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Abstract
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The Restricted Three Body problem is a basic model in celestial mechanics
and it has been extensively used in the design of some spatial missions. Some-
times, the designers of these missions consider other similar models which are
perturbations of this because the physical reality is more complex and they
have to take into account the influence of other physical phenomena. In this
work, the idea of the Restricted Three Body problem is adapted to a precession
phenomenon. This precession is considered in different ways and, as a result,
different models are obtained. It will be important to analyze the models by
computing the invariant objects like critical points, periodic orbits and invari-
ant manifolds. Another objective of this work is to see how a precessing models
can be useful when applied to galactic dynamics, which is an important field
where the results of celestial mechanics have been widely used. In this case, a
precessing model can be a first approximation to explain the warps observed
in some galaxies.
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1. Introduction

1.1 Objectives of the present work

One of the purposes of dynamical systems theory is to study the long-term behaviour
of an evolving system. It is usually a mathematical way of describing a physical reality.
There are two types of dynamical systems depending on whether the time is discrete
or continuous. More precisely, a continuous-time dynamical system consists of a space
X and a family of maps f* : X — X, ¢ € R, that forms a one-parameter group, i.e.,
fits = fto % and f° = Id. Here, we will assume that X = R? and the family of maps
are obtained from ordinary differential equations (ODE) that can be reduced to a first
order ODE system. These type of equations have been thoroughly studied and we have
lots of results at our disposal. Moreover, there are well known numerical procedures which
allow us to compute the solutions of these equations. Critical points, periodic orbits, tori,
invariant manifolds, all of them are invariant objects under the flow (the solution of the
ODE), which means that any state being in the object will remain in it in the future.
In celestial mechanics, these objects are very important for this reason. In recent years,
some spacecrafts have been placed in periodic orbits near the critical points.

Figure 1.1. Spacecraft in a periodic orbit near Earth-Sun L point.

For example, the SOHO project (Solar and Heliospheric Observatory) from ESA and
NASA considers a spacecraft which describes a halo orbit around the critical point L; of
the Earth-Sun Restricted Three Body Problem. This critical point is located over the line
which connects the Earth and the Sun (figure 1.1). For this reason, a periodic orbit near
this point becomes an excellent observatory of the solar activity. Some of the advantages
that suppose having the spacecraft in this trajectory are the following:
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e A permanent observation of the Sun. The emplacement is optimum for a direct
observation of the Sun’s activity.

e A saving of energy. Since the halo orbit is a natural motion due to the gravity of
the Sun and the Earth, this permits a reduction of the waste of energy. Moreover,
the invariant stable and unstable manifolds are used as “spatial highways” in order
to travel from/to the Earth.

e Solar interferences are avoided. Since the radius of the orbit is big enough, radiation
is not a problem for the communications with the Earth.

Apart from the periodic orbits and the critical points, the invariant manifolds are also
important in the dynamics. For example, in some cases, these manifolds are paths
in the space permitting a natural motion from a particular point to another. As we
will see later, this implies important consequences in the reality represented by the model.

In the present work, we are going to construct some models with the objective of
studying how a precession movement affects the critical points, the periodic orbits and
the invariant manifolds of some dynamical systems that are usually referred to as planars.
The term planar is not used in the sense of being defined in a plane but of having a clear
planar component, although the system is defined in the space. Roughly speaking, the
precession is defined as a change in the orientation of the rotation axis of a body. An
example of this is found in the Earth’s motion. The Earth is submitted to a precession
phenomenon which makes the axis of rotation to describe a cone. A consequence of the
precession is a changing pole star. Polaris, in the constellation Ursa Minor, is the star
that nowadays marks quite well the position of the north celestial pole. However, this
motion is substituting the pole star in a cycle of about 26000 years. This motion, applied
to some models, acts as a perturbation and the invariant objects are altered. The models
considered in this work will be simple and each one built in a specific way in order to
modelize this phenomenon. In this way, there will be some sections in which the critical
points, the periodic orbits and the invariant manifolds related to these orbits will be
computed using numerical procedures. The Restricted Three Body Problem will be the
model to bear in mind as all the considered models will have many similarities. Therefore
it is important to know some previous things about it before starting the construction
of the precessing models. Next section summarises the basic from this model. Then,
we present a section with the objective of getting an insight into the galaxy shape
classification and galactic dynamics since, once we will have modeled the precession
phenomenon, an important purpose of this work will be to try to explain some of the
observed physical phenomena in the galactic context. Concretely, we are interested in
some galaxies showing a curious behaviour.

Most of the observed galaxies, like which is shown in figure 1.2, are seen from the
Earth in a position that allows us to distinguish its structures like spiral arms or rings.
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Figure 1.2. Galaxy M81 photographed by Hubble telescope.

Figure 1.3. Galaxy NGC 5866 photographed by Hubble telescope.

However, other galaxies are presented in an edge-on position, like in figure 1.3, which
permit us to see the flatness of its disk. On August 2, 2001 the Hubble site published a
photograph capturing a spiral edge-on galaxy (figure 1.4). Galaxy ESO 510-G13 reveals
an unusual behaviour: its disk is warped. The reason of this twist is not known yet. Some
theories suggest that it is caused by gravitational forces produced by a collision with a
nearby galaxy. A sign that supports this theory is the presence of bright clouds of blue
stars in the outer regions of ESO 510-G13. These stars indicate that new stars are being
formed and astronomers believe that this is caused by the interaction of two galaxies.

Figure 1.4. Galaxy ESO 510-G13 photographed by Hubble telescope.
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Some studies reveal that the Milky Way could also have a warp in its disk but lower in
magnitude. The origin, again, is not clear. It may be caused by the Magellanic Clouds,
satellite galaxies of ours, and an halo of dark matter, an extragalactic magnetic field or
the accretion of intergalactic medium over the galactic disk. In [13] the authors eliminate
both, the first and the second option, and supports the third.

The rest of the work is structured as follows. In chapter 2 we present a first model
developed from the Restricted Three Body Problem. We expose the analytical procedure
to obtain the non-autonomous system of equations of motion. Chapter 3 is intended to
explain some basic results in rigid body dynamics addressing the concept of precession.
Then, we find our second model, non-autonomous too, based on two spheres which
considers an applied torque. After that, a similar model but without having torque is
presented. This model can be thought as autonomous under some assumptions. Last part
of chapter 3 adapts this model without torque to the galactic context. In chapter 4 we
develop some methods in order to analyse the four models presented. There, we compute
critical points, periodic orbits, curves and surfaces of null velocity and, finally, stable and
unstable invariant manifolds. Chapter 5 concludes this work.

1.2 The Restricted Three Body Problem

In the Restricted Three Body Problem model (from now on, RTBP) two massive bodies,
called primaries, move in a circle or an ellipse around the origin and a third one, with
negligible mass, moves affected by the gravity of them.

The equations of this model describe the motion of this third body and are ob-
tained by means of the use of a non-inertial reference frame (synodic frame). This frame
is revolving with respect to an inertial reference frame (sidereal frame) in order to fix the
coordinates of the primaries (figure 1.5).

iy

Figure 1.5. Relation between the two frames involved in the RTBP. z and y axes are
turning on the origin whereas X and Y are fixed.
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After few assumptions and using the Newton’s Law of Universal Gravitation the equations
are reduced to

i—2—x = U,

y+2z—-y = Uy,
z = U,
where
1—
Ule,y,2) = —L+ L=
™ T

is the potential and

rno= V(e )Py 22
r = V(@ —p+1)? 4yt 2

the distances of the third body with respect to the primaries. Many times the system is
written using the effective potential Q(z,y, 2):

P2y = Q
20 = Q
Z = Q,,

1 1l—p w1

Finally, the corresponding first order ODE system is

Ty = Iy,

Ty = Is,

T3 = g,

jf'4 = 2:13'5 —+ pr
i‘5 = —2$4 —|— Qm?
j:G - sz

being 1 =z, 9 = y and x3 = 2.

The only parameter in this model, p, is related to the masses of the primaries. u
represents the mass of the less massive primary whereas the mass of the most massive
primary is 1 — u. Therefore, the total mass of the problem is normalized to 1. Moreover,
the values of p are restricted to [0, %] The degenerate case u = 0 can be thought as a
two body problem whereas y = % is a symmetric distribution of the total mass, being
the primaries equal. The location of the bodies is expressed by means of this parameter

(figure 1.6).
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Figure 1.6. Coordinates of the primaries in the synodic frame of reference.

The equations of motion have five critical points, Ly, Lo, L3, Ly and Ls, divided into
two types: the collinear points and the triangular points. The three collinear points are
located in the axis where the primaries are located whereas the two triangular points form
equilateral triangles with vertices the two primaries and the critical point (figure 1.7).

¥

. iy

Figure 1.7. Disposition of the primaries and the critical points.

There are a lot of results concerning this model about the stability of the critical points,
the periodic orbits that exists near them and their stability, tori, manifolds, etc. The reader
could find lots of further information just by doing a research on internet or looking up
the wide variety of papers dealing with this model. A main reference on this matter is [21].

In this work, we are going to modify the RTBP (introducing some forces or just
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changing the classic conception) in order to study its characteristics. Some calculations
will be made to study how the model changes with the introduction of the precession
phenomenon. For example, in some models the critical points found in the RTBP are
replaced by periodic orbits, the periodic orbits by tori and so on. It will be also important
to see how the stable and unstable manifolds of periodic orbits behave under this new
situation.

Remark. In all the models considered in this work where the parameter p is present, it

will take the value corresponding to a symmetric distribution of the masses, i.e., u = %

1.3 (Galaxy shape classification

A galaxy is any of a vast number of star systems held together by gravitational attraction.
Its shape can be asymmetric (an irregular galaxy) or, more usually, symmetric (a regular
galaxy). The Hubble sequence is a classification invented by Edwin Hubble in 1926 which
divides regular galaxies into elliptical, lenticular and spiral galaxies based on their visual
appearance.

Edwin Hubble's
Classification
Scheme P

'.\ Sa
EO E3 E5 E7 SO/
o- @ o @ Spirals
\

Ellipticals

Figure 1.8. Hubble sequence.

On the left side lie the elliptical galaxies. In photographic images they seem ellipses
and are designated with the letter E followed by a number which denotes its degree of
ellipticity. This number is ten times the ellipticity calculated as e = 1 — g, being a and
b the length of the semi-major and semi-minor axis respectively. Elliptical galaxies are
presented as galaxies with a low rate of stars formation activity, formed by old low-mass
stars and a dispersed interstellar medium. They are believed to be a 10 — 15% of the
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galaxies in our Local Universe.

On the right side of figure 1.8 there are two branches which comprise spiral galax-
ies. These galaxies are characterized by having a disk (planar in most of the cases), a
concentration of stars which form some spiral arms (usually two) and a bulge in the
centre. In the upper branch lies the regular spiral galaxies whereas the lower contains
those spiral galaxies showing a bar-like structure in the middle. These so-called barred
galaxies are roughly the 50% of the observed spiral galaxies. Spiral galaxies are designed
with the letter S if they belong to the upper branch or SB if they belong to the lower one
followed by the letter a, b, or ¢ depending on their spiral structure. Spiral arms are the
place where new hot stars are formed and, because of this, this structures are brighter
and clearly distinguishable from the disk.

At the centre of the classification where the two branches meet lies the lenticular
galaxy type. This class consists of a disk-like structure with a bulge in the centre like
spiral galaxies, however, lenticulars do not have an evident spiral arm structure.

An extension of Hubble classification was done by Gérard de Vaucouleurs in 19509.
He argued that Hubble sequence did not represent the whole variety of observed galaxies
because it was based only on the density of the spiral arms and the presence of a bar. In
addition to this, Vaucouleurs classification divides the galaxies into two classes depending
on the presence or absence of ring-like structures. Since Vaucouleurs’, subtle extensions
have been made. For example, ring-like structures in barred galaxies are divided into
three groups: nuclear rings, inner rings and outer rings. Nuclear rings are located near
the nucleus, inner rings surround the bar and outer rings are the largest and the most
spectacular. The notation used for a galaxy which has inner rings is » whereas for outer
rings is whether Ry, if the major axis of the ring is perpendicular to the bar, or Ry, if
the major axis is the same as the bar one. There are another case, denoted as R; R,
when the ring has two components, one perpendicular and other parallel. For further
information see [5], [6], [7], [8] and [9].

In recent years, many efforts have been made to explain the significant structures
observed in some galaxies. These studies were mainly focused in barred galaxies. In the
case of ring-like structures, Schwarz ([18], [19], [20]) proved that this type of structures
arise near Lindblad resonances (a kind of resonance which affects the stars at a certain
distance from the centre of the galaxy and depending on the radial component of its
orbital velocity). In the case of spiral arms, Danby showed that the gravitational potential
corresponding to the bar is one of the principal causes in its formation. He also said
that some orbits departing from the ends of the bar have the same shape of the spiral
arms and, in other cases, these can form ring-like structures too. Most of the researchers
coincide that spiral arms and rings are produced by the gravitational field of the galaxy.

There are recent papers which connect the formation of both, spiral arms and
rings. In [16] the authors propose a new theory to explain the formation of rR; ring
structures. It is suggested that these rings are formed by material from the stable and
unstable invariant manifold associated with the Lyapunov orbits around the equilibrium
points of a barred galaxy. In [17] the same basic idea is developed for other models
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based on simple barred galaxy potentials. In that paper, for each model they vary one
parameter of the potential and fix the others. Then, the structure corresponding to this
potential is computed and the influence of each parameter in the final shape can be
observed. Among other results, they found that the presence (or absence) of homoclinic
or heteroclinic orbits is determinant in the formation of Ry, Ry or Ry Rs rings. In [1] the
same group of researchers answer some important questions related to their previous
work. One of these questions is to determine a priori the morphology of a galaxy from its
potential, in case of being possible. In [2] there are some qualitative comparisons between
the theoretical results and the observations to check the validity of the work. Finally, in
[3] further comparisons are made and the authors show that the theory used in these
five papers can explain other galaxy features like the ansae, which is a concentration of
material near the ends of the bar, or the bar shape.

As it is shown in the papers referred above, a well developed model can success-
fully explain the forms we observe in the different galaxies. One advantage of that model
is the simplicity of its background, since the applied tools are well known in celestial
mechanics. In this context there are many results which can be translated to the context
of galactic dynamics.







2. Forcing the RTBP

We start with a model which is artificial but quite simple. We say it is artificial because
it is more academic than realistic! but it will be useful to begin with our study due to its
simplicity. It consists in considering the RTBP but including a precession phenomenon
which we assume that is caused by an external influence. The precession will be caused by
assuming that the plane where the primaries move has an inclination ¢ and is suffering a
rotation of angular velocity w (figure 2.1). This type of motion may remind us a gyroscope
so this model could be termed as a Gyroscopically Precessing RTBP (GP-RTBP). The
main disadvantage of it will be the difficulty in finding the relation between the external

cause and the force which cause the precession.

|

5

BN

Figure 2.1. Snapshot of the motion of synodic coordinates with respect to the sidereal

ones. Sidereal coordinates (black), synodic coordinates (yellow) and angular momentum
(red).

¥

The procedure explained in next sections in which we find the equations of the motion of a

'In the sense that two particles cannot move in this way only under the effect of the Law of Gravitation.

19
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body submitted to the gravity of other two will be a standard procedure in the models we
present afterwards. Hence the importance of having a quite simple model to understand
all the steps.

2.1 Transformation of coordinates

We are looking for a similar formulation to the RTBP in which two reference systems are
used: the sidereal (inertial) and the synodic (non-inertial). Like in the RTBP we define,
first of all, the sidereal and the synodic frames of reference. The first one is fixed while
the second one fixes the coordinates of the primaries. Both frames have the centre of mass
in the origin. The sidereal axes are X , Y and Z ,and z, y and Z for the synodic axes. It
is necessary to define the transformation of coordinates between these frames. Let XY Z
and xyz be two frames where xyz is obtained doing some rotations to XY Z frame. For
instance, consider the following particular case represented in figure 2.2.

Figure 2.2. Sidereal and synodic frames and Euler angles. From [4].

We can think the transformation of coordinates as a composition of three rotations:

1. A rotation that turns around Z axis an angle ©.
2. A rotation that turns around X axis an angle i.

3. A rotation that turns around Z axis an angle 6.

The rotation of angle © around Z axis (which has unit vector K) can be represented by
means of the matrix Rze):

cos® sin® 0
Rze) = —sin® cos® 0
0 0 1
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In the same way

1 0 0
Rxu = 0 cost sini |,
0 —sini cosi
cosf sinf 0
Rzep = —sinf cosf O
0 0 1

Therefore, the transformation of coordinates is

-1

o -1 -1 o
VIJK RZ(@)RX(i)RZ(Q)VPQW’
that is,
cos©cosf —sinOsinfcosi —cosOsinfd —sinO®cosfcosi sinOsing
vire= | sin®cosf + cosOsinfcosi —sin©Osinf + cosOcosfcosi —cosOsini | vpan
K POW s

sin 8 sin 7 cosfsini cos 1

where vy and vpgy, are points or vectors whose coordinates are in XYZ and zyz
respectively.

2.2 GP-RTBP equations of motion

The situation in our model is similar to figure 2.2 but introducing some changes. Since
the synodic frame fixes the coordinates of the primaries, the angle 6 of figure 2.2 must
be nt*, where n is the mean motion of the primaries. © must also depend on time due to
the rotation of angular velocity w, i.e., © = wt*.

The objective now is to find the equations of motion of a third body in a model
in which the primaries have fixed coordinates, like in the RTBP. Let us consider
(X,Y,Z)7" as the coordinates of third body in sidereal reference and (Z,7,2)T as the
coordinates in synodic reference. Both are related by the transformation

X &
v| = RY[g].
A 3
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where
Rii Rip; Ry,
R = |Ry; Ryp Rgs |,
Rz1 Rz Rgg
R;] = coswt® cosnt™ — sinwt*sinnt* cosi,
R;é — coswt™ sinnt™ — sin wt™ cosnt™ cos i,
Ris sinwt” sin ,
R, ] sinwt” cos nt™ 4+ coswt™ sin nt* cos 4,
R; 3 —sinwt* sin nt” + cos wt™ cos nt* cos 1,
R;3 — coswt” sin,
R; ] sinnt* sin i,
Rg’é cosnt*sin i,
Rg},, = COost.
The equations of motion in XY Z frame are:
(X ou
dt2?  9x
2
RN (2.1)
)
d*Z _ou
Y/
where
~ 2 ml m2 . . . . 2 . .
U =k % + = is the gravitational potential and £° the gravitational constant,
1 2
Rl = \/(X — Xp1)2 + (Y — Yp1)2 + (Z — Zp1)2 and
By = \J(X = Xpo)? + (V= V)2 + (Z — Zpa)2
Therefore
ou [ (X -X X-X
— = —]{52 ml( = P1)+m2( = P2) R
0X I R3 R}
ou (Y-, Y —Y,
— = —]{52 ml( = P1>+m2( = PQ) 5
Y I R3 R3
au | (Z—Zp) (Z — Zps)
~ = —k mq = mo =
A4 I R3 R}

The coordinates of the primaries tipy p2 = (Xplypg, YPLPQ, ZAprg)T can be obtained using
the transformation with the synodic coordinates: ¥p1 = (Zp1,9p1, 2p1)" = (b,0,0)7 and




2. FORCING THE RTBP 23

Vp2 = (Zp2,Jp2, 2p2)T = (—a,0,0)7. We define & = (X,Y,2)" and ¥ = (2,9, 2)". The
left hand side of equations (2.1) can be thought as . Using the transformation we have,

@ = R,

. d . .

U= o R W] =R W+R'V, (2.2)
@ = RW+2RW+R V.

In vectorial notation the right hand side can be thought as,

9 a— ap; i — Upo 9 RV — Ril\"/pl R %V — Ril\’\fpg
TR Tt me | = R e e
Ry Ry Ry Ry
_ vV —Vp1 vV —Vp2
= —kKR! Myt Myg——— | .
Ry Ry

Now we multiply the whole equation by R. So we have to compute S' = RR! and
S? = RR!. The results are,

0 —(n+wcosi) wcosnt*sini
St = n + wcost 0 —wsinnt*sing | |
—wcosnt*sint  wsinnt*sin? 0
0 0 0
o S1i Sia2 Sis
_ 0 0 0
S = |S21 S22 S3s,
0 0 0
Ss1 Sz2 Sizs
8%, = —(n+wcosi)® —w?cos® nt*sin?i
1,1 )
S9, = w?sinnt*cosnt*sin?i,
8%, = w’sinnt*sinicosi,
S9, = w?sinnt*cosnt*sin?i,
S9, = —(n+wcosi)® — w?sin® nt*sin?i,
S9; = w?cosnt*sinicosi,
S, = w(2n+wcosi)sinnt*sini,
S, = w(2n+wcosi)cosnt*sini,
0 _ 2.2
Sz3 = —w'sin”i.
Equations (2.1) become
" s . vV —Vp1 vV — Vpa
V+281V+SOV = —/{72 <m1A—3+m2A—3 . (23)
T 7
1 2

Since rotations preserve distances notice that f{i” and fig do not change. In any case we
will change it by 7?2 and 73 respectively to indicate the distance from the third body to
the primaries in the synodic frame.
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Notice also that taking ¢,w = 0 the equations correspond to the usual RTBP
since
0 —n 0 -n? 0 0
S'=[n 0 0] andS°=| 0 —n? 0
0 0 O 0 0 0

2.3 The GP-RTBP in dimensionless coordinates

At this point we are going to simplify the model taking dimensionless coordinates. The
following changes are intended to do it:

T T2
r = T ry = T where [ = a + b.

z
YT AT

~| <
~|

#*r=y=

Y

4 =2 where M = my + d therefore, 1 — i = -
n = M’ whnere =m Mo, an ererore, n = M

From now on we can forget the hat over the variables, being XY 7 and zyz the dimen-
sionless sidereal and synodic frames. The coordinates of the primaries, like in the ordinary
RTBP, are vp; = (11,0,0)” and vps = (u — 1,0,0)7.2

Introducing these changes equations (2.3) become

V-V vV—v
V428V + 8% = —n? ((1—@) 3P1 3P2),
1 2

that is,

4 2

¥ —2(n+wcosi)y+ 2wcosnt*siniz = [(n+wcosi)? + w? cos® nt*sin’ i|x
—w?sinnt* cosnt*sin®iy
—w?sinnt* sini cosi z

) r—p+1
1— +
L
2

—n?

i+ 2(n+wcosi)t — 2wsinnt*sini 2 = —w?sinnt* cosnt*sin®ix

+[(n + wcos i)? 4+ w? sin® nt* sin iy

—w? cosnt* sini cosi z

) Y

1= )2+ = |
(1—p) R

Z—2wcosnt*sinid + 2wsinnt*siniy = —w(2n+ wcosi)sinnt*sinix

—w(2n + wcosi) cosnt*siniy

—n?

2 z
Hw?sin?i z — n? [(1 — )=+ p—| -
1 T3

\

m2

2Tt can be seen from Kepler’s Third Law that % = =pand § =7 =1—p.

~le
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And if we prefer a first order ODE system:

¢

'j71 = Ty,

Ty = Ts,

r3 = e,

. _ . o * . . . 2 2 2 * . 2 .
Ty = 2(n+4wcosi)rs — 2w cosnt*sini xg + [(n + wcosi)® + w? cos® nt* sin® i|xy

2 2

—w?sin nt* cos nt* sin 2

1T9 — w*sinnt™sini cost xs
rp—p T —p+l
_n2 (1—[&) 7"3 +:U 3

Y

1 T2
is = —2(n+wcosi)ry + 2wsinnt*sini rg — w?sinnt* cos nt* sin? i
+[(n + wcosi)? + w? sin® nt* sin? i|zy — w? cos nt* sini cos i T3
L2 L2
2
(=]
1 T3
T¢ = 2wecosnt*sinixry — 2wsinnt*sinixs — w(2n 4+ wcosi) sin nt* sini x;
. . . 9. L3 L3
—w(2n + wcosi) cos nt* sini xy + w? sin? i x5 — n? [(1 — )=+ |,
”
1 2
\

being z; = x, x5 = y and 3 = 2 3.

Remark. Notice that we have maintained ¢* in the equations to stress that the time is
not a dimensionless variable. Here we could define ¢t = nt* to make it dimensionless but
we preferred to maintain it because the parameter n will be important in next sections.
However, in most of the calculations we have taken n = 1 which is the same as taking the
time dimensionless.

2.4 The GP-RTBP in a Hamiltonian form

In this section we want to compute the Hamiltonian of the system. First of all we compute
the Lagrangian in sidereal coordinates. It is usually computed adding kinetic energy and
negative potential. The potential in sidereal coordinates is

1 —
UX,Y,Z,t") = n2< g “).

R, Ry
Thus
.. 1 . . .
LIX,)Y,Z,X,Y,Z,t") = 5(X2 + Y24+ 72+ UX,Y, Z,1).

The Lagrangian in synodic coordinates can be obtained using the transformation of co-
ordinates (2.2) but taking into account that now is dimensionless, i.e.,

X\ i
Y| = R'[y|+R |y
Z z z

3From now on, both notations, z1, z», 3 and z, y, z, will be indistinctly used.
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The potential in synodic coordinates is

1—
Ulz,y,z) = n2< M+ﬁ).

(&1 T2

In consequence,

1

L(z,y,z,@,9,2,1) = 5[(n+wcosi)2+w2C082nt*sin2i]x2
1 R DT S S S S SIS
+§[(n+wcosz) + w” sin” nt* sin” i}y +§w sin“i z

—w?sinnt* cos nt* sin? i xy — w(n + wcosi) sin nt* sini xz
+(n 4+ wcosi)ry —wcosnt™sini x2
—w(n +wcosi)cosnt™sini yz — (n 4+ wcosi)ys
+wsinnt*sini yz 4+ wcosnt™ sini z& — wsinnt” sini zy

1

+§[5c2 + 92 + 2+ U(z,y, 2).

Now, we can use the Legendre transformation,
i=1

to obtain the momenta,

OL
Pe = 5o = —(n+wcosi)y +wcosnt*sini z + 7,
T
oL , e .
Py = (9_3/ = (n4+wcosi)r —wsinnt*sini z + gy
oL . e .
P, = EP = —wcosnt sintx +wsinnt sint y + z,
2
and the Hamiltonian,
* Loy o
H (2,9, 2, D2, Py, 0=, t7) = (07 +p, +2)

2
—(n + wcosi)rp, + wcosnt” sini wp,

+(n + wcosi)yp, — wsinnt*sini yp,

—wcosnt*sini zp, +wsinnt” sint zp,

—Ul(x,y, z).
So the Hamiltonian equations are
(& = (n+wcosi)y —wcosnt*sing z + p,
y = —(n+wcosi)r+wsinnt*sini z + p,,
z = wecosnt*sint x —wsinnt*sini y + p,,
Pr = (n+wcosi)p, —wcosnt*sini p, + U,,
py = —(n+wcosi)p, +wsinnt*sini p, + U,,
[ P- = wecosnt*sini p, —wsinnt* sini p, + U..




2. FORCING THE RTBP 27

where
v = - :<1—M>x;%“+f‘[§“ ,
v, = -n’ _(1—/~L)%+u%_,
U, = —n’ :(1—u)%+u%:

Remark. Notice that if we consider a different potential the development is the same
and equations only change in the terms corresponding to the partial derivatives of this
potential.

2.5 Summary of equations of motion for GP-RTBP

The equations of motion in dimensionless sidereal coordinates are

( Xl - X47
X2 = X57
XS - X65 _
. (X1 —Xpl) (X1 _XPQ)
X, = —n?|(1-
: (Xo=Yp1)  (Xo—Yp)
X; = —n?|(1-
[ (X3 — Zp1) (X3 — Zpa)
X = —n?|(1-
\ 6 n? | (1—p) R H R ’

where

Ri = V(X1—Xp1)2+ (Xo—Yp1)? + (X5 — Zp1)?,
Ry = (X1 —Xp2)?+ (Xo — Yp)?2 + (X3 — Zpy)?,

Xp1 = p(coswt® cosnt™ — sinwt™sinnt* cos i),

Xpy = (pu—1)(coswt™ cosnt™ — sinwt* sinnt* cos i),
Yp1 = p(sinwt® cosnt™ + coswt™ sinnt* cosi),

Ypo = (p—1)(sinwt” cosnt™ + coswt™ sinnt* cosi),
Zp1 = psinnt®sini,

Zpy = (p—1)sinnt*sini.
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The equations of motion in dimensionless synodic coordinates are

(

'j71 = Ty,

-1..2 = s,

T3 = s,

.’t’4 = 2@(1]5 — 2b2$6 + [CL2 + b%]xl — blbgl’g — b102$3

ry—p o —p+l
2
_ 1 — ’
n* (1= p) o =
. 2 12 2 L2 L2
Ty = —2axs + 2[71.%'6 — blbziCl + [Cl + bl]ilfg — bgCQ.ﬁEg —nNn (1 — 'u)’]”_3+ ,Uzﬁ )
1 2

. 9 9 L3 L3

T = 2byxy —2bixs — (n+ a)byzy — (n+ a)bexs + cjzs —n* | (1 — ,u)ﬁ + ns|
L 1 2

where

a(n,w,i) =n+wcosi, by(n,w,i,t*) =wsinnt*sini, c¢;(w,i) =wsini,
ba(n,w,i,t*) = wcosnt*sini, co(w,i) = wcosi,

and

(371 - /“L)2 + ZL‘% + ’I?ﬁv

rn = \/
r o= @ - 12+ ad a3

In Hamiltonian form, we have

(& = ay— boz + p,,
y = —ax+biz+p,y,
z = bgﬂf — bly +pz,
. T — [ rT—p+1
Pz = apy — 62pz —n’ [(1 - :u) 3 + p 3 )
r Ty
) Y Y
Py = _apx+b1pz_n2 [(1 _:u)_g_’_ﬂ_g )
L1 T3
) ) z z
L ry ra

Remark. Remember that X; = X, Xy =Y and X3 = Z, and similarly 1 = x, x5 =y
and x3 = z. The transformation of coordinates between u = (X,Y, Z)? and v = (z,y, 2)"
is given by u = R™'v and the momenta p,, p, and p, are

Po = —ay+bsyz + i, p,=ax —biz+7 and p, = bz + by + 2.




3. Rigid body dynamics

In this section we consider a new model consisting in our two primaries joined by a
fictitious massless bar which keeps the distance between them fixed. We will assume that
exists an axis of symmetry. In rigid body dynamics, a body with this property is called a
symmetric top.

3.1 (General motion of a rigid body

With the purpose of explaining the most general possible motion of a symmetric top in
a torque-free motion, this is, the motion of a body which has no forces acting on it, we
are going to begin with some basic results in rigid body dynamics.

Let us consider a fixed coordinate system A in the space (space coordinates). Then, let
us assume that there are several mass points m; %. These points form a rigid body if
distances between them remain constant. In vectorial form we say:

(FA,i - FA,j)2 = Cij

being ¢; ; a constant depending on the two mass points.

Now let us consider another coordinate system B with the origin in the centre of
mass of the body (body coordinates). Let ip; be the position vector of a point of the
body in B coordinates. The position vector in A coordinates is

TAi = Tem + TBis (3.1)

as shown in figure 3.1.

Notice that 7, = Tacm and 7, = 0. Denoting by & the angular velocity of the
non-inertial frame with respect to the inertial and taking the derivative of (3.1) with
respect to time we obtain

ﬁA,i = Ucm + W X FB,i- (32)

Remark. Notice that in the expression above appears a term depending on &. Remem-
ber that the derivatives of a vector b with respect to time in an inertial and non-inertial
frame are related by

db

T dt
S

db

— Ixb
dt T,

S/

4The same discussion can be done if we think in a continuous distribution of mass. Nevertheless, it is
easier to see firstly the whole discussion for point masses.

29
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being S and S’ the inertial and non-inertial frames respectively and & the angular
velocity of the non-inertial frame with respect to the inertial.

The vector 7p; has constant modulus, thus the only possible motion of the mass
m; with respect the centre of mass is a rotation of angular velocity & around an
instantaneous axis that passes through the centre of mass. This allow us to decompose
the motion of the body into two motions: the body motion with respect the space
coordinates and the rotational motion of the body. Since we will use this theory to model
our problem of two bodies, we are only interested in the rotational motion, ie, the motion
of the bodies about the centre of mass.

Figure 3.1. Relation between the two frames of reference.

The total kinetic energy in space coordinates is

Zmzvm = (ZZ: mz> T2 A Ty - @ X (22: miFB,¢> + %Z@:ml (0 x FB,@')2

and notice that ), m; = M, the total mass, and ) ., m;rp; = M7, = 0. In this way
the kinetic energy is the sum of two separate terms:

< E mz) + E mz W X TB z) — T;franslatzon + Trotatwn

In order to simplify the expressions and since we are only interested in the rotational part,
we are going to avoid 7z, notation and we will use, from now on, 7; to represent vectors
in body coordinates. Using vector identities, it is not difficult to see® that the rotational
part can be written as

rotatzon - E waw,@Iaﬂ7

®More details can be found in [11] and [12].




3. RIGID BODY DYNAMICS 31

where «, =1, 2, 3 and

I, = Z m; (7”@'25045 — rmriwg) :

(2

In this expression, d,p is the Kronecker delta:

5= 1, if a=p
B0, if a#pB

Using this, the rotational part of the kinetic energy can also be represented as

1

Ty —
Trotation - 5&) I

being I the moment of inertia tensor whose expression is

Somi(y? +27) = > my; — > mrz;
I= —yomamgyr yom(@F A+ 2) = Y mz
= mxz; — > Mz > mz(a:f + 3/12)

Remark. When the mass distribution is continuous, essentially we must replace the
sum over mass points by a volume integral:

[[] p(y*+ 2*)dedyd=  — [[[ prydxdydz — [[[ przdxdydz
1= — [[[ prydx dydz [[] p(a* + 2%) dx dy d= — [[[ pyzdz dy dz
— [[] przdzdydz — [[] pyzdx dy d= [[] p(a® + y?) de dy d=

where p(x,y, 2) is the density function.

Since the inertia tensor is symmetric it is possible to find an orthogonal transfor-
mation U that diagonalizes I:

L 0 0
U= (o 1, 0
0 0 I

Such coordinate axes are called the principal axes and the diagonal values are called the
principal moments of inertia. Moreover, all the eigenvalues of the matrix are positive, so
the kinetic energy will be always positive no matter what @ is.

3.1.1 The angular momentum

When there are no torques applied, the angular momentum of a rigid body is preserved.
In addition, there is a connection between angular momentum and angular velocity that
we are going to show.

The total angular momentum of the system is defined by

E = Z m; (FA,i X 1714’2‘) .
%
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Applying (3.1) and (3.2), and using the fact that we have centred the body coordinates
in the centre of mass (>, m;m; = 0), we obtain

—

L:chx]\/[ﬁcm+§ mT; X (W X 7).
7

Again we can see that total angular momentum is the sum of two: the part related to the
motion of the centre of mass and a rotational part.

—

L= Ltranslation + Lretation'

And again, using vector identities, it is not difficult to see that
Lrotation - Z ]aﬁw,@7
B

that is B
Lratation =Iw. (33>

3.2 Euler equations for a torque-free motion

A body having no torques acting on it preserves its angular momentum. Therefore, its
derivative with respect to time is null in space coordinates:

dL
dt

A

In body coordinates, since the reference frame is non-inertial, time derivatives must be
replaced by another expression that includes the fictitious forces associated to this non-
inertiality:

L

7 +&@xL=0. (3.4)

Using (3.3) and the fact that the centre of mass position and velocity are null in body
coordinates in equation (3.4), we get the Euler equations,

( dwl

IIE = (,LJ3L2 — (,UQLS = WaWs3 <I2 - I3) ’
d(,L)Q

< 2%:(,01[/3_0)3[/1 = WiWws (IB_[l)a
du}3

\ I3E = (JJ2L1 — CLJ]_LQ = Wiz (I]. - [2) .

3.3 Simple models with two connected spheres

Our model will consist in two spheres of radii @ and b and masses M; and M, respectively.
In order to apply the theory of rigid bodies, we are going to assume that both masses are
connected by a massless bar. Figure 3.2 represents this model. Let us take the coordinate
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system with origin at the centre of mass of the two spheres. In this way, the symmetry
axis is denoted with the number 3 and the coordinates of the centres of the spheres are

M, = (0.0 MR M, — (0,0 —hE
1 — 77M1+M27 2 — 77M1+M2 .

‘3

—o 2

M,
1

Figure 3.2. Representation of the model.

To compute the moment of inertia tensor of our rigid body, first we need to know the
inertia tensor of a sphere with centre in the origin of the coordinate system. This can be
computed using cylindrical coordinates. For a sphere of mass M, constant density p and
radius a the principal moments of inertia are equal. Moreover, any axes that we could
take are principal axes due to the symmetry of the sphere. Therefore

Iy 0 0
I=1(10 I, 0O
0 0 I3
where
a 2 pVa?—z2 8
I 212213:/ / / przrdrdﬁdz:—pﬁa5.
—aJo Jo 15
We can think that the density of the sphere is
M
SO
2 2
[1212:[325M1a .

Now, we can use the Displaced Axis Theorem to adapt this result to our case. This
theorem states that if we know the moment of inertia tensor using the centre of mass
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as the origin (I.,), and we wish to know the moment of inertia tensor about an origin
displaced by ¢, a constant vector, it is given by the formula,

Izj’ == Icm + M<q25a6 - an,B)'

In our case we take ¢; = (0,0, 1\21]\121\?2) and ¢ = (0,0, M]ﬁf@) for spheres M; and M,

respectively. For instance, to calculate I, for the sphere M; we do:

I = 2Mya? + Myg? = 2Mya? + My [ —2f 2
2—5 14 1(]—51(1 1]\41_'_]\42 .

Then adding the results of both spheres, we obtain the moment of inertia tensor of our
model:

i 0 O
I= (0 L, 0
0 0 I
where ) )
[ 21 M MoBE +2Mb2+M MR
1= g VARV 52 VAV
2 2
2 M>R 2 MR (35)
I = “Mya2 + M, | —22 SMLV2 + M, | —2 :
2 = ghha®+ 1<M1+M2> gt 2<M1+M2> !

2 2 2 2
[3 = nga + SMQb .

Notice that, as we previously said, our body is a symmetric top since Iy = [, # Is.
There exists two types of symmetric tops. It depends on Iy = I, > I3 (prolate case)
or I} = I, < I3 (oblate case). From (3.5) we are in the prolate case. Therefore, Euler

equations are
.
dwl [3 1
— = —wows | — — ,
dt o\

dw I
d—; = WiWs (—3 — 1) s <36>

dW3
L dt

I
Then, w3 must be constant. Let us define €2, = w3 (I—S — 1) . Combining the two equations
1

of (3.6) that are not trivial we have as a result
d2(,U2

dt?

2
d“wy )
= — Wl
dt? e

The solution of these equations are

_ 2
= —QPWQ.

wi(t) = —Asin (,t) + Bcos (Qut), wo(t) = Acos (Qpt) + Bsin (Q,t) .

Since the third component of the angular velocity is constant but not the others, this
vector precesses around the symmetry axis 3.
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In this way, we can compute the angular momentum, f/, using (3.3):

B I (—Asin (Q,t) + B cos (Q,1))
L=1J5=| I)(Acos(Qyt) + Bsin (1))
T3ws

Notice that L is not constat. This is because it must be constant in space coordinates
and the expression above refers to body coordinates.

Now we are going to find what are the values of A, B and ws3. Suppose that space
coordinates have their third axis, Z’, in the direction of the constant vector L and
suppose also that the third axis of the body coordinates, 3, is tilted at an angle 6 from
Z'. When t = 0, imagine that the planes Y'Z’ and 23 are the same.

If we define Q) to be the angular velocity of the body around its third axis, then,
it can be seen that
0
G=10|+,

Q

where W), is the missing part of the angular velocity, and w, = T Following the discussion
1
in [12] we obtain

L L
A= —sin(d), B=0 and ws= —-cos(f).
Il I3
Therefore,
L
——sin(#) sin (,¢)
I
- L
W= ]—sin(Q) cos (€2,t) (3.7)
1
L 7
[_3COS( )

It is easy to check that 2 = —(,,.

3.3.1 Angular velocity in terms of Euler angles

It can be proved that angular velocity in body coordinates has the expression
épos(w) + q'b‘sin(w) sin(0)
W= | —0sin(y) + ¢ cos(1)) sin(h)
U+ dos(0)

1) is the angle related to the rotation of the body, ¢ to the precession and # to the nutation.

From the expression above and (3.7),

¢ = wpt, 0 = constant, ¢ = O,

b=, 6=0, b=Q. (38)
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Once we know the Euler angles, we can build matrix R (or its inverse) which is the change
of coordinates from body coordinates to space coordinates.

Remark. In the matrix R (in fact, its inverse) we will switch columns to put the
masses into the first axis of body coordinates, so this is more natural to compare the
results between this model and the previous one.

We realize that the motion of primary bodies is not like we wanted unless § = Z.

2
This makes that the axis of symmetry of the body, which firstly is the third but then the
first, is perpendicular to the angular momentum L, defined from the beginning in the

direction of the third axis of space coordinates.

3.3.2 A model with applied torque

Figure 3.3 shows what would be the motion of the primaries in this new model if there is
not any torque applied to the body formed by the spheres.

—L

Figure 3.3. Motion of the primaries when 6 = 7 (sidereal frame of reference).

This is, like the primaries in the RTBP, describing a circumference. So torque-free motion
of this body does not seem to be like we wanted. Therefore, we have to introduce some
changes in order make the plane containing the trajectory precess. The first thing someone
could think is to take Euler angles in a way to eliminate the rotation (¢» = 0) and to make
precess the body (9 =37+ asin(ﬁt)). Actually, it is not a precession because we are
changing the angle related to nutation phenomenon (the movement that varies the axis
of rotation of a body). However, this change is what produces the movement that we are
thinking of (figure 3.4). Notice that these expressions of the Euler angles do not have to
make the body satisfy the Euler equations.
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Figure 3.4. Motion of the primaries when ¢ = 7 + asin(ft) (sidereal frame of reference).
Red arrows indicate some of the angular momenta of the body as it revolves.

The parameter « represents the maximum tilt that a sphere can achieve respect plane
z = 0 and [ the oscillation frequency. The motion of primaries is determined by R and
only depends on three values: w,, o and 3. In sidereal coordinates:

cos(wpt) cos(asin(f5t)) cos(wpt) cos(asin(ft))
P = p | sin(wpt) cos(asin(ft)) |, pa = (— 1) | sin(wyt) cos(asin(S5t))
—sin(asin(ft)) — sin(asin(ft))

Following a similar discussion like we did in the first model we obtain the equations of
this particular RTBP¢:

;

Ty = Ty,
Ty = s,
j:3 = e,
I"4 = 2na2x5—2bx6—|—(n2a§+b2)$1—|—(n2a1a2—i))x3

ry—p T —p+l
—7’L2 (1_/~L> T3 +/~L 3 )

1 T3
. Z2 X2
T5 = —2nasry—2na1Ts+2na,bry +n’xe —2nasbxrs — n? [(1—u)—3+u—3 :
T T3
. 2 1 2.2 2 2 L3 L3
¢ = 2bxyg+2na;xs+ (nayax+0)x+ (n*al +b*)x3—n (1_M>F+'ur_3 :
\ 1 2

being

a; =sin(e), b=¢, &= asin(ft),
as = cos(e).

6Since wy, represents the mean motion of the primaries, we redefine w, as n.
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In next sections we will refer to this model as Rigid Body with Applied Torque RTBP
(RBAT-RTBP) or simply model 2. Although this model is correct, it has an inconvenience.
We are considering an external force to cause the torque and we do not know exactly how
this force is related to the factors which cause it. This force arises from taking the Euler
angles as above and not respecting the Euler equations for a torque-free motion of a
symmetric top. In order to obtain a compact model it would be better to consider a
torque-free model.

3.3.3 A torque-free motion model

Having made all the calculations for the model of two spheres connected by a massless
bar which considers an external force is very advantageous. The profit lies in the Euler
angles we took. The nutation angle was § = 7 + ¢ being ¢ = asin(ft). Remember that
when « is null, = 7 and the motion is purely circular as in the RTBP.

From (3.8) we know that 6 must be constant unlike the model previously consid-
ered. However, it must be different from 7. Since the precession we are looking for seems
to be controlled by a parameter which takes near-to-zero values, we realize that 6 = 7 +¢
where ¢ is any small negative constant value may cause the desired motion. So the
calculations we did before will be useful in this case. We only have to take into account

that ¢ is constant and then ¢ = 0.

Remark. Notice that § = 7 + ¢. For this reason ¢ will take small negative values since
we want the bar to have an inclination ¢ < 7.

¢ will remain as nt to cause the translation of the primaries around its centre of
mass with mean motion n. 1) can be taken as null. Since ¢ is the angle related to the
rotation of the body, i.e., the rotation of the body around its axis of symmetry, it does
not matter at all the velocity we take for it because this will not affect to the motion of

a third body. In principle, its expression should be 1 = Qt being 2 = % cos(0) < — %’),
which is not null if = 7 +&. Comparing these two situations we consider two trajectories
integrated from the same initial condition, the first with the right value of 1) with respect
to the Euler equations of torque-free motion and the second taking v null. In fact,
these two trajectories are different compared in its respective body coordinates but once
changed into space coordinates they represent the same trajectory. So, strictly speaking,
taking ¢ = 0 entails an applied torque to the body. In spite of this, this torque does not
affect to the motion of the third body in which we are interested. Figure 3.5 represents

the motion of the primaries in this case. From now on, this model will be called Rigid
Body Torque-Free RTBP (RBTF-RTBP) or model 3.
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05

-

05 05

Figure 3.5. Motion of the primaries in the RBTF-RTBP (sidereal frame of reference). Red
arrows indicate some of the angular momenta of the body as it revolves.

The equations of motion of model 3 are:

¢

T = Ty,
j’:Q = Is,
jj3 = Tg,
4y = 2n cos(e) s+ n? cos(e)? xp + n? sin(e) cos(e) x3

ry—p o —p+l
—TL2 (1_M> r3 + 3

Y

1 T2
T T
5 = —2n cos(e)zy — 2n sin(e) zg + n? xy — n? [(1 - ,u)—g + [L—; ,
"1 T2
. . 9 . 9 . 9 9 T3 T3
¢ = 2mnsin(e)xs 4+ n® sin(e) cos(e) xy + n? sin(e)x3 —n* | (1 — u)r—g thgl
\ 1 2

and it is important to emphasise that this is an autonomous system. As a consequence,
like in the RTBP, there will be critical points and we will compute it afterwards.

Following the same procedure like that we did in the first model, the Hamiltonian
can be computed from the Lagrangian:

H(xq, 29,23, 14,25, 76) = x + a3 + a3) — n’ sin(e) cos(e) z1 x3

N —

(n® cos®(e) 2t + n’ a3 + n® sin’(e) 23) — U (z1, 72, x3) .

(
1
2

Remember that U(xy, z9, x3) = n? [1—;& + %] is the potential caused by the two bodies
we are considering. The fact that now they are spheres instead of point masses is not
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relevant in the potential as it is in the discussion of the motion of the whole body.

Proceeding as in the RTBP, the equations of motion admit of a Jacobi constant,

C(z1, 29, T3, 24, 75,76) = — (2] + 22 + x3) + 2n” sin(e) cos(e) 21 23

+n? cos?(e) ] + n® x5 + n® sin®(e) x5 + 2U,

and, as usual, C' = —2H.

An important thing to highlight is the absence of the time variable, ¢, in this con-
stant of motion. This will allow us to compute the zero-velocity curves or, more generally,
the zero-velocity surfaces which delimit the regions where the third body is allowed to
move on.

3.4 An application to galactic dynamics

In previous sections we have been dealing with simple models, some of them unrealistic,
but they have helped us to gain an insight into the matter. Using all the work that we
have done until now, we will try to apply some of the developed tools to the galactic
dynamics. We will focus our efforts in barred galaxy models, assuming that the bar
behaves like a rigid body. Particularly, we will study the invariant objects which causes
the formation of the spiral arms in [15] and how they are affected by inflicting a precession
to the bar.

One of the models most used in galactic dynamics and the one we are going to
study is the Miyamoto-Nagai Ferrers. However, the implementation to other galactic
models is equally straightforward. These models have equations very similar with respect
to the RTBP. The main difference is the fact that now we are not considering two
masses describing circles but a bar. The body that revolves (two masses, a bar,...)
affects the equations in the part corresponding to the potential. So now we have to
focus in the components of the orbital structure of barred galaxies: a bar, a disc and
sometimes a bulge. In [15] the author describes thoroughly some other possible potentials
to be considered, this is, the bar potentials (Ferrers, BW, Dehnen and Logarithmic),
the bulge potential and the disc potentials (Kuzmin-Toomre and Miyamoto-Nagai).
Then, the potential of a galactic model of this type is divided into three components:
U = Uy 4+ Uy + U, each one of them corresponding to the bar, the disc and the bulge
respectively.

In order to cause the precession, let us take model 3 in which two spheres con-
nected with a massless bar moved as a rigid body with no torques applied on it.
Remember that the discussions we did with models 1, 2 and 3 were independent of the
potential we took then. This entails an important advantage: we can follow the same
procedure but adapting the potential to our new situation. The potential part of the
equations is related to the spheres so this part has to be replaced with a potential which
considers the components of the barred galaxy. We assume that the barred galaxies we
want to study have a bar and a disc but do not have bulge. With precession, the bar
and the disc will be tilted a small angle ¢ in sidereal coordinates (figure 3.6). However,
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in the synodic frame of reference, the bar is fixed in the x axis and the disc is embedded
in the plane z = 0. So the resultant potential of the galactic model, U, will be the sum
of two components, U = U; + U,, where U; will be the Ferrers bar potential and U, the
Miyamoto-Nagai disc potential. The main advantage of this model is that the system of
equations is autonomous.

0.5

05 s

Figure 3.6. Motion of the bar and the disc in the sidereal frame of reference. In addition
to the precession, the bar revolves around its symmetry axis (torque-free motion).

Here we present the expressions of Ferrers and Miyamoto-Nagai potentials:
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On the one hand, a;, b, and ¢, are the semiaxes of an ellipsoid, G the gravitational
constant, n, the homogeneity degree, py the density at the origin,

A(u) = (@ +u) (b +u)(c; +u),
22 y? 52

a§+u+bz+u+cg—l—u

m?(u) =

and )\ the unique positive solution of m?(\) = 1 if m?(0) > 1 and zero, otherwise. On the
other hand, R? = 22 + ¢? is the radius, ag and by are the semiaxes and m, the mass of
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the disc.

Summarising all the explained above and considering all the assumptions we made
in model 3, the following equations describe the motion of the Precessing Miyamoto-
Nagai Ferrers galactic model.

( :L'l
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Ty
T5
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being ¢ the tilt

Ly,

Ts,

T,

2n cos(e) x5 + n? cos(e)? x1 + n? sin(e) cos(e) a3 + Uy,
—2n cos(e) wg — 2n sin(e) xg + n? 29 + U,

2n sin(e) x5 + n? sin(e) cos(e) z1 + n? sin(e)? x3 + U,

angle and n the angular velocity of the bar”. Moreover, the potential U is

decomposed as follows:

U=U +U,.

Remark. The derivatives of the Ferrers potential are not trivial. The case considered
in this work is nj, = 2. Further information about the Ferrers potential can be found in

10].

7Although the bar is now an ellipsoid, it moves like the two spheres connected, so n is like the mean
motion if we think that the spheres are located at the ends of the bar.




4. Numerical studies

The calculations of this chapter have been made by means of ad hoc routines and pro-
grammes under FORTRAN language. First we present some results of the GP-RTBP.
Then, some results of the models considering rigid body dynamics are presented. In
the first place the model in which there is an applied torque (RBAT-RTBP) and then
the torque-free model (RBTF-RTBP). Finally we expose some results of the Precessing
Miyamoto-Nagai Ferrers galactic model. Most of the computations are related to the crit-
ical points of the RTBP because some of the analysed periodic orbits reside near these
points when the parameters which influence the models take small values. For simplicity
we will restrict our computations to the Ly point though all the procedures used can be
adapted to other critical points.

4.1 The Giroscopically Precessing RTBP

Our first model consisted in a modification of the RTBP considering three parameters:
the precession velocity, w, the tilt angle, ¢ and the mean motion of the primaries, n.
In order to simplify the model and because we only want to know how the precession
velocity and the tilt influence the motion, we thought to define n = 1. One thing to be
considered in this model is the degenerate case when ¢ = 0. In that case, the precession
velocity continues existing and influencing the equations as we can see in section 2.5.
Then, the whole system could be thought as a RTBP being the mean motion of the
primaries n +w. So, although the model is simple, which is and advantage, this behaviour
in the degenerate case is not what we want. This is the principal reason to consider other
models in the present work. However, we present the analysis around the periodic orbits
of this model because it will be useful in the other models.

First of all, the analysis is focused on seeing how the critical points existing in
the RTBP change due to the precession phenomenon. They are replaced by periodic
orbits which we want to compute. The procedure explained below is the chosen to achieve
this objective. Then, we see how the parameters of the model affect the shape of these
periodic orbits.

4.1.1 The parallel shooting method

In this section we are going to explain the parallel shooting method intended to find
some periodic orbits in a Hamiltonian system.

Let zp € R™ be the initial condition of the periodic orbit, 7' the period and ®;(x)
the point after integrating x ¢ units of time.

43
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In order to obtain a periodic orbit, we want to solve
®T<I0) — Xy = 0.

However the periodic orbit may be unstable. This is, if we integrate T" units of time the
initial condition of a periodic orbit, the final point will not match the first one due to the
numerical integration. To avoid this problem, we will consider k£ points on the periodic
orbit (zg,x1,...,Tx_1) and § = % Then, the method consists in solving the following

equations:
®s(wo) — 1 =0,

@5($k—2) — Zp—1 =0,
(1)5<l'k_1) — Ty = 0.

The idea is the following: instead of integrating T units of time, which entails un-
stability, we break the orbit in k pieces. Each one must begin in the end point of the
previous and finish in the start point of the next. The advantage is that now we only have
to integrate each point ¢ units of time. In this way the unstability is considerably reduced.
So we have a system of nxk equations and nx k unknowns. If we call X = (g, z1,...,25_1)

and
®5(z0) — 21,
P =1
Ps(wp—2) — Th-1,
®s(z-1) — 2o,
we can solve the system F(X) = 0 by means of the Newton method. Therefore, it is
necessary to obtain DF(X):

D®s(zo) —Id 0 0 0
0  D®s(z;) —Id 0 0
0 0 Dos(x 0 0
DF(X) = . . o(e2) .
0 0 0 DOs(z_.)  —1Id
—Id 0 0 0 D@d(xk_l)

where Id is the n x n identity matrix. Then, the Newton method stands

DF(X")AX" = —F(X"),

Xr—i—l :XT+AXT’

r > 0.

4.1.2 Dynamical substitutes of critical points

We are going to find some periodic orbits substituting the Ly libration point of the RTBP
using the procedure explained above.

First of all, we need an initial condition. We will use the coordinates of the libra-
tion point, i.e., if the Ly point of the RTBP has coordinates Ly = (l2,0,0,0,0,0) then,
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we will take X = (zg,...,251) = (Lo, ..., Ly), this is, xo, x1,..., 251 = Lo. We take
all the points being the same because for a small values of w and ¢ we suspect that the
periodic orbit created instead of Ly is very close to this point.

After few iterations of the Newton method we have:

003
003

Figure 4.1. Periodic orbit substituting L, libration point and its projections obtained for
the values w = 0.1 and ¢ = 0.1.

It was enough to take £ = 5 in the parallel shooting method to avoid the problems with
the unstable behaviour of the orbit.

Since it is difficult from figure 4.1 to appreciate what is the shape of the orbit,
figure 4.2 shows the same orbit but in this case the units are different depending on the
axis.

Figure 4.2. Orbit from figure 4.1 but changing the scale of the axes.
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4.1.3 Continuation procedure

Now the objective consists in figuring out how the shape of the orbits depends on the
parameters w and 1.

Firstly we will take w = 0.1. Then, varying ¢ in the range [0,0.3] and computing
the orbits will allow us to see the changes (figure 4.3).

-0.08

-00s

Figure 4.3. Family of periodic orbits fixing w = 0.1 and i € [0,0.3].

Now we do the same but fixing ¢ = 0.1 and w € [0,0.3] (figure 4.4).

005 -1.06
0.0s

Figure 4.4. Family of periodic orbits fixing i = 0.1 and w € [0, 0.3].

A problem arises when we realize that for some values of w and i, the parallel shooting
method does not converge. We suspect that there are some regions in the plane of
parameters w — ¢ where the method is unable to find the periodic orbits. To get an idea
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of the situation, it will be only necessary to use values of w and ¢ in the interval [0, 1].
Moreover, the parameter ¢ is 2m-periodic but we will not use inclinations greater than
T~ (.785.

4

The first thing to do is to take a grid of points in the square [0,1] x [0,1] and see
if the method converges at each point. For simplicity, we use equidistant points in
both directions with distance 1073: wy = 0, w; = 0.001,... and the same for i. We
begin computing the periodic orbit with (wp,ig) = (0,0), so we are in the RTBP. Then
(0,0.001), (0,0.002) and so on...

The initial condition for the method we have to take at each point will be com-
puted from the previous ones using linear interpolation. For example, assume that we
have fixed w = w, and we know a good initial condition for (w,,is_2) and (w,,is_1), i.e.,
we know that X, o = (z§7%,...,25 %) and X, ; = (25',..., 25 ") are points of their
respective periodic orbits. Then, using linear interpolation in the direction of i, we will
take as initial condition for the method

Xs=ai,+b
where
Xsfl - Xsz
@ = —— "
lg—1 — 15—2
and

b= Xog —lg_p = Xy 1| — Qls_1.

This is for s > 2. If s < 2 we take the coordinates of the libration point as initial
condition because the parameters are almost null.

Another problem we have to face in this procedure to compute “the map of peri-
odic orbits” is the determination of a proper initial condition. Sometimes it is not
possible to determine if the method converges to a certain point because the points used
to compute the initial condition could make the method diverge. In that case, which are
the best points to use in the determination of the initial condition of the Newton method?

As means of solving this problem we add some modifications to the program. Ba-
sically we start computing the map of a grid of distance 10~! among its points, using the
same system as before. Then, we save in a file all this periodic orbits and start computing
the periodic orbits for a grid of distance 1072. This time, when we want to find an initial
condition for each point in the parameter field, we do a search in the file to find the
nearest periodic orbit we have obtained in the previous step and use it. The problem
now is that for a given point in which a periodic orbit exists, its nearest periodic orbit in
the file could be far enough to make the method diverge. This could be avoided adding
the new periodic orbits to the file and starting again the program for the same grid until
there are not new periodic orbits found.
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In the final step we compute the map for a grid of distance 10~* among its points. This
calculation takes a lot of time so it is done only once.

o1 o2 03 04 a8 08 07 08 0% % o1 0@ o3 o4 05 06 07 0F 49
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Figure 4.5. Grids used in the continuation map of periodic orbits.

The result is presented in figure 4.6.
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Figure 4.6. Continuation map of periodic orbits of critical point Ls. Black color represents
the region where the method has not found the periodic orbit which replaces the Ly point
of RTBP.

Once we have all the periodic orbits in the parameter square [0, 1] x [0, 1] we can see how
the orbits change in any way. For example, figure 4.7 corresponds to the orbits marked
with asterisks on the map on figure 4.8. We can clearly see the gaps corresponding to the
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tongues where there are not periodic orbits and how the shape of the orbits changes in
the intermediate part.

Figure 4.7. Path of periodic orbits marked with asterisks in figure 4.8 .
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Figure 4.8. Continuation map highlighting the orbits represented in figures 4.3, 4.4 and 4.7.




4. NUMERICAL STUDIES 90

4.2 The Rigid Body with Applied Torque RTBP

Model 2 was the first approach to model the precession phenomenon using the natural
motion of a rigid body. Since we do not obtain the expected results after the first analysis
of the problem, we decide to consider an external force to cause such motion of the
primaries. Like the first model, we only have to take care of three parameters: the mean
motion of the primaries, n, the maximum tilt angle achieved by a body with respect to
the plane z = 0, a and a frequency of oscillation, . In this model, the degenerate case
when o = 0, is equivalent to the RTBP with n as the mean motion of the primaries.
The procedures used to compute the periodic orbits and the continuation are the same
as those used in model 1.

4.2.1 Dynamical substitutes of critical points

Model 2 is very similar to model 1 in the sense that both models depends on two
parameters. There is a parameter controlling the inclination (i in model 1 and « in
model 2) and other which controls an angular velocity “of precession”, w in model 1, or
a frequency of oscillation, £ in model 2. In both cases the mean motion of the primaries,
n, is set as 1 for simplicity. Another similarity is that both models consider an external
force to cause the motion of the primaries which is not natural in the sense that there is
a torque applied. Moreover, the equations of the models are not autonomous, so they are
expected to have periodic orbits replacing the critical points existing in the case of no
precession (RTBP).

Then, it is not a surprising fact that the periodic orbits obtained instead of Lo
point are very similar to those we got in model 1.

o1

0.05

Figure 4.9. Periodic orbit substituting L, libration point and its projections obtained for
the values @ = 0.1 and 8 = 0.6.
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Notice that the orbit in figure 4.9 is not so slim as it was in model 1 but it is difficult
to compare them taking into account that whereas the inclination is the same, the other
parameter have a different meaning depending on the model. In this case, the orientation
of the orbit is inverse with respect the orbit of model 1.

4.2.2 Continuation of orbits

In this model we can proceed as in the previous in order to see how the orbits depend on
the parameters o and (. Let us fix one of the parameters while the other takes different
values. Figures 4.10 and 4.11 consider both cases.
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Figure 4.10. Family of periodic orbits with 8 = 0.6 and « € [0,0.4].

Figure 4.11. Family of periodic orbits with a = 0.1 and g € [0.85,1.15].
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In figure 4.11 we can distinguish small orbits concentrated in the centre of the picture.
They correspond to values of < 1. As a consequence, their period is greater than the
period of the revolving primary bodies which is 27. However, they become considerably
larger as the values of § are greater than the unit. In that case the period is smaller than
2.

For the purpose of seeing the influence of the parameters we are going to compute
the continuation map as we did with model 1. Notice that in this model we compute it
in the square [0.5,1.25] x [0, 0.4] because small values of § lead us to huge periods, since
period is equal to %’T, and because it is interesting to see the behaviour for values greater
and lesser than 1. The inclination, o has to be small so a maximum of o = 0.4, which
means 22.92° is enough for our aspirations.

Again, some tongues appear in figure 4.12 and we suspect that the periodic orbits
have different shapes depending on where the point (3, «) is located. Indeed, as shown
in figure 4.13 the orientation of the periodic orbits change. It can be clearly seen in the
projection on the corresponding y-plane.
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Figure 4.12. Continuation map of periodic orbits. Black color represents regions where
the periodic orbits replacing Lo do not exist.
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Figure 4.13. Path of periodic orbits marked with asterisks in figure 4.14.
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Figure 4.14. Continuation map highlighting the orbits represented in figures 4.10, 4.11
and 4.13.

4.3 The Rigid Body Torque-Free RTBP

The third model came from considering the same dynamics for a rigid body as in the
second but thinking that although the motion of the primaries was not like we thought
at first, it may cause the desired effect in the trajectories of the third body influenced by
them. As we are going to see, indeed these trajectories will be different from what we
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have seen in the results of the already mentioned papers of the introduction. Now we are
restricted to the case of three bodies but afterwards we will develop this model in the
context of galactic dynamics.

Unlike the previous models, now we have only two parameters: the mean motion
of the primaries, n and the tilt angle of the bar which connects them, . Another
difference is that the system of differential equations is autonomous. Therefore, it is
interesting to compute the critical points. Then, using the Jacobi constant, we can obtain
the zero-velocity curves. Finally, some studies are made around the periodic orbits we
can find near the critical points. We study its dependence on € and see how the stable
and unstable manifold of a periodic orbit behave.

4.3.1 Critical Points

In the previous models we did not compute any critical point of their equations because
they were expected to be (and they were actually) replaced by periodic orbits which we
have computed in both cases. Now, due to the autonomy of the differential system these
critical points may exist and the process of finding them is nearly the same as in the RTBP.

First of all, we set the vector field of the system equal to zero:

F

Fy

F

F(x17x2,x37$4,x5,l'6) - F3 - 0
4

F

Fy
where
Fl = Ty,
F2 = Is,
Fy = s,

2 2 2 . 2 Ty — W Ty — W +1
Fy, = 2n cos(e) x5+ n” cos(e)” x; + n” sin(e) cos(e) xg —n” | (1 — p) 3 + 3
1 2
T x
Fs = —2n cos(e) xy — 2n sin(e) zg + n’ x5 — n? [(1 - u)—i—i—ur—; ;
1 2
. 2 . 2 . 2 2 T3 T3
Fs = 2nsin(e) x5+ n” sin(e) cos(e) x1 + n” sin(e)* x5 —n” | (1 _M)ﬁ+ur_3 :
1 2

In this way, we find that the velocity part is null (x4 = x5 = 26 = 0) and the significant
equations rest as follows:

ry—p  rp—p+l

3 H 3
1 Ty

n? cos(e)® 1 + n? sin(e) cos(e) zz — n [(1 — 1) =0, (4.1




4. NUMERICAL STUDIES 95

To i)
1 T3
2 g 2 o 2 2 3 T3
n® sin(e) cos(e) x1 +n” sin(e) z3 —n [(1 — )=+ pu—| =0. (4.3)
T T3

Now, the analysis forks in two ways. Imagine that in the first place o # 0. From equa-

tion (4.2):

lop_n
r3 rs

From (4.1), (4.3) and (4.4) we finally get

1- — 0. (4.4)

ry = H— 7

2
3 1
T, = + Z—tanQ(e) (,u—§>,

1
r3 = tan(e) (;z — 5) .

In case that € = 0, these coordinates correspond to equilateral points of the RTBP.

If 2o = 0, then equations (4.1) and (4.3) lead us to a non-linear system and it is
necessary a numerical method to find the coordinates of the critical points. When ¢ = 0,
x3 = 0 and this system becomes the Euler quintic whose solutions are the coordinates x
of the collinear points in the RTBP. We take these solutions as the initial condition for
the Newton method that we use to find the coordinates of the collinear critical points of
the model 3.

Therefore, we have five critical points and their coordinates slightly vary from
those of the RTBP. We can see its disposition in figure 4.15.
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Figure 4.15. Critical points of model 3 with respect to the primaries (case u = %) in body
coordinates.

For example, in figure 4.16 we can see how the coordinates of a critical point vary as the
value of € change.
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Figure 4.16. Coordinates of L, as the value of € change from 0 to —0.2.

4.3.2 Zero-velocity curves

In this model, the Jacobi constant does not have an explicit dependence on time. There-
fore, given a fixed level of energy, i.e., a fixed value of the Jacobi constant, we could
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compute the zero-velocity surface. This surface is obtained by assuming that the velocity
variables are null and it divides the space into two regions: the permitted and the forbid-
den. The zero-velocity curves are contour lines of this surface. In a certain plane, they
delimit the regions where the third body is allowed to move and the regions where not.
For example, in the RTBP, taking pu < %, the zero-velocity curves in the plane z = 0 are
shown in figure 4.17.

Case1: C>C1 Case2: C1>C>C2 Case 3 :C2>C>C3
P P
o o o [ J
m, m, m, m,
Case 4: C3>C>C4 Case5: C4>C

Figure 4.17. Zero-velocity curves for the RTBP (z = 0). Grey regions are forbidden to the
third body.

Each case depends on the value we give to C' (or more precisely, the energy of the third
body) and Cy, Cy, C3, Cy, C5 are the values of the Jacobi constant in the critical points.

The method of computing the zero-velocity curve is as simple as finding the roots
of the Jacobi constant once we have taken null the velocities. Thus, we will use a Newton
method being aware that sometimes it could be tricky to deal with the critical points of
the curve.

In model 3 we obtain nearly the same plot as in the RTBP, taking into account
that we are interested in a symmetric distribution of the primaries, i.e., p = % It seems
that the parameter £ would have to affect in some way the zero-velocity curve because
in model 3 the primaries are tilted with respect the plane z = 0. In the RTBP(u = %),
if we take other plane as a reference, the curves are symmetric with y = 0 as its axis
of symmetry. In model 3 this symmetry is broken due to the inclination of the bodies,
as we can observe in figures 4.19 and 4.20. However, figure 4.18 shows a symmetric
zero-velocity curve.
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Figure 4.18. Zero-velocity curve of model 3 (case 4) with z = 0.

L L L L L L
E Kl K 15

Figure 4.19. Zero-velocity curve of model 3 (case 4) with z = 0.1.

Figure 4.20. Zero-velocity curve of model 3 (case 4) with z = —0.1.
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4.3.3 Lyapunov orbits

Model 3 does not have the orbits which substitute the critical points like in the other
models. However, we can compute the Lyapunov orbits with the objective of seeing how
they behave under the precession phenomenon. There are two types of Lyapunov orbits:
the vertical and the horizontal. In the RTBP horizontal Lyapunov orbits reside in the
plane z = 0 and orthogonally traverse the = axis. It is natural that a perturbation of
these orbits also exists in model 3.

The first thing to do is to calculate a linear approximation of the vector field of
the model. Therefore we need to linearize the model taking its differential in the critical
point where we want to find the Lyapunov orbit. It is convenient to do this analysis
around Lo or L3 because these points are at the end of the body (the two spheres
connected by a massless bar) and this will connect with the galactic dynamics later.

X =DF(X;) X (4.5)

In equation (4.5), X means (1, %o, 3, 74,75, 7). and X, are the coordinates of the
critical point Ly or L3. We are going to consider only Lo because the case L3 is analogous.
Then, the differential of the vector field in Lo is

000 1 0 O
000 O 1 0
000 0 0 1
DEXw) =10 0a 0 e o |
0b 0 — 0 —f
d0c¢ 0 f 0
where
0*U
a = n? 0052(6)4—8—37% ,
Lo
. 2+82U
- ox3|
Lo
0*U
c = n? Sin2<€)+8_x§ ,
Lo
0*U
d = n?sin(e) cos(e) + o1z, :
e = 2n cos(e),

f = 2nsin(e).

Using a computer algebra system like Maple is very useful to determine the linear solution
of the system (4.5). Once we know the shape of the matrix DF(X,) and the values that
take a, b, ¢, d, e and f, it is quite easy to find its eigenvalues: \g, —Ag, wo i, —wWot, Vgt
and —vg 1 with Ag, wp, 9 € R. So a common way of writing the solution according to the
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RTBP? is
r1(t) = ;e +aze™! +ag cos(wot + @) + ks ay cos(vpt + ),
To(t) = koo e —kyase ™' + ki as sin(wot + ¢1) + ks ay sin(vgt + @),
r3(t) = fey i €0 — oy g et ko (g cos(wot + ¢1) + ay cos(vpt + ¢a),
xy4(t) = o,
z5(t) = o,
zg(t) T3.

Phases in the trigonometric expressions can be avoided by writing the solution in the
following way:

zi(t) = pre + Bre ™ 4 By cos(wyt) 4 B sin(wyt) + ps Bs cos(vot) + ps fs sin(vy t),
To(t) = p2fre —pafBre " + py B3 sin(wo t) — p1 Ba cos(wo t) + p3 Bs sin(v t)

—P3 B cos(vo ),
z3(t) = poBre’ +pyfre ™ 41y By cos(wot) + py Py sin(wyt) + Bs cos(vyt)

+0B6 sin(vy t),

.T4(t) = I,
$5(t) = i’g,
x6(t) = 3.73.

Remark. Notice that the expressions Acos(wt + ¢) and Bcos(wt) + Csin(wt) are
equivalent with the change ¢ = arctan (’—BC) and A = v/B?+ C?. Something similar
happens with Asin(wt + ¢).

ks, ki, ko, ks, k?l, ];2, p3, P1, P2, p3, p1 and po are constants depending on a, b, c,
d, e and f. Moreover, «a;, §5; and ¢; are arbitrary values.

If we want to compute horizontal Lyapunov orbits of our model 3, we have to be-
gin with their linear approximation and then refine it to obtain the orbit of the non-linear
system. The linear solution have three different parts. The exponential part is related
to the stable and unstable manifolds and we will ignore this part. This is reached by
assuming that f; = s = 0. The other two parts are related to the frequencies. We are
going to work only with one frequency so taking 85 = B = 0 the solution remains as

z1(t) = 3 cos(wot) + By sin(wot),
xo(t) = p1 P sin(wot) — p1 Py cos(wot),
x3(t) = p1Ps cos(wot) + p1 Py sin(wy t),
xy(t) = Iy,

x5(t) = o,

.fl?@(?f) = .i?g.

Now, taking into account that at ¢ = 0 the solution must have only  and z components
and leave with velocity only in the y component (transversal to the z axis), we realize that

8The expression of the solution corresponding to the RTBP can be found in [14].
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we have to take §; = 0 and give an arbitrary value to 3. Moreover the resultant orbit is
centred in the origin and it must be actually around the critical Ly point. Therefore we
only have to add to the solution the components of Ly = (xf"’, 0, x§2, 0,0,0).

z1(t) = a2 4 B5 cos(wyt),
xo(t) = p1 B3 sin(wot),
) = 25+ p1 B3 cos(wot),
) = o,
x5(t) = o,
)

Tg t = jfg.

Figure 4.21 shows a linear orbit taking 83 = 1072. It can be suspected from the z — 2z and
y — z projection that the orbit is contained in a plane which is not perpendicular to z =0
but it seems to be tilted.
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Figure 4.21. Approximation to a Lyapunov orbit and its projections with ¢ = —0.2.

Once we have the linear approximation, we refine it to obtain the horizontal Lyapunov
orbit of the non-linear system. The procedure of refinement is a parallel shooting method
as the explained previously but introducing an important change. We add an equation
to the system in order to preserve the energy of the orbit, this is, the refined orbit and
the linear approximation have the same energy. In this case, the initial conditions are the
points of the linear orbit and the result the non-linear orbit with the same Jacobi constant
(figure 4.22).
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Figure 4.22. Lyapunov orbit and its projections with ¢ = —0.2.

It is difficult to see any difference with respect to the orbit shown in figure 4.21 which
means that the orbit from the linear systems is a good approximation. However, as we
will see later, these non-linear orbits cannot be embedded in a plane.

4.3.4 Continuation of Lyapunov orbits

Here, the objective is to find a family of Lyapunov orbits varying the parameter e
from —0.2 to 0. Again, we use the parallel shooting method fixing the energy. For a
given value of ¢, ¢;, we take as initial condition the orbit computed for ¢;_; and refine
it using the parallel shooting method. Then, this orbit will be used as initial condi-
tion for €;,1. All the obtained orbits have the same energy since the method obliges it now.

Figure 4.23 shows the family of horizontal Lyapunov orbits obtained from this
method.
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Figure 4.23. Family of horizontal Lyapunov orbits and its projections with & € [—0.2, 0].

4.3.5 Stable and unstable manifolds

In previous sections we have computed some periodic orbits near the critical points of
model 3. Like the critical points, these orbits have a related stable and unstable manifolds.
The aim of this section is to compute these manifolds and see how they behave depend-
ing on the parameter £. We can achieve this objective by means of the following procedure.

First of all let us take a fix value of . For instance, we are going to do all the
calculations for ¢ = —0.2 (an inclination of 11.46°). Then, we take the periodic orbit
previously computed (from now, called 7.) for this value and its monodromy matrix. If
we call p the period of the orbit, this matrix is the solution at ¢ = p of the differential
system corresponding to the variational equations of model 3 system. In other words, if
we take the differential of the vector field from the equations of model 3, then its solution
(which is a matrix) at time the period of the orbit is the monodromy matrix. Once we
have the monodromy matrix, M(p), we compute its eigenvalues and eigenvectors. We
are interested in the asymptotic part represented by two real eigenvalues. The unstable
manifold will come from the real eigenvalue which is in norm bigger than the unit.
The other real eigenvalue is related to the stable manifold. Let us assume that these
eigenvalues are respectively p; and p, with associated eigenvectors vy and vs.

The second part of the procedure consists in computing k trajectories which will
represent the manifolds. We are going to explain it for the unstable case, taking into

account that the stable case is analogous. Consider t; = %’ with ¢ = 0,...,k. In this
way, tx is the period. If the orbit 7. is parametrised by x(t), then x(¢;) are k different
points over 7, since x(tg) = x(tx) (v is a periodic orbit). Now, consider v"(t) the

vector corresponding to the unstable eigenvalue p; transported by means of M(?), i.e.,
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v¥(t) = M(t)vy. M(t) was the solution of the variational equations which have initial
condition M(0) = Id, the identity matrix. Therefore, v*(0) = v;. These k different
vectors will allow us to have k different points to integrate in the equations of the model:

x; = X(t;) + v (t;).

§ is a real value and must be small ( 1072, 1073, ...). The resultant trajectories are the
unstable manifold (figures 4.24 and 4.25).

Figure 4.24. Stable (blue)
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Figure 4.25. Stable (blue) and unstable (red) manifolds of the orbit 7. and some zero-
velocity curves corresponding to different values of z.
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In the previous figures we have only represented the exterior branches of the stable and
unstable manifolds. Although we are more interested them, we present the inner branches
in figure 4.26.

0&r-
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Figure 4.26. Inner branches of the stable (blue) and unstable (red) manifolds of the orbit
v with e = —0.2.

4.4 The Precessing Miyamoto-Nagai Ferrers model

The galactic model is an adaptation of model 3 to the galactic context. Therefore, the
results are similar to those presented in model 3. However, it is important to notice
the differences caused by the change of the potential; the disc and the bar added to
the precession inflict a significant behaviour in the asymptotic manifolds of Lyapunov
orbits. Another thing to bear in mind is the influence of the parameters. Apart from the
parameter €, the parameters related to the shape of the bar and the disc and the masses
of both have an influence on the shape of the manifolds. We invite the reader to consult
[15] in order to obtain further information on the parameters of the potentials Ferrers
and Miyamoto-Nagai and on the dynamics in a barred galaxy, related to the manifolds
corresponding to the orbits near the critical points. Moreover, the parameters and the
table below are extracted from there.

In this section we are going to compute the critical points of the galactic model,
the zero-velocity surfaces, the Lyapunov orbits and their dependence on the parameter
¢ and the stable and unstable manifolds of these orbits. There are some typical values
of the parameters ay, by, ¢, ag, bg, My, mg and n corresponding to different shapes of
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barred galaxies. The first five are taken as a, = 6, b, = 1.5, ¢, = 0.6, ag = 3, by = 1, in
all the cases and the rest from the following table:

’ Galaxy type \ my, \ mq \ n ‘
Ry ring 0.1]0.9|0.05471
Ry ring 0.4 106 0.06
Ry pseudo-ring | 0.3 | 0.7 | 0.051
Closed spiral | 0.3 | 0.7 | 0.06
Open spiral | 0.4 | 0.6 | 0.055

For the following calculations we are going to take the values corresponding to an open

spiral galaxy:.

4.4.1 Critical points

Critical points of model 3 and galactic model have the same disposition. However, in
the second case they are consistent with the longitude of the bar. Figures 4.27 and 4.28
represent different views of this disposition. Notice, from figure 4.28, that whereas Lq, Ly

and Ls maintain their coordinates fixed, Ly and L3 vary as € decrease.

Figure 4.27. x — y view of critical points from galactic model with ¢ € [-0.2,0].
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Figure 4.28. x — z view of critical points from galactic model with ¢ € [—0.2,0].

4.4.2 Zero-velocity surfaces

The zero-velocity surfaces in this model suppose a constraint in the motion of a particle
submitted to the influence of the galaxy. Like the zero-velocity curves, there are different
cases depending on the value of the energy and their topology can be inferred from the
planar cases. For example, in figure 4.29 we have the zero-velocity surface corresponding
to the case 4. It can clearly be seen in figure 4.30 the similarity with the zero-velocity
curves we had in model 3. Notice the holes connecting the exterior and inner region.

Figure 4.29. 3D view of the bar and the zero-velocity surface corresponding to a value of
the Jacobi constant of C' = —0.20901 and £ = —0.2.
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Figure 4.30. x — y view of the zero-velocity surface.

Figure 4.31. x — z view of the zero-velocity surface.

4.4.3 Lyapunov orbits

The Lyapunov orbits of this model can be computed using all the resources we had in
model 3. These orbits are located near the critical points Ly and L3, in the entrances of
the inner region. Now we can see the importance that these orbits, or more concretely,
their stable and unstable manifolds, may have in the flow of stars from the nucleus to
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the arms and viceversa. In figure 4.32 we can observe again that the orbit is not planar.
Figure 4.33 shows the location of these orbits with respect the zero-velocity surface.

Figure 4.33. Location of Lyapunov orbits of L, and L3 points with respect the zero-velocity
surface.

Now, we present a table expressing some the values of the constants from the linear
solution as well as the values of the eigenvalues for each value of ¢.




Table 4.1: Values of the eigenvalues and the constants from the expression of the linear solution.

| € ‘ A w v Ps3 D1 P2 D3 p1 P2 |
0.000000 | 0.041852 | 0.069207 | 0.087428 | 0.000000 | -1.930751 | -1.771831 | 0.000000 | 0.000000 | 0.000000
-0.010000 | 0.041846 | 0.069202 | 0.087401 | -0.000645 | -1.930608 | -1.772148 | 0.015066 | 0.004715 | -0.005534
-0.020000 | 0.041826 | 0.069187 | 0.087320 | -0.001304 | -1.930177 | -1.773098 | 0.030182 | 0.009456 | -0.011085
-0.030000 | 0.041792 | 0.069163 | 0.087185 | -0.001990 | -1.929454 | -1.774685 | 0.045395 | 0.014249 | -0.016669
-0.040000 | 0.041746 | 0.069129 | 0.086997 | -0.002720 | -1.928435 | -1.776912 | 0.060757 | 0.019120 | -0.022304
-0.050000 | 0.041686 | 0.069086 | 0.086757 | -0.003508 | -1.927112 | -1.779786 | 0.076319 | 0.024098 | -0.028007
-0.060000 | 0.041612 | 0.069033 | 0.086466 | -0.004371 | -1.925473 | -1.783315 | 0.092135 | 0.029211 | -0.033794
-0.070000 | 0.041526 | 0.068970 | 0.086124 | -0.005328 | -1.923506 | -1.787507 | 0.108262 | 0.034491 | -0.039684
-0.080000 | 0.041427 | 0.068899 | 0.085734 | -0.006399 | -1.921194 | -1.792374 | 0.124760 | 0.039971 | -0.045693
-0.090000 | 0.041315 | 0.068818 | 0.085297 | -0.007606 | -1.918517 | -1.797930 | 0.141693 | 0.045688 | -0.051839
-0.100000 | 0.041191 | 0.068728 | 0.084815 | -0.008976 | -1.915453 | -1.804190 | 0.159129 | 0.051682 | -0.058141
-0.110000 | 0.041054 | 0.068629 | 0.084289 | -0.010538 | -1.911974 | -1.811171 | 0.177145 | 0.057998 | -0.064616
-0.120000 | 0.040905 | 0.068522 | 0.083723 | -0.012326 | -1.908047 | -1.818891 | 0.195822 | 0.064684 | -0.071282
-0.130000 | 0.040744 | 0.068406 | 0.083118 | -0.014380 | -1.903634 | -1.827373 | 0.215253 | 0.071797 | -0.078157
-0.140000 | 0.040571 | 0.068281 | 0.082478 | -0.016745 | -1.898691 | -1.836639 | 0.235539 | 0.079400 | -0.085260
-0.150000 | 0.040386 | 0.068149 | 0.081806 | -0.019474 | -1.893166 | -1.846715 | 0.256795 | 0.087566 | -0.092608
-0.160000 | 0.040190 | 0.068009 | 0.081105 | -0.022632 | -1.886997 | -1.857628 | 0.279152 | 0.096378 | -0.100218
-0.170000 | 0.039983 | 0.067861 | 0.080378 | -0.026292 | -1.880113 | -1.869409 | 0.302759 | 0.105932 | -0.108107
-0.180000 | 0.039766 | 0.067706 | 0.079628 | -0.030543 | -1.872431 | -1.882089 | 0.327788 | 0.116342 | -0.116291
-0.190000 | 0.039538 | 0.067543 | 0.078861 | -0.035493 | -1.863850 | -1.895703 | 0.354439 | 0.127738 | -0.124786
-0.200000 | 0.039299 | 0.067374 | 0.078078 | -0.041267 | -1.854253 | -1.910287 | 0.382949 | 0.140277 | -0.133605
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4.4.4 Continuation of Lyapunov orbits

Before seeing the behaviour of the manifolds of the Lyapunov orbits submitted to the
effect of the parameter € we are going to see how are these orbits in different levels of
energy. In figure 4.34, different views of some falimies of Lyapunov orbits are shown. In
all the cases, the Jacobi constant varies from C' = —0.20955 to C' = —0.20855.

Figure 4.34. Different families of Lyapunov orbits. For a certain value of ¢, each family
has been obtained varying the Jacobi constant. e; = 0, e = —0.05, e3 = —0.1, g4, = —0.15
and &y = —0.2.

It can clearly be seen from the projection in the plane y = 0 that the orbits acquire some
curvature while the parameter ¢ is increasing in norm. Moreover, the z component of
these orbits rise because the bar has more inclination.

4.4.5 Stable and unstable manifolds

In this final section, we are going to present the results concerning the computations of
the unstable manifold of Lyapunov periodic orbits around L, and L3 (¢ = —0.2). The
stable case would be analogous. Figures 4.36 and 4.37 show the inner branches of these
manifolds surrounding the bar in the inner region delimited by the zero-velocity surface.
However, the interesting part is the outer branches. As in model 3 they spiral out like the
spiral arms of a galaxy. It is thought that all the manifolds corresponding to the orbits
around the critical points with different energies (figure 4.35) could form a path followed
by lots of stars forming the spiral arms or the rings that we can observe in barred galaxies.
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Figure 4.36. Unstable manifolds from Lyapunov orbits and the

zero-velocity surface.
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Figure 4.37. x — y view of the unstable manifolds.

Seen in an edge-on position, these manifolds reveal the feature we were looking for.
Indeed, the outer branches of the unstable manifold seem to be warped emulating the
shape of some observed galaxies.

Comparing figure 4.38 with figure 4.39, it is obvious that there are similarities in
the shape. Therefore, considering the precession like in this model could be a good
approximation in order to model the galaxy warps. Further work can be focused in
comparing and contrasting the results of the precessing model with real observations.
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Figure 4.38. Edge-on view of the unstable manifolds.

Figure 4.39. Galaxy UGC 3697.




5. Conclusions

The present project has resulted an introductory work about the precession phenomenon
thought as a perturbation of basic models which have been widely studied.

The first approach to the problem led us to a model, the GP-RTBP, in which we
were able to develop the equations of motion as it was made with the RTBP. We only
had to take into account how the new synodic frame of reference moved with respect to
the fixed one. It was there where the precession was introduced. In terms of numerical
analysis we built some ad hoc procedures in order to compute the eight-shape periodic
orbits which are the dynamical substitutes of the critical points due to the precession.
The parallel shooting method was a powerful procedure to deal with the unstability of
these orbits. The influence of the parameters of this model in the shape of the computed
orbits was observed in some ranges of those parameters. Then, we noticed that for
some values the method did not converge. With the purpose of determining the regions
where the method diverged we decided to made a continuation map. It was necessary to
take some grids in the domain with different distances among its points because of the
problem of finding the best initial condition in the computation of an orbit. As a result,
it was possible to see the tongue-like regions where the method found the periodic orbits.

After the first results we realized that the only way to explain this motion was by
means of a force (or a torque). Because it was difficult to find a relationship between
this force and a physical phenomenon, we focused in torque-free motions. Our intention
was to study the most general torque-free motion of a rigid body. In the future model,
the rigid body was thought as two spheres connected by a massless bar with the purpose
of emulating the RTBP. However, torque-free motion implied that the movement of the
primaries was in a circle like in the RTBP. At first, we introduced a torque causing a
motion more similar to what we had in mind: both primaries oscillating. We obtained
the equations of motion following the same procedure as it was done in the first model.
The results obtained from this model, the RBAT-RTBP, led us to eight-shape periodic
orbits too. Then, we computed the continuation map. Like the first model, this had
the inconvenient of the applied torque. The second option in rigid body dynamics was
to consider a torque-free motion of the primaries. In this way, the only possibility was
to inflict to the bar which connected the spheres an inclination slightly lower than 7.
The resultant model, the RBTF-RTBP, autonomous after a short discussion, produced
promising results. In first place the critical points were similar to those of the RTBP
though the coordinates of some of them changed with respect to the parameter €. Then,
the zero-velocity curves obtained from the Jacobi constant had the particularity of being
non-symmetric with respect the y axis for z # 0. In order to compute some invariant

manifolds we obtained the horizontal Lyapunov orbits adapted to this perturbed RTBP

75
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from their linear approximation. The procedure of refinement the linear Lyapunov orbits
was a modified parallel shooting method introducing an equation for the energy. Once
we had the orbits, the invariant stable and unstable manifolds came from computing the
monodromy matrix of the orbits and transporting the eigenvectors related to the stable
and unstable eigenvalues. In both models, it is important to remark that, despite the
fact that we have been terming a precession phenomenon, the parameters were related to
the nutation angle of the body.

In the last part of the work, we introduced the “precession” in a Miyamoto-Nagai
Ferrers galactic model as in the RBTF-RTBP. Since the only difference was the potential
it was easy to adapt the numerical procedures. We computed the critical points and
the zero-velocity surfaces which preserved the disposition and shape observed in the
RBTF-RTBP. Then, the Lyapunov orbits around the critical points were refined from
the linear approximation. For significant values of € we observed that these orbits cannot
be embedded in any plane. Finally, we computed the stable and unstable manifolds for
some cases and noticed that, seen in an edge-on position, these manifolds seem to be
warped.

The different shapes of the galaxies has always been a matter of study. Concretely
barred galaxies have some interesting features like the spiral arms, the rings, the ansae...
Indeed, there are a lot of papers (some of them have been mentioned in the present
work) which study the possible causes of these forms. The last part of this work has tried
to find a possible explanation of the warp observed in some galaxies. This phenomenon
could be more frequent than it seems since even our galaxy may be suffering a warp. For
this reason, this matter could become an important subject of research. Here, we have
used the stable and unstable manifold of some periodic orbits near the ends of the bar.
These manifolds are influenced by the movement proposed to the bar, considered as a
rigid body with torque-free motion, and they take that particular shape as the parameter
increase in norm. Further work oriented in this matter could be based in contrasting the
validity of the galactic model developed in this work with real observations.
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