequency responses.
In addition to the higher cost of fast converters, it is also important to consider
the high cost of memory and disk space. A sound sampled at a rate of 192kHz
will need four times more disk space as that same sound sampled at 48kHz.

1.4.3.2 Bit depth (bits per sample)

The other part of the digital audio equation is bit depth. Much like the sample
rate defines the frequency response as it divides up the horizontal axis of the
waveform, the bit depth defines the dynamic range of the sound as it describes
the amplitude of the waveform at each sample point.
8-bit audio provides 256 separate levels for each sample. 16-bit audio provides
up to 65,536 levels, and 24-bit samples gives 16.7 million different levels.

Fig. 1.6 Higher sample rate Fig. 1.7 Resulting waveform

Fig. 1.9 Low bit depth Fig. 1.8 Higher bit depth

REVIEW OF THE STATE OF THE ART 11

Fig. 1.9 has twice the sample rate described in Fig. 1.6. This is because the low
bit depth offers very little in terms of dynamic resolution. The higher bit depth
shown in Fig. 1.9 results in significantly improved waveform resolution.
Higher sampling rates allow a digital recording to accurately record higher
frequencies of sound. The sampling rate should be at least twice the highest
frequency you want to represent (as the Nyquist theorem demonstrates).

Humans can't hear frequencies above about 20,000 Hz, so 44,100 Hz was
chosen as the rates for audio CDs to just include all human frequencies.
Sample rates of 96 and 192 KHz are starting to become more common,
particularly in DVD-Audio, but many people honestly can't hear the difference.
Nowadays, in digital audio the most common sampling rates are 44.1 kHz,
48 kHz, and 96 kHz. A more complete list is shown in ANNEX B.

Since now we know how audio can be digitally generated and processed, but
not how it should be transmitted into network, like internet.

1.5 Streaming: audio and video conference

To stream video and audio data is mandatory the use of an Internet protocol
that suits the real time specifications. The best-known protocol is RTP [19].

The Real-time Transport Protocol (RTP) defines a standardized packet format
for delivering audio and video over IP networks. RTP is used extensively in
communication and entertainment systems that involve streaming media, such
as telephony, video teleconference applications and web-based push-to-talk
features.

RTP is used in conjunction with the RTP Control Protocol (RTCP). While RTP
carries the media streams (e.g., audio and video), RTCP is used to monitor
transmission statistics and quality of service (QoS) and aids synchronization of
multiple streams. When both protocols are used in conjunction, RTP is
originated and received on even port numbers and the associated RTCP
communication uses the next higher odd port number.

It is one of the technical foundations of Voice over IP and in this context is often
used in conjunction with a signalling protocol that assists in setting up
connections across the network. RTP was developed by the Audio-Video
Transport Working Group of the Internet Engineering Task Force (IETF) and
first published in 1996 as RFC 1889, superseded by RFC 3550 in 2003.

If both audio and video media are used in a conference, they are transmitted as
separate RTP sessions. RTP and RTCP packets are transmitted for each
medium using two different UDP port pairs and/or multicast addresses. There is
no direct coupling at the RTP level between the audio and video sessions,
except that a user participating in both sessions should use the same
distinguished (canonical) name in the RTCP packets for both so that the
sessions can be associated.

Audio module integration into high quality video transmission software 12

One motivation for this separation is to allow some participants in the
conference to receive only one medium if they choose. Despite the separation,
synchronized playback of a source's audio and video can be achieved using
timing information carried in the RTCP packets for both sessions.

The RTP header definition, as the RFC 3550 defines, per packet is:

Table 1.1 RTP header

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V P X CC M PT Sequence Number
Timestamp

SSRC
CSRC [0..15] :::

Where:

V: Version. Defines the RFC version of the RTP packet header (usually V=2).
P: Padding. If set, this packet contains one or more additional padding bytes at
the end which are not part of the payload.
X: eXtension. If set, the fixed header is followed by exactly one header
extension.
CC: CSRC Count. The number of CSRC identifiers that follow the fixed header.
M: Marker. The interpretation of the marker is defined by a profile. It is intended
to allow significant events such as frame boundaries to be marked in the packet
stream.
PT: Payload Type. Identifies the format of the RTP payload and determines its
interpretation by the application. A profile specifies a default static mapping of
payload type codes to payload formats. Additional payload type codes may be
defined dynamically through non-RTP means. An RTP sender emits a single
RTP payload type at any given time; this field is not intended for multiplexing
separate media streams. See ANNEX C for a complete list of payload types.

Sequence Number: The sequence number increments by one for each RTP
data packet sent, and may be used by the receiver to detect packet loss and to
restore packet sequence.

Timestamp: The timestamp reflects the sampling instant of the first octet in the
RTP data packet. As an example, for fixed-rate audio the timestamp clock
would likely increment by one for each sampling period. If an audio application
reads blocks covering 160 sampling periods from the input device, the
timestamp would be increased by 160 for each such block, regardless of
whether the block is transmitted in a packet or dropped as silent.

SSRC, Synchronization source: Identifies the synchronization source.

REVIEW OF THE STATE OF THE ART 13

CSRC, Contributing source: An array of 0 to 15 CSRC elements identifying
the contributing sources for the payload contained in this packet. For example,
for audio packets the SSRC identifiers of all sources that were mixed together
to create a packet are listed, allowing correct talker indication at the receiver.

Based on RFC 3550 recommendation, the packet header is not extended and
additional payload header is defined.

For video transmission, UltraGrid implements RFC 4175 [20]; RTP Payload
Format for Uncompressed Video definition, that is identified with payload type
96 into the RTP header when transmitting video data in UltraGrid. For example,
if two lines of video are encapsulated, the payload format will be as shown in
Fig. 1.10

!
Fig. 1.10 RTP payload format showing two (partial) lines of video

This RFC specifies a packetization scheme for encapsulating uncompressed
video into a payload format for the Real-time Transport Protocol, RTP. It
supports a range of standard and high-definition video formats, including
common television formats such as ITU BT.601, and standards from the Society
of Motion Picture and Television Engineers (SMPTE), such as SMPTE 274M
and SMPTE 296M. The format is designed to be applicable and extensible to
new video formats as they are developed.

When transmitting audio streams, the payload type is defined with number 97.
Also, as a dynamic payload type (like 96), it permits a non-official and dynamic
payload header definition.

But, in that case, for audio data is not used any type of standard, or RFC, to
define the payload header. The payload format is as shown in next table:

Audio module integration into high quality video transmission software 14

Table 1.2 RTP dynamic payload header for audio data

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
V P X CC M PT Sequence Number

Timestamp
SSRC

CSRC [0..15] :::

Position Lenght (data’s)

Start Sample Buffer Size

Start Channel Padding

The reason of using that kind of payload format is to be as adapted as possible
into standards that takes the definition of embedded audio data, and its
structure, into HD-SDI video standards.

The HD serial interfaces provide for 16 channels of embedded audio. The
interface uses the SMPTE 299M standard. In that case, an SDI signal may
contain up to sixteen audio channels (8 pairs) embedded at 48 kHz, 24-bit audio
channels along with the video. Typically, 48 kHz, 24-bit PCM audio is stored, in
a manner directly compatible with the AES3 digital audio interface.

Next figure shows how the SMPTE HDTV standards combine:

!
Fig. 1.11 SMPTE HD-TV Standards combination

REVIEW OF THE STATE OF THE ART 15

1.6 Operating System (O.S.)

The entire environment is based on Linux [30] and some previous aspects must
be known in advance, helping to understand how is treated audio in the O.S.

The global framework in Linux, that is not transparent to the user, is similar to
the others UNIX Systems. Almost all the components of the system can be
seen as file shape. This paradigm is applied to all the system, from the
interaction with the hard system to the kernel tuning.

Linux Kernel [31] is the core of Linux system. Technically, Linux is the kernel,
and the rest of the system is a set of applications that has not relation with the
kernel. Because of it, it is also called GNU/Linux. The kernel offers an interface
for the hardware and it is the responsible of the control of all processes that are
running on the machine. In the kernel are loaded all the drivers of the system,
the network stack, and parameters related to the processor, memory, buses,
etc.

!
Fig. 1.12 The fundamental architecture of the GNU\Linux operating system

At the top there is the user, or application, layer. This is where the user
applications are executed. Below the user space there is the kernel space.
Here, the Linux kernel works.

There is also the GNU C Library (glibc). This provides the system call interface
that connects to the kernel and provides the mechanism to transition between
the user-space application and the kernel. This is important because the kernel
and user application occupy different protected address spaces. And while each
user-space process occupies its own virtual address space, the kernel occupies
a single address space.

Kernel features and drivers can stay on the kernel as built-in or as a module.
When features are built-in always are loaded in the kernel and consume

10 Performance and enhancement for HD videoconference environment

1.4.1 Linux kernel Introduction

Linux Kernel is the core of Linux system. Technically, Linux is the kernel, and
the rest of the system is a set of applications that it has not relation with the
kernel. Because of it, also it is called GNU/Linux. The kernel offers an interface
for the hardware and it is the responsible of the control of all processes that are
running on the machine. In the kernel are loaded all the drivers of the system,
the network stack, and parameters related to the processor, memory, buses,
etc.

Fig 1.5 The fundamental architecture of the GNU/Linux operating system.
Source [8]

At the top there is the user, or application, layer. This is where the user
applications are executed. Below the user space there is the kernel space.
Here, the Linux kernel works.

There is also the GNU C Library (glibc). This provides the system call interface
that connects to the kernel and provides the mechanism to transition between
the user-space application and the kernel. This is important because the kernel
and user application occupy different protected address spaces. And while each
user-space process occupies its own virtual address space, the kernel occupies
a single address space.

Kernel features and drivers can stay on the kernel as built-in or as a module.
When features are built-in always are loaded in the kernel and consume
memory and increase the size of the kernel. Otherwise if features and drivers
are loaded as modules they should be load a runtime for doing its purpose.
Both options are good because the first one gives speed and robustness and
the second one give more flexibility to the system because drivers loaded only
when are needed or used.

Audio module integration into high quality video transmission software 16

memory and increase the size of the kernel. Otherwise if features and drivers
are loaded as modules they should be load a runtime for doing its purpose.
Both options are good because the first one gives speed and robustness and
the second one give more flexibility to the system because drivers loaded only
when are needed or used.

Since GNU/Linux exists there have been released so many distributions, UNIX-
like operating systems built on top of the Linux kernel, of which can be
distinguished between commercially-backed distributions, such as Fedora (Red
Hat), openSUSE (Novell), Ubuntu (Canonical Ltd.), and Mandriva Linux
(Mandriva), and entirely community-driven distributions, such as Debian and
Gentoo.

Ubuntu is the current operating system used in this project, but some
modifications from the original fresh installation have to be done if we want a
complete environment working with audio, UltraGrid and all devices needed, as
explained in ANNEX D that has been developed while working at i2cat.

DESCRIPTION OF THE TECHNICAL APPROACH 17

CHAPTER 2. DESCRIPTION OF THE TECHNICAL
APPROACH

2.1 Objectives

The objectives of this chapter are to focalize the context of the technologies
available to work to, as will be shown in the test scenario part. Also, to
understand a little better the software UltraGrid for implementing the audio
module, and how we will go from its initial state to the final state with the audio
module working properly. All of these steps will require the explanation of how
works the audio architecture in GNU/Linux too, and especially how will be
configured in Ubuntu O.S.

Also, some examples, with basic problems of the project, will be exposed during
this chapter to understanding better the whole objectives to reach.

2.2 The Test Scenario

This part is trying to explain, also graphically, the test scenario and how it will be
developed to reach goals. First of all, is described the basic specifications of the
professional audio/video capture cards related to the context scenario, to work
with. After this, is shown the basic and initial scenario, only with one audio
option that didn’t work fine at this point, having to be solved. This option
became from the XenaHS [21] library implemented in UltraGrid at the
beginning, and depending of its professional audio/video capture card. Next
scenario is focused in the implementation of different audio/video options, since
having the option to choose from different audio sources to which format suits
better into the conference context.

2.2.1 Sound capturers

2.2.1.1 XenaHS Device

This is the first capture device introduced in the project scenario with AES/EBU
audio inputs and outputs; 15-pin D-connector one female 15-pin D-connector is
provided for six channels of AES/EBU inputs and outputs. The connector
attaches to a six-XLR breakout cable supplied with the XenaHS card module.
XenaHS AES/EBU audio is 24 Bit/48Khz. All AES inputs support asynchronous
audio at 32-96Khz.
In the project it is used capturing the audio from a Shure microphone into an
audio mixer (also it could be required for mixing more audio sources) and
digitalizing it into an AD converter, then, with two (stereo mode) of the 15-pin D-
connector one female 15-pin D-connector, it is processed to XenaHS capture
card.

Audio module integration into high quality video transmission software 18

2.2.1.2 DeckLink Blackmagic

This capture card was introduced later. The principal reason is that it has more
input options for video sources, like HD-SDI and HDMI.

About the sound in DeckLink [22] Studio, it features a massive 4 channels of
balanced professional analog audio in and out, as well as 2 channels of
AES/EBU digital audio in and out, for broadcast quality and sample accurate AV
sync. DeckLink Studio also includes a sample rate converter on the AES/EBU
input. When working with multi channel audio, DeckLink Studio can switch it's
analog audio output 3 and 4 to AES/EBU digital audio outputs. That means you
get an extra 2 digital audio output for a total of 6 channels of AES/EBU digital
audio out! DeckLink Studio is perfect for 5.1 surround sound editing and multi
language digital audio monitoring. But for now, it is only implemented into
UltraGrid for capturing audio embedded from HDMI or HD-SDI sources.

2.2.1.3 Intel HD Soundcard

To have the choice of where the audio comes from into the same computer
appears the option for using the integrated (or any special computer sound
card) computer sound card. The scenario works with the Intel HD Audio cards
[23].

Intel HD Audio delivers significant improvements over previous generation
integrated audio and sound cards. The Intel HD Audio specification delivers the
features needed for an improved audio experience.

Intel HD Audio is capable of delivering the support and sound quality for up to
eight channels at 192kHz/32-bit quality, while the previous devices specification
can only support six channels at 48 kHz/20-bit. In addition, Intel HD Audio is
architected to prevent the occasional glitches or pops that other audio solutions
can have by providing dedicated system bandwidth for critical audio functions.

That specifications make Intel HD Audio a good option to reach the professional
level of the other capture cards listed above, and making it possible to be
compatible with other capturer cards format.

One motivation to use integrated sound cards like that is to not depend from the
fabricant libraries available for implementing the audio module into UltraGrid,
but also to have the security that with a generic sound card there will be more
options to format the audio stream, like sample rate or sample format.

2.2.2 Scenarios

The initial scenario is only prepared to work to one network direction (one
computer can only be transmitter or receiver) as shown in the following figure:

DESCRIPTION OF THE TECHNICAL APPROACH 19

!
Fig. 2.1 Initial scenario

The initial implemented sound option was using the same professional capture
card, XenaHS, and with its fabricant libraries. It worked at 48kHz, at 32 bits per
sample (24bits per sample + 8 padding bits), and up to 6 channels.

!
Fig. 2.2 Intermediate scenario with first audio option

1GE or 10GE link

HDMI

DVI

HD-SDI

1080

1920

AJA - component
to HD-SDI

SuperMicro

XENAHS

SuperMicro
XENAHS

DoRemi - HD-SDI to DVI

TX RX

10
80

1920

AJA - component
to HD-SDISuperMicro

XENAHS

SuperMicro
XENAHS

DoRemi - HD-SDI to DVI

TXRX

INITIAL SCENARIO - HD-SDI VIDEO TRANSMISSION in ONE DIRECTION

Component - RGB

HDMI

DVI

HD-SDI

Component - RGB

Canon

Jack

1080

1920

XENA to XENA - HD-SDI VIDEO TRANSMISSION with AUDIO XENAHS embedded

AJA - component to
HD-SDI XENAHS XENAHS

SuperMicro SuperMicro

DoRemi - HD-
SDI to DVI

TX RX

Audio Mixer
AD Converter

AD Converter

SHURE microphone

Prof. - Headphones1GE or 10GE link

Audio module integration into high quality video transmission software 20

The two scenarios shown need so many devices to work with XenaHS and only
work in one network direction. Becoming a so expensive scenario. But having a
quite list of options to transmit audio, from one channel input to six.
It is a good option to capture high definition data, for example from a theatre,
and to transmit it to another theatre like cinema projection.

The scenario that is wanted to reach spans more options and can even be less
expensive.

To reach the goal of having in a same computer the trasmission and reception
appears the need to have faster CPUs and GPUs, and having to adapt the
throughput for the network bandwith to reach a bidirectionall link (FullDuplex).
This is done replacing the SuperMicros with an ASUS [24] motherboard that
reaches 3GHz of sample clock and integrating it with an Nvidia [25] GPU. Also
this motherboard integrates the Intel HD SoundCard.

!
Fig. 2.3 Final scenario with Blackmagic card

This scenario can also have the option of chosing from audio embedded from
the camera or from the headphones connected to the HD Intel Sound Card.

This final scenario doesn’t take care about the initial scenario, but, as it is raised
in the project objectives, there will be the option to work with it as shown in next
chapters.

Now, introducing how UltraGrid works will help to understand better how the
audio module implementation will be possible.

TX

ASUS

PC Headphones

10
80

1920

FINAL SCENARIO - HD-SDI VIDEO TRANSMISSION in BOTH DIRECTION at same time

1GE or 10GE link

HDMI

DVI

HD-SDI

Component - RGB

Jack

RX
AJA - component to
HD-SDI Blackmagic

ASUS

PC Headphones

1080

1920

AJA - component to
HD-SDIBlackmagic

RX

TX

DESCRIPTION OF THE TECHNICAL APPROACH 21

2.3 UltraGrid

UltraGrid, the software involved in the whole project, is a high definition (HD)
video conferencing and distribution system. It is also considered the first system
capable of supporting uncompressed gigabit rate high definition video over IP.
In fact, an UltraGrid node converts SMPTE 292M high-definition video signals
into RTP/UDP/IP packets, which can be distributed across an IP network
reaching transmission rates until 1.5 Gbps. This application is very useful for
videoconference in high definition because only introduce transmission delay,
doing null the encoding delay. In this way, we obtain a quality almost perfect
and a resolution (like digital cinema) higher than present videoconference
systems.

UltraGrid is a software Open Source initially developed by the ISI EAST [12]
with the main goal to stress network launching a flow of only video of high
quality (HD) without compressing, in order to provoke congestion. This software
has double function capture / display and transmitter / receiver,
correspondingly. Therefore, it takes video on real-time and packs it in IP
datagram to be sent over network. In reception, it made opposite work,
receiving, unpacking and retrieving HD-SDI signal for any device that can
understand it. It can work like a tunnel SMPTE input and SMPTE output though
the IP network.

This software is very modular and it is possible to add new features only adding
the appropriate modules.

Until now and during the V3 project the next modules have already been
developed:

- XenaHS module: this module works with the professional audio/video
capture device.

- SAGE module: module that does an interface between UltraGrid and

SAGE [28] for visualizing high definition streams on a title display.

- Module DV [26] (Digital Video): standard transmission and reception, with

audio embedded. With this feature we can do a videoconference with a
format more lightly for the network (around 30 Mbps [27]).

- Blackmagic DeckLink capture module, with audio embedded.

This project has the objective to add the module that gives the functionality to
interact with the embedded audio captured, from the different devices
described, and to generate a capture independent interface of audio data,
directly from any audio card computer, such as a sound display that should be
able to work with all the audio data received.

Audio module integration into high quality video transmission software 22

When having a video throughput of 1GB appears the motivation of
optimize/reduce the data generated if audio stream is also generated:

2.3.1 Total generated bandwidth (case of use)

The bandwidth used in an UltraGrid transmission depends on the dimensions of
the frame (height and width), the bits per pixel, the frames per second and the
format of the pixel byte (UG uses YUV):

BW = height x width x bits/pixel x fps x (Y+U+V)/ 4

Transmitting a fullHD stream in NTSC mode with 8 bits per pixel and a 4:2:2
YUV format, the maximum rate achieved is:

 BWfullHD = 1920 x 1080 x 8 x 29,97 x (4 + 2 + 2) / 4 = 948,27 Mbps

So, this video mode conference is reaching the 1GB Ethernet bandwidth.
This situation shows one of the problems of transmitting uncompressed video
data, because if there is the need to transmit an audio stream with PCM in a
notable quality, the rate will exceed the bandwidth becoming into a congestion
situation.
To understand better this situation lets generate a stream in the same standard
NTSC. And, for example, transmitting PCM at 48kHz with 16bits per sample
and stereo mode:

BWaudioCDlikeQuality = 48000 x 16 x 2 = 1,46 Mbps

Both streams are transmitted, so:

BWTOTAL = BWfullHD + BWaudioCDlikeQuality = 0,92 Gbps

This generates a congestion situation that makes the whole system not working
properly. Also there have to be added headers data from RTP packets, UDP
packets and IP, and its stream payload headers, reaching up to 1Gbps everey
time that an audio packet is transmitted (as a peak value).

Introduced UltraGrid, let’s explain how it is its initial state and how will be
implemented the audio module.

2.3.2 Initial state

The initial state of the audio module in the UltraGrid software was made for the
capture in XenaHS device, that generates samples at 48000Hz, 32bits per
sample and stereo mode (in fact transmits six channels, that only two of them
are in use). So, at the beginning there is not a stable scenario when transmitting
into a 1GB Ethernet.

DESCRIPTION OF THE TECHNICAL APPROACH 23

In order to use XenaHS Device for the HD videoconference System, an external
software for the audio transmission called “Robust Audio Tool” RAT [29] was
used, as there was not an integrated stable version.

To understand faster how UltraGrid works, some UML (Unified Modeling
Language) graphs are shown in ANNEX E.

With the UML shown is done an internal view of how whole internal loop was
initial generated into UltraGrid.

Since now, as a result of other projects developed at i2cat, there have been
done some improvements into the code that take into account buffer adaptation
(with the video resolution and other purposes), video compression and the
developed VBCC (Video Based Congestion Control).

These improvements shows the importance of how audio should be processed
with video, that is audio stream should be processed as separated as it could
be done from video stream because of the video treatment should not affect
audio stream and its different treatment, and vice versa. Trying to maintain the
sources synchronization.

2.3.3 Audio implementation

To implement an audio module, the best option is to create a device like done
with XenaHS or Blackmagic, but only for audio stream. It should have three
modes of interaction with video modules as shown in next high abstraction
programme order execution figure:

Audio module integration into high quality video transmission software 24

Fig. 2.4 Capture side high abstraction diagram

Those diagrams take into account the different cases of use of audio and video
streams interaction. The first (left) is with no sound and only video transmission,
like at the initial scenario with typical usage. The second case is with only audio
streaming and the last case is transmitting both medias.

Fig. 2.5 Receive side high abstraction diagram

Input

Video only Audio only Video &
Audio

Normal
execution

adaptation

Transmit

RTP

Adaptation

Compression

Transmit

RTP

Compression

Audio Video

Network

Network
Network

Receive
RTP

Re-Adaptation

De-Compression

Display/Reproduction

Audio Video

Network

DESCRIPTION OF THE TECHNICAL APPROACH 25

At reception side the streams are processed as normal. But if there is not one of
both sources it does not affect the display/playout of the received media
because if one media is not received it is not processed.

Here appears a synchronization contradiction because of if the synchronization
is done with video source audio depends on it. But it can be solved, like will be
explained in audio implementation chapter.

2.4 Linux Sound

Arriving at this point is required to understand how digital audio is treated in the
Linux kernel and how it should be processed correctly for it to make the whole
project work stable. Finally will be choosed the architecture that best suites.

This point is trying to explain how kernel should work with audio and, starting
from the lower-level architecture explanation, it will show which of the
architectures available will be chose for the main project.

2.4.1 Buffering

It is not useful to produce sound samples at the exactly rate required by the
computer’s audio hardware. If it is required to produce sound at CD quality, and
the computer must be interrupted every 20us or a similar frequency of time to
produce the next sample, the associated overhead would be unacceptably large
and few of the required time to do the task would be spent in useful
computation. For this reason, without exception, the computers’ general
purpose is to maintain a buffer for the input and output of sound samples.
Buffers that preserve the order in which data is added are known as FIFO (First
In First Out) buffers or queues.

Fig. 2.6 illustrate the important concepts.

Fig. 2.6 A FIFO Buffer or Queue

Audio module integration into high quality video transmission software 26

As audio samples are generated by the application, they are added at the end
of the queue, and the quantity of data gets increased.

In normal usage, a buffer suggests that unit of preallocated system resource is
used to store the data with a consequent compile or run-time limit imposed on
the maximum quantity of data which can be stored, as it has been configured.
This is the case in most computer sound systems. A queue, on the other hand,
suggests a dynamic structure that expands indefinitely until system resources
are unavailable. One would tend to refer to a “sound buffer”, but to a “print
queue”.

The buffered data is allowed to grow without any action being taken by the
audio hardware until the data reaches the low-water mark. The low water mark
is set by the system administrator and the application program to a level that,
once reached, is really possible that the data in the buffer will be enough to
ensure a continuous stream of samples delivered to the sound hardware, even
if there are changes from time to time in the performance of the sound
generating program.

Setting the lowest possible low-water mark means that sound generation will
begin very quickly after the first audio samples become available, but there can
be interruptions in the audio output if there are brief pauses in program
execution. This is known as glitch effect, and for human ear is really notorious.
This also can be a consequence, at network level, of packet lost and packet
disorder.

Configuring a high low-water mark means that there may be a noticeable
latency between samples generated by the application and sound produced
from the computer. It also means that even if the system becomes heavily
loaded and the program stalls for a considerable period, samples will be
available to produce uninterrupted sound, becoming a glitch-free stream.

The application program is allowed, within limits, to choose the high and low-
watermarks to adjust the performance of the sound subsystem. For example, a
mail program which uses an audio queue to alert the user from an incoming
mail will be unconcerned by latency and set a high low-water mark to ensure
continuous playback under any circumstances, whereas a synthesizer program
which generates sounds in response to key presses on a MIDI keyboard needs
to make sure that the corresponding sound is emitted almost instantly, and will
set a low low-water mark.

The concept of the high-water mark is less important in the context of a
computer sound system, where the client program and the sound output device
are almost always tightly coupled. If the buffer fills beyond the high-water mark,
the sound subsystem may instruct the client application to cease the production
of samples until the level of samples in the buffer falls below the high-water
mark once again. The high-water mark is important in certain networking
environments, where it might take some time for a “stop transmission”
instruction to reach the source and there must be enough free space in the

DESCRIPTION OF THE TECHNICAL APPROACH 27

buffer to store information arriving after the stop instruction has been sent out if
data loss has to be avoided.

However, this is not a relevant problem in a computer music system, because
the application program is either running on the same computer as the sound
hardware, or it is protected from the overrun problems by the operating
system’s data transport layer. Consequently, the high-water mark is almost
always the same as the buffer size.

2.4.2 Kernel’s job

If it were necessary to manipulate the sound hardware directly, every
application would be required to understand the internal working of every piece
of the sound hardware in any computer system. This would make the code
unwieldy and difficult to maintain. It is the kernel’s job to provide a degree of
hardware abstraction, which says that all application programs may access to
the same interface regardless of the installed hardware.

Now there is introduced the concepts of working with the lower-level
architecture in Linux, and the known first sound hardware abstraction layer,
called Open Sound System (OSS) [32] interface. This is done to understand
how next audio architectures work.

2.4.3 Generic OSS functionality

OSS provides a number of devices that the application should address. What is
of the most interest is the primary audio device /dev/audio. The system calls
open(2), close(2), read(2) and write(2) permit the sound hardware to emit sound
samples generated by an application, or to make available sound samples to be
read by the application.

Unfortunately, reading and writing data between an application and a soundcard
can be far more difficult than reading and writing a regular file. Consequently,
several extra facilities are available to manipulate the behavior of the sound
hardware via the ioctl(2) system call. This interface permits the setting and
reading of parameters such as:

Sound hardware capabilities: request how many channels to work with is the
sound hardware capable of recording and reproducing and what are the
maximum and minimum sample rates.

Setting the hardware sample rate: requests a particular sample rate from the
sound card.

Setting the number of channels: requests treating data as interleaved
samples from or to a number of channels.

Audio module integration into high quality video transmission software 28

Requesting status information: request the current status of the sound card,
as well as how many samples have been played or recorded since the device
was opened.

Input/output buffer parameter manipulation: sets the total size and fragment
size (effectively the low-water mark) of the audio buffers.

2.4.4 Generating high and low-water marks with OSS

OSS does not implement high and low-water marks directly, but it does permit
the buffer to be divided into a number of fragments. This effectively permits the
setting of a low-water mark because no output will occur before there is at least
one full fragment in the buffer. For reasons about the implementation, the size
of each fragment must be a power of 2.

Consider the buffer layout shown in Fig. 2.7.

!
Fig. 2.7 Three fragments buffer sound

2.4.5 Client/Server Approach - Sound Daemons

The kernel provides a consistent interface for Unix applications to communicate
with sound hardware, but problems arise when more than one application
wishes to make sound at the same time. Generally, the act of opening the
sound device locks out other applications from using it. As indicated in Fig 2.8,
the first application to grab the sound device takes the control and may cause
other applications to run without sound output, or even fail to start at all. The
OSS interface defines a mixer device, but this is intended to mix a single sound
source from the samples sent to the sound card with other sound sources
available from the hardware such as CD/DVD audio, MIDI synthesizer outputs
and so on. It will not mix different sample streams from multiple client
applications.

As next figures indicate, there are two popular options to solve this problem.
Remember when talking about operating system and basic architecture of
GNU/Linux O.S.

DESCRIPTION OF THE TECHNICAL APPROACH 29

!
Fig. 2.8 Direct acces to devices. Little complexity on Kernel model.

!
Fig. 2.9 Kernel complexity increase. Multiple connections via Kernel.

Audio module integration into high quality video transmission software 30

!
Fig. 2.10 Multi-stream access via Sound Daemon.

Some platforms provide kernel support for sound devices that can be opened
by multiple applications (such as ALSA [33], the Advanced Linux Sound
Architecture, Fig. 2.9).

Alternatively, a user-space program (like ESD [34], the Enlightened Sound
Daemon, originally associated with the Enlightenment window manager or
PulseAudio [35], used in the newer Ubuntu versions) can be run to act as a
“sound server” (Fig. 2.10), accepting connections via a socket and performing
mixing after sample rate and type conversion.

The latter approach is attractive from the architectural point of view, adhering to
the principle of putting the minimum amount of code in the kernel where it is
“locked and loaded”: kernel code, once loaded, occupies physical memory until
it is unloaded again; it cannot be paged out like user-space programs.

Consequently, large and complex kernel drivers may impact upon the
performance of the entire system even if the sound is currently not in use.
However, it is questionable whether the overhead associated with copying the
sound samples through a socket connection, even if it is on the local machine,
outweighs the disadvantage of the large resident physical memory audio driver.
Others argue that the closer binding of the application to the hardware possible
with the ALSA approach is essential in high-performance audio applications
such as hard-disk recorders and real-time music synthesis, and once admitted
on that basis, it does not make sense to support the ESD method or PulseAudio
as well.

Nevertheless, the ESD method is sufficiently popular to warrant it’s being
covered here. Many open-source applications test for the availability of the
Enlightend Sound Daemon and configure themselves accordingly.

DESCRIPTION OF THE TECHNICAL APPROACH 31

As it should be, a sound architecture may provide a variety of audio-related
functions, but it must include at least a low-level connection between the
soundcard driver and kernel services and a higher-level audio software-
programming interface to simplify applications development.

2.4.6 ALSA time

Until the 2.5.x development track, the Linux kernel utilized the OSS/Free audio
API. OSS here stands for Open Sound System, an audio API originally written
in 1992 by Hannu Savolainen. Independent developers contributed with drivers
and other work to the OSS/Free system, but by the late 1990s the OSS API was
showing its age. Around that time, a Czech system administrator named
Jaroslav Kysela began work on what eventually became the ALSA project. Like
Linux itself, ALSA began with rather modest goals: Jaroslav simply wanted
more out of his soundcard than the existing API could deliver, and he was
willing and able to meet the demands of the task. Like Linus Torvalds, the
starter linux kernel developer, Jaroslav eventually found himself at the center of
a group of talented developers, all dedicated to the development of a superior
audio API for Linux.

ALSA's features and popularity grew at a point when users and developers
began lobbying for utilizing ALSA to replace the OSS/Free system packaged
with the kernel sources.

Testing began with the 2.5.x development kernels, and from the 2.6.x kernels
onward ALSA has been the default Linux sound architecture.

As mentioned, ALSA's developers have concerned themselves with designing a
truly superior sound system for Linux. On the ALSA Web site there is a
description of the project's most significant features:

• Efficient support for all types of audio interfaces, from consumer
soundcards to professional multichannel audio interfaces.

• Fully modularized sound drivers.

• SMP (Symmetric MultiProcessing) and thread-safe design.

• User space library to simplify application programming and provide
higher level functionality.

• Support for the older OSS/Free API, providing binary compatibility for
most OSS/Free programs.

• Licensed under the GPL and the LGPL.

Arriving at this point, is considered starting with a fresh installation of Ubuntu
10.04 or above. The most important reason for choosing Ubuntu, among a lot of
other GNU/Linux distributions, is that it works with all device drivers that are

Audio module integration into high quality video transmission software 32

going to be used; the more particular case is with the DeckLink Blackmagic
card, because its producer driver has only worked with Ubuntu S.Os.

Ubuntu uses PulseAudio that works as ESD, but programming audio
applications with PulseAudio library will cost some time latency in processing
audio, as explained before.

So, the easiest and fastest solution is to work with PulseAudio as a Sound
Daemon to interact with other sound applications and more instances of
UltraGrid, like for example using one instance for transmitting and one other for
receiving, in the same computer.

To implement the audio module, as talked above, the best option is using the
ALSA library. Reaching the real-time specifications. The final motivation for
using this API is, as said in the official ALSA project web site, that application
programmers should use the library API rather than the kernel API. The library
offers 100% of the functionality of the kernel API, but adds major improvements
in usability, making the application code simpler and better looking. In addition,
future fixes or compatibility code may be placed in the library code instead of
the kernel driver.

In addition, ALSA has a capability called plug-in that allows extension to new
devices, including virtual devices implemented entirely in software. ALSA also
provides a number of command-line utilities, including a mixer, sound file player
and tools for controlling special features of specific sound cards.

PROPOSED SOLUTION 33

CHAPTER 3. PROPOSED SOLUTION

In this chapter is going to be described the generic solution for audio
implementation, that is implemented with ALSA API, as it has been chosen
above.

For a better understanding there will be described all processes since capturing
audio, from computer audio card and its transmission, to reproducing the audio
received. Configuring it to reach the lowest latency possible and generating the
audio data synchronized with the video stream to assume a complete
videoconference.

3.1 Buffering and sources synchronization

Sources synchronization mean that audio is defined as being clock
synchronous with video if the sampling rate of audio is such that the number of
audio samples occurring within an integer number of video frames is itself a
constant integer number. The following table will show the relation with audio
sample rates reached with HD Intel sound card and its audio buffer size, with
both standard video sample rate used in UltraGrid.

Table 3.1 Audio sampling rate and synchronized audio buffer generation

Audio

Sampling rate

Samples/frame,

29.97 fr/s video

Samples/frame,

25 fr/s video

192.0 kHz 6408/1 7680/1

96.0 kHz 3204/1 3840/1

48.0 kHz 1602/1 1920/1

44.1 kHz 1472/1 1764/1

32.0 kHz 1068/1 1280/1

16.0 kHz 534/1 640/1

8.0 kHz 268/1 320/1

The video and audio clocks must be derived from the same source since simple
frequency synchronization could eventually result in a missing or extra sample
within the audio frame sequence, known as underrun or overrun effect
respectively, also as glitches. For 29.97 fps there have not been utilized integer
numbers because of this could cause not real-time specifications (for example
at 44.1kHz it should be 147147 samples per 100 video frames, and so on). This
is rounding up to the first even number.

Audio module integration into high quality video transmission software 34

So, this synchronization is done at transmission side because of being capture
side, but at reception side this is done comparing timestamps obtained at the
RTP header when receiving both video and audio streams. This is automatically
treated with both sides of the UltraGrid RTP module.

Generating this data flows indicates that we are generating the same
presentation time (the same as latency time capture), this is because the
rhythm is supposed to be taken by video source generation and audio is being
generated at the same rhythm to be synchronized. Then, has to be said that it is
not the whole latency but it is the latency that can be controlled by UltraGrid (its
developers) and the other latency generated is from the capture devices, the
displays, among others.

!
Fig. 3.1 Graphical timing of the whole involved process

It has to be said that presentation time is equal to Tcapt plus Ttx (capture time).
Tnet is the time that the info is going over the network (it is treated as zero in
this case).

Once knowing the audio buffer size required is time to do the appropriated
ALSA initialization.

3.2 ALSA initialization

As it is done with OSS system to configure the start up ALSA defines its similar
but particular steps of doing:

If it was not known with which parameters the sound card can work, then ALSA
system in the O.S. have a command-line audio file player that helps to know
this. Using the command:

#aplay –h

Then is listed the following recognized sample formats:

#!Recognized sample formats are: S8 U8 S16_LE S16_BE U16_LE U16_BE
S24_LE S24_BE U24_LE U24_BE S32_LE S32_BE U32_LE U32_BE
FLOAT_LE FLOAT_BE FLOAT64_LE FLOAT64_BE IEC958_SUBFRAME_LE

25fps

video
src

audio
src

sync tx

TX RX
Audio&Video
TimeStamp

latency

Tcapt + Ttx Tnet Trx

presentation time

25 images per second

PROPOSED SOLUTION 35

IEC958_SUBFRAME_BE MU_LAW A_LAW IMA_ADPCM MPEG GSM
SPECIAL S24_3LE S24_3BE U24_3LE U24_3BE S20_3LE S20_3BE
U20_3LE U20_3BE S18_3LE S18_3BE U18_3LE
Some of these may not be available on selected hardware

These are all available sample formats into ALSA library from O.S but it is
saying that some of theme should be specially treated like the ones that
depends on plug-in generation, such as A_LAW.

The letter S means signed, U unsigned format sample. This is mentioned
because it is not enough to know that a PCM sample is, for example, 8 bits
wide. Whether the sample is signed or unsigned is needed to understand the
range. If the sample is unsigned, the sample range is 0..255 with a centerpoint
of 128. If the sample is signed, the sample range is -128..127 with a centerpoint
of 0.

If a PCM type is signed, the sign encoding is almost always 2's complement. In
very rare cases, signed PCM audio is represented as a series of
sign/magnitude coded numbers. So, as common used in PCM standard
generation, in this project Signed samples are chosen to work with. This
election does the audio module to be compatible with the other capture devices
from the scenario.

When more than one byte is used to represent a PCM sample, the byte order
(big endian -BE- vs. little endian -LE-) must be known. Due to the widespread
use of little-endian Intel CPUs, little-endian PCM tends to be the most common
byte orientation and this is chosen.

So now audio module must be started up. This is doing the internal ALSA
device opening and whole initialization, as done in ALSA capture side in
UltraGrid. There have to be said that both sides do the same initialization
structure, for capture or playback:

static void set_alsa_capture_params(struct vidcap_ALSA_state *st){

 struct vidcap_ALSA_state *s = (struct vidcap_ALSA_state *) st;

/* Open PCM device for capture (recording). */
 rc = snd_pcm_open(&s->handle,"default",SND_PCM_STREAM_CAPTURE, 0); //or _PLAYBACK
 if (rc < 0) {
 fprintf(stderr,"unable to open pcm device: %s\n",snd_strerror(rc));
 exit(1);
 }

/* Allocate a hardware parameters object. */
 snd_pcm_hw_params_alloca(&s->params);

/* Fill it in with default values. */
 err = snd_pcm_hw_params_any(s->handle, s->params);
 if (err < 0) {
 printf("Broken configuration for this PCM: no configurations available");
 exit(EXIT_FAILURE);

Audio module integration into high quality video transmission software 36

 }

/* Set the desired hardware parameters. */
 /* Interleaved mode */
 snd_pcm_hw_params_set_access(s->handle, s->params,SND_PCM_ACCESS_RW_INTERLEAVED);

/* Signed 16-bit little-endian format */ //endian because of INTEL Chipset
 snd_pcm_hw_params_set_format(s->handle, s->params,SND_PCM_FORMAT_S16_LE);

/* Two channels (stereo) */
 snd_pcm_hw_params_set_channels(s->handle, s->params, 2);

/* 48000 bits/second sampling rate (High quality) */
 rate = 48000;
 snd_pcm_hw_params_set_rate_near(s->handle, s->params, &rate, &dir);

/* Set period size to 1920 frames. */ //This is internally set to 1024, the nearest rounded
down into power of two frames buffer to 1920 frames, but reaching as samples as
required in audio buffer transmission when forcing capture of 1920 frames.
 s->frames = 1920;
 snd_pcm_hw_params_set_period_size_near(s->handle,s->params, &s->frames, &dir);

/* Write the parameters to the driver */
 rc = snd_pcm_hw_params(s->handle, s->params);
 if (rc < 0) {
 fprintf(stderr,"unable to set hw parameters: %s\n", snd_strerror(rc));
 exit(1);
 }
}

More treatment code about options, parameters listing, playback and capture
with ALSA library is shown in ANNEX F.

Right now are known the basic ALSA API library functions to initialize ALSA
device.

It has to be appreciated that frame size depends on the sample rate and the
frames per second captured/reproduced. But the buffer size also depends on
the utilized sample format and the number of channels. So, this is, for example:

Sample size at 48kHz and PAL stream: 48000/25 = 1920 (periods/fragments
per audio frame)

Buffer size at 48kHz and PAL stream, 16bits per sample and stereo (standard
PCM):

1920 x 16 x 2 / 8bits = 7680 bytes

But using an A-law format and one channel, the buffer size result:

1920 x 8 x 2 / 8bits = 3840 bytes

PROPOSED SOLUTION 37

This shows how we can go into the line that separates from quality to
throughput generated, and it is the never-ending fight for reaching the most
accurate solution for every context.

3.2.1 Generic configuration (capture/playout)

The generic configuration for audio streaming, reaching high quality, is with a
PCM of 48kHz of sample rate, 16 bits per sample and stereo mode.

This chose is because it is the most compatible mode to work with the
scenarios proposed in this project.

This configuration gives high quality for transmitting at all human ear working
spectrum. But it has to be remembered that if there is no need to transmit music
with a vocoder there is spent less bandwidth.

3.3 Input/output buffer parameter manipulation

As it is internally required into ALSA API kernel module, the fragment sizes
(known as periods by the ALSA community) have to be a power of two.

The restriction of having to be able of working with different sample formats and
so on and having to reach real-time specifications gives the necessity of
generating the fragment size that gives less latency for all options.

!
Fig. 3.2 Example ALSA buffering

The figure shown permits to understand how is generated the ALSA buffer size.
This example is working at 16bits per sample and stereo, and configuring 8
frames per period and a buffer of 16 periods, so there is 512 bytes of audio
buffer.

Audio module integration into high quality video transmission software 38

If the audio buffer size required to be synchronized with video source is of 7680
bytes (following the last example shown) the resulting high water mark is the
same audio buffer size required.

The low-water mark should be as high as possible to reach the real-time
specifications but with stability, as if it was all processed into the same
soundcard, and maintaining it below the frames per second required and not
reaching an overflow error.

Setting the period size with ALSA API (as shown in the initialization example) it
sets the nearest below the needed sample size. For this example, sound would
start to reproducing when receiving at least 1024 frames to reach the 1920
frames generated.

This become a good stable real-time specification (like using a computer sound
player), but if a packet is lost there will be nothing to fill into the buffer required
and there will appear a glitch into the continuous stream that can’t be
eliminated. Also, here is shown the line that there is between real-time and
stability/quality. So, this project is at this line.

3.4 Plugin generation

With plug-in generation there appear more options to implement other PCM
digitalization and into different source treatment.

3.4.1 Dual

For example, there is the option to implement a dual audio system of
transmission with the same bandwidth using two channels but both with mono
audio source, being able to transmit two speakers from the same computer or
room and expanding it up to the maximum channel treatment offered by the
integrated audio card. Then this is done in reception side implementing a mono
to stereo, and stereo to mono in transmission side, plug-in with ALSA system
environment into the O.S. and opening it as the default device when starting up
ALSA configuration.

3.4.2 A-law

From ALSA plug-in community is done an A-law dedicated plug-in that gives the
option to implement a standard telephonic communication into audio stream
treatment in UltraGrid, this is a vocoder that permits to reach the half throughput
of the same stream that in stantard PCM. Starting to implement UltraGrid audio
system into standards in audio videoconference’s system.

PROPOSED SOLUTION 39

3.4.3 IMA-ADPCM

This is another implemented plug-in into ALSA API that permits generate with
this vocoder the fourth part the bandwidth obtained from the same stream but
with PCM formatting.

This plugin have the problem that it implements a vocoder that does a
codification from an A-law formatted sample being affected from amplitude
variation. So, a really good equalization must be done if there appears the
necessity to work with the minimum possible bandwidth, and having to speak
with a steady tone.

How to implement and configure a plugin with ALSA library is explained in
ANNEX G.

3.5 ALSA programming

When packets are arriving these are processed to generate the expected audio
frame. These are going from a prebuffer of two audio buffer size that permits to
do a circular queue to fill one buffer when receiving the frame and reproducing
the other one, and in capture side one buffer is filled when data-capturing and
the other is processed to transmit, and so on.

3.5.1 Requesting status information

This part is really important to give, as much as ALSA API can, the maximum
audio stability into UltraGrid.

Requesting status information permits to know which is the problem and how it
can be solved as much as can be done when capturing or reproducing samples.

Having studied how to do that for both sides, transmission and reception, is
shown an example of a generic x-run recuperation (x means over or under):

static void xrun(void){
 snd_pcm_status_t *status;
 int res;

snd_pcm_status_alloca(&status);

if ((res = snd_pcm_status(handle, status))<0) {
 printf(stderr, "status error in snd_pcm_status. sound halt\n");
 exit(EXIT_FAILURE);
}

Audio module integration into high quality video transmission software 40

if (snd_pcm_status_get_state(status) == SND_PCM_STATE_XRUN) {
 if ((res = snd_pcm_prepare(handle))<0) {
 printf(stderr, "prepare error in xrun. sound halt\n");
 exit(EXIT_FAILURE);
 }
 return; /* ok, data should be accepted again */
}
 printf(stderr, "r/w error. sound halt\n");

 exit(EXIT_FAILURE);
}

This piece of code has been tested and it is not assuming real-time recovery at
all.

Once detected that problem, it has been studied a better solution that gives
UltraGrid more speed-recovery from packet-lost or any type of glitches.
The code generated does the following routine:

Enter to xrun() ! if(snd_pcm_recover(handle,r,0)<0) {

 snd_pcm_drain(handle);

 snd_pcm_reset(handle);

 snd_pcm_prepare(handle);

 } ! Continue capturing/reproducing

This section creates the concept of speed recovery. When faster the code
generated is, from recovering the stream, it can be assumed that more quality
treatment is done.

The snd_pcm_recover function recovers the stream state from an error or
suspend. This functions handles -EINTR (interrupted system call), -EPIPE
(overrun or underrun) and -ESTRPIPE (stream is suspended) error codes trying
to prepare given stream for next I/O.

If the error is not solved then is used ‘snd_pcm_drain’, snd_pcm_reset and
snd_pcm_preapre functions in that order. This is done because the first function
stops the PCM preserving pending frames (for playback wait for all pending
frames to be played and then stop the PCM. For capture stop PCM permitting to
retrieve residual frames), the second reset PCM position and reduce PCM delay
to 0 and the last function prepare PCM for use, so, in that order is reached a
fast and quite good stream-recovery.

For more information about PCM interface see ANNEX H.

PROPOSED SOLUTION 41

3.6 Capture side

!
Fig. 3.3 Capture side diagram

The figure above explains how the transmission side algorithm will be done.

With the implemented module, called audio capture, there have done the basic
functions to develop a capture device into UltraGrid.

A basic device has the following functions:

struct vidcap_type *vidcap_DEVICE_probe(void);
void *vidcap_DEVICE_init(struct map_d *md);
void vidcap_DEVICE_done(void *state);
struct media_frame *vidcap_DEVICE_grab(void *state);

The ‘probe’ function defines a method to assume the selected device and if it is
prepared to start. Searching for its libraries into the O.S. , or drivers folder, and
if the card is detected into the computer.

The ‘init’ function initializes all buffers and its capacity, as well as some specific
structures and special call API card producer functions. Finally, here starts the
audio ‘thread’ function, implemented internally as a function too, and its internal
control semaphore.

‘Done’ function does the exit protocol to terminate all process started with the
initialized device and releasing all buffers and preallocated memory.

‘Grab’ function is the responsible to copy the new data generated, from the
main thread, to the RTP buffers and some header information. Always being
controlled by the semaphore indications.

yes

yes

no

no

noyes
yes

CAPTURE

Video? Audio?

Audio?

Nothing to
be done

ALSA audio
module

Embedded

TX ONLY VIDEOTX VIDEO & AUDIO

Alsa audio
module

TX ONLY AUDIO

Audio module integration into high quality video transmission software 42

Main ‘thread’ function makes the loop go moving the circular buffer, being
controlled by the general semaphore programmed. The circular buffer consists
in two sub buffers; when one is being read the other is being written and
reverse. Each sub buffer contains the audio data generated per video frame.

Also, and for future real-time control in audio parameters, the initialization of the
ALSA parameters have been defined externally from the init function, and to
have the complete control of which sample rate and format per sample is
configured too.

3.7 Playout side

This side is similar as capturing but have the most delicate job that is
reproducing the same as captured.

The playout side will follow the same criteria as in the section above. There is
implemented a playout module, which does the basic functions to reproduce
device into UltraGrid.

This side is programmed to be adapted with all kind of audio sources that can
be streamed as shown in test scenario, but has to be implemented a default
mode that is the same defined in capture side.

Into playout device there are the same functions, doing similar jobs. But the
principal difference is that function grab is not required and there are
implemented two functions instead. The function ‘getf’ that gets the frame from
reception module (frame complete) and the ‘putf’ function that gives the
expected frame to ALSA playout module implemented, doing the control of the
circular reception buffer (a buffer with a size of two audio buffer size, as
explained), like it is done with video stream.

The following image will show how it is done to do this whole process,
differentiating from video and audio sources.

PROPOSED SOLUTION 43

!
Fig. 3.4 Playout side diagram

In this picture is shown how audio is treated while packets are arriving from the
net. This is that when packets are arriving, the RTP module gets the timestamp
and permits display both sources synchronized. But, also, as an objective, if
there is a video packet lost (or dropped, for example) audio is going on
displaying its stream. Then, when there is another video packet it will only
display frames with the same audio timestamp. This is how audio is not
depending on video at playout time and will be done as a future work.

Network PACKET

Payload
96?

Payload
97?

frame
complete?

frame
complete?

no no
yes yes

OLD FRAME

NEW FRAME

yes yes

OLD FRAME

NEW FRAME

ALSA
module play

video
module play

Audio module integration into high quality video transmission software 44

AUDIO IMPROVEMENTS 45

CHAPTER 4. AUDIO IMPROVEMENTS

This ending implementation chapter is going to explain how has been adapted
every device specification from final scenario into the ALSA audio module
implementation. The most important section is the first one that helps to
understand what is happening and what is needed.

4.1 XenaHS Audio Module

Studying at the start up of this project the audio XenaHS implementation started
before, has helped a lot doing the project in understanding how audio PCM is
generated and can be processed, also with its treatment for RTP.

The following pictures cached from WireShark explain how the audio buffer is
placed into RTP packet, that is observing the RTP packet generated from its
payload to whole audio data provided to/from network.

!
Fig. 4.1 RTP audio packets captured by WireShark

To give order to each packet there is the sequence number and to distinguish
from frame to frame there is the timestamp.

There are five packets per frame generated. This is because of the whole data
exceeds the maximum MTU (Maximum Transfer Unit) defined into the Ethernet
interface to reach the 1Gb (9000Bytes of MTU). The following figure will
describe it better:

Audio module integration into high quality video transmission software 46

Table 4.1 Frame reconstruction when receiving audio from XenaHS 48kHz, 6ch
and setereo

 POSITION LENGTH START
SAMPLE BUFFER SIZE START

CHANNEL PADDING

PAQ1 0x0000 = 0 0x222C 0
0x9630 ó 0x9618
=38448 ó 38424

 0

PAQ2 0x222C =8748 0x222C 0
0x9630 ó 0x9618
=38448 ó 38424

 0

PAQ3 0x4458 =17496 0x222C 0
0x9630 ó 0x9618
=38448 ó 38424

 0

PAQ4 0x6684 =26244 0x222C 0
0x9630 ó 0x9618
=38448 ó 38424

 0

PAQ5 0x88B0 =34992 0x0D80 ó 0x0D68 0
0x9630 ó 0x9618
=38448 ó 38424

 0

TOTAL
FRAME

9630 ó 9618
=38448 ó 38424

0x9630 ó 0x9618
=38448 ó 38424

0
0x9630 ó 0x9618
=38448 ó 38424

.->0->2-
>4->0->.

0

Analyzing the packet generation with WireShark there has been edited the
following figure to explain how is data transmitted:

!
Fig. 4.2 Captured WireShark image with exhaustive explanation

As it is in the initial audio scenario shown, it is only using stereo mode, so four
channels are disused.

At this point of the project it was suggested doing a simple data compression.
This compression consists in removing the first sixteen bytes of audio data

Network PACKET SIZE

Position

Length

Start Sample

Buffer Size

Start Channel

Padding

 AUDIO DATA = 0x222c = 8748 Bytes

Payload Header = 12 Bytes
RTP header = 12 Bytes

UDP Header = 8 Bytes

IP Header = 20 Bytes

Net Header + Footer = 14 Bytes
Channel 1

Channel 3

Channel 2

Channel 4

Channel 5 Channel 6

AUDIO IMPROVEMENTS 47

generated (four channels at 24 bits per sample plus 8 bits of padding), because
from 16th byte to 24th byte there was the audio data generated by XenaHS,
because of working at 32 bits per sample and up to six channels it generates 24
bytes of sampled data. It was also plugging the 5th and 6th canon audio pin from
XenaHS capture device:

!
Fig. 4.3 Audio Configuration XenaHS capture card

The algorithm is as simple as removing the first sixteen bytes as said and
reordering the data to be in the order as established but without the channels
disused at the transmission point, and when receiving it ALSA receive it at 32
bits/48000kHz and 6 channels as can be done with the HD Intel Sound Card.
Or without decompression, just reproducing it at stereo mode (2 channels), that
doesn’t affect at source synchronization time.

Remembering the bandwidth problem generated from transmitting FullHD
resolution and audio uncompressed there have been calculated the throughput
obtained with XENAHS audio samples:

BWfullHD = 1920 x 1080 x 8 x 29,97 x (4 + 2 + 2) / 4 = 948,27 Mbps
BWaudioXENAHS = 48000 x 32 x 6 = 8,78 Mbps

BWaudioXENAHS_2CH = 48000 x 32 x 2 = 2,92 Mbps

!
Fig. 4.4 Graphical timing WireShark captured packets. Audio and Video

Audio Mixer
AD Converter

SHURE microphone

Audio module integration into high quality video transmission software 48

This graphic is showing how is the throughput generated and in this particular
case, as shown, there is reached the bandwidth limit, so there will be glitches at
sound and dropped video frames.

The two following pictures will show how there is a really differential throughput
generation when applying the compression or not. With no compression there
are five packets and with compression there are only two packets.

!
Fig. 4.5 Graphical timing Wireshark captured packets. 6 audio channels

Transmitting all six channels there is a peak-throughput of:

48000 x 32 x 6 x 29.97 = 269Mbits transmitting one audio packet (not doing the
average as when calculating the bandwidth).

And transmitting only the two channels used there is:

48000 x 32 x 2 x 29.97 = 90Mbits when transmitting one audio packet.

AUDIO IMPROVEMENTS 49

!
Fig. 4.6 Graphical timing Wireshark captured packets. 2 audio channels

So, now it is only generated the third part of the initial audio throughput and the
proposed compression is reached.

!
Fig. 4.7 Bandwidth proportion

Finally there are shown how are the new scenarios obtained as a result of these
implementations.

!
Fig. 4.8 XenaHS to ALSA scenario

=
1

3

HDMI

DVI

HD-SDI

Component - RGB

Canon

Jack

XENA to ALSA - HD-SDI VIDEO TRANSMISSION with AUDIO XENAHS and ALSA reproduction

1080

1920

XENAHSAJA - component to
HD-SDI

TX RX

SuperMicro

ASUS

Audio Mixer
AD Converter

SHURE microphone

PC Headphones

1GE or 10GE link

Audio module integration into high quality video transmission software 50

!
Fig. 4.9 Different options XenaHS to ALSA scenario

The last scenario shows that it could be done an election in capturing side from
getting audio samples from XenaHS or from HD Intel Sound Card. This is done
in transmission side generating a flag, and some other code generation, that
permits activate the capture source election from XenaHS device or from
integrated sound card with the ALSA implementation module.

In reception side the video stream is displayed by the SDL API [13] developed
before into UltraGrid to not depend at reception side of having the XenaHS card
and other dispositive required. This module takes the synchronization control
with the audio data received and also the ALSA playout module have to be
initialized with the correct parameters, the same as XenaHS captured samples.

It has to be said that at the initial programme analysis all seemed correct but it
doesn’t work correctly. It was consequence that one data structure was
modified and XenaHS couldn’t read the data structure expected, this is:

typedef struct{
 unsigned char *video_data;
 unsigned char *audio_data;
#ifdef HAVE_FIREWIRE
 int16_t *audio_dv;
#endif
 short mtypes;
} media_display_format;

HDMI

DVI

HD-SDI

Component - RGB

Canon

Jack

XENA/ALSA to ALSA - HD-SDI VIDEO TRANSMISSION with AUDIO XENAHS and ALSA reproduction
1080

1920

XENAHSAJA - component to
HD-SDI

TX RX

SuperMicro

ASUS

Audio Mixer
AD Converter

SHURE microphone

PC Headphones

1GE or 10GE link

ASUS

PC Headphones

AUDIO IMPROVEMENTS 51

The mistake was adding audio_dv pointer into the media_diplay_format
structure. Then, XenaHS API implemented wasn’t compatible with the
generated structure.

The solution was simply to add the restriction to compile only with the firewire
flag if XenaHS was not coming into use.

4.2 XenaHS Audio Module with ALSA/16bits

This module was required when working with Intel card of type AC’97 that didn’t
permit working with more than 20bits per sample. So when trying to capture
with ALSA a stream from XenaHS this was not possible.

The proposed solution was processing the received bit-stream before
reproducing it. Its structure was modified to become a PCM of 48kHz, 2
channels and 16bits per sample. It was transformed to assume the MSB bytes
(2 Bytes) as a 16 bits sample and not taking into account the LSB bytes:

!
Fig. 4.10 6 channles 24 bits to 2 channels 16 bits

4.3 DV to ALSA

When implementing this audio module it was quite fast because of the
knowledge acquired before. But there was no understanding reason of why it
was reproducing so many glitches.

Analyzing the code into UltraGrid, there have been demonstrated that is not an
audio modules problem, so it is out of scope right now. The problem is with the
implementation of the linux firewire API into UltraGrid. This means that when it

Audio module integration into high quality video transmission software 52

is captured into a file the data generated by the firewire from UltraGrid it sounds
perfect, but when capturing it before transmitting then gliches appear. So, some
arrangements are required to work correctly.

4.4 Blackmagic to ALSA

With this professional capture card there is integrated into a computer a
complete high quality videoconference system.

The implementation with ALSA was so quick because it was only need to put
into code a flag for choosing the stream origin (from Blackmagic or Intel HD),
and if ALSA audio module was chosen only was required to activate it.

With this card we get the final scenario that can suit for all contexts required,
from a face-to-face to a room-to-room videoconference, assuming HD-SDI and
HDMI as principal source.

TESTING & VALIDATION 53

CHAPTER 5. TESTING & VALIDATION

This ending chapter is to demonstrate with some examples how this project has
come to reality and how it can be tested and validated.

5.1 MusicLab at CitiLab

MusicLab is a multidisciplinary project that invites musicians and artists from
many different fields to join into an open musician community. This project is
realized at CitiLab. This is a center for social and digital innovation in Cornellà
de Llobregat, Barcelona. It operates and distributes the digital impact on
creative thinking, design and innovation from emerging digital culture.
!
This project took part into an experimetal session in MusicLab. Trying to test the
simultaneosly music interpretation over internet. The objective was trying with
musics, at different places, to play as synchronized as it can be done. !
!
This emerged successful because it was possible to generate an operation
protocol, despite the delay, but really little (real-time internet concept) thanks of
the audio module implemented into UltraGrid.!
!
Thanks to the succesfuly results it will studyed the option of doing a real-time
performance in a convencional festival with this system.!
!
For more information there is a link to know more about this experiment:
musiclab-taller-experimental-interaccio-simultania-online!
!

5.2 Audioconference centre unit

With the following picture is going to described the concept:

Fig. 5.1 Audioconference centre unit scenario

HDMI

DVI

HD-SDI

Component - RGB

Canon

Jack

AUDIOCONFERENCE CENTRE UNIT

1080

1920

XENAHS
AJA - component to
HD-SDI

TX

SuperMicro

ASUS

PC Headphones

1GE or 10GE link

Network

Audio Mixer
AD Converter

SHURE
microphone

Audio module integration into high quality video transmission software 54

This is controlling all audio input sources to send only one (or more), switching it
by software. What this option offers is to implement a really cheap option for
generating an easy set up configuration videoconference centre unit, reaching
the room-to-room level with the pieces shown. The final cost will depend on the
number of microphones/devices required and so the maximum number of
permitted audioconferencers.

This section is presented to be really easy implemented as a future work. The
basic idea will be doing as in the following figure:

!
Fig. 5.2 Graphical explanation of software ndex selector

5.3 Lab scenario

This is the day by day scenario that can be tested at i2cat. Here can be mixed
different options with all raised scenarios. This is a laboratory scenario. Here is
where all practical issues have been studied and helped to understand how to
going on developing the whole project.

CH.6 CH.5 CH.4 CH.3 CH.2 CH.1

24bits per sample, 48kHz, 6channels

Index Selector

ENVIROMENTAL IMPACT 55

CHAPTER 6. ENVIROMENTAL IMPACT

Nowadays, in a globalized world, working groups are distributed around the
world. Several companies are geographical disperse and managers travel for
meeting on headquarters. Also research groups work in a cooperative way with
other international institutions and need to make face-to-face meeting. Also in
telemedicine, doctors can save to travel huge distances for evaluate their
patients, especially in medical specialists. These are few examples where high
definition videoconference can be useful to save time, money and reduce
pollution. Thinking in the audio side also could be a good platform for playing
with different musicians and transmit high quality programs over the internet,
having huge bandwidth but with no pollution impact, related on people transport.

Negative impact may be needs of high amount of bandwidth that are needed for
making done the videoconference, needing the construction of new lines of
optical fiber, satellite communication and aerial constructions.

In distributed display, working with an ordinary PCs, it’s a positive environment
impact because these equipment can be used in other tasks when the
distributed display is no required.

Finally, the different options of transmission into UltraGrid can be adapted into
every case of bandwidth requirements and avoid the construction of new
telecommunication lines. Also with audio adaptations there is no need of lots of
expensive devices and with only one computer, and minimum professional or
common devices, all video and audio processes can be done.

Audio module integration into high quality video transmission software 56

CONCLUSIONS AND FUTURE WORKS 57

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS
!
The main objective of this project is the audio integration into UltraGrid. As seen
in testing and validation chapter, this has been achieved successfully because it
has been reached stable transmissions sampled at 192kHz 16 bits stereo,
synchronized with video at real-time. That reaches without drops or glitches with
K or HDready video resolutions around 150 ms of delay. This is because 1Gb
bandwidth is not filled.

K-resolution: 960 x 540 x 2 x 8 x 29,97 = 273Mbps

HD-ready resolution: 1280 x 720 x 2 x 8 x 29,97 = 421Mbps

Maximum quality audio achieved: 192000 x 2 x 16 = 5,86Mbps

It has been demonstrated that the best-known option to work out
implementation related to free software/open source sound architectures is
ALSA.

However, this kind of architectures can involve library modifications in a future.
But this can be assumed that if there are modifications these will be useful to
improve certain aspects of the library, and new integrations will be easy and
fast, as said in ALSA’s community website.

What it also has been seen is that working with Ubuntu versions up to 10.04
implies an improvement in devices compatibility as well as the possibility of
having Pulse Audio system by default and its compatibility with ALSA (even
having to make some modifications as is explained in ANNEX D).

As it has been annotated in environmental impact, this type of system permits a
decrease in pollution caused by transports. Even so, it is important to go further
in studies about how to decrease in the dependence of high bandwidths.

So, as future works, there is a necessity of generating audio streams with loss
compressions that ensure quality to transmit music/concerts or voice.

Furthermore, it is also important to generate the automation in the code to
configure the parameters both in reception and in transmission depending on
the required sample rate, sample format and the number of channels. In
addition, to permit not having to depend on video if it is required at some time.

Other future works are the improvements related to firewire libraries
implementation as it has been seen. Apart from the generation of an external
application, done with socket communications, to permit real-time sound
parameters modification and the selection of which audio source should be
used.

Audio module integration into high quality video transmission software 58

Finally, it is also important to comment that it should always be taken into
account the different exposed margins showed below depending on the context
and required needs.

Fig. 7.1 Relationship and commitments

Buffering
Network
Protocol

Compression
QUALITY BANDWIDTH

REAL-TIME

cost

REFERENCES 59

REFERENCES

[1] UltraGrid.
 http://ultragrid.dcs.gla.ac.uk/

[2] Liceu.
 http://www.liceubarcelona.cat/

[3] Skype.
 http://www.skype.com/

[4] FullHD and HDready.
 http://es.wikipedia.org/wiki/1080p

[5] Vocoder.
 http://es.wikipedia.org/wiki/Vocoder

[6] i2cat foundation.
 http://www.i2cat.net/ca

[7] V3 project.
 http://wiki.i2cat.net/doku.php/i2cat:public:clusters:audiovisual:uhdgroup:uh
 dgrroup

[8] Wikipedia. High definition Television.
 http://en.wikipedia.org/wiki/High-definition_television

[9] Wikipedia. Modelo de color RGB.
 http://es.wikipedia.org/wiki/Modelo_de_color_RGB

[10] Wikipedia. RGBA color space.
 http://en.wikipedia.org/wiki/RGBA_color_space

[11] Wikipedia. YUV.
 http://es.wikipedia.org/wiki/YUV

[12] Information Sciences Institute East.
 http://www.east.isi.edu/index.php

[13] Simple DirectMedia Layer.
 http://www.libsdl.org/

[14] Pulse-code Modulation.
 http://en.wikipedia.org/wiki/Pulse-code_modulation

[15] Nyquist theorem.
 http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theor
 em

Audio module integration into high quality video transmission software 60

[16] Speech companding.
 http://www.young-
 engineering.com/docs/YoungEngineering_ALaw_and_MuLaw_Compandin
 g.pdf

[17] G.711 – A-law and Mu-Law.
 http://en.wikipedia.org/wiki/G.711

[18] G.726 – ADPCM.
 http://en.wikipedia.org/wiki/G.726

[19] Real-time Transport Protocol.
 http://en.wikipedia.org/wiki/Real-time_Transport_Protocol

[20] RTP Payload Format for Uncompressed Video.
 http://www.faqs.org/rfcs/rfc4175.html

[21] AJA XenaHS.
 http://www.aja.com/index.php

[22] Blackmagic – Decklink.
 http://www.blackmagic-design.com/

[23] Intel High Definition Audio.
 http://www.intel.com/design/chipsets/hdaudio.htm

[24] ASUS.
 http://www.asus.com/

[25] Nvidia.
 http://www.nvidia.es/page/home.html

[26] DV (Digital Video) over IP [DVTS].
 http://www.sfc.wide.ad.jp/DVTS/

[27] Wikipedia. DV.
 http://en.wikipedia.org/wiki/DV

[28] HDwiki. SAGE.
 http://wiki.i2cat.net/doku.php/i2cat:public:clusters:audiovisual:uhdgroup:s
 age

[29] RAT – Robust Audio Tool.
 http://www.sal.wisc.edu/~jwp/wiyn/rat.html

[30] Linux.
 http://es.wikipedia.org/wiki/GNU/Linux

[31] Kernel.

REFERENCES 61

 http://www.kernel.org/

[32] OSS – Open Sound System.
 http://en.wikipedia.org/wiki/Open_Sound_System

[33] ALSA – Advanced Linux Sound Architecture
 http://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture

[34] ESD – Enlightened Sound Daemon
 http://es.wikipedia.org/wiki/Enlightened_Sound_Daemon

[35] PulseAudio.
 http://es.wikipedia.org/wiki/PulseAudio

[36] D. Cuenca Gil, “Adaptive media content architecture regarding users
capabilities”
 http://upcommons.upc.edu/pfc/bitstream/2099.1/8044/1/memoria.pdf

[37] D. Turull Torrents, “Performance and enhancement for HD videoconference
environment”.
 http://upcommons.upc.edu/pfc/bitstream/2099.1/5000/1/memoria.pdf

[38] F. J. Iglesias Garcia, “Development of an integrated interface between
SAGE and UltraGrid”.
 http://upcommons.upc.edu/pfc/bitstream/2099.1/6068/1/memoria.pdf

Audio module integration into high quality video transmission software 62

ACRONYMS 63

ACRONYMS

BNC Bayonet Neil Concelman

DTV Digital Television

DV Digital Video

DVI Digital Visual Interface

RTT Round Trip Time

HDMI High-Definition Multimedia Interface

Fps frames per second

Full HD (or 2K) Full High Definition (1920x1080 pixels)

GE Gigabit Ethernet

Blu-Ray Blue Ray Disc

HD High Definition

HD-Ready High Definition - Ready (1280x720 pixels)

HD-SDI High Definition - Serial Digital Interface

HDTV High Definition Television IP Internet Protocol

ITU-R International Telecommunication Union – Radiocommunication

K resolution four times lower than 2K resolution (960x540 pixels)

NTSC National Television System Committee

PAL Phase Alternating Line (720x576 pixels)

RTP Real Time Protocol

QoS Quality of Service

RX Receiver computer

SAGE Scalable Adaptive Graphics Environment

SDL Simple Direct media Layer

SHD (or 4K or Quad HD) Super High Definition (3840x2160 pixels)

Audio module integration into high quality video transmission software 64

SMPTE Society of Motion Picture and Television Engineers

TV Television

TX transmitter computer

UDP User Datagram Protocol

UG UltraGrid

V3 Video, Videoconference and Visualization

YUV a colour space that is defined by luminance (Y) and two components of
chrominance (UV)

YUV422 is YUV subsampling colour by a half

RAT Robust Audio Tool

BE Big Endian

LE Little Endian

API Application Programming Interface

VBCC Video Based Congestion Control

CPU Centra Processing Unit

GPU Graphics Processing Unit

Shure

O.S. Operating System

GNU GNU’s Not Unix (an unix-like system)

UNIX Multitasking and multi-user computer operating system

AES/EBU Audio Engineering Society/European Broadcasting Union

RTCP Real-Time Transport Control Protocol

SNR Signal to Noise Ratio

ADPCM Adaptive Differential Pulse Code Modulation

CD Compact Disc

ACRONYMS 65

RAW not compressed data format

Hz Hertz

DM Delta Modulation

DPCM Differential Pulse Code Modulation

Glitches Technical problems. In audio slang can be stops and silence, among
others, while audio capturing or playout.

Audio module integration into high quality video transmission software 66

ANNEX A 67

ANNEX A. Speech companding (A- law/µ-law)

A-Law Compander

A-law is the CCITT recommended companding standard used across Europe.
Limiting the linear sample values to 12 magnitude bits, the A-law compression
is defined by Equation 1, where A is the compression parameter (A=87.7 in
Europe), and x is the normalized integer to be compressed.

Table 1 illustrates an A-law encoding table. The sign bit of the linear input data
is omitted from the table. The sign bit (S) for the 8-bit code is set to 1 if the input
sample is negative, and is set to 0 if the input sample is positive.

After the input data is encoded through the logic defined in the table, an
inversion pattern is applied to the 8-bit code to increase the density of
transitions on the transmission line, a benefit to hardware performance.
XOR’ing the 8-bit code with 0x55 applies the inversion pattern.
Decoding the A-law encoded data is essentially a matter of reversing the steps
in the encoding. Table 2 illustrates the A-law decoding table, applied after
reversing the inversion pattern. The least significant bits discarded in the
encoding process are approximated by the median value of the interval. This is
shown in the output section by the trailing 1..0 pattern after the D bit.

 A-Law /Mu-Law Com panding
Revis ion 1 .0

Introduction
Pulse code modulation (PCM) is a common method of digitizing or quantizing an analog waveform. For
any analog-to-digital conversion process, the quantization step produces an estimate of the waveform
sample using a digital codeword. This digital estimate inherently contains some level of error due to the
finite number of bits available. In practical terms, there is always tradeoff between the amount of error and
the size of the digital data samples. The goal in any system design is quantizing the data in smallest
number of bits that results in a tolerable level of error. In the case of speech coding, linear quantization
with 13 bits sampled at 8 KHz is the minimum required to accurately produce a digital representation of the
full range of speech signals. For many transmission systems, wired or wireless, 13 bits sampled at 8 KHz
is an expensive proposition as far as bandwidth is concerned. To address this constraint, a companding
system is often employed.

Companding is simply a system in which information is first compressed, transmitted through a bandwidth-
limited channel, and expanded at the receiving end. It is frequently used to reduce the bandwidth
requirements for transmitting telephone quality speech, by reducing the 13-bit codewords to 8-bit
codewords. Two international standards for encoding signal data to 8-bit codes are A-law and µ-law. A-
law is the accepted European standard, while µ-law is the accepted standard in the United States and Japan.

Speech Companding
The human auditory system is believed to be a logarithmic process in which high amplitude sounds do not
require the same resolution as low amplitude sounds. The human ear is more sensitive to quantization
noise in small signals than large signals. A-law and µ-law coding apply a logarithmic quantization function
to adjust the data resolution in proportion to the level of the input signal. Smaller signals are represented
with greater precision – more data bits – than larger signals. The result is fewer bits per sample to maintain
an audible signal-to-noise ratio (SNR).

Rather than taking the logarithm of the linear input data directly, which can be computationally difficult, A-
law/µ-law PCM matches the logarithmic curve with a piece-wise linear approximation. Eight straight-line
segments along the curve produce a close approximation to the logarithm function. Each segment is known
as a chord. Within each chord, the piece-wise linear approximation is divided into equally size
quantization intervals called steps. The step size between adjacent codewords is doubled in each
succeeding chord. Also encoded is the sign bit for the original integer. The result is an 8-bit logarithmic
code composed of a 1-bit sign bit, a 3-bit chord, and a 4-bit step.

A-Law Compander
A-law is the CCITT recommended companding standard used across Europe. Limiting the linear
sample values to 12 magnitude bits, the A-law compression is defined by Equation 1, where A is
the compression parameter (A=87.7 in Europe), and x is the normalized integer to be compressed.

()A
xA

ln1
*

+ A
x 10 <!

)ln(1
))ln(1(*)sgn(

A
xAx

+

+

F(x) =

11
!! x

A

 Equation 1, A-Law Definition

A-Law /Mu-Law Com panding

Page 2 of 4 Young Engineering: www.young-engineering.com

Table 1 illustrates an A-law encoding table. The sign bit of the linear input data is omitted from
the table. The sign bit (S) for the 8-bit code is set to 1 if the input sample is negative, and is set to
0 if the input sample is positive.

Linear Input Data A-law Encoded Output
0 0 0 0 0 0 0 A B C D X S 0 0 0 A B C D
0 0 0 0 0 0 1 A B C D X S 0 0 1 A B C D
0 0 0 0 0 1 A B C D X X S 0 1 0 A B C D
0 0 0 0 1 A B C D X X X S 0 1 1 A B C D
0 0 0 1 A B C D X X X X S 1 0 0 A B C D
0 0 1 A B C D X X X X X S 1 0 1 A B C D
0 1 A B C D X X X X X X S 1 1 0 A B C D
1 A B C D X X X X X X X S 1 1 1 A B C D

 Table 1, A-Law Encoding

After the input data is encoded through the logic defined in the table, an inversion pattern is
applied to the 8-bit code to increase the density of transitions on the transmission line, a benefit to
hardware performance. The inversion pattern is applied by XOR’ing the 8-bit code with 0x55.

Decoding the A-law encoded data is essentially a matter of reversing the steps in the encoding.
Table 2 illustrates the A-law decoding table, applied after reversing the inversion pattern. The
least significant bits discarded in the encoding process are approximated by the median value of
the interval. This is shown in the output section by the trailing 1..0 pattern after the D bit.

A-law Encoded Input Linear Output Data
S 0 0 0 A B C D 0 0 0 0 0 0 0 A B C D 1
S 0 0 1 A B C D 0 0 0 0 0 0 1 A B C D 1
S 0 1 0 A B C D 0 0 0 0 0 1 A B C D 1 0
S 0 1 1 A B C D 0 0 0 0 1 A B C D 1 0 0
S 1 0 0 A B C D 0 0 0 1 A B C D 1 0 0 0
S 1 0 1 A B C D 0 0 1 A B C D 1 0 0 0 0
S 1 1 0 A B C D 0 1 A B C D 1 0 0 0 0 0
S 1 1 1 A B C D 1 A B C D 1 0 0 0 0 0 0

 Table 2, A-Law Decoding

Audio module integration into high quality video transmission software 68

µ-Law Compander

The United States and Japan use µ-law companding. Limiting the linear sample
values to 13 magnitude bits, the µ-law compression is defined by Equation 2,
where µ is the compression parameter (µ =255 in the U.S. and Japan) and x is
the normalized integer to be compressed.

The encoding and decoding process for µ-law is similar to that of A-law. There
are, however, a few notable differences: 1) µ-law encoders typically operate on
linear 13-bit magnitude data, as opposed to 12-bit magnitude data with A-law,
2) before chord determination a bias value of 33 is added to the absolute value
of the linear input data to simplify the chord and step calculations, 3) the
definition of the sign bit is reversed, and 4) the inversion pattern is applied to all
bits in the 8- bit code.
Table 3 illustrates a µ-law encoding table. The sign bit of the linear input data is
omitted from the table. The sign bit (S) for the 8-bit code is set to 1 if the input
sample is positive, and is set to 0 if the input sample is negative.

After the input data is encoded through the logic defined in the table, an
inversion pattern is applied to the 8-bit code to increase the density of
transitions on the transmission line, a benefit to hardware performance.

A-Law /Mu-Law Com panding

Page 2 of 4 Young Engineering: www.young-engineering.com

Table 1 illustrates an A-law encoding table. The sign bit of the linear input data is omitted from
the table. The sign bit (S) for the 8-bit code is set to 1 if the input sample is negative, and is set to
0 if the input sample is positive.

Linear Input Data A-law Encoded Output
0 0 0 0 0 0 0 A B C D X S 0 0 0 A B C D
0 0 0 0 0 0 1 A B C D X S 0 0 1 A B C D
0 0 0 0 0 1 A B C D X X S 0 1 0 A B C D
0 0 0 0 1 A B C D X X X S 0 1 1 A B C D
0 0 0 1 A B C D X X X X S 1 0 0 A B C D
0 0 1 A B C D X X X X X S 1 0 1 A B C D
0 1 A B C D X X X X X X S 1 1 0 A B C D
1 A B C D X X X X X X X S 1 1 1 A B C D

 Table 1, A-Law Encoding

After the input data is encoded through the logic defined in the table, an inversion pattern is
applied to the 8-bit code to increase the density of transitions on the transmission line, a benefit to
hardware performance. The inversion pattern is applied by XOR’ing the 8-bit code with 0x55.

Decoding the A-law encoded data is essentially a matter of reversing the steps in the encoding.
Table 2 illustrates the A-law decoding table, applied after reversing the inversion pattern. The
least significant bits discarded in the encoding process are approximated by the median value of
the interval. This is shown in the output section by the trailing 1..0 pattern after the D bit.

A-law Encoded Input Linear Output Data
S 0 0 0 A B C D 0 0 0 0 0 0 0 A B C D 1
S 0 0 1 A B C D 0 0 0 0 0 0 1 A B C D 1
S 0 1 0 A B C D 0 0 0 0 0 1 A B C D 1 0
S 0 1 1 A B C D 0 0 0 0 1 A B C D 1 0 0
S 1 0 0 A B C D 0 0 0 1 A B C D 1 0 0 0
S 1 0 1 A B C D 0 0 1 A B C D 1 0 0 0 0
S 1 1 0 A B C D 0 1 A B C D 1 0 0 0 0 0
S 1 1 1 A B C D 1 A B C D 1 0 0 0 0 0 0

 Table 2, A-Law Decoding

 A-Law /Mu-Law Com panding

Young Engineering: www.young-engineering.com Page 3 of 4

µ-Law Compander
The United States and Japan use µ-law companding. Limiting the linear sample values to 13
magnitude bits, the µ-law compression is defined by Equation 2, where µ is the compression
parameter (µ =255 in the U.S. and Japan) and x is the normalized integer to be compressed.

)1ln(
))1ln(*)sgn(

µ

µ

+

+ xx
F(x) = 10 !! x

 Equation 2, µ-Law Definition

The encoding and decoding process for µ-law is similar to that of A-law. There are, however, a
few notable differences: 1) µ-law encoders typically operate on linear 13-bit magnitude data, as
opposed to 12-bit magnitude data with A-law, 2) before chord determination a bias value of 33 is
added to the absolute value of the linear input data to simplify the chord and step calculations, 3)
the definition of the sign bit is reversed, and 4) the inversion pattern is applied to all bits in the 8-
bit code.

Table 3 illustrates a µ-law encoding table. The sign bit of the linear input data is omitted from the
table. The sign bit (S) for the 8-bit code is set to 1 if the input sample is positive, and is set to 0 if
the input sample is negative.

Linear Input Data µ-law Encoded Output
0 0 0 0 0 0 0 1 A B C D X S 0 0 0 A B C D
0 0 0 0 0 0 1 A B C D X X S 0 0 1 A B C D
0 0 0 0 0 1 A B C D X X X S 0 1 0 A B C D
0 0 0 0 1 A B C D X X X X S 0 1 1 A B C D
0 0 0 1 A B C D X X X X X S 1 0 0 A B C D
0 0 1 A B C D X X X X X X S 1 0 1 A B C D
0 1 A B C D X X X X X X X S 1 1 0 A B C D
1 A B C D X X X X X X X X S 1 1 1 A B C D

 Table 3, µ-Law Encoding

After the input data is encoded through the logic defined in the table, an inversion pattern is
applied to the 8-bit code to increase the density of transitions on the transmission line, a benefit to
hardware performance. The inversion pattern is applied by XOR’ing the 8-bit code with 0xFF.

Decoding the µ -law encoded data is essentially a matter of reversing the steps in the encoding.
Table 4 illustrates the µ-law decoding table, applied after reversing the inversion pattern. The
least significant bits discarded in the encoding process are approximated by the median value of
the interval. This is shown in the output section by the trailing 1..0 pattern after the D bit.

 A-Law /Mu-Law Com panding

Young Engineering: www.young-engineering.com Page 3 of 4

µ-Law Compander
The United States and Japan use µ-law companding. Limiting the linear sample values to 13
magnitude bits, the µ-law compression is defined by Equation 2, where µ is the compression
parameter (µ =255 in the U.S. and Japan) and x is the normalized integer to be compressed.

)1ln(
))1ln(*)sgn(

µ

µ

+

+ xx
F(x) = 10 !! x

 Equation 2, µ-Law Definition

The encoding and decoding process for µ-law is similar to that of A-law. There are, however, a
few notable differences: 1) µ-law encoders typically operate on linear 13-bit magnitude data, as
opposed to 12-bit magnitude data with A-law, 2) before chord determination a bias value of 33 is
added to the absolute value of the linear input data to simplify the chord and step calculations, 3)
the definition of the sign bit is reversed, and 4) the inversion pattern is applied to all bits in the 8-
bit code.

Table 3 illustrates a µ-law encoding table. The sign bit of the linear input data is omitted from the
table. The sign bit (S) for the 8-bit code is set to 1 if the input sample is positive, and is set to 0 if
the input sample is negative.

Linear Input Data µ-law Encoded Output
0 0 0 0 0 0 0 1 A B C D X S 0 0 0 A B C D
0 0 0 0 0 0 1 A B C D X X S 0 0 1 A B C D
0 0 0 0 0 1 A B C D X X X S 0 1 0 A B C D
0 0 0 0 1 A B C D X X X X S 0 1 1 A B C D
0 0 0 1 A B C D X X X X X S 1 0 0 A B C D
0 0 1 A B C D X X X X X X S 1 0 1 A B C D
0 1 A B C D X X X X X X X S 1 1 0 A B C D
1 A B C D X X X X X X X X S 1 1 1 A B C D

 Table 3, µ-Law Encoding

After the input data is encoded through the logic defined in the table, an inversion pattern is
applied to the 8-bit code to increase the density of transitions on the transmission line, a benefit to
hardware performance. The inversion pattern is applied by XOR’ing the 8-bit code with 0xFF.

Decoding the µ -law encoded data is essentially a matter of reversing the steps in the encoding.
Table 4 illustrates the µ-law decoding table, applied after reversing the inversion pattern. The
least significant bits discarded in the encoding process are approximated by the median value of
the interval. This is shown in the output section by the trailing 1..0 pattern after the D bit.

ANNEX A 69

XOR’ing the 8-bit code with 0xFF applies the inversion pattern.

Decoding the µ -law encoded data is essentially a matter of reversing the steps
in the encoding. Table 4 illustrates the µ-law decoding table, applied after
reversing the inversion pattern. The least significant bits discarded in the
encoding process are approximated by the median value of the interval. This is
shown in the output section by the trailing 1..0 pattern after the D bit.

A-Law /Mu-Law Com panding

Page 4 of 4 Young Engineering: www.young-engineering.com

µ-law Encoded Input Linear Output Data
S 0 0 0 A B C D 0 0 0 0 0 0 0 1 A B C D 1
S 0 0 1 A B C D 0 0 0 0 0 0 1 A B C D 1 0
S 0 1 0 A B C D 0 0 0 0 0 1 A B C D 1 0 0
S 0 1 1 A B C D 0 0 0 0 1 A B C D 1 0 0 0
S 1 0 0 A B C D 0 0 0 1 A B C D 1 0 0 0 0
S 1 0 1 A B C D 0 0 1 A B C D 1 0 0 0 0 0
S 1 1 0 A B C D 0 1 A B C D 1 0 0 0 0 0 0
S 1 1 1 A B C D 1 A B C D 1 0 0 0 0 0 0 0

Table 4, µ-Law Decoding

Summary
There is a wide array of audio transmission systems that employ A-law and/or µ-law companding for data
rate reduction with good audio quality. The compression achieved by both A-law and µ-law coding is the
result of utilizing the logarithmic characteristics of the human auditory system, where fewer bits of
precision are required for larger signals than smaller ones. The logarithmic transfer function is
implemented with a piece-wise linear approximation composed of a sign bit, a 3-bit chord, and a 4-bit
segment. The encoding and decoding process is presented in table format, well suited for hardware or
software implementation.

Audio module integration into high quality video transmission software 70

ANNEX B 71

ANNEX B. Digital audio sample rates

Table from: http://en.wikipedia.org/wiki/Sampling_rate

Sampling
rate Use

8,000 Hz
Telephone and encrypted walkie-talkie, wireless intercom and
wireless microphone transmission; adequate for human speech
but without sibilance; ess sounds like eff. Not for music.

11,025 Hz
One quarter the sampling rate of audio CDs; used for lower-
quality PCM, MPEG audio and for audio analysis of subwoofer
bandpasses.

16,000 Hz
Wideband frequency extension over standard telephone
narrowband 8,000 Hz. Used in most modern VoIP and VVoIP
communication products.

22,050 Hz

One half the sampling rate of audio CDs; used for lower-quality
PCM and MPEG audio and for audio analysis of low frequency
energy. Suitable for digitizing early 20th century audio formats
such as 78s.

32,000 Hz

miniDV digital video camcorder, video tapes with extra channels
of audio (e.g. DVCAM with 4 Channels of audio), DAT (LP mode),
Germany's Digitales Satellitenradio (German), NICAM digital
audio, used alongside analogue television sound in some
countries. High-quality digital wireless microphones.

44,056 Hz
Used by digital audio locked to NTSC color video signals (245
lines by 3 samples by 59.94 fields per second = 29.97 frames per
second).

44,100 Hz

Audio CD, also most commonly used with MPEG-1 audio (VCD,
SVCD, MP3). Originally chosen by Sony because it could be
recorded on modified video equipment running at either 25
frames per second (PAL) or 30fps (using an NTSC monochrome
video recorder) and cover the 20 kHz bandwidth thought
necessary to match professional analog recording equipment of
the time. A PCM adaptor would fit digital audio samples into the
analog video channel of, for example, PAL video tapes using 588
lines by 3 samples by 25 frames per second. Much pro audio
gear uses (or is able to select) 44.1 kHz sampling, including
mixers, EQs, compressors, reverb, crossovers, recording devices
and CD-quality encrypted wireless microphones.

47,250 Hz world's first commercial PCM sound recorder by Nippon
Columbia (Denon)

48,000 Hz

The standard audio sampling rate used by professional digital
video equipment such as tape recorders, video servers, vision
mixers and so on. This rate was chosen because it could deliver
a 22 kHz frequency response and work with 29.97 frames per
second NTSC video - as well as 25 fps, 30fps and 24fps systems.
With 29.97fps systems it is necessary to handle 1601.6 audio

Audio module integration into high quality video transmission software 72

samples per frame delivering an integer number of audio samples
only every fifth video frame. Also used for sound with consumer
video formats like DV, digital TV, DVD, and films. The
professional Serial Digital Interface (SDI) and High-definition
Serial Digital Interface (HD-SDI) used to connect broadcast
television equipment together uses this audio sampling
frequency. Much professional audio gear uses (or is able to
select) 48 kHz sampling, including mixers, EQs, compressors,
reverb, crossovers and recording devices such as DAT.

50,000 Hz First commercial digital audio recorders from the late 70s from
3M and Soundstream.

50,400 Hz Sampling rate used by the Mitsubishi X-80 digital audio recorder.

88,200 Hz

Sampling rate used by some professional recording equipment
when the destination is CD (multiples of 44,100 Hz). Some pro
audio gear uses (or is able to select) 88.2 kHz sampling,
including mixers, EQs, compressors, reverb, crossovers and
recording devices.

96,000 Hz

DVD-Audio, some LPCM DVD tracks, BD-ROM (Blu-ray Disc)
audio tracks, HD DVD (High-Definition DVD) audio tracks. Most
pro audio gear uses (or is able to select) 96 kHz sampling,
including mixers, EQs, compressors, reverb, crossovers and
recording devices. This sampling frequency is twice the 48 kHz
standard commonly used with audio on professional video
equipment.

176,400 Hz Sampling rate used by HDCD recorders and other professional
applications for CD production.

192,000 Hz

DVD-Audio, some LPCM DVD tracks, BD-ROM (Blu-ray Disc)
audio tracks, and HD DVD (High-Definition DVD) audio tracks,
High-Definition audio recording devices and audio editing
software. This sampling frequency is four times the 48 kHz
standard commonly used with audio on professional video
equipment.

352,800 Hz
Digital eXtreme Definition, used for recording and editing Super
Audio CDs, as 1-bit DSD is not suited for editing. Eight times the
frequency of 44.1 kHz.

2,822,400 Hz SACD, 1-bit sigma-delta modulation process known as Direct
Stream Digital, co-developed by Sony and Philips.

5,644,800 Hz Double-Rate DSD, 1-bit Direct Stream Digital at 2x the rate of the
SACD. Used in some professional DSD recorders.

ANNEX C 73

ANNEX C. Payload types

PT Name Type Clock rate (Hz) Audio channels References
0 PCMU Audio 8000 1 RFC 3551
1 1016 Audio 8000 1 RFC 3551
2 G721 Audio 8000 1 RFC 3551
3 GSM Audio 8000 1 RFC 3551
4 G723 Audio 8000 1
5 DVI4 Audio 8000 1 RFC 3551
6 DVI4 Audio 16000 1 RFC 3551
7 LPC Audio 8000 1 RFC 3551
8 PCMA Audio 8000 1 RFC 3551
9 G722 Audio 8000 1 RFC 3551

10 L16 Audio 44100 2 RFC 3551
11 L16 Audio 44100 1 RFC 3551
12 QCELP Audio 8000 1
13 CN Audio 8000 1 RFC 3389
14 MPA Audio 90000 RFC 2250, RFC 3551
15 G728 Audio 8000 1 RFC 3551
16 DVI4 Audio 11025 1
17 DVI4 Audio 22050 1
18 G729 Audio 8000 1
19 reserved Audio
20
-

24

25 CellB Video 90000 RFC 2029
26 JPEG Video 90000 RFC 2435
27
28 nv Video 90000 RFC 3551
29
30

31 H261 Video 90000 RFC 2032
32 MPV Video 90000 RFC 2250
33 MP2T Audio/Video 90000 RFC 2250
34 H263 Video 90000
35
-

71

72
-

76
reserved RFC 3550

77
-

95

96
-

127
dynamic RFC 3551

dynamic GSM-HR Audio 8000 1
dynamic GSM-EFR Audio 8000 1
dynamic L8 Audio variable variable
dynamic RED Audio
dynamic VDVI Audio variable 1
dynamic BT656 Video 90000
dynamic H263-1998 Video 90000
dynamic MP1S Video 90000
dynamic MP2P Video 90000

Audio module integration into high quality video transmission software 74

dynamic BMPEG Video 90000

ANNEX D 75

ANNEX D. Installing Ubuntu 10.04LTS with Blackmagic,
Nvidia and UltraGrid (STABLE audio version)

Steps:

1.- Download a CD image .iso from http://releases.ubuntu.com/lucid/ and
select desktop version i386, like:

 ubuntu-10.04.2-desktop-i386.iso

2.- Burn it into a CD and then reboot the computer and boot it from the
ubuntu CD.

3.- Select your language and then install ubuntu with ext4 journaling file
system and 2GB of swap partition.

NOTE: try to have link to internet while installing the system.

4.- Before installation it is recommended to run X11 as root; so, first enter as
normal user, open gnome-ternimal and type:

 sudo passwd

 Now type the new UNIX password (for root). And restart Xsession as
root.

 NOTE: don’t do any update if a pop window asks for it, only sudo passwd
and restart.

5.- Install some essential packages:

 apt-get install libsdl1.2-dev g++ gcc make libmad0-dev libavcodec-
dev libpostproc-dev libmpeg2-4-dev libwxgtk2.6-dev libavformat-dev libdvbpsi4-
dev libreadline5-dev libfreetype6-dev libjpeg62-dev libpng12-dev freeglut3-dev
libxmu-dev libxi-dev xserver-xorg xfce4 ffmpeg libavcodec-dev libmpeg2-4-dev
automake1.9 libtool gettext libpostproc-dev libavformat-dev libwxbase2.6-dev
xfonts-100dpi libmagick9-dev libglew-dev libxv-dev python python-numarray
python-wxgtk2.6 subversion vim bwm-ng ssh

 (if some packages take problem remove them from that list or try to
install the newest one if it is the case)

Audio module integration into high quality video transmission software 76

6.- Download DeckLink driver from http://www.blackmagic-
design.com/support/software/ and select linux download link; uncompress and
install the decklink .deb package for your system, and the MediaExpress
package too.

7.- Install nvidia driver from the menu: System->Administration->Hardware
Drivers.
 Select the nvidia recommended one.

8.- Before rebooting your system you have to edit the vmalloc space for your
kernel system and solve the incompatibility with your capture card and nvidia:

 vim /boot/grub/grub.cfg

 Then you need to find the "kernel" line for your current kernel and add
vmalloc=256M at the end and save.
 It should be like this:

menuentry 'Ubuntu, amb Linux 2.6.36.4-audio-test' --class ubuntu --class gnu-linux --

class gnu --class os {
 recordfail
 insmod ext2
 set root='(hd0,10)'
 search --no-floppy --fs-uuid --set 03b57627-5155-4625-ade2-0f500fb6ff97
 linux /boot/vmlinuz-2.6.36.4-audio-test root=UUID=03b57627-5155-4625-ade2-

0f500fb6ff97 ro crashkernel=384M-2G:64M,2G-:128M quiet splash vmalloc=256M
 initrd /boot/initrd.img-2.6.36.4-audio-test
}

 NOTE: don’t update-grub, or if you do that be sure you vmalloc=256M as
done above.

9.- It is needed to add the user root to some system groups (to work with
audio properly and only depend on alsamixer). Edit groups and add root, at
least, to the audio groups.

 vim /etc/group
 groups: audio, video, plugdev, admin
 erase from: pulse-access, pulse

 Then, a good sound configuration should be like shown in the next figure,
typing in the gnome-terminal:

alsamixer

ANNEX D 77

 NOTE: since now you can configure audio levels and configure inputs
and outputs from alsamixer only.

 10.- Now reboot your system and enter, as always, as root.

 If a prompt message is displayed by Blackmagic requiring to update the device
firmware you should follow these steps:

BlackmagicFirmwareUpdater
Usage: BlackmagicFirmwareUpdater [COMMAND] [ARGUMENTS]...

COMMANDS:

 status Check if any cards needs its firmware upgraded
 update [card_id] Update firmware versions

BlackmagicFirmwareUpdater status
 blackmagic0 [DeckLink Studio 2] 0x06 PLEASE_UPDATE

BlackmagicFirmwareUpdater update 0x06
Firmware update completed successfully for device: 'blackmagic0'. Please reboot your

system now to activate new firmware

 If you see the last message shown, now you are able to use blackmagic. So,now
reboot please.

11.- Download and prepare ultragrid:
Download the latest repository of the ultragrid subversion from

svn.i2cat.net:

mkdir ~/where-you-want-to-work
cd where-you-want-to-work
svn checkout http://svn.i2cat.net/repos/Ultragrid/UltraGrid

 cd UltraGrid

Audio module integration into high quality video transmission software 78

 sh setup-compression.sh
 vim setup.sh (edit --enable-you-need line as is shown in some
examples in that file, at the end of setup.sh)
 To use with blackmagic and alsa type: --enable-blackmagic --
enable-alsa
 sh setup.sh
 cd ultragrid/bin
 ./init.sh <mtu> <txqueuelen> ethX
 cd ..
 IN TX:

bin/uv -t blackmagic -b8 -B8 (or -B9 …. it depends on the capture
mode) <destination address> -M4 -A0 -a2

 IN RX:
 bin/uv -d sdl -b8 <sender address> -M4 -A0 -a1

NOW YOU ARE READY TO WORK WITH ULTRAGRID, BLACKMAGIC AND
NVIDIA FOR SURE (be quite with sound connections and alsamixer).

NOTE: ANY ERROR ON ANYTHING ELSE DETECTED CONTACT WITH
gerard.castillo@i2cat.net PLEASE!

ANNEX E 79

ANNEX E. Basic and initial UML

The first figure shown has the global UltraGrid structure:

General UltraGrid UML

UltraGrid initializes in that order and then the threads have the global execution
until the end. First of all it starts with the render thread to activate the
decodification, followed by the start up of all the devices and parameters that
will be used in execution time. Then, loop with render, grab, receive and send
thread is done in that order.

Initialization UML

Audio module integration into high quality video transmission software 80

The general initialization starts up with the devices, displaying/decoding or
capturing/encoding, followed by the network initialization that configures the
RTP and RTCP parameters (for example, for having a loss-packet control) and
its relation to work with data to receive or transmit (reception/transmitting ports,
sockets UDP, session database, MTU…)

Receive render thread UML

The render thread is the responsible for the data treatment from the network,
decoding it, to the display. It capture packets from the net, process the headers
and is going on creating the frames, both video and audio. When frame is
complete is time to put it to the display. This thread is directly related to
rx_receive_thread that takes control from receiving packets from the net to
generating RTCP data.

General receive thread UML

ANNEX E 81

Transmit grab thread UML

This thread takes part into the whole loop from capturing from the camera to the
network buffer. Here it is important to take into account of the audio data
capture and its synchronization with video stream generation and transmission.

Audio module integration into high quality video transmission software 82

General trasmit thread UML

This thread is in charge of putting every frame generated and its payload into
the RTP layer, fragmenting if it is necessary. Could be called as an RTP-
transmit module.

ANNEX E 83

Main execution UML

The ‘Main’ activity diagram shows more over the whole UltraGrid execution
order, and how it is done.

Audio module integration into high quality video transmission software 84

ANNEX F 85

ANNEX F. ALSA LISTING, OPTIONS, PLAYBACK AND
CAPTURE EXAMPLES

Listing: permits to know the available parameters of the ALSA
library into our kernel.

#include </usr/include/alsa/asoundlib.h>
int main() {
 int val;

 printf("ALSA library version: %s\n",
 SND_LIB_VERSION_STR);

 printf("\nPCM stream types:\n");
 for (val = 0; val <= SND_PCM_STREAM_LAST; val++)
 printf(" %s\n",
 snd_pcm_stream_name((snd_pcm_stream_t)val));

 printf("\nPCM access types:\n");
 for (val = 0; val <= SND_PCM_ACCESS_LAST; val++)
 printf(" %s\n",
 snd_pcm_access_name((snd_pcm_access_t)val));

 printf("\nPCM formats:\n");
 for (val = 0; val <= SND_PCM_FORMAT_LAST; val++)
 if (snd_pcm_format_name((snd_pcm_format_t)val)
 != NULL)
 printf(" %s (%s)\n",
 snd_pcm_format_name((snd_pcm_format_t)val),
 snd_pcm_format_description(
 (snd_pcm_format_t)val));

 printf("\nPCM subformats:\n");
 for (val = 0; val <= SND_PCM_SUBFORMAT_LAST;
 val++)
 printf(" %s (%s)\n",
 snd_pcm_subformat_name((
 snd_pcm_subformat_t)val),
 snd_pcm_subformat_description((
 snd_pcm_subformat_t)val));

 printf("\nPCM states:\n");
 for (val = 0; val <= SND_PCM_STATE_LAST; val++)
 printf(" %s\n",
 snd_pcm_state_name((snd_pcm_state_t)val));

 return 0;
}
Opening: This example opens the default PCM device, sets some

Audio module integration into high quality video transmission software 86

parameters, and then displays the value of most of the hardware
parameters. It does not perform any sound playback or recording.

/* Use the newer ALSA API */
#define ALSA_PCM_NEW_HW_PARAMS_API

/* All of the ALSA library API is defined
 * in this header */
#include <alsa/asoundlib.h>

int main() {
 int rc;
 snd_pcm_t *handle;
 snd_pcm_hw_params_t *params;
 unsigned int val, val2;
 int dir;
 snd_pcm_uframes_t frames;

 /* Open PCM device for playback. */
 rc = snd_pcm_open(&handle, "default",
 SND_PCM_STREAM_PLAYBACK, 0);
 if (rc < 0) {
 fprintf(stderr,
 "unable to open pcm device: %s\n",
 snd_strerror(rc));
 exit(1);
 }

 /* Allocate a hardware parameters object. */
 snd_pcm_hw_params_alloca(¶ms);

 /* Fill it in with default values. */
 snd_pcm_hw_params_any(handle, params);

 /* Set the desired hardware parameters. */

 /* Interleaved mode */
 snd_pcm_hw_params_set_access(handle, params,
 SND_PCM_ACCESS_RW_INTERLEAVED);

 /* Signed 16-bit little-endian format */
 snd_pcm_hw_params_set_format(handle, params,
 SND_PCM_FORMAT_S16_LE);

 /* Two channels (stereo) */
 snd_pcm_hw_params_set_channels(handle, params, 2);

 /* 44100 bits/second sampling rate (CD quality) */
 val = 8000;
 snd_pcm_hw_params_set_rate_near(handle,

ANNEX F 87

 params, &val, &dir);

 /* Write the parameters to the driver */
 rc = snd_pcm_hw_params(handle, params);
 if (rc < 0) {
 fprintf(stderr,
 "unable to set hw parameters: %s\n",
 snd_strerror(rc));
 exit(1);
 }

 /* Display information about the PCM interface */

 printf("PCM handle name = '%s'\n",
 snd_pcm_name(handle));

 printf("PCM state = %s\n",
 snd_pcm_state_name(snd_pcm_state(handle)));

 snd_pcm_hw_params_get_access(params,
 (snd_pcm_access_t *) &val);
 printf("access type = %s\n",
 snd_pcm_access_name((snd_pcm_access_t)val));

 snd_pcm_hw_params_get_format(params, &val);
 printf("format = '%s' (%s)\n",
 snd_pcm_format_name((snd_pcm_format_t)val),
 snd_pcm_format_description(
 (snd_pcm_format_t)val));

 snd_pcm_hw_params_get_subformat(params,
 (snd_pcm_subformat_t *)&val);
 printf("subformat = '%s' (%s)\n",
 snd_pcm_subformat_name((snd_pcm_subformat_t)val),
 snd_pcm_subformat_description(
 (snd_pcm_subformat_t)val));

 snd_pcm_hw_params_get_channels(params, &val);
 printf("channels = %d\n", val);

 snd_pcm_hw_params_get_rate(params, &val, &dir);
 printf("rate = %d bps\n", val);

 snd_pcm_hw_params_get_period_time(params,
 &val, &dir);
 printf("period time = %d us\n", val);

 snd_pcm_hw_params_get_period_size(params,
 &frames, &dir);
 printf("period size = %d frames\n", (int)frames);

Audio module integration into high quality video transmission software 88

 snd_pcm_hw_params_get_buffer_time(params,
 &val, &dir);
 printf("buffer time = %d us\n", val);

 snd_pcm_hw_params_get_buffer_size(params,
 (snd_pcm_uframes_t *) &val);
 printf("buffer size = %d frames\n", val);

 snd_pcm_hw_params_get_periods(params, &val, &dir);
 printf("periods per buffer = %d frames\n", val);

 snd_pcm_hw_params_get_rate_numden(params,
 &val, &val2);
 printf("exact rate = %d/%d bps\n", val, val2);

 val = snd_pcm_hw_params_get_sbits(params);
 printf("significant bits = %d\n", val);

 snd_pcm_hw_params_get_tick_time(params,
 &val, &dir);
 printf("tick time = %d us\n", val);

 val = snd_pcm_hw_params_is_batch(params);
 printf("is batch = %d\n", val);

 val = snd_pcm_hw_params_is_block_transfer(params);
 printf("is block transfer = %d\n", val);

 val = snd_pcm_hw_params_is_double(params);
 printf("is double = %d\n", val);

 val = snd_pcm_hw_params_is_half_duplex(params);
 printf("is half duplex = %d\n", val);

 val = snd_pcm_hw_params_is_joint_duplex(params);
 printf("is joint duplex = %d\n", val);

 val = snd_pcm_hw_params_can_overrange(params);
 printf("can overrange = %d\n", val);

 val = snd_pcm_hw_params_can_mmap_sample_resolution(params);
 printf("can mmap = %d\n", val);

 val = snd_pcm_hw_params_can_pause(params);
 printf("can pause = %d\n", val);

 val = snd_pcm_hw_params_can_resume(params);
 printf("can resume = %d\n", val);

ANNEX F 89

 val = snd_pcm_hw_params_can_sync_start(params);
 printf("can sync start = %d\n", val);

 snd_pcm_close(handle);

 return 0;
}

Playback: This example reads standard from input and writes to the
default PCM device for 5 seconds of data.

/* Use the newer ALSA API */
#define ALSA_PCM_NEW_HW_PARAMS_API

#include <alsa/asoundlib.h>

int main() {
 long loops;
 int rc;
 int size;
 snd_pcm_t *handle;
 snd_pcm_hw_params_t *params;
 unsigned int val;
 int dir;
 snd_pcm_uframes_t frames;
 char *buffer;

 /* Open PCM device for playback. */
 rc = snd_pcm_open(&handle, "default",
 SND_PCM_STREAM_PLAYBACK, 0);
 if (rc < 0) {
 fprintf(stderr,
 "unable to open pcm device: %s\n",
 snd_strerror(rc));
 exit(1);
 }

 /* Allocate a hardware parameters object. */
 snd_pcm_hw_params_alloca(¶ms);

 /* Fill it in with default values. */
 snd_pcm_hw_params_any(handle, params);

 /* Set the desired hardware parameters. */

 /* Interleaved mode */
 snd_pcm_hw_params_set_access(handle, params,
 SND_PCM_ACCESS_RW_INTERLEAVED);

Audio module integration into high quality video transmission software 90

 /* Signed 16-bit little-endian format */
 snd_pcm_hw_params_set_format(handle, params,
 SND_PCM_FORMAT_S16_LE);

 /* Two channels (stereo) */
 snd_pcm_hw_params_set_channels(handle, params, 2);

 /* 44100 bits/second sampling rate (CD quality) */
 val = 44100;
 snd_pcm_hw_params_set_rate_near(handle, params,
 &val, &dir);

 /* Set period size to 32 frames. */
 frames = 32;
 ssize_t Bpf= snd_pcm_frames_to_bytes(handle,frames);
 printf("\n Bpf=%d \n",Bpf);
 snd_pcm_hw_params_set_period_size_near(handle,
 params, &frames, &dir);

 /* Write the parameters to the driver */
 rc = snd_pcm_hw_params(handle, params);
 if (rc < 0) {
 fprintf(stderr,
 "unable to set hw parameters: %s\n",
 snd_strerror(rc));
 exit(1);
 }

 /* Use a buffer large enough to hold one period */
 snd_pcm_hw_params_get_period_size(params, &frames,
 &dir);
 size = frames * 4; /* 2 bytes/sample, 2 channels */
 buffer = (char *) malloc(size);

 /* We want to loop for 5 seconds */
 snd_pcm_hw_params_get_period_time(params,
 &val, &dir);
 /* 5 seconds in microseconds divided by
 * period time */
 loops = 5000000 / val;

 while (loops > 0) {
 //printf("playback satarted");
 loops--;
 rc = read(0, buffer, size);
 if (rc == 0) {
 fprintf(stderr, "end of file on input\n");
 break;
 } else if (rc != size) {

ANNEX F 91

 fprintf(stderr,
 "short read: read %d bytes\n", rc);
 }
 rc = snd_pcm_writei(handle, buffer, frames);
 if (rc == -EPIPE) {
 /* EPIPE means underrun */
 fprintf(stderr, "underrun occurred\n");
 snd_pcm_prepare(handle);
 } else if (rc < 0) {
 fprintf(stderr,
 "error from writei: %s\n",
 snd_strerror(rc));
 } else if (rc != (int)frames) {
 fprintf(stderr,
 "short write, write %d frames\n", rc);
 }
 }

 snd_pcm_drain(handle);
 snd_pcm_close(handle);
 free(buffer);

 return 0;
}

Capture: This example reads from the default PCM device and
writes to standard output for 5 seconds of data.

/* Use the newer ALSA API */
#define ALSA_PCM_NEW_HW_PARAMS_API

#include <alsa/asoundlib.h>

int main() {
 long loops;
 int rc,err;
 int size;
 snd_pcm_t *handle;
 snd_pcm_hw_params_t *params;
 unsigned int val;
 int dir;
 snd_pcm_uframes_t frames;
 char *buffer;

 /* Open PCM device for recording (capture). */
 rc = snd_pcm_open(&handle,"default",SND_PCM_STREAM_CAPTURE, 0);
 if (rc < 0) {
 fprintf(stderr,"unable to open pcm device: %s\n",snd_strerror(rc));

Audio module integration into high quality video transmission software 92

 exit(1);
 }

 /* Allocate a hardware parameters object. */
 snd_pcm_hw_params_alloca(¶ms);

 /* Fill it in with default values. */
 err = snd_pcm_hw_params_any(handle, params);
 if (err < 0) {
 printf("Broken configuration for this PCM: no configurations available");
 exit(EXIT_FAILURE);
 }

 /* Set the desired hardware parameters. */
 /* Interleaved mode */
 snd_pcm_hw_params_set_access(handle,
params,SND_PCM_ACCESS_RW_INTERLEAVED);

 /* Signed 16-bit little-endian format */
 snd_pcm_hw_params_set_format(handle,
params,SND_PCM_FORMAT_S16_LE);

 /* Two channels (stereo) */
 snd_pcm_hw_params_set_channels(handle, params, 2);

 /* 44100 bits/second sampling rate (CD quality) */
 val = 48000;
 snd_pcm_hw_params_set_rate_near(handle, params, &val, &dir);

 /* Set period size to 1024 frames. */
 frames = 1920;
 snd_pcm_hw_params_set_period_size_near(handle,params, &frames, &dir);

 /* Write the parameters to the driver */
 rc = snd_pcm_hw_params(handle, params);
 if (rc < 0) {
 fprintf(stderr,"unable to set hw parameters: %s\n", snd_strerror(rc));
 exit(1);
 }

 /* Use a buffer large enough to hold one period */
 snd_pcm_hw_params_get_period_size(params,&frames, &dir);

 size = frames * 4; /* 2 bytes/sample, 2 channels(samples/frame) */

 buffer = (char *) malloc(size);

 /* We want to loop for 5 seconds */
 snd_pcm_hw_params_get_period_time(params,&val, &dir);

ANNEX F 93

 loops = 5000000 / val;

 while (loops > 0) {
 loops--;
 rc = snd_pcm_readi(handle, buffer, frames);
 if (rc == -EPIPE) {
 /* EPIPE means overrun */
 fprintf(stderr, "overrun occurred\n");
 snd_pcm_prepare(handle);
 } else if (rc < 0) {
 fprintf(stderr,
 "error from read: %s\n",
 snd_strerror(rc));
 } else if (rc != (int)frames) {
 fprintf(stderr, "short read, read %d frames\n", rc);
 }
 rc = write(1, buffer, size);
 if (rc != size)
 fprintf(stderr,"short write: wrote %d bytes\n", rc);
 }

 snd_pcm_drain(handle);
 snd_pcm_close(handle);
 free(buffer);

 return 0;
}

Audio module integration into high quality video transmission software 94

ANNEX G 95

ANNEX G. Configuring ALSA plug-in

First of all let’s create the .asoundrc file that is read by ALSA library when opens
and searchs for devices.
This may be localized into the default user directory, so in a terminal type the
following commands:

#vim ~/.asoundrc

When executing this command you are creating this hidden file, if it doesn’t
exists. Then with vim let’s write the code to generate the plug-in needed:

pcm.alawUG {
 type alaw
 slave {
 pcm “default”
 format defaultFORMAT
 }
}

pcm.ADpcmUG {
 type adpcm
 slave {
 pcm “default”
 format defaultFORMAT
 }
}

! Sample rate and format must be the same for both master and slave.

This file is creating a plug-in with A-law and IMA_ADPCM that takes as slave
the default device configured into ALSAs library.

Now, to work with this generated plug-ins it must be done:

- Open the desired plug-in:

snd_pcm_open(handle, "alawUG", SND_PCM_STREAM_CAPTURE, 0);

- Set the working sample format:

snd_pcm_hw_params_set_format(handle, params,
SND_PCM_FORMAT_A_LAW);

Audio module integration into high quality video transmission software 96

ANNEX H 97

ANNEX H. PCM (digital audio) interface

From ALSA project web site – the C library reference

Although abbreviation PCM stands for Pulse Code Modulation, we are
understanding it as general digital audio processing with volume samples
generated in continuous time periods.
The analog signal is recorded via analog to digital converters (ADC). The digital
value (de-facto a volume at a specific time) obtained from ADC can be further
processed. The following picture shows a perfect sinus waveform:

Next image shows digitized representation:

As you may see, the quality of digital audio signal depends on the time
(recording rate) and voltage resolution (usually in an linear integer
representation with basic unit one bit).
The stored digital signal can be converted back to voltage (analog)
representation via digital to analog converters (DAC).
One digital value is called sample. More samples are collected to frames (frame
is terminology for ALSA) depending on count of converters used at one specific
time. One frame might contain one sample (when only one converter is used -
mono) or more samples (for example: stereo has signals from two converters
recorded at same time). Digital audio stream contains collection of frames
recorded at boundaries of continuous time periods.

Audio module integration into high quality video transmission software 98

 General overview
ALSA uses the ring buffer to store outgoing (playback) and incoming (capture,
record) samples. There are two pointers being maintained to allow a precise
communication between application and device pointing to current processed
sample by hardware and last processed sample by application. The modern
audio chips allow to program the transfer time periods. It means that the stream
of samples is divided to small chunks. Device acknowledges to application
when the transfer of a chunk is complete.

 Transfer methods in UNIX environments

In the UNIX environment, data chunk acknowledges are received via standard
I/O calls or event waiting routines (poll or select function). To accomplish this
list, the asynchronous notification of acknowledges should be listed here. The
ALSA implementation for these methods is described in the ALSA transfers
section.

 Standard I/O transfers

The standard I/O transfers are using the read (see 'man 2 read') and write (see
'man 2 write') C functions. There are two basic behaviours of these functions -
blocked and non-blocked (see the O_NONBLOCK flag for the standard C open
function - see 'man 2 open'). In non-blocked behaviour, these I/O functions
never stops, they return -EAGAIN error code, when no data can be transferred
(the ring buffer is full in our case). In blocked behaviour, these I/O functions stop
and wait until there is a room in the ring buffer (playback) or until there are a
new samples (capture). The ALSA implementation can be found in the Read /
Write transfer section.

 Event waiting routines

The poll or select functions (see 'man 2 poll' or 'man 2 select' for further details)
allows to receive requests/events from the device while an application is waiting
on events from other sources (like keyboard, screen, network etc.), too.
snd_pcm_poll_descriptors can be used to get file descriptors to poll or select on
(note that wait direction might be diferent than expected - do not use only
returned file descriptors, but handle events member as well - see
snd_pcm_poll_descriptors function description for more details and
snd_pcm_poll_descriptors_revents for events demangling). The implemented
transfer routines can be found in the ALSA transfers section.

 Asynchronous notification

ALSA driver and library knows to handle the asynchronous notifications over the
SIGIO signal. This signal allows to interrupt application and transfer data in the
signal handler. For further details see the sigaction function ('man 2 sigaction').
The section Asynchronous mode describes the ALSA API for this extension.
The implemented transfer routines can be found in the ALSA transfers section.

 Blocked and non-blocked open

The ALSA PCM API uses a different behaviour when the device is opened with
blocked or non-blocked mode. The mode can be specified with mode argument
in snd_pcm_open() function. The blocked mode is the default (without
SND_PCM_NONBLOCK mode). In this mode, the behaviour is that if the

ANNEX H 99

resources have already used with another application, then it blocks the caller,
until resources are free. The non-blocked behaviour (with
SND_PCM_NONBLOCK) doesn't block the caller in any way and returns -
EBUSY error when the resources are not available. Note that the mode also
determines the behaviour of standard I/O calls, returning -EAGAIN when non-
blocked mode is used and the ring buffer is full (playback) or empty (capture).
The operation mode for I/O calls can be changed later with the
snd_pcm_nonblock() function.

 Asynchronous mode

There is also possibility to receive asynchronous notification after specified time
periods. You may see the SND_PCM_ASYNC mode for snd_pcm_open()
function and snd_async_add_pcm_handler() function for further details.

 Handshake between application and library

The ALSA PCM API design uses the states to determine the communication
phase between application and library. The actual state can be determined
using snd_pcm_state() call. There are these states:
SND_PCM_STATE_OPEN

The PCM device is in the open state. After the snd_pcm_open() open
call, the device is in this state. Also, when snd_pcm_hw_params() call
fails, then this state is entered to force application calling
snd_pcm_hw_params() function to set right communication parameters.

SND_PCM_STATE_SETUP
The PCM device has accepted communication parameters and it is
waiting for snd_pcm_prepare() call to prepare the hardware for selected
operation (playback or capture).

SND_PCM_STATE_PREPARE
The PCM device is prepared for operation. Application can use
snd_pcm_start() call, write or read data to start the operation.

SND_PCM_STATE_RUNNING
The PCM device has been started and is running. It processes the
samples. The stream can be stopped using the snd_pcm_drop() or
snd_pcm_drain() calls.

SND_PCM_STATE_XRUN
The PCM device reached overrun (capture) or underrun (playback). You
can use the -EPIPE return code from I/O functions (snd_pcm_writei(),
snd_pcm_writen(), snd_pcm_readi(), snd_pcm_readn()) to determine this
state without checking the actual state via snd_pcm_state() call. It is
recommended to use the helper function snd_pcm_recover() to recover
from this state, but you can also use snd_pcm_prepare(),
snd_pcm_drop() or snd_pcm_drain() calls.

SND_PCM_STATE_DRAINING
The device is in this state when application using the capture mode
called snd_pcm_drain() function. Until all data are read from the internal
ring buffer using I/O routines (snd_pcm_readi(), snd_pcm_readn()), then
the device stays in this state.

SND_PCM_STATE_PAUSED
The device is in this state when application called the snd_pcm_pause()
function until the pause is released. Not all hardware supports this

Audio module integration into high quality video transmission software 100

feature. Application should check the capability with the
snd_pcm_hw_params_can_pause().

SND_PCM_STATE_SUSPENDED
The device is in the suspend state provoked with the power management
system. The stream can be resumed using snd_pcm_resume() call, but
not all hardware supports this feature. Application should check the
capability with the snd_pcm_hw_params_can_resume(). In other case,
the calls snd_pcm_prepare(), snd_pcm_drop(), snd_pcm_drain() can be
used to leave this state.

SND_PCM_STATE_DISCONNECTED
The device is physicaly disconnected. It does not accept any I/O calls in
this state.

 PCM formats

The full list of formats present the snd_pcm_format_t type. The 24-bit linear
samples uses 32-bit physical space, but the sample is stored in low three bits.
Some hardware does not support processing of full range, thus you may get the
significant bits for linear samples via snd_pcm_hw_params_get_sbits() function.
The example: ICE1712 chips support 32-bit sample processing, but low byte is
ignored (playback) or zero (capture). The function
snd_pcm_hw_params_get_sbits() returns 24 in the case.

 ALSA transfers

There are two methods to transfer samples in application. The first method is
the standard read / write one. The second method, uses the direct audio buffer
to communicate with the device while ALSA library manages this space itself.
You can find examples of all communication schemes for playback in Sine-
wave generator example. To complete the list, we should note that
snd_pcm_wait() function contains embedded poll waiting implementation.

 Read / Write transfer

There are two versions of read / write routines. The first expects the interleaved
samples at input (SND_PCM_ACCESS_RW_INTERLEAVED access method),
and the second one expects non-interleaved (samples in separated buffers -
SND_PCM_ACCESS_RW_NONINTERLEAVED access method) at input.
There are these functions for interleaved transfers: snd_pcm_writei()
snd_pcm_readi(). For non-interleaved transfers, there are these functions:
snd_pcm_writen() and snd_pcm_readn().

 Direct Read / Write transfer (via mmap'ed areas)

Three kinds of organization of ring buffer memory areas exist in ALSA API.
Access SND_PCM_ACCESS_MMAP_INTERLEAVED has interleaved
samples. Access SND_PCM_ACCESS_MMAP_NONINTERLEAVED expects
continous sample areas for one channel. Access
SND_PCM_ACCESS_MMAP_COMPLEX does not fit to interleaved and non-
interleaved ring buffer organization.
There are two functions for this kind of transfer. Application can get an access
to memory areas via snd_pcm_mmap_begin() function. This function returns
the areas (single area is equal to a channel) containing the direct pointers to
memory and sample position description in snd_pcm_channel_area_t structure.

ANNEX H 101

After application transfers the data in the memory areas, then it must be
acknowledged the end of transfer via snd_pcm_mmap_commit() function to
allow the ALSA library update the pointers to ring buffer. This kind of
communication is also called "zero-copy", because the device does not require
to copy the samples from application to another place in system memory.
If you like to use the compatibility functions in mmap mode, there are read /
write routines equaling to standard read / write transfers. Using these functions
discards the benefits of direct access to memory region. See the
snd_pcm_mmap_readi(), snd_pcm_writei(), snd_pcm_readn() and
snd_pcm_writen() functions.

 Error codes

-EPIPE
This error means xrun (underrun for playback or overrun for capture). The
underrun can happen when an application does not feed new samples in time to
alsa-lib (due CPU usage). The overrun can happen when an application does
not take new captured samples in time from alsa-lib.
-ESTRPIPE
This error means that system has suspended drivers. The application should
wait in loop when snd_pcm_resume() != -EAGAIN and then call
snd_pcm_prepare() when snd_pcm_resume() return an error code. If
snd_pcm_resume() does not fail (a zero value is returned), driver supports
resume and the snd_pcm_prepare() call can be ommited.
-EBADFD
This error means that the device is in a bad state. It means that the handskahe
between application and alsa-lib is corrupted.
-ENOTTY, -ENODEV
This error can happen when device is physically removed (for example some
hotplug devices like USB or PCMCIA, CardBus or ExpressCard can be
removed on the fly).

 Managing parameters

The ALSA PCM device uses two groups of PCM related parameters. The
hardware parameters contains the stream description like format, rate, count of
channels, ring buffer size etc. The software parameters contains the software
(driver) related parameters. The communication behaviour can be controlled via
these parameters, like automatic start, automatic stop, interrupting (chunk
acknowledge) etc. The software parameters can be modified at any time (when
valid hardware parameters are set). It includes the running state as well.

 Hardware related parameters

The ALSA PCM devices use the parameter refining system for hardware
parameters - snd_pcm_hw_params_t. It means, that application choose the full-
range of configurations at first and then application sets single parameters until
all parameters are elementary (definite).

Access modes
ALSA knows about five access modes. The first three can be used for direct
communication. The access mode
SND_PCM_ACCESS_MMAP_INTERLEAVED determines the direct memory

Audio module integration into high quality video transmission software 102

area and interleaved sample organization. Interleaved organization means, that
samples from channels are mixed together. The access mode
SND_PCM_ACCESS_MMAP_NONINTERLEAVED determines the direct
memory area and non-interleaved sample organization. Each channel has a
separate buffer in the case. The complex direct memory organization
represents the SND_PCM_ACCESS_MMAP_COMPLEX access mode. The
sample organization does not fit the interleaved or non-interleaved access
modes in the case. The last two access modes describes the read / write
access methods. The SND_PCM_ACCESS_RW_INTERLEAVED access
represents the read / write interleaved access and the
SND_PCM_ACCESS_RW_NONINTERLEAVED represents the non-interleaved
access.

Formats
The full list of formats is available in snd_pcm_format_t enumeration.

 Software related parameters

These parameters - snd_pcm_sw_params_t can be modified at any time
including the running state.

Minimum available count of samples
This parameter controls the wakeup point. If the count of available samples is
equal or greater than this value, then application will be activated.

Timestamp mode
The timestamp mode specifies, if timestamps are activated. Currently, only
SND_PCM_TSTAMP_NONE and SND_PCM_TSTAMP_MMAP modes are
known. The mmap mode means that timestamp is taken on every period time
boundary. Corresponding position in the ring buffer assigned to timestamp can
be obtained using snd_pcm_htimestamp() function.

Transfer align
The read / write transfers can be aligned to this sample count. The modulo is
ignored by device. Usually, this value is set to one (no align).

Start threshold
The start threshold parameter is used to determine the start point in stream. For
playback, if samples in ring buffer is equal or greater than the start threshold
parameters and the stream is not running, the stream will be started
automatically from the device. For capture, if the application wants to read count
of samples equal or greater then the stream will be started. If you want to use
explicit start (snd_pcm_start), you can set this value greater than ring buffer
size (in samples), but use the constant MAXINT is not a bad idea.

Stop threshold
Similarly, the stop threshold parameter is used to automatically stop the running
stream, when the available samples crosses this boundary. It means, for
playback, the empty samples in ring buffer and for capture, the filled (used)
samples in ring buffer.

ANNEX H 103

Silence threshold
The silence threshold specifies count of samples filled with silence ahead of the
current application pointer for playback. It is usable for applications when an
overrun is possible (like tasks depending on network I/O etc.). If application
wants to manage the ahead samples itself, the snd_pcm_rewind() function
allows to forget the last samples in the stream.

 Obtaining stream status

The stream status is stored in snd_pcm_status_t structure. These parameters
can be obtained: the current stream state - snd_pcm_status_get_state(),
timestamp of trigger - snd_pcm_status_get_trigger_tstamp(), timestamp of last
pointer update snd_pcm_status_get_tstamp(), delay in samples -
snd_pcm_status_get_delay(), available count in samples -
snd_pcm_status_get_avail(), maximum available samples -
snd_pcm_status_get_avail_max(), ADC over-range count in samples -
snd_pcm_status_get_overrange(). The last two parameters - avail_max and
overrange are reset to zero after the status call.

Obtaining stream state fast and update r/w pointer
The function snd_pcm_avail_update() updates the current available count of
samples for writing (playback) or filled samples for reading (capture). This call is
mandatory for updating actual r/w pointer. Using standalone, it is a light method
to obtain current stream position, because it does not require the user <->
kernel context switch, but the value is less accurate, because ring buffer
pointers are updated in kernel drivers only when an interrupt occurs. If you want
to get accurate stream state, use functions snd_pcm_avail(), snd_pcm_delay()
or snd_pcm_avail_delay().
The function snd_pcm_avail() reads the current hardware pointer in the ring
buffer from hardware and calls snd_pcm_avail_update() then.
The function snd_pcm_delay() returns the delay in samples. For playback, it
means count of samples in the ring buffer before the next sample will be sent to
DAC. For capture, it means count of samples in the ring buffer before the next
sample will be captured from ADC. It works only when the stream is in the
running or draining (playback only) state. Note that this function does not
update the current r/w pointer for applications, so the function
snd_pcm_avail_update() must be called afterwards before any read/write
begin+commit operations.
The function snd_pcm_avail_delay() combines snd_pcm_avail() and
snd_pcm_delay() and returns both values in sync.

Managing the stream state
The following functions directly and indirectly affect the stream state:
snd_pcm_hw_params

The snd_pcm_hw_params() function brings the stream state to
SND_PCM_STATE_SETUP if successfully finishes, otherwise the state
SND_PCM_STATE_OPEN is entered. When it is brought to SETUP
state, this function automatically calls snd_pcm_prepare() function to
bring to the PREPARE state as below.

snd_pcm_prepare

Audio module integration into high quality video transmission software 104

The snd_pcm_prepare() function enters from
SND_PCM_STATE_SETUP to the SND_PCM_STATE_PREPARED
after a successful finish.

snd_pcm_start
The snd_pcm_start() function enters the SND_PCM_STATE_RUNNING
after a successful finish.

snd_pcm_drop
The snd_pcm_drop() function enters the SND_PCM_STATE_SETUP
state.

snd_pcm_drain
The snd_pcm_drain() function enters the
SND_PCM_STATE_DRAINING, if the capture device has some samples
in the ring buffer otherwise SND_PCM_STATE_SETUP state is entered.

snd_pcm_pause
The snd_pcm_pause() function enters the SND_PCM_STATE_PAUSED
or SND_PCM_STATE_RUNNING.

snd_pcm_writei, snd_pcm_writen
The snd_pcm_writei() and snd_pcm_writen() functions can conditionally
start the stream - SND_PCM_STATE_RUNNING. They depend on the
start threshold software parameter.

snd_pcm_readi, snd_pcm_readn
The snd_pcm_readi() and snd_pcm_readn() functions can conditionally
start the stream - SND_PCM_STATE_RUNNING. They depend on the
start threshold software parameter.

Streams synchronization
There are two functions allowing link multiple streams together. In the case, the
linking means that all operations are synchronized. Because the drivers cannot
guarantee the synchronization (sample resolution) on hardware lacking this
feature, the snd_pcm_info_get_sync() function returns synchronization ID -
snd_pcm_sync_id_t, which is equal for hardware synchronized streams. When
the snd_pcm_link() function is called, all operations managing the stream state
for these two streams are joined. The opposite function is snd_pcm_unlink().

PCM naming conventions
The ALSA library uses a generic string representation for names of devices.
The devices might be virtual, physical or a mix of both. The generic string is
passed to snd_pcm_open() or snd_pcm_open_lconf(). It contains two parts:
device name and arguments. Devices and arguments are described in
configuration files. The usual place for default definitions is at
/usr/share/alsa/alsa.conf. For detailed descriptions about integrated PCM
plugins look to PCM (digital audio) plugins.

Default device
The default device is equal to plug plugin with hw plugin as slave. The defaults
are used:
defaults.pcm.card 0 defaults.pcm.device 0 defaults.pcm.subdevice -1
These defaults can be freely overwritten in local configuration files.
Example:
default

ANNEX H 105

HW device
The hw device description uses the hw plugin. The three arguments (in order:
CARD,DEV,SUBDEV) specify card number or identifier, device number and
subdevice number (-1 means any).
Example:
hw hw:0 hw:0,0 hw:supersonic,1 hw:soundwave,1,2
hw:DEV=1,CARD=soundwave,SUBDEV=2

Plug->HW device
The plughw device description uses the plug plugin and hw plugin as slave. The
arguments are same as for hw device.
Example:
plughw plughw:0 plughw:0,0 plughw:supersonic,1 plughw:soundwave,1,2
plughw:DEV=1,CARD=soundwave,SUBDEV=2

Plug device
The plug device uses the plug plugin. The one SLAVE argument specifies the
slave plugin.
Example:
plug:mypcmdef plug:hw plug:'hw:0,0' plug:SLAVE=hw

Shared memory device
The shm device uses the shm plugin. The two arguments (in order:
SOCKET,PCM) specify UNIX socket name (for example /tmp/alsa.socket) for
server communication and server's PCM name.
Example:
shm:'/tmp/alsa.sock',default shm:SOCKET='/tmp/alsa.sock',PCM=default

Tee device
The tee device stores contents of a stream to given file plus transfers it to given
slave plugin. The three arguments (in order: SLAVE,FILE,FORMAT) specify
slave plugin, filename and file format.
Example:
tee:hw,'/tmp/out.raw',raw

File device
The file device is file plugin with null plugin as slave. The arguments (in order:
FILE,FORMAT) specify filename and file format.
Example:
file:'/tmp/out.raw',raw

Null device
The null device is null plugin. This device has not any arguments.

Examples
The full featured examples with cross-links can be found in Examples section
(see top of page):
Sine-wave generator

Audio module integration into high quality video transmission software 106

alsa-lib/test/pcm.c example shows various transfer methods for the
playback direction.

Minimalistic PCM playback code
alsa-lib/test/pcm_min.c example shows the minimal code to produce a
sound.

Latency measuring tool
alsa-lib/test/latency.c example shows the measuring of minimal latency
between capture and playback devices.

