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Chapter 1

Introduction

1.1. Automatic Speech Recognition

Although automatic speech recognition (ASR) has undergone consid-
erable improvements, the task of obtaining an accurate transcription from
changes in the pressure of the air generated by the human speech production
system is far from being complete.

The ability of communicating through speech has evolved in humans
during thousands of years, yielding to the development of entire zones of the
brain exclusively dedicated to speech production and understanding, and
highly specialized organs that emit and decode speech signals in a huge range
of environments. Children learn to speak and understand speech easily,
and non impaired humans can decode speech production of new speakers
without any training. As it is an innate ability of humans, it can be wrongly
considered a trivial task, forgetting the fact that human language system is
the result of a long evolution.

In spite of the intense research efforts made in achieving good recognition
rates, nowadays artificial ASR systems are very far from the performance
of humans in the same tasks. Although these systems work reasonably well
in optimal conditions, when these conditions get worse the performance
declines quickly, even if the system has been trained on the speaker’s voice
and a close-talk microphone is used to avoid noise and reverberation.

Standard approaches to automatic speech recognition (i.e. LPC) were
initially built using production based processing schemes, considering the
physical properties of sound pressure waves, and understanding the speech
production as the result of an excitation signal applied to the input of the
vocal tract.

Since long ago, these systems have been modified by incorporating per-
ceptual features observed in physiological experiments. However, it is still
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not clear which particular effects observed are crucial for the audition. Thus,
experiments are conducted trying to emulate observed characteristics of the
auditory system and conducting tests to measure the improvements in the
overall ASR system. Quoting H. Hermansky, when humanity was trying to
develop flying machines, they started by blindly imitate birds, flapping the
wings, and finally they came to understand that the key was in Bernoulli’s
principle. Similarly, it is not clear which human characteristics should an
ASR system try to emulate[6].

Speech can be considered as changes in the air pressure in time and
frequency. Standard speech processing schemes, such as cepstral techniques,
often use short term analysis frameworks, obtaining temporal sequence of
frames of speech and analysing the frequential content of these frames. This
content reflects the state of the vocal chords and the articulatory system.
The assumption behind this procedure is that the these conditions do not
change significantly between two frames. That is that the dynamics of the
speech, the changes in time, will not be significant during the duration of
such short frames. Part of the dynamics is captured by overlapping the
temporal samples, but most of it is neglected.

In this work an automatic speech recognition system that incorporates
a combination of emulation of the auditory system and spectro-temporal
processing is studied. First, the speech signal is processed by the Seneff
Auditory Model, inspired in collected physiological data. It, which includes
information about the dynamics of the speech. Second, the resulting signal
is filtered with a set of Gabor filters, a technique successfully used by M.
Kleinschmidt that also tries to capture the dynamics of the speech, and was
also motivated by physiological observations[16]. The choice of the set of
Gabor filters is discussed. The motivations behind Seneff model and Gabor
filters are completely different. In this project its combination is subjected
to study.

Although the standard unit to be recognized in ASR is the phoneme, the
usage of the Seneff Auditory Model with Gabor filters, a two-dimensional
processing of the signal suggested the exploration of a different kind of unit,
longer, that characterizes a group of phonemes pronounced in a row, that we
named pseudosyllables. For performing this task we developed an algorithm
to find these pseudosyllables and after that a procedure to change the initial
labels of our existing speech database to use these different units that had
been obtained by Viterbi segmentation using a previously trained HMM
acoustic model. With the modified labels, the final ASR system can be
trained.

The usage of Gabor filters presents another problem that was central in
this study. As there is an infinite number of possible Gabor filters, we had
to decide which ones where more useful to describe the signal and identify
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the phonemic sequence. For this purpose, the multiclass boosting algorithm
SAMME was implemented.

An ASR system has two main parts: feature extraction, where a vector of
measures that should characterize the phonemic sequence is extracted from
the signal, and pattern matching, where these features are processed using
statistical methods to guess the phonemic sequence. Our work was focused
in the first stage, but we will discuss the implications of the employment of
these features in a standardASR system based on HMM.

We had at the laboratory an ASR system based in MFCC and HMM
developed years ago by the Speech Group at Sony EuTec in the Janus Speech
Recognition Toolkit [18], and a corpora described in chapter 3. Our practical
work had three main parts: First, to develop Matlab scripts to Build the
features filtering the Seneff signal with Gabor filters and write the SAMME
algorithm in C++4 to select the features; second, to evaluate a new type
of segmentation of the signal in a unit that we called pseudosylables, and
third, to debug the available ASR system, since when we tried to run it, it
was not working.

1.2. Outline

This document is divided in 5 chapters.

Chapter 2 consists of a description of the models and algorithms em-
ployed both in the feature extraction process and in the overall speech recog-
nition system.

Chapter 3 contains information about the software and corpora em-
ployed. As both have a influence on the results, their strengths and draw-
backs are discussed.

Finally, chapter 4 contains a description of the results obtained at each
stage, the process followed, and details about the implementation, as well
as a discussion on the problems found.
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Chapter 2

Theoretical description

The scheme of an ASR system can be viewed as a two-stage process.

First, we need to extract from the speech stream a set of measures that
characterizes the phonemes. The goal is to discard redundant and useless
information (dependent on the speaker or the environment), and acquire
data that suffers little or no changes among utterances of the same phoneme
but experiments changes when different phonemes are computed. In other
words, the optimal set of features would contain information that depends
only on the phoneme. This process is called feature extraction.

Second, the features acquired from the speech are fed into a system that
performs a classification in order to determine the content of the speech.
This task is done using probabilistic methods such as Gaussian Mixture
Models and Hidden Markov Models, and receives the name of pattern match-
ing.

This work deals mainly with the feature extraction part, and thus will
be discussed in more detail.

2.1. Feature extraction

In order to achieve good recognition rates from a speech waveform, rele-
vant information useful to identify the data and irrelevant information have
to be separated. Feature extraction deals with this separation. Information
that can help to identify the spoken phonemes should be emphasized, while
information that depends on the irrelevant variations due to the particular
pronunciation and the noise should be attenuated and ideally suppressed.

The process of acquiring these features can be done in multiple stages.
The studied system starts with a waveform that in the first stage is processed
with Seneff’s auditory model, obtaining primary features. These features
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Figure 2.1: Diagram of the studied automatic speech recognition system
from the waveform to its transcription .

are processed in a second stage by a bank of Gabor filters, which extracts
information about the spectro-temporal evolution of the signal, obtaining
secondary features.

2.1.1. Auditory front-end

The question of the idoneity of the imitation of the auditory system for
ASR has been subject of discussion[6]. Nevertheless it is clear that both
human speech production and recognition systems have evolved to adapt
each other. As the long term goal of an ASR system is to emulate human
speech recognition performance, it makes sense to emulate also the human
auditory perception, although it is difficult to identify the crucial tasks that
the human auditory system performs. There are several auditory models
that try to reproduce specific effects observed in empirical results. In our
work, we used the Seneff’s joint Synchrony/Mean-Rate Model.

Seneff’s joint synchrony/mean-rate model

The auditory model used in this work is Seneff’s Joint Synchrony /Mean-
Rate Model, proposed by S. Seneff in 1988[19]. This model was motivated
by physiological properties observed in the auditory system of mammals.
The properties matched by this system are considered relevant to the pro-
cessing of the speech, and it was found that the system can emulate some
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physiological experiments. We did not write the code for this model, it was
already available at the laboratory.

The model, described in the block diagram of Figure 2.2 can be decom-
posed in three main stages.

The first two stages model the peripheral transformations occurring in
the first stages of the human auditory system. The third stage deals with
perception of the signal.

Critical band filter bank First, the signal is band-limited to 6.5 kHz
and sampled at 16 kHz. Then, it is convolved with a cascade of 40 complex
high-frequency zero pairs filters, with steep cutoff in the high-frequency side
and broad low-frequency tails. Frequency region between 1.5 and 5.0 Khz
is emphasized 10-20 dB, boost justified by experimental results that stated
that the outer ear resonances have the effect of increasing the energy in this
region[22]. This filterbank is designed to match physiological data obtained
about the vibrations of cat’s basilar membranes[3]. A plot of the responses of
these filters is shown in Figure 2.3. The number of 40 channels was chosen
to represent the signal, being enough to show some detail while avoiding
excessive complexity that would result in higher computational time. As this
decision was taken in 1990, maybe now more channels could be employed.

Inner-hair-cell/synapse model The second stage, which name is Inner-
hair-cell/synapse model, is intended to model the transition from basilar
membrane vibration to probabilistic responses of the auditory nerve fibers.
Its output represents the probability of firing of the nerve at a given moment.
It is composed by a half-wave rectification stage, a short-term adaptation
circuit, a low-pass filter, and a rapid automatic gain control. Each of these
components are nonlinear, except for the low-pass filters. Each one is as-
sociated to a particular effect observed in physiological experiments. The
ordering, important due to the non-linear nature of the models, is partially
justified by associations with elements of the auditory system and the se-
quence in which they are placed in animals.

The half wave rectifier is modeled mathematically as:

1+ Atan~'Bzx if x>0
Y= eABz if z<0

Where B sets the operating range of the channel. It also models the auditory
feature: the bandwith of the response at intermediate amplitudes is higher
than at higher amplitudes, where saturation appears.
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Figure 2.2: Block diagram of the Seneff’s Joint Synchrony/Mean-Rate Au-
ditory Speech Processing. From [2].
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The short term adaptation circuit is intended to model the synaptic
region between the hair and the nerve fiber. Mathematically is defined as:

[ S = CW) = wCE) i Cl) < S(@)
dC(t)/dt —{ M o) MR ol s s

The channels in this membrane are disabled when the concentration gradient
of a substance (a neurotransmitter or an ion) is too small, and proportional
to the concentration gradient when it is higher than a certain value, being
1 the proportionality constant. Also, the substance is naturally lost in a
rate proportional to . The output of this model is pg[S(t) — C(t)], that
stands for the flow of the substance across the membrane and is related to
the probability of firing as a function of time. It models observed auditory
effects. In response to steep high-amplitude signals the output is high, and
then decreases with time constant 7 = ib If the signal decays abruptly,
the output will be zero until the decay of C(t) (decay that obeys to an
exponential with constant 7o = pp). 72 plays an important role modelling
the forward masking effect. Forward masking occurs when the response to
sound is attenuated as it is preceded by a signal of greater energy.

The low-pass filter models the loss of synchrony in nerve-fiber responses
and other locations in the auditory system. It reduces the synchrony with
high frequencies. The transfer function of the filter is:

o= ()™

Where npp is the order of the filter, composed by integrators with time
constant 7pp and « being the location of the pole on the real axis of the
z-plane.

The automatic gain control models the refractory effect of nerve fibers,

and is defined as:
z[n]

1+ KaccE(x[n])
It reproduces the auditory response against onsets, and alters deeply the
envelope of the signal.

y[n]

Generalized synchrony detector model (GSDM)

Finally, the output is processed in order to analyse the synchrony of the
model. The original GSD model that Seneff proposed can be described as
the quocient of sum of the signal and the same signal delayed divided by the
difference of the signal with its delayed version

N R LR
yll —yln+d
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Thus, if the signal has as period equal to the delay value in the algorithm,
the output of the system is high. Each channel has a different delay. Nev-
ertheless, the input of the system studied in this work was not produced by
such method, but by a different method property of Sony that we used as a
black box, without knowing its details.

In Figure 2.4 is provided a graphical representation of an utterance pro-
cessed with the GSDM system and MFCC.

Frequency
A J A
N Close-talk

— A
Far-Field

JSrame

Figure 2.4: MFCC representation (left) compared to GSDM representation
in two different environments. The figures on the top show a utterance
recorded with a close-talk microphone, while for the figures on the bottom
a studio microphone placed a 3m of the speaker was used. The speech was
produced in a reverberant room in the presence of an air-conditioner. From

[5].

2.1.2. Spectro-temporal processing

Speech is characterized by the evolution of the signal both in time and
frequency. An usual approach to speech recognition is to take temporal
frames and analyse their spectral characteristics. In these techniques the
temporal evolution of the spectrum of the signal is not taken into account
very much. For overcoming these limitations, there is a number of methods
that have been proposed, such as delta and delta-delta features or RASTA,
or TRAPS, where a number of multi-layer perceptrons are trained with the
temporal evolution of spectral energy in Mel-scale along different bands.

Michael Kleinschmidt proposed a new approach to this problem based
on the utilization of localized spectro-temporal filters (LSTFs)[16]. This
was motivated by physiological experiments with mammals that showed
that a large percentage of neurones in the primary auditory cortex have dif-
ferent responses when the auditory system is excited with upward-moving
and downward-moving ripples in frequency. Based on this evidence, Klein-
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schmidt looked for a method able to extract these patterns, and proposed
the use of Gabor filters as spectro-temporal filters.

Gabor filters

The filtering is performed by computing the correlation of each filter,
represented by a matrix of values, with the two-dimensional signal resulting
from Seneff’s model. The output of this process is a new bidimensional
signal.

The complex Gabor function proposed in [16] is the product of a complex
sinusoidal function with a Gaussian envelope. The envelope has a width
determined by its deviations oy and oy, and the frequency of the sinusoid by
wy and wg. The two independent parameters of the spectral and temporal
frequencies allow the adaptation of the Gabor filter to particular orientations
in frequency and time of the modulation.

Gf(t, f)=g(t, [)s(t, f)
where g(t, f) is the Gaussian envelope

—t—tp? | (F—f)?
1 20‘2 + 20‘2
e t f

g(t, f) =

2woiof

and s(t, f) is the sinusoidal function

s(t, f) = oiws (f = fo)Fiwt (t—to)

Where fy and ty determine the center of the Gabor function. The infinite
extension of the Gaussian envelope is limited to 1.50¢ from the center. In
this work we employed the absolute value of the response and, since the
number of potential Gabor filters is huge, it was limited at first to only
round-shaped filters (o; = o).

7 W

Figure 2.5: A Gabor filter. From left to right: real part, imaginary part,
and absolute value.
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Figure 2.6: Frequencial response of a complex Gabor filter.

2.1.3. Feature selection

While we expect Gabor filters to extract relevant information from the
signal, there still remains the question of which set is the best for the clas-
sification task.

The output of each Gabor filter should have the following properties:

= To be different between samples of different classes.

= To be similar between samples of the same original class.

Ideally, if a single Gabor filter fulfills these requirements, the problem would
be successfully solved. Unfortunately, there is not such a filter for the prob-
lem of identifying phonemes or pseudosyllablic units. For that reason, we
will call Gabor filters a weak classifier. Instead, we can try to find a com-
bination of Gabor filters able to maximize those criteria when working as a
whole. That is, to employ the best finite set of Gabor filters that we can
find, and use its outputs as a postprocessing of the original features that
will serve us better to achieve the goal of differentiate among the phonemes.

But then again, as the number of Gabor filters is infinite, evaluate all
the possible combinations of sets of Gabor filters is an impossible task. For
automatically selecting the set that produces the best features for classify-
ing as a whole, we need an algorithm that evaluates different sets of weak
classifiers “to emit a final decision better than the individual decisions of



18 CHAPTER 2. THEORETICAL DESCRIPTION

Figure 2.7: Filtering example: Pseudosyllable /ar/ in a GSDM representa-
tion (bottom, in color) filtered with 40 Gabor filters with frequencies ranging
from 1/10 cycles per point to 1/2 cycles per point. Lower frequencies are
on the top, and produce blurrier results. The higher are in the bottom and
produce noisier signals. Orientations are rotated in steps of 25.5 degrees.
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each one”. Moreover, we want the algorithm to tell us which classifiers are
the most reliable, working as a whole. The approach used in this project is
SAMME, a boosting algorithm.

Boosting

Research in boosting algorithms has been conducted since long time.
Probably the most simple case is democracy: we have a set of classifiers that
vote. Formally, we have a function h(x) that, from an input x, returns a
discrete result {h : RN — {1...N}}. The final decision is the most frequently
chosen class.

However, although this algorithm can be useful, there have been further
improvements in this field. Kearns and Valiant [8][7] were the first in rais-
ing the question of whether weak learning algorithms that perform better
than random guessing can be combined in a strong learning algorithm with
arbitrary precision.

In 1995, Freund and Schaphire proposed the AdaBoost algorithm[4].
AdaBoost (that stands for ADAptive BOOSTing) has proven to be success-
ful in producing accurate classifiers when applied to two-class classification
problems. Among other advantages, it is particularly resilient to overfitting,
and Schapire and Freund have shown classification problems where the test
error continues decaying even after the training error arrives to zero.

AdaBoost takes as input a training set (x1,¢1) ... (Xn, ¢, ), where x; € R?P
are observations of a random variable and ¢; is integer e.g. € 1,..., K that
denotes the class of which the variable x is an observation. The goal is to
find a classification rule C'(x) such as, given a new input x, the algorithm
assigns it a class label ¢ and achieves the lowest possible misclassification
rate in new samples.

AdaBoost takes an iterative approach to solve this problem. For M
iterations, it calls a weak learning algorithm that weakly classifies the given
data. The only requirement for these algorithms is to be able to achieve
a classification error better than 1/2 (in two-class problems, better than
random choice). In order to improve the overall error, the algorithm is
adaptive. One of the main ideas behind AdaBoost is to modify a list of
weights wi, . .., wy, for the training set along the iterations. While initially all
weights are set to the same value, when a data point is misclassified its weight
is increased (boosted). This has the effect that in the following iteration the
weak learning algorithm will pay more attention to the problematic data.
At each iteration, a weight a(m) is assigned to the trained weak learning
algorithm as a measure of its reliability. At the end, a strong classifier is
build by evaluating all the weighted weak learners. Figure 2.8 shows the
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evolution of the weights in a two-class classification problem, and Figure 2.9
shows the evolution of the strong classifier.

Specifically, if T(™) is a weak multi-class classifier, and I(A) has value 1
when the expression A is true and 0 when A is false, the algorithm AdaBoost
proceeds as follows:

AdaBoost algorithm Freund and Schaphire, 1997

1. Initialize the observation weights w; = 1/n,i=1,2...n
2. Form =1 to M:

a) Fit a classifier T(™) to the training data using weights w;.

b) Compute
errt™ =3 "will(e; £ T (x1))/ > wi

i=1 =1

¢) Compute
1 — ery(m)
o) — ggLmerr™
err(m)

d) Set

w; — wiexp(a™I(e; # Y™ (x1))),i =1,2,...,n
e) Re-normalize w;

3. Output:

M
_ (m)(7(m) () —
C(x) = arg max mz::l M1 (x) = k)

AdaBoost has been proved to be extremely successful in two-class clas-
sification problems, but it has some drawbacks in the case of multiclass
problems. Although there have appeared [4] generalizations of AdaBoost
for multiclass problems, as AdaBoost.M1, they impose the same constraint
to the weak learners choice: they must have an accuracy greater than 50%,
otherwise, if err(m) > 0.5, a(m) will take negative values, and the weights
will be updated in the wrong direction. This limitation, that in two-class
problems is easy to overcome (the weak learner should be better than ran-
dom choice), as the number of classes grows, becomes more restrictive. For
instance, in a 100 class classification problem and equally distributed data,
random guessing gives an accuracy of 1%, so the weak learner is expected
to perform 50 times better than random choice.

Hence, AdaBoost may fail if the weak classifiers are not accurate enough,
and this depends on the number of different classes[23].
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S mw

(e} Third 1teration () 100th iteration

Figure 2.8: Weights evolution during the iterative process of AdaBoost al-
gorithm. Weights are represented as the size of the markers of the samples.
After 100 iterations, the weight is concentrated in the samples of the bound-
aries between classes. From [1].

There is another way to solve this problem while still using AdaBoost,
that consists in converting multi-class problems into a couple of two-class
problems. Two popular approaches are the one vs. rest scheme, where we
define the first class as a class of the original problem and the second as
the set of all the remaining classes of the original problem, and the pairwise
scheme, where each time only two classes are considered.

In terms of computational complexity, if the weak learner used is a classi-
fication tree, the depth of each tree is d and p is the dimension of the input,
then the computational cost for constructing each tree is O(dpnlog(n)).
Then if M is the number of iterations and K the number of classes, then
the computational cost of both the pairwise and the one vs. the rest schemes
is O(dpnlog(n)MK).

Thus, as K grows, AdaBoost becomes more and more expensive. In our
experiments, with 100 classes, this became a big issue to consider that made
this approach prohibitive.

SAMME algorithm

Recently, a new multi-class classification algorithm has appeared with
the name of SAMME[23]. The algorithm is very closely related to AdaBoost:
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Figure 2.9: Evolution of the strong classifier built by AdaBoost according
to the number of iterations ¢. From [13].
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SAMME algorithm Freund and Schaphire, 1997

1. Initialize the observation weights w; = 1/n,i=1,2...n
2. Form =1 to M:

a) Fit a classifier 7™ ((z)) to the training data using weights w;.

b) Compute
err™ = 3" will(e; £ T (x1))/ S w;
i=1 =1
c¢) Compute
1— (m)
a™ = log—— T " L 1og(K — 1)
err(m)
d) Set

Wy ~— wze[I}p(Oé(m)H(CZ 7é Y(m) (Xl>))72 = 17 27 s
e) Re-normalize w;
3. Output:

M
= (MM (x) =
C(x) = arg m’?sz:l o "™I(TV™ (x) = k)

It can be noticed that the only difference between SAMME and Ad-
aBoost is the computation of o™ . SAMME adds a new term log(K — 1),
that depends on the number of classes (notice also that if K =2, SAMME
is the same as AdaBoost with two classes). This term is obtained consider-
ing the two-class AdaBoost algorithm as a forward stagwise modeling, and
generalizing its loss function to the multi-class problem. For further details
see [23].

Compared with AdaBoost, SAMME only imposes to the weak learners
the requirement of having less error than 1/K. It is enough if they perform
slightly better than random guessing, independently of the number of classes.
In our case, with 100 classes, this means that our weak learners can be 50
times less accurate.

This time, in terms of computationaly complexity, if the weak learner
used is a classification tree, the depth of each tree is d and p is the dimension
of the input, M is the number of iterations and K the number of classes,
then the computational cost of SAMME is O(dpnlog(n)M). This makes
SAMME K (K = 100 in our experiments) times faster than a multi-class
AdaBoost classification reduced to K two-class AdaBoost classifications.
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Apart from this consideration, SAMME shares with AdaBoost the rest
of its features and strengths. In particular, it is very resistant against over-
fitting.

These are the reasons why we choose this algorithm, that we imple-
mented in C++.

2.1.4. Mel-frequency cepstrum coefficients

The system under study was intended to be compared with the widely
used Mel-Frequency Cepstrum Coefficients (MFCC) approach to feature ex-
traction. We had a MFCC system developed with the Janus Speech Recog-
nition Toolkit that had been tested years ago in the same task (word and
short sentence recognition of the same corpora). Unfortunately, when we run
the MFCC, the system was not working as should, a long stage of debugging
was needed to make it work again. This debugging task was not theoretical,
but a practical work with the TCL scripts written for Janus. Nevertheless,
as we used this system widely and for comparison with the new methods
studied, we provide here a short description of the MFCC features.

The process to compute MFCC has three stages: first, the signal is
decomposed in temporal frames; second, it is processed through a Mel-filter
bank; third, then the cepstral coefficients are computed.

An additional advantage of using MFCC is that they are highly uncorre-
lated, and thus, diagonal covariance can be assumed. This assumption be-
comes very useful when using Gaussian Mixture Models (GMM) for training
the Hidden Markov Models (HMM).

This method can be considered a frequencial approach to feature extrac-
tion, because the temporal dynamics of the signal are not strongly influential
on the results, as each frame is considered isolatedly. This represents a cru-
cial difference in comparison with the spectro-temporal analysis performed
with Gabor filters. On the other hand, it has been studied and used ex-
tensively during the time, becoming one of the most popular methods for
feature extraction on the ASR field.

Furthermore, it is important to notice that the only component of the
whole process motivated by analysis of the properties of the human auditory
system are the Mel-filter bank. This represents also a big contrast when
confronted with Seneff’s auditory models features postprocessed with Gabor
filters, methods strongly inspired in physiological properties of the auditory
system.

From a third point of view, MFCC approaches for feature extraction
are much less complex in terms of computation. Only the processing with
Seneff’s auditory model is more expensive than the whole MFCC process.
Gabor filtering also introduces an extra non-negligible computational time.
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Windows

First, the signal is splitted in temporal intervals or frames. These frames
have typically a length ranging betwen 10 ms and 50 ms. This is because
of the assumption that the vocal tract will not experiment big changes in
its shape in short intervals, and thus the signal can be considered quasi-
stationary (this assumption is true with most of the phonemes, but not with
plosives, for instance). Moreover, it should be big enough to be possible to
perform analysis in the frequency domain with reasonable accuracy.

In order to preserve temporal changes, usually the frames overlap. Thus,
the distance between the start of consecutive frames is not equal to the frame
length, and receives the name of frame shift. The value of these frame shifts
is usually between 5 ms and 20 ms.

Although rectangular window has good frequency resolution, it presents
small attenuation on the side lobes. Thus, usually another window is applied
to the frames, often the Hamming window:

2mn
=0.54 - 0.46
wn] cos <N — 1)

Mel-filter bank

The FFT of the windowed signal is calculated, and then is processed
thorough a set of filters known as Mel-filter bank. These filters are placed
according to the mel scale, that gives more importance to sounds with lower
frequencies, in an attempt to emulate perceptual characteristics of the hu-
man auditory system[21]. The filters are distributed at the same distance
in the Mel scale, which was determined experimentally:

Mel(f) = 25951og;, (1 + 7?;0>

The outputs of these M filters Hy,[k] form a vector Y [m]:

N—
Y[m] = (I X [K]|* Hon[k]) 0<m<M
k=0

[y

Cepstrum

From Y'[m] is then calculated the logarithm of the signal:
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S[m] = In(Y[m]) 0<m<M

The operation is completed by computing either the Inverse FFT or the
Discrete Cosinus Transformation (DCT) of S[m)].

c[n] = Afspn]cos <7m(mM_1/2>> 0<n<M

m=0

The first coefficients of ¢[n], associated with low frequency components,
depend on the shape of the vocal tract, while higher order coefficients are
associated with the excitation of the vocal chords.

The number of cepstral coefficients is a parameter to set. Values be-
tween 13 and 39 are often used. As reported in [14], high order coefficients
(1-15) contain information about the fine structure of the spectrum (high
frequency), and low order coefficients about the smoothed spectrum (low
frequency(15-40)). It is also useful to discard the first coefficient, that con-
tains a measure of the signal energy in the frame, value with high variability
that can depend on multiple factors.

2.2. Pattern matching

The features extracted are then feeded to an acoustic model. The model
employed is Gaussian Mixture Models (GMMs), which provides a set of
probabilities for each phoneme, with Hidden Markov Model (HMM) that
performs a search for the most likely sequence of phonemes employing statis-
tic information from a training task and information about the language
provided by the language model.

We did not write any of these modules, that were already implemented
in Janus, although we debugged the scripts to isolate and solve the bugs
present in the code.

2.2.1. Acoustic model based on hidden Markov models (HMMs)

While GMMs provide the likelihoods of the presence of each phoneme or
segment of phoneme in a given time, its combination with Hidden Markov
Models (HMM) allow to consider the time dynamics of speech, dealing with
the problem of estimating the most likely sequence of units. This approach
has been widely used in speech recognition.
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If we consider a system that can has a state s from a set of N different
states. Considering the time dimension as discrete, with intervals of At,
the system can change its state (or remain in the same state) according to
probabilities related to the state. This system receives the name of first order
Markov chain if the state at a given time ¢; only depends on the previous
state s¢_1:

aij = p(gr = St|qe—1 = Si, Gt—2 = Sk - ..) = p(qr = St|qr—1 = 5¢—1)

And has a probability 7 of the first state being sy.

This model, in contrast with Hidden Markov models, can be called ob-
servable, since the output of the process at a given time is the state ¢; at that
moment. However, the speech cannot be modeled as an observable Markov
model, because we do not have direct observations of the changing states in
the mind of the speaker while he is producing the speech. This process is
hidden, but we can obtain observations of another stochastic process (the
speech signal) that is bounded with the sequence of states of the hidden
process. This additional process emits an observation O; from a set of K
(vg) different observations that depend only on the current state g;:

bjk = p(Or = vi|q = s5)

The hidden Markov model is determined by the parameters

A= (m A, B)

Being A = [aij]NxN and B = [bjk]NxK
Speech usually depends on more than one of the previous states. How-

ever, HMM models are widely and successfully used in speech recognition.

Given this definition, there are three problems that have to be solved to
use the models in automatic speech recognition:

= Evaluation problem How to compute the probability of an observa-
tion given the model P(O|\)?

= Decoding problem For a given sequence O = 010> ... and a model
A how to find the sequence Q = ¢1¢2 ... that best explains the obser-
vations O7?

» Learning problem How to ajust the parameters A = (m, A, B) such
that the distribution P(O|)) corresponds to the events modeled?
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The first problem can be solved by calculating every possible observation
sequence. Given that there are N7 sequences, this method is too compley,
with order O(NT).

Fortunately there are affordable solutions to this problem, as the forward
algorithm, of complexity O(N?T).

In the second problem, the Viterbi algorithm, with complexity O(N?T),
was used for performing a search of the state sequence that maximizes
P(O|N).

The third problem is related with the training. There is no analytical
method that maximizes P(O|\) by adjusting the parameters. Then, it was
used an iterative method, the Baum-Welch or forward-backward algorithm.

These three methods are explained in detail in [17].

There still remains the question of how to estimate the probabilities
B. Usually, the output distribution probability is modeled by a mixture
of multi- variate normal distributions, method that receives the name of
Gaussian Mix- ture Models (GMM), that will be explained here, since these
models are of great importance when studying new features.

2.2.2. Gaussian mixture models (GMMs)

Gaussian mixture models are used to model a probability density func-
tion by describing it as a sum of Gaussians.

If bjj, is the probability density function of an observation O; being pro-
duced by an state s;

bjr = bj(vg) = p(Or = vi|q = s;)

then it can be expressed by arbitrary precision as a mixture:

N
bj(ve) = Y cjibji(vi)
i=1
Where each component density is a n-variate Gaussian function:

b (os) — 1 1 sl )
bjlk - b,ﬂ(vk) - (27T)(n/2)‘ Z]l ‘1/2 €$p{ - 2($ - lu’]l)zjl (:U - /'L‘TL)}

GMM constraints

An important fact about GMM is that, although they can approximate,
in theory, a probability density function with arbitrary precision, some prob-
lems arise in real world cases, due mainly to computational complexity con-
straints:
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s The number of gaussians is limited.

= Usually, X;; is assumed to be diagonal.

The consequences of the first constraint depend strongly on the shape
of the probability density function that has to be approximated. This effect
is particularly bad when modeling distributions that present steep peaks,
because they get masked by the gaussians.

The second constraint is widely used in MFCC-based systems because
it is a good approximation of the covariance of MFCC features and the
computational complexity is considerably reduced, because the number of
parameters for each Gaussian becomes N instead of N(NN — 1)/2. However,
this assumption is not always true, and has great importance when dealing
with new features, such as the studied Seneff-Gabor features, as will be
discussed later.

2.2.3. Language model

Language models incorporate knowledge about the statistics of sequences
of phonemes or other units. For example, the may provide the probability
of occurrence of a given phoneme given the previous phonemes.

N-grams models simplify the problem by assuming that the probability
of occurrence of a phone p; given the 1...k previous phonemes depends
only on the N previous phonemes.

P(pilpk—1-..p1) = P(p|pk—1- - - Pk—nN)

They are a useful way to incorporate information from the N nearest
neighbours to the estimation of pg. By their nature, these models become
dependent on the training data. If an N-gram does not appear in the train-
ing data, either its probability of occurrence will be zero, or smoothing tech-
niques should be applied to the computation of the probabilities in order to
avoid an excessive dependence on the training dataset. As N increases, the
number of possible N-grams increases exponentially, needing larger datasets
and consequently increasing the dependence on the training dataset. In our
experiments N was set to 3, therefore we used a tri-phone language model.

In the problem studied, we worked with isolated word recognition. The
words of the set were compiled in a dictionary along with their different
possible pronunciations, and the recognizer was restricted to produce only
words from the dictionary, thus simplifying the task.
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Chapter 3

Working environment

3.1. Corpus

Corpora are collections of speech recorded material. They are used for
training and evaluating automatic speech recognition systems. The statisti-
cal models will be subsequently adapted to the patterns of these utterances
in order to model correctly similar data. The choice of the corpus should be
related to the task that the ASR should perform.

In our experiments, we used the German corpora at Sony Eutec.

3.1.1. Composition

The corpus used in our experiments contains a long set of recorded utter-
ances from 100 different German speakers, both male and female, in absence
of noise. It is composed of recordings of few words (mostly one or two), cov-
ering a list of different topics:

= Adresses. 100 per speaker. Example: Beethoven Platz

= Letters. 26 per speaker. Example: a

» Cardinal numbers. 50 per speaker. Example: 1

= Dates. 20 per speaker. Example: Montag

» Frequencies. 20 per speaker. Example: hunderteins Komma drei
= Commands. 350 per speaker. Example: iiberspringen

= Ordinal numbers. 30 per speaker. Example: erster

4 digit pin numbers. 50 per speaker. Example: null sieben null neun
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» Phrases. 30 per speaker. Example: Radio bitte etwas leiser
= Radio stations. 100 per speaker. Example: WDR 4
= TV stations. 50 per speaker. Example: Premiere

= Telephone numbers. 50 per speaker. Example: null null acht eins drei
vier sieben acht zwei drei eins

= Teletext numbers. 50 per speaker. Example: dreihunderteinundvierzig
= Times. 50 per speaker. Example: Vier Minuten und vierzig Sekunden
» Sequences of letters (A..Z). 100 per speaker. Example: A 1B O

» Sequences of digits (0..9). 100 per speaker. Example: drei drei drei

Giving a total of 1176 recorded utterances per speaker. 25 speakers were
used for training, and the remaining 75 for testing.

3.2. Labeling

A corpus can be labelled, which means that there is available information
about the time at which the unit starts and ends. Units in this context can
mean words, phones, or subphones. Labeled corpora are very useful for our
purpose of training an ASR system. Unfortunately, labeling large corpora
is a very time consuming (and computationally expensive) task.

A suboptimal solution for this problem is to label the corpus with a
previously trained ASR system, and force it, knowing the transcription, to
align the labels with the time domain signal in the most likely way using the
Viterbi algorithm. This is how our corpus was aligned to phoneme strings.
But, as current ASR systems are far from perfect, the alignment produced
may be very inaccurate. Again, the importance of these misalignments
depends also on the statistical model that is being trained with the copora.

In order to illustrate this, take the following example. In Figure 3.1, the
phoneme /b/ is clearly misaligned. /b/, being a plosive phoneme, is articu-
lated by obstructing totally the air flow, and later releasing the obstruction
to produce a small plosion, which creates its characteristic sound. That
means that /b/ can be described as a silence preceded with a particular
plosion. If the phonemes are modelled by Markov chains with three states
-b -m -e (that stand for beginning, middle, and end) as in 3.2, ideally state
-b will be the steep transition to silence, state -m will be the silence, and
-e the again steep plosion of the sound. When modeled with this kind of
topology, it is not very important how long these segments are, because each
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@ 500 |, GlP_

Figure 3.1: Labeled Seneff’s auditory system output of the word Bahnhofs-

trasse.
H‘H

Figure 3.2: Topology of the Markov model of the phoneme /b/ in three
subphonemic units.

Markov state have an arc that allows the system to stay in that determined
state. Thus, in these models, these types of misalignments are not crucial.

However, if the approach changes, misalignments can play a significant
role, as we will see in the next chapter when moving from phonemes to
pseudosyllables.
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Chapter 4

Experimental work

The work conducted in this study has three main parts.

First first place, the particular characteristics of the features resulting
from the application of Seneff’s Auditory Model and their postprocessing
with two dimensional filters raised the question of whether we should try to
recognize phonemes or other longer basic units. In section 4.1, an algorithm
to re-segment the signal in a different kind of units is discussed, as well as
its outcome.

Second, the usage of Gabor filters needs some kind of selection process
to select the filters that best characterize these basic units. A boosting algo-
rithm was implemented to perform this task, and its results are discussed.

Third, once we have the secondary features, there is still the question of
whether they suit or not a standard pattern matching scheme with Gaussian
Mixture Models and Hidden Markov Models.

4.1. Resegmentation in pseudosyllablic units

Having choosen the processing stages of the recognizer, there still re-
mains the question of what units should the system work with. Standard
systems recognize words or phonemes, depending on the task.

The speech streams in our database were already segmented in phonemes.
That task was already performed automatically using an ASR system avail-
able at the laboratory. In this process, speech is segmented by finding the
most likely sequence using the Viterbi algorithm given the transcription.
Each sound datafile in the database is processed with this method and the
outcome is a file that specifies the segments of speech that correspond to
each phoneme. The information that associates a segment with a phoneme
receives the name of label.
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However, as the Seneff’s GSDM auditory model output presents groups
of shapes clearly separated, may be more natural to recognize these shapes,
that are sometimes single phonemes and sometimes groups of phonemes,
that we called pseudosyllablic units instead of phonemes.

This resegmentation involves two tasks. First, we have to find these
shapes and their boundaries, and then the existing labels need to be modi-
fied. The criterion behind the placing of the boundaries was to look for val-
leys in the energy of the signal, following the assumption that this method
would separate groups of phonemes pronounced together. Once we had
the boundaries, then we could modify the labels of the corpus, moving the
boundaries of the phonemes and grouping them in longer units. That was
done to solve misalignment problems.

The process can be described as follows: The values of the 40 channels
of the Seneff’s model output are accumulated at each time frame, being
the resulting value the sum of all 40 channels. That transforms the two-
dimensional signal in a single dimensional vector along time. After nor-
malizing the signal dividing it by its maximum value, it is smoothed by
convolving it with the Hann window:

wln] = 0.1 (1 — cos (;”_"1))

The value of N was adjusted empirically to 40.

After computing the logarithm of the vector to have a less peaky and
smoother representation, local maxima and minima are extracted. Local
minima can be indicative of the presence of a valley in the signal energy.
However, not every local minimum separates two different shapes. A shape
may contain local minima, that should be discarded.

To discard irrelevant minima, from the set of local minima and max-
ima, we looked for sequences of maximum-minimum-maximum wider than
140 degrees. This discards slow variations of the signal energy. Values of
maximum-minimum-maximum with a difference of less than 0.5 dB were
also discarded, eliminating false boundaries, as shown in Figure 4.1.

To compute the angle in sequences of maximum-minimum-maximum the
dot product was used:

a

9:arccos< 'b>
|al[b]

where a and b are vectors defined in Fig 4.1.

This technique, although very simple, performed reasonably well when
detecting the valleys without other information apart from the energy of
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E

Figure 4.1: Diagram showing the rules for discarding local minima.

the speech signal. It has, of course, limitations. For instance, eventual noise
with more than 0.5 dB of energy difference with respect to the silence will
not be discarded.

We had another kind of information that should be used to re-segment
the speech signal, the automatically aligned labels, that are sometimes com-
pletely wrong, and sometimes inaccurate, but most of the time can help to
discard wrong results.

The first approach to the goal of assigning phonemic labels and merge
them in pseudosyllabic units was to compute the boundaries of the segment
finding relevant valleys with the method previously explained, and then as-
sign the automatically aligned boundaries of the phonemes with the nearest
pseudosyllabic boundaries. This produced wrong results. Short phonemes
can, for instance, disappear if their start and end boundaries are assigned
to the same point.

The method finally employed focused in overlaps instead of distance be-
tween boundaries. The process, depicted in Figure 4.2 was done in two
stages. First, the phonemes were assigned to the region of the new bound-
aries they overlap more with, and the assignation was stored. If two or more
phonemes share the same boundaries, they are merged in a pseudosyllable.
Second, some segments were not assigned after the first stage, resulting in
gaps without labeling. If that happens, we look for the phoneme that they
overlap more with, and assign the gap to the same pseudosyllable to which
that phoneme was previously assigned. In Figure 4.2 , the gap is assigned
to the blue phoneme, but as it was assigned in the first stage with the
first pseudosyllable, the gap is merged with the first pseudosyllablic unit,
increasing its length.

Segments labeled as silence were not merged with other phonemes, and
in consequence, no pseudosyllable contained silence segments.

This process was acceptably accurate. When later we looked at the list
of assignations for the same pseudosyillabic unit, we found that the shapes
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1 Sil be

3 sil be

Figure 4.2: Diagram showing the process of gap assignation. After the first
stage, the phonemes of German word silbe have been assigned to two pseudo-
syllables, but there is a gap between them (1). We look at the automatically
assigned phonemes to see which phoneme overlaps more with the gap, and
it is /1/ (2). As this phoneme has been assigned to the first pseudosyllable,
we assign the gap to the first pseudosyllable too.
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obtained that had the same labeling, had similar aspect as well.

However, this procedure has its drawbacks. Although the same units
looked similar, the total number of units was very large.

Placing the boundaries in valleys in the signal has a problem: although
it works with many phonemes, there are some whose signal contains a valley.
This happens mostly with plosive phonemes, like /t/, that is characterized
by a short silence when the air is obstructed and then a plosion when the
airflow is freed. When smoothing the signal by convolving it with the Hann
window, the signal is smoothed, a valley can change its place. Hopefully, it
will be inside the boundaries of the original /t/. But, as we are segmenting
according to valleys, even in that case the phoneme has a 50% probability
of being assigned to the segment that does not contain the plosion. The
problem is better explained with diagrams, and it is shown in Figure 4.3.
Although this particular case can be solved simply assigning the plosives to
the phoneme pseudosyllable that follows them in time, it shows the type of
problems that can be expected from this approach.

Figure 4.3: Scheme showing a typical problem of the realignment. After
smoothing with a Hann window and finding the valleys, a /t/ (in red) is as-
signed to the pseudosyillabe of its right, which does not contain the plosion,
only the silence.

This kind of problems increased the number of different pseudosyillabes
in the set, multiplying its number by adding randomly half of the times
problematic units at the start or at the end of the pseudosyllables.

However, the biggest problems were produced by other factors, mainly
two:

First, the particular articulation of the speaker can produce valleys in
the signal in unusual places, and the algorithm has no way to overcome these
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difficulties. Sometimes it is fixed in posterior stages of the algorithm, but
sometimes these wrong valleys are selected as boundaries by some phonemes,
forming the boundaries of a pseudosyllable. The effect of these artifacts is
to increase the number of different pseudosyllables in a non desired way.

Second, we relied strongly on the accuracy of the previous alignment, be-
cause that is the only information we have about its phonemic composition.
As has been said, the labels contained errors very often, errors that were
carried along the process. Sometimes, they were fixed by the algorithm, but
many of them persisted.

In particular, the labeling of short words was particularly wrong. The
corpus contained several utterances with isolated numbers or letters. The
phonemes in these utterances had been wrongly automatically segmented,
and almost always all the phonemes were assigned to segments of silence,
instead of speech. That is to say, misalignments were very frequent in short
utterances in the labels existingat the laboratory. When we processed these
utterances with this technique, as silence does not contain energy valleys, so
regions with silence are considered a pseudosyllable. As in these utterances
all the automatically assigned phonemes overlapped with a region of silence,
all of them were assigned to a single, long pseudosyllable whose signal was
a segment of silence.

To overcome these alignment problems, some simple rules were applied
in order to discard utterances with obvious bad labeling. However, visual
inspection of all the utterances would had been prohibitive due to the large
size of the training and test databases. The rules applied were:

= [f there is a phoneme whose duration is 350 ms or more, the utterance
is discarded. As the length of each frame was 5 ms and they did
not overlap, that means a duration of 70 frames. If after the process
a resulting pseudosyllable has a length of more than 70 frames, the
utterance is discarded too. That is to say, the rule of 70 frames is
applied before and after the process. These long units are very likely
result of bad automatic alignment in the training database. This rule
was not applied to the silence, since it is usual to have long segments
of silence.

s If a resulting pseudosyllable is composed by more than 4 phonemes
the utterance is discarded.

» If the utterance has less than 5 phonemes it is discarded because wrong
labellings were too frequent in this kind of utterances.
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Figure 4.4: Utterance Berliner Ring illustrating a typical discarded utter-
ance because of its bad initial labeling.
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4.1.1. Reduced set of pseudosyllables

After relabeling every utterance in the database with the process above
described, the number of different pseudosyillabes (more than 5000) was too
large to perform a classification task. Moreover, most of the units appeared
only a few times in the database, making the training process difficult be-
cause of the lack of a sufficient number of training samples per unit.

In consequence, we computed the number of utterances that could be
expressed with a given set of units, expecting that, after a reasonable number
of pseudosyllables in the set, most of the database could be expressed with
this subset. We started from the 50 most frequent units, adding new units
according to its frequency of occurrence in the database.

However, the results where not as good as expected. The number of
utterances that could be expressed with a reasonable number of pseudosyl-
lables was quite low. An acceptable number of pseudosyllables that could
express most of the corpus did not exist, at least with the information avail-
able and the algorithms employed. To express most of the corpus with
pseudosyllables, a very large number of pseudosyllables would had been
necessary, but that means a large number of classes to classify both in the
Gabor selection and in the speech recognition processes.

Moreover, as the number of pseudosyllabes grows, there are more and
more pseudosyllables very similar, making the classification task difficult.
For instance, many of the pseudosyillabes started with the phoneme /t/,
very frequent in German (in fact, the third most frequent isolated phone of
the list). Considering that productions of /t/ are usually short phonemes
composed from a silence and a plosion and they were attached to a longer
phoneme, and given that the plosion can be wrongly assigned to the previous
pseudosyllable, the result is that often pseudosyllables starting with t had
only a silence representing the /t/. Given, for instance, /ta/, was very
likely that it consisted of a silence and the /a/, being thus very similar to
an isolated /a/, specially if it is an /a/ that appeared in the beginning of
a word. As SAMME focuses in samples that are difficult to classify, it can
be expected the selection of the Gabor filters to be affected by the attempts
of finding Gabor filters able to discriminate between, for instance, /a/ and
/ta/, both very frequent and frequently indistinguishable in our framework.

The number of pseudosyillabic units was finally limited to 100 units, an
amount that, although is large enough to bring difficulties to the classifiers,
is not excessive. As commented before, there were no reasons to set the
limit in any particular number. These 100 units included single phonemes,
being thus possible to express the whole corpus.

Then, every unit not present in the set was decomposed in its phonemes.
This task was done by looking in the original labels looking for the bound-
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aries between phonemes of the pseudosyllable that have to be split.

After this process of decomposing the least frequent pseudosyllablic units
in phonemes we reestimated the frequencies of the 100 chosen units, resulting
in that single phonemes were the most frequent units by far, because there
were many decomposed units. The frequencies of the phonemes and the
pseudosyllables are represented in Figure 4.5. Most of the pseudosyillabes
are not frequent. This made the overall process less useful, because we
increased the number of classes from 42 to 100 while more than a half of
them were rather infrequent. In consequence is not clear that the whole
process of using pseudosyllabic units gives us any advantage compared with
working only with single phonemes.

900

60

Figure 4.5: Frequencies of the 41 single phonemes (in blue) and the joined
phonemes forming 58 pseudosyillabes (in red) in the reduced set of 100
classes (silence is not shown) evaluated in a 1/27 of the corpus.

Anyway, even when the objective of finding a reasonable number of pseu-
dosyllabic units obtained from their representation with the GSDM that
could express the German language was not successful, the rules applied to
discard bad labeled utterances were still very useful to identify corrupted
training data and do not use it in the training process.
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4.2. Feature Selection

4.2.1. The SAMME feature selection algorithm

Although SAMME has good performance when classifying (see again
[23]), we are not primarily concerned in its final classification C'(x). Instead
of that, we want it to select the best features from a given set.

Both AdaBoost and SAMME can be used for feature selection with some
modifications. The key relies in the first two steps of the each iteration.
When fitting a classifier 7™ (x) to the training data, we have freedom to
choose the weak learner. If we have a set of ¢ = 1...(Q) features x,, each
one with N observations, and a weight w,, for each observation, we can fit

a classifier Sém) (xq) to each one of the g features, and then take the best

Sém) (xq) as T (x).

With this change, the second step of the SAMME algorithm becomes
computing for m =1 to M:

1. For g =1 to Q:

a) Fit a classifier S(gm) (xq) to the training data of the feature xq
using weights w;.

b) Compute
erﬁgm) = Z will(e; # T (xq3))/ Z Wi
i—1 =1
2. Set
err™ — argmin err,gm)
q
and

T (x) — S§™ (xq)
(m)

for q such that minimizes errg

3. Compute
1 —err(™
err(m)

o™ = log + log(K — 1)

4. Set
w; — wieap(a™ (e, # T (x;))),i = 1,2,...,m

5. Re-normalize w;

Choosing T in this way, SAMME will choose at each iteration the
feature x, that can help it better to achieve a good overall classification.
Moreover, it will assign to the feature a weight «(m), that contains infor-
mation about its importance in the set of features.
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4.2.2. Weak learners

We have almost complete freedom to choose S(gm), being the only re-

quirement that the best errém) is less than 1/K. As we wanted the time
requirements for fitting each classifier to be as smal as possible, we chose a

very simple classifier.

The weak classification process was performed by dividing the range
0...1 that x4 can take in r steps. Each step S, is initialized with an associ-
ated value of zero for each class. That value, at the end will be the sum of
the w, of the x, that are in that segment for each class. That is, for each g,
we examine the value of x4, and we find the step to which that value belongs.
Then, we add its associated weight w, to the value associated to that step
for the class k of x,. After computing all Q values, we find for each segment
the class k£ with the maximum value. The final classifier ng) (x4), will clas-
sify according to these value for each interval. This process is depicted in
Figure 4.6

This is, in fact, a rough estimation of the probability density particu-
larly prone to overfitting and a very inaccurate classifier, but very fast and
simple. More complex classifiers can be used as weak learners, at the cost
of increasing the computational time, because they are trained for every
Gabor filter on every iteration. Being G the number of Gabor filters and M
the number of iterations, if the computational time required to train a weak
learner is multiplied by a factor ¢, then the overall computational time is
increased by a factor of cGM. Thus, the weak learners should be as simple
as possible if they are expected to select among large numbers of Gabor
filters. And, after all, using a number of simple classifiers to build a strong
classifier is the idea behind boosting algorithms. Being coherent with this
idea, the complexity should be in the side of the strong classifier.

The number r of steps can be adjusted. In the practice, bigger values of
r make the final classifier more dependent on the training data. This can
be explained by the overfitting of the weak learner.

This is a simple type of stump learner. Stump learners are often used
with AdaBoost, because they are simple, they can be calculated quickly, and
they are better than guessing (they become guessing for the trivial case, in
which the number of steps is 1).

4.2.3. Preselection of Gabor filters

SAMME can perform a selection of the best Gabor filters for classifying.
However, it needs an initial selection of Gabor filters, as the potential number
is infinite.
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Figure 4.6: Example of a weak classifier with two steps. Values x1, x3 and
x4 are in the range of the first step. 3 and 5 have the same class, so we sum
their weights and assign the result to the weight of that class in that step.
The result is that is more likely that values in the first step belong to class
B than to class A. In the second step, the result is different. There is only
a sample per class, but the value xo with class A has a bigger weight. In
consequence, we estimate that is more likely for values in the second step
to belong to class A. The weak classifier will classify with that simple rule:
Values between 0 and 0.5 will be assigned to class B, and bigger values to
class A.
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Although other approaches start from random Gabor filters and drop
iteratively the worst to arrive to a selection of the Best Gabor filters to clas-
sify using Feature Finding Neural Networks, as was done by Kleinschmidt
n [10], we chose to employ the SAMME algorithm because AdaBoost has
been used successfully in feature extraction for image recognition, and be-
cause it has a set of benefits like absence of overfitting, as was discussed
before. However, even in the case of random selection of filters, some limits
have to be imposed to the size of the Gabor filters, because the space of all
the possible Gabor filters is infinite.
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Figure 4.7: Original set of Gabor filters with frequency ranging between
1/10 cycles per point (top) and 1/2 cycles per point (bottom) cycles/point
and 8 orientations.

For performing the selection of the eligible Gabor filters, we started with
a wide range of sizes varying from % cycles per point to % cycles per point
and 8 orientations, as shown in Figure 4.7. This set is similar to the set
used, for instance, by Chengjun and Wechsler for face recognition[12].

However, in our first experiments (see Figure 2.7) it was clear that the
smallest Gabor filters were extracting variable and undesirable features with
great variability.

This is due mainly to the nature of the GSDM representation. While
other representations show patterns of equally distributed stripes, like in
Figure 4.9, these patterns are not present in the GSDM representation.
Gabor filters are extracting the components of a given frequency in the two-
dimensional (time-frequency) representation. That is, when we talk about
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Figure 4.8: Segment /ar/ filtered with 40 Gabor filters with frequency rang-
ing between 1/10 cycles per point (top) and 1/2 cycles per point (bottom)
cycles/point and 8 orientations. Smaller Gabor filters present noisy patterns.
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the frequency extracted with a Gabor filter, it is not the same frequency
as the frequency of the speech. A tone with a given frequency will be
represented in the Seneff two dimensional output with an horizontal line.
But Gabor filters extract frequencial components in the two dimensional
output. If these frequencies in the two dimensional signal are not remarkable,
the result is noise.

Even the biggest set of Gabor filters, with f = 1—10 cycles per point, when
evaluated with the same pseudosyllabe, resulted in values very disperse from
the mean. Kleinschmidt used Gabor filters with spectrograms that contained
two-dimensional patterns that were easier to extract by Gabor filters, but
in the GSDMM representation these desired spectro-temporal frequencies
do not appear, instead we have cloudy patterns, and thus the zones that
get the maximum values when filtered were the ones corresponding to steep
changes in the energy of the signal in the selected direction. As abrupt
changes are, in the spectral domain, composed by a wide band of frequencies,
these frequencies were the ones extracted by the Gabor filters. But abrupt
changes, corresponding mostly to the outline of the GSDM signal, are not
very stable among observations of the same class, as was appreciated by
visual inspection of the resulting filtered samples and comparing them with
the mean value.

Then it was decided to use bigger Gabor filters. The new range of filters,
with 5 different sizes, had frequencies ranging from % cycles per point to %
cycles per point. This contained the bigger filters of the previous set. The
biggest Gabor filters in the set are bigger than the signal. They are stable,
since they are so big that extract only information about the general shape
of the signal.

Gabor filters are band-pass filters that extract components of a given
frequency with one particular orientation in a given location from a two-
dimensional representation. The question of whether the information present
at those frequencies is useful (stable among observations from the same class
and different among observation of different classes) or not, depends on the
nature of the original two-dimensional representation. In Figure 4.9 is shown
an example of the representation employed by M. Kleinschmidt and B. Meyer
in some of their works (see [15], for instance); that is the kind of pattern that
small Gabor filters can extract easily. Other applications of Gabor filters,
mainly in the image recognition field, use Gabor filters for extracting similar
kinds of patterns, such as fingerprints or facial patterns as in Figure 4.10.

But as these spectro-temporal frequencies were not present in the GSDM
representation, small-sized Gabor filters, associated with the extraction of
high frequency components, they were not useful, because in our cloudy
patterns these high frequencies, are not representative of the signal. In
Figure 4.3 it can be appreciated that small-sized gabor filters give as a
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frequency [Hz]

Figure 4.9: Spectrogram of the utterance tomatensalat with clear spectro-
temporal patterns. From [15].

Figure 4.10: Gabor in face recognition. The pictures on the left show the
first 5 selected Gabor filters in [20]. The two rightmost pictures show the
position of 200 Gabor filters selected with AdaBoost.

Figure 4.11: Size comparison between an upwards oriented Gabor filter of
f = 3/50 cycles per point and the 40 channels GSDM signal.
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result a noisy pattern, that is not stable. This could be appreciated by
visual inspection and performing the selection of SAMME. As it will be
shown later, SAMME did not give importance to small Gabor filters (that
extract high two-dimensional frequencies) to build a classifier.

On the other hand, big Gabor filters (that extract low two-dimensional
frequencies) have two associated problems:

= As they do not extract detail, small zones in the representation are
masked with their neighbours.

» Big sized Gabor filters are strongly correlated with filters of other
locations in the two-dimensional representation, and even with filters
that have different orientation.

Both effects are shown in Figure 4.12. The correlation effect is bad
because it limits the number of different Gabor filters that can be used to
extract information of the given data, and because it breaks the assumption
of different features having diagonal covariance, as is usually assumed by
the next stage of the system, the Gaussian Mixture Models.

The amount of information carried by a Gabor filter, given others, was
evaluated by calculating the joint entropy of different results of the Gabor
filters.

In order to calculate the joint entropy we filtered a large collection of
samples with all the filters. For each pair of filters a bidimensional histogram
with the results of both filters was constructed. This histogram was divided
by the sum of all the values to obtain an estimation of the joint probability
distribution. Finally, the joint entropy of two filters is calculated with the
formula

H(X,Y) == paylogs(pey)
T,y

This result shows that bigger Gabor filters carry, as expected, more mu-
tual information than the smaller ones. It can be appreciated in Figure 4.13
and Figure 4.14, that takes not in account the position of the filters, that
filters of lower frequencies have less joint entropy with the rest, and thus
share more mutual information.

4.2.4. Feature selection with SAMME

In practice, there are constraints when dealing with large training sets.
As the number of classes increases, the number of training elements should
increase as well. Otherwise, if there are not enough samples to learn from,
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Figure 4.12: Utterance Beethoven Strasse filtered with two low frequency
filters. From top to bottom, original GSDM representation, utterance fil-
tered with a low frequency filter oriented horizontally, and utterance filtered
with a low frequency filter oriented downwards.

the system can learn patterns that are dependent on the particular realiza-
tions of the training samples. Ideally, it should learn the patterns that are
stable in large realizations of the event to classify.

On the other hand, large training sets have technology requirements in
terms of computational speed and memory that sometimes are difficult to
fulfill.

SAMME evaluates at each iteration (step a of the algorithm) all the
classifiers. In our specific problem, we need all the pseudosyllables to be
computed by all the Gabor filters in every position. Each sample is a matrix
of 40 frequency channels (the number of channel of the Senef’s auditory
model) per 70 temporal frames and for a number of 40 different Gabor
filters (8 frequency orientations and 5 different sizes).

Each Gabor filter is stored by a matrix of 64 rows and 64 columns of
float numbers. In the worst case, using a filter that totally overlaps with
the original image, since our samples have 40 rows, when convolving the
Gabor filter, 40x64 multiplications of float numbers need to be computed.
If we compute the result of each Gabor filter with all the data on every
iteration to adjust the weak learners, as was done for instance by Norman
Casagrande with Haar features in a two-class problem[1], we would had to
restrict severely the size of the training database to get results in a reasonable
amount of time. Moreover, we would be doing the same operations on the
same data over and over.
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Figure 4.13: Joint entropy between outputs of different Gabor filters from
the 20 filters base (5 sizes/frequencies with 4 orientations, here we only
considered orientations rotated 45 degrees instead of 22.5 degrees) set in 40
positions (leading to 800 Gabor filters). Black values stand for low joint
entropy. First 200 filters correspond to Gabor filters capturing horizontal
ripples. Filters in positions 200-399 filter upwards diagonal ripples. Filters in
positions 400-699 capture vertical ripples. Finally, last 200 filters correspond
to downwards diagonal ripples. In each group, first filters are the biggest.
Bigger Gabor filters carry more mutual information.
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Figure 4.14: Sum of the joint entropy for each filter in its 40 positions. There
is a total of 20 filters. Filters in positions 1, 5, 11 and 16 are the biggest
ones, while filters in positions 5, 10, 15 and 20 are the smallest ones.
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One of the solutions would have been to compute the mean of the value
for the filter for all the time frames, and that would have reduced the op-
erations by a factor of 70. This was tried in a posterior step, and the
performance was significantly worse.

On the other hand, we can filter the training database in advance, and
feed SAMME with the calculated Gabor features. This has the advantage
of doing the filtering only once. That is what we did.

While the speed problem had been solved, there still remained the mem-
ory problem, as we had to store the result of each utterance filtered with
each filter.

For the reasons previously explained, we used big sized Gabor filters,
that are strongly correlated. As SAMME makes no distinction between
weak learners by discarding the ones with high correlation, it can, and in
practice does, select two or more Gabor filters highly correlated. This does
not only increase the correlation among features, but, moreover, increases
the number of features selected.

Thus, we decided to prune the number of Gabor filters of the preselection
in two main ways:

= First, we decided to use Gabor filters with 4 possible orientations,
with angles of 0, 45, 90 and 135 degrees, instead of 8 with steps of 22.5
degrees, after observing that the results of discarding that half of the
orientations was not significantly worse (about 1% of increment in the
training error).

= Second, Gabor filters were evaluated centred in each of the 40 channels
of the GSDM and at every temporal frame (from a total of 70). We
decided to divide per 16 the number of different locations of the Gabor
filters, evaluating in positions 2, 6, 10, ... both in temporal and spectral
axis. Again, the performance was not affected by this reduction of the
available number of Gabor filters.

After the pruning, the size of the database was reduced by a factor of
32, while the results did not get much worse, and the resulting selection
decreased its correlation. Basically, we discarded very similar Gabor filters
given our task. The final set of 20 Gabor filters is shown in Figure 4.15.
Of course, these filters can be placed in different locations, so there are still
many possibilities and the need of using SAMME.

The number of steps per weak learner was adjusted experimentally.
While high number of steps (40) produced the training error to decay quickly
(see Figure 4.16), test error does not decrease below 85%.
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Figure 4.15: Set of 20 Gabor filters used in feature selection

Lower values for the number of steps (10) produced slightly better re-
sults, arriving to 82% of test error when evaluated in a 100 class problem
(see Figure 4.17.

The selection process was conducted also with single phonemes, discard-
ing finally pseudosylables. Doing that, with 10 branches and 42 classes, the
test error decreased to 70%.

Although the test error in SAMME has not a direct influence on the
automatic speech recognition performance, because SAMME is not used for
classifying, but only for feature selection, these results give an idea about
how difficult is the classification task and are useful for tuning the param-
eters. Although the test error rate was high (70% was the best result), we
expected that a complete ASR system using HMM and language models
could reduce this error substantially.

4.2.5. Analysis of the weights

SAMME gives a weight to each selected classifier. These weights were
accumulated for Gabor filters located in the same spectral location but in
different temporal locations, because in the ASR system will be evaluated on
every temporal frame. After this accumulation, we obtained a set of weights
associated to the Gabor filters.
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Figure 4.16: Training and test error evolution with 40 branches per weak
learner and 100 classes. Horizontal axis stands for the number of iteration.

Utterance 4.18 is filtered with 800 Gabor filters (4 orientations, 5 frequen-
cies, 40 positions) in Figure 4.19 with the results of the 800 Gabor filters.
These figures show how Gabor filters extract some of the components of the
representation. The problems already mentioned (high correlation, detail
masking, recognition of borders instead of frequencial patterns) are visible
too.

As can be appreciated in figure 4.20, except for the spectral oriented
filters, SAMME selected primary filters of the lowest frequencies (filters in
ranges 0-40, 200-240, 400-440). This was commented before: high frequency
filters do not extract much information that could be used for classify (except
for the pure spectral Gabor filters).

High weights given to pure spectral Gabor filters are related to the im-
portance of pure spectral analysis in speech recognition.

Although we expected the selection of Gabor filters to give more impor-
tance to spectro-temporal feature extraction (as it is the purpose of using
Gabor filters), experimental results contradicted those expectations.

From this set of weights, the final selection can be done simply by choos-
ing the Gabor filters with higher associated weights.
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Figure 4.17: Training and test error evolution with 10 branches per weak
learner and 100 classes. Horizontal axis stands for the number of iteration.

Figure 4.18: GSDM representation of the utterance zwei Stunden dreizehn.



4.2 Feature Selection 59

Figure 4.19: Utterance zwei Stunden dreizehn (which GSDM representation
is provided in the previous Figure) filtered with 20 Gabor filters in 40 dif-
ferent height positions. First five have upwards orientation, 6-10 have pure
temporal orientation, 11-15 have downward orientation and 16-20 pure spec-
tral orientation. Inside each set they are ordered from the biggest (f = 3/50
cycles pp) to the smallest (f = 3/50 cycles pp). On a side note, in this ex-
ample can be appreciated how pure spectral orientation filters are activated
by phonemes /s/ (frames around 320 and 510) and /n/ (frames around 370)
and pure temporal filters are activated by steep temporal changes in the
energy.
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Figure 4.20: Weights for each Gabor filter obtained with SAMME. There are
20 Gabor filters evaluated in 40 spectral positions giving a total of 800 filters.
Because of the pruning, 3 every 4 positions were discarded in the pruning
and its weight was forced to be zero. First 200 positions are associated with
Gabor filters oriented upwards; from 200 to 399 are oriented vertically; from
400 to 599 downwards and from 600 to 799 are oriented horizontally. In
each set of 200 filters, they are ordered by size, corresponding the filters in
positions 1-39 to the lowest frequency and 160-199 the highest frequency.
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4.3. Statistical properties of the new features

The studied features differ drastically from MFCC features in their sta-
tistical properties. This difference is crucial, because we are using a typical
approach to deal with MFCC features (GMM + HMM) that may not be
suitable for this task.

Figure 4.21 shows different histograms of evaluations of the Gabor fil-
ters among several utterances of the wovel /i/. They vary between 0 and
1, because the signals were normalized before the training. Taking these
histograms as estimators of the probability density function, we can observe
that their distribution is far from being Gaussian, as opposite to MFCC. It
is formed by a peak and a long tail in the right side of the histogram.
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Figure 4.21: Histogram of results of different Gabor filters (their index is on
the top of each plot) for the phoneme /i/.

In Figure 4.22 are shown the mean values for each Gabor filter when
evaluated on several realizations of different phonemes. As can be observed,
different phonemes have different means. Even close phonemes, as /m/ and
/n/, show different patterns in some Gabor filters when evaluated from this
point of view.

From the point of view of the covariance among Gabor filters, the re-
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Figure 4.22: Averages of the output for each filter in different phonemes.
/a/ in blue, /i/ inred, /z/ in green, /n/ in black and /m/ in magenta. They
are the best 50 filters according to SAMME.
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sulting covariance matrix, that can be seen at Figure 4.23, is very far from
being diagonal, an approximation that can be used in MFCC. This is a
known problem when using Gabor filters, and was solved by Kleinschmidt
by inserting a multi-layer perceptron (MLP) before the GMM.

Figure 4.23: Covariance matrix of the 50 Gabor filters evaluated over 100
utterances.

Unfortunately, this approximation was hard-coded in the Janus Speech
Recognition Toolkit, and would be difficult to change it in a short term.
The employment of a MLP or other technique (LDA or PCA) to decorrelate
the features is left to future work on these features, as we had no time to
experiment with them.

4.4. ASR results

The framework employed in the complete ASR system was the JANUS
Speech Recognizer, initially developed by the Carnegie Mellon University,
after that by the University of Kalsruhe and finally by Sony itself. It is a
toolkit that allows running T'CL scripts to write the modules needed in an
ASR system.

At the final testing stage, more problems arose. First, the ASR system
available in the laboratory, adapted to this concrete problem and corpus,
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had not been tested for two years. This system had two uses in this project:
it was the state of the art system to compare our work with, and was the
basis to be adapted to the changes analysed in our work. Unfortunately,
we discovered that it was not working as expected and had to be debugged,
because some changes in the framework had altered the system and it per-
formed very poorly. In consequence, it had to be debugged for two months,
time during which some of the problems that appeared were fixed. The
corpus had been also partially resampled, in such a way that the labels were
wrong in a third of the utterances, and had to be fixed. After the debug-
ging stage, it achieved a best result of 5% word error rate when recognizing
words and short sentences of our corpora, as it was described in chapter 3.
We trained the system with data from 25 speakers and tested it with the
remaining 75. This system had a better performance in the past, so some
bugs must still be present and more time would be necessary to find them.

The modified system with Gabor filtered Seneff features, on the other
hand, never achieved acceptable error rates, being the best one around 90%
word error rate. Even worse, these results are not meaningful, because the
JANUS ASR system has problems when dealing with the new features. As-
sumptions that worked with the MFCC approach were wrong in the modified
case. After many tests, we could identify two major problems:

= The covariance matrix of the features was not diagonal, as discussed
above.

= In some frames, the ASR system computed a probability of being si-
lence bigger than one (sometimes higher than 300). We did not achieve
to track this bug, although we guessed that was related to the fact that
the silence usually had a very peaky probability distribution, as op-
posed to MFCC. That would explain why the bug did not appeared
when working with MFCC features, whose probability distribution is
not peaky.

But it was impossible to distinguish clearly to what extent these poor
results were due to failures of the existing ASR framework or to weakness
in the Seneff/Gabor approach studied. So, to evaluate the utility of the
GSDM/Gabor approach, may be more interesting the analysis of the prop-
erties of these features than this word error rate.

4.5. Conclusions

Although the GSDM representation shows clear distinct patterns for
each phoneme and is more robust against noise than MFCC, there still
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remains the question of how to post-process these features to be usable by
an automatic speech recognition system.

In this work, some new techniques were examined. The final goal was to
evaluate also their combination in a full ASR system. Although we could not
achieve this final objective, we could learn from the problems that appeared
in each subsystem. The experiments suggest that these problems should
be explored in depth and solved before concatenating the modules, to show
more clearly where the troubles are, separating them from the errors carried
from previous stages.

The approach studied of postprocessing with Gabor filters, although
applied successfully in the past to other features that show clear spectro-
temporal patterns, do not seem to be so promising in combination with the
GSDM representation. GSDM has a different kind of pattern, similar to
clouds, that makes the usage of high frequency Gabor filters not so useful.

As was shown in the section 4.2, SAMME did almost only select pure
spectral and big size Gabor filters. This can be considered an indicator of the
convenience of using another kind of post-processing capable of extracting
patterns from a cloud-like representation as GSDM is.

In any case, there are problems when feeding directly the secondary
features to GMM models. Either the GMM employed should not assume
diagonal covariance, as the features are strongly correlated, or some stage
or stages should be inserted before the GMM stage. M. Kleinschmimdt
and B. Meyer successfully employed the Tandem approach, which consists
in using a multi-layer perceptron to feed the GMM][15]. This kind of non-
linear classifier is used to provide a set of probabilities for each phoneme as
the features to the GMM.

Linear Discriminant Analyisis (LDA) and Principal Component Analysis
(PCA) can be also tried for this purpose, although Kleinschmidt, Meyer
and Gelbart pointed out that these techniques failed when used with Gabor
features|9].

Finally, the work with a new segmentation based on pseudosyllables has
to overcome some problems, at least when dealing with previously labeled
data. Some errors in the labeling would need a close look, and the applica-
tion of complex rules (for instance, to deal with plosive phonemes). A more
costly approach would be to work with manually labeled data, which would
clarify the advantages and drawbacks of the pseudosyllabic units.
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