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Abstract

This project is devoted to study the so–called k–generalized chromatic numbers which arise
from Low Tree–Depth decompositions of graphs. The k–generalized chromatic number,
introduced with this name by Nešetřil and Ossona de Mendez, is the minimum number
of colors needed to color a graph such that every i–colors induce a graph of tree–depth at
most i. One of the main results in the theory of bounded expansion classes developed by
these authors, says that a class of bounded expansion has bounded generalized chromatic
numbers, and in fact this provides one characterization of such classes.

We first study the list version of the k–generalized chromatic numbers in connection with
the conjecture of Ohba, which says that a large chromatic number ensures the equality
with the list chromatic number. We extend to k–generalized chromatic numbers the known
results on this conjecture. We next give asymptotic upper bounds on the k–generalized
chromatic numbers for classes of graphs with bounded degree by using the Lovász Lo-
cal Lemma. We finally study the tree–depth of random graphs, closely connected to
k–generalized chromatic numbers, and analyse the evolution of this parameter for linear
and superlinear numbers of edges.

Aquest projecte està dedicat a estudiar el k-èssim nombre cromàtic generalitzat que sorgeix
de les descomposicions Low Tree–Depth en grafs. El k-èssim nombre cromàtic generalitzat,
introdüıt amb aquest nom per Nešetřil i Ossona de Mendez, és el mı́nim nombre de colors
necessaris per colorar un graf de tal manera que qualssevol i classes de colors indueixen
un graf amb tree–depth menor o igual a i. Un dels principals resultats en la teoria de
grafs d’expansió fitada, desenvolupada per aquests autors, diu que una classe té expansió
fitada si el seus nombres cromàtics generalitzats estan fitats. De fet, això proveeix una
caracterització d’aquestes classes.

En primer lloc estudiem la versió per llistes del k-èssim nombre cromàtic generalitzat en
connexió amb la conjectura de Ohba, que afirma que un nombre cromàtic gran assegura
la igualtat entre aquest i el nombre cromàtic per llistes. Estenem als nombres cromàtics
generalitzats els resultats coneguts al voltant d’aquesta conjectura. A continuació donem
fites superiors asimptòtiques pel k-èssim nombre cromàtic generalitzat per classes de grafs
de grau fitat utilitzant el Lema Local de Lovász. Finalment, estudiem el tree–depth dels
grafs aleatoris, estretament relacionat amb els nombres cromàtics generalitzats, i analitzem
l’evolució d’aquest paràmetre per grafs amb un nombre lineal o supralineal d’arestes.





Introduction

Coloring problems of graphs form a central topic in Graph Theory which has motivated
a substantial part of its contemporary form and is still a lively source of challenging
problems and theories, as illustrated in the extensive survey of open problems by Jensen
and Toft [27]. All of these problems have its origin in the classical question about coloring
a graph in such a way that two adjacent vertices do not share a color. Even if coloring
problems have often a simple formulation, their solution is usually not simple, a fact that
can be illustrated by the algorithmic complexity of the simple question about the value of
the chromatic number of a graph being equal to k, only simple (and trivial) when k = 2.

The notion of chromatic number, which appears in many basic graph theoretic questions,
has been enriched in several directions giving rise to a host of parameters with a wide range
of motivations and applications. This work focusses mainly in a recent generalization of
the chromatic number with connections with deep structural analysis of sparse graphs
developed in the last few years in a series of papers of Nešetřil and Ossona de Mendez
[38, 39, 42, 37].

The generalization we are interested in traces back its origins in two variations of the
chromatic number: the acyclic and the star chromatic numbers. The acyclic chromatic
number χa(G) of a graph G is the minimum number of colors needed to color a graph such
that every color class induces a graph with no edges and every two color classes induce a
graph with no cycles. Similarly, the star chromatic number χs(G) is the minimum number
of colors in a proper coloring of G such that every two classes induce a forest of stars.
Both parameters have been widely studied in the literature. Perhaps surprisingly, DeVoss
et al [15] showed that, for every minor closed class C of graphs with at least one excluded
minor and a given natural number k, there is a constant k(C) such that every graph G in
the class admits a coloring with k(C) colors for which a far reaching generalization of the
acyclic coloring property holds, namely, every i ≤ k colors induce a graph with tree–width
at most i. Such a coloring is called a Low Tree–width Decomposition of G.

In his structural study of sparse graphs, Nešetřil and Ossona de Mendez introduced the
analogous concept of Low Tree–depth Decomposition of a graph, related to a new param-
eter, the tree–depth, which measures the structural complexity of a graph with respect to
rooted trees of given depth, in analogy to tree–width, which can be seen as a measure of
complexity with respect to trees.

A Low Tree–depth Decomposition is a coloring of a graph in which, for some fixed k, every
i ≤ k colors induce a subgraph with tree–depth at most i. For k = 2, the size of Low
Tree–width Decomposition is the acyclic chromatic number, while the size of a Low Tree–
depth Decomposition corresponds to the star chromatic number. The fundamental result
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in the theory of bounded expansion classes of graphs, which provides an effective measure
of sparsity, states that for every bounded expansion class C of graphs exists a parameter
χk(C) such that every graph in the class admits a Low Tree–depth Decomposition of level
k with χk(C) colors. These authors call χk(G), the minimum number of colors in a Low
Tree–depth Decomposition of level k, the k–generalized chromatic number. The same
notion had already appeared in the literature under different names in many contexts (the
ranking number [14], the height of elimination trees [38], etc. ).

This work focuses on the study of k–generalized chromatic numbers from the probabilistic
perspective. The probabilistic method has a long and fruitful history in combinatorics.
The book of Alon and Spencer [4] gives a good account on the probabilistic method
and its applications. A good reference on the particularly successful application of the
probabilistic method to coloring problems is the monograph by Molloy and Reed [33] on
the topic.

The probabilistic method relies on proving that certain statements are true by showing
that the probability for a combinatorial element to exist is strictly positive. Whereas
many combinatorial proofs imply constructing objects in an explicit way, the probabilistic
method gives only existential proofs.

A natural question is whether the restricting variations of graph colorings behave in the
same way as ordinary proper colorings. In this direction, it is interesting to see if it is
possible to translate certain results that hold for colorings, to these generalized versions
of chromatic numbers.

One example of this common behavior is related with the notion of list colorings. The
list version of a chromatic number restricts the set of possible colors assigned to a vertex,
and we ask for the common length of lists of colors available to each vertex to ensure that
a suitable coloring exists. The list version of a coloring has several natural motivations,
including the completion of a partial coloring of a graph and the frequency assignment
problem in mobile communications. There are several longstanding conjectures on this
parameter, which can be much larger than the corresponding ordinary chromatic number,
one of them the famous List Coloring Conjecture. We will study another well–known
conjecture, due to Ohba, which states that the list chromatic number coincides with the
ordinary one if the latter is at least half the order of the graph. Reed and Sudakov
[45] proved a weaker form of the conjecture by using a random strategy to color the
vertices of the graph. Our first result extends this result for ordinary chromatic numbers
to any conceivable generalization of a chromatic number. We also suggest an approach to
sharpen the result towards the complete proof of Ohba’s conjecture which, unfortunately,
we have not been able to complete yet. We also study a related problem posed by Reed
and Sudakov, and discuss the relation between fractional chromatic numbers and its list
versions.

The second part of this work is based on the application of the Lovász Local Lemma to
study the k–generalized chromatic numbers. The Lovász Local Lemma allows for applica-
tion of the probabilistic method in the context of events with weak dependency relations.
As such, the method is suitable for application in coloring problems to graphs with bounded
degree, where the conflicts arisen by a random coloring have only local dependencies, see
for instance the papers of Alon, Molloy and Reed [3] on the acyclic chromatic index of
graphs with bounded degree, or the work of Fertin, Raspaud and Reed on the acyclic
chromatic number of various classes of graphs with bounded degree [21]. Since the class
of bounded degree graphs is a bounded expansion class, we know that there exist a Low
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Tree–depth Decomposition. In other words, the k–generalized chromatic number is well
defined in such classes of graphs. We give asymptotic upper bounds on the k–generalized
chromatic numbers in classes of graphs with maximum degree d in terms of d by using
the Lovász Local Lemma. Our results can be considerably strengthened for classes with
large girth. Even if the upper bounds match the best known results in the case of star
colorings, we obtain lower bounds based on Hamming graphs which, unfortunately, do not
match the upper bounds.

To define Low Tree–depth Decompositions, a tree-like parameter has to be introduced: the
tree–depth [38]. Our last chapter is devoted to a different probabilistic approach: random
graphs. In the classical Erdős Renyi model, a random graph is obtained by choosing
independently every possible edge in a graph with a given probability p. The goal is
to identify, if possible, the asymptotically almost sure value of a parameter of a random
graph. The usual approach is to let the probability p of an edge to depend on the order
n of the graph, and to analyze the evolution of the parameter in terms of the functional
relationship of p with n. Equivalently, the value of the parameter under study is analyzed
in terms of the edge density of the random graph. In this framework, we study the tree–
depth of random graphs and analyze particularly the phase transitions of this parameter.
We completely characterize the asymptotic almost surely value of this parameter. As a
side result, we give a direct proof of a recently proved conjecture by Kloks on the linear
character if tree–width of random graphs with p = c/n and c > 1. We also show that this
linear character still appears in random regular graphs.
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1

Background

1.1 Why graphs?

Graph theory is a young field of mathematics that has grown exponentially in the last
century. Nevertheless, the theory of graphs has started in the XVII-th century.

Roughly speaking, a graph is composed by some elements called vertices and relations
among them, called edges.

In 1736 Leonhard Euler, one of the more fruitful mathematics in history, published a paper
on the Seven Bridges of Köninsberg. Köninsberg (currently named Kaliningrad) is a city,
bathed by the Pregel river, that belonged to the Prussian empire. When the river crosses
the city, it forms two little islands. Seven bridges were built to connect these islands with
both sides of the river (Fig. 1.1).

(a) (b) (c)

Figure 1.1: Seven Bridges of Köninsberg

Euler, that worked for the prussian court, was asked whether it was possible to do a walk
such that each bridge was crossed exactly one time? The answer is no, because there are
more than two vertices with odd degree. In his honor, the walks in a graph that use all
the edges exactly one time are called eulerian walks. Actually, this problem also gave rise
to another field of mathematics: the topology.

One of the other classic problems in graph theory is graph coloring. It consists in assigning
each vertex a color in such a way that two connected vertices do not have the same color.
Among problems dealing with colorings, probably the most famous one is the so called
four-color problem which asks if it is possible to color any planar graph with at most four
colors. A planar graph is a graph that has a representation in R2 without “crossing” edges.

This problem was set out by Francis Guthrie in 1852 and was solved by Kenneth Appel
and Wolfgang Haken. Their proof was based in ruling out a lot of configurations (approx.
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2000) using a computer, because it was the only way to do it in a reasonable time. This
proof caused a lot of controversy because it was not possible to check its truth. Nowadays,
the proof has been simplified but it is still necessary the computer for ruling out the
configurations. Despite of this, it is assumed that the proof is correct.

(a) 4-colored map (b) False counterexample from Martin Gardner

Figure 1.2

Graphs also play an important role in other science fields, usually in the analysis of net-
works. Internet, image processing, social networks, tranport problems or a lot of problems
in chemistry, physics and biology, can be represented using graphs.

(a) Social Network (b) Molecule

Figure 1.3

During this work, we will study list colorings. They arise in problems of frequency as-
signment. Suppose that we have a set of emitters with a certain scope. We can model
this problem by assigning a vertex for each emitter and two vertices are adjacent if they
frequency scope overlap. We want to assign each emitter a frequency in such a way that
two emitters that are adjacent do not have the same frequency. This problem corresponds
to the coloring problem of graphs. If we assign now a subset of fixed frequencies for each
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emitter, the problem turn out to be a list coloring of a graph. This example motivates the
definition of list colorings.

The coloring theory in graphs includes a lot of interesting problems and variations (e.g.
see [27]). Moreover, some of the most important open problems and conjectures in graph
theory deal with colorings. Among them we stress the Hadwiger conjecture. If a graph
has chromatic number k then it is logic to think that there will be a complet subgraph on
k vertices. This is not always true, only in the case of perfect graphs. So the conjecture
suggests that there must be a subgraph that has the complet graph on k vertices as a
minor. We will introduce all this mentioned concepts during this first chapter.

1.2 Basic structures and definitions

We have to state the basic notation that we will use throughout the work. In order to
simplify the reading, we will use the standard notation given in the textbook Graph Theory
from R. Diestel [16]. A graph G = (V,E) is a combinatorial object composed by a pair,
where V is the set of vertices and E ⊆

(
V
2

)
is the set of edges. We consider a graph to be

simple if E is not a multiset. Otherwise stated a graph is considered to be simple. Usually,
the set of vertices is labeled with natural numbers. It is useful to represent graphs with
points as vertices and lines linking these points as edges (Fig. 1.4).

2
1

4

5

3

8

6

7

9

Figure 1.4: Graph with V = {1, . . . , 8} and E = {12, 13, 24, 26, 27, 37, 45, 46, 48, 49, 67, 89}.

We will use n = |V | and m = |E| to denote the number of vertices and edges respectively.
Note that

0 ≤ m ≤
(
n

2

)
The set of edges that contains v is E(v). The vertices that share an edge with v will be
called neighbors of e and the set of neighbors of v be denoted by N(v). If u ∈ N(v), we
denote it as u ∼ v, otherwise u � v.

A natural concept is the degree of v, d(v) = |N(v)|. The maximum degree of G is d(G) =
maxv d(v). We call a graph regular if d(v) = d(G) for any v ∈ V .

Given a graph G we can construct its complement G with the same set of vertices, and an
edge between to vertices if and only if this edge does not exist in G. The complete graph,
Kn, is the graph on n vertices with all the possible edges.

Let X ⊆ V a subset of vertices. Then E(X) are the edges totally contained in X and
N(X) are the vertices not in X that have a neighbor in X. If Y is another subset of the
vertices, E(X,Y ) are the edges with one endpoint in each set.
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A subgraph H = (X,F ) ⊂ G is a graph where X ⊆ V and F ⊆ E with the restriction
that the edges F have both ends in X. A subgraph is called induced if F = E(X), and is
denoted as G[X]. Fig. 1.5 shows an induced subgraphs and a subgraph from the graph in
Fig. 1.4.

(a) Induced subgraph

2

4

8

1
6

9

(b) Subgraph

Figure 1.5

A path P ⊆ G is a subgraph such that V (P ) = {v0, v1, . . . , vh}, where vi 6= vi+1 for any
0 ≤ i < h, and E(P ) = {{vi, vi+1} : 0 ≤ i < h}. If this is the case, we say that P has
length h. A cycle C ⊆ G is a path where v0 = vk.

The girth g(G) of a graph G is the shortest cycle contained in G as a subgraph. Note that
g(G) ≥ 3. If g(G) > 3 the graph is called triangle-free.

We say that G is connected if for every pair of vertices (u, v), there exist a path between
them. Otherwise we say that G is disconnected. In this sense, we define the number of
connected components as the maximum number of vertices that pairwise can not be joined
by paths.

A graph G is k-connected if removing any set of k vertices leaves the graph connected. In
this sense, it extends the notion of connectivity. The connectivity of a graph, κ(G) is the
maximum k such that G is k-connected.

Let S ⊂ V , then S is a separator of G if V = A∪S∪B with A,B 6= ∅, where |E(A,B)| = 0.
In this case we also say that S disconnects the graph. Note that a graph with κ(G) = k
has a k + 1 separator.

A set of vertices X is called independent or stable if |E(X)| = 0. The independence
number α(G) is the maximum cardinal of a stable set. The clique number ω(G) is the size
of the maximum complete subgraph. Note that the independence and the clique number
a connected by α(G) = ω(G). Stable sets play a crucial role in graph theory.

We highlight a type of graphs: bipartite graphs. A graph is bipartite if there exists a
partition V = A ∪ B, where A and B are stable sets. In general we define a k-partite
graph if V = A1 ∪ · · · ∪Ak and every Ai is stable.

We can provide a metric in the graph by defining a distance. The distance between u and
v, d(u, v) is the minimum length of any path that joins u and v. If there not exist any path
joining two vertices we say that their distance is infinity. We can generalize the concept of
neighbors to Nd(v), all the vertices that lie at distance d from v. Then, the ball of radius
d Bd(v) will be the vertices at distance at most d from v.

The diameter diam(G) of G, is the maximum distance among all pair of vertices.

A class of graphs C is a not necessarily finite set of graphs.



1.2. Basic structures and definitions 5

1.2.1 Forests and trees

A forest F is a graph without cycles. If such a graph is connected it is called tree and it
is denoted with T .

Proposition 1.1 The following statements are equivalent

• T is a tree.

• for any pair of vertices, there exists a unique path between them.

• T is maximally acyclic.

• T is minimally connected.

• T is connected with n vertices and n− 1 edges.

A star is a tree with diameter 2. A star forest is a set of disjoint stars.

For some applications it is useful to single out a certain vertex r in the tree. In this case
we say that T is arooted tree and the distinguished vertex is the root of T . In the same
direction, we can define a rooted forest as a set of disjoint rooted trees, each one with a
root. A good way to see a rooted tree is to draw its vertices in different levels, where v is
in the level d(r, v). The height of a rooted tree T is the maximum level of its vertices.

A rooted tree also induces a partial ordering on the vertices: v ≤ u if u ∈ Tv, where Tv is
the subtree that has v as a root.

In this context, we define the closure of a tree, clo(T ), as the graph obtained by joining
the comparable vertices on a rooted tree (See Figure 1.6).

r r

Figure 1.6: A tree T of height 4 and clo(T )

1.2.2 Minor theory

We can define two operations that apply on the edges of the graph. The contraction of
e = uv, is a graph G\e where e is deleted and the vertices u and v are identified. This
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new vertex is called ve. If some parallel edges appear (in the case where u and v have
common neighbors), we stick them. The deletion of e is the graph G − e where the edge
e is removed, but the vertices remain untouched.

A minor of G is a simple subgraph H ⊂ G′ where G′ is obtained from G by applying some
deletions and contractions. It is denoted as H � G. We call a class C minor closed if for
any G ∈ C and H � G, then H ∈ C.
A subdivision of e is another operation over edges that replaces e with a path of arbitrarily
length.

1

3 24

7

6

9
8

5

1

3

2

4
7

6

9
8
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3

2

4
7

6

9
8

5

10

11

Figure 1.7: Contraction, deletion and subdivision of e = (2, 4)

A topological minor of G is a subgraph H ⊂ G′′ such that G is a subdivision of G′.

The � order induces a partial ordering of graphs, as well as the subgraph order (⊂). One
of the most relevant theorems in graph theory arises in the context of the minor poset.
An antichain of a poset is a set of pairwise incomparable elements.

Theorem 1.2 (Robertson and Seymour [47]) In any minor closed class C of graphs
there are no infinite antichains with respect to the minor ordering.

An obstruction set O of a graph class C, is a set of graphs such that G /∈ C if and only
if ∃O ∈ O such that O � G. Theorem 1.2 can be stated in terms of obstruction sets:
any minor closed class C has a finite obstruction set. We will use widely this result in
chapters 4 and 5.

In the context of graph classes, Nešetřil and Ossona de Mendez defined the bounded
expansion class [38].

The graph H is a shallow minor of G at depth r if there exists x1, . . . , xp ∈ G and disjoint
V1 ⊆ Nr(x1), . . . , Vp ⊆ Nr(xp) (each inducing a connected subgraph) such that H is a
subgraph of the graph obtained from G by contracting each Vi into xi, removing loops and
sticking multiple edges. The set of the shallow minors of G at depth r is GOr.

The greatest reduced average density (grad) with rank r of a graph G is defined by the
formula,

5r(G) = max

{
|E(H)|
|V (H)|

: H ∈ GOr
}

Analogously topological shallow minors and topological grads (5̃r(G)) are defined.

A class of graphs C has bounded expansion if,

5r(G) <∞ (∀r) ⇐⇒ 5̃r(G) <∞ (∀r)

This class is included in the nowhere dense graphs class, which is the class of graphs with
at most O(n) edges.
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In some sense, bounded expansion classes generalize minor closed and bounded degree
classes

1.3 The probabilistic method

The probabilistic method has been developed during the last 60 years. It concerns two
huge areas of the mathematics: combinatorics and probability. Probably two of the most
relevant examples are due to Erdős: the lower bound for diagonal Ramsey numbers and the
proof that there exist graphs with large girth and also large chromatic number. It must be
stressed that until now anybody have given an alternative proofs of both problems without
using the probabilistic method, and for example, the lower bound for diagonal Ramsey
numbers has not been improved yet.

The probabilistic method relies on constructing a probability space over a class of combi-
natorial objects and then showing that the probability of a randomly chosen element to
have a property is greater than 0. Observe that we can show that this element exists but
we do not know how is this element, i.e. probabilistic proofs are non constructive.

Although the probabilistic method appears usually in combinatorics and graph theory,
there are some applications in other fields like number theory, real analysis, computer
science and many others.

Let X be a random variable, we will denote by E(X) the expected value (or mean) and
by Var(X) or σ2(X) the variance of X.

Next, we present the most relevant concentration inequalities. These inequalities give
upper bounds on the probability that a random variable attains values far from its expected
value.

The Markov inequality guarantees that the tail of a probability distribution has low prob-
ability. If X is a positive valued random variable, then

Pr (X ≥ k) ≤ E(X)

k

where k ≥ E(X).

The Chebyshev inequality states that the concentration around the mean depends on the
variance. If X is a random variable, then

Pr (|X − E(X)| ≥ kσ) ≤ 1

k2
(1.1)

Chernoff bounds give exponential bounds on the tail of certain distributions. There are
several variations of them. Here we show one of the more useful. Let X1, . . . , Xn mutually
independent random variables with |Xi| ≤ 1 and X =

∑
Xi, then

Pr (|X − E(X)| > a) ≤ e−a2/2n

If the reader is interested in concentration bound we refer him to survey of Lugosi [32].

1.3.1 Random graphs

The main idea is to turn graphs into a probability space to ask question as, which is
the probability that a graph has a certain property or which is the expected value of a
parameter.
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Let n be the number vertices, for every possible edge e ∈
(
V
2

)
we define the probability

space Ω(e) = {0e, 1e}, choosing Pr(1e) = p and Pr(0e) = 1 − p. We will consider p as
a constant or as p = p(n) depending on the situation. The probability space G(n, p) is
defined as the Cartesian product of all the independent Ω(e),

Ω =
∏
e∈(V2)

Ωe

An element of this space is called a random graph and is denoted G ∈ G(n, p). In fact, we
define random graphs by identifying G with the event ω ∈ Ω where e ∈ E(G) if and only
if ω(e) = 1e.

For any pair of edges e and f , by the definition of the product space, the set of events
Ae = {ω : ω(e) = 1e}, i.e. the graphs that contain the edge e, is independent from the set
of events Af (f 6= e).

This model is known as the Erdős-Rényi model for random graph. There exist several
other models such as the regular random graphs or the geometric random graphs.

Let P be a graph property, e.g. to be connected or to have a hamiltonian path. We
will say that this property holds asymptotically almost sure (a.s.s.) for random graphs
G ∈ G(n, p), if

lim
n→∞

Pr(G has P) = 1

Throughout the paper, all the results and statements concerning random graphs must be
understood in the asymptotically almost sure sense.

Another interesting one is the G(n,m) model. In this case a graph G ∈ G(n,m) is with
equal probability any graph with n vertices and m edges. As it is well–known the two
models are closely connected and most of the statements are usually transferred from one
model to the other one. Let P be a convex graph property, i.e. F ⊂ G ⊂ H and F and
H have P implies that G has P. The following theorem from Bollobás [10, Theorem 2.2]
states precisely this correspondence,

Theorem 1.3 If P is convex and p(1 − p)
(
n
2

)
→ ∞, then Gp ∈ G(n, p) a.a.s. satisfies

P if and only if, for every fixed x, Gm ∈ G(n,m) a.a.s. satisfies P, where m = p
(
n
2

)
+

x
√
p(1− p)

(
n
2

)
.

The probability space G(n,m) can be seen as an snapshot of a stochastic process {G̃m}
(n2)
0

and at each step we add an edge to an initial empty graph on n vertices. There are two
ways to construct G(n,m) but it can be seen that they are equivalent. We present the
simpler one: we choose independently m pairs of vertices that will be the edges of G.
Then the resulting graph is a.a.s. a simple graph that have m edges. Note that multiedges
(repeated pairs in the choice) have probability at most 1/n to appear, which tends to 0
when n goes to infinity.

The last model we introduce is the random regular graph model G(n, d) (RRG). It is easy
to check that the degree of a certain vertex follows a binomial distribution Bin(n−1, p(n)),
therefore the expected degree is (n−1)p(n). In a lot of problems, random graphs come up
with the regularity restriction. In this sense the definition of RRGs is necessary. A RRG
G ∈ G(n, d) is constructed in the following way:
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1. Let D1, . . . , Dn be distinct n sets of size d and D =
⋃
Di.

2. Take a random perfect matching of the complete graph with the elements of D as a
vertices.

3. If a vertex in Di is paired with some vertex in Dj , then add an edge between vi, vj ∈
G.

4. This method can provide loops and multiple edges, remove them.

Then the resulting graph is a.a.s. a RRG of degree d.

1.3.2 Lovász Local Lemma

The Lovász Local Lemma (LLL) was settled by Lovász and Erdős in 1975 [18] and since
then, it has been a really powerful tool for solving a lot of problems. It is well known
that if we have some mutually independent events, each with a certain probability less
than 1, then the probability that any event occurs is strictly positive. The LLL allows
us to slightly relax the independence condition: if we have a set of events that has few
dependences among them, and that are sufficiently improbables, then the probability that
none of them hold, is strictly positive.

This method will give only existence proofs. Beck in 1991 ([6]) gave a first proof that an al-
gorithmic version was possible. Moser and Tardos in [35] proposed an efficient (polynomial
time) randomized algorithm for computing the assignment of the random variables that
make no event to hold. Nevertheless, in this project we will not focus on this algorithmic
version.

Let A1, A2, . . . , An be events in an arbitrary probability space. A directed graph D =
(V,E) on the set of vertices V = {1, 2, . . . , n} is called a dependency digraph for the
events A1, . . . , An if for each i, 1 ≤ i ≤ n, the event Ai is mutually independent of all the
events Di = {Aj : (i, j) ∈ E}. Define di = |Di|. Suppose that D = (V,E) is a dependency
digraph for the events Ai.

Theorem 1.4 (Lovász Local Lemma) , General Case, e.g. see [4, pag.68]

If there are real numbers x1 . . . , xn such that 0 < xi < 1 and Pr(Ai) < xi
∏

(i,j)∈E(1− xj)
for all 1 ≤ i ≤ n. Then

Pr

(
n⋂
i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0

In particular, with positive probability no event Ai holds.

As can be seen, the lemma belong to the theory of probability and the proof of it is based
on an induction strategy in the size of the depending events.

There are simpler and weaker forms of the LLL. Here we will announce two more that we
will use in Chapter 3.

Corollary 1.5 (Lovász Local Lemma) , Symmetric Case, e.g. see [4, pag.69]

Suppose that each event Ai is mutually independent of a set of all the other events Aj but
at most d, and that Pr(Ai) < p for all 1 ≤ i ≤ n. If

4pd ≤ 1
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then Pr
(⋂n

i=1Ai
)
> 0. The above condition can be changed by ep(d + 1) < 1, where

e = 2.718 . . . .

Corollary 1.6 (Lovász Local Lemma) , Weighted Case, e.g. see [33, pag.221]
If we have integers t1, t2, . . . , tn ≤ 1 and a real 0 < p < 1/8 such that for each 1 ≤ i ≤ n

• Pr(Ai) ≤ pti

•
∑

(i,j)∈E

(2p)tj ≤ tj
4

then Pr
(⋂n

i=1Ai
)
> 0.

The LLL is a strong probabilistic tool to solve problems in different fields, particularly
in graph theory and combinatorics. The main versions and some good examples can be
found for instance in The Probabilistic Method from Noga Alon and Joel Spencer [4]. For
applications in coloring theory we strongly recommend the book Graph Colouring and the
Probabilistic Method from Mike Molloy and Bruce Reed [33].

1.4 Asymptotic notation

During all this work we will use a notation for the asymptotic behaviour of functions. Let
f(n) and g(n) be two real valued functions, then

g(n) = o(f(n)) ⇔ lim
n

g

f
= 0

g(n) = O(f(n)) ⇔ lim
n

g

f
6=∞

g(n) = Θ(f(n)) ⇔ lim
n

g

f
= k, k 6= 0

g(n) = Ω(f(n)) ⇔ lim
n

g

f
6= 0

g(n) = ω(f(n)) ⇔ lim
n

g

f
=∞

Observe that,

• if g(n) = o(f(n)), then g(n) = O(f(n))

• if g(n) = ω(f(n)), then g(n) = Ω(f(n))

• if g(n) = O(f(n)) and g(n) = Ω(f(n)), then g(n) = Θ(f(n))
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Coloring graphs

In this chapter we present the problem of graph coloring and we discuss some variations
of it.

The first section will be devoted to define the basic coloring concepts. We introduce some
other colorings as list, fractional, acyclic or star colorings.

A natural way to generalize the acyclic coloring is through the concept of tree–width. The
tree–width is central in the minor theory developed by Robertson and Seymour. It has also
important applications in algorithmic analysis thanks to the theorem of Courcelle which
says that any problem that can be formulated using Monadic Second-Order logic can be
solved in polynomial time for graphs with bounded tree–width. Using the tree-width we
can define Low Tree-Width Decompositions, an extension of the acyclic colorings.

On the other hand star coloring can be generalized with the notion of tree–depth. From
here on, Low Tree-Depth Decompositions are defined in an analog way.

While the tree–width of a graph measures the similarity of a graph to a forest, the tree-
depth has also in account the height of the trees into the forest. In other words, the
tree–depth give the similarity of a graph with an star forest.

2.1 Variations on graph coloring

A k-coloring of a graph is a map C : V (G) −→ {1 . . . k}, such that, if u ∼ v, then
C(u) 6= C(v). The chromatic number of G, χ(G), is the minimum k such that there exists
a k-coloring of G.

A greedy procedure gives an upper bound of the chromatic number depending on the
maximum degree d(G): χ(G) ≤ d+ 1. This bound is refined by Brooks theorem [12],

χ(G) ≤ d

An edge k-coloring of a graph is a map C : E(G) −→ {1 . . . k}, such that, if e and f meet
in a vertex, then C(e) 6= C(f).

All the coloring that will be defined from now on, can be also transferred to coloring edges
instead of vertices.

Some applications of graph colorings require additional constrains. Hence, it is necessary
to define variations of k-colorings.
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2.1.1 List colorings

For any given map f : V (G) −→ N, G is list f -colorable if, for any instance of sets Lv ⊂ N
of size at most f(v) there exists a proper coloring of G such that C(v) ∈ Lv for any v.

Actually, we are interested in the case where the map is constant (f(v) = k), in this case
we talk about a list k-colorable graph to simplify the notation.

The list chromatic number or choice number of G, χL(G), is the minimum k, such that G
is list k-colorable.

Coloring of graphs with a certain restriction in the list of colors to use for each vertex,
appears independently in two papers in the late 70’s: Vizing in [49] and Erdős, Rubin
and Taylor in [20]. This problem is motivated by partial colorings. Suppose that we have
colored some vertices and we want to extend the coloring to the rest of the graph. If a
vertex v has a colored neighbor u, then v can not be colored with c(u), so we must remove
c(u) from its initial list. Applications arise also in frequency assignment problems.

It is obvious that χ(G) ≤ χL(G), but the equality does not hold in general (Fig.2.1).

L={0,1} L={0,1}

L={0,2}

L={1,2}

L={0,2}

L={1,2}

Figure 2.1: List instance (k = 2) with no solution: χ(K3,3) = 2, χL(K3,3) > 3.

In fact we can have graphs with bounded chromatic number where χL(G) is arbitrarily
large, like bipartite graph where χL(Kn,n,) > log n.

There is also a theorem for planar graphs concerning list colorings: every planar graph
is 5-choosable. So, recalling the 4-color theorem, we need one more color with the list
constrain. Thomassen gave a beautiful proof that can be found in [16, Theorem 5.4.2].

One of problems in list coloring is to study when χ(G) = χL(G). In Chapter 3, we will
focus on this problem.

2.1.2 Fractional colorings

A b-fold coloring of a graph G is a coloring that assigns sets of size b to each vertex with
the restriction that if two vertices are adjacent, the sets are disjoint. An (a : b)-coloring
is a b-fold coloring with a colors. We define the b-fold chromatic number, χb(G), as the
minimum a such that there exist a (a : b)-coloring. The chromatic number of G would be
the 1-fold chromatic number. The fractional chromatic number χf (G) is defined as,

χf (G) = lim
b→∞

χb(G)

b

The limit exists due to the subadditivity of χb with respect to b.
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A well known example is the fractional chromatic number of odd cycles: if C2k+1 is a cycle
with 2k + 1 vertices, then χf (C2k+1) = 2k+1

k (Fig.2.2).

{1,2,3}

{4,5,6} {7,1,2}

{3,4,5}

{6,7,1}{5,6,7}

{2,3,4}

Figure 2.2: Example of a (7 : 3)-fold of C7, actually χf (C7) = 7/3.

Applications of fractional coloring appear in activity scheduling with conflict graphs or in
wireless communication problems in networks.

There is a nice alternative formulation for the fractional chromatic number involving linear
programming (LP). The coloring problem can be viewed as the solution of an integer
linear programming (ILP) problem: let xI be {0, 1} valued variables associated with the
independent set I. Then we want to optimize

min
∑
I

xI

where every vertex v gives a restriction∑
I3v

xI ≥ 1

which means that every vertex must be assigned at least one color. In this case χ(G) =∑
xI .

The dual of this problem solves the problem of finding the clique number ω(G). Obviously,
as we are dealing with ILP the solution is not necessary the same. The graphs where
ω(G) = χ(G) are called perfect graphs. Perfect graphs have an important role in graph
theory.

The fractional version has the same formulation, but the variables are not necessarily
integers, i.e. we only require that 0 ≤ xI ≤ 1 for each stable I.

With this formulation it is clear that χf (G) ≤ χ(G), every solution of the ILP problem
is a solution of the LP problem. It is clear that the feasible region of both problems is
not empty (coloring each vertex with a different color, is an assignation of variables that
satisfies all the inequalities). The strong duality theorem ensures that in the case of the
LP the optimal solution of the dual problem exists and is the same as the primal one. So
the fractional clique number is the fractional chromatic number.

In Section 3.5, we discuss the relation between fractional and list colorings.
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2.1.3 Acyclic and star colorings

An acyclic coloring is a map C : V (G) −→ {1 . . . , k} such that C is a proper coloring
and every two colors form an acyclic graph. The acyclic chromatic number, χa(G), is the
minimum k such that this coloring is possible.

An star coloring is a map C : V (G) −→ {1 . . . , k} such that C is a proper coloring and
every two colors form a star forest. The star chromatic number, χs(G), is the minimum k
such that this coloring is possible.

Since any star forest is acyclic, note that,

χ(G) ≤ χa(G) ≤ χs(G) (2.1)

Fig. 2.3 shows a case when the inequalities in (2.1) are strict.

Figure 2.3: A graph with χ(G) = 2, χa(G) = 3 and χs(G) = 4.

In fact, for any class of graphs C the star chromatic number is bounded for the graphs
G ∈ C if and only if the acyclic is bounded. This result arises from the inequalities

χa(G) ≤ χs(G) ≤ χa(G)2χa(G)−1

that are proved in [25]. Acyclic and star colorings were introduced by Grünbaum [25].
They were first studied for planar graphs, see [23, 13, 11, 1]. On this graphs, the most
important result, conjectured by Grünbaum and proved by Borodin [11], states that for
planar graph G, χa(G) ≤ 5. In the case of star coloring, the best upper bound known is
from Albertson et al. [1], χs(G) ≤ 20.

Apart from planar graphs, recently an interest has appeared in given upper bounds for
these chromatic number in terms of their maximum degree. Let Cd the class of graphs
with maximum degree at most d. We define

χ∗(Cd) = G∈Cd maxχ∗(G)

where χ∗ is any chromatic number.

Then Alon, Mcdiarmid and Reed [3] proved that

d4/3

log1/3d
≤ χa(Cd) ≤ O(d4/3)

An analogous result is given by Fertin, Raspaud and Reed [21] for the case of star coloring

d3/2

log1/2d
≤ χs(Cd) ≤ O(d3/2)
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Regarding to edge coloring, the acyclic case has been studied by Alon, Sudakov and Zaks [5]
and we will talk about star edge colorings in more detail on Section 3.2.

The list versions for the acyclic and the star chromatic numbers (denoted as χLa and χLs
respectively) are also interesting. Montassier and Serra give a good description of acyclic
choosability in [34]. Roughly speaking, there is no significant difference in list colorings if
we impose or not the acyclic condition. In Section 3.2 we will support this fact by showing
that some results on the Ohba’s conjecture can be moved to acyclic colorings.

2.2 Generalizing colorings with graph functions

We have seen in Subsection 2.1.3 that several variation on colorings appear when we impose
certain subgraph to have a minimum number of colors.

It is possible to generalize this idea and define different types of colorings via an application
f : P(V ) −→ N, where P(V ) denotes all the subsets of V . If H ⊂ G is a subgraph, then
f(H) gives how many colors have to appear at least in H. This f will be called graph
function or coloring maps. Some example appear in Table 2.1.

fc(H) =

{
1 if H = {v}
2 if H = K2

fa(H) =


1 if H = {v}
2 if H = K2

2 if H = Cn

fs(H) =


1 if H = {v}
2 if H = K2

3 if H = P4

Table 2.1: Proper, acyclic and star coloring defined through coloring maps

For the graphs H where the function f is not defined, we will assume that f(H) = 0.

Let f be a map, then χ(f,G) is the minimum number of colors needed to color a graph G
in such a way. Then χ(fc, G) = χ(G), χ(fa, G) = χa(G) and χ(fs, G) = χs(G).

As we will deal with bounded degree graphs, the following concept will be useful,

χ(f, Cd) := max
G∈Cd

χ(f,G)

The idea behind this definition is to use the minimum number of colors in the global context
at the same time that we are using at least a fixed number of colors in some subgraphs in
a local context.

2.3 Tree–like parameters

In this section we define some necessary tree–like parameters of graphs. The most impor-
tant, which have notorious applications in algorithm complexity, is the tree–width. There
are a lot of width-parameters such as path–width, clique–width or rank–width, that have
been introduced from the notion of tree–width. For a good introduction on tree–width
see [29].

2.3.1 Tree–width

The classic definition of tree-width uses tree–decompositions, but it can also defined
through k-trees. For this work, the second definition is more adequate.
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A k-tree can be defined in a recursive way,

• a (k + 1)-clique is a k-tree.

• a k-tree can be obtained by adding a new vertex to another k-tree and linking it
with all the vertices of a certain k-clique.

A partial k-tree is a subgraph of a k-tree. The tree-width of a graph G, tw(G), is the
minimum k such that G is a partial k-tree.

Observe that if T is a tree, then tw(T ) = 1. In this sense, tw(G) is the similarity of G to
some tree structure.

A partition (A,S,B) of the vertices is a balanced k-partition if the following three condi-
tions are satisfied:

1. |S| = k + 1

2. 1
3 (n− k − 1) ≤ |A|, |B| ≤ 1

2 (n− k − 1)

3. S separates A and B.

The following result connecting balanced partitions and tree-width is due to Kloks.

Lemma 2.1 ([29], Lemma 5.3.1.) Let G be a graph with n vertices and tw(G) ≤ k such
that n ≥ k − 4. Then G has a balanced k-partition.

Therefore, we can identify graphs with large tree–width by the non existence of balanced
partitions.

This lemma is inspired in trees (k = 1). It is easy to see that always exists a vertex/edge
such that removing it will provide at least two trees of size stricly less than n/2. This
vertex or edge will be the set S that have size at most 2.

2.3.2 Tree–depth

Let T be a rooted tree. The tree-depth of a graph G is defined to be the minimum height
of a rooted forest, whose closure contains G as a subgraph.

This parameter has been introduced under numerous names in the literature. It is equiv-
alent to rank function [40], vertex ranking number (or ordered coloring) [14] and upper
chromatic number [38].

There is a recursive way to define the tree–depth of G. Let G be a graph and C1, . . . , Cp
its connected components. Then,

td(G) =


1 if |V (G)| = 1

1 + min
v∈G

td(G\v) if p = 1 and |V (G)| > 1

max
0<i≤p

td(Ci) if p > 1
(2.2)

In this case, td(G) = 1 if and only if G is a star.

Note that the following inequality holds,

td(G) ≤ 1 + td(G\v) (2.3)
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This implies directly that td(G) ≤ n.

By combining the previous inequalities we get that,

td(G) ≤ κ(G) + max
i

td(Ci) (2.4)

where Ci are the connected components that remain when we remove the minimal sepa-
rator.

We can still give an alternative definition of the tree–depth. An elimination tree of G, is
a rooted tree defined recursively:

• If G = {v}, then T = {x}.

• Otherwise, we choose a vertex r ∈ V (G) as the root of T . Let G1, . . . ,Gp the
connected components of G− r. For each Gi let Ti be its elimination tree. Then T
is constructed by joining r with each ri, i.e. the root of Ti.

Then the tree–depth of G is the minimum height of an elimination tree of G.

Proposition 2.2 Let T be a tree and D its diameter, then

td(T ) ≤ min{log2 n+ 1, D/2}

Proof. First of all, observe that there exist at least one vertex v such that T\{v} =
T1 ∪ · · · ∪ Tp where |Ti| ≤ n/2. Using the recursive definition in (2.2) it is clear that
td(G) ≤ log2 n+ 1.

Now, take two antipodal vertices u and v. We root the tree in z, the vertex that stays in
the middle of the path between them. Note that this vertex is unique, since T is a tree. If
there are more than one antipodal pair, the vertex z is in all the cases must be the same,
otherwise there would exist an augmentative path and the diameter would be larger. 2

In an intuitive way, we can say that the tree–depth not only have in account the similarity
of G to a tree, but also the diameter of this tree.

Example 2.3 Here we have some examples,

1. G = Kn ⇒
Every vertex must be connected with all the others. Let S be the set of chosen vertices
of the tree to represent Kn. Any element of S must be ancestor or predecessor of all
the others. Hence td (Kn) = n.

2. G = Pn ⇒
Here we consider the path Pn to have n vertices instead of n+ 1. We will prove that
td(Pn) = log2 n+ 1. Since P is a tree, it is clear that td(P ) ≤ log2 n+ 1.

We will prove it by induction on n that td(P ) ≥ log2 n + 1. It is clear that P1, the
path with one vertex has tree-depth 1. Suppose that we have prove it for any n0 < n
and let v be the root of a certain tree of size h. In the subgraph Pn of the closure of
T , v must have degree at most 2. So if we remove v we have two paths disjoint as
subgraphs of two trees of height h− 1. In the worst case, each path will have at most
bn/2c vertices and then by the induction hypothesis h− 1 = (log2 n+ 1)− 1. Hence,
h = log2n+ 1.
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3. G = Kn,n ⇒
By Equation (2.4) and noting that κ(Kn,n) = n, td(Kn,n) = n+ 1.

Figure 2.4: The path of length 15, the complete graph K4 and the complete bipartite K3,3

have tree-depth 4

It is well known that the classes of graphs with bounded tree-width are closed under
taking minors. By (2.3), the same is true for the class of graphs with tree-depth at most
k. Given a class of graphs C, its tree-width is bounded if and only if all the graphs in the
class exclude a certain grid as a minor. This role in tree-depth is played by paths. As
every minor of a path is a path, it is natural to state the following proposition in terms of
subgraphs:

Proposition 2.4 C has bounded tree-depth if and only if every G ∈ C excludes a certain
path as a subgraph

Proof. Suppose that for any G ∈ C, td(G) ≤ k. Then, any graph can not contain a path
with more than 2k−1 vertices by Example 2.3.(3). So the class excludes the path of length
2k−1 + 1.

Let T be an elimination tree of G. If G has no Pk+1 and, as the edges of the T are edges
of the graphs, the height of T must be ≤ k, and td(G) ≤ k. 2

2.4 Low tree–depth decompositions

A low tree-depth decomposition of order k (k-LTDD) is a map C : V (G) −→ {1 . . . r}, such
that, for any subset of i images I ⊂ {1, . . . r} (i ≤ k) the induced subgraph HI formed by
the anti-images of I, has td (HI) ≤ i (see Fig.2.5).

In particular, any LTDD is a proper coloring. Thus, we will talk about colors instead of
parts.

(a) H1 (b) H2 (c) H3

Figure 2.5: What we see if we look at i colors from a k-LTDD
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The k-th chromatic number of an LTDD, χk(G), is the minimum number of colors needed
such that we have a k-LTDD in G.

This chromatic number has been introduced recently by Nešetřil and Ossona de Mendez
[38], and it is inspired in the work of DeVos et al. in [15], who define the same notion in
terms of tree–width instead of tree–depth. They talk about low tree-with decompositions
of order k (k-LTWD) and they prove that minor closed classes have k-LTWD.

The definition of k-LTDD may seem arbitrarily but it has a crucial role in the theory
of bounded expansion classes. Nešetřil and Ossona in [38], proved that for every proper
minor closed class C and every fixed k ≥ 1, χk(G) is bounded for all G ∈ C, i.e. there
exist a k-LTDD for any k. In [39, Theorem 7.1] they prove it for the bounded expansion
class, which include the bounded degree class. Actually, the main theorem on bounded
expansion classes states,

Theorem 2.5 C has bounded expansion if and only if lim sup
G∈C

χk(G) <∞ for any k.

Note that χ1(G) = χ(G) and χ2(G) = χs(G). In this sense, χk(G) is a generalization of
the star coloring. It must be stressed that star coloring is to k-LTDD what acyclic coloring
is to k-LTWD.

By its definition, it is clear that for a fixed graph G, {χk(G)}k∈N is monotonically increas-
ing.

Observe also that, if we define

χ∞(G) = lim
k→∞

χk(G) (2.5)

then χ∞(G) = td(G). So, we recover the notion of tree–depth in the limit. The fact that
χk(G) is monotone ensures that χ∞(G) always exists. It must be stressed that if G is
infinite, then χ∞(G) can be infinity.

A trivial lower bound if the graph is sufficiently large is,

χk(G) ≥ k + 1 (2.6)

This bound can be attained. For example, for a path Pn with n sufficiently large, χk(Pn) =
k+ 1. If we enumerate the vertices in the canonical order and we assign to the j-th vertex
the color (j mod (k+ 1)), for all i ≤ k any i parts induce path forests as a subgraph with
length i, and so that td (HI) ≤ i.
As td(G) is monotone according the subgraph order, if H is a subgraph of G then

χk(H) ≤ χk(G) (2.7)
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List colorings

The list coloring problem is one of the most studied variations of the standard graph
coloring. It is well known that in general the gap between chromatic numbers and their
list analogous can be arbitrarily large. For example, the family of complete bipartite
graphs, have chromatic number 2 but the list chromatic number depends on the size.

There are many attempts to conjecture which conditions are necessary or sufficient to
state that χ(G) = χL(G). The type of graphs for which this equality holds are called
chromatic–choosable.

Probably, the most famous conjecture about chromatic–choosable graphs is the List Col-
oring Conjecture (LCC). The line graph of G, L(G), is the graph where V (L(G)) = E(G)
and two vertices are connected if and only if the corresponding edges have a vertex in com-
mon. We recall that χ(L(G)) = d or χ(L(G)) = d + 1, by Vizing theorem [16, Theorem
5.3.2], where d = d(G). The LCC says that the list and the standard chromatic numbers
of L(G) are the same. The conjecture was stated by Bollobás and Harris [9] in 1985. It
has been proved in the case of bipartite graphs (Galvin in [23]).

Recently Molloy and Reed have found the best known bound for the general case,

χL(H) < d+ 4
√
d log4 d

In this Chapter we focus on another well–known conjecture on chromatic–choosable graphs:
the conjecture of Ohba. In Section 3.1 we introduce this conjecture and explain the known
results on it. The version of Ohba’s conjecture for general colorings will be presented in
Section 3.2. In Section 3.3 we make an attempt to improve the partial result obtained by
Reed and Sudakov [45], which is not conclusive but may open a path to the solution of
the conjecture. Section 3.4 is devoted to partially answer a question formulated by Reed
and Sudakov [46] which can be seen as an extension of Ohba’s conjecture. Finally, in
Section 3.5 we display a different approach to the problem of chromatic-choosable graphs
related with the fractional chromatic number.

3.1 Ohba’s conjecture

Erdős, Rubin and Taylor [20] proved that the r-partite graphs with stable of size 2, K2∗r,
are chromatic–choosable. It is obvious that χ(K2∗r) = r. They show that χL(K2∗r) is also
r, by using independent systems of representatives in the set of all vertex lists.

This result motivates the following conjecture in [43],
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Conjecture 3.1 (Ohba’s conjecture) If n ≤ 2χ(G) + 1, then χ(G) = χL(G), i.e. G is
chromatic–choosable.

The idea behind this conjecture is that when graphs have large chromatic number, then the
list chromatic number can not be larger. Actually, K2∗r is an almost tight example of the
Ohba conjecture. The example which shows that Ohba conjecture can not be sharpened
is due to Bohman and Holzman [8]. They realized that the complete multipartite graph
with one stable set of size 4 and k−1 stable sets of size 2, with k even, has χL(G) = k+1,
while n = 2χ(G) + 2.

Reed and Sudakov have worked in this problem by using the probabilistic method. In a
first paper they prove the following weaker version of the conjecture.

Theorem 3.2 ([45]) χ(G) = χL(G) provided n ≤ 5
3χ(G)− 4

3

Later, they give an stronger result, by proving an asymptotic version of the conjecture.

Theorem 3.3 (Asymptotic version in [46]) For any 0 < ε < 1, there exist an n0 =
n0(ε) such that G with n ≥ n0 is chromatic–choosable, provided

n ≤ (2− ε)χ(G)

Our goal in the next section is to validate the theorem about the Ohba conjecture in [45]
for the case of generalized chromatic numbers χk(G). In fact we prove it for any type of
partitions.

3.2 General version of the Ohba’s conjecture

In this section we generalize the Ohba Conjecture for any type of partitions.

Let P = {V1, . . . , Vt} be a partition of a set V .

We say that P is choosable for a set of lists {L(v) ∈
(N
t

)
: v ∈ V } if there is a map

c : V → N, such that c(v) ∈ L(v) for each v ∈ V , and the partition {c−1(i) : i ∈ C} is a
refinement of P, where C = ∪v∈V L(v) will denote the list of possible colors. We say that
P is choosable if it is choosable for any set of lists, each with cardinality |P|.
Thus, if a graph G is chromatic–choosable, then there is a proper coloring of G whose
color classes form a choosable partition. However the definition adapts to any notion of
coloring of a graphs. For instance, if G is acyclic chromatic–choosable, meaning that the
list acyclic chromatic number and acyclic chromatic numbers are the same, then there is
an acyclic coloring of G whose color classes form a choosable partition.

For proper colorings the multipartite graph K2∗r is an example that Ohba’s conjecture can
not be sharpened. In this direction, we will provide an analogous example of a nearly-sharp
family of graphs for partitions where |V | = 2 |P| and P is choosable.

A partition P of |V | in sets of size k, is called equipartition of size k. We will see that
equipartitions of size 2 are choosable.

The proof of the choosability of K2∗r by Erdős, Rubin and Taylor [20], is based in an idea
which was then reformulated in a Lemma by Reed and Sudakov [45]. We give here a more
general version suitable to our generalized colorings.
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Lemma 3.4 Let P = {V1, . . . , Vt} be a partition of a set V . If P is choosable for every
set of lists {L(v) ∈

(
C
t

)
: v ∈ V } with |C| < |V |, then P is choosable.

Proof. Suppose the result false and let {L(v) ∈
(
C
t

)
: v ∈ V } be a counterexample with

minimum |C| of a set of lists for which P is not choosable. Consider the incidence bipartite
graph X with stable sets V and C with an edge (v, c) whenever c ∈ L(v).

Note that there is no matching of size |V | in X, since otherwise we can find a trivial
partition with singletons which is a refinement of P, contradicting that the partition is
not choosable for the given set of lists. Hence, by Hall’s theorem, there is a set D ⊂ C
such that |NX(D)| < |D|. Choose a minimal set D with this property. By its minimality,
there is a matching M in X incident to the points of a subset D′ ⊂ D with cardinality
|D′| = |D| − 1. Let W be the subset of V that belongs to M . Moreover, by the condition
|W | = |NX(D)| = |D| − 1, for every vertex v ∈ V \W , we have NX(v) ∩D = ∅.

C V

D W

D'

M

xN(x)

Figure 3.1

Choose a vertex x ∈ V \W and replace each list L(v) of a vertex v ∈ W by L(x). The
resulting set of lists {L′(v) : v ∈ V } satisfies | ∪v∈V L′(v)| = |C| − |D| < |C|. By the
minimality of |C|, the partition P is choosable for this new set of lists. Let χ : V → C \D
be a coloring whose color classes form a refinement of P. Then, by defining χ : V → C as

χ(v) =

{
χ(v), v ∈ V \W
c, vc ∈ E(M)

we get a coloring whose color classes form a refinement of P. Indeed, the vertices incident
to M get a color in their original list and, since they receive pairwise distinct colors, the
resulting color classes are still a refinement of P. This contradiction proves the Lemma.

2

As we have already mentioned, the above Lemma has the following useful consequence.

Corollary 3.5 If the list k–generalized chromatic number of a graph G satisfies χLk (G) >

t, then there is a set of lists {L(v) ∈
(
C
t

)
: v ∈ V } with |C| < |V (G)| such that no

k–generalized coloring exists with every vertex getting a color in its list.

Proposition 3.6 Any equipartition P of size 2 of G is choosable.
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Proof. By definition, we have the graph G partitioned in sets of size 2. We will prove by
induction that a graph G of size 2r is choosable.

r = 1 The graph has only one part with two vertices. The length of the lists is one.
Therefore, if the color in each vertex is the same, the list partition is the original
one. Otherwise we color each vertex with different colors and the resulting partition
is a refinement of the first one.

r > 1 Now we want to see if P with |P| = r is choosable. We will construct a partition Q
that satisfies the list contrains. By Lemma 3.4 we can restrict our number of possible
classes to be less strictly than the number of vertices, i.e. |C| < 2r.

Given an arbitrary class of the partition U = {x, y}, since |C| < 2r = r + r =
|L(x)|+ |L(y)|, there exists c ∈ L(x) ∩ L(y).

Suppose that U is deleted, and the color c is removed from all the lists. Then we
have a set of lists of size ≥ r−1 on a graph G′ of size 2(r−1). By induction hypotesis
we can find an appropriate list partition Q′ that refines the previous one with the
reduced lists.

Note that we can extend this partial list partitioning of G′ to G, by coloring U with
the color c, i.e. Q = Q′∪U . The list partition Q refines P. Therefore, P is choosable.

2

As an example, we define Hr to be an extremal graph with acyclic chromatic number r
and color classes of size 2. In this case the partition P is an acyclic coloring (Fig. 3.2). By
extremal we mean that adding an edge will increase χa(Hr).

Figure 3.2: H5

Note that Hr is a subgraph of K2∗r, obtained by removing exactly an edge between each
pair of stables. Then by Proposition 3.6

χa(Hr) = χLa (Hr)

In what follows we prove the weaker form by Reed and Sudakov [45] of Ohba’s conjecture
for the general case of choosable partitions. We generalize their proof for the partition
case.

Proposition 3.7 A partition P of a set V with |V | ≤ 5
3(|P|+ 4

3) is choosable.
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Proof. As usual in our graph theoretic context we use the terminology of colorings: we
regard P as a coloring and every refinement of P as a P–coloring. The parts of a partition
are called color classes.

Suppose the result false and choose a counterexample with minimum |V |.
First of all we suppose that there is no part of size two in P.

Define k = b |P|3 c. Then |P| = 3k+r where r ∈ {0, 1, 2} and |V | ≤ 5k+(5/3)r−4/3 ≤ 5k+r.
On the other hand, if x is the number of singletons, since the other components has size
at least 3, we have x+ 3(3k + r − x) ≤ |V | ≤ 5k + r. Therefore, x ≥ 2k + r.

We want to see that there exists a P–coloring on an arbitrarily list assignment L with
|L(v)| = |P| = 3k+ r. Color r singletons (call them T ) and delete r positions of every list.

Now it remains to color V \T with the lists L\c(T ). Making an abuse of notation and for
the simplicity of notation, we still denote the resulting set by V and the resulting set of
lists L.

Note that now, L(v) = 3k and, by Lemma 3.4, we can assume that we do not have more
than |V | ≤ 5k colors. Thus, for all u, v ∈ V , we have |L(u) ∩ L(v)| ≥ 3k + 3k − 5k = k.

To clarify we will denote s1, . . . , s2k the singleton classes and U1, . . . , Uk the largest classes.
Construct C1, . . . , Ck set of colors, pairwise disjoint, in the following way.

For each pair (s2i, s2i−1) 1 ≤ i ≤ k, we select greedily one color ci that appears in both
lists. Indeed, we select also greedily, another disctint color c′i from each list of si. Then
Ci = {ci, c′2i, c′2i−1}. Note that for each pair of colors in Ci there is an appropriate coloring,
using these two colors for (s2i, s2i−1).

G will be colored in two steps. To begin we will color some vertices with the colors of
C =

⋃
Ci and after we will color greedily the rest.

Select a random permutation σ ∈ Sk and, for each 1 ≤ i ≤ k, select randomly ti ∈ Ci. We
color s2i and s2i−1 with the colors in Ci\{ti}. With tσ(i) we color the vertices of Ui that
contain this color in their lists.

Note that for every color c ∈ C, the probability that the vertices in Ui are colored with c
is exactly 1/|C| = 1/3k.

After this procedure we have some vertices uncolored with some new lists L′ = L\C, with
size |L′(v)| = t(v) . Then the probability that v ∈ Ui remains uncolored after the first
coloration is,

Pr (tσ(i) /∈ L(v)) = 1− Pr (tσ(i) ∈ L(v)) = 1− 3k − t(v)

3k
=
t(v)

3k

Now, we define a random variable xv,

xv =

{ 1
t(v) if t(v) > 0

0 if t(v) = 0

We can bound the following expected value.

E(
∑

v∈
⋃
i Ui

xv) =
∑

v∈
⋃
i Ui

E(xv) =
∑
t≥1

∑
v: t(v)=t

E(xv) =

=
∑
t≥1

∑
v: t(v)=t

1

t

t

3k
=

∑
v∈

⋃
i Ui

1

3k
≤ 5k − 2k

3k
= 1
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Hence there exist a choice of σ and ti, such that
∑

v xv ≤ 1. Sort all vertices uncolored by
t(v) and color greedily each node. This process constructs an acceptable coloring.

Suppose that a vertex v with list size t(v), has no colors available when we try to color
it. This means that at least t(v) vertices have been colored previously, and these vertices
have list sizes at most t(v). Hence, in the best case, we have at least t(v) + 1 vertices with
list size at most t(v), ∑

v∈
⋃
i Ui

xv ≥
t(v) + 1

t(v)
> 1

and we get a contradiction. In fact, behind this reasoning we have the Hall theorem for
the existence of a complete matching.

Note that all the coloring is just a refinement of P.

At this moment, we have proved the statement if P contains no parts of cardinality two.
Suppose now that P has k parts of cardinality two.

By Lemma 3.4 there exists a list assignment that have lists of size |P| ≥ |V |/2, and with
less colors than vertices, which can be not colored. Let U = {x, y} be one of the 2-classes.
If we remove it, we get a new pair of a set V 1 = V \U and a partition P1 = P \ {U} with
(k− 1) 2-classes, that also satisfies the hypothesis of the statement. By the Lemma, there
is a common color in the lists of x and y. We remove this color from all lists and get a
new set of lists L1. We remove successively all the 2-classes, until we reach a set V k and
a partition Pk that do not has a part with cardinality two. Note by that removing these
2-classes the hypothesis of the statement is fulfilled by V k and Pk. As we have proved
that Pk is choosable, we can extend the list colouring to the original partition by using all
the deleted colors for the parts of cardinality two.

This coloring is a refinement of the former one, and so it is also a refinement of P. This
contradiction completes the proof. 2

We can formulate Proposition 3.7 in term of colorings as follows.

Corollary 3.8 Let G be a graph of order n with k–generalized chromatic coloring n ≤
5
3χk(G)− 4

3 . Then χLk (G) = χk(G).

3.3 On the bounding constant

In this section we go back to the original proper colorings in Ohba’s conjecture.

Let Tt be the event that every graph with |V (G)| ≤ tχ(G) is chromatic–choosable. Then
the conjecture of Ohba turns to the question: is T2 true?. The best known value for which
positive answer is t = 5/3 ([45]). We will show some results that lead us to think that
may open a path to improve the bound on t and eventually prove the whole conjecture.

Our idea is to take an extremal counterexample with minimum order and, restricted to
this, with maximal size. If t ≤ 2, then by the proof of Proposition 3.7 and Lemma 3.4, we
may assume that our coloring of G contains no classes of cardinality two.

We will study the case t = 7/4.

Suppose that we are in one of the following situations,

• there is no 3-class in G
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• all the non-singleton classes of G are 3-classes.

Then, as we will show, T7/4 is true. This suggests that the general case, in which we
may have some 3–classes, can be derived from the two extremal cases which are known.
Unfortunately, we do not know how to do it yet.

The second statement is proved by Ohba in [44] and refined by Shen et al. in [48]. Actually,
the last authors prove the Ohba’s conjecture for this case. Both proofs are based in a result
of Kierstead ([28]), who showed that the list chromatic number of the multi–partite graph
with all the parts of size 3 is chromatic–choosable, i.e. χ(K3∗n) = χL(K3∗n) = n. We next
show the first statement.

Proposition 3.9 If G has no 3-classes then T7/4 is true.

Proof. We denote by xi the number of classes of size i and by aj the classes of size j with
j ≥ i. Let G be an extremal that accomplish |V | ≤ 7/4χ(G) − c where c is a constant.
As we have seen, there are no classes of size two, i.e. x2 = 0. By the hypothesis of the
proposition, we also have x3 = 0. We can assume that χ(G) is multiple of 4, otherwise we
can fix it with the parameter c. If k = bχ(G)/4c, then

x1 + a4 = x1 + x4 + x5 + · · · = χ(G) = 4k

x1 + 4a4 ≤ x1 + 4x4 + 5x5 + · · · = |V | ≤ 7k

Recall that, by Lemma 3.4, we may assume that the total number of colors is less than
|V |.

The above inequalities ensure that x1 ≥ 3k and a4 ≤ k. We may assume the worst case in
which the equality holds in each inequality. Denote by s1, . . . , s3k the x1 singletons and by
U1, . . . , Uk the largest classes. Construct Si = {s3i−2, s3i−1, s3i} for all 1 ≤ i ≤ k. Given
an arbitrarily choice of σ ∈ Sk, ri ∈ {1, 2, 3} and ti ∈ {1, 2, 3, 4}. We do the following
partial coloring procedure:

1. For each Si, if v and u are the vertices in Si not indexed by ri, choose a color ci in
|L(v) ∩ L(u)|

2. For each Si, choose a color c′3i−2 ∈ L(s3i−2), c
′
3i−1 ∈ L(s3i−1) and c′3i ∈ L(s3i).

3. For each Si, if Ci = {ci, c′3i−2, c′3i−1, c′3i} let the color indexed by ti color as much
nodes as posible of Uσ(i).

4. For each Si, if ti selects the vertex ri we color the other two with ci and then we can
choose a new colour for ri not used yet. If not we can color the nodes in Si with the
remaining colors.

Note that we always can pick colors in steps (1) and (2) because every two lists intersect
at least in k colors, and lists have size 4k. Also note that every color of the set C =

⋃
Ci

has the same probability 1/4k to color each Ui. In the last step we have made a little
modification that alterates the randomness of the coloring of Si’s but it does not modify
the probability of the Ui’s.
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We give the same definition for the variables xv. If we compute the expectation of∑
v∈

⋃
i Ui

xv,

E

 ∑
v∈

⋃
i Ui

xv

 =
∑

v∈
⋃
i Ui

E(xv) =
∑
t≥1

∑
v: t(v)=t

E(xv)

=
∑
t≥1

∑
v: t(v)=t

1

t(v)

t(v)

4k
=

∑
v∈

⋃
i Ui

1

4k

≤ 7k − 3k

4k
= 1

Then we use the same argument as in Proposition 3.7 and we obtain a proper coloring of
G. 2

We can generalize Proposition 3.9 in the following way:

Corollary 3.10 If G has no T -classes then T(2T+1)/(T+1) is true.

Proof.

With the former notation we have, x1 ≥ (T − 1)k and aT+1 ≤ k. The proof proceed with
the same argument and Si of size T −1. We take one color in the intersection of 2 random
list and another one for each singleton. An analogous proof gives the desired result. 2

3.4 Relaxing the conditions

Reed and Sudakov propose in [46] the following problem,

In conclusion we would like to propose a related problem, which was motivated by Ohba’s conjecture.

Let t be an integer and let G be a graph with at most tχ(G) vertices. Find the smallest constant ct
such that for any such a graph G its list chromatic is bounded by ctχ(G).

With this formulation the conjecture of Ohba turns to: is c2 = 1?

We will deal with the inverse problem, given t find the constant ct such that for any graph
G with at most ctχ(G) +O(1) vertices, its list chromatic is upper bounded by tχ(G).

We use the same type of proof used in [45], to give a bound on ct

Proposition 3.11 For any t ≤ 3, ct ≥ (1+2t/3), i.e. if |V (G)| ≤ (1+2t/3)χ(G)+O(1),
then χL(G) ≤ tχ(G).

Proof. Our idea is to obtain the general inequalities that must be satisfied to adapt the
proof of [45, Theorem 1.1], and then search the feasible region of some parameters. In
fact, we only need to to have a nonempty region. We introduce a modification over the
given proof. When we construct the sets {s2i−1, s2i, Uσ(i)}, we will have a parameter s
that will allow us to assign s of the Ui’s for each pair of singletons. In the proof from
Proposition 3.7, s = 1.
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We set p and q such that ct = p/q and define k = χ(G)/q to make the proof clearer. We
assume that χ(G) is divisible by 4, otherwise with a constant number of colors (strictly
less than q) we can color some singletons. Recall that, by Lemma 3.4, we may assume
that we have less than |V (G)| = pk colors and that the length of the lists is tqk. We will
also assume that the parameters are chosen in such a way that we can remove classes of
cardinality two as in the proof of Proposition 3.7.

Suppose that x1 denotes the number of singletons of the coloring and x3 the number of
classes of size at least 3. Then,

x1 + x3 = qk x1 + 3x3 ≤ pk

The following inequalities are derived,

x1 ≥
3q − p

2
k x3 ≤

p− q
2

k

We impose the following conditions:

(a). Every two nodes must have a common color in their lists. Otherwise we could not
remove all the independent sets of size 2. Easily this condition becomes,

2χL > n ⇒ 2t >
p

q

(b). If we want to obtain a color for each intersection of L(s2i−1) ∩L(s2i), we must have
at least x1/2 repeated colors when we join the two list (2qk). We know that the
number of colors is at most n = pk.

2χL − n ≥ x1
2

⇒ 8t− 3

3
≥ p

q

(c). Our proof will assign at most s number of Ui’s (there are x3 of them) for each of the
x1/2 pairs {s2i−1, s2i}, which leads us to,

x1
2
≥ sx3 ⇒ 3s+ 2

2 + s
≥ p

q

(d). We also want to have enough colors for randomly color the Ui’s with the singleton
colors. Recall that we have to assign s + 2 colors for every consecutive pair of
singletons {s2i−1, s2i}. Thus,

χL ≥ (2 + s)
x1
2

⇒ 3s+ 6− 4t

s+ 2
≤ p

q

(e). Finally, in the computation of the expected value of
∑
xv, to ensure that this value

is smaller than one,
3x3

(2 + s)x12
≤ 1 ⇒ 3(s+ 4)

s+ 8
≥ p

q

Our goal is to maximize the quotient p/q satisfying all the inequalities.

It can be easily checked that (e) implies (a), (b) and (c).
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(a) s = 2 (b) s = 5 (c) s = 8

Figure 3.3: Feasible regions with t = 2 and different parameters s

Note that the lower bound (d) must be smaller than the upper bound given in (e). Other-
wise the feasible region would not exist. Different values of s will give us different feasible
regions. As long as we want to maximize p/q, we will also maximize s.

It is easy to see that given a t the optimum is reached when (e)=(d).

Hence,

s =
2(4t− 3)

3− t

As t < 3 then,
p

q
= 1 +

2t

3

For example, in the case of Fig.3.3 the optimum value is for s = 10 and p/q = 7/3.

2

3.5 Fractional colorings

Fractional colorings provide an interesting generalization of regular colorings. So it could
be also interesting to study the relation between fractional and list colorings.

Alon, Tuza and Voigt proved a surprising result,

Theorem 3.12 ([2]) The fractional chromatic number of a graph equals its fractional list
chromatic number, i.e., χLf (G) = χf (G) for all graphs G.

In this section we want to analyse if the gap between χf (G) and χ(G) has a relation with
the gap between χ(G) and χL(G). We will give some examples of graphs G with equal or
different χ(G), χf (G) and χl(G). So the relation between two of these parameters does
not affect the other one.

It is clear that

χf (G) ≤ χ(G) ≤ χL(G)

• χf (G) = χ(G) = χL(G)
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Our example is the even cycles C2k. As

χf (G) ≥ ω(G) = 2

and clearly χ(G) = 2 because it is bipartite, we have that χf (G) = 2.

To see that χL(G) = 2, delete the node v2k and take a path of length 2k−1. We can
color the path greedily starting from v1 with lists of size 2, but it is not so obvious
than we can extend this partial coloring to C2k. Note that we can freely choose the
color of the first element of the path among the two colors in its list.

If L(v1) 6= L(v2k), we choose for v1 the color that only appears in L(v1), and after the
greedy procedure, we can color v2k. If L(v1) = L(v2k) we start coloring with v2k−1.
If L(v2k−1) 6= L(v2k) we have finished. Otherwise, we also have L(v2k−1) = L(v2k)
and, as the path has odd length, v1 and v2k−1 must be colored with the same color,
allowing us to obtain a proper coloring of C2n.

• χf (G) = χ(G) < χL(G)

We take G = K3,3. Using the argument displayed above and the biepartitness of G,
χf (G) = χ(G) = 2. But it is widely known, that χL(G) = 3. In general, Kn,n is also
an example.

• χf (G) < χ(G) = χL(G)

Taking an odd cycle, G = C2k+1, we have χ(G) = χL(G) = k + 1. It is also known
that χf (G) = 2 + 1/k < 2 if k ≥ 2.

• χf (G) < χ(G) < χL(G)

This is the most complex example. We take advantage that χL(Kn,n) = (1 +
o(1)) log n, while χ(Kn,n) = 2.

Suppose that n is large enough and we set G = Kn,n ∪ {e1, e2, e3, e4, e5}. This edges
form a cycle with all vertices in the same stable set. Figure 3.4 represent G.

Figure 3.4: G

We claim that χ(G) = 4. It is clear that χL(G) ≥ χL(Kn,n) ≥ log n.

Now we claim that it exists a 2-fold coloring using 7 colors, and so that χf (G) ≤ 7
2 .

We can use only two colors (a, b) for every vertex in the non modified stable set.
We assign two other colors (c, d) for the vertices not in the cycle, and we need 5
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colors (c, d, e, f, g) to obtain the 2-color sets for each vertex in the cycle, because
χf (C5) = 5/2.



4

Using the Lovász Local Lemma

The Lovász Local Lemma (LLL) is one of the most useful techniques in the probabilistic
method. We refer to Subsection 1.3.2 for their basic versions. In our case we want to take
advantage of the graph locality. Therefore, we will deal with bounded degree graphs.

In the last years, the LLL has been widely used for giving bounds in the cases of acyclic
and star colorings when the degree is bounded. For example, the upper bounds on χa(G)
and χs(G) given in 2.1.3 are proved with the general form of LLL. It is also useful for edge
colorings.

To warm up with the LLL, in this chapter we will start in Section 4.1 giving a new bound
on the edge star chromatic number. In the Section 4.2 we give bounds on some generalized
coloring numbers. For the upper bounds we use the LLL in a more involved way. Finally
we will apply in Section 4.3 the results from the previous section to state Theorem 4.20 on
the k-th chromatic number for low tree–depth decompositions when the maximum degree
is bounded.

4.1 Star Edge colorings

Alon, McDiarmid and Reed [3] proved that the acyclic edge chromatic number is linear
on the maximum degree of a graph. In particular, if G ∈ Cd, the class of graphs with
maximum degree d, they show that χ′a(G) ≤ 64d. Molloy and Reed [33] reduced the
constant to 16. Alon, Sudakov and Zaks [5] conjectured that, in fact

χ′a(G) ≤ d+ 2

and they proved this inequality for graphs with large girth.

Nešetřil and Wormald [41] proved that a.a.s. for random regular graphs G ∈ G(n, d),

χ′a(G) = d+ 1

On the other hand, the star edge chromatic number has not been deeply studied. As far
as we know there is only one result about it. Liu and Deng [31] defined their version of
χ′s(G) where every path with 4 edges must be colored with at least 3 colors. They proved
that

χ′s(G) = 16(d+ 1)
3
2

if d ≥ 6.
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However, it is natural to think that a star coloring of edges must be defined in a way
that, when we take any two classes, the induced subgraph is a star forest. In this sense we
redefine the star edge chromatic number χ′s(G) as the minimum number of colors needed
to color in a proper edge coloring of a graph such that every two classes induce a star
forest. The aim of this section is to prove that, in this case, χ′s(G) is linear in terms of the
maximum degree.

(a) Star Edge Coloring (b) Every two classes induce a star forest

Figure 4.1

Theorem 4.1 For each G ∈ Cd
χ′s(G) = O(d)

In fact we can assert that χ′s(G) ≤ 25d.

Proof. We will use a proof construction based on [3]. Suppose that s = 25d.

Let f : E −→ {1, . . . , s} a random coloring, such that f(e) are independent random
variables, uniformly distributed amongst {1, . . . , s}.
We define the following events.

I) For every pair of incident edges e1 and e2, let A{e1,e2} be the event that both have
the same color.

II) For every path containing 4 vertices, P = {e1e2e3}, let B{e1,e2,e3} be the event that
P is bichromatic.

Note that if none of the former events happen, we have a proper star coloring of the edges.

We will use the Lovász Local Lemma to see that there exist some random coloring that
avoid all these events.

Claim 4.2 For every event of type I, we have that Pr (A) = 1/s, and for every event of
type II, Pr (B) = 1/s2.

We construct the graph H of dependencies, having the previously defined events as vertices
V (H). Two events will be adjacent if they are not mutually independent, i.e. if they share
at least one edge. Clearly, an stable set is formed by mutually independent events.

Claim 4.3 Given an edge e, there are at most 2d edges incident with e. There are at most
3d2 paths with 3 edges containing e.
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Proof. The first assert is trivial as the maximum degree is d and an edge is adjacent to
two nodes. Actually there are at most 2(d− 1) edges incidents at most, but using 2d the
proof follows easier.

Suppose that e is in the path. Then we have at most (d − 1)2 options to construct the
path with e in any position (first, middle or last). So we have 3d2 incident paths with e.

2

The following table shows us the maximum number of neighbors of type X can have a
vertex of type Y

X\Y I II

I 4d 6d2

II 6d 9d2

We will use the generalized version of LLL on Lemma 1.4.

The constant x1 and x2 for the events of type I and II respectively may have the same
order as the probability of each event to happen. In this case, for convenience, we set the
constants x1 = 2/s and x2 = 2/s2. Then we have to prove the following inequalities that
arise from the hypothesis of the generalized version of LLL:

1

s
≤ 2

s

(
1− 2

s

)4d(
1− 2

s2

)6d2

(4.1)

1

s2
≤ 2

s2

(
1− 2

s

)6d(
1− 2

s2

)9d2

(4.2)

These inequalities will imply that Pr(∩Ae1,e2 ∩Be1,e2,e3) > 0, and hence, there is a proper
edge acyclic coloring with O(d) colors.

It is easy to check that if (4.2) holds, then (4.1) holds as well. Let us check (4.2).

As s = 25d and using (1− x)n ≥ 1− nx, if x small enough, then(
1− 2

s

)6d(
1− 2

s2

)9d2

≥
(

1− 12d

s

)(
1− 18d2

s2

)
≥

(
1− 12

25

)(
1− 18

252

)
>

1

2

Then by the local lemma, there exists some assignment of 25d colors that produces a
proper star edge coloring, completing the proof.

2

During the proof, no attempts in improving the constant are made. We stress that it is
not difficult to bring this constant down, but we are only interested in its asymptotic order
of magnitude.
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Remark 4.4 As we have the following inequalities,

χ′(G) ≤ χ′a(G) ≤ χ′s(G)

and using Vizing’s theorem (see [16, pag.119]), we can deduce that χ′s(G) = Θ(d)

Question 4.5 Alon, Sudakov and Zaks [5], conjectured that χ′a(G) = d+ 2.

Exist any c constant, such that χ′s(G) ≤ d+ c? We believe that the answer is positive.

Corollary 4.6 The version for lists is also true,

χ′ls (G) = O(d)

Proof. Note that the proof only uses a random edge coloring with s values but nothing
more that its number is said about these s values we choose. Hence, the same proof give
the list version. 2

All the proofs for upper bounds of chromatic numbers given in this chapter can be adapted
to list colorings.

4.2 Generalized colorings

For simplicity, in this section we will denote by Pn the path with n−1 edges and n vertices.

The following function will be useful,

fs,t(H) =


1 if H = {v}
2 if H = K2

s if H = Pt

(4.3)

The Lovász Local Lemma allows us to find an upper bound for χ(fs,t, G).

Proposition 4.7 ([34]) Let d be the maximum degree of G. The chromatic number as-
sociated with fs,t satisfies

χ(fs,t, G) ≤ h(s, t)d
t−1
t−s+1

with h(s, t) = 20st2
(
t
t−s
)
.

4.2.1 The function fk

Based on the former function for the paths, we define,

fk(H) =


1 if H = {v}
2 if H = K2

i if H = Pi ∀i ≤ k + 1

Observe that the chromatic number χ(fk+1,k+1, G), where fk+1,k+1 is defined as (4.3), is
the same as χ(fk, G) with

fk(H) =


1 if H = {v}
2 if H = K2

k + 1 if H = Pk+1
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Proposition 4.8 Let d be the maximum degree of G, then the chromatic number associ-
ated with fk satisfies

χ(fk, G) ≤ f(k)dk

with f(k) = 2k(k + 1)3.

Proof. Let x = f(k)dk and c : V −→ {1, . . . , x} a random coloring of G, where each
vertex takes a color with the same probability. We want to prove that there exists some
coloring c such that every k + 1 path has k + 1 colors. In this direction, we define the
following events, for every path P of with k + 1 vertices,

AP = {P is colored with ≤ k colors}

We claim that Pr (AP ) ≤ k(k+1)
x . It is clear that we have k+ 1 ways to choose k elements,

that gives xk choices to color them. Then there exist at most k colors suitable for the
element not colored, so that we have at most k colors in P . The number of choices to
color all the vertices without any restriction is xk+1. Thus the probability Pr(AP ) is at

most k(k+1)
x .

Any vertex v is adjacent to at most dk+1
2 ed

k paths of size k + 1. Observe that if we
construct the path starting from v, in each step we have at most d options to grow the
path. But vertex v can take k + 1 positions in the path, and, by taking into account the
symmetry of the paths, we have at most dk+1

2 e positions in the dk posible paths.

Hence, an event of a path with k+ 1 vertices is adjacent to at most (k+ 1)dk+1
2 ed

k events.

We can use the symmetric version of the Lovász Local Lemma 1.5 because we have only
one type of event. By this lemma, if e(d + 1)p < 1 with d the maximum degree in
the dependency graph of the events and p the probability of AP , then Pr(∩AP ) > 0,
there is a choice in which no path Pk+1 is colored with less that k + 1 colors. Hence,
χ(fk, G) ≤ f(k)dk.

e

(
(k + 1)

⌈
k + 1

2

⌉
dk + 1

)
k(k + 1)

x
< 1 (4.4)

Inequality (4.4) is easily checked to hold if x ≥ 2k(k + 1)3dk. 2

“Unfortunately” there is a much simpler way to prove even a better result.

Proposition 4.9 For any graph G, the chromatic number associated with fk satisfy

χ(fk, G) ≤ max
v∈V
|Bk(v)|

where Bk(v) is the ball of radius k centered in v.

Proof.

Let Gk be the graph with vertex set V (Gk) = V (G) and two vertices x and y are adjacent
if d(x, y) ≤ k. The graph Gk has maximum degree d(Gk) = max

v
|Bk(v)| and its chromatic

number is at most d(Gk) by Brooks theorem. A greedy coloring of Gk induces an fk-coloring
of G.

Otherwise, if P would be a path with k + 1 vertices in G colored with ≤ k colors, the
coloring of Gk would not be proper. 2
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Corollary 4.10 Let d be the maximum degree of G, then the chromatic number associated
with fk satisfy

χ(fk, G) ≤ 2dk

Proof. If d is the maximum degree it is not difficult to check that the i-th neighborhood
N i(v) of v satisfy, |N i(v)| ≤ d(d− 1)i−1. So,

|Bk(v)| =
∑

0≤i≤k
|N i(v)| ≤ 1 + d

∑
1≤i≤k

(d− 1)i−1 ≤
∑

0≤i≤k
di ≤ 2dk

2

The Proposition 4.9, gives the intuition that the graphs that are not very good expanders
will have χ(fk, G) far from the bound provided in Corollary 4.10. Grids or forests are
good examples of this. But this bound is tight for graphs that have large expanding ratio.
There are graphs that reach the bound asymptotically.

Proposition 4.11 χ(fk, d) = Ω(dk)

Proof. Let G = Q(h, k) the Hamming graph where vertices are the words of length k with
h different letters and two of them are adjacent if they differ in only one component. Note
that Q(2, k) are k-hypercubes. We will see that χ(fk, d) ≥ χ(fk, Q(h, k)) = Ω(dk).

First of all, note that for every pair of nodes u and v, it exists a path of length at most
k + 1.

As we want to avoid the (k + 1)-path colored with less than k + 1 colors, every node must
have a different color. It is easy to check that |V (G)| = hk and therefore, we need hk

colors.

Note that d = k(h− 1), and so

χ(fk, Q(h, k)) = hk =

(
d

k
+ 1

)k
= Ω(dk)

2

Hence,
χ(fk, Cd) = Θ(dk)

4.2.2 The function gk

Let define another graph function that will be useful in Section 4.3,

gk(H) =


1 if H = {v}
2 if H = K2

k + 1 if H = Pk+2

Proposition 4.12 Let G ∈ Cd, then the chromatic number associated with gk satisfy

χ(gk, G) ≤ g(k)d
k+1
2

with g(k) = 10(k + 1)2(k + 2)3.
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Proof. It follows easily from Proposition 4.7 setting t = k + 2 and s = k + 1. 2

Remark 4.13 Note that our bounds shows that χ(f1, G) = χ(Cd) ≤ O(d) and χ(g2, Cd) =
χs(Cd) ≤ O(d3/2).

The first inequality give the correct order for the chromatic number in terms of the maxi-
mum degree by the Brooks Theorem [16, pag.115].

In the second case, we can not ensure that this bound is tight in order. Fertin, Raspaud
and Reed in [21] give some asymptotic bounds for the star chromatic number. They adapte
a proof from Alon, McDiarmid and Reed in [3] involving random graphs and the LLL, to
show that,

Ω

(
d

3
2

log3d

)
≤ χs(Cd) ≤ O

(
d

3
2

)

We strongly believe that χ(gk, G) = O(d
k+1
2 ). It must be stressed that, if this is the case,

our upper bound is sharp. The lower bound will be extracted from the Hamming graphs.

Proposition 4.14 Let d be the maximum degree of G, then the chromatic number asso-
ciated with gk satisfy

χ(gk, Cd) ≥ Ω
(
d
k+1
4

)
Proof.

We will also use the Hamming graphs Q(h, k + 1). We will fix k and let h variate, i.e.
O(f(k)) = O(1) for any function f .

The volume of a Bs(v) is the number of vertices at distance at most s from v. At distance
j, we have

(
k+1
j

)
possibilities of positions to change the letter and in every change we have

h− 1 different letters to put. Therefore,

|Bs(v)| =
s∑
j=0

(
k + 1

j

)
(h− 1)j ≥

s∑
j=0

(
s

j

)
(h− 1)j = (1 + (h− 1))s = hs =

1

(k + 1)s
ds

We consider s = (k+ 1)/4, then |B
k+1
4 (v)| = Ω(d

k+1
4 ). Let X be the maximum number of

pairwise disjoint balls of radius s. Then, X is O(d
3(k+1)

4 ) since we have hk+1 = Θ(dk+1)
vertices.

The function gk must color every path with k + 2 vertices with k + 1 colors.

Suppose that there is a gk-coloring and it uses C = hk/(2X + 1) = O(d
k+1
4 ) colors . Then

there exist a color c that has colored at least 2X+ 1 vertices. By the pigeonhole principle,
there exist a ball that intersects at least two other balls, and the center of the three balls
have been colored with c. Fig.4.2).

Let x the center of this ball, y and z the other two centers, then d(x, y), d(x, z) ≤ (k+1)/2
because the balls intersects. Let us check that under this conditions there exist a 2 disjoint
paths with at most (k + 1)/2 + 1 vertices that contain x,y and x,z respectively.

Suppose that x = (x1, . . . , xk+1), y = (y1, . . . , yk+1) and z = (z1, . . . , zk+1). As x, y and z
are different, they must have at least one different component. W.l.o.g, x1 6= y1, x2 6= z2
and y3 6= z3. Let P one of the minimal paths that has endpoints x and y, and contains
the vertex u = (y1, x2, . . . , xk+1). If Q is the minimal path from x to z passing through
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Pk+2

x

y

z

u

v

Figure 4.2: Hamming graph

v = (x1, z2, . . . , zk+1) (observe that it is possible that z = v), then P and Q are the disjoint
minimal paths required.

Joining this paths we get a Pk+2 with endpoints y and z that has 3 vertices with the same
color. This is a contradiction with the fact that the coloring satisfies gk.

So it is not possible to color Q(h, k + 1) with 2X + 1 = O(d
3(k+1)

4 ) colors and χ(gk, Cd) ≥
Ω(d

k+1
4 ). 2

4.2.3 The functions hk and hg,k

Finally we introduce some weaker colorings,

hk(H) =


1 if H = {v}
2 if H = K2

i+ 1 if H = P2i ∀i ≤ k
hg,k(H) =


1 if H = {v}
2 if H = K2

i+ 1 if H = P2i ∀i, 2i ≤ g
k + 1 if H = Pg

where g is a parameter, which will be later specified as the girth of some graph.

Note that h2k,k = hk.

Proposition 4.15 Let G ∈ Cd. The chromatic number associated with hk satisfies

χ(hk, G) ≤ h(k)d
2k−1
k

with h(k) = (2k + 1)(k + 1)2(k + 2)
(
2k+1
k+1

)
.

Proof. Let x = (2k + 1)(k + 1)2(k + 2)
(
2k+1
k+1

)
d

2k
k+1 and let c : V −→ {1, . . . , x} be a

random coloring of G, where the color of a vertex is chosen uniformly among the x colors
and independently of the other vertices.

For every path P of length 2i we define the event of type i as,

BP
i = {P is colored with ≤ i colors}
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We show that

Pr (BP
i ) ≤

(
i

x

)i(2i

i

)
(4.5)

If we want to color the path with i colors, we choose a set of i elements and we assign
them a color. Define A as the vertices uncolored.

We have
(
2i
i

)
options for the set A and, for every vertex on A, the probability that it is

colored with an already used color is i
x . This gives the upper bound (4.5).

We will use the weighted version of the Lovász Local Lemma. Let choose p = k
x

(
2k
k

)
, and

tBPi
= i. It is easy to check that Pr (BP

i ) ≤ p
t
BP
i and, so, the first hypothesis of the

weighted version holds.

Focus now in the dependencies graph, with set of vertices the events BP
i . Observe that

a vertex is contained in at most jd2j−1 paths with 2j vertices, for 1 ≤ j ≤ k. Hence, an
event of type i, that contains 2i vertices, is mutually dependent to at most 2ijd2j−1 events
of type j (paths with 2j vertices).

Recalling the weighted version of LLL (Corollary 1.6), we must check some inequalities.
For any event X of type i, the following expression must be satisfied,∑

BP1 ∼X

(2p)
t
BP1 +

∑
BP2 ∼X

(2p)
t
BP2 + · · ·+

∑
BPk ∼X

(2p)
t
BP
k ≤ tX

2

As x = 2k(k + 1)k2
(
2k
k

)
d

2k−1
k then p = 1

2k(k+1)kd
2k−1
k

.

If the event X is of type i, then

S ≤ 2id(2p) + 2i2d3(2p)2 + · · ·+ 2ikd2k−1(2p)k

= 2i
(
d(2p) + 2d3(2p)2 + · · ·+ kd2k−1(2p)k

)
≤ 2k

(
2

2k(k + 1)k
+ 2

(
2

2k(k + 1)k

)2

+ · · ·+ k

(
2

2k(k + 1)k

)k)
≤ 2k

2

2k(k + 1)k
(1 + 2 + · · ·+ k)

≤ 2k
2

2k(k + 1)k

(k + 1)k

2
≤ 1

2
≤ i

2
=
tX
2

So the weighted version of the Lovász Local Lemma ensures that there exists an acceptable
coloring. 2

An analogous proof shows the following bound for hg,k-colorings.

Proposition 4.16 The chromatic number associated with hg,k satisfies

χ(hg,k, G) ≤ h(g, k)d
g−1
g−k

with h(g, k) = 2g(g + 1)k2
(
2k
k

)
.
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Proof. Let x = 2g(g + 1)k2
(
2k
k

)
d
g−1
g−k and c : V −→ {1, . . . , x} a random coloring of

G, where each vertex take any color with the same probability. Let P be a path with g
vertices, then it must be colored with at least k+1 colors. So the following event is defined
naturally

AP = {P is colored with ≤ k colors}

As in the former proof, for every path Q of length 2i ≤ k we define events,

BP
i = {P is colored with ≤ i colors}

As we have shown, we have Pr (BP
i ) ≤

(
i
x

)i (2i
i

)
. With an analogous argument we can

show that Pr (AP ) ≤
(
k
x

)g−k (g
k

)
.

With p = k
x

(
2k
k

)
, tAP = g − k and tBPi

= i, we show that the hypothesis of the weighted
LLL hold.

Let X and Y some events that involve i and j vertices respectively. Every vertex is
adjacent to at most jd2j−1 paths of size 2j. Hence, an event X is adjacent in the graph of
dependencies to at most 2ijd2j−1 events like Y .

Then we must check that for any event X of size i, the following expression holds,

S =
∑

BP1 ∼X

(2p)
t
BP1 +

∑
BP2 ∼X

(2p)
t
BP2 + · · ·+

∑
BP
g/2
∼X

(2p)
t
BP
g/2 +

∑
AP∼X

(2p)tAP ≤ tX
2

As x = 2g(g + 1)k2
(
2k
k

)
d
g−1
g−k then p = 1

2g(g+1)kd
g−1
g−k

.

Observe that the following two inequalities hold if k ≤ g,

g

2
≤ g − k 2g − 1

g
≤ g − 1

g − k

If the event X is of size i, then

S ≤ 2id(2p) + 2i2d3(2p)2 + · · ·+ 2ikdg−1(2p)g/2 + 2igdg−1(2p)g−k

= 2i
(
d(2p) + 2d3(2p)2 + · · ·+ kd2k−1(2p)k + gdg−1(2p)g−k

)
≤ 2k

(
2

2k(g + 1)g
+ 2

(
2

2k(g + 1)g

)2

+ · · ·+ k

(
2

2k(g + 1)g

)k
+ g

(
2

2k(g + 1)g

)g−1)
≤ 2k

2

2k(g + 1)g
(1 + 2 + · · ·+ g)

≤ 2k
2

2k(g + 1)g

(g + 1)g

2
≤ 1

2
≤ tX

2

So the weighted version of the Lovász Local Lemma ensures that the probability that a
random coloring is an hg,k-coloring is strictly positive. So there exist an hg,k-coloring of

the graph G with at most O(d
g−1
g−k ) 2
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4.3 LTDD on bounded degree classes

The goal of this section is to take advantage of the generalized coloring defined in Sec-
tion 4.2 to give bounds on the k-th chromatic number χk(G).

Let Ok = O1 ∪ · · · ∪ Os be the subgraph obstruction set of the class of graphs C with
tree-depth at most k. This set is finite but, unfortunately, this set grows exponentially in
k, as showed by Nešetřil and Ossona de Mendez.

In the proof of Proposition 2.4 we have seen that if a graph G excludes a path with k + 1
vertices as a subgraph, then td(G) ≤ k. That fact directly implies that Pk+1 is a subgraph
of any graph in Ok.
Fig. 4.3 shows an schema of the subgraphs poset. The cone generated by Pk+1 contains
all the other obstructions.

Figure 4.3: Pk+1’s cone “covers” Ok

For example O1 = {K2} and O2 = {K3, P4}. In Fig. 4.4 we can see the set O3, and paths
with 4 vertices which are subgraphs.

Recall that an fk-coloring, colors in a way that every k+1 path with k+1 colors. Suppose
that we color G with enough colors, such that fk is satisfied. Then any i (i ≤ k) classes
contain no subgraph which is a path with k + 1 vertices in HI , i.e. for any O ∈ Ok,
O * HI .

It is straightforward to see that,

χk(G) ≤ χ(fk, G)

And we can ensure that χk(G) = O(dk).

But we can do better.

Proposition 4.17 Let G ∈ Cd. Then,

χk(G) = O(d
k+1
2 )

Proof. For any subset I of i elements, the subgraph HI of G, induced by the color classes
i ∈ I, satisfies ω(HI) ≤ k. In other words, this means that HI does not contain a complete
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Figure 4.4: Obstruction set for k = 3 and their P4 subgraphs

graph of k+1 vertices. This assertion follows from the fact that it is a proper coloring with
k colors, and χ(Kk+1) = k + 1. Observe that Kk+1 is always an obstruction for having
tree-depth at most k, i.e. Kk+1 ∈ Ok, for any k as td(Kn) = n.

We claim that any graph O ∈ Ok\{Kk+1}, contains a Pk+2 path.

This had motivate the definition of the graph function gk. As we know that no Kk+1 will
appear in HI it is clear that we can change the condition every path with k + 1 vertices
is colored with k + 1 colors, for every path with k + 2 vertices is colored with k + 1 colors,
which is weaker. Then every gk-coloring is also a k-LTDD and χ(gk, G) upper bounds the
k-th chromatic number. 2

4.3.1 When the girth grows...

In this subsection we will try to sharpen the given upper bounds taking advantage of a
large girth. The intuition probably induces us to think that the girth and the chromatic
number of graphw are related in some way. In general, if G has large girth we expect a
low chromatic number, and vice versa, but this is not always the case. For example, one of
the most famous theorems that use the probabilistic method states that there exist graphs
with arbitrarily chromatic number and girth. For a reader not familiar with graphs this
might seem strange, because large girth implies in some sense sparsity and high chromatic
number implies density.

However, in the study of the k-th chromatic number, the girth can have an important
effect, or at least allows us to refine the upper bounds.

Take G ∈ Cd with girth g.

Proposition 4.18 If g ≥ 2k, then

χk(G) ≤ O(d
2k−1
k )
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Proof. As the girth is at least 2k, no cycles will appear in the induced subgraphs HI , i.e.
HI is a forest. It is well-known that if HI if the disjoint union of the trees T1, . . . , Ts, then
χk(F ) = maxχk(Ti). So we can assume that HI is a tree (connected subgraph). If HI has
diameter at most 2i, by Lemma 2.2, we have td (HI) ≤ i. Hence, it will be a tree and a
subgraph of the closure for a tree T of height i.

So, we want enough colors to ensure that any subgraph of HI that is a path, has length
at most 2i− 1, i.e. every 2i path of G has at least i+ 1 colors.

Recalling the Proposition 4.15 and the graph function hk it is clear

χk(G) ≤ χ(hk, G) ≤ O(d
2k−1
k )

2

If the girth is not so large we can also say something.

Proposition 4.19 If k < g ≤ 2k, then

χk(G) ≤ O(d
g−1
g−k )

Proof.

Doing the same reasoning as the former proof, but adding a little variation we get the
result.

We must ensure that the graph HI is acyclic for any I of size at most k. Therefore, any
path of length g must be colored with k + 1 colors.

Clearly, this give the function hg,k and

χk(G) ≤ χ(hg,k, G) ≤ O(d
g−1
g−k )

2

The bounds on k-th generalized chromatic numbers clearly motivate the graph function
definitions in Section 4.2.

We can summarize all this section in the following theorem,

Theorem 4.20 Let G be a graph with maximum degree d and girth g, then

1. if 2k ≤ g, χk(G) = O(d
2k−1
k )

2. if k < g < 2k, χk(G) = O(d
g−1
g−k )

3. if g ≤ k, χk(G) = O(d
k+1
2 )

Providing lower bounds is more difficult. Observe that the upper bounds are given through
the graph function. Since we want to have tree–depth at most k, we are avoiding a path
with k + 1 nodes, but the vice versa is not true. For example td(Pk+1) = Θ(log k).
Probably, it is possible to give lower bounds by finding certain classes of graphs with
bounded degree but large tree–depth.





5

On the tree-depth of Random
Graphs

The tree-depth td(G) of a graph G is a measure introduced by Nešetřil and Ossona de
Mendez [38] in the context of bounded expansion classes (see Subsection 2.3.2 for a precise
definition). The notion of the tree-depth is closely connected to the tree-width. The tree-
width of a graph tells us how similar is G to a tree, while the tree-depth takes also into
account the height of the tree.

Bounded expansion classes are defined in terms of shallow minors and its connection to
tree–depth is highlighted by the Theorem 2.5 showed in Section 2.4. This is a clear
motivation to study tree-depth.

The following inequalities relate the tree–width and tree–depth of a graph:

tw(G) ≤ td(G) ≤ tw(G)(log2 n+ 1) (5.1)

Note that there are graphs that have bounded tree-width but unbounded tree-depth, for
example trees. On the other hand, if a class of graphs has bounded tree–depth, then it
also has bounded tree–width.

To understand this new parameter, it is useful to know about its behaviour in certain
classes of graphs. The main goal of this chapter is to analyze how does it behave on
random graphs.

The first result of this chapter states the value of tree-depth for dense random graphs.

Theorem 5.1 Let G ∈ G(n, p) be a random graph with p = ω(n−1), then G satisfy a.s.s.

td(G) = n− o(n)

Note that if p = ω(n−1) we will expect a super-linear number of edges. In this context, the
theorem says that the tree-depth of G almost attains its maximum possible value. Actually
our proof of Theorem 5.1 provides the same result for tree-width. To our knowledge, the
tree-width of a dense random graph has neither been studied until now.

But, what happens if the number of edges is linear? This case, the sparse case, is solved
by the following theorem,

Theorem 5.2 Let G ∈ G(n, p) be a random graph with p = c
n , with c > 0,

(1) if c < 1, then a.a.s. td(G) = Θ(log log n)
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(2) if c = 1, then a.a.s. td(G) = Θ(log n)

(3) if c > 1, then a.a.s. td(G) = Θ(n)

This last theorem is closely related with a conjecture of Kloks announced in [29] on the
linear behaviour of tree-width for random graphs with c > 1. This conjecture has been
recently proved by Lee, Lee and Oum [30]. Here we give a proof of Theorem 5.2.(3) which
also provides a simpler proof of Kloks conjecture. Our proof uses, as the one in [30],
the same essential result of Benjamini, Kozma and Wormald [7] on the existence of an
expander of linear size in a sparse random graph for c > 1.

The chapter is organized as follows. Section 5.1 contains the proof of Theorem 5.1, which
uses the relation connecting tree-width with balanced partitions. Finally Theorem 5.2
will be proved in Section 5.2. For c < 1 the result follows from the fact that the random
graph is a collection of trees and unicyclic graphs of logarithmic size, which gives the
upper bound, and there is one of these components with large diameter with respect to
its size, providing the lower bound. For c = 1 we show that the giant component in the
random graph has just a constant number of additional edges exceeding the size of a tree,
which gives the upper bound, and rely on a result of Nachmias and Peres [36] on the
concentration of the diameter of the giant component to obtain the lower bound. Finally,
as we have already mentioned, for c > 1 the result follows readily from the existence of an
expander of linear size in a sparse random graph for c > 1, a fact proved in Benjamini,
Kozma and Wormald [7].

5.1 Tree-depth for dense random graphs

This section is devoted to prove Theorem 5.1. Using the relation between the tree–width
of a graph and balanced partitions.

In order to obtain a lower bound of the tree–depth we will get one for the tree-width, and,
by inequality (5.1), this will also provide the desired lower bound.

Proof of Theorem 5.1. Using the relation connecting tree-width with balanced parti-
tions (Lemma 2.1), the idea is to prove that G does not contain a balanced separator of
size at most n− o(n).

Fix β < 1. Suppose that there exist a balanced separator S of size k ≤ βn. This set
separates the graph into two subsets A and B. As S is balanced, we can assume that
|A| ≥ |B| ≥ 1−β

3 n.

The probability that a given set S ⊂ V separates the graph is,

Pr (S balanced sep. G) = (1− p(n))|A||B| ≤ (1− p(n))
(1−β)(2−β)

9
n2

. (5.2)

For the last inequality we consider the worst case where |A| = ((2 − β)/3)n and |B| =
((1− β)/3)n.

We can bound the number of possible balanced partitions with separators S of size at
most βn by the number of labelled partitions in three sets that will represent A,B and S,
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which is obviously 3n.

Pr (∃ a balanced sep. G) = Pr

( ⋃
S set

{S is a balanced sep. G}

)
≤

∑
S set

Pr (S is a balanced sep. G)

≤
∑
S set

(1− p(n))
(1−β)(2−β)

9
n2

≤ 3n (1− p(n))
(1−β)(2−β)

9
n2

≤ 3n+log(1−p(n)) (1−β)(2−β)
9

n2

In order to have a.a.s the non existence of separators, it only remains to prove that the
exponent tends to −∞ as n→∞. As p(n) < 1, we can use the inequality of log(1− x) ≤
−x.

n+ log(1− p(n))Θ(n2) ≤ n− p(n)Θ(n2)

= n− Θ(n2)

o(n)
→ −∞ (n→∞).

Hence Pr (∃S balanced sep. G)→ 0.

Since there is no set of this size separating G, we have td(G) ≥ tw(G) > βn. Since the
above inequality is valid for all β < 1, we have td(G) ≥ n−o(n). Observe that, td(G) ≤ n.

Remark 5.3 In this case the same argument can be applied, but now the problem deals
with tighter calculations. It is easy to see that the property of non existence of balanced
separators depend on the positivity of the following expression.

β2 − 3β + 2− 9 ln 3

c

As 0 ≤ β ≤ 1, it is clear that in this way we can not prove the same result for sufficiently
large c, but for some cases, we obtain a lower bound on the constant of the tree-depth
linearity for the case c > 1.

In fact, if c > c0 ≈ 4.94, then

td(G(n, p = c/n)) ≥ f(c)n

where f(c) =
3−

√
1+ 36 ln 3

c

2 .

In the next section we will prove that, actually, td(G(n, c/n)) is linear for any c but we
will not give a value for the linear constant.

5.2 Tree-depth for sparse random graphs

In this section Theorem 5.2 will be proved.
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5.2.1 c < 1

Let G ∈ G(n, p = c/n) with 0 < c < 1. Our objective is to show that td(G) = Θ(log log n).

First we will prove the upper bound.

A unicyclic graph is a connected graph that has the same number of vertices than edges.
Note that such a graph consists of a cycle C, with some attached trees to its vertices. A
pseudotree is a graph that is either a tree or a unicyclic graph. A pseudoforest is a graph
composed by different connected components that are pseudotrees.

Assume that C is the set of connected components.

Lemma 5.4 If G is a pseudoforest, then td(G) ≤ log nc + 2, where nc = max
C∈C
|C|.

Proof. Take the largest connected component of G. For any tree T there is an unicycle
U such that T ⊂ U . As tree-depth is an increasing parameter with the subgraph partial
ordering, we can assume that G is a unicyclic graph. Let C the cycle of U and x ∈ V (C),
then T = G\{x} is a tree.

By using (2.3) and Proposition 2.2 it follows that

td(G) ≤ log nc + 2.

2

A famous result of Erdős and Rényi [19] states that, if 0 < c < 1, then G is a pseudoforest.
Now we are interested in bound the size of each connected component of G by a logarithmic
expression. Bóllobas [10, Corollary 5.11] showed that, if 0 < c < 1, then the size of the
largest tree component in the random graph has order Θ(log n). Moreover, for any function
ϑ(n) → ∞, there are at most ϑ(n) vertices belonging to unicyclic graphs [10, Corollary
5.8]. Taking ϑ(n) < log n we can ensure that the largest connected component of G is of
size Θ(log n). Therefore, nc = Θ(log n) and by Lemma 5.4,

td(G) = O(log log n).

The lower bound is more involved.

As we have seen, G is composed of pseudotrees of logarithmic size.

Let T be a tree and denote by d its diameter. Every graph G contains a path of length at
least the diameter of the graph, and in particular, if G is a tree, then the maximal path is
attained with the minimal path between two antipodal vertices. Since the tree–depth of a
path is Θ(log n), the fact that the tree-depth is monotonically increasing with respect to
the subgraph partial ordering and that the diameter is a path subgraph of G,

td(T ) ≥ log d.

Recall that every labeled tree on k vertices has the same probability to appear in G as a
connected component.

The question now is: which is the diameter of these random trees? Rényi and Szekeres [45]
proved that, if Hk is the height of a random labeled rooted tree on k vertices, then

E(Hk) ∼
√

2πk
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and

Var(Hk) ∼
π(π − 3)

3
k

Let Dk be the diameter of a labelled rooted tree. This random variable is also the one that
computes the diameter of unrooted labelled trees since any tree on k vertices has exactly
k ways to be rooted.

Since Hk ≤ Dk ≤ 2Hk, asymptotically the two parameter have the same value. Therefore
Dk satisfies E(Dk) = Θ(

√
k) and Var(Dk) = Θ(k). Hence our proof for this case will

be completed if we show that the random graph contains a tree T with size Θ(log n) and
diameter Θ(|T |) = Θ(log n).

Since the expectation of Dk has the same order of magnitude as the standard deviation,
we can not ensure that its value is highly concentrated. The diameter of each individual
tree can be arbitrarily small as n tends to infinity, but in general this will not be true.
Thus, we must show that the mean of the tree diameters is a.a.s large enough to ensure
the existence of a tree with relatively large diameter.

Changing the model an taking now H ∈ G(n,m(n)) Erdős and Rényi [19] showed that

Xk, the number of trees of order k in H with m(n)/n
k−2
k−1 →∞, has a normal distribution

with expectation and variance Mn, where

Mn(k) = n
kk−2

k!

(
2m

n

)k−1
exp

(
−2km

n

)
Moving back to the random graph model G(n, p) with p = c/n, and noting that E(m) = cn

2
we get the analogous result, where

Mn(k) = n
kk−2

k!
ck−1 exp(−kc) (5.3)

We are interested in the trees of logarithmic size. Hence, if k = log n then,

Mn =
nlog logn−α

c(log2 n)(log n)!

where α = c− 1− log c.

As the logarithm is a monotonically increasing function and (5.3) tends to infinity as
k →∞, Mn →∞, i.e. Mn = ω(1).

By using Chebyshev’s inequality with µ = σ2 = Mn, we can see that, for some ϑ(n) =
o(
√
Mn) s.t. ϑ(n)→∞,

Pr(|Xlogn −Mn| ≥ ϑ(n)
√
Mn) ≤ 1

ϑ(n)2
−→ 0 (n→∞)

This ensures that at least K(n) = Mn − o(Mn)→∞ tree components have size log n.

Let D be the mean of the diameter among all the components of size logn. Clearly
E(D) = Θ(

√
log n), since E(D) = Θ(

√
k), but now we have that Var(D) = O(log n/K)),

where K = o(1), and so, σ(D) = o(
√

log n). Hence, by using again Chebyshev inequality
on D, we can ensure that D = Θ(

√
log n) a.a.s. and by Markov inequality there exists

some tree T with diameter Ω(
√

log n).

Finally,

td(G) = Ω(log
√

log n) = Ω

(
1

2
log log n

)
= Ω(log log n).
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5.2.2 c = 1

Now we look at the critical point where c = 1.

Another famous result of Erdős and Rényi [19] states that, in this case, the random graph
has some giant components (GC) of order Θ(n2/3). Nevertheless, the number of giant
components is constant. In this situation we can only assert that the graph has at most
n/2 +O(

√
n) edges.

The idea is to prove, that the GC is almost a tree. In [26, pag.112] a useful concept is
defined. For l ≥ −1 an l-component is a connected component with k vertices and k + l
edges. For example, (−1)-components are trees and 0-components are unicyclic graphs.
A complex component is an l-component with l > 0. Let {G̃t}N0 denote a graph process
where edges are added at random on n points and N =

(
n
2

)
.

Janson,  Luczak and Rucinski [26, Theorem 5.19] proved that the excess l(C) of the complex
components when m = n/2 +O(n2/3) is constant. In other words, l(C) = O(1).

The GC of G contain k vertices and k+ l edges, and if we delete l = O(1) vertices, we will
get a tree on (k − l) = O(n2/3) vertices. Since the remaining components have similar or
negligible order, the tree-depth satisfies

td(G) ≤ l +O
(

log
(
n2/3

))
= O(1) +O

(
2

3
log n

)
= O(log n)

To prove the lower bound, we use the following result which follows from a more general
statement due to Nachmias and Peres [36].

Theorem 5.5 ([36]) Let C be the largest component of a random graph in G(n, p) with
p = 1/n. Then, for any ε > 0, there exists A = A(ε) such that

Pr(diam(C) /∈ (A−1n1/3, An1/3)) < ε.

This diameter agree with the expected one. We have proof that in this case the GC are
almost trees, but for a constant number of edges, and we also know, that the expected
diamter of a tree of size k is

√
k. As the size of this component is O(n2/3), the diameter

that make sense is its square root, O(n1/3).

It follows from the monotonicity of tree–depth (2.3) and from td(Pn) = Θ(log n), that a
graph with diameter d satisfies td(G) = Ω(log d). Hence, it follows from Theorem 5.5 that

td(G) = Ω(logn1/3) = Ω(log n).

This concludes the proof of the case c = 1.

The same reasoning can be applied in the case of width parameters. A parameter w(G)
of the graph is called width parameter if is bounded by a certain function of tw(G), i.e.
exists f such that w(G) ≤ f(tw(G)). Some examples of that could be the branch–width,
the path–width, the rank–width or the clique–width.

Proposition 5.6 Let G ∈ G(n, p = 1/n). For any width parameter w(G),

w(G) = O(1)
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Proof. The idea is to prove that tw(G) is constant.

We know that the r largest components C of G have size O(n2/3) and constant excess by
the former proposition. Hence, C are almost trees.

We claim that if tw(G) = k, then for any edge e /∈ E(G), tw(G ∪ e) ≤ k + 1.

It follows from the definition of k-trees. If G is a partial k-tree and we add an edge e = uv
it results a (k + 1)-tree. In fact it will be a (k + 1)-tree if and only if we put the edge
between two vertices that are completely connected to the same k-clique. 2

This remark improves, for example, the upper bound given in [30] about the rank–width
of G. If c = 1 we can replace an upper bound of order O(n2/3) by O(1), which is a large
improve.

5.2.3 c > 1

With c > 1 we want to proof that the tree–depth is linear.

The remark given in Section 5.1 ensures that for c > c0 ≈ 4, 94 the tree-depth of G is
linear. Moreover, we gave an explicit linear constant.

Kloks in [29] conjectured that c0 must be one. He provides a proof for c0 = 1, 18. In [24],
Gao lowered the constant to c0 = 1, 081. Lee, Lee and Oum proved in [30] the conjecture
using the Theorem 5.8.

During this subsection we will give another proof to the Kloks conjecture which in our
opinion is more direct. This will allow us to proof that the tree-depth is also linear.

The Cheeger constant or isoperimetric number of a graph G can be defined as:

Φ(G) = min
0<|X|≤n/2

E(X,V \X)

|X|

This coefficient measures the expansion of the graph. A graph G is said to be an α–
expander for α > 0, if |N(X)\X| ≥ α|X| for every set X of vertices with |X| ≤ |V (G)|/2,
where N(X) denotes the vertex neighborhood of X. Note that, for an α–expander graph,
Φ(G) ≥ α.

Proposition 5.7 Let α > 0. Let G be a graph that contains H an α-expander, of size k.
Then tw(G) = Ω(k).

Proof. Denote by tw(G) = tG and tw(H) = tH . As tree-width is closed under subgraph
relation and H ⊂ G, we know that tH ≤ tG.

By Theorem 2.1, we know that there is a balanced partition V (H) = (A,S,B), where S is
a vertex separator of cardinality tH+1 and we can assume that k/2 ≥ |A| ≥ (k−tH−1)/3.
Hence,

tG ≥ tH ≥ |S| − 1 ≥ α|A| − 1 ≥ αk − tH − 1

3
− 1 ≥ αk − tG − 1

3
− 1,

where we have used the fact that H is an α–expander. Thus, tG ≥ α(k−1)−3
α+3 , and tw(G) =

Ω(k).

2
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The recent proof of Benjamini, Kozma and Wormald about the value of mixing time of
the random walk on the giant component of a random graph p = c/n, c > 1, relies on the
existence of an α–expander subgraph of linear size in the giant component. The following
result follows from [7, Theorem 4.2] where the fact that the expander has linear size is
stated within the proof of that Theorem. They show that there exist a certain subgraph
RN (G) such that its kernel is of linear size. Then they prove that this subgraph RN (G)
is an α-strong core, and as its kernel is a subgraph, RN (G) has also linear size. By the
definition of an α-strong core, it is included in a “decorated” expander, and Φ(RN (G)) ≥ α.
Therefore, there exists an α-expander subgraph.

Theorem 5.8 ([7]) Let G be a random graph in G(n, p) with p = c/n, c > 1. There are
α, δ > 0 and a subgraph H of G such that H is an α–expander and |V (H)| = δn.

The linearity of td(G) in this case follows from Proposition 5.7 and Theorem 5.8.

Corollary 5.9 Random regular graphs have linear tree-width

Proof. For d–regular graphs G ∈ G(n, d) there is a two–sided equivalence between ex-
panders and a nonzero value of the Cheeger constant. The latter can be lower bounded by
(d−λ2(G))/2, where λ2(G) is the second largest eigenvalue of the adjacency matrix of the
graph. Friedman, Kahn and Szemerédi [22] prove that this eigenvalue in d–regular random
graphs is O(

√
d). Therefore it follows from Proposition 5.7 that td(G) ≥ tw(G) = θ(n).

We note that Proposition 5.7 also shows that random d-regular graphs (d-RRG) have
linear tree–width. 2
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Evolution of random graphs

In Chapter 4 we make a strong use of the structure of the connected components from the
random graph. There, we distinct the sparse and the dense case. In this appendix our
propose is to sum up all this properties to give to the reader an idea of the random graphs
evolution. We refer the interested ones, to [10] and [26].

When a certain paramater is studied in random graphs, is really useful the idea of critical
points or phase transitions. This is close to the notion of threshold function. Given a graph
property P we call a real valued function f = f(n) a threshold function if the following
holds

lim
n→∞

Pr(G ∈ P) =

{
1 if p/f →∞ as n→∞
0 if p/f → 0 as n→∞

The phase transition is the point where p/f tends to a constant. In general these are the
most difficult point to analyze because lim

n→∞
Pr(G ∈ P) can be any value in [0, 1].

A.1 The double jump

Recall that we talk about sparse random graphs, when the probability of an edge is
p(n) = O(n−1), and otherwise, the graphs is dense.

Observe that if p(n) = c/n, then the expected degree of a vertex is approximately c. This
simple fact gives an idea on why is so important this point. Obviously, f(n) = c/n will
be a threshold function for many properties, but we can refine even more and study the
behaviour in dependence of c.

Just before and after c = 1 the random graph behaves in a completely different way. The
behaviour change between c < 1 and c = 1 and between c = 1 and c > 1, is known as the
double jump.

It is a well known result [19] that the structure of a random graph with p < c/n, c < 1, is
composed by trees and unicycles size at most 3

(1−c)2 log n. This can be justified because the

expected degree of the vertices is < 1. This reason cause the small size and the low density
of the connected components. In fact, n− o(n) of the elements belong to trees, therefore
there are not many vertices in unicycles, moreover for any ω(n) → ∞. In Fig. A.1a we
can appreciate this union of small sparse components.

When p = 1/n, a huge change happen. The different components “join” and there are
some components that start to grow. This phenomena is known as the birth of the giant
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component (GC). However, their size is not linear but O(n2/3) and are denser than trees.
Nevertheless the vast majority of vertices still belong to logarithmic size trees, that will
be attached slowly to this GCs. Fig. A.1b show an example of one of this graphs. Later,
we will zoom on this phase to understand this transition.

(a) Random graph: n = 500 and c = 1/2 (b) Random graph: n = 500 and c = 1

Figure A.1

When c > 1 the GC is unique and of linear size. All the other components are pseudotrees
of logarithmic size. This GC is considerably denser than in the critical point. However,
the graph is still not connected. We have also logarithmic size trees that will be attached
to the GC as can be appreciated in Fig. A.2a. In fact, the GC is so dense that its diameter
if of order O(log n).

It is not strange, that when the expected degree is constant, asymptotically the graph is
not connected. The following question seems natural: which is the threshold function for
the graph property of being connected? It can be shown that if p(n) = (log n+ c)/n with
c > 0, then X, the number of isolated vertices, is asymptotically a Poisson with λ = e−e

−c
.

Also, the probability that there exist a connected component of size at least 2 appart from
the GC tends quickly to zero. This implies that

Pr (G is connected) = e−e
−c

If np(n)− logn→∞, then G is a.a.s. connected. In Fig. A.2b we have an example of such
a random graph.

Table A.1 summarize the behaviour exposed above.

p(n) sz lgst cmp tree V unicycle V denser V

c/n, 0 < c < 1 log n n−O(1) ≤ ω(n) 0

c/n, c > 1 Θ(n) few few O(n)

c/n, c = 1 Θ(n2/3) n− o(n) O(n2/3) O(n2/3)

log n/n n 0 0 n

Table A.1
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(a) Random graph: n = 500 and c = 3/2 (b) Random graph: n = 500 and c = log n

Figure A.2

A.2 The growth window of the giant component

It is really interesting to study what happen around the point where p(n) = 1/n. During
this section we will deal with the edge model G(n,m) and use m(n) = n/2 ± s where
s = o(n), s ≥ 0. In this case, we divide in three regions according to the behaviour of the
connected component in the random graph.

The first region is the subcritical region and is characterised by p(n) = 1/n− s, Ω(n2/3) ≤
s ≤ o(n). Recall that when c < 1 no GC exists. During this stage, the GC begin its
growth. In fact, in [26] it is proved that G is composed vastly by trees and few unicycles,
as in the case when c < 1. The size of the r-th largest component, Lr(G), satisfy,

Lr(G) = Θ

(
n2

s2
log

s3

n2

)
Observe that if s = Θ(n), then Lr(G) = Θ(log n) and when s = Θ(n2/3), Lr(G) = Θ(n2/3),
so the result is coherent with Table A.1.

The second region is the critical phase and occurs when p(n) = 1/n± s with s = O(n2/3).
It is really curious that the behaviour in this region depend on the parameter s, but not
on the sign of it, i.e. it has a symmetric behaviour. For this reason, Lr(G) = Θ(n2/3) for
any s in this region, and there are several GCs. They are almost trees, in fact, the excess
of edges respect the number of vertices is constant.

The third region, appear when p(n) = n/2+s with ω(n2/3) ≤ s ≤ o(n). This region, called
supercritical phase, is the most difficult one to study because the components become
denser and greater. Some GC and trees quickly merge giving a component of size Θ(s).
This is the unique GC, i.e. all the other will be of size O(n2/3). The excess of the GC
is of order Θ(16s3/3n2), so it gets denser when s grows. Ding, Kim, Lubetzky and Peres
in [17] show that there exist an expander subgraph of size O(s) in this stage.

Finally, Fig.A.4 gives us an idea of the number of connected components and their size,
while p(n) increases.
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(a) Random graph: −n � s � −n2/3 (b) Random graph: n2/3 � s � n

Figure A.3

p sz lgst cmp tree V unicycle V denser V

−n� s� −n2/3 O
(
n2

s2
log s3

n2

)
n−O(1) ≤ ω(n) 0

s = O(n2/3) O(n2/3) n− o(n) Θ(n2/3) Θ(n2/3)

n2/3 � s� n O(s) n−O(s) Θ(n2/3) O(s)

Table A.2
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[18] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some
related questions, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P.
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[21] Guillaume Fertin, André Raspaud, and Bruce Reed, Star coloring of graphs, J. Graph
Theory 47 (2004), no. 3, 163–182. MR MR2089462 (2006a:05060)
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