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Abstract 
 

The aim of this work was to develop a framework capable of supporting the 
decision-making process in complex real-world domains, such as 
environmental, industrial or medical domains using a Multi-Agent approach with 
Rule-based Reasoning. The validation of the framework was done in the 
environmental domain, particularly in the area of river basins. 
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Chapter 1.  

Introduction 
 

 

 

 

1.1 Motivation 

Traditional software systems often cannot cope with the intricacy of complex real-world 

domains due to the presence of uncertainty and approximate knowledge as is commonly the 

case in environmental, industrial, and, medical areas. This motivates the use of Artificial 

Intelligence (AI) techniques in order to confront such complexity and thus support the decision-

making process.  

 

In this thesis we shall examine the nature and application of various AI techniques including 

Multi-Agent Systems (MAS) and Rule-based Reasoning (RBR) in supporting the decision-

making process both in a generic context and, in specific domains.  

 

Our purpose therefore is to demonstrate how agents are able to manage the complexity of real-

world domains and successfully deploy a MAS incorporating RBR. We believe that this 

supports our conclusion that an agent-based framework is capable of supporting the decision-

making process. 

 

To this end, we extended the functionality of a MAS platform to be able to incorporate 

reasoning abilities by means of RBR. The validation of the framework was done in the 

environmental domain, particularly in the management of river basins. 

 

1.1.1 Decision making complexity in real world domains 
 

Environmental and medical fields belong to a set of critical domains where incorrect 

management decisions may have disastrous social, economic and ecological consequences.  

 
The complexity of environmental and medical problems requires the development and 

application of new tools capable of processing not only numerical aspects, but also experience 

from experts together with wide public participation, which are all needed in decision-making 

processes [Poch et al., 2004].  

 

Complexity of real-world systems: 

 

 Inherent complexity of the systems. These processes involve a huge amount of 

knowledge containing complex interactions between physical–chemical, biological, 

ecological, social and, economical processes. Furthermore, they are stochastic and very 

often spatial and temporal dependent processes. 

 

 Uncertainty or approximate knowledge. These processes generate a considerable 

amount of qualitative information. Some of the sources of this uncertainty can be tamed 
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with additional data or further research. However, in other cases uncertainty is 

insurmountable. An example of this is the case for chaotic behaviour, or for self-

organisation processes. It is also typical of socio-ecological systems, which involve 

several stakeholders, each with their own goals. 

 

 Huge quantity of data/information. These domains tend to produce a great volume of 

data and information. 

 

 Many of the facts and principles underlying the domain cannot be characterized 

precisely solely in terms of a mathematical theory or a deterministic model. 

 

 Heterogeneity and scale. Because the media in which these processes take place are not 

homogeneous and cannot easily be characterized by measurable parameters, data are 

often heterogeneous. Moreover, the different scale times inherent to different measures 

in the process have to be properly integrated and managed. 

 

 Multiplicity of scales. Environmental and medical problems have been associated 

traditionally with distinct spatial scales (i.e., local, national, global), each associated 

with specific timescales. However, interactions among these scales are becoming 

increasingly clear. Therefore, advocating a single perspective that encompasses 

everything in a system is becoming increasingly difficult and ineffective. 

 

Environmental and medical issues must be considered in terms of complex systems. But not all 

the systems present the same level of complexity in terms of both the degree of uncertainty and 

the risk associated with decisions. If the degree of complexity is represented as a function of 

uncertainty, on the one hand, and the magnitude or importance of the decision, on the other 

hand, then three levels of complexity might distinguished [Funtowicz and Ravetz, 1993, 1999]. 

 

The first level of complexity would correspond to simple, low uncertainty systems where the 

issue at hand has limited scope. A single perspective and simple models would suffice to 

provide a satisfactory description of the system. The second level would correspond to systems 

with a higher uncertainty degree where simple models can no longer provide satisfactory 

descriptions. Acquired experience then becomes more and more important, and the need to 

involve experts in problem solving becomes advisable. Finally, the third level would correspond 

to truly complex systems, where uncertainty is not necessarily associated with a higher number 

of elements or relationships within the system, and where the issues at stake reflect conflicting 

goals. 

 

According to [Sànchez-Marrè et al, 2008], most environmental and medical systems belonging 

to the second and third level cannot be only tackled with the traditional tools of mathematical 

modelling. To confront this complexity, a new paradigm is needed, and it requires new 

intellectual challenges.  

1.1.2 Multi-Agent Systems 
 

Multi-Agent Systems are based on the idea that a cooperative working environment can cope 

with problems which are hard to solve using the traditional centralized approach to 

computation. Intelligent agents are used to interact in a flexible and dynamic way to solve 

problems more efficiently [Mangina, 2002]. 

 

In a MAS, agents interact with each other within an underlying communication infrastructure 

and without a procedural control mechanism; and, the individual agents often are distributed 

and autonomous [Huhns and Stephens, 1999].   
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[Anderson and Evans, 1994] discuss the application of intelligent agents as an approach to 

modeling in natural resource management, stressing the need for autonomy and the ability of an 

agent to interact spatially and temporally with surrounding entities.  They also underscore the 

equal importance of providing a satisfactory representation of the spatial world in which the 

agents are embedded. 

 

Why are agents useful? 

 

Agents are an approach to structuring and developing software that offers certain benefits, and 

that is very well suited to certain types of applications. Perhaps the single most important 

advantage of agents is that they reduce coupling.  

 

Agents are autonomous, which can be seen as encapsulating invocation [Odell, 2002; Parunak, 

1997]. Coupling is reduced not only by the encapsulation provided by autonomy but also by the 

robustness, reactiveness and proactiveness of agents.  

 

An agent can be relied upon to persist in achieving its goals, trying alternatives that are 

appropriate to the changing environment. This means that when an agent takes on a goal, the 

responsibility for achieving that goal rests with that agent. Continuous supervision and checking 

is not needed. 

 

Agents tend to be used where the domain environment is challenging. Typically agent 

environments are dynamic, unpredictable and unreliable [Padgham and Winikoff, 2004]: 

 

 Dynamic. These environments are dynamic in that they change rapidly. Thus the agent 

cannot assume that the environment will remain static while it is trying to achieve a 

goal. 

 Unpredictable. It is not possible to predict the future states of the environment; often 

this is because it is not possible for an agent to have perfect and complete information 

about their environment. 

 Unreliable. The actions that an agent can perform may fail for reasons that are beyond 

an agent‟s control. 

 

In addition, agents in challenging environments might experience failure and thus recovery from 

failure must be done autonomously. 

 

It  has been argued [Jennings, 2001] that agents are „well suited for developing complex 

distributed systems‟ since they provide more natural abstraction and decomposition of complex 

„nearly-decomposable‟ systems. 

 

MAS are able to cope with the intricacy (e.g., uncertainty, approximate knowledge) related to 

the decision-making processes of complex real-world domains by integrating several agents that 

model real situations and work collaboratively for achieving the system‟s goals.  

1.1.3 Rule-based Reasoning 
 
Rule-based Reasoning is an AI technique which tries to emulate the human reasoning and 

problem solving capabilities. They model how a human expert analyzes a particular situation by 

applying rules to the facts in order to reach a conclusion.  

 
A RBR system represents information and searches for patterns in that information. It contains a 

knowledge base and an inference engine which analyzes fact patterns and matches the 

applicable rules. Fact patterns are analyzed until either the goal succeeds or all of the rules are 

processed and the goal fails. 
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RBR has been widely and successfully applied to environmental management, supervision and 

control. Advantages or RBR are: 

 

 Declarative Programming. Rules can express solutions to difficult problems and 

consequently have those solutions verified. Rules are much easier to read than code. 

Rule systems are capable of solving complex problems, providing an explanation of 

why decisions were made. 

 

 Logic and Data Separation. The data is in the domain objects, the logic is in the rules. 

Logic can be much easier to maintain when changes occur, as the logic is expressed in 

rules.  

 

 Speed and Scalability. The Rete and Leaps algorithms provide very efficient ways of 

matching rule patterns to the domain object data. These are especially efficient when 

you have datasets that change in small portions as the rule engine can remember past 

matches.  

 

 Centralization of Knowledge. An executable knowledge base is created and serves as a 

repository of knowledge. 

 

 Understandable Rules. Rules should be written very close to natural language, so the 

logic can be understood easily by nontechnical domain experts. 

 

1.1.4 The Belief-Desire-Intention model 
 

Rational agents have an explicit representation of their environment and of the objectives they 

are trying to achieve. Rationality means that the agent will always perform the most promising 

actions (based on the knowledge about itself and the world) to achieve its objectives. As it 

usually does not know all of the effects of an action in advance, it has to deliberate about the 

available options.  

 
Among the numerous deliberative agent architectures found nowadays the most widespread one 

is the Belief-Desire-Intention (BDI) proposed by Bratman as a model for describing rational 

agents [Bratman, 1987].  The concepts of the BDI-model were later adapted by Rao and 

Georgeff to a more formal model that is better suitable MAS in the software architectural sense.  

 

The BDI architecture uses the concepts of belief, desire and intention as mental attitudes. 

Beliefs capture informational attitudes, desires motivational attitudes, and intentions 

deliberative attitudes of agents [Rao and Georgeff, 1995]. 

 

The advantage of using mental attitudes in the design and realization of agents and multi-agent 

systems is the natural (human-like) modeling and the high abstraction level, which simplifies 

the understanding of systems [McCarthy et al. 1979]. 

 

 

 

 

1.2 Objectives 

The main goal of this thesis is the design and development of a MAS platform incorporating 

Rule-based Reasoning, as the main reasoning capability of agents to support decision-making 
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processes in real-world complex domains in a reliable way. The following objectives were 

foreseen: 

 

 To design a domain-independent framework for supporting decision-making in complex 

real-world domains. 

 

 To develop a software tool implementing the framework capable of: 

 

- Model the information about the complex domain. 

- Evaluating the consequences of critical processes in the decision-

making.  

- Supervise the processes taking place at the domain. 

- To be able to simulate and predict the evolution of the system. 

 

 The use of mature Artificial Intelligent techniques, such as Multi-Agent Systems and 

Rule- based Reasoning for the solution of complex problems. 

 

 To extend a MAS tool capable of incorporating Rule-based Reasoning. 

 
 
 
 

1.3 General overview 

In Chapter 2 the State of the Art is presented. In Chapter 3 we describe our MAS framework. 

The validation of our work is presented in Chapter 4. Finally, in Chapter 5 we state the 

conclusions and contributions of this thesis and outline future work. 
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Chapter 2.  

State of the Art 

 

 

 
For the design and development of our MAS-based framework we revised the state of the art of 

MAS platforms [Mangina, 2002; Rendón et al., 2006], agent-oriented software methodologies 

[Dam and Winikoff, 2003; Dam, 2003; Sudeikat et al, 2004], and Decision Theory.  The 

purpose of this revision was to select the most appropriate agent platform for our goals, and 

afterwards, to extend it with the new required functionalities. The most essential extension 

envisioned was the ability to incorporate knowledge to some agents using reasoning models, 

particularly Rule-based Reasoning. 

 

After analyzing the MAS platforms we concluded that the most suitable platform for our goals 

was Jadex. An evaluation for the suitability of three agent-oriented methodologies, MaSE 

[DeLoach, 2001], Tropos [Myloppoulos et al, 2000] and Prometheus [Padgham and Winikoff, 

2004], to the Jadex agent platform is presented in [Sudeikat et al, 2004]. The results illustrated 

that the three methodologies were capable of supporting the development of applications using 

Jadex. Moreover, Prometheus and Jadex proved to be the best match according to the criteria 

used. Thus, the authors concluded to propose the use of Prometheus for development with 

Jadex. 

 

Why Jadex? 

 

Jadex builds on experiences gained from leading existing BDI systems such as JACK [Winikoff 

2005] and consequently improves previously not-addressed BDI weaknesses like the concurrent 

handling of inconsistent goals with built-in goal deliberation [Pokahr et al. 2005a]. 

 

This chapter presents the basic concepts of Multi-Agent systems, Decision Theory, and Rule 

Based Reasoning. In addition, the state of the art in Multi-Agent System platforms and agent-

oriented methodologies is presented. Since we selected the agent platform Jadex and the 

Prometheus methodology among the myriad of options found in the literature we describe each 

of them in detail. 

 

 

 

 

2.1 Agent Technology 

2.1.1 Multi-Agent Systems 
 
The most accepted and referenced definition of an agent in Artificial Intelligence is the one 

stated by [Wooldridge and Jennings, 1995] and then adapted in [Wooldridge, 2002]: 
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‘An agent is a computer system that is situated in some environment, and that is capable of 

autonomous action in this environment in order to meet its design objectives’. 

 

Wooldridge‟s work distinguishes between and agent and an intelligent agent, which is further 

required to be autonomous, reactive, proactive and social [Wooldridge, 2002]: 

 

 Autonomous: agents are independent and make their own decisions without direct 

intervention of other agents or humans and agents have control over their actions and 

their internal state. 

 Reactive: agents need to be reactive, responding in a timely manner to changes in their 

environment. 

 Proactive: an agent pursues goals over time and takes the initiative when it considers it 

appropriate. 

 Social: agents very often need to interact with other agents to complete their tasks and 

help others to achieve their goals. 

 

A key issue in agent architecture is balancing reactiveness and proactiveness [Padgham and 

Winikoff, 2004]. On the one hand, an agent should be reactive so its plans and actions should be 

influenced by environmental changes. On the other hand, an agent‟s plans and actions should be 

influenced by its goals. The challenge is to balance the two, often conflicting, influences: if the 

agent is too reactive, then it will be constantly adjusting its plans and not achieve its goals. 

However, if the agent is not sufficiently reactive, then it will waste time trying to follow plans 

that are no longer relevant or applicable. 

 

Agents tend to be used where the domain environment is challenging; more specifically, typical 

agent environments are dynamic, unpredictable and unreliable [Padgham and Winikoff, 2004]:  

 

 Dynamic. These environments are dynamic in that they change rapidly. Thus the agent 

cannot assume that the environment will remain static while it is trying to achieve a 

goal. 

 Unpredictable. It is not possible to predict the future states of the environment; often 

this is because it is not possible for an agent to have perfect and complete information 

about their environment. 

 Unreliable. The actions that an agent can perform may fail for reasons that are beyond 

an agent‟s control. 

 

The term, multi-agent system, implies more than one agent interacting with each other within an 

underlying communication infrastructure and without a procedural control mechanism; and, the 

individual agents often are distributed and autonomous [Huhns and Stephens, 1999].  Multi-

agent systems are based on the idea that a cooperative working environment can cope with 

problems which are hard to solve using the traditional centralized approach to computation. 

Intelligent agents are used to interact in a flexible and dynamic way to solve problems more 

efficiently. 

 

Scores of problems in natural resources are inherently distributed both temporally and spatially.  

Many artificial intelligence-based methodologies, particularly those related to cooperative 

distributed problem solving and multiagent systems [Weiss, 1999] also are designed to address 

distributed problems.   

 

[Anderson and Evans, 1994] discuss the application of intelligent agents as an approach to 

modeling in natural resource management, stressing the need for autonomy and the ability of an 

agent to interact spatially and temporally with surrounding entities.  They also underscore the 

equal importance of providing a satisfactory representation of the spatial world in which the 

agents are embedded.   
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2.1.2 Agent Architectures 
 
Agent architectures represent the move from theoretical specification to the software 

implementation [Mangina, 2002]: 

 

Deliberative Architectures: Agents should maintain an explicit representation of their world, 

which can be modified by some form of symbolic reasoning. The Belief-Desire-Intention (BDI) 

model [Rao and Georgeff, 1995] is the most widespread model. Its central concepts are: 

 

 Beliefs: Information about the environment. 

 Desires/Goals: Objectives to be accomplished. 

 Intentions: The currently chosen course of action. 

 Plans: Means of achieving certain future world states. 

 Actions: Ways the agent can operate on the environment. 

 

Reactive Architectures: They aim to build autonomous mobile robots, which can adapt to 

changes in their environment and move in it, without any internal representation. The agents 

make their decisions at run time, usually based on a very limited amount of information and 

simple situation-action rule. Decisions are based directly on sensory input. 

 
Hybrid Architectures: Many researchers suggested that a combination of the classical and 

alternative approaches would be more appropriate, as it would combine the advantages of both 

kinds and avoid the disadvantages. (eg. Procedural Reasoning System [Georgeff et al, 1987] and 

TOURINGMACHINES [Fergurson, 1992]). 

 

Layered Architectures: These architectures represent the way different subsystems are arranged 

into a hierarchy of layers, which involve the different decompositions within the agents to 

complete their tasks.  

 

2.1.3 Agent Communication 
 
Agents have to communicate their knowledge for achieving their goals. Communication can be 

accomplished through the Agent Communication Languages (ACL), by using communication 

protocols including TCP/IP, SMTP and HTTP to exchange knowledge [Mangina, 2002]. 

 

The best known ACLs are the Knowledge Query Manipulation Language (KQML) [Finin et al, 

1997], the Knowledge Interchange Format (KIF) [Genesereth, 1991] and the Foundation for 

Intelligent Physical Agents ACL (FIPA ACL). 

 

 KQML It is both a message format and a message handling protocol to support run-time 

knowledge sharing among agents for cooperative problem solving. It employs a layered 

architecture of communication, where at the bottom the functionality for message 

transport or communication occurs and at the top the contents is specific by the 

application. 

 
 KIF Apart from the communication language, agents need to have an understanding and 

parse the content of the messages they receive. This is facilitated by KIF, which 

provides a syntax for message content, which is essentially first order predicate calculus 

with declarative semantics. 

 

 FIPA ACL aims to set general standards for agent interoperability. FIPA has defined an 

ACL (FIPA ACL), which includes basic communicative actions (inform, request, 

propose and accept) together with interaction protocols. 
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In distributed MAS the agents themselves may be transmitted across a computer network and 

executed remotely. Such agents are called mobile agents. In these architectures the agent 

software is transmitted to the host computer, the data are processed and the final result is 

communicated back. 

2.1.4 Methodologies for MAS development 
 
Software-engineering methodologies assume the existence of a set of concepts that it builds 

upon. For example, object-oriented notations such as UML (Unified Modeling Language) 

assume certain concepts such as object, class, inheritance, and so on. With agent-oriented 

methodologies, we also need an appropriate set of concepts, and it turns out that the set of 

concepts is different to the object-oriented set. 

 

Since the selection of a right methodology is crucial for any software project [Sudeikat, 2004] 

we put especial emphasis on the choice of a suitable methodology for the agent platform 

selected. The agent-oriented methodologies found in the literature are: 

 

 GAIA [Wooldridge, Jennings and Kinny 2000], studies the views definitions in a 

methodology and tries to integrate a software life cycle. 

 

 MAS-COMMONKADS [Iglesias et al, 1998] due its origins (CommonKADS [Tansley 

and Hayball, 1993]), it is a methodology oriented to the development using practical 

experience in expert systems. 

 

 MaSE [DeLoach, 2001], it has its own tool that supports the methodology. The 

primary focus of MaSE is to help a designer take an initial set of requirements 

and analyze, design, and implement a working multi-agent system. 

 

 MESSAGE [Caire et al, 2002], defines the elements to take into account in the 

development of a MAS by means of the specification of meta-models. It 

proposes the adoption of a standard process, the RUP. 

 

 PROMETHEUS [Padgham and Winikoff, 2004] is a mature and well 

documented methodology; it supports BDI-concepts and additionally provides a 

CASE-Tool, the Prometheus Design Tool (PDT), for drawing and using the 

notation. The Prometheus methodology consists in three phases that can be done 

simultaneously: system specification, architectural design and detailed design. 

 

2.1.4.1 The Prometheus Methodology 
 
Prometheus [Padgham and Winikoff, 2004] is a mature and well documented methodology; it 

supports BDI-concepts and additionally provides a CASE-Tool, the Prometheus Design Tool 

(PDT), for drawing and using the notation. The Prometheus methodology consists of three 

phases that can be done simultaneously: system specification, architectural design and detailed 

design. In Figure 1 an overview of Prometheus showing its three phases is depicted. 
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Figure 1. Prometheus overview (extracted from [Padgham and Winikoff, 2004]) 

 
 The first phase, system specification focuses on identifying the goals and basic 

functionalities of the system, along with inputs (percepts) and outputs (actions). 

 

 The architectural design phase uses the outputs from the previous phase to determine 

which agent types the system will contain and how they will interact. 

 

 The detailed design phase looks at the internals of each agent and how it will 

accomplish its tasks within the overall system. 

 
System specification 

 
This is the first phase; its main purpose is building the system‟s environment model, identifying 

the goals and functionalities of the system, and describing key use case scenarios.  

 

Agents are situated in an environment that is changing and dynamic. Thus, building the 

environment model is an important step in this system specification stage. Modeling an 

environment involves: 1) identifying percepts which are incoming information from the 

environment and 2) determining actions which are the means by which an agent affects its 

environment. Percepts and actions are defined using descriptors and external resources such as 

data, information, etc. need to be identified. 

 

Goals and functionalities of the system need to be captured at this stage. At the first step, system 

goals are identified mainly based upon the requirements specification. Goals are decomposed 

into subgoals if necessary. After that, system functionalities that achieve these goals are defined. 
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Architectural Design 

 
There are three main activities involved in this intermediate phase: defining agent types, 

designing the overall system structure, and defining the interaction between agents. etermining 

which agents should exist in a system is an important step. This decision can be made by 

grouping the system functionalities previously defined in the system specification phase. 

Functionalities are grouped based upon two criteria: 1) functionalities that are related to each 

other are likely to be in the same group (cohesive criterion) and 2) if there are significant 

interactions between two functionalities, then there is a high chance that they should be grouped 

(coupling criterion). Prometheus also provides the data coupling diagram and agent 

acquaintance diagram as aids to the functionalities grouping process. 

 

The system‟s structure needs to be captured in a system overview diagram, which is “arguably 

the single most important design artifact in Prometheus” [Padgham and Winikoff, 2004]. The 

system overview diagram is constructed based on the designers‟ understanding of the system up 

to this stage of the development process. It depicts the agent types and the communication links 

between them and the data used. Moreover, it shows the system‟s boundary and its environment 

in terms of actions, percepts and external data providing a general picture of how the whole 

system will function. 

 
Detailed Design 

 
The final stage of the Prometheus methodology is the detailed design. Here the internal structure 

and behavior of each agent are addressed. This stage emphasizes on defining capabilities, 

internal events, plans and detailed data structure for each agent type defined in the previous 

step. 

 

Firstly, agent‟s capabilities are depicted with a capability descriptor which contains information 

such as which events are generated and which events are received. The capability descriptor 

also includes a description of the capability, details involving interactions with other capabilities 

and references to data read and written by the capability. Secondly, at a lower level of detail, 

there are individual plan, event, and data descriptors that provide the details so that they can be 

used in the implementation phase. 

The detailed design phase also involves constructing agent overview diagrams. These diagrams 

are very similar to the system overview diagram in terms of style but give the top level view of 

each agent‟s internals rather than the system as a whole. Agent overview diagrams and 

capability descriptors, provide a high level view of the components within the agent internal 

architecture as well as their interactions. They show the top level capabilities of the agent, the 

flow of tasks between these capabilities and data internal to the agent. 

 

Prometheus is supported by the Prometheus Design Tool (PDT), it provides forms to enter 

design entities. It performs cross checking to help ensure consistency and generates a design 

document along with overview diagrams. 

2.1.5 Agent platforms for MAS development 
 
A great number of agent platforms can be found in the literature. Roughly speaking, there are 

three classes of agent platforms: 

 

1. Those that focus on internal agent reasoning and support plans, goals, and so on. 

Examples: PRS, UMPRS, JAM, JACK, DECAF, Zeus, AgentBuilder, JADEX. 

2. Those that focus on inter-agent communications. These usually provide infrastructure 

for inter-agent communication, as well as facilities for locating agents (white pages) 
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and/or a description of the service that the agents provide (yellow pages). More recent 

platforms in this class tend to conform to the FIPA standards. Examples: JADE, Zeus, 

OAA. 

3. Those that focus on mobile agents. Examples: Grasshopper, D‟Agents, Aglets. 

 

Although inter-agent communication is a specialty of the second class, all realistic platforms 

provide some support for agent communication. The first class is most useful in terms of 

providing support for implementing designs developed by following the Prometheus 

methodology [Padgham and Winikoff, 2004]. 

2.1.5.1 The Jadex platform 
 
Jadex is a Java based framework that allows the creation of goal oriented agents and provides a 

set of development tools to simplify the creation and testing of agents.  

 

The Jadex BDI reasoning engine allows the development of rational agents using mental 

notions. In contrast to all other available BDI engines, Jadex fully supports the two-step 

practical reasoning process: goal deliberation and means-end reasoning. This means that Jadex 

allows the construction of agents with explicit representation of mental attitudes (beliefs, goals 

and plans) and that automatically deliberate about their goals and subsequently pursue them by 

applying appropriate plans [Bellifemine et al., 2007]. 

 

The Jadex BDI reasoning engine enables the construction of complex-real-world applications by 

exploiting the ideas of intentional systems going back to Denmett and McCarthy. 

2.1.5.2 Jadex Architecture 
 
The abstract architecture of a Jadex agent is depicted in Figure 2. Practical reasoning is handled 

via goal deliberation and means-end reasoning. The goal deliberation is mainly state-based and 

has the purpose of selecting the current non-conflicting set of goals.  

 

The means-end reasoning has incoming messages, internal events and new goals as input, and 

then it dispatches these events to plans selected from the plan library for further processing. 

Plans execution may access and modify the belief base, send messages to other agents, create 

new goals, and cause internal events. 
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Figure 2. Jadex Abstract Architecture (extracted from [Jadex Tutorial]) 

 

2.1.5.3 Concepts for agent programming in Jadex 
 
Jadex uses a hybrid approach for defining and programming agents. The structural part 

comprises the agent‟s static design composed of beliefs, goals, plans and the agent‟s initial state. 

All these aspects are specified in the Jadex XML language following an XML-Schema defining 

the BDI metamodel. The behavioural part of the BDI agent is encoded in Jadex plans using 

plain Java. 

 
Beliefs 

 
Beliefs represent the agent‟s knowledge about the world, itself and other agents. In Jadex, the 

belief representation is very simple, and currently does not support any inference mechanism. 

The beliefbase contains strings that represent an identifier for a specific belief. These identifiers 

are mapped to the beliefs values, called facts, which in turn can be arbitrary Java objects. 

Currently two classes of beliefs are supported: simple single-fact beliefs, and belief sets. 

 

The belief base can be manipulated by setting, adding or removing facts using the belief names. 

Additionally, a more declarative way of accessing the belief base is provided by OQL-like 

queries. OQL (Object-Query-Language) is an extension of SQL (Structured-Query-Language) 

for object-oriented databases. Belief changes are automatically monitored by the Jadex engine 

as they may trigger a goal‟s creation or drop condition, or lead a plan to abort. 

 
Goals 

 

In Jadex, Goals play a key role; they are the driving force behind an agent‟s actions. Four types 

of goals are supported by the Jadex system: perform, achieve, query and maintain goals. 

 

 A perform goal states that something should be done but may not necessarily lead to 

any specific result. 
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 The achieve goal describes an abstract target state to be reached, without specifying 

how to achieve it. Therefore, an agent can try out different alternatives to reach the goal. 

 The query goal is used for information retrieval.  

 The maintain goal specifies a state that should be kept or maintained under all 

circumstances. Whenever a specified situation is violated the agent will activate any 

applicable means to re-establish the desired world state. 

  

With Jadex‟s Easy Deliberation strategy [Pokahr et al., 2005] goal cardinalities and inhibition 

links between goals can be modeled at design time, with the system ensuring that during run-

time only valid goal subsets are active. If a goal set contains conflicting goals, the system will 

exploit the defined inhibition links to delay less important goals while executing the more 

important ones. Whenever goals are finished, the system considers the reactivation of currently 

inhibited goals. 

 
Plans 

 
Means-end reasoning is performed with the objective of determining suitable plans for pursuing 

goals or handling other kinds of events such as messages or belief changes. Procedural 

Reasoning Systems (PRS) such Jadex use the plan-library approach to represent the plans of an 

agent. A plan consists of two parts: the plan head and the plan body. The plan head contains 

information about the situations in which the plan will be used. Moreover, it contains the events 

and goals the plan can handle and conditions used to restrict the applicability. The plan body 

describes the actions that will be performed when the plan is executed. 

 

The abstraction degree of a plan varies between very concrete and fully abstract. Concrete plans 

consist of directly executable actions, whereas fully abstract plans are specified in terms of 

subgoals only. 

 

The plan head should be defined in the Agent Definition File (ADF) and the programming of 

the plan body in a pure Java class. This class extends the existing Jadex framework class, Plan. 

  
Agent Definition 

 
The complete definition of an agent is captured in a so called agent definition file (ADF). The 

ADF is an XML (Extensible Markup Language) file, which contains all relevant properties of 

an agent (e.g. the beliefs, goals and plans). In addition to the XML tags for the agent elements, 

expressions can be used in a Java-like syntax for specifying belief values and goal parameters. 

The ADF is kind of a class description for agents: From the ADF agents get instantiated like 

Objects get instantiated from their class. 

 

 

 

 

2.2 Decision Theory 

The basis for most models of management decision-making comes from Simon‟s model of 

problem solving [Simon, 1960]. This model depicts the problem-solving process as a flow of 

events that can proceed in either a linear or iterative fashion, allowing the decision maker to 

return to the previous steps for additional refinement. The phases of Simon‟s model are: 

 

1. Intelligence: The process begins with this phase. During this phase the decision maker 

is looking for information or knowledge suggesting the presence of a problem or the 

need for a decision. 
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2. Design: Once the problem has been identified and defined, the decision maker analyzes 

different alternatives to solve the problem detected. This is a critical phase in the 

process. Each potential solution must be carefully analyzed and compared to all others 

with regard to a specific criteria deemed by the decision maker. (e.g. expected outcome, 

cost, probability of success). 

 

3. Choice: During this phase, the decision maker selects one of the available solutions 

generated and analyzed in the Design phase. 

 

Simon points out the importance of identifying the problem before trying to solve it. The 

decision itself is the culmination of the process. Regardless of the problem, the alternatives, the 

decision aids, or the consequences to follow, once a decision is made, things begin to happen. 

Decisions trigger action, movement, and changes. 

 

 

 

 

2.3 Decision Support Systems 

According to [Fox and Das, 2000], a decision support system is a computer system that assists 

decision-makers in choosing between alternative beliefs or actions by applying knowledge 

about the decision domain to arrive at recommendations for the various options. It incorporates 

an explicit decision procedure based on a set of theoretical principles that justify the 

“rationality” of this procedure. 

 

A Decision Support System (DSS) is a system under the control of one or more decision makers 

that assists in the activity of decision-making by providing a set of tools intended to improve the 

effectiveness of the decision outcome. The decision maker should note that although the DDS is 

a valuable tool in the decision process is not a mechanism for the making of the decision itself. 

The components of a DSS are: 

 

1. The data management system 

2. The model management system 

3. The knowledge engine 

4. The user interface 

5. The user 

 

The concept of DSS was born in the early 1970s and is generally attributed to two articles 

written at that time: 1) “Models and Managers: The Concept of a Decision Calculus” [Little, 

1970] and 2) “A Framework for Management Information Systems” [Gorry and Morton, 1989]. 

The first article described the concept of a decision calculus as a “model-based set of procedures 

for processing data and judgments to assist a manager in his decision-making”. The author 

suggest that for such a system to succeed it must be simple, robust, easy to control, complete on 

issues of importance, adaptive to the needs of its user, and easy to communicate with. 

 

The second article presents the concept of decision support system. The authors developed a 

two-dimensional framework for the provision of computer support to management activities. 

Both dimensions are assumed to be continuous rather than composed of discrete components. 

The vertical dimension is a classification of decision structure as originally proposed by Simon 

in [Simon, 1960]. 
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2.3.1 Intelligent Decision Support Systems 
 

An Intelligent Decision Support System could be defined as: 

 

 R. Sojda (Sojda, 2002) defines the as systems using a combination of models, analytical 

techniques, and information retrieval to help develop and evaluate appropriate 

alternatives (Adelman 1992; Sprague and Carlson 1982); and such systems focus on 

strategic decisions and not operational ones.  More specifically, decision support 

systems should contribute to reducing the uncertainty faced by managers when they 

need to make decisions regarding future options (Graham and Jones 1988).  Distributed 

decision making suits problems where the complexity prevents an individual decision 

maker from conceptualizing, or otherwise dealing with the entire problem (Boland et al. 

1992; Brehmer 1991). 

 

 An intelligent information system that reduces the time in which decisions are made in 

an environmental domain, and improves the consistency and quality of those decisions 

(Haagsma and Johanns, 1994), (Cortés et al., 2001). 

 

Decisions are made when a deviation from an expected, desired state of a system is observed or 

predicted. This implies a problem awareness that in turn must be based on information, 

experience and knowledge about the process. Those systems are built by integrating several 

artificial intelligence methods, geographical information system components, mathematical or 

statistical techniques, and environmental/health ontologies, and some minor economical 

components (see Figure 3). 
 

 

 
 

Figure 3. IDSS conceptual components 
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2.4 Knowledge representation and Reasoning 

2.4.1Rule-based Reasoning 
 
Production Rule System 

 
A Production Rule System (PRS) focuses on knowledge representation to express propositional 

and first order logic in a concise, non ambiguous and declarative manner. A PRS uses an 

Inference Engine; this engine matches facts and data, against rules, to infer conclusions which 

result in actions (see Figure 4). A Production rule uses First Order Logic for knowledge 

representation and is structured in two parts: 

 

If  

 <conditions> 

Then 

 <actions> 

 
Pattern matching is the process of matching the new or existing facts against rules. Inference 

Engines use different algorithms for Pattern matching like Linear, Rete, Treat and Leaps. 

 

 

Figure 4. High-level View of a Rule Engine 

 

Rete Algorithm 
 

The Rete algorithm can handle pattern matching that involves several thousand working 

memory elements and rules without any severe resource requirements or unacceptable 

performance losses. This clever algorithm makes use of the fact that the contents of working 

memory do not change drastically after each rule application but rather exhibit only minor 

changes from the previous pass. Specifically, the Rete algorithm figures out which rules from 

the prior cycle did not fire, which rules from the prior cycle will not fire in the next cycle, and 

which rules from the prior cycle that did not fire will most likely fire in the next. Using this 

method, the algorithm avoids performing a pattern recognition cycle from scratch each time it 
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must cycle through the rules. It does this by maintaining an internal representation of the state of 

each rule in working memory and uses that representation as the basis for repeating the cycle 

during each subsequent pass until the pattern is matches. 

  

Basic Rete network 

 
Rules are stored in the Production Memory and facts in the Working Memory. Facts are 

asserted into the Working Memory where they can be modified or retracted. A system with a 

large number of rules and facts may result in many rules being true for the same fact assertion, 

these rules are said to be in conflict. The Agenda manages the execution order of these 

conflicting rules using a Conflict Resolution strategy. 

 

There are two methods of execution for a Production Rule Systems: Forward Chaining and 

Backward Chaining. Forward Chaining is „data-driven‟, it starts with a fact, it propagates and 

ends in a conclusion; facts are asserted into the working memory which results in one or more 

rules being true and scheduled for execution by the Agenda. 

 

Backward Chaining is „goal-driven‟; it starts with a conclusion which the engine tries to satisfy. 

If it cannot then searches for conclusions that it can, sub goals, which will help to satisfy some 

part of the current goals – it continues this process until the initial conclusion is proven or there 

are no more sub goals. 

 

2.4.1.1 The Drools Rule Engine 
 
Drools is a Rule Engine implementation with a forward chaining inference engine based on the 

enhanced Rete algorithm and is tailored for the Java language. 

 

Drools is split in two main parts: Authoring and Runtime. In the authoring process rules are 

stored in a DRL or XML file, which are fed into a parser. The parser checks for correctly 

formed grammar and produces an intermediate structure. This structure is then passed to a 

Package Builder which produces packages. See Figure 5. 

 

 

Figure 5. Authoring Components (extracted from [Drools Tutorial]) 

In the Runtime process we can find various components, see Figure 6. A RuleBase is a runtime 

component which consists of one or more Packages. They can be added and removed from the 

RuleBase at any time. A RuleBase can instantiate one or more Working Memories at any time; 
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The Working Memory consists of a number of sub components, including Working Memory 

Event Support, Truth Maintenance System, Agenda and Agenda Event Support. Object insertion 

may result in the creation of one or more Activations. The Agenda is responsible for scheduling 

the execution of these Activations. 

 
 

Figure 6. Runtime Components (extracted from [Drools Tutorial]) 

Engine Execution 

The Agenda is a Rete feature. During a „Working Memory Action‟ rules may become fully 

matched and eligible for execution; a single Working Memory Action can result in multiple 

eligible rules. When a rule is fully matched an Activation is created, referencing the Rule and 

the matched facts, and placed onto the Agenda. The Agenda controls the execution order of 

these Activations using a Conflict Resolution strategy. 

The engine operates in a recursive two-phase mode (see Figure 7): 

1. Working Memory Actions. This is where most of the work takes place - in either 

the Consequence or the main java application process. Once the Consequence 

has finished or the main Java application process calls the method 

fireAllRules() the engine switches to the Agenda Evaluation phase. 

 

2. Agenda Evaluation. The Agenda attempts to select a rule to fire, if a rule is not 

found it exits, otherwise it attempts to fire the found rule, switching the phase 

back to Working Memory Actions and the process repeats again until the 

Agenda is empty. 
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 Figure 7. Two Phase Execution (extracted from [Drools Tutorial]) 

 
The recursive process finishes when the agenda is clear, then the control returns to the calling 

application. When Working Memory Actions are taking place, no rules are being fired. 

 

Truth Maintenance 

 

Given a set of facts the rule engine applies the appropriate rules and modifies the facts as 

necessary. If the newly-changed facts mean that other rules come into play, then they are 

applied. Eventually, all necessary rules are fired, and the facts stored in the working memory 

represent the truth, or at least the truth as understood by the rules. 

 

Conflict Resolution 

When there is one or more Activations on the Agenda they are said to be in conflict, and a 

conflict resolver strategy is used to determine the order of execution. The default conflict 

resolution strategies employed by Drools are: Salience and LIFO (Last In, First Out). With 

salience or priority, the user can specify that a certain rule has a higher priority than other rules. 

Therefore, the higher salience rule will always be preferred. LIFO priorities based on the 

assigned Working Memory Action counter value, multiple rules created from the same action 

have the same value - execution of these rules is considered arbitrary. 
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Chapter 3.  

Design and Development of the 
Framework 
 

 

 

 
The objective of this thesis was to develop a framework that supports the decision-making 

processes in complex real-world domains (e.g., environmental, industrial or medical domains) 

using mature Artificial Intelligence techniques such Multi-Agent Systems and Rule Based 

Reasoning.  

 

The framework considered the design and development of a software tool that could simulate 

different scenarios for evaluating the consequences of critical processes in decision-making.  

In order to design and develop a prototype for our case study we selected the Prometheus 

methodology [Padgham and Winikoff, 2004] and the agent platform Jadex [Braubach et al, 

2004] respectively.  

 

Furthermore, by experimenting with possible “what if” scenarios, the end user can benefit from 

exploring the response surface and the stability of the solution from the safety of a simulated 

environment where no actual damage can be caused to people property or the environment as a 

result of incorrect decisions. 

 

 

 

 

3.1 Multi-Agent System Framework  

Our framework proposal draws information from the user and the complex domain (eg., 

environmental or medical domains) about the domain-characteristics and processes, the 

framework architecture is depicted in Figure 8. In addition to acquiring domain knowledge it is 

able to organize and represent it. Our proposal for the framework consists of the following 

steps: 

 

1. Represent the knowledge base in two steps: a) create the domain objects (facts) as 

POJOs (Plain Old Java Objects) complying with the JavaBean specification, and b) 

create a Drools Rule Language (DRL) or XML (Extensible Markup Language) file with 

the rules. 

 

2. Create a reasoning agent in the Agent Definition File (ADF) that will be the bridge 

between the Multi-Agent System and the Drools engine.  

 

3. Define a service description offering the reasoning service; store the RuleBase and 

PackageBuilder as beliefs and specify the interaction protocols for the agent 

communication in the ADF. 
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4. Create a Plan for the reasoning agent where you can retrieve the engine components 

from the belief base, then load the Working Memory with the facts received from the 

initiator agent. Fire the rules, wait for the conclusions and send the results back to the 

calling agent. 

 

 

 
 

Figure 8. Framework Architecture 

 

 

 

 

3.2 Integrating Drools within Jadex agents 

 
Our goal was to extend the agent platform Jadex and provide it with an inference mechanism by 

means of Rule-based Reasoning. We integrated the Rete-based Drools Rule Engine to a 

reasoning agent that is able to perform deduction. 

 

The aim was to take advantage of Jadex‟s full BDI functionality, including goal 

deliberation and means-end reasoning. In addition, we also wanted to provide a 

simultaneous inference mechanism by incorporating rule-based agents. 
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The process conducted for providing a Jadex agent with rule-based capabilities is explained 

next. 

3.2.1 Knowledge representation 
 
The knowledge is represented by means of rules and facts. Rules are specified in a file while 

facts in JavaBeans. The rule engine can create, delete and manipulate the objects (facts). 

Facts Definition 

 

Facts are our existing domain objects written in Java; they are represented as POJOs and are 

restricted to comply with the Java Bean specification. Facts are created using the class 

constructor. The class must contain getters and setter methods for each field so the engine can 

access and manipulate the object. 

 

We assert our facts into Drools‟ Working Memory; the rule engine then uses these asserted facts 

to evaluate and map conditions.  

 

JavaBean specification 

 

JavaBeans are Plain Old Java Objects which are serializable, have a no-argument constructor 

and allow access to properties using getter and setter methods. The purpose of JavaBeans is to 

encapsulate many objects into a single object (the bean), so that they can be passed around as a 

single bean object instead of as multiple individual objects. 

 

A JavaBean class must follow certain conventions about method naming, construction, and 

behavior. These conventions make it possible to have tools that can use, reuse, replace, and 

connect JavaBeans. The required conventions are: 

 

 The class should be serializable. This allows applications and frameworks to reliably 

save, store, and restore the bean's state independently of the JVM (Java Virtual 

Machine) and platform. 

 The class must have a public default constructor. This allows easy instantiation within 

editing and activation frameworks.  

 The class properties must be accessible using get, set, and other methods following a 

standard naming convention. This allows easy automated inspection and updating of 

bean state within frameworks. 

As these requirements are largely expressed as conventions some developers view JavaBeans as 

Plain Old Java Objects that follow specific naming conventions. 

Rule Definition 

Rules are represented in a DRL or XML file. A DRL file is simply a text file that can have 

multiple rules, queries and functions.  Rules are written using First Order Logic; we can have 

conjunctive rules.  

 

A rule is made of a conditional part and a consequence or action part. In Drools, the first part is 

called Left Hand Side (LHS), and the latter Right Hand Side (RHS); these two components 

form then “If-Then” rule defined as “When-Then”: 
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rule “name” 

 attributes 

when 

LHS <conditions> 

then 

RHS <actions> 

end 

 

A rule must have a unique name within its package. Attributes are optional; they influence the 

behavior of rules. The dialect attribute specifies the language to be used for code expressions, 

which is Java or Mvel. 

 

The LHS consists of zero or more conditions. If the LHS is empty the condition evaluates to 

true. The RHS should contain a list of actions to be executed (e.g. insert, retract, update facts). 

  

A rule condition is written to evaluate one or many of our fact objects. When the facts asserted 

into Working Memory fulfill all the rule conditions, the rule will activate, executing the 

consequence of that rule. The consequences defined within our rules can update the facts 

contained in our JavaBeans, stop the rule evaluation or execute a Java method. 

 

For example we can see the rules defined in order to obtain the Fibonacci sequence. The 

Fibonacci Numbers are obtained by starting with 0 and 1, and then produce the next Fibonacci 

number by adding the two previous Fibonacci numbers. 

 

The recurse rule is very simple, it matches each asserted Fibonacci object with a value of -1, it 

then creates and asserts a new Fibonacci object with a sequence of one less than the currently 

matched object. Each time a Fibonacci object is added, as long as one with a "sequence = 1" 

does not exist, the rule re-matches again and fires; causing the recursion. The 'not' conditional 

element is used to stop the rule matching once we have all 50 Fibonacci objects in memory. The 

rule also has a salience value, this is because we need to have all 50 Fibonacci objects asserted 

before the Bootstrap rule is executed. 

 

Recurse and Bootstrap rules from the Fibonacci example: 

 
rule Recurse 

    salience 10 

    when 

        not ( Fibonacci ( sequence == 1 ) )     

        f : Fibonacci ( value == -1 ) 

    then 

        insert( new Fibonacci( f.sequence - 1 ) ); 

        System.out.println( "recurse for " + f.sequence ); 

end 

 

rule Bootstrap 

    when 

        f : Fibonacci( sequence == 1 || == 2, value == -1 ) 

    then  

        modify ( f ){ value = 1 }; 

        System.out.println( f.sequence + " == " + f.value ); 

end 
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3.2.2 Reasoning agent 
 

The reasoning agent is the bridge between the agents and the Drools engine; it is depicted in 

Figure 9. The reasoning agent creates a service description in Jadex‟s Directory Facilitator (DF) 

offering its reasoning service. The Rulebase and the PackageBuilder are stored in the agent‟s 

belief base for the creation of a rule package and a rule base when the reasoning agent is born: 

 
<belief name= "builder" class="PackageBuilder"> 

 <fact>new PackageBuilder()</fact> 

</belief> 

   

<belief name= "rb" class="RuleBase"> 

 <fact>RuleBaseFactory.newRuleBase()</fact> 

</belief> 

 

The agent should declare a Jadex plan where all the communication with the Drools engine will 

take place. This plan is executed when the agent receives a reasoning request via the FIPA 

Request protocol.  

 

Inside the plan the agent obtains the domain facts from the action parameter of the request 

protocol. Additionally, it accesses its belief base and retrieves the rule base and the package 

builder.  The rules are loaded from a source file (DRL or XML) in to the package builder that 

parses and compiles the rules. When the facts are asserted into the Working Memory the pattern 

matching process takes place; finally the rules are fired and the execution begins. Once the 

deduction finishes it returns the control to the application and sends the results (conclusions) 

back to the calling agent. 

 

 

 
 

Figure 9. The Reasoning Agent 

 

 

Rule Base 

 

A rule base contains one or more packages of rules already validated and compiled. A rule base 

is instantitated using the RuleBaseFactory. Typically, a rule base would be generated and 

cached on first use, to save on the continually re-generation of the rule base. A rule base 



32 

 

instance is thread safe; you can have one instance shared across threads in the application. On 

the rule base you create a new rule session, either stateful or stateless. 

 

We instantiate a Rule Base and create a Package using the beliefs declared in the Reasoning 

agent. 

 

Sessions 

 

There are two types of sessions: Stateful and Stateless. The StatefulSession extends the 

WorkingMemory class and allows iterative changes over time.  A Stateless session does not use 

inference, it can be called like a function passing it some data and then receiving some results 

back. 

 

Working Memory 

 

The Working Memory provides access to the Agenda with methods for inserting, retracting and 

updating facts. 

 

Inserting facts 

 

The method insert(object) is used to assert a fact into the Working Memory. When a fact is 

inserted it is examined for matches against the rules. This means that all the work for deciding 

about firing or not firing a rule is done in this step. However no rule is executed until the 

fireAllRules( ) method is called. 

 

Retracting facts 

 

Removing a fact from the Working Memory means that it will no longer be tracked and 

matched, thus any rule that is activated and dependent on that fact will be cancelled. 

Additionally, rules depending on the non-existence of that fact are activated. Retraction is done 

using a FactHandle that is returned by the insert call. 

 

Updating facts 

 

The update( ) method is used to update facts and is only available within Java code. On the 

RHS of a rule the modify statement is supported, providing simplified calls to the object‟s 

setter methods. 

 

Truth Maintenance 

 

Given a set of facts the rule engine applies the appropriate rules and modifies the facts as 

necessary. If the newly-changed facts mean that other rules come into play, then they are 

applied. Eventually, all necessary rules are fired, and the facts stored in the working memory 

represent the truth, or at least the truth as understood by the rules. 

 

Conflict Resolution 

When there is one or more Activations on the Agenda they are said to be in conflict, and a 

conflict resolver strategy is used to determine the order of execution. The default conflict 

resolution strategies employed by Drools are: Salience and LIFO (Last In, First Out). With 

salience or priority, the user can specify that a certain rule has a higher priority than other rules. 

Therefore, the higher salience rule will always be preferred. LIFO priorities based on the 

assigned Working Memory Action counter value, multiple rules created from the same action 

have the same value - execution of these rules is considered arbitrary. 
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Drools Engine Execution 

 

Drools is a forward-chaining rule engine; the execution is done in a recursive process: 

 Uses Pattern matching to find activations. 

 Enqueues activations in the Agenda. 

 Selects an activation and executes its action. 

3.2.3 Communication and Interaction between Agents 
 

In Jadex, the communication between two or more agents is done through message events. 

Usually, these sequences of messages take place inside a conversation between some agents. 

The mechanism for handling conversations is based on the FIPA message structure, where three 

parameters are used for the conversation management: conversation-id, in-reply-to, reply-with. 

The parameter conversation-id has a unique value, and groups together several messages 

belonging to a single conversation. The in-reply-to parameter identifies a message as being an 

answer to a prior message with a corresponding reply-with parameter. 

 

The process of managing these conversations can be tedious and error-prone as the programmer 

has to deal with the message interaction flow. Thus, as an alternative, Jadex offers the 

Interaction Protocols capability which implements some standardized FIPA interaction 

protocols. The interaction protocols capability allows the participating agents within a 

conversation to be programmed using abstract goals. 

 

In our framework agents communicate using Interactions Protocols. So far we implemented the 

Request Protocol, however any protocol supported by Jadex can be used. 

 

Coordination Protocols used 

 

The Directory Facilitator (DF) Capability 

 

Agents are allowed to register their services in the DF, and also to search for services offered by 

other agents. 

 

The Interaction Protocols Capability 

 

Interactions protocols are predefined patterns of message-based communication that are 

designed for interaction purposes. FIPA has specified standards for several domain-independent 

protocols. The interaction protocols capability offers implementations for most FIPA protocols: 

 

 FIPA Request Interaction Protocol (RP) 

 FIPA Contract Net Interaction Protocol (CNP) 

 FIPA Iterated Contract Net Interaction Protocol (ICNP) 

 FIPA English Auction Interaction Protocol (EA) 

 FIPA Dutch Auction Interaction Protocol (DA) 

 

FIPA Request Interaction Protocol (RP) 

 

The Request Interaction Protocol (SC00026H) handles the interaction between an initiator and a 

participant agent. The initiator agent wants the participant agent to perform some action. 

 

In our framework this translates to the caller and reasoning agents respectively. The initiator 

agent, asks the participant, to reason about something by sending a request message. The 

participant agent receives the message and can accept or refuse to perform the action requested. 

If it agrees then it uses the Drools rule engine to reason and when it finishes the participant 
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agent sends a message to the initiator. The message informs about the failure or success of the 

action (See Figure 10). 

 

 
 

Figure 10. The FIPA Request Interaction Protocol  
 

 

 

 

3.3 Modelling a complex real-world application 

To illustrate the usage of our framework in complex real-world domains we modeled the river 

basin management from the environmental domain. 

3.3.1 Waste Water Sanitation Systems 
 
Wastewater management in river basins is becoming increasingly complex. Whilst there is an 

urge to reduce the ecological imbalances in fluvial ecosystems, more wastewater has to be 

treated because of both demographic and industrial growth. Furthermore, given the intrinsic 

multidimensionality of river basins, its management must take into account all the agents that 

affect and are affected by the wastewater. 

3.3.2 River Basins Systems Management 
 
River catchments are important social, economical and environmental units. They sustain 

ecosystems, which are the main source of water for households, agriculture and industry. 

Therefore the protection of all surface waters and groundwaters must be assured in their quality 

and quantity. The best way to fulfil these requirements is with a management system at 

catchment scale that integrates all the water systems involved (sewer system, Waste Water 

Treatment Plants and River) [Devesa 2006]. 
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The management of river basins involve many interactions between physical, chemical and 

biological processes thus these systems become very intricate. Some of the problematic features 

found in the river basin domain are intrinsic instability, uncertainty and imprecision of data or 

approximate knowledge and vagueness, huge quantity of data, heterogeneity and different time 

scales to name a few [Poch et al., 2004].  

 

3.3.3 Modelling 
 
For instance, the following rule was defined in DRL for our case of study. The conditional part 

looks for an asserted object of type “Pollutants”, it declares the $cod bound variable to use 

as a reference to the object in the consequences; also the cod field from our object is checked 

against a range of values. The consequence part prints a message and updates the field 

performance of the matched fact using the setter method setPerformance declared in the 

Pollutants‟ class. 

 
rule "Range COD 6000 to 90000" 

 when 

  $cod: Pollutants(cod >= 6000, cod < 90000) 

 then  

  System.out.println("Performance 90%"); 

  $cod.setPerformance(0.90); 

  update($cod);     

end 
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Chapter 4.  

Evaluation of the Framework  
 

 

 

 

 
This section describes the results obtained in our work and illustrates the use of our framework. 

In order to show how an agent based framework is capable of supporting the decision making 

process in a complex real world domain we have modeled a river basin. 

 

The prototype modeled features the main elements of the hydraulic infrastructure and aims to 

manage the environmental system as a single area, integrating the two sanitation systems (La 

Garriga and Granollers) with their respective sewage systems and WWTP‟s, as well as the 

Besòs river as the receptor for their waste water. Other elements are rain control stations, river 

water quality control stations, flow retention and storage tanks. 

 

Later in this chapter we present the results of applying the framework described in the previous 

chapter to our case study. We observed that the results showed the following possible 

conclusions:  

 

1) MAS are well suited to cope with complex domains.  

 

2) Most agent-based platforms lack of an easy and explicit way to represent knowledge about 

the modeling domain and to reason about its behavior. 

 

Overall, the evaluation shows that the prototype developed is able to support decision-making in 

complex real-world domains. Therefore, the framework prototype is useful, as it allows the user 

to draw conclusions from the different scenarios so that he can make better informed decisions. 

 

 

 

 

4.1 Application in an environmental domain 

The validation of our framework was done in the environmental domain, particularly in the 

management of river basins. 

 

Wastewater treatment plants are large non-linear systems subject to large perturbations in flow 

and load, together with uncertainties concerning the composition of the incoming wastewater. 

Nevertheless these plants have to be operated continuously, meeting ever stricter regulations. 

4.1.1 Case of Study: The Besòs River Basin 
 
Our case of study is the Besòs river basin, located on the North East of the Mediterranean coast 

of Spain. The catchment area is one of the most populated catchments in Catalonia, having more 

than two million people connected. The scope of the study area is around the final reaches of the 

Congost River. The river sustains, in an area of 70 km
2
, the discharges of four towns which are 
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connected to two WWTPs. The water system has three main elements: sewer system, WWTP 

and river depicted in Figure 11. 

 

 

 
 

Figure 11. Elements of the case study 

 

 
 Sewer system. There are two sewer systems, one that drains the area of the town La 

Garriga and another one that drains the area of Granollers and some small 

surrounding villages. 

 

 WWTP. There are two WWTP, one for each sewer system. The two plants have a 

biological treatment. The average flows are 6000m
3
/d for La Garriga (WWTP1) and 

26000 m
3
/d for Granollers (WWTP2). 

 

 River. The studied reach of the Congost River has a length of 17 km. The Congost is 

a typical Mediterranean river with seasonal flow variations. Before the two WWTP, 

the average flow is about 0.5 m
3
/s, but can easily reach a maximum punctual flow of 

200 m
3
/s. 

 

Other considered elements are rain control stations, river water quality control stations, flow 

retention and storage tanks. Yet the most essential element is the sewer channel that joins the 

two WWTPs, allowing to by-pass the flow from the La Garriga-WWTP to the Granollers-

WWTP [Devesa 2006]. 

4.1.2 Integral Management of Hydraulic Infrastructure Approach versus 
Traditional Approach 

 
Traditionally hydraulic infrastructures for sanitation have been managed separately, taking into 

account only the characteristics of the water at the entry and exit points of each installation. The 

current tendency is to treat the hydrographic basin as a single area of operations. We are using 

this integrated approach because it presents more advantages to treat the environmental system 

as a whole instead of separate units.  

 

Up to now, wastewater management has been supported by individual decision support systems. 

But the uncertainty or approximate knowledge involved in the processes along with distinct 
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spatial scales (i.e. local, regional, national, each associated with specific timescales) involved in 

wastewater management makes necessary to develop new architectures in which the decision 

making is being performed collaboratively among the different agents involved in all 

catchment‟s scales.  

 

4.1.3 Benchmarking for control strategies for WWTPs 
 

The benchmark is a simulation environment defining a plant layout, a simulation model, 

influent loads, test procedures and evaluation criteria. [http://www.benchmarkwwtp.org/]. For 

each of these items, compromises were pursued to combine plainness with realism and accepted 

standards.  
 

We have three possible scenarios for a given WWTP defined in the benchmark: 

 

 Dry weather: acts as the reference scenario; one can notice in the profiles the daily and 

weekly typical variations. 

 Rain weather: (dry weather + long rain period), the scenario‟s data contains one week 

of dry weather and a long rain event during the second week. 

 Storm weather: (dry weather + 2 storm events), the scenario‟s data contains one week of 

dry weather and two storms during the second week. 

 

The scenario‟s data structure for the simulated plant has these components: 

 

 Time: measured in days. 

 Flow: measured in cubic meters per day (m
3
/day). 

 Concentrations of the following pollutants in milligram per liter (mg/l). The pollutants 

were defined by [Metcalf et al., 2003]: 

 

o COD: (Chemical Oxygen Demand). The COD test is used to measure the 

oxygen equivalent of the organic material in wastewater that can be oxidized 

chemically using dichromate in an acid solution, at high temperatures. 

o BOD5: (Biochemichal Oxygen Demand). It is a measure of the amount of 

oxygen required to stabilize a waste biologically. 

o TSSe: (Total Suspended Solids). Suspended solids can lead to the development 

of sludge deposits and anaerobic conditions when untreated wastewater is 

discharged to the aquatic environment. 

o TKN: (Total Kjeldahl Nitrogen). It is a measure of the organic and ammonia 

nitrogen. 

 

In order to obtain the Final Concentration (Cf) for each pollutant the system uses the simple 

following equation: 

 

Cf = (Initial Flow * Initial Concentration) + (WWTP Flow * WWTP Concentration)/Final Flow 

Cf = (Fi * Ci) + (Fwwtp * Cwwtp) / Ff  

where Ff = Fi + Fwwtp 

 

Data Source 

 

The following table shows an extract of the data characteristics obtained from the simulation of 

the WWTP‟s dry weather scenario; this data is later represented in our prototype as Java Beans. 

The influent data were initially proposed by Vanhooren and Nguyen. The time is given in days, 

the flow rate is given in m
3
/day and the concentrations are given in g/m

3
.  

http://www.benchmarkwwtp.org/
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Scenario 

Time Flow Concentration of pollutants in mg/l 

T (days) 
Q 

(m3/day) 
COD 

(mg/l) 
BOD5 
(mg/l) 

TSSe 
(mg/l) 

TKN 
(mg/l) 

“Dry” 0 21477 407,88755 205,983408 235,68975 54,44764 

“Dry” 0,01041667 21474 405,87613 204,687295 235,65225 54,21328 

“Dry” 0,02083333 19620 399,98873 204,394821 231,20175 54,45898 

“Dry” 0,03125 19334 394,86518 202,138027 227,02875 54,77921 

“Dry” 0,04166667 18978 391,76426 201,276881 222,89175 56,1501 

“Dry” 0,05208333 18321 388,44071 200,799294 217,944 57,98396 
 

The Java Beans are created by the WWTP agent using the Pollutants class constructor for each 

line read from the benchmark‟s file: 

 
new Pollutants(scenario, time, flow, cod, bod5, tss, tkn, loadcod); 

 

public Pollutants(String scenario,double time, double flow, double 

cod, double bod5, double tss, double tkn, double loadcod) { 

  super(); 

  this.scenario = scenario; 

  this.time = time; 

  this.flow = flow; 

  this.cod = cod; 

  this.bod5 = bod5; 

  this.tss = tss; 

  this.tkn = tkn; 

  this.performance = 0; 

  this.loadcod = loadcod; 

 } 

 

 

WWTP Performance function for COD 

 

The WWTP performance is obtained using the rules defined by the expert.  Assuming that the 

WWTP operates at an optimum level when it receives an average load of about 7000 Kg of 

COD per day. We can assume that a lower load of pollutants reduce the WWTP performance, 

perhaps slightly above the average load the performance is maintained or increased somewhat, 

but ultimately it also ends up reducing the performance due to overload. 

 

 

River Basin Prototype 

 

For the design and development of a prototype for our case study we selected the Prometheus 

methodology [Padgham and Winikoff, 2004] and the agent platform Jadex [Braubach et al, 

2004] respectively. The prototype features the main elements of the hydraulic infrastructure and 

aims to manage the environmental system as a single area, integrating the two sanitation 

systems (La Garriga and Granollers) with their respective sewage systems and WWTP‟s, as 

well as the Besòs river as the receptor for their waste water. Other elements are rain control 

stations, river water quality control stations, flow retention and storage tanks. There also is a 

sewer channel that connects both WWTPs, allowing to by-pass the flow from the La Garriga-

WWTP to the Granollers-WWTP.  
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Functionality of the Prototype 

 

The aim of the MAS is to simulate various scenarios in order to draw conclusions and help in 

the decision-making for the river basin management. The goals to be fulfilled are: 

 

 To manage critical episodes 

 To minimize discharge of poorly treated wastewater 

 To maximize the use of the installations treatment capacity 

 To minimize the economical costs of new investments and daily management 

 To maintain a minimum flow in the river guaranteeing an acceptable ecological state 

 

In order to accomplish these objectives an intelligent agent will be provided with domain 

knowledge by means of RBR. Hence they can perform several tasks including:  

 

 By-passing the water flow from La Garriga WWTP to Granollers WWTP. 

 Storage tanks management 

 Sewer system control 

 Monitoring the river basin system 

 

 

 

 

4.2 Design in the Prometheus methodology 

 
In the system specification phase we modelled the environment by identifying the incoming 

information through percepts and determined the actions that the agents perform.  Additionally 

the system goals and the basic roles of the system were identified.  Figure 12 depicts the roles 

defined for our prototype. It shows the roles needed to fulfil the system goals. Roles are 

depicted by rectangles, goals by ovals and actions by an action icon.  
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Figure 12. Roles Diagram built in Prometheus 

 

An example of a Role descriptor is characterized in Table 2 for the Role Storage tank 

management. 

 

Storage tank management –descriptor 

Name Storage tank management 

Descripti

on 

1)It retains water during rain peak times and discharges it during low peaks. 

2)Laminates waste waterflow.  

3)Mitigates pollution episodes due to punctual discharges to the sewer  

Percepts RainfallDetected, StorageTankMeasurement 

Actions WaterDischarge, WaterRetention 

Informati

on used 

SCADA 

Goals To manage Critical Episodes, To minimize discharge of poorly treated wastewater 

 

 

Table 2. Role descriptor for Storage tank management. 

 

 

 

 

4.3 Implementation in Jadex 

For the implementation in Jadex we used a simplified version of our case study. Currently we 

have the Manager, WWTP, River, Environment, User, and, the Drools agents implemented.  
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Description of the Implemented Agents  

 

Manager agent 

 

The manager agent starts the application with all the system agents. 

 

River Agent 

 

This agent central role is data gathering (meteorological, physical, kinetic, water quality), for 

monitoring the state of the river; it provides the initial data for the water flow and the pollutant 

concentration according to the scenario selected. 

 

Currently the River agent has in its belief base the initial values from the first control point in 

the river: 

Scenario Flow (m
3
 s

-1
) Description 

Dry 0.01 Minimum flow 

Rain 0.48 Rainfall 

Storm 4.31 Heavy rain 

 

It saves in Tuples the values for the water flow and the concentration of various pollutants. 

These initial values can be retrieved using the OQL queries defined in the agent: 

 
<expression name="query_qi"> 

 select one $pair.get(1) 

 from Tuple $pair in $beliefbase.qi 

 where $pair.get(0).equals($escenario) 

<parameter name="$escenario" class="String"/> 

</expression> 

 

<expression name="query_ci"> 

select one $pair.get(1) 

 from Tuple $pair in $beliefbase.ci 

 where $pair.get(0).equals($pollutant) 

<parameter name="$pollutant" class="String"/> 

</expression> 

 

The query selects the first matching entry, whereby the parameter $escenario or 

$pollutant is compared to the first element of the corresponding belief set Tuple. 

 

Additionally, the River agent implements the RP Protocol; it acts as the participant side in the 

interaction. It returns the query results in the result parameter of the "rp_execute_request" 

goal. 

 
WWTP agent 

 

The WWTP agent provides the data characteristics from the benchmark for the sewage 

treatment plant. It reads the data from a CSV file and loads it as facts in a beliefset. This belief 

set is later accessed by the Drools agent in order to create its knowledge base. 

 

This agent calculates the load for each pollutant according to this equation: 

Load = (flow * concentration) * (1 – WWTP‟s performance percentage). 

 

In addition, it provides the general characteristics for the influent and effluent water flow (as 

beliefs).  
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Drools agent 

 

This is the reasoning agent; it is the bridge between the agents and the Drools engine. The 

Drools agent creates a service description “drools engine” and publishes it in Jadex‟s DF 

offering its reasoning service. When the Drools agent receives a request for its services it 

executes the Drools rule engine to deduct and returns the conclusions to the caller agent. 

 

The Rule base and the Package builder are stored in the agent‟s belief base. When the Drools 

agent is born it creates a Rule Base and rule package respectively. 

 
<belief name= "builder" class="PackageBuilder"> 

 <fact>new PackageBuilder()</fact> 

</belief> 

   

<belief name= "rb" class="RuleBase"> 

 <fact>RuleBaseFactory.newRuleBase()</fact> 

</belief> 

 

The Drools agent specifies a Jadex plan where all the communication with the Drools engine 

will take place. This plan is executed when the agent receives a reasoning request via the FIPA 

Request protocol.  

 

Inside the plan the agent obtains the domain facts from the action parameter of the request 

protocol. Additionally, it accesses its belief base and retrieves the rule base and the package 

builder.  The rules are loaded from a source file (DRL or XML) in to the package builder that 

parses and compiles the rules. When the facts are asserted into the Working Memory the pattern 

matching process takes place; finally the rules are fired and the execution begins. Once the 

deduction finishes it returns the control to the application and sends the results (conclusions) 

back to the calling agent. 

 

User agent 

 

This agent initiates the FIPA Request Protocol. The User agent requests the initial values for the 

flow and the pollutant concentration to the River agent (via the RP Protocol). It also searches for 

the reasoning service in the DF, and sends a request (via the RP Protocol) to the Drools agent.  

 

When the Drools agent returns the conclusions, the user agent calculates the final concentration 

for the pollutant and generates and stores the data series for constructing the output charts in the 

Environment helper class. 

 

Environment agent 

 

This agent creates the Graphical User Interface (GUI). The interface has two main components: 

the “Wwtp Input” and “Simulation” tabs.  
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Figure 13. Prototype Screenshot showing the WWTP Input view. 

 

The “Wwtp Input” tab shows the influent data of the WWTP taken from the benchmark (see 

Figure 13). The data is depicted by charts; each chart corresponds to the flow and pollutants at 

the entry point of the WWTP.  

 

 

 
 

Figure 14. Prototype Screenshot showing the simulation view. 

 

 

In Figure 14 we can notice that the Simulation view is divided in three sections: input, system 

process and output.  

 

In the input section we can find two charts representing the flow and the pollutant selected for 

the WWTP (see Figures 15 and 16). The system process depicts the simulation options and the 

Drools execution. When the user selects a scenario (dry, rain or storm) the input information is 

updated according to the scenario selected. In addition, the user can choose between normal, 
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slow or step for the execution mode. Should the user click the start button the simulation is 

triggered. 

 

 

 
 

Figure 15. Flow at the entry of the WWTP (Dry weather) 

 

 

 
 

Figure 16. COD concentration at the entry of the WWTP (Dry weather) 

 

The output view shows the simulation results for a given pollutant. It features two charts: the 

first one reflects the plant output (after applying the equation and performance function), and 

the second one depicts the river state before and after the wastewater treatment process. (See 

Figures 17 and 18). 

 
Agent Communication and interaction in our Prototype 

 

1. The manager agent starts the WWTP, Drools, River, Environment and User agents. 

2. The Drools reasoning agent publishes its service in the DF, the GUI shows the system‟s 

views and options, and the rest of the agents initialize their belief bases. 

3. The human user selects a scenario, an execution mode and clicks the start button; this 

broadcasts an internal message that triggers the simulation. 

4. First the User agent requests the initial values for the flow and the pollutant 

concentration to the River agent (via the RP Protocol). 

5. The River agent uses an expression to query its belief base and sends the result back to 

the User agent. 
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6. Then the User agent searches for services in the DF, finds the Drools service and sends 

a request (via the RP Protocol) to the Drools agent. 

7. The receiver side of the RP Protocol, the Drools agent, receives and accepts the request. 

8. The Drools agent creates the rule and knowledge bases, and then it uses the Drools‟ rule 

engine to perform the deduction. When it finishes it sends the result back to the User 

agent.  

9. The user agent calculates the final concentration for the pollutant and generates and 

stores the data series for constructing the output charts in the Environment helper class. 

10. The GUI shows the results in the output section. 

 

 

 

 

4.4 Experimental Evaluation  

In order to help evaluate and fully understand the meaning of data from the simulated scenarios 

we sought expert opinion.  

 

On the basis of the results produced the expert was able to interpret the data and perform an 

analysis of the results from each simulated scenario. This analysis showed that relevant and 

useful knowledge can be obtained about the river water quality and that the knowledge can be 

used to support the final user (e.g. WWTP manager) in his/her decision-making. 

 

The simulation results of the different scenarios were analyzed by the expert. The dry weather 

and stormy weather scenarios analysis are presented in this section. 

 

Dry Weather Scenario Analysis  

 

The dry weather scenario acts as the reference scenario; we can note the daily and weekly 

typical variations in the profiles. 

 

 
 

Figure 17. WWTP effluent for the Dry weather scenario. 
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Figure 18. COD concentration in the river for the Dry weather scenario. 

 

 

As regards the output charts shown in Figure 17 and 18, the expert concluded that each peak in 

which the WWTP has failed to eliminate the COD pollutant (See Figure 17) coincides with a 

peak on the chart of the river's final state. This shows the great influence that plant spills have 

on the river. This influence is due to several reasons: 

 

 The river has very little dilution capacity because its flow is very low due to dry 

weather. 

 Almost all the river flow after the WWTP spill comes from the spill flow itself. This is a 

typical behavior of Mediterranean rivers in dry weather where there is very little rain or, 

no rain at all. 

 

An environmentalist‟s analysis could perhaps start by investigating whether or not the river state 

meets the legislative requirements, and what these values mean for the river life. 

 

Storm Weather Scenario Analysis  

 

The input data file contains one week of dry weather followed by two storms during the second 

week. Figures 19 and 20 show the WWTP effluent and the COD concentration in the river 

before and after the WWTP spill for the Storm weather scenario. 
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Figure 19. WWTP effluent for the Storm weather scenario. 

 

 
 

Figure 20. COD concentration in the river for the Storm weather scenario. 

 

The basic hypothesis is that pollutants accumulate during dry weather periods before they are 

transferred into and along the system. The accumulation process occurs both on catchment 

surfaces and in sewer pipes. Pollutants accumulated on catchment surfaces are washed off 

during storm events.  

 

Following a storm event large amounts of pollutants that were previously dormant in sediment 

deposits spread around the drainage system (sewers, streets etc) are carried to the WWTP all at 

the same time. If the WWTP lacks the capacity to process such large volumes of water then it 

has to be bypassed but, nevertheless, a very high concentration of pollutants will still enter the 

WWTP.  

 

This surge of pollutants affects the performance of the WWTP and as such we can note on the 

graph of Figure 19 that the exit flows register a “high concentration peak” on day nine. On the 
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other hand, a prolonged period of rain also increases the river‟s capacity to dilute pollutants and 

so this explains why there is just one peak after which the load of pollutants diminishes very 

fast.  

 

We should also note that the same effect is seen in the final concentration of pollutants in the 

river, i.e.  an extraordinary peak of pollution concentration.   As a result of this peak, the river 

has very little dilution capacity which, indeed, is the same as would be the case during a dry 

period. What we then see is that the water discharged from the WWTP can make the final 

concentration of  COD in the river increase substantially, which in turn can lead to the levels of 

oxygen in the river diminishing considerably, a phenomenon known as “oxygen depletion”.  
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Chapter 5.  

Conclusions and Future Work 
 

 

 

 

 
In this thesis we have shown how an agent-based framework capable of supporting the decision-

making process was developed for use in complex real-world domains. 

 

We believe that the conclusion above supports the objectives as stated in the Introduction: 

 

 To build a domain-independent framework for supporting decision-making in complex 

real-world domains. 

 To extend a MAS tool capable of incorporating Rule-based Reasoning. 

In order to meet these objectives we conceptualised and explained our framework in Chapter 3.  

Later, in Chapter 4, we illustrated the application of our framework and described the design 

and development of our prototype as well as the validation and preliminary results. 

 

In summary, our framework draws information from the user and the complex domain (e.g., 

environmental, industrial or medical) about the domain-characteristics and processes. In 

addition to acquiring domain knowledge the framework is able to organize and represent the 

information.  

 

The goal of our research undertaken in this thesis was to extend the agent platform Jadex and 

provide it with an inference mechanism by means of Rule-based Reasoning. Additionally, we 

aimed to exploit Jadex‟s full BDI functionality, including goal deliberation and means-end 

reasoning. Finally, we also wanted to provide a simultaneous inference mechanism by 

incorporating a rule-based agent.  

 

In order to accomplish the goals outlined above, we have extended the Jadex platform by 

integrating the Rete-based Drools Rule Engine to a reasoning agent that is able to perform 

deduction. Finally, we have also built a prototype of our case of study using our extension.  

 

As a means of illustrating the application of our framework in a complex real-world domain we 

selected the environmental field and thus modeled a prototype of our case of study, the Bèsos 

river basin. 

 

In order to test the validity of our approach we tested the prototype with data from the 

benchmark for control strategies for WWTPs. We simulated a set of scenarios and the results 

obtained were then analyzed, focusing on the river water quality, with the main objective being 

to gain relevant knowledge to deal with the scenarios tested. 

 

Expert analysis of the results of the simulated scenarios showed that relevant and useful 

knowledge can be obtained about the case study. This knowledge will support the final user 

(e.g. WWTP manager) in his/her decision-making. Furthermore, expert evaluation found that 

the prototype is useful for making informed decisions regarding the river basin management. 
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In final conclusion, we have shown how agents are able to cope with the complexity of real-

world domains and, in particular, how MAS can successfully incorporate RBR. We have proved 

the usefulness of our approach by applying our framework to facilitate good management of the 

Bèsos river basin. In conclusion, we believe that this work represents an interesting step for 

future research in this field. 

 

 

 

 

5.1 Future Work 

 

There are some lines of research and development to be done in the future. For instance the 

following items are envisioned: 

 

 To do more experimentation in the same domain and in other domains (e.g. medical, 

industrial) to ensure a general framework. 

 To add backward reasoning capability to the rule engine of our framework to enhance 

its reasoning abilities. 

 To integrate new reasoning skills to the MAS, such as Case-based Reasoning (CBR) to 

get a more reliable and useful MAS tool for modelling real-world complex domains. 
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Appendix A 
 

 

 

 

Publications 

 Rendón-Sallard T. and Sànchez-Marrè M., Multi-Agent prototype for simulating 

scenarios for decision-making in river basin systems. Research report: LSI-07-6-R, 

Universitat Politècnica de Catalunya, Barcelona, Spain, January 2007. 

 

 Rendón-Sallard T., Sànchez-Marrè M., Aulinas M. and Comas J., Designing a Multi-

Agent system to simulate scenarios for decision-making in river basin systems. 9th 

International meeting of the Catalan association of Artificial Intelligence. Perpignan, 

Francia, October 2006. 

 

 Rendón-Sallard T., Sànchez-Marrè M., Devesa F., and Poch M., Simulating scenarios 

for decision-making in river basin systems through a Multi-Agent system. 3rd Biennial 

meeting of the International Environmental Modelling and Software Society, iEMS‟s 

2006, Vermont, USA, July 2006. 

 

 Rendón-Sallard T. and Sànchez-Marrè M., A review on Multi-Agent Systems platforms 

and Environmental Decision Support Systems simulation tools. Research report: LSI-

06-4-R, Universitat Politècnica de Catalunya, Barcelona, Spain, January 2006. 
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