
 
 
 

 
 
 

Bit Error Combating Network 
Coding Techniques 

 
 
 

Pau Bernat Guri Hundertmark 
 
 

Advisors: 
Dr. Nikolaos Thomos 
Prof. Pascal Frossard 

 
 

June 2010 
 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41803289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 



3 

Contents 
 
Contents .........................................................................................3 
 
List of figures .................................................................................5 
 
Introduction....................................................................................9 

1.1 Motivation .........................................................................9 
1.2 Related work.................................................................... 10 
1.3 Goal ................................................................................. 11 
1.4 Overview.......................................................................... 12 

 
Theory.......................................................................................... 13 

2.1 Network coding ................................................................ 13 
2.2 Error correcting codes ...................................................... 16 

2.2.1 Reed Solomon Codes.................................................. 17 
2.2.2 Maximum Rank Distance Codes................................. 18 

2.3 Combining Gabidulin codes with NC ............................... 22 
2.3.1 Systematic Gabidulin codes ....................................... 24 

2.4 Interleaving...................................................................... 26 
2.5 Product codes ............................................................... 27 
2.5.1 Iterative decoder ........................................................ 28 
2.5.2 Distributed product code ........................................... 30 

2.6 Rayleigh channels............................................................. 31 
2.7 Unequal Error Protection ................................................. 32 

 
Simulation results ......................................................................... 33 

3.1 Mesh networks ................................................................. 33 
3.2 Comparison of Reed Solomon, MRD and product codes ... 34 
3.3 Replacing erroneous symbols by zero................................ 36 
3.4 Product code with horizontal decoding in every node and 
using our iterative decoding algorithm at the destination .......... 37 



4 

3.5 Rectangular Interleaving .................................................. 39 
3.6 Random Interleaving........................................................ 40 
3.7 Double MRD interleaved.................................................. 42 
3.8 Combining RS and MRD.................................................. 43 
3.9 Distributed Product Code ................................................ 44 
3.10 Using Rayleigh fading channel ...................................... 54 
3.11 Unequal Error Protection.............................................. 55 

 
Conclusions and future work......................................................... 57 
 
References..................................................................................... 59 
 



5 

List of figures 
 
 
Figure 1. Toy example of a simple multicast transmission. If R1 is 
allowed to combine packets, throughput is improved and delay is 
reduced......................................................................................... 14 
 
Figure 2. Example of wireless communication comparing the same 
system using network coding and store-and-forward approach. Bob 
and Alice exchange a pair of packets using 3 transmissions instead 
of 4. .............................................................................................. 15 
 
Figure 3. Flowchart of the decoding algorithm of Gabidulin codes.
..................................................................................................... 21 
 
Figure 4. Diagram of a toy line network used in our simulations .. 25 
 
Figure 5. Gilbert-Elliot channel model used in our simulations. The 
probability of error in the clear state is zero, while the error 
probability of the error state sweeps from zero to one. ................. 26 
 
Figure 6. Schematic encoding procedure for product codes. The 
encoding in vertical and horizontal directions is depicted. ............ 28 
 
Figure 7. Toy mesh network used in our simulations. Every node is 
allowed to use network coding. ..................................................... 33 
 
Figure 8. Gilbert-Elliot channel model for every link used in our 
simulations with the mesh network. The error probability of the 
clear state is zero and the error probability of the error state 
sweeps from zero to one. ............................................................... 34 



6 

Figure 9. Performance in terms of end-to-end symbol error rate as a 
function of the bit error rate per channel of concatenated MRD 
codes when intermediate nodes are allowed to correct the received 
packets and when they are not. .................................................... 36 
 
Figure 10. Symbol error rates at the receiver for different strategies. 
The figure compares the symbol error rate under four strategies: 
concatenated MRD codes, product codes, product codes replacing 
erroneous symbols by zeros, and product codes replacing erroneous 
symbol by zero combined with a random interleaver. It shows that 
product codes replacing erroneous symbols by zero combined with a 
random interleaver performs better than the others...................... 37 
 
Figure 11. Symbol error rate at the receiver. Correction in every 
node of product codes improves the symbol error rate at the 
receiver. The figure shows the comparison between product codes 
with interative decoding algorithm at the receiver with product 
codes with iterative decoding algorithm at the receiver combined 
with a conventional decoding in every intermediate node. ............ 38 
 
Figure 12. Block diagram used at the source node to encode. The 
horizontal direction is encoded twice allowing to have more 
redundancy symbols and, therefore, larger correction capacity. .... 42 
 
Figure 13. The figure plots the symbol error rate for three different 
strategies: using double MRD codes, double MRD codes allowing 
intermediate node to correct packets, and product codes when 
intermediate nodes can also correct packets and when the receiver 
uses an iterative decoding algorithm............................................. 43 
 
Figure 14. Symbol error rate comparison between two different 
techniques. In both techniques the intermediate nodes are allowed 
to correct packet. One scheme uses double MRD codes while the 



7 

other uses as first encoder a RS encoder instead of an MRD 
encoder. ........................................................................................ 44 
 
Figure 15. Decoder comparison of distributed product code when 
using network coding. Comparison of the decoder proposed in [2] 
with our proposal updating the received word before every 
iteration........................................................................................ 45 
 
Figure 16. Evaluating different iterative decoders in one link. 
Comparison of our iterative decoder when received code words are 
updated in every iteration, the one proposed in [2] and our old 
iterative decoder where we evaluate the number of symbols 
switched before and after correction. ............................................ 47 
 
Figure 17. Symbol error rate comparison when using distributed 
product codes technique but replacing Reed-Solomon codes with 
Maximum Rank Distance codes. ................................................... 48 
 
Figure 18. Performance comparison in terms of symbol error rate 
when using network coding combinations in a bigger Galois field 
than the one used in the MRD encoding....................................... 49 
 
Figure 19. The figure plots the symbol error rate when using 
different Galois field for network coding operations and MRD 
coding combined with a random interleaver. It is compared with a 
scheme where MRD coding and network coding operations are in 
the same Galois field. ................................................................... 50 
 
Figure 20. Encoder and decoder block diagram of product codes 
using an interleaver and using both iterative decoders at the 
destination.................................................................................... 51 
 
Figure 21. Performance comparison when using both iterative 
decoders at the receiver and when only the distributed iterative 



8 

decoder is used. Combining both iterative decoders improves the 
performance of the system. ........................................................... 51 
 
Figure 22. Encoder and decoder block diagram for product codes 
which can be corrected in every node, using a random interleaver, 
and using both iterative decoders at the destination..................... 52 
 
Figure 23. The figures shows the symbol error rate combining both 
iterative decoders at the receiver when using an interleaver and 
correction is allowed in every intermediate node of the network and 
when intermediate nodes can only forward the received packets. .. 53 
 
Figure 24. Distributed product code with an interleaver, decoding 
in every node and using a combined iterative decoder over a 
Rayleigh channel. The figure plots three different lines: one for the 
BER per channel, one for the BER at the receiver, and another one 
for the symbol error rate at the receiver. ...................................... 54 
 
Figure 25. The figure shows the results  for our proposed UEP 
scheme. Three lines are plotted for different rates: one for BER per 
channel, one for BER at the receiver, and one for symbol error rate 
at the receiver. ............................................................................. 56 
 



9 

 
 
Chapter 1 

 

Introduction 
 
 

1.1 Motivation 
 
 
In the latter years multimedia streaming has grown rapidly. 
Applications such as youtube, for example, are used worldwide. 
This use of multimedia streaming applications worldwide needs 
huge amounts of network resources. In order to avoid overloading 
these network resources some solutions have been proposed. One of 
them is Network Coding. With Network Coding the amount of 
network resources employed to send some information between 
network nodes can be reduced. This happens because with network 
coding we can reduce the power consumption and also we can 
minimize the delay. However, the use of network coding leads to 
another problem. It is that with network coding an error in a 
received packet is propagated to all others packets. The reason why 
an error is propagated to all other packets is because network 
coding consists in combining different packets. Thus, if a packet is 
erroneous when combined with others, they will be erroneous too. 
These erroneous packets will be combined in other nodes with some 
other packets, and these last ones will be erroneous too. This means 
that we use less network resources but losing quality. To avoid this, 
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packets have to be protected with some error protecting codes for 
the receiver to be able to recover the packet sent. But combining 
network coding with error protecting codes is not trivial because 
this leads to an error propagation problem. 
 
Multimedia streaming is becoming more important in personal 
communications. Particularly, mobile communications. Nowadays 
3G phones are available to everybody. Applications such TV on the 
phone are growing rapidly. Not only these applications are 
becoming important but high definition demand is also rising. This 
also leads to a big demand for network resources, and in wireless 
networks the resources are even more valuable than in wired 
networks as the spectrum is limited.  
 
 

1.2 Related work 
 
 
Several solutions have been proposed to use network coding with 
error protecting codes. Some theoretical works of Kötter and 
Kschischang [13] assume a non coherent network coding model, 
where neither the transmitter nor the receiver have knowledge of 
the channel transfer characteristics and they propose an encoding 
and decoding algorithm for Gabidulin codes. An improvement of 
the decoding algorithm is proposed in [17], there they propose using 
Fourier transform method to decode faster Gabidulin codes. 
Following these works, [14] shows that network error correcting 
codes achieving the Singleton bound can be easily constructed for 
both coherent and non coherent network coding. Another work by 
Danilo Silva and Frank R. Kschischang [15] explains how to use 
erasures and deviations in the decoding of network coding error 
protecting codes. A feasible decoder architecture for the codes 
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proposed by Kötter and Kschischang is shown in reference [16]. 
Also, a practical solution for using network coding in wireless mesh 
networks is proposed in [18] where they propose the COPE [18] 
system which bridges theory with practice. An improvement on this 
solution is MIT’s MIXIT [1] which is one of the best and most 
complex. This system gives a good performance but the complexity 
is also high, as it needs knowledge of the network, and bidirectional 
communication between nodes. The main idea is than a node 
transmits only that symbols that have no errors. Also, the receiver 
can ask for retransmission to the intermediate nodes if it notices 
some symbols is missing or wrong. MIXIT gives better performance 
than our system but it is more complex as well. Our system could 
be combined with MIXIT and the resulting system would be better 
than both on its own. For more information about MIXIT system 
the reader can refer to [1]. Another solution that has been proposed 
is a decoder for Reed Solomon product codes that uses a MAP 
decoder. These kinds of codes are called Distributed Product Codes, 
and more information can be found at reference [2]. 
 
 

1.3 Goal 
 
 
The aim of this project is to propose a system that with less 
complexity than MIXIT could give better performance than 
Distributed Product Codes in media streaming over wireless 
networks. 
 
To do that we try with different kinds of error protecting codes, we 
improve the product codes proposed on [2] and we combine these 
with some traditional channel coding techniques that. 
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We see that we can get an amount of correctly received packets 
high enough for multimedia streaming in wireless network for a 
minimum SNR. There are some drawbacks though. We decode in 
every node of the network which adds computational cost, and also 
we can’t get a 100% of correct packets when there are no errors in 
the network. 
 

1.4 Overview 
 
 
This report is organized as follows. Chapter 2 contains the 
theoretical information needed by the reader to understand the 
methods used in the implementations, and chapter 3 contains the 
practical implementations we tested in the project. 
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Chapter 2 
 

Theory 
 
 

2.1 Network coding 
 
 
The main idea of network coding is quite simple. Every 
intermediate node in the network combines the packets it has 
received and sends the combined packets to the next hops. 
Following this approach there is a gain in the throughput and the 
delay is reduced. Let’s clarify this idea with a simple example 
shown in figure 1.  
 
Just imagine that server S1 wants to send a packet X1 to the client 
C2, and server S2 wants to send another packet X2 to client C1. 
With the traditional way S1 send the packet X1 to the relay R1, 
and it send the packet to the relay R2, and this last one send it to 
the client C2. The same procedure is followed for packet X2. The 
thing is that both packets cannot be sent at the same time when 
the communication is limited to one packet per time slot. Instead, 
if we allow relays to combine packets, we can use the procedure 
that follows. S1 broadcasts packet X1 through all output links, so 
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relay R1 and client C1 get the packet X1. Server S2 does the same 
so R1 gets X2 and client C2 gets it also. Now R1 combines both 
packets that it has received from its input links, resulting X1+X2. 
R1 sends X1+X2 to relay R2 and R2 broadcasts it. So, client C1 
has packets X1 and X1+X2, and client C2 has X2 and X1+X2. 
Now for client C1 to recover packet X2 he only has to combine the 
packets it has, i.e. X1+(X1+X2) = X2. The same procedure is 
followed for client C2. 
 

 
Figure 1. Toy example of a simple multicast transmission. If R1 is allowed 

to combine packets, throughput is improved and delay is reduced. 
 
With this simple example we have proven that client C1 can get X2 
and client C2 can get X1 at the same time that with the traditional 
way only one of the destination nodes can get the desired packet. 
Therefore, throughput has been increased and delay has been 
reduced. 
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We will next show how network coding can bring some advantages 
when it is applied to wireless networks. 
 
To demonstrate how network coding works over wireless network 
we use the example shown in figure 2. 
 

 

Figure 2. Example of wireless communication comparing the same system 
using network coding and store-and-forward approach. Bob and Alice 

exchange a pair of packets using 3 transmissions instead of 4.  
 
Consider that Bob wants to send packet X1 to Alice, and Alice 
wants to send packet X2 to Bob. Also consider that direct 
communication between Bob and Alice is not possible because 
transmission range is limited, so a client cannot reach directly the 
other. By the traditional way each client must first send his packet 
to the antenna and then the antenna will send the packet to the 
other packet. Therefore, the communication takes four time slots. 
However, if we enable the antenna to use network coding, the 
communication between both clients requires three time slots. Bob 
sends his packet to the antenna. Then Alice sends her packet to the 
antenna. The antenna combines both packets and sends the 
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combinations to both receivers. The delay, therefore, has been 
reduced. 
 
Above, we have explained the strictly necessary things about 
network coding for the reader to understand our system. For those 
readers who want more information about network coding refer 
them to [3]. For even further information about network coding 
please refer to [4]. 
 
 

2.2 Error correcting codes 
 
 
In communications, some errors may occur in the channel. That 
means that some bits sent by the sender can be flipped because of 
the noise generated at the channel. When this happens the receiver 
gets a stream of bits that is not the same to the one the source 
sent. In multimedia streaming this may result in loss of quality.  
 
There are some ways of preventing quality degradation from 
happening. The most common way is Forward Error Correction 
[4,5] (FEC). The main idea is that the sender adds redundant data 
to the transmitted messages. This allows the receiver to detect and 
eventually correct (within some bound) some errors that have been 
generated by the channel.  
 
Maybe the most popular FEC code is Reed-Solomon [4,5]. Next, we 
explain briefly how it works. We also explain Maximum Rank 
Distance (MRD) codes [20], which can improve performance [8]. 
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2.2.1 Reed Solomon Codes 
 
 
In coding theory, Reed–Solomon (RS) codes are linear error-
correcting codes proposed by Irving S. Reed and Gustave Solomon. 
They presented a systematic way of building codes that could 
detect and correct multiple symbol errors. By adding t redundant 
symbols to the data, an RS code can detect any combination of up 
to t erroneous symbols, and correct up to t/2 symbols. The choice 
of t depends on the designer of the code, and may be selected 
within wide limits. 
 
Reed-Solomon codes are used in important applications from deep-
space communication to consumer electronics [19]. They are used in 
consumer electronics such as CDs, DVDs, Blu-ray Discs, in data 
transmission technologies such as DSL, and also in digital TV 
broadcasting. 
 
The Reed-Solomon code is a [n, k, n-k+1] code; in other words, it is 
a linear block code of length n (over a Galois field F) with 
dimension k and minimum Hamming distance n-k+1. The error-
correcting ability of a Reed–Solomon code is determined by its 
minimum distance, or equivalently, by the number of redundant 
symbols n-k. A Reed–Solomon code can correct up to (n − k) / 2 
erroneous symbols, i.e., it can correct half as many errors as there 
are redundant symbols added to the block. If the locations of the 
error symbols are not known in advance, then a Reed–Solomon code 
can correct up to (n − k) / 2 erroneous symbols, i.e., it can correct 
half as many errors as there are redundant symbols added to the 
block. Sometimes error locations are known in advance (e.g., “side 
information” in demodulator signal-to-noise ratios) these are called 
erasures. A Reed–Solomon code is able to correct twice as many 
erasures as errors, and any combination of errors and erasures can 
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be corrected as long as the relation knSE2 −≤+  is satisfied, 
where E is the number of errors and S is the number of erasures in 
the block. 
 
For practical uses of Reed–Solomon codes, it is common to use a 
finite field F with 2m elements, ( )m2GF . In this case, each symbol 
can be represented as an m-bit value.  
 
For further information about information theory and FEC codes 
we refer the readers to check [4,5]. 
 
 

2.2.2 Maximum Rank Distance Codes 
 
 
While RS codes are based in Hamming distance (number of 
different bits between two words) MRD codes are based in Rank 
distance which is defined as: B)rank(AB)(A,dr −= , where A and B 
are MRD coded-words. This means that maximum rank distance 
codes can correct rank errors, i.e. they can correct an error whose 
rank is less or equal to the correction capacity of the code. The 
rank of an error word is the number of independent erroneous 
symbols. As an example: 
 
Imagine that the error word is ( )033 , we can express it in a 

binary base: 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
110
110

, the zero word doesn’t count to compute the 

rank of a matrix, and the element ( )110  appears twice in the 
matrix, thus the only independent element is ( )110 . Therefore 
the rank of this error word is 1. 
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The main property of MRD codes is that between any two code 
words there is a maximum rank between all of them. 
 
MRD codes are also linear [n,k,n-k+1] codes, and are characterized 
by: 

- m, size of the Galois Field where the code is defined. 
- n, total number of symbols in a code word 
- k, amount of information symbols in a code word 
- dr, rank distance, which in MRD codes is: 1kndr +−=  

 
The correction capacity of MRD codes is defined similar to Reed-
Solomon codes correction capacity, but using rank distance instead 

of hamming distance: ⎥⎦
⎥

⎢⎣
⎢ −

=
2

1dc r . 

 
More information about rank metrics and maximum rank distance 
codes can be found in [7, 8]. 
 
A particular case of MRD codes are Gabidulin codes.  
 
 

2.2.2.1 Gabidulin codes 
 
 
Gabidulin codes, proposed by Ernst Gabidulin [20], are a particular 
case of MRD codes with the constraint mn ≤ . Thus, if the code is 
defined over the Galois Field GF(23), the maximum codeword size 
is 3n = . 
 
Any linear block code is characterized by the parity check matrix 
H, and the generator matrix G. Next, we explain how to build these 
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matrices and the encoding and decoding procedures of Gabidulin 
codes. 
 
Encoding 
 
Usually in FEC codes the generator matrix can be found without 
knowledge of parity check matrix, on contrary Gabidulin codes the 
parity check matrix has to be found before obtaining the generator 
matrix. Parity check matrix has the following form: 
 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−− 2d
n

2d
2

2d
1

2
n

2
2

2
1

1
n

1
2

1
1

n21

h...hh
............
h...hh
h...hh
h...hh

H  

 
where hi are linearly independent element of the Galois field where 

the code is defined, d is the rank distance, and [ ] ( ) i2
j

i
j hh = .  

 
Once we have found the parity check matrix of the code we can 
find the generator matrix that fulfills these two constraints: 
 

0HG T =⋅    

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−− 2d
n

2d
2

2d
1

2
n

2
2

2
1

1
n

1
2

1
1

n21

g...gg
............
g...gg
g...gg
g...gg

G  

 
where gi are linearly independent elements of the Galois field, and 

TH  represents the transposed matrix of H. 
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The procedure to find a G that satisfies these properties is not 
trivial, however a procedure to find it is proposed at [6]. 
 
Decoding 
 
The decoding of Gabidulin codes is similar to that of the Reed 
Solomon codes. Therefore the decoding is described by following 
this flowchart: 
 

 
Figure 3. Flowchart of the decoding algorithm of Gabidulin codes. 

 
• Compute the syndromes: it consists in multiplying the 

received word with the parity check matrix. The resulting 
vector is the vector of syndromes. 

 
• Modified Berlekamp-Massey Algorithm: this algorithm allows 

us to find the error locator polynomial, whose roots are the 
error positions. The algorithm is quite complex, but an 
extended explanation about it can be found at [9].   

 

r: received codeword
y: transmitted codeword 
e: error message 
B-M: Berlekamp-Massey 
ELP: error locator polynomial
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• Find the roots of the ELP: ELP is the error locator 

polynomial. Its roots contain information about the error 
positions. 

 
• Compute error values: the error values are found solving a 

linear system of equations involving the roots of the ELP and 
the syndromes. 

 
 

• Correct the received word: once the position of the errors and 
their values are known the correction of the received word is 
trivial. 

 
For more detail regarding the decoding Gabidulin codes the 
interested readers are referred to [9]. 
 
As MRD codes allow us to correct rank errors we adopt them in our 
systems.  
 
In this report, we refer to a Gabidulin code with m, n and k (where 
m is the size of the Galois field (GF(2m)) where the code is defined, 
n is the size of a codeword and k is the number of information 
symbols each codeword contains), as MRD(m, n, k). 
 
 

2.3 Combining Gabidulin codes with NC 
 
 
In order the receiver to be able network decode, a unique header 
has to be added to the words that need to be sent. We use a vector 
which contains a one and all others zero as a unique header, thus 
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the operations done by the network relays will affect this matrix, 
allowing the receiver to decode them. 
 
To clarify the idea we show an example where three code words will 
be sent: 
 
If we want to send three MRD(3,3,1) code words: ,X,X,X 321  and 
each iX  equals to ( )3i2i1ii xxxX = , we have to add as a unique 
header the identity matrix 3x3. So the resulting message will be like 

this: 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

3

2

1

xxx100
xxx010
xxx001

X100
X010
X001

Z  

 
Then, considering that the combinations done by the network can 
be modeled by a matrix NC and a simple matrix multiplication, we 
can observe how these combinations are recorded in the unique 
header. 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⋅⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3333231

2232221

1131211

333231

232221

131211

Yaaa
Yaaa
Yaaa

ZNC
aaa
aaa
aaa

NC  

 
Where iY  are linear combinations of iX . 
 
The problem of this procedure is that when an error occurs in the 
coefficients sub-matrix of our code then the whole word is 
erroneous. This happens because an error in matrix NC causes the 
destination to receive a combination that doesn’t match with the 
actual combination done by the network. As MRD codes are linear 
codes, i.e. any combination of MRD words is another MRD word, 
the receiver is unable to recover the original words because, since 
the words it has received are valid MRD coded-words, it does not 



24 

classify them as errors. Somehow we have to protect the matrix 
NC. However, this matrix is created in the network so the sender 
doesn’t know it. Then how can we protect this matrix? A solution 
is proposed below. 
 
 

2.3.1 Systematic Gabidulin codes 
 
 
A systematic code means that the information symbols that have to 
be encoded remain unchanged after encoding. Let’s show it: 
 
If we want to encode one symbol 1x  with a non systematic 
MRD(3,3,1) code we will get as encoded word ( )131211 x̂x̂x̂  where 

111 xx̂ ≠ . If we encode with a systematic MRD(3,3,1) code instead, 
we will get ( )131211 xxx  where 111 xx = . 
 
The reason why we are looking for a systematic encoding of 
Gabidulin codes is because it allows us to encode the header and 
still have the identity matrix. Therefore it will be able to decode 
errors in the header matrix without requiring extra computational 
cost on our system. 
 
A systematic way of constructing systematic Gabidulin codes has 
not been proposed, to the best of our knowledge. Here, we propose 
an easy and simple way of doing that. 
 
We know that the generator matrix of a systematic code has to be 
like this: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= − )kn(kxkxk 'GIG , where kxkI  is a kxk identity matrix. 

 
We also know that the generator matrix and the parity check 
matrix of a code have to fulfill the following property: 
 

0HG T =⋅  
 
If we can find a matrix G that matches these two equations we get 
a Gabidulin systematic generator matrix. This new code have the 
same properties as the non-systematic one, with a lower 
computational cost. 
 
As we will see next, these systematic codes also allow us to 
construct product codes based on Gabidulin codes. 
 
But the problem with Gabidulin codes is the constraint of mn ≤ , 
which means that we can only send short messages. The solution we 
follow for this problem is to send a concatenation of encoded 
packets.  
 
To try this concatenation of Gabidulin code words in a system that 
uses NC we propose the following scheme: 
 
The network is constituted by 10 relays as shown in figure 4.  
 

 
Figure 4. Diagram of a toy line network used in our simulations 

 
Every information packet contains 300bits. 
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Every link is modeled by figure 5. 

 
Figure 5. Gilbert-Elliot channel model used in our simulations. The 

probability of error in the clear state is zero, while the error probability of 
the error state sweeps from zero to one. 

 
The error probability in the error state is one, while the error 
probability in the clear state is zero. 
 
We simulate the system for different m, n, and k. 
 
Good results are achieved when m=11 and k=7. To send 300bits we 
use 484bits. With these parameters 92% of packets are correct. If m 
is smaller we get a better correction, but the redundancy is 
increased. 
 
 

2.4 Interleaving 
 
 
Interleaving is frequently used in digital communication to improve 
the performance of forward error correcting codes. Many 
communication channels are not memoryless: errors typically occur 
in bursts rather than independently [4,5]. If the number of errors 
within a code word exceeds the error-correcting code's ability, it 
fails to recover the original code word. The main idea of 
interleaving is very simple: we take all the symbols of our message, 
we mix them all together and scramble them. 
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In order the receiver to be able to de-interleave, the scramble 
should not be completely random. Therefore, a pseudo-random 
interleaver is used. The pseudo-random interleaver produces a 
deterministic sequence for every seed, so, if the receiver knows this 
seed it can de-interleave correctly. 
 
The drawback of interleaving is that it introduces some delay to 
the system. However, the gain in performance is big enough that 
outbalance this drawback.  
 
As we will see in the following, this simple technique which barely 
adds complexity to the system, improves the performance of our 
systems significantly. 
 
 

2.5 Product codes 
 
 
Usually, some redundancy symbols are added to the source 
messages to protect them. Product codes use this procedure as well, 
but also create source messages full of redundancy symbols. This 
means that a vector of information symbols become a matrix of 
encoded symbols. The interesting thing about these codes is that if 
the horizontal decoding cannot decode properly, maybe the vertical 
decoding will do it. This is the reason why product codes are used 
together with iterative decoders.  
 
We propose the configuration for product codes shown in figure 6. 
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Figure 6. Schematic encoding procedure for product codes. The encoding 

in vertical and horizontal directions is depicted.  
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⇒⎥
⎦

⎤
⎢
⎣

⎡
⇒⎥

⎦

⎤
⎢
⎣

⎡

4321

4321

4321

4321

4321

4321

21

21

t~t~t~t~
z~z~z~z~
y~y~yy
x~x~xx

y~y~yy
x~x~xx

yy
xx

 

 
If we use our systematic Gabidulin codes to encode both directions 
we are able to use an iterative decoder that increases the 
performance of the system. 
 
If the horizontal code is unable to correct an error then the vertical 
code may correct it and vice versa. This is why we need an iterative 
way to decode. 
 
 

2.5.1 Iterative decoder 
 
 
The iterative algorithm we propose works as following. First we 
decode vertically. If there are more errors than the correction 
capacity of the code, we leave the codeword as it is. If there are 
fewer errors than the correction capacity of the code, we decode 
and encode again. Then, we replace the old codeword with the new 
one. 
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Once we have decoded vertically we try to decode the horizontal 
direction following the same procedure. When we finish with the 
horizontal decoding we repeat the above procedure. 
 
We repeat this iteratively until we cannot note any gain. Once it 
has converged we apply the normal decoding way to obtain the 
information word, thus we decode first vertically and then 
horizontally. 
 
To compare the iterative procedure with the conventional one we 
try them in a system with these properties: 
 
k = 2;   M = n = 4;   number of packets = 2;    BER = 0.1; 
 
So, a 2x2 information matrix becomes a 4x4 matrix. 
 
If we use the conventional decoding algorithm we get a 59% of 
correct packets, while if we use the iterative procedure we get a 
72% for the same system parameters. 
 
The problem with this decoding algorithm is that we need to know 
the error position to decode, which is not realistic. Then we need to 
find an iterative decoding procedure that doesn’t need to know the 
error position. 
 
We propose a very easy procedure: 
 
We first decode the vertical direction and encode again. If more 
symbols than the correction capacity of the code have been changed 
we leave the codeword as it was, if not, we replace the old 
codeword by this new one. We then follow the same for the 
horizontal direction. 
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We iterate this until we cannot note any gain and then we apply 
the conventional decoding way. 
 
If we try this new iterative decoding algorithm in the same system 
as before to compare both algorithms we find that this new one gets 
a 70% of correct packets, only 2% less than the old but without 
requiring any knowledge about the error positions. 
 
 

2.5.2 Distributed product code 
 
 
The encoding for these codes proposed in [2] is the same as for the 
product codes we presented in section 2.5 but using an RS encoder 
instead of MRD. These codes also use a different decoder which is 
similar to that of turbo-codes. This decoder is a Max-Log-Map 
decoder that generates soft information which is used to estimate 
the word most likely to have been sent. In fact, there are two Max-
Log-Map decoders, one for the horizontal direction and another one 
for the vertical direction. This Max-Log-Map decoder compares the 
received word with all possible words that could have been 
transmitted. For each bit of the codeword the decoder finds the 
closest (according to hamming distance) codeword which has a zero 
in this bit position and the closest codeword which has a one in this 
bit position. With these two code-words and its respective hamming 
distances the decoder computes a soft output. The decoder does 
this for all bits in the received code words, and then, from all 
candidate code words, it computes the extrinsic information for the 
decoder in the other direction.  
 
In the original decoder proposed in [2] the received word is not 
updated until the decoding algorithm is completed. Instead we 
propose to update the received code-word after every decoding step. 
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In other words, each decoder provides to the next one its extrinsic 
information and its estimated received word. This should make the 
algorithm faster and with even better performance.  
 
These codes use Reed-Solomon as FEC code for both directions. 
What we propose is replacing it with Gabidulin codes. In order to 
be able to replace RS with MRD we have to make a change in the 
decoder. The decoder uses Hamming distance to compare the actual 
received codeword with the possible candidates, whereas in our 
decoder we will change Hamming distance with rank distance. With 
this simple change we get an iterative MAP decoder for MRD 
codes.  
 
 

2.6 Rayleigh channels 
 
 
Next, we briefly explain Rayleigh channels since they model 
wireless channel much better than the ones we have been using yet. 
Further information about Rayleigh channel can be found at [5, 10, 
11]. 
 
The most common model for simulating channels is the so called 
Additive White Gaussian Noise (AWGN) channel. In this kind of 
channels a noise with a Gaussian probabilistic function is added to 
the signal. The reason why these channels are used is because they 
simulate quite well the effects of thermal noise in antennas and 
electric parts in systems. However for mobile channels another 
model that fits much more with the reality is the Rayleigh channel 
model. This model adds fading to signal, and eventually allows the 
modeling of different paths for the signal, which is what really 
happens in a mobile communication. Many times in a mobile 
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communication, the signal is not received or acquired from the line 
of sight path but from reflections, and Rayleigh fading channel 
model models it. 
 
Since we want to make our system reliable in a wireless 
environment thenceforward will try our systems over a Rayleigh 
channel. 
 
 

2.7 Unequal Error Protection 
 
 
This is a relatively new technique of forward error correction. It can 
be seen as a type of product codes but where different symbols are 
encoded with different redundancy, i.e. some symbols are more 
strongly protected than others. The reason why this technique has 
been applied recently is because in multimedia streaming some 
symbols are more important than others, so the most important 
symbols should be better protected than the less important ones. 
This allows us to send the same amount of information in less time 
and saving power.  A good pointer for those readers who want 
further information about UEP coding and how to apply it is [12]. 
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Chapter 3 
 

Simulation results 
 
 

3.1 Mesh networks 
 
 
Until now we have tried our codes in a line network. But chain 
networks are not likely to be found in the real world. That’s why 
we study our schemes in mesh networks. The network we consider 
for our trials is as shown in figure 7. 
 

 
Figure 7. Toy mesh network used in our simulations. Every node is 

allowed to use network coding. 
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3.2 Comparison of Reed Solomon, MRD 
and product codes 

 
 
We want to compare results of our proposed codes which use MRD 
as a FEC code or using RS. We also compare results between MRD, 
our proposed product codes and the uncoded case. We evaluate 
them in mesh networks where the nodes are allowed to perform 
network coding. For concatenated MRD codes we also examine the 
case when every node decodes and re-encodes to see whether 
increasing the computational complexity is beneficial. 
 
The codes for all cases are defined over a Galois field GF(23), and 
the maximum codeword size is limited to 3n = , thus, the amount 
of information symbols per codeword is 1k = . 
 
In the following we consider a model for every channel like the one 
shown in figure 8. 
 

 
Figure 8. Gilbert-Elliot channel model for every link used in our 

simulations with the mesh network. The error probability of the clear 
state is zero and the error probability of the error state sweeps from zero 

to one. 
 
The error probability in the clear state is zero. The error 
probability in the bad state sweeps from zero to one. 
 
According to our results we realize that when the channel is too 
strong methods are inefficient, i.e., it doesn’t matter if we use a 
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FEC code or not, as the error correcting capability of the codes is 
exceeded.  
 
Although, when the channel allows the nodes to correct some 
packets, we notice that the best procedure to follow is to encode 
our symbols with the product code, followed by MRD coding. RS 
based scheme performs slightly worse that our MRD based and of 
course the worst results are obtained when we don’t encode at all 
since there is no error correction ability.  
 
What we want to do now is find out the gain coming from 
correction in every node of the network. As MRD codes are linear 
codes we can decode and re-encode in every node with no problems. 
In figure 3 we show the results for symbol error rate for both cases 
when we correct in every node and when we don’t. 
 
We observe that for small values of the bit error rate per channel 
we do get a considerable gain. For example when the  %2BER =  
the gain is about 25%. So we consider that correcting in every node 
is a good option.  
 
 
A critical parameter of our systems is the size of the Galois field. 
On the one hand, if we choose a larger value for m we would be 
able to encode more symbols together, as m limits the codeword 
size. On the other hand, when the values for m are small the 
performance is better, since we are looking for performance we keep 
m as small as possible but bigger than 2 (which is the minimal m 
for Gabidulin codes), this means we try our systems for 3m = . 
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Concatenated MRD with every node correction

 
Figure 9. Performance in terms of end-to-end symbol error rate as a 
function of the bit error rate per channel of concatenated MRD codes 

when intermediate nodes are allowed to correct the received packets and 
when they are not.  

 
 

3.3 Replacing erroneous symbols by zero 
 
 
In case of product codes, if we replace erroneous symbols by a zero 
in every node we can reduce the error spread. In figure 10 we show 
the results for this scheme. 
 
We observe that there is an improvement in the performance of the 
system. The problem with this scheme is that we assume that we 
know the position of the errors and we replace them with zero. But 
considering that we know the position of the errors is not realistic. 
Probably we could get a probabilistic decision of the positions using 
soft values but this would make our system more complex. So we 
won’t adopt this method.  
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We also tried this method with an interleaver (we will explain this 
interleaver latter on). In this case we have good results, so 
interleaving is a procedure which we can consider in the following. 
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Figure 10. Symbol error rates at the receiver for different strategies. The 
figure compares the symbol error rate under four strategies: concatenated 
MRD codes, product codes, product codes replacing erroneous symbols by 

zeros, and product codes replacing erroneous symbol by zero combined 
with a random interleaver. It shows that product codes replacing 

erroneous symbols by zero combined with a random interleaver performs 
better than the others.  

 
 
 

3.4 Product code with horizontal 
decoding in every node and using 
our iterative decoding algorithm at 
the destination 

 
 
Now we examine our product codes but this time decoding the 
horizontal code in every node. This should minimize the error 
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spreading since we have corrected some errors before they can be 
spread. At the receiver we use our iterative decoding algorithm. 
 
To decode in every node we have to reverse the encoding procedure 
of our product codes in order to decode. Specifically, we have been 
encoding the horizontal direction first and the vertical direction 
second. Thus, from here on we first encode the vertical direction 
and then the horizontal one. With this, the rows of the encoded 
matrix, are valid MRD code-words, which allow us to decode and 
then encode again in every node. 
 
In figure 11 we show the results for this last scheme. We show both 
bit error rate and symbol error rate. If we compare these results 
with the results we have for product codes we can see that there is 
a gain of about a 15% for reasonable values (between zero and 2%) 
for the BER. So correcting in every node should be applied in next 
schemes. 
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Figure 11. Symbol error rate at the receiver. Correction in every node of 
product codes improves the symbol error rate at the receiver. The figure 
shows the comparison between product codes with interative decoding 
algorithm at the receiver with product codes with iterative decoding 

algorithm at the receiver combined with a conventional decoding in every 
intermediate node. 
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3.5 Rectangular Interleaving 
 
 
As we have seen, interleaving may improve the performance. That’s 
why we follow some clever ways to use an interleaver in our 
systems.  
 
The spreading of errors is always in the vertical direction of the 
matrix, so the vertical coding of our product codes doesn’t help in 
the final decoding probability. To solve this issue we propose a 
special way of interleaving different sources.  
 
Specifically, we first encode the horizontal direction of every source 
and then we interleave, using a fixed pattern. The main idea is that 
the symbols that correspond to the same information are sent 
through different sources. This pattern will spread a burst error in 
the vertical direction, hopefully improving the performance of the 
system.  
 
Let us explain this with an example: 
 
Imagine that we want to send the information symbols ( )111 z,y,x  
and we encode them with an MRD(3,3,1) code. Then we have the 

following encoded matrix, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zzz
yyy
xxx

. It is sent over the network. 

For this example just imagine that there is only one node. This 
node performs network coding and interleaves the matrix as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒

333

222

111

321

321

321

cba
cba
cba

INTER
ccc
bbb
aaa

NC , what we should do 

is swap rows with columns. We consider symbols 2a~  and 2b~  are the 



40 

erroneous. So the matrix the receiver receive is: 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333

222

111

cba
cb~a~
cba

. The 

destination has to swap again rows for columns (de-interleave), and 

the resulting matrix results: 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

ccc
bb~b
aa~a

. Now we have to undo 

network coding, resulting that the resulting matrix just before the 

decoder is: 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zz~z
yy~y
xx~x

, which is easily decodable for the 

MRD(3,3,1) code. If we hadn’t interleaved, the resulting matrix 

prior decoding would have been: 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zz~z~
yy~y~
xx~x~

, which is not 

decodable. 
 
The drawback of this scheme is that is applicable only to a chain 
network. We have been unable to find a way to apply it to a mesh 
network. The reason is because each node must have every packet 
and this only happens when the network is chain.  
 
 

3.6 Random Interleaving 
 
 
In the case of a mesh network and using product codes a random 
interleaving may help us improve performance, since the vertical 
coding should be able to decode more code-words. 
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First, we encode the information matrix vertically and horizontally, 
then we interleave each row, and then we send the new matrix 
through the network. To decode, we first deinterleave the received 
matrix and then we apply the iterative decoding procedure. 
 
If we adopt this new procedure in our system we observe that we 
have a small improvement. 
 
We find out that the performance improves when the words to be 
interleaved are larger. Then the best way to interleave the code 
words is first putting all the rows in a single vector, then 
interleaving and then reversing the conversion from matrix to 
vector. We make clear this with an example: 
 
We want to send the symbol 1x  and we encode it with a product 
code with an MRD(3,3,1) code as vertical and horizontal encoding 

code. So the resulting matrix to be sent is:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zzz
yyy
xxx

. Then we 

convert this matrix to a vector, letting us with this 
vector: ( )321321321 zzzyyyxxx . We will now interleave 
this vector with a random interleaver, resulting in the following 
vector: ( )121321332 zyxzxyyxz . Now we get the matrix 
to vector conversion undone. So the matrix that we send over the 

network is:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

121

321

332

zyx
zxy
yxz

. 
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3.7 Double MRD interleaved 
 
 
We have been encoding horizontally and vertically to obtain our 
product codes, which gives us more redundancy. This is not the 
only way to add redundancy. 
 
To increase the redundancy of the codes and therefore to correct a 
larger number of errors without increasing the size of the Galois 
field, we propose the following scheme. Encode the words with a 
Gabidulin code, interleave and then encode again with the same 
Gabidulin code.  
 

 
Figure 12. Block diagram used at the source node to encode. The 

horizontal direction is encoded twice allowing to have more redundancy 
symbols and, therefore, larger correction capacity. 

 
The second Gabidulin code corrects the burst errors produced in 
the channel, and the first one corrects the errors that the other 
code is unable to correct. 
 
We also try this system for decoding and re-encoding the second 
MRD code in every node. We show these results in figure 13. 
 
 
The performance of the double MRD is the best performing end-to-
end coding technique we got yet. The performance is close to the 
product codes replacing errors by zeros. Of course when we correct 
the MRD2 in every node the performance is even better. 
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Figure 13. The figure plots the symbol error rate for three different 
strategies: using double MRD codes, double MRD codes allowing 
intermediate node to correct packets, and product codes when 

intermediate nodes can also correct packets and when the receiver uses an 
iterative decoding algorithm.  

 
 

3.8 Combining RS and MRD 
 
 
Previously we tried coding twice with MRD. The reason was that 
one of the codes could correct burst errors and the other correct the 
errors that the first one has been unable to correct. But this first 
code doesn’t need to be good against burst errors, so we don’t need 
to use an MRD code. Instead we can use an RS code, which allows 
us to increase the correction capacity of the code without having to 
increase the size of the Galois field. As an example, if 3m =  with 
an MRD(3,3,1) code we can correct 1 symbol, with a RS(3,7,1) we 
can correct 3 symbols. We add a lot of redundancy to the system, 
but we want to find out if it’s worth it. 
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We also try this system correcting the MRD code in every node. 
The results for this are shown in figure 14. 
 
We have introduced a lot of redundancy to our system, and as we 
expected the performance is increased. In fact this scheme is the 
best end-to-end system we have tried till this point. When we 
correct the MRD component in every node the percentage of correct 
symbols, for reasonable BER’s, becomes acceptable. 
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Figure 14. Symbol error rate comparison between two different techniques. 
In both techniques the intermediate nodes are allowed to correct packet. 

One scheme uses double MRD codes while the other uses as first encoder a 
RS encoder instead of an MRD encoder. 

 
 

3.9 Distributed Product Code 
 
 
The usage of turbo-like decoders for product codes used in [2] is 
interesting for us since we could apply it to our product codes. We 
adapt these decoders to our MRD product codes.   
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First we examine the performance of the decoder when we use it to 
decode a word after doing Gaussian elimination. The results for this 
scheme are as shown in figure 15. 
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Figure 15. Decoder comparison of distributed product code when using 
network coding. Comparison of the decoder proposed in [2] with our 

proposal updating the received word before every iteration.  
 
The blue line represents the performance of correct symbols after 
decoding with the iterative decoding but when the received word is 
updated in each step. The red line represents the performance for 
the iterative decoder without updating.  
 
But, this decoder is not actually the decoder in [2] since in [2] they 
proposed decoding the received codeword before doing Gaussian 
elimination in order to reduce error propagation.  
 
Above we have seen that the results are worse than those using 
Gaussian elimination first and then decoding. The drawback of this 
scheme is that the vertical code just before the decoder is the 
multiplication of an RS code with the NC matrix. The resulting 
code after this multiplication is not an RS code so we can’t decode 
correctly the vertical component. To solve this issue we have to 
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assure that the resulting vertical code have good hamming 
properties. To do that, we impose that the coefficient matrix in the 
last hop assures that the resulting code has a good hamming 
distance. When we test the performance of the system with this 
new constraint, it turns out that the performance for low BER’s is 
lower than what we got previously. This is because now we are 
getting good matrices, in terms of hamming distances, for the RS 
codes, but these matrices are not good for NC. Therefore, we can 
conclude that the only way to get a good NC matrix and a good 
code just prior decoding is by increasing the size of the GF. The 
problem is that when we increase the size of the GF the 
performance drops. Then, we will first use Gaussian elimination and 
then decode.  
 
We want to compare the results of this new iterative decoder with 
our previous iterative decoder. Our iterative decoder employed 
MRD codes, but with only a few changes we can adapt it to use 
RS. This will enable us to compare results. We have seen that the 
results for our iterative decoder with RS are better than the ones 
we get with these new iterative decoders. 
 
To validate it we compare the decoders over one link without using 
NC. These should show us which decoder is best in error correcting 
terms. The comparison between these three decoders is shown in 
figure 16. 
 
 
The red line shows the performance for symbol error rate for the 
iterative decoding without updating the received word. The blue 
line represents the performance for the iterative decoder when the 
received word is updated. And the black lines represent the 
performance for our iterative decoder. 
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Figure 16. Evaluating different iterative decoders in one link. Comparison 
of our iterative decoder when received code words are updated in every 
iteration, the one proposed in [2] and our old iterative decoder where we 

evaluate the number of symbols switched before and after correction.  
 
We can notice that our iterative decoder and the new iterative 
decoder have similar performance for reasonable values for the 
BER.  The worst iterative decoder is the one where the received 
codeword remains unchanged until the final iteration. 
 
As we can see we don’t have really good results with these three 
decoders when we use NC since the best one has a performance of 
43% of correct packets when BER=2%, so we conclude that, as 
MRD codes are better than RS codes, we may find a way to adapt 
these new decoders to work with MRD. For this reason we just 
have to change the metric, specifically, everywhere that hamming 
distance appears, we replace it with rank distance. With this simple 
change we get a Max-Log-Map decoder that works with MRD 
codes. If we now try this in our scheme we get the results shown in 
figure 17. 
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Figure 17. Symbol error rate comparison when using distributed product 
codes technique but replacing Reed-Solomon codes with Maximum Rank 

Distance codes. 
 
Again the results are disappointing since for a BER=2% we have 
50% of correct packets. To improve this we try increasing the GF 
where the NC is done (in order to have more linearly independent 
matrices) but keeping the size of the GF of the MRD codes as low 
as possible (to have better decoding performance). To explain this 
we use an example: 
 
We have this vector ( )742315  where all the elements 
belong to ( )32GF . We can express this vector with elements 
belonging to ( )62GF  as ( )392641 . 
 
The results for this simulation are shown in figure 18. 
 
The results when there are no errors in the network are better, 
since the resulting coefficients matrix results in independent code 
words, but the results are worse when there are some errors. This 
poor performance is because an error in a larger GF symbol 
produces more erroneous smaller GF symbols.  
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Figure 18. Performance comparison in terms of symbol error rate when 
using network coding combinations in a bigger Galois field than the one 

used in the MRD encoding.  
 
An interleaving before doing NC could improve performance since 
the error spreading would be in different code-words.  
 
In figure 19 are shown the results for this last proposal. 
 
The performance is increased when there is low BER but still they 
are worse than the ones we got when the GF is the same for NC 
and MRD encoding. 
 
This only lets us try different ways of sending the coded words. Our 
first thought is interleaving words.  
 
With an interleaver we got better results, but still were not good 
enough. 
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MRD DID with NC in different GF and interleaved
MRD DID

 
Figure 19. The figure plots the symbol error rate when using different 

Galois field for network coding operations and MRD coding combined with 
a random interleaver. It is compared with a scheme where MRD coding 

and network coding operations are in the same Galois field.    
 
We now reconsider our iterative decoder. The way it works is: first, 
it decodes the received codeword and encodes it again; and then it 
compares the resulting corrected word with the received word. If 
more symbols than the correction capability of the code are 
changed it keeps the original received codeword. If less symbols are 
changed it takes the new corrected codeword. This means that if 
the decoder can help to correct the received word it may improve 
the performance. If it can’t help, it lets the received codeword as it 
was. This is really interesting for us, because this means we can try 
to decode first with our iterative decoder and then decode with the 
new iterative decoder. So, somehow our iterative decoder will assist 
the new one to decode. We also use an interleaver. A diagram for 
the system could be as shown in figure 20.  
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Figure 20. Encoder and decoder block diagram of product codes using an 

interleaver and using both iterative decoders at the destination. 
 
The results for this combined iterative decoder are shown in figure 
21. 
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Combining MRD DID with old iterative decoder
MRD DID

 
Figure 21. Performance comparison when using both iterative decoders at 

the receiver and when only the distributed iterative decoder is used. 
Combining both iterative decoders improves the performance of the 

system. 
 
Again we improve results, but still we are not happy with them. 
The proposed system in [2] uses decoders in every hop of the 
network, so we think we could do it as well. We have used decoder 
in each hop before but not yet with this new combined iterative 
decoder. The decoders in every node will only decode the horizontal 
direction. To keep the horizontal direction being a valid MRD 
codeword we can’t use the interleaver we have been using. But we 
think that if somehow we could use an interleaver and yet having 
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valid code words in the horizontal direction we could have even 
more gain as it would allow us to decode and re-encode in every 
node. The problem is how to make the receiver have valid product 
code words at the input of the combined iterative decoder. The 
block diagram shown in figure 22 explains our proposal. 
 
The issue is that the interleaver at the sender and the deinterleaver 
at the receiver are not quite the same. We show it with an example: 
 

 
Figure 22. Encoder and decoder block diagram for product codes which 

can be corrected in every node, using a random interleaver, and using both 
iterative decoders at the destination 

 
Imagine we want to send a symbol, for example a 4. We encode the 
symbol vertically and we obtain the MRD word ( )'534 , then we 
interleave this resulting codeword randomly. We get something like 
this ( )'435 , for example. Then we encode the horizontal direction 
and we obtain the resulting product code word, that in our example 

is this one:
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

534
163
315

. This is what we send over the network.  

 
At the receiver, after doing Gaussian elimination we have, if no 
errors occur, this very same word. But this word is not decodable 
with our decoder, as the words in the horizontal direction are valid 
MRD code words whereas the words in the vertical direction are 
not. So we have to deinterleave first, and this deinterleaving is not 
at a symbol level, but instead it will be at a codeword level, which 
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in our example means exchanging rows. So after deinterleaving we 

will have this codeword: 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

315
163
534

and this word is a valid product 

code word so now we can decode it with our iterative decoders. 
 
As now we do have valid code words for the horizontal direction in 
every node we can decode them. We show the results for this 
scheme with decoder in each hop and without it in figure 23. 
 
Finally we got good results, at least for low BER. This, then, is our 
proposal. Next we try it with a Rayleigh fading channel which 
models better a wireless channel better. 
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Figure 23. The figures shows the symbol error rate combining both 

iterative decoders at the receiver when using an interleaver and correction 
is allowed in every intermediate node of the network and when 

intermediate nodes can only forward the received packets. 
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3.10   Using Rayleigh fading channel 
 
 
We will now try our last scheme in a Rayleigh channel to see if our 
system could work well in a wireless environment. 
 
The parameters we choose for the channel are: 
 

• Modulating frequency: 1Mhz 
• Maximum Doppler spread: 100Hz 

 
We use a BPSK modulation for the symbols and we try the 
performance for different SNR (signal to noise ratio). 
 
Figure 24 shows the results for our system over this kind of 
channel. 
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Figure 24. Distributed product code with an interleaver, decoding in every 
node and using a combined iterative decoder over a Rayleigh channel. The 
figure plots three different lines: one for the BER per channel, one for the 

BER at the receiver, and another one for the symbol error rate at the 
receiver. 

 



55 

We observe that when the SNR is higher than 20dB our system 
performs well. 
 
 

3.11   Unequal Error Protection 
 
 
To try UEP we implemented the following scheme: We used 
Gabidulin codes over the Galois Field GF(25). We used two 
different codes, one with correction capacity 2 and another one with 
one. To explain how we use them to encode a codeword we show it 
with an example: 
 
We want to encode the vector of information symbols 
( )vtzyx . Now we reorganize this vector into a 5x5 matrix 

like this: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

*****
*****
****v
****t
**zyx

. The next step is encoding the vertical 

direction (the first column with MRD(5,5,3) and the second and 
third with MRD(5,5,1)). And the last step is encoding the 
horizontal direction with MRD(5,5,3). So the resulting encoded 
matrix is a 5x5 matrix. 
 
These are the code words we send through the network. But with 
UEP we can’t use correction in every node because combining two 
different codes means that the resulting code words no longer 
belong to a linear code. At the receiver we use, as always, both 
iterative decoders. 
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The problem with this scheme is that the amount of possible code 
words that the decoder has to check is huge, taking a lot of time to 
simulate. However, the fact that we cannot use decoding in every 
node is a big drawback of using UEP. 
 
In order to run a simulation involving UEP we tried encoding only 
in one direction and using conventional decoding. The codes 
involved are the same as above. With this new configuration we get 
the results shown in figure 25. 
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Figure 25. The figure shows the results  for our proposed UEP scheme. 
Three lines are plotted for different rates: one for BER per channel, one 
for BER at the receiver, and one for symbol error rate at the receiver. 

 
As we can see, the results are not as good compared to the ones we 
got with other configurations. We also need to mention that the 
complexity of the decoding of this last case is much simpler than 
before, so a direct comparison wouldn’t be accurate. 
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Conclusions and future work 
 
 
The aim of this work was to find a way to do reliable multimedia 
streaming using network coding. In concluding this work we think 
that our solution improves the one proposed in [2] by keeping the 
operating complexity level low. Furthermore, we have proposed a 
way of building a systematic Gabidulin code which has allowed us 
to construct product codes based on MRD codes instead of RS. 
Besides, we have also built an iterative decoder which helps in the 
decoding of product codes when used with a turbo-like iterative 
decoder. We have shown that some traditional methods, such as 
interleaving, when used with network coding techniques, improve 
the performance of the whole system. 
 
Despite our work has found a good way to do multimedia 
streaming, we are aware that there is still a lot of work to be done. 
For those who want to follow this work here are some guidelines for 
improvement. 
 

- The MAP iterative decoder used is just a modification of the 
one with RS. We think we could get better performance with 
a new iterative decoder based on MRD. 

- Our system should be tried in a multipath fading channel. 
- It should also be tried with a real multimedia stream. 
- Try to change the searching algorithm for the iterative 

decoder in order to reduce the time it takes to run. 
- Also a way of getting close to 100% of clean symbols when 

there are no errors in the channel should be done. Maybe a 
mathematical method to obtain linearly independent matrices 
in small Galois fields can be found. If not, maybe there is a 
subset of matrices that perform well in network coding. 
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