

Bit Error Combating Network
Coding Techniques

Pau Bernat Guri Hundertmark

Advisors:
Dr. Nikolaos Thomos
Prof. Pascal Frossard

June 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41803289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

3

Contents

Contents ...3

List of figures ...5

Introduction..9

1.1 Motivation ...9
1.2 Related work.. 10
1.3 Goal ... 11
1.4 Overview.. 12

Theory.. 13

2.1 Network coding .. 13
2.2 Error correcting codes .. 16

2.2.1 Reed Solomon Codes.. 17
2.2.2 Maximum Rank Distance Codes................................. 18

2.3 Combining Gabidulin codes with NC 22
2.3.1 Systematic Gabidulin codes 24

2.4 Interleaving.. 26
2.5 Product codes ... 27
2.5.1 Iterative decoder .. 28
2.5.2 Distributed product code ... 30

2.6 Rayleigh channels... 31
2.7 Unequal Error Protection ... 32

Simulation results ... 33

3.1 Mesh networks ... 33
3.2 Comparison of Reed Solomon, MRD and product codes ... 34
3.3 Replacing erroneous symbols by zero................................ 36
3.4 Product code with horizontal decoding in every node and
using our iterative decoding algorithm at the destination 37

4

3.5 Rectangular Interleaving .. 39
3.6 Random Interleaving.. 40
3.7 Double MRD interleaved.. 42
3.8 Combining RS and MRD.. 43
3.9 Distributed Product Code .. 44
3.10 Using Rayleigh fading channel 54
3.11 Unequal Error Protection.. 55

Conclusions and future work... 57

References... 59

5

List of figures

Figure 1. Toy example of a simple multicast transmission. If R1 is
allowed to combine packets, throughput is improved and delay is
reduced... 14

Figure 2. Example of wireless communication comparing the same
system using network coding and store-and-forward approach. Bob
and Alice exchange a pair of packets using 3 transmissions instead
of 4. .. 15

Figure 3. Flowchart of the decoding algorithm of Gabidulin codes.
... 21

Figure 4. Diagram of a toy line network used in our simulations .. 25

Figure 5. Gilbert-Elliot channel model used in our simulations. The
probability of error in the clear state is zero, while the error
probability of the error state sweeps from zero to one. 26

Figure 6. Schematic encoding procedure for product codes. The
encoding in vertical and horizontal directions is depicted. 28

Figure 7. Toy mesh network used in our simulations. Every node is
allowed to use network coding. ... 33

Figure 8. Gilbert-Elliot channel model for every link used in our
simulations with the mesh network. The error probability of the
clear state is zero and the error probability of the error state
sweeps from zero to one. ... 34

6

Figure 9. Performance in terms of end-to-end symbol error rate as a
function of the bit error rate per channel of concatenated MRD
codes when intermediate nodes are allowed to correct the received
packets and when they are not. .. 36

Figure 10. Symbol error rates at the receiver for different strategies.
The figure compares the symbol error rate under four strategies:
concatenated MRD codes, product codes, product codes replacing
erroneous symbols by zeros, and product codes replacing erroneous
symbol by zero combined with a random interleaver. It shows that
product codes replacing erroneous symbols by zero combined with a
random interleaver performs better than the others...................... 37

Figure 11. Symbol error rate at the receiver. Correction in every
node of product codes improves the symbol error rate at the
receiver. The figure shows the comparison between product codes
with interative decoding algorithm at the receiver with product
codes with iterative decoding algorithm at the receiver combined
with a conventional decoding in every intermediate node. 38

Figure 12. Block diagram used at the source node to encode. The
horizontal direction is encoded twice allowing to have more
redundancy symbols and, therefore, larger correction capacity. 42

Figure 13. The figure plots the symbol error rate for three different
strategies: using double MRD codes, double MRD codes allowing
intermediate node to correct packets, and product codes when
intermediate nodes can also correct packets and when the receiver
uses an iterative decoding algorithm... 43

Figure 14. Symbol error rate comparison between two different
techniques. In both techniques the intermediate nodes are allowed
to correct packet. One scheme uses double MRD codes while the

7

other uses as first encoder a RS encoder instead of an MRD
encoder. .. 44

Figure 15. Decoder comparison of distributed product code when
using network coding. Comparison of the decoder proposed in [2]
with our proposal updating the received word before every
iteration.. 45

Figure 16. Evaluating different iterative decoders in one link.
Comparison of our iterative decoder when received code words are
updated in every iteration, the one proposed in [2] and our old
iterative decoder where we evaluate the number of symbols
switched before and after correction. .. 47

Figure 17. Symbol error rate comparison when using distributed
product codes technique but replacing Reed-Solomon codes with
Maximum Rank Distance codes. ... 48

Figure 18. Performance comparison in terms of symbol error rate
when using network coding combinations in a bigger Galois field
than the one used in the MRD encoding....................................... 49

Figure 19. The figure plots the symbol error rate when using
different Galois field for network coding operations and MRD
coding combined with a random interleaver. It is compared with a
scheme where MRD coding and network coding operations are in
the same Galois field. ... 50

Figure 20. Encoder and decoder block diagram of product codes
using an interleaver and using both iterative decoders at the
destination.. 51

Figure 21. Performance comparison when using both iterative
decoders at the receiver and when only the distributed iterative

8

decoder is used. Combining both iterative decoders improves the
performance of the system. ... 51

Figure 22. Encoder and decoder block diagram for product codes
which can be corrected in every node, using a random interleaver,
and using both iterative decoders at the destination..................... 52

Figure 23. The figures shows the symbol error rate combining both
iterative decoders at the receiver when using an interleaver and
correction is allowed in every intermediate node of the network and
when intermediate nodes can only forward the received packets. .. 53

Figure 24. Distributed product code with an interleaver, decoding
in every node and using a combined iterative decoder over a
Rayleigh channel. The figure plots three different lines: one for the
BER per channel, one for the BER at the receiver, and another one
for the symbol error rate at the receiver. 54

Figure 25. The figure shows the results for our proposed UEP
scheme. Three lines are plotted for different rates: one for BER per
channel, one for BER at the receiver, and one for symbol error rate
at the receiver. ... 56

9

Chapter 1

Introduction

1.1 Motivation

In the latter years multimedia streaming has grown rapidly.
Applications such as youtube, for example, are used worldwide.
This use of multimedia streaming applications worldwide needs
huge amounts of network resources. In order to avoid overloading
these network resources some solutions have been proposed. One of
them is Network Coding. With Network Coding the amount of
network resources employed to send some information between
network nodes can be reduced. This happens because with network
coding we can reduce the power consumption and also we can
minimize the delay. However, the use of network coding leads to
another problem. It is that with network coding an error in a
received packet is propagated to all others packets. The reason why
an error is propagated to all other packets is because network
coding consists in combining different packets. Thus, if a packet is
erroneous when combined with others, they will be erroneous too.
These erroneous packets will be combined in other nodes with some
other packets, and these last ones will be erroneous too. This means
that we use less network resources but losing quality. To avoid this,

10

packets have to be protected with some error protecting codes for
the receiver to be able to recover the packet sent. But combining
network coding with error protecting codes is not trivial because
this leads to an error propagation problem.

Multimedia streaming is becoming more important in personal
communications. Particularly, mobile communications. Nowadays
3G phones are available to everybody. Applications such TV on the
phone are growing rapidly. Not only these applications are
becoming important but high definition demand is also rising. This
also leads to a big demand for network resources, and in wireless
networks the resources are even more valuable than in wired
networks as the spectrum is limited.

1.2 Related work

Several solutions have been proposed to use network coding with
error protecting codes. Some theoretical works of Kötter and
Kschischang [13] assume a non coherent network coding model,
where neither the transmitter nor the receiver have knowledge of
the channel transfer characteristics and they propose an encoding
and decoding algorithm for Gabidulin codes. An improvement of
the decoding algorithm is proposed in [17], there they propose using
Fourier transform method to decode faster Gabidulin codes.
Following these works, [14] shows that network error correcting
codes achieving the Singleton bound can be easily constructed for
both coherent and non coherent network coding. Another work by
Danilo Silva and Frank R. Kschischang [15] explains how to use
erasures and deviations in the decoding of network coding error
protecting codes. A feasible decoder architecture for the codes

11

proposed by Kötter and Kschischang is shown in reference [16].
Also, a practical solution for using network coding in wireless mesh
networks is proposed in [18] where they propose the COPE [18]
system which bridges theory with practice. An improvement on this
solution is MIT’s MIXIT [1] which is one of the best and most
complex. This system gives a good performance but the complexity
is also high, as it needs knowledge of the network, and bidirectional
communication between nodes. The main idea is than a node
transmits only that symbols that have no errors. Also, the receiver
can ask for retransmission to the intermediate nodes if it notices
some symbols is missing or wrong. MIXIT gives better performance
than our system but it is more complex as well. Our system could
be combined with MIXIT and the resulting system would be better
than both on its own. For more information about MIXIT system
the reader can refer to [1]. Another solution that has been proposed
is a decoder for Reed Solomon product codes that uses a MAP
decoder. These kinds of codes are called Distributed Product Codes,
and more information can be found at reference [2].

1.3 Goal

The aim of this project is to propose a system that with less
complexity than MIXIT could give better performance than
Distributed Product Codes in media streaming over wireless
networks.

To do that we try with different kinds of error protecting codes, we
improve the product codes proposed on [2] and we combine these
with some traditional channel coding techniques that.

12

We see that we can get an amount of correctly received packets
high enough for multimedia streaming in wireless network for a
minimum SNR. There are some drawbacks though. We decode in
every node of the network which adds computational cost, and also
we can’t get a 100% of correct packets when there are no errors in
the network.

1.4 Overview

This report is organized as follows. Chapter 2 contains the
theoretical information needed by the reader to understand the
methods used in the implementations, and chapter 3 contains the
practical implementations we tested in the project.

13

Chapter 2

Theory

2.1 Network coding

The main idea of network coding is quite simple. Every
intermediate node in the network combines the packets it has
received and sends the combined packets to the next hops.
Following this approach there is a gain in the throughput and the
delay is reduced. Let’s clarify this idea with a simple example
shown in figure 1.

Just imagine that server S1 wants to send a packet X1 to the client
C2, and server S2 wants to send another packet X2 to client C1.
With the traditional way S1 send the packet X1 to the relay R1,
and it send the packet to the relay R2, and this last one send it to
the client C2. The same procedure is followed for packet X2. The
thing is that both packets cannot be sent at the same time when
the communication is limited to one packet per time slot. Instead,
if we allow relays to combine packets, we can use the procedure
that follows. S1 broadcasts packet X1 through all output links, so

14

relay R1 and client C1 get the packet X1. Server S2 does the same
so R1 gets X2 and client C2 gets it also. Now R1 combines both
packets that it has received from its input links, resulting X1+X2.
R1 sends X1+X2 to relay R2 and R2 broadcasts it. So, client C1
has packets X1 and X1+X2, and client C2 has X2 and X1+X2.
Now for client C1 to recover packet X2 he only has to combine the
packets it has, i.e. X1+(X1+X2) = X2. The same procedure is
followed for client C2.

Figure 1. Toy example of a simple multicast transmission. If R1 is allowed

to combine packets, throughput is improved and delay is reduced.

With this simple example we have proven that client C1 can get X2
and client C2 can get X1 at the same time that with the traditional
way only one of the destination nodes can get the desired packet.
Therefore, throughput has been increased and delay has been
reduced.

15

We will next show how network coding can bring some advantages
when it is applied to wireless networks.

To demonstrate how network coding works over wireless network
we use the example shown in figure 2.

Figure 2. Example of wireless communication comparing the same system
using network coding and store-and-forward approach. Bob and Alice

exchange a pair of packets using 3 transmissions instead of 4.

Consider that Bob wants to send packet X1 to Alice, and Alice
wants to send packet X2 to Bob. Also consider that direct
communication between Bob and Alice is not possible because
transmission range is limited, so a client cannot reach directly the
other. By the traditional way each client must first send his packet
to the antenna and then the antenna will send the packet to the
other packet. Therefore, the communication takes four time slots.
However, if we enable the antenna to use network coding, the
communication between both clients requires three time slots. Bob
sends his packet to the antenna. Then Alice sends her packet to the
antenna. The antenna combines both packets and sends the

16

combinations to both receivers. The delay, therefore, has been
reduced.

Above, we have explained the strictly necessary things about
network coding for the reader to understand our system. For those
readers who want more information about network coding refer
them to [3]. For even further information about network coding
please refer to [4].

2.2 Error correcting codes

In communications, some errors may occur in the channel. That
means that some bits sent by the sender can be flipped because of
the noise generated at the channel. When this happens the receiver
gets a stream of bits that is not the same to the one the source
sent. In multimedia streaming this may result in loss of quality.

There are some ways of preventing quality degradation from
happening. The most common way is Forward Error Correction
[4,5] (FEC). The main idea is that the sender adds redundant data
to the transmitted messages. This allows the receiver to detect and
eventually correct (within some bound) some errors that have been
generated by the channel.

Maybe the most popular FEC code is Reed-Solomon [4,5]. Next, we
explain briefly how it works. We also explain Maximum Rank
Distance (MRD) codes [20], which can improve performance [8].

17

2.2.1 Reed Solomon Codes

In coding theory, Reed–Solomon (RS) codes are linear error-
correcting codes proposed by Irving S. Reed and Gustave Solomon.
They presented a systematic way of building codes that could
detect and correct multiple symbol errors. By adding t redundant
symbols to the data, an RS code can detect any combination of up
to t erroneous symbols, and correct up to t/2 symbols. The choice
of t depends on the designer of the code, and may be selected
within wide limits.

Reed-Solomon codes are used in important applications from deep-
space communication to consumer electronics [19]. They are used in
consumer electronics such as CDs, DVDs, Blu-ray Discs, in data
transmission technologies such as DSL, and also in digital TV
broadcasting.

The Reed-Solomon code is a [n, k, n-k+1] code; in other words, it is
a linear block code of length n (over a Galois field F) with
dimension k and minimum Hamming distance n-k+1. The error-
correcting ability of a Reed–Solomon code is determined by its
minimum distance, or equivalently, by the number of redundant
symbols n-k. A Reed–Solomon code can correct up to (n − k) / 2
erroneous symbols, i.e., it can correct half as many errors as there
are redundant symbols added to the block. If the locations of the
error symbols are not known in advance, then a Reed–Solomon code
can correct up to (n − k) / 2 erroneous symbols, i.e., it can correct
half as many errors as there are redundant symbols added to the
block. Sometimes error locations are known in advance (e.g., “side
information” in demodulator signal-to-noise ratios) these are called
erasures. A Reed–Solomon code is able to correct twice as many
erasures as errors, and any combination of errors and erasures can

18

be corrected as long as the relation knSE2 −≤+ is satisfied,
where E is the number of errors and S is the number of erasures in
the block.

For practical uses of Reed–Solomon codes, it is common to use a
finite field F with 2m elements, ()m2GF . In this case, each symbol
can be represented as an m-bit value.

For further information about information theory and FEC codes
we refer the readers to check [4,5].

2.2.2 Maximum Rank Distance Codes

While RS codes are based in Hamming distance (number of
different bits between two words) MRD codes are based in Rank
distance which is defined as: B)rank(AB)(A,dr −= , where A and B
are MRD coded-words. This means that maximum rank distance
codes can correct rank errors, i.e. they can correct an error whose
rank is less or equal to the correction capacity of the code. The
rank of an error word is the number of independent erroneous
symbols. As an example:

Imagine that the error word is ()033 , we can express it in a

binary base:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
110
110

, the zero word doesn’t count to compute the

rank of a matrix, and the element ()110 appears twice in the
matrix, thus the only independent element is ()110 . Therefore
the rank of this error word is 1.

19

The main property of MRD codes is that between any two code
words there is a maximum rank between all of them.

MRD codes are also linear [n,k,n-k+1] codes, and are characterized
by:

- m, size of the Galois Field where the code is defined.
- n, total number of symbols in a code word
- k, amount of information symbols in a code word
- dr, rank distance, which in MRD codes is: 1kndr +−=

The correction capacity of MRD codes is defined similar to Reed-
Solomon codes correction capacity, but using rank distance instead

of hamming distance: ⎥⎦
⎥

⎢⎣
⎢ −

=
2

1dc r .

More information about rank metrics and maximum rank distance
codes can be found in [7, 8].

A particular case of MRD codes are Gabidulin codes.

2.2.2.1 Gabidulin codes

Gabidulin codes, proposed by Ernst Gabidulin [20], are a particular
case of MRD codes with the constraint mn ≤ . Thus, if the code is
defined over the Galois Field GF(23), the maximum codeword size
is 3n = .

Any linear block code is characterized by the parity check matrix
H, and the generator matrix G. Next, we explain how to build these

20

matrices and the encoding and decoding procedures of Gabidulin
codes.

Encoding

Usually in FEC codes the generator matrix can be found without
knowledge of parity check matrix, on contrary Gabidulin codes the
parity check matrix has to be found before obtaining the generator
matrix. Parity check matrix has the following form:

[] [] []

[] [] []

[] [] [] ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−− 2d
n

2d
2

2d
1

2
n

2
2

2
1

1
n

1
2

1
1

n21

h...hh
............
h...hh
h...hh
h...hh

H

where hi are linearly independent element of the Galois field where

the code is defined, d is the rank distance, and [] () i2
j

i
j hh = .

Once we have found the parity check matrix of the code we can
find the generator matrix that fulfills these two constraints:

0HG T =⋅

[] [] []

[] [] []

[] [] [] ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−− 2d
n

2d
2

2d
1

2
n

2
2

2
1

1
n

1
2

1
1

n21

g...gg
............
g...gg
g...gg
g...gg

G

where gi are linearly independent elements of the Galois field, and

TH represents the transposed matrix of H.

21

The procedure to find a G that satisfies these properties is not
trivial, however a procedure to find it is proposed at [6].

Decoding

The decoding of Gabidulin codes is similar to that of the Reed
Solomon codes. Therefore the decoding is described by following
this flowchart:

Figure 3. Flowchart of the decoding algorithm of Gabidulin codes.

• Compute the syndromes: it consists in multiplying the

received word with the parity check matrix. The resulting
vector is the vector of syndromes.

• Modified Berlekamp-Massey Algorithm: this algorithm allows

us to find the error locator polynomial, whose roots are the
error positions. The algorithm is quite complex, but an
extended explanation about it can be found at [9].

r: received codeword
y: transmitted codeword
e: error message
B-M: Berlekamp-Massey
ELP: error locator polynomial

22

• Find the roots of the ELP: ELP is the error locator

polynomial. Its roots contain information about the error
positions.

• Compute error values: the error values are found solving a

linear system of equations involving the roots of the ELP and
the syndromes.

• Correct the received word: once the position of the errors and
their values are known the correction of the received word is
trivial.

For more detail regarding the decoding Gabidulin codes the
interested readers are referred to [9].

As MRD codes allow us to correct rank errors we adopt them in our
systems.

In this report, we refer to a Gabidulin code with m, n and k (where
m is the size of the Galois field (GF(2m)) where the code is defined,
n is the size of a codeword and k is the number of information
symbols each codeword contains), as MRD(m, n, k).

2.3 Combining Gabidulin codes with NC

In order the receiver to be able network decode, a unique header
has to be added to the words that need to be sent. We use a vector
which contains a one and all others zero as a unique header, thus

23

the operations done by the network relays will affect this matrix,
allowing the receiver to decode them.

To clarify the idea we show an example where three code words will
be sent:

If we want to send three MRD(3,3,1) code words: ,X,X,X 321 and
each iX equals to ()3i2i1ii xxxX = , we have to add as a unique
header the identity matrix 3x3. So the resulting message will be like

this:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

3

2

1

xxx100
xxx010
xxx001

X100
X010
X001

Z

Then, considering that the combinations done by the network can
be modeled by a matrix NC and a simple matrix multiplication, we
can observe how these combinations are recorded in the unique
header.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⋅⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3333231

2232221

1131211

333231

232221

131211

Yaaa
Yaaa
Yaaa

ZNC
aaa
aaa
aaa

NC

Where iY are linear combinations of iX .

The problem of this procedure is that when an error occurs in the
coefficients sub-matrix of our code then the whole word is
erroneous. This happens because an error in matrix NC causes the
destination to receive a combination that doesn’t match with the
actual combination done by the network. As MRD codes are linear
codes, i.e. any combination of MRD words is another MRD word,
the receiver is unable to recover the original words because, since
the words it has received are valid MRD coded-words, it does not

24

classify them as errors. Somehow we have to protect the matrix
NC. However, this matrix is created in the network so the sender
doesn’t know it. Then how can we protect this matrix? A solution
is proposed below.

2.3.1 Systematic Gabidulin codes

A systematic code means that the information symbols that have to
be encoded remain unchanged after encoding. Let’s show it:

If we want to encode one symbol 1x with a non systematic
MRD(3,3,1) code we will get as encoded word ()131211 x̂x̂x̂ where

111 xx̂ ≠ . If we encode with a systematic MRD(3,3,1) code instead,
we will get ()131211 xxx where 111 xx = .

The reason why we are looking for a systematic encoding of
Gabidulin codes is because it allows us to encode the header and
still have the identity matrix. Therefore it will be able to decode
errors in the header matrix without requiring extra computational
cost on our system.

A systematic way of constructing systematic Gabidulin codes has
not been proposed, to the best of our knowledge. Here, we propose
an easy and simple way of doing that.

We know that the generator matrix of a systematic code has to be
like this:

25

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= −)kn(kxkxk 'GIG , where kxkI is a kxk identity matrix.

We also know that the generator matrix and the parity check
matrix of a code have to fulfill the following property:

0HG T =⋅

If we can find a matrix G that matches these two equations we get
a Gabidulin systematic generator matrix. This new code have the
same properties as the non-systematic one, with a lower
computational cost.

As we will see next, these systematic codes also allow us to
construct product codes based on Gabidulin codes.

But the problem with Gabidulin codes is the constraint of mn ≤ ,
which means that we can only send short messages. The solution we
follow for this problem is to send a concatenation of encoded
packets.

To try this concatenation of Gabidulin code words in a system that
uses NC we propose the following scheme:

The network is constituted by 10 relays as shown in figure 4.

Figure 4. Diagram of a toy line network used in our simulations

Every information packet contains 300bits.

26

Every link is modeled by figure 5.

Figure 5. Gilbert-Elliot channel model used in our simulations. The

probability of error in the clear state is zero, while the error probability of
the error state sweeps from zero to one.

The error probability in the error state is one, while the error
probability in the clear state is zero.

We simulate the system for different m, n, and k.

Good results are achieved when m=11 and k=7. To send 300bits we
use 484bits. With these parameters 92% of packets are correct. If m
is smaller we get a better correction, but the redundancy is
increased.

2.4 Interleaving

Interleaving is frequently used in digital communication to improve
the performance of forward error correcting codes. Many
communication channels are not memoryless: errors typically occur
in bursts rather than independently [4,5]. If the number of errors
within a code word exceeds the error-correcting code's ability, it
fails to recover the original code word. The main idea of
interleaving is very simple: we take all the symbols of our message,
we mix them all together and scramble them.

27

In order the receiver to be able to de-interleave, the scramble
should not be completely random. Therefore, a pseudo-random
interleaver is used. The pseudo-random interleaver produces a
deterministic sequence for every seed, so, if the receiver knows this
seed it can de-interleave correctly.

The drawback of interleaving is that it introduces some delay to
the system. However, the gain in performance is big enough that
outbalance this drawback.

As we will see in the following, this simple technique which barely
adds complexity to the system, improves the performance of our
systems significantly.

2.5 Product codes

Usually, some redundancy symbols are added to the source
messages to protect them. Product codes use this procedure as well,
but also create source messages full of redundancy symbols. This
means that a vector of information symbols become a matrix of
encoded symbols. The interesting thing about these codes is that if
the horizontal decoding cannot decode properly, maybe the vertical
decoding will do it. This is the reason why product codes are used
together with iterative decoders.

We propose the configuration for product codes shown in figure 6.

28

Figure 6. Schematic encoding procedure for product codes. The encoding

in vertical and horizontal directions is depicted.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⇒⎥
⎦

⎤
⎢
⎣

⎡
⇒⎥

⎦

⎤
⎢
⎣

⎡

4321

4321

4321

4321

4321

4321

21

21

t~t~t~t~
z~z~z~z~
y~y~yy
x~x~xx

y~y~yy
x~x~xx

yy
xx

If we use our systematic Gabidulin codes to encode both directions
we are able to use an iterative decoder that increases the
performance of the system.

If the horizontal code is unable to correct an error then the vertical
code may correct it and vice versa. This is why we need an iterative
way to decode.

2.5.1 Iterative decoder

The iterative algorithm we propose works as following. First we
decode vertically. If there are more errors than the correction
capacity of the code, we leave the codeword as it is. If there are
fewer errors than the correction capacity of the code, we decode
and encode again. Then, we replace the old codeword with the new
one.

29

Once we have decoded vertically we try to decode the horizontal
direction following the same procedure. When we finish with the
horizontal decoding we repeat the above procedure.

We repeat this iteratively until we cannot note any gain. Once it
has converged we apply the normal decoding way to obtain the
information word, thus we decode first vertically and then
horizontally.

To compare the iterative procedure with the conventional one we
try them in a system with these properties:

k = 2; M = n = 4; number of packets = 2; BER = 0.1;

So, a 2x2 information matrix becomes a 4x4 matrix.

If we use the conventional decoding algorithm we get a 59% of
correct packets, while if we use the iterative procedure we get a
72% for the same system parameters.

The problem with this decoding algorithm is that we need to know
the error position to decode, which is not realistic. Then we need to
find an iterative decoding procedure that doesn’t need to know the
error position.

We propose a very easy procedure:

We first decode the vertical direction and encode again. If more
symbols than the correction capacity of the code have been changed
we leave the codeword as it was, if not, we replace the old
codeword by this new one. We then follow the same for the
horizontal direction.

30

We iterate this until we cannot note any gain and then we apply
the conventional decoding way.

If we try this new iterative decoding algorithm in the same system
as before to compare both algorithms we find that this new one gets
a 70% of correct packets, only 2% less than the old but without
requiring any knowledge about the error positions.

2.5.2 Distributed product code

The encoding for these codes proposed in [2] is the same as for the
product codes we presented in section 2.5 but using an RS encoder
instead of MRD. These codes also use a different decoder which is
similar to that of turbo-codes. This decoder is a Max-Log-Map
decoder that generates soft information which is used to estimate
the word most likely to have been sent. In fact, there are two Max-
Log-Map decoders, one for the horizontal direction and another one
for the vertical direction. This Max-Log-Map decoder compares the
received word with all possible words that could have been
transmitted. For each bit of the codeword the decoder finds the
closest (according to hamming distance) codeword which has a zero
in this bit position and the closest codeword which has a one in this
bit position. With these two code-words and its respective hamming
distances the decoder computes a soft output. The decoder does
this for all bits in the received code words, and then, from all
candidate code words, it computes the extrinsic information for the
decoder in the other direction.

In the original decoder proposed in [2] the received word is not
updated until the decoding algorithm is completed. Instead we
propose to update the received code-word after every decoding step.

31

In other words, each decoder provides to the next one its extrinsic
information and its estimated received word. This should make the
algorithm faster and with even better performance.

These codes use Reed-Solomon as FEC code for both directions.
What we propose is replacing it with Gabidulin codes. In order to
be able to replace RS with MRD we have to make a change in the
decoder. The decoder uses Hamming distance to compare the actual
received codeword with the possible candidates, whereas in our
decoder we will change Hamming distance with rank distance. With
this simple change we get an iterative MAP decoder for MRD
codes.

2.6 Rayleigh channels

Next, we briefly explain Rayleigh channels since they model
wireless channel much better than the ones we have been using yet.
Further information about Rayleigh channel can be found at [5, 10,
11].

The most common model for simulating channels is the so called
Additive White Gaussian Noise (AWGN) channel. In this kind of
channels a noise with a Gaussian probabilistic function is added to
the signal. The reason why these channels are used is because they
simulate quite well the effects of thermal noise in antennas and
electric parts in systems. However for mobile channels another
model that fits much more with the reality is the Rayleigh channel
model. This model adds fading to signal, and eventually allows the
modeling of different paths for the signal, which is what really
happens in a mobile communication. Many times in a mobile

32

communication, the signal is not received or acquired from the line
of sight path but from reflections, and Rayleigh fading channel
model models it.

Since we want to make our system reliable in a wireless
environment thenceforward will try our systems over a Rayleigh
channel.

2.7 Unequal Error Protection

This is a relatively new technique of forward error correction. It can
be seen as a type of product codes but where different symbols are
encoded with different redundancy, i.e. some symbols are more
strongly protected than others. The reason why this technique has
been applied recently is because in multimedia streaming some
symbols are more important than others, so the most important
symbols should be better protected than the less important ones.
This allows us to send the same amount of information in less time
and saving power. A good pointer for those readers who want
further information about UEP coding and how to apply it is [12].

33

Chapter 3

Simulation results

3.1 Mesh networks

Until now we have tried our codes in a line network. But chain
networks are not likely to be found in the real world. That’s why
we study our schemes in mesh networks. The network we consider
for our trials is as shown in figure 7.

Figure 7. Toy mesh network used in our simulations. Every node is

allowed to use network coding.

34

3.2 Comparison of Reed Solomon, MRD
and product codes

We want to compare results of our proposed codes which use MRD
as a FEC code or using RS. We also compare results between MRD,
our proposed product codes and the uncoded case. We evaluate
them in mesh networks where the nodes are allowed to perform
network coding. For concatenated MRD codes we also examine the
case when every node decodes and re-encodes to see whether
increasing the computational complexity is beneficial.

The codes for all cases are defined over a Galois field GF(23), and
the maximum codeword size is limited to 3n = , thus, the amount
of information symbols per codeword is 1k = .

In the following we consider a model for every channel like the one
shown in figure 8.

Figure 8. Gilbert-Elliot channel model for every link used in our

simulations with the mesh network. The error probability of the clear
state is zero and the error probability of the error state sweeps from zero

to one.

The error probability in the clear state is zero. The error
probability in the bad state sweeps from zero to one.

According to our results we realize that when the channel is too
strong methods are inefficient, i.e., it doesn’t matter if we use a

35

FEC code or not, as the error correcting capability of the codes is
exceeded.

Although, when the channel allows the nodes to correct some
packets, we notice that the best procedure to follow is to encode
our symbols with the product code, followed by MRD coding. RS
based scheme performs slightly worse that our MRD based and of
course the worst results are obtained when we don’t encode at all
since there is no error correction ability.

What we want to do now is find out the gain coming from
correction in every node of the network. As MRD codes are linear
codes we can decode and re-encode in every node with no problems.
In figure 3 we show the results for symbol error rate for both cases
when we correct in every node and when we don’t.

We observe that for small values of the bit error rate per channel
we do get a considerable gain. For example when the %2BER =
the gain is about 25%. So we consider that correcting in every node
is a good option.

A critical parameter of our systems is the size of the Galois field.
On the one hand, if we choose a larger value for m we would be
able to encode more symbols together, as m limits the codeword
size. On the other hand, when the values for m are small the
performance is better, since we are looking for performance we keep
m as small as possible but bigger than 2 (which is the minimal m
for Gabidulin codes), this means we try our systems for 3m = .

36

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Concatenated MRD
Concatenated MRD with every node correction

Figure 9. Performance in terms of end-to-end symbol error rate as a
function of the bit error rate per channel of concatenated MRD codes

when intermediate nodes are allowed to correct the received packets and
when they are not.

3.3 Replacing erroneous symbols by zero

In case of product codes, if we replace erroneous symbols by a zero
in every node we can reduce the error spread. In figure 10 we show
the results for this scheme.

We observe that there is an improvement in the performance of the
system. The problem with this scheme is that we assume that we
know the position of the errors and we replace them with zero. But
considering that we know the position of the errors is not realistic.
Probably we could get a probabilistic decision of the positions using
soft values but this would make our system more complex. So we
won’t adopt this method.

37

We also tried this method with an interleaver (we will explain this
interleaver latter on). In this case we have good results, so
interleaving is a procedure which we can consider in the following.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Concatenated MRD
Product code
Product code with zero replacing
Product code with zero replacing and interleaving

Figure 10. Symbol error rates at the receiver for different strategies. The
figure compares the symbol error rate under four strategies: concatenated
MRD codes, product codes, product codes replacing erroneous symbols by

zeros, and product codes replacing erroneous symbol by zero combined
with a random interleaver. It shows that product codes replacing

erroneous symbols by zero combined with a random interleaver performs
better than the others.

3.4 Product code with horizontal
decoding in every node and using
our iterative decoding algorithm at
the destination

Now we examine our product codes but this time decoding the
horizontal code in every node. This should minimize the error

38

spreading since we have corrected some errors before they can be
spread. At the receiver we use our iterative decoding algorithm.

To decode in every node we have to reverse the encoding procedure
of our product codes in order to decode. Specifically, we have been
encoding the horizontal direction first and the vertical direction
second. Thus, from here on we first encode the vertical direction
and then the horizontal one. With this, the rows of the encoded
matrix, are valid MRD code-words, which allow us to decode and
then encode again in every node.

In figure 11 we show the results for this last scheme. We show both
bit error rate and symbol error rate. If we compare these results
with the results we have for product codes we can see that there is
a gain of about a 15% for reasonable values (between zero and 2%)
for the BER. So correcting in every node should be applied in next
schemes.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Product code
Product code with error correction in every node

Figure 11. Symbol error rate at the receiver. Correction in every node of
product codes improves the symbol error rate at the receiver. The figure
shows the comparison between product codes with interative decoding
algorithm at the receiver with product codes with iterative decoding

algorithm at the receiver combined with a conventional decoding in every
intermediate node.

39

3.5 Rectangular Interleaving

As we have seen, interleaving may improve the performance. That’s
why we follow some clever ways to use an interleaver in our
systems.

The spreading of errors is always in the vertical direction of the
matrix, so the vertical coding of our product codes doesn’t help in
the final decoding probability. To solve this issue we propose a
special way of interleaving different sources.

Specifically, we first encode the horizontal direction of every source
and then we interleave, using a fixed pattern. The main idea is that
the symbols that correspond to the same information are sent
through different sources. This pattern will spread a burst error in
the vertical direction, hopefully improving the performance of the
system.

Let us explain this with an example:

Imagine that we want to send the information symbols ()111 z,y,x
and we encode them with an MRD(3,3,1) code. Then we have the

following encoded matrix,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zzz
yyy
xxx

. It is sent over the network.

For this example just imagine that there is only one node. This
node performs network coding and interleaves the matrix as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒

333

222

111

321

321

321

cba
cba
cba

INTER
ccc
bbb
aaa

NC , what we should do

is swap rows with columns. We consider symbols 2a~ and 2b~ are the

40

erroneous. So the matrix the receiver receive is:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333

222

111

cba
cb~a~
cba

. The

destination has to swap again rows for columns (de-interleave), and

the resulting matrix results:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

ccc
bb~b
aa~a

. Now we have to undo

network coding, resulting that the resulting matrix just before the

decoder is:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zz~z
yy~y
xx~x

, which is easily decodable for the

MRD(3,3,1) code. If we hadn’t interleaved, the resulting matrix

prior decoding would have been:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zz~z~
yy~y~
xx~x~

, which is not

decodable.

The drawback of this scheme is that is applicable only to a chain
network. We have been unable to find a way to apply it to a mesh
network. The reason is because each node must have every packet
and this only happens when the network is chain.

3.6 Random Interleaving

In the case of a mesh network and using product codes a random
interleaving may help us improve performance, since the vertical
coding should be able to decode more code-words.

41

First, we encode the information matrix vertically and horizontally,
then we interleave each row, and then we send the new matrix
through the network. To decode, we first deinterleave the received
matrix and then we apply the iterative decoding procedure.

If we adopt this new procedure in our system we observe that we
have a small improvement.

We find out that the performance improves when the words to be
interleaved are larger. Then the best way to interleave the code
words is first putting all the rows in a single vector, then
interleaving and then reversing the conversion from matrix to
vector. We make clear this with an example:

We want to send the symbol 1x and we encode it with a product
code with an MRD(3,3,1) code as vertical and horizontal encoding

code. So the resulting matrix to be sent is:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

321

321

321

zzz
yyy
xxx

. Then we

convert this matrix to a vector, letting us with this
vector: ()321321321 zzzyyyxxx . We will now interleave
this vector with a random interleaver, resulting in the following
vector: ()121321332 zyxzxyyxz . Now we get the matrix
to vector conversion undone. So the matrix that we send over the

network is:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

121

321

332

zyx
zxy
yxz

.

42

3.7 Double MRD interleaved

We have been encoding horizontally and vertically to obtain our
product codes, which gives us more redundancy. This is not the
only way to add redundancy.

To increase the redundancy of the codes and therefore to correct a
larger number of errors without increasing the size of the Galois
field, we propose the following scheme. Encode the words with a
Gabidulin code, interleave and then encode again with the same
Gabidulin code.

Figure 12. Block diagram used at the source node to encode. The

horizontal direction is encoded twice allowing to have more redundancy
symbols and, therefore, larger correction capacity.

The second Gabidulin code corrects the burst errors produced in
the channel, and the first one corrects the errors that the other
code is unable to correct.

We also try this system for decoding and re-encoding the second
MRD code in every node. We show these results in figure 13.

The performance of the double MRD is the best performing end-to-
end coding technique we got yet. The performance is close to the
product codes replacing errors by zeros. Of course when we correct
the MRD2 in every node the performance is even better.

43

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Double MRD
Double MRD with correction in every node
Product code with correction in every node

Figure 13. The figure plots the symbol error rate for three different
strategies: using double MRD codes, double MRD codes allowing
intermediate node to correct packets, and product codes when

intermediate nodes can also correct packets and when the receiver uses an
iterative decoding algorithm.

3.8 Combining RS and MRD

Previously we tried coding twice with MRD. The reason was that
one of the codes could correct burst errors and the other correct the
errors that the first one has been unable to correct. But this first
code doesn’t need to be good against burst errors, so we don’t need
to use an MRD code. Instead we can use an RS code, which allows
us to increase the correction capacity of the code without having to
increase the size of the Galois field. As an example, if 3m = with
an MRD(3,3,1) code we can correct 1 symbol, with a RS(3,7,1) we
can correct 3 symbols. We add a lot of redundancy to the system,
but we want to find out if it’s worth it.

44

We also try this system correcting the MRD code in every node.
The results for this are shown in figure 14.

We have introduced a lot of redundancy to our system, and as we
expected the performance is increased. In fact this scheme is the
best end-to-end system we have tried till this point. When we
correct the MRD component in every node the percentage of correct
symbols, for reasonable BER’s, becomes acceptable.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Combining RS and MRD with correction in every node
Double MRD with correction in every node

Figure 14. Symbol error rate comparison between two different techniques.
In both techniques the intermediate nodes are allowed to correct packet.

One scheme uses double MRD codes while the other uses as first encoder a
RS encoder instead of an MRD encoder.

3.9 Distributed Product Code

The usage of turbo-like decoders for product codes used in [2] is
interesting for us since we could apply it to our product codes. We
adapt these decoders to our MRD product codes.

45

First we examine the performance of the decoder when we use it to
decode a word after doing Gaussian elimination. The results for this
scheme are as shown in figure 15.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Updating
Not updating

Figure 15. Decoder comparison of distributed product code when using
network coding. Comparison of the decoder proposed in [2] with our

proposal updating the received word before every iteration.

The blue line represents the performance of correct symbols after
decoding with the iterative decoding but when the received word is
updated in each step. The red line represents the performance for
the iterative decoder without updating.

But, this decoder is not actually the decoder in [2] since in [2] they
proposed decoding the received codeword before doing Gaussian
elimination in order to reduce error propagation.

Above we have seen that the results are worse than those using
Gaussian elimination first and then decoding. The drawback of this
scheme is that the vertical code just before the decoder is the
multiplication of an RS code with the NC matrix. The resulting
code after this multiplication is not an RS code so we can’t decode
correctly the vertical component. To solve this issue we have to

46

assure that the resulting vertical code have good hamming
properties. To do that, we impose that the coefficient matrix in the
last hop assures that the resulting code has a good hamming
distance. When we test the performance of the system with this
new constraint, it turns out that the performance for low BER’s is
lower than what we got previously. This is because now we are
getting good matrices, in terms of hamming distances, for the RS
codes, but these matrices are not good for NC. Therefore, we can
conclude that the only way to get a good NC matrix and a good
code just prior decoding is by increasing the size of the GF. The
problem is that when we increase the size of the GF the
performance drops. Then, we will first use Gaussian elimination and
then decode.

We want to compare the results of this new iterative decoder with
our previous iterative decoder. Our iterative decoder employed
MRD codes, but with only a few changes we can adapt it to use
RS. This will enable us to compare results. We have seen that the
results for our iterative decoder with RS are better than the ones
we get with these new iterative decoders.

To validate it we compare the decoders over one link without using
NC. These should show us which decoder is best in error correcting
terms. The comparison between these three decoders is shown in
figure 16.

The red line shows the performance for symbol error rate for the
iterative decoding without updating the received word. The blue
line represents the performance for the iterative decoder when the
received word is updated. And the black lines represent the
performance for our iterative decoder.

47

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BER per link

S
ym

bo
l E

rro
r R

at
e

Updating
Not updating
Our old iterative decoder

Figure 16. Evaluating different iterative decoders in one link. Comparison
of our iterative decoder when received code words are updated in every
iteration, the one proposed in [2] and our old iterative decoder where we

evaluate the number of symbols switched before and after correction.

We can notice that our iterative decoder and the new iterative
decoder have similar performance for reasonable values for the
BER. The worst iterative decoder is the one where the received
codeword remains unchanged until the final iteration.

As we can see we don’t have really good results with these three
decoders when we use NC since the best one has a performance of
43% of correct packets when BER=2%, so we conclude that, as
MRD codes are better than RS codes, we may find a way to adapt
these new decoders to work with MRD. For this reason we just
have to change the metric, specifically, everywhere that hamming
distance appears, we replace it with rank distance. With this simple
change we get a Max-Log-Map decoder that works with MRD
codes. If we now try this in our scheme we get the results shown in
figure 17.

48

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

MRD distributed iterative decoder
RS distributed iterative decoder

Figure 17. Symbol error rate comparison when using distributed product
codes technique but replacing Reed-Solomon codes with Maximum Rank

Distance codes.

Again the results are disappointing since for a BER=2% we have
50% of correct packets. To improve this we try increasing the GF
where the NC is done (in order to have more linearly independent
matrices) but keeping the size of the GF of the MRD codes as low
as possible (to have better decoding performance). To explain this
we use an example:

We have this vector ()742315 where all the elements
belong to ()32GF . We can express this vector with elements
belonging to ()62GF as ()392641 .

The results for this simulation are shown in figure 18.

The results when there are no errors in the network are better,
since the resulting coefficients matrix results in independent code
words, but the results are worse when there are some errors. This
poor performance is because an error in a larger GF symbol
produces more erroneous smaller GF symbols.

49

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

MRD distributed iterative decoder with NC in different GF
MRD distributed iterative decoder

Figure 18. Performance comparison in terms of symbol error rate when
using network coding combinations in a bigger Galois field than the one

used in the MRD encoding.

An interleaving before doing NC could improve performance since
the error spreading would be in different code-words.

In figure 19 are shown the results for this last proposal.

The performance is increased when there is low BER but still they
are worse than the ones we got when the GF is the same for NC
and MRD encoding.

This only lets us try different ways of sending the coded words. Our
first thought is interleaving words.

With an interleaver we got better results, but still were not good
enough.

50

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

MRD DID with NC in different GF and interleaved
MRD DID

Figure 19. The figure plots the symbol error rate when using different

Galois field for network coding operations and MRD coding combined with
a random interleaver. It is compared with a scheme where MRD coding

and network coding operations are in the same Galois field.

We now reconsider our iterative decoder. The way it works is: first,
it decodes the received codeword and encodes it again; and then it
compares the resulting corrected word with the received word. If
more symbols than the correction capability of the code are
changed it keeps the original received codeword. If less symbols are
changed it takes the new corrected codeword. This means that if
the decoder can help to correct the received word it may improve
the performance. If it can’t help, it lets the received codeword as it
was. This is really interesting for us, because this means we can try
to decode first with our iterative decoder and then decode with the
new iterative decoder. So, somehow our iterative decoder will assist
the new one to decode. We also use an interleaver. A diagram for
the system could be as shown in figure 20.

51

Figure 20. Encoder and decoder block diagram of product codes using an

interleaver and using both iterative decoders at the destination.

The results for this combined iterative decoder are shown in figure
21.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Combining MRD DID with old iterative decoder
MRD DID

Figure 21. Performance comparison when using both iterative decoders at

the receiver and when only the distributed iterative decoder is used.
Combining both iterative decoders improves the performance of the

system.

Again we improve results, but still we are not happy with them.
The proposed system in [2] uses decoders in every hop of the
network, so we think we could do it as well. We have used decoder
in each hop before but not yet with this new combined iterative
decoder. The decoders in every node will only decode the horizontal
direction. To keep the horizontal direction being a valid MRD
codeword we can’t use the interleaver we have been using. But we
think that if somehow we could use an interleaver and yet having

52

valid code words in the horizontal direction we could have even
more gain as it would allow us to decode and re-encode in every
node. The problem is how to make the receiver have valid product
code words at the input of the combined iterative decoder. The
block diagram shown in figure 22 explains our proposal.

The issue is that the interleaver at the sender and the deinterleaver
at the receiver are not quite the same. We show it with an example:

Figure 22. Encoder and decoder block diagram for product codes which

can be corrected in every node, using a random interleaver, and using both
iterative decoders at the destination

Imagine we want to send a symbol, for example a 4. We encode the
symbol vertically and we obtain the MRD word ()'534 , then we
interleave this resulting codeword randomly. We get something like
this ()'435 , for example. Then we encode the horizontal direction
and we obtain the resulting product code word, that in our example

is this one:
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

534
163
315

. This is what we send over the network.

At the receiver, after doing Gaussian elimination we have, if no
errors occur, this very same word. But this word is not decodable
with our decoder, as the words in the horizontal direction are valid
MRD code words whereas the words in the vertical direction are
not. So we have to deinterleave first, and this deinterleaving is not
at a symbol level, but instead it will be at a codeword level, which

53

in our example means exchanging rows. So after deinterleaving we

will have this codeword:
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

315
163
534

and this word is a valid product

code word so now we can decode it with our iterative decoders.

As now we do have valid code words for the horizontal direction in
every node we can decode them. We show the results for this
scheme with decoder in each hop and without it in figure 23.

Finally we got good results, at least for low BER. This, then, is our
proposal. Next we try it with a Rayleigh fading channel which
models better a wireless channel better.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER per link

S
ym

bo
l E

rro
r R

at
e

Combined decoder, clever interleaver and node correction
Combined iterative decoder

Figure 23. The figures shows the symbol error rate combining both

iterative decoders at the receiver when using an interleaver and correction
is allowed in every intermediate node of the network and when

intermediate nodes can only forward the received packets.

54

3.10 Using Rayleigh fading channel

We will now try our last scheme in a Rayleigh channel to see if our
system could work well in a wireless environment.

The parameters we choose for the channel are:

• Modulating frequency: 1Mhz
• Maximum Doppler spread: 100Hz

We use a BPSK modulation for the symbols and we try the
performance for different SNR (signal to noise ratio).

Figure 24 shows the results for our system over this kind of
channel.

0 5 10 15 20 25 30
10-3

10-2

10-1

100

SNR (dB)

R
at

e

BER per channel
BER at the destination
Symbol error rate

Figure 24. Distributed product code with an interleaver, decoding in every
node and using a combined iterative decoder over a Rayleigh channel. The
figure plots three different lines: one for the BER per channel, one for the

BER at the receiver, and another one for the symbol error rate at the
receiver.

55

We observe that when the SNR is higher than 20dB our system
performs well.

3.11 Unequal Error Protection

To try UEP we implemented the following scheme: We used
Gabidulin codes over the Galois Field GF(25). We used two
different codes, one with correction capacity 2 and another one with
one. To explain how we use them to encode a codeword we show it
with an example:

We want to encode the vector of information symbols
()vtzyx . Now we reorganize this vector into a 5x5 matrix

like this:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

****v
****t
**zyx

. The next step is encoding the vertical

direction (the first column with MRD(5,5,3) and the second and
third with MRD(5,5,1)). And the last step is encoding the
horizontal direction with MRD(5,5,3). So the resulting encoded
matrix is a 5x5 matrix.

These are the code words we send through the network. But with
UEP we can’t use correction in every node because combining two
different codes means that the resulting code words no longer
belong to a linear code. At the receiver we use, as always, both
iterative decoders.

56

The problem with this scheme is that the amount of possible code
words that the decoder has to check is huge, taking a lot of time to
simulate. However, the fact that we cannot use decoding in every
node is a big drawback of using UEP.

In order to run a simulation involving UEP we tried encoding only
in one direction and using conventional decoding. The codes
involved are the same as above. With this new configuration we get
the results shown in figure 25.

10 15 20 25 30 35 40 45 50 55 60

10-4

10-3

10-2

10-1

100

SNR (dB)

R
at

e

BER per channel
BER at the destination
Symbol error rate

Figure 25. The figure shows the results for our proposed UEP scheme.
Three lines are plotted for different rates: one for BER per channel, one
for BER at the receiver, and one for symbol error rate at the receiver.

As we can see, the results are not as good compared to the ones we
got with other configurations. We also need to mention that the
complexity of the decoding of this last case is much simpler than
before, so a direct comparison wouldn’t be accurate.

57

Conclusions and future work

The aim of this work was to find a way to do reliable multimedia
streaming using network coding. In concluding this work we think
that our solution improves the one proposed in [2] by keeping the
operating complexity level low. Furthermore, we have proposed a
way of building a systematic Gabidulin code which has allowed us
to construct product codes based on MRD codes instead of RS.
Besides, we have also built an iterative decoder which helps in the
decoding of product codes when used with a turbo-like iterative
decoder. We have shown that some traditional methods, such as
interleaving, when used with network coding techniques, improve
the performance of the whole system.

Despite our work has found a good way to do multimedia
streaming, we are aware that there is still a lot of work to be done.
For those who want to follow this work here are some guidelines for
improvement.

- The MAP iterative decoder used is just a modification of the
one with RS. We think we could get better performance with
a new iterative decoder based on MRD.

- Our system should be tried in a multipath fading channel.
- It should also be tried with a real multimedia stream.
- Try to change the searching algorithm for the iterative

decoder in order to reduce the time it takes to run.
- Also a way of getting close to 100% of clean symbols when

there are no errors in the channel should be done. Maybe a
mathematical method to obtain linearly independent matrices
in small Galois fields can be found. If not, maybe there is a
subset of matrices that perform well in network coding.

58

59

References

[1] Symbol-level Network Coding forWireless Mesh Networks
Sachin Katti, Dina Katabi, Hari Balakrishnan, and Muriel Medard

[2] A Distributed Product Coding Approach For Robust Network
Coding
Jingyao Zhang, K. B. Letaief, and Pingyi Fan

[3] Network Coding and Media Streaming
Nikolaos Thomos and Pascal Frossard

[4] Information Theory and Network Coding by Raymond W.
Yeung, The Chinese University of Hong Kong
Springer, August 2008

[5] Digital Communications by John G. Proakis and Massoud Salehi
McGraw Hill, January 2008

[6] The new construction of rank codes
Alexander Kshevetskiy and Ernst Gabidulin

[7] A rank-metric approach to error control in random network
coding
Danilo Silva, Frank R. Kschischang, and Ralf Kötter

[8] On metrics for error control in network coding
Danilo Silva and Frank R. Kschischang

60

[9] Error and erasure decoding of rank-codes with a modified
Berlekamp-Massey algorithm
Gerd Richter and Simon Plass

[10] Rayleigh fading channels in mobile digital communications
systems Part I: Characterization
Bernard Sklar

[11] Rayleigh fading channels in mobile digital communications
systems Part II: Mitigation
Bernard Sklar

[12] Optimized Transmission of JPEG2000 Streams over Wireless
Channels
Nikolaos Thomos, Nikolaos V. Boulgouris, and Michael G. Strintzis

[13] Coding for errors and erasures in random network coding
Frank R. Kschischang and Ralf Kötter

[14] Adversarial error correction for network coding: models and
metrics
Danilo Silva and Frank R. Kschischang

[15] Using rank-metric codes for error correction in random network
coding
Danilo Silva and Frank R. Kschischang

[16] Rank metric decoder architectures for noncoherent errors
control in random network coding
Ning Chen, Maximilien Gadouleau, and Zhiyuan Yan

[17] Fast encoding and decoding of Gabidulin codes
Danilo Silva and Frank R. Kschischang

61

[18] XORs in the air: practical wireless network coding
Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel
Médard, and Jon Crowcroft

[19] Reed Solomon Codes
Ralf Köetter

[20] Theory of Codes with Maximum Rank Distance, Problems of
Information Transmission, v. 21, No. 1, pp. 3-14, 1985.
E. M. Gabidulin

62

