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This project aims to develop methods

to calibrate camera images that are ar-

bitrarily positioned in a scene with a 3D

range scanner data using feature match-

ing. The way to obtain these results is

by using first a planar pattern to obtain

the intrinsic parameters of the camera,

hence obtaining the rotation and trans-

lation by estimating the camera projec-

tion matrix from matches of features, es-

timated via RANSAC to obtain robust

result. The testing is done for a set of

camera images in some arbitrary posi-

tions around the scanner point of view,

in order to reflect how the algorithm re-

acts to the change in the point of view.

The results show that it is possible

to obtain a satisfactory projection ma-

trix with this approach, though it re-

quires that the images are similar to

the scan, with a closer point of view,

small deformation of the object shapes

in the 3D scan and the scanned surface

should have solid colours with similar

reflectance both in infrared and visible

spectra. Even with these conditions, the

amount of matches fitting in the model

could be too low for a good estimation.
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Chapter 1

Introduction

3D laser range scanners are used in extraction of the 3D data in a scene. Main

application areas are architecture, archeology and city planning. Thought the raw

scanner data has a gray scale values, the 3D data can be merged with colour cam-

era image values to get textured 3D model of the scene.

Also these devices are able to take a reliable copy in 3D form objects, with a high

level of accuracy. Therefore, they scanned scenes can be used to validate the ex-

perimental results achieved with 3D reconstruction algorithms based on multiple

view camera images or image sequences.

These applications of the 3D scanners can be achieved via the external calibration

of standard cameras with respect to the 3D scanner. For this, multiple images from

standard cameras are taken by placing them on the scanner by manual calibration.

This project aims to develop methods to efficiently calibrate the cameras that are

arbitrary positioned in a scene with the 3D laser range scanner and register the

images with the 3D data.
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1.1 Outline of the thesis

In Chapter 2, some basics concepts and algorithms used in this thesis are ex-

plained. Firstly some information is given information about the pinhole camera

model, as well as about the 3D range scanners, its output data and the visual

aspects of this data.

The next section explains the detection of features in pixel maps, the matching of

correspondences between two images and the relation between a 2D point and its

3D correspondence. In the last part of the chapter, RANSAC is explained, which

is a robust algorithm for model estimation from data possibly contaminated with

errors.

Chapter 3 shows the computation models to obtain the camera projection matrix,

the intrinsic camera matrix from a calibration pattern and, from the previous two,

the rotation and translation matrix between the camera coordinate system and

the one from the scanner. Furthermore, is explained the objective method for

testing the quality of the results, based in the rotation matrix.

The Chapter 4 describes the parameters used in the testing of the algorithms dis-

cussed in Chapters 2 and 3 and presents the results achieved.

Finally, Chapter 5 is dedicated to the conclusions drawn from this thesis and about

future work plan on this topic.
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1.2 Overview of the Thesis

A solution to the problem of calibration of camera images to 3D range scanner is

proposed in this thesis. The calibration is achieved by using the reflection map ob-

tained from the scanner as an usual image. This map is used to detect features in

both the scanner map and the camera image and match its correspondences. Once

the matches between the image pixels and the 3D coordinates from the scanner are

detected, they are used to estimate the projection matrix. In order to prevent the

contamination in the estimation originated from erroneous matches the RANSAC

method is used in the projection matrix estimation. The implementation is based

the Matlab RANSAC Toolbox from Marco Zuliani [9].

To obtain extrinsic parameters like the rotation matrix and the translation vec-

tor from the projection matrix, the intrinsic parameters of the camera have to

be determined by a separate way. The method used in this thesis is the Zhang’s

[2] camera calibration with one-dimensional objects. The detection of features

use the Scale-Invariant Feature Transform proposed by David Lowe [5], using a

modified version of the implementation for Matlab by Andrea Veldaldi from the

Department of Computer Science UCLA Vision Lab [10].

Finally, the quality of the projection matrix is tested by two proposed estimators

based on the orthogonality of the rotation matrix.
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Chapter 2

2D/3D Matching

The aim of this chapter is to introduce the basic concepts about the camera model,

the methods for detecting features in camera images and matching them and the

3D scanner data.

The first part of the chapter presents the basic model for the camera images and

the 3D scanner particularities. The second part studies the problem of feature de-

tection and matching within the 2D and the 3D images by using existing feature

detection algorithm SIFT. The last part introduces of RANSAC algorithm, used

to keep only the matches fitting in the model.
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2.1 Camera Model

The camera model aims to represent a transformation from 3D world coordinate

system to a 2D image plane, introducing the optic effects of the camera. The

transformation is usually represented by a 3 x 4 matrix called Projection Matrix,

which maps homogeneous 3D world coordinates to homogeneous 2D image plane

coordinates.

PPP =


P11 P12 . . . P14

P21
...

. . .
...

P31 . . . . . . P34

 (2.1)

The projection matrix (2.1) contains information about focal length and principal

point, the so called intrinsic parameters, as well as the extrinsic parameters, rota-

tion and translation.

Pinhole Camera Model

The basic pinhole model (Figure 2.1 ) assumes that 3D points in space are pro-

jected onto an image plane in the intersection of this plane with the line linking

both the 3D point and the projection center.

The intersection of the line with the plane is the projection point, fff is the focal

length, PPP is the principal point, XXX is a 3D point and xxx is the projection of XXX. The

ray which is perpendicular to the image plane passing through the camera center

is called principle axis, and the point of intersection of this ray with the image

plane is known as principal point.
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Figure 2.1: Pinhole camera geometry. C is the camera centre and p the principal

point. The camera centre is here placed at the coordinate origin. Note the image

plane is placed in front of the camera centre.[1]

The 3D point X is projected to the point x. If the system coordinate is (XY Z)T ,

then the projected coordinates can be calculated as (fX/Z, fY/Z, f)T The pro-

jection matrix will then be

P =


f 0 0 0

0 f 0 0

0 0 1 0

 (2.2)

Translations in the Image Coordinate System

The previous model (2.2) assumes the centre of the image plane as the origin,

however the lower left corner is utilized as the image origin (Figure 2.2). In this

case, the matrix is
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Figure 2.2: Image and camera reference systems. [1]

P =


f 0 px 0

0 f py 0

0 0 1 0

 =


f 0 px

0 f py

0 0 1

 [I|0] (2.3)

x = KKK[III|000]X (2.4)

where K denotes the camera calibration matrix.

World Coordinate System Changes

In the current projection matrix, the camera coordinate system is the same as

the world coordinate system. The projection matrix should be updated for 3D

coordinates measured from an arbitrary system.
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Figure 2.3: The Euclidean transformation between the world and camera coordi-

nate frames.[1]

Figure 2.3 shows the origin of the world coordinate system in an arbitrary posi-

tion with respect to the camera coordinate system. The relation between the two

reference systems are defined by a 3 x 1 translation vector t and a 3 x 3 rotation

matrix R in the following way

Xcam = R(X − C) with t = −RC

therefore (2.4) would be

x = K[I|0]Xcam → x = K[I|0][R|t]X → x = K[R|t]X (2.5)

and hence
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x = PX with P = K[R|t] (2.6)

The K matrix contains the intrinsic parameters, the rotation and translation are

the extrinsic parameters.

CCD camera distortions

While the pinhole camera model introduced in Section 2.1 is an ideal model for

standard cameras, in practice, the CCD camera sensor could present some distor-

tions, for example non-square pixels. Including this distortion the K matrix has

the form

K =


fx 0 cx

0 fy cy

0 0 1

 (2.7)

There is also the possibility of skew, this is, the pixel shape not being a rectangu-

lar parallelogram, but a common parallelogram. That was common in some old

cameras, The skew parameter should be 0 for most of the cameras nowadays.

So the final camera matrix would be
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K =


αx s cx

0 αy cy

0 0 1

 (2.8)

where

• αx is the scale factor in the x-coordinate direction

• αy is the scale factor in the y-coordinate direction

• s is the skew,

• (x0, y0)
T are the coordinates of the principal point.

αx and αy represent the focal length of the camera in terms of pixel dimensions

in the x and y axis respectively.

x = PX

P = K[R|t]

Final camera projection matrix has 11 degrees of freedom, 5 intrinsic and 6 ex-

trinsic parameters.
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2.2 3D Scanner data

A 3D scanner is a device that captures scenes or objects position in real 3D space,

creating an accurate point cloud recreation of the shape of the real scene. This

has many applications in architecture, industrial design, quality checking, foren-

sics and audiovisual industry among others.

2.2.1 Scanning Hardware

Figure 2.4: Laser scanning [4]

There are different devices commer-

cially available to obtain 3D scans.

To build a model, a 3D scanner can

be treated as a black box that pro-

duces a 3D point cloud. However,

it is necessary to get an idea of

the basic physics underlaying in scan-

ners.

The range scanner used in this case is a

phase-shift system. This kind of scan-

ners use light at three different phases,

measuring the distance to an object by

determining the phase shift detected by the sensor. A laser beam is projected

onto the scanned space, and a sensor senses the reflected light from the objects

(Figure 2.4)

The distance detected by the sensor can be converted to 3D points in the scanner
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coordinate systems, using the calibrated position and orientation of the mirror

angle sensor in the scanner, which determines the θ and φ angles needed to deter-

mine the actual position of the point.

This kind of scanner has a small error in a range of tens of meters, and its scanning

speed is in the order of hundred of thousand points per second, which allows to

scan a complete scene in a few minutes.

2.2.2 3D Data

The 3D scanner data is presented in an ASCII file with the data distributed in

rows and columns as:

row column x y z reflection reflection reflection

0 0 -0.70410000 -0.76240000 -0.14410000 105 105 105

0 1 -0.70220000 -0.75940000 -0.14370000 112 112 112

0 2 -0.69980000 -0.75580000 -0.14310000 114 114 114
...

...
...

...
...

...
...

...

Row and column correspond to the map coordinates of the 3D image. This is, like

a Mercator projection in a map, each of them would correspond to a pixel in the

projection map. Using them as pixel positions and the reflection data as intensity

value, a projection of the cloud of points can be obtained. This projection will,

indeed, suffer from the same projection problems as a map, changing the shape

and form of the objects represented.

(X Y Z) stands for the 3D point, in Cartesian coordinates, given in meters.
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The three reflections are the laser RAW reflection. The values are usually not

using the complete margin of values, so they have to be normalized with

Xi norm =
Xi −min(XXX)

maxXXX
(2.9)

and adjusted to the desired range.

2.2.3 Visual appearance

The 3D scan aspect widely differs from the usual camera image. The reflection

value for some material, specially the textiles and other dyed surfaces can have a

significant difference at laser wavelength than in the visible spectra.

Figure 2.5: The 3D point cloud structure, without reflection data.

As shown in Figure 2.5 the points with small reflection value, too darker or trans-

parent or so far away to get any reflection are discarded by the scanner.
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Figure 2.6: The reflection map. The points with no reflection are shown as black

points.

The points behind an object cannot be shown, because the scanner requires a di-

rect line-of-sight. Therefore, there is nothing between the scanner and the objects

shown. To get an effective scan of the complete object multiple scans have to be

performed from different points of view.

Furthermore, can be take for granted that in a scan from one only point of view

there will not be occluded points. Hence, all the points are visible from the ob-

servation point and can be projected from this point to a plane.

The spherical 360 degrees are scanned following the meridians of the sphere, with

the same number of points at the equator as at the poles, resulting a rectangular

pixel map, with different reflection values, which can be represented as a picture.
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Figure 2.7: A camera picture from the same scene. The gray levels for some

objects are quite different in a picture from the 3D reflectance map.

The reflection values are also different in some objects, specially in the dyed ones.

Also the image is obtained by a laser illuminating the surface of the objects, being

the source at the same point, the image has no shadows, by contrast the camera

images can have multiple sources and the image has shadows, changing the illu-

mination and the shapes of the objects.
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2.3 Feature detection

One of the aims of the project is to test current automatic features detection

algorithms and check how useful are they in detecting and matching image features

between 2D pictures and 3D scans. The methods to detect features are explained

in this section.

2.3.1 Scale-Invariant Feature Transform (SIFT)

The method used for detecting features is the Scale-Invariant Feature Transform

proposed by David Lowe [5]. The objective is to find features invariant to changes

in illumination, contrast, rotation in 3D space, distortions and additive noise, in

a way that can be easily compared in a database.

Figure 2.8: Detected features in a 3D map image

This method obtains the features by a difference between different scaled images
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convolved with the Gaussian 2D functions.

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ), (2.10)

where L(x, y, kσ) is the convolution of the image I(x, y) with the 2D Gaussian

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y), (2.11)

and Gaussian blur 2D is

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2

(2.12)

Denoted by ki, is the level of blur between two images, being their difference two,

which is called octave, since the σ value is doubled. Then, the DoG is the differ-

ence between two adjacent octaves. Then the image is scaled by a 1.5 factor and

then the blur process is repeated, building a kind of pyramid (Picture 2.9) with

different scales of Gaussian images.

Subsequently are found the maxima and minima in a neighborhood of the points

and its condition of maximum for the neighbourhood also in the upper and the

lower level of the pyramid. If the condition is maintained, then the point is added

to the list of keypoint candidates.
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Figure 2.9: For each octave of scale space, the initial image is repeatedly con-

volved with Gaussians to produce the set of scale space images shown on the left.

Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian

images on the right. After each octave, the Gaussian image is down-sampled by a

factor of 2, and the process repeated. [5]

Stability of the point

To characterize each point the magnitude and orientation of the divergence from

the scale space images, using the pixel difference

m(x, y) =
√

(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.13a)

θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1)

L(x + 1, y)− L(x− 1, y)
(2.13b)
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Each keypoint gets assigned by a canonical orientation, in a way that the descrip-

tors are invariant to rotation. To keep it as stable as possible to illumination and

contrast, the orientation is determined by the peak of an histogram of local image

gradient orientations. That histogram has 36 bins to cover the full 360 degrees

of rotation and sharped previously to the peak selection. Finally, the keypoint

descriptor vectors are filled by the orientation histograms around the keypoints.
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2.4 Matching Features

The last stage of feature detection is the matching of the descriptor vector of both

images once both images have their keypoints detected. The matching process

is a key point in the process, since the quality and the quantity of matches are

determinant to the quality of the final estimation. Nevertheless, the quality of the

estimation lays utterly in the keypoints descriptor similarities, a big difference in

the basics of the image affecting the descriptors drastically decreases the percent-

age of well fitted correspondences.

2.4.1 Matching

For each keypoint K1 belonging to the image 1, its match K2 in image 2 is de-

termined by comparing the keypoint descriptor vector from image 2 to the K1

descriptor vector. The descriptor in image 2 having the smallest Euclidean dis-

tance to the descriptor vector in K1 is determined as its match K2.

2.4.2 Filtering

As a result of the matching algorithm, a group of points from the 3D image cor-

respond to the same point in the 2D image 2.10.

These points have to be removed before using the RANSAC method for estimation,

since a large number of correspondences incorrectly matched to the same point

produces an erroneous projection matrix with a large amount of inliers, and, for

the reason that RANSAC chooses the model with a largest number of inliers, the

23



Figure 2.10: As can be seen, some points are incorrectly matched to the same

point in the camera image.

algorithm is unable to find the correct model.

Therefore, all the points in the 2D image are compared between themselves and

all the matches that share one point are removed, using the next algorithm in

pseudo code:

Algorithm to eliminate correspondences with shared points

Input: The image coordinates of the matches Output: The matches

list without shared points

1. Given M = total number of matches

2. Initialize i = 0

3. Repeat while i < M − 1

(a) Initialize j j = i + 1

(b) Repeat while j < M
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i. if point(i) is equal to point(j) delete point(j)

ii. Increment j (j = j + 1)

(c) Increment i (i = i + 1)

2.4.3 Mapping 3D points

Finally, to relate the obtained points to the actual 3D points from the scan, a

matrix of the same size of the map is filled with the pointers to the 3D data. The

pairs 2D-3D are now available for the camera projection matrix calculation.

As a resume:

1. Find, for each keypoint from the first image the keypoint in the second image

with the closer descriptor (lesser Euclidean distance)

2. If the distance ratio between both keypoints is below a given threshold, both

of them are added to the correspondences list.

3. Erase the correspondences sharing any common keypoint

4. Match the 2D correspondence in the 3D map to its 3D coordinates

25



2.4.4 Random Sample Consensus (RANSAC)

Section 3.2 explains the equations related to the calulation of the camera projec-

tion matrix. The details in this section are about the RANSAC algorithm.

RANSAC (Random Sample Consensus) is an algorithm for fitting a model to ex-

perimental data containing considerable gross errors [3]. In this method, subsets

of the data are selected randomly and the model is tested only with this small

subset. The goodness of the model is determined by the best subset consistent

with the model, which is saved when the likelihood of finding a better model is

lower than a given percentage, or a maximum number of iterations is reached.

When the subset of data is the smallest number required by the model parameters,

RANSAC can achieve, if there is any, an uncontaminated solution, even if there

is only one. RANSAC can handle data more than half of outliers, if the model

could afford it.

For each set of points a camera matrix is estimated, therefore the matrix is tested

as shown in equation 2.14. All the 3D keypoints from the 3D image are projected

and its distance to the corresponding keypoint from the camera image as dist(x, x̂),

assuming that the point fits in the model if its distance is below a threshold.

P̂̂P̂PXXX = x̂̂x̂x (2.14)

If the number of the inliers is bigger than the previous model, the new model is

assumed as the correct one.
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Given the random nature of the algorithm, the termination mechanism of the

iteration is associated to the number of iterations needed to assure that the prob-

ability of finding other better model is below a given value.

Being I the number of inliers and the number of total matches N , the probability

of randomly choosing an inlier of all matches is PI = I/N . For a samples set

containing m correspondences, the probability of having all inliers is Pm
I . Hence,

the probability of having a set free of outliers until the kth iteration is

η = 1− (1− Pm
I )k (2.15)

Therefore, the maximum of iterations for a given probability value is

kMAX =
log (1− p)

log (1− ηn)
(2.16)

The threshold of maximum iterations is then updated each time the model is

updated with a better one, until the number of iterations reaches kMAX .
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As a resume:

Projection Matrix Estimation with RANSAC

Input: A set of correspondences between a 2D and a 3D Image

Output: The projection camera matrix relating the two images

1. Initialize

(a) Set the number of iterations to 0 (k = 0).

(b) Set the upper bound for the number of iterations to an

initial value (kMAX = M).

(c) Set the number of inliers to 0 (IMAX = 0.)

2. While (k < kMAX)

(a) Choose a random sample set of six correspondences.

(b) Compute the projection matrix from the sample set as

shown in section 3.2.

(c) Check the model by calculating the pixel distance for

each match and if the error is below some given threshold

adding it to the inlier list.

(d) Update the number of inliers I found in the previous step.

(e) If (I > IMAX)

i. Update the best model projection matrix.

ii. Set IMAX = I.

iii. Update kMAX as explained in eq. (2.16).

(f) Increment the number of iterations (k = k + 1).
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Chapter 3

2D/3D Transform

This chapter describes numerical methods for estimating the camera projection

matrix from corresponding 3D-space and image entities. The computation of the

camera matrix is known as resectioning.

The chapter is divided into three sections. In the first one, the calculation of the

intrinsic matrix is discussed, in the second one is explained the calculation of the

projection matrix. The last section is dedicated to the methods to estimate the

quality of the calculated projection matrix.
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3.1 Intrinsic Matrix Calculation

A flat calibration pattern can be used to obtain the intrinsic matrix. In this study

a pattern shaped like a 9 x 7 checkerboard is used.

The calibration procedure follows Zhang’s method [2]. The flat pattern is taken

by different camera position as in Figure B.1. This method assumes the plane of

the pattern as the plane z = 0, with the x and y axes parallel to the rows and

columns of the checkerboard.

The set of images is used to obtain the parameters using the OpenCV library

demonstration for stereo calibration. The intrinsic parameters obtained are in

section 4.8

The relation between 3D and 2D points in homogeneous coordinates is

s


u

v

1

 = K
[

r1 r2 r3 t
]


X

Y

0

1



= K
[

r1 r2 t
]

X

Y

1

 = H
[

r1 r2 t
]

X

Y

1

 (3.1)

where H = [h1h2h3] and
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sm̂ = HM̂, m̂ =


u

v

1

 and M̂ =


X

Y

1

 (3.2)

A homography can easily be estimated with an image of the model plane. To

determine an estimation of H can by determined by minimizing,

ζ =
∑

i

||mj − m̂i||2 where m̂i =
1

h̃T
3 Mi

 h̃T
1 Mi

h̃T
3 Mi

 (3.3)

This minimization is performed by using Levenberg-Marquardt method; this method

however requires an initial guess. This initial guess can be obtained by the right

singular vector of a concatenation of equations obtained by the rearrangement of

(3.2)

 M̃T 0T −uM̃T

0T M̃T M̃T

x = 0 (3.4)

After finding the homography, the matrix should be decomposed into K, R and t

as follows:

In Equation 3.1, one has,
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[
h1 h2 h3

]
= λK

[
r1 r2 t

]
(3.5)

And given that the R matrix columns are orthonormal

hT
1 K−T K−1h2 = 0 (3.6)

hT
1 K−T K−1h1 = hT

2 K−T K−1h2 (3.7)

Having B = K−T K−1 five different parameters, the same strategy used for solving

H can be performed to calculate the B matrix parameters. Once the estimation

of B is achieved, the parameters for K matrix can be obtained from,

v0 =
B12B13 −B11B23

B11B22 −B2
12

(3.8)

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11 (3.9)

α =
√

λ/B11 (3.10)

β =
√

λB11/(B11B22 −B2
12) (3.11)

γ = −B12α
2β/λ (3.12)

u0 = γv0/β −B13α
2/λ (3.13)
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3.2 Projection Matrix Estimation

Provided with a set of matches of 3D points {XXX} and 2D points {xxx}, to estimate

the camera matrix (or projection matrix), the equation x = PX will be reformu-

lated as:

 000T −wiXXX
T
i viXXX

T
i

wiXXX
T
i 000T −uiXXX

T
i




PPP 1

PPP 2

PPP 3

 = 000 (3.14)

,

where P iT is the ith row of P, and xi in homogeneous coordinates is

xxxi =


ui

vi

wi

 (3.15)

Since the matrix P has 12 entries and 11 degrees of freedom (ignoring scale),it is

necessary to have 11 equations to estimate P . Since each point correspondence

leads to two equations, at minimum 51
2

correspondences are required to solve for

P , meaning this that only one of the equations is used for the last point, so only

the x or y coordinate from the sixth point is needed, being actually six the points

neededÂ [1].

For simplicity, and also due to the presence of noise in the point coordinates the

over-determined solution with six correspondence using both equations for the last

point is chosen. In this case the matrix is computed from minimizing the algebraic
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error by using the SVD decomposition.

In order to obtain the homogeneous coordinates, a normalization has to be done:

xxxn = TTT 2xxx

XXXn = TTT 3XXX

Once obtained the normalized points, the Pn matrix is calculated with them and,

afterwards, the original P matrix is obtained denormalizing

PPP = TTT−1
2 PPP nTTT 3

Where the TTT 2 is

TTT 2 =


√

2
dRMS

0 −mx

√
2

dRMS

0
√

2
dRMS

−my

√
2

dRMS

0 0 1

 (3.16)

and TTT 3

TTT 3 =



√
3

dRMS
0 0 −mx

√
3

dRMS

0
√

3
dRMS

0 −my

√
3

dRMS

0 0
√

3
dRMS

−mz

√
3

dRMS

0 0 0 1

 (3.17)

.

The centroid of the 2D and 3D points in the sample are moved to the origin by

a translation, and then the points are scaled to make the RMS distance to the

centroid 2 for 2D points, and 3 for 3D points.

and dRMS is
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dRMS =

√√√√ 1

N

(
N∑

i=1

d2(xi, mean(x))

)
(3.18)
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3.3 Evaluation of the quality of projection ma-

trices

In order to test the quality of the PPP matrix, two error estimation functions are

defined. The rotation transposed matrix is defined RRRT = RRR−1, therefore the rota-

tion matrix is an orthogonal matrix, it is RRRTRRR = III. For that reason the AAA matrix

is defined as

AAA = RRRTRRR (3.19)

The way to check the quality of the estimated RRR matrix then is the distance or

the AAA matrix to the rotation matrix.

In order to normalize the resulting AAA matrix, it is decomposed to the eigenvalues

AAA = QΛQQΛQQΛQ−1 (3.20)

And then the AAA matrix is normalized by the maximum of the eigenvalues

BBB = AAA/ maxΛΛΛ (3.21)

Finally the error estimators used would be the difference between the BBB matrix

and the identity matrix

norm(BBB,III) = ||BBB − III|| (3.22)

and the Frobenius norm.

normFRO(BBB,III) =
√∑

diag ((BBB − III)(BBB − III)) (3.23)
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The result of these two estimators is the error, that should be closer to zero for

the best results, and also both of them should give a very similar result for a good

estimation.
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Chapter 4

Experimental Results

In this chapter the parameters for the evaluation of the algorithmsare defined and

the obatined results are explained.

The first section shows the parameter values used in the testing and which im-

pact they have in the results. The second section describe the results and their

implications of the studied model usefulness.
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4.1 Testing Parameters

The camera pictures used for the testing are all of 1024 x 768, given that the

intrinsic matrix values are affected by the image size. The camera used is an

Olympus E-500 with a sensor CCD surface of 17.3 x 13 mm2, and the focal length

is fixed at 14 mm for all images.

fx =
f

∆x

(4.1)

fy =
f

∆y

(4.2)

∆x =
dx

w
(4.3)

∆y =
dy

h
(4.4)

where w is the image wide resolution, h the height resolution, f is the focal length

and dx and dy are the wide and height of the CCD sensor. The center of the

images is then

cx =
w

2
(4.5)

cy =
h

2
(4.6)

The theoretical intrinsic matrix for these parameters, using the equations from 4.1

to 4.6

K =


828.67 0 512

0 828.67 384

0 0 1

 (4.7)
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The intrinsic matrix calculated from the image set from Appendix B.1 by using

the method explained in section 3.1 is

K =


792.24 0 498.51

0 792.24 397.217

0 0 1

 (4.8)

The result for this calculation is relatively closer to the theoretical one, giving

credibility to the result.

The chosen parameter for the equation (2.16) is η = 90%, that means that the

probability of RANSAC finding the best model is a 90%. This value is chosen in

order to get the results in an acceptable period of time, specially for the images

with lesser similarity with the scanner, taken from a distant position, which are

expected to be worst than the closer ones. The pixel distance threshold for the

RANSAC algorithm is 0.8 pixels. This parameter is chosen to get an acceptable

amount of inliers.

The SIFT matching threshold for the SIFT matching algorithm is, indeed, 1.7, a

little superior to the default one, 1.5, to assure a good number of matches.For the

SIFT features detection and matching is used the SIFT Matlab implementation

version 0.9.17 created by Andrea Vedaldi from the UCLA Vision Lab - Depart-

ment of Computer Science [10].

The presented scene has been arranged in order to avoid materials with a sub-

stantial disparity within the laser reflection values and the camera gray levels, as
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well as keeping the scanned area closer to the scanner level and small enough to

get small deformation in the map.

These parameters apply to all the results except if specified otherwise.

Figure 4.1: 3D scene used in the testing (except specified otherwise)
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4.2 Results

The results (Table A.1), as expected, are better for the images with significant

resemblance with the 3D map, with a higher number of model inliers and a lower

error than images with rotation, partial sights, etc.

The norm and Frobenius norm columns refers to the two error estimation previ-

ously mentioned in Chapter 3. Inliers alludes to the number of inliers fits in the

model for each picture. The column matches are the total amount of correspon-

dences found after the feature matching process, and the percentage refers to the

percentage of matches that are also inliers.

As can be seen in Figure 4.2, the norm error is lower for the results with a large

amount of inliers. These graphics shows the The error is lower for the pictures

with a higher number of inliers of the model, as well the result for both norms are

more similar in these cases. By opposition, the pictures with a small amount of

inliers usually have the worst results.

Independently of the quality of the image, the majority of the inliers are located

in high contrast changes in the image, especially in characters.

For a more general image like Figure C.12, with a higher distortion and objects

changing their reflection, the number of matches decreases, resulting in a large

amount of erroneous inliers.

A reduced percentage of correct correspondences also has his impact in the pro-

cessing time, since the termination of the RANSAC algorithm is determined by
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the number of inliers detected. This puts the processing Matlab time in a Dual

Core Intel Xeon CPU at 2.66 GHz with 8 RAM GiB in the order of hours, around

five or six hours in the best cases and even longer for the worst ones.
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(a) Norm

(b) Norm Frobenius

Figure 4.2: Norm and Norm Frobenius versus number of inliers for all images

tested.
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Chapter 5

Conclusions

After the testing, there is some contrast in results. Event though some results are

correct and the algorithm has proven to be able to get an acceptable projection

matrix, these results are only achieved from views with great similarity to the 3D

scan. With a partial view or a small rotation around the scanner point of view the

quality falls to an unacceptable margin. Also, the distortion in a general image,

difficulties the correct matching.

The number of matches between a 2D and a 3D images is slight and the major

part of the matches are erroneous. This leads to a reduced number of inliers,

compromising the quality of the estimation.

Anyway, even with these problems, it is possible to obtain acceptable results with

this method if the image is quite close to the scanner point of view, with small

distortion.
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5.1 Future work

To improve the quality of the results some different approaches can be suggested

for future work.

One of them, that was considered in the first stages of this study is to project

the 3D points to a planer by a virtual pinhole camera, that is, as explained in the

pinhole camera model section. That possibility was turned down for some reasons

related to this approach:

Related to the fact of having a cloud of points, a projection could leave holes in

the image within the points, affecting the quality of the image in an unaffordable

way for the feature detector to get results. Related to this, the holes or the points

can be projected to the same pixel, therefore it is not trivial to determine which

feature will correspond to which point in the 3D cloud.

Though this problem could solved, there is still the problem of deciding which is

the correct view to be projected in order to get a similar image to the camera

images in a full 3D scene. Even a simple partial scan as used in this project is

still problematic to focus the points in an arbitrary location, having only the 3D

position of the points in Cartesian coordinates.

With the aim of keeping the solution simple, this possibility was deprecated. A

future new study should have to find a solution to the related problems in order

to get this approach.

Another possibility could be the calibration using a close to scanner image and a
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part of a complete 3D scan following this method, and then using the calibration

between images to calibrate the full set of images, and then use the calibration of

that picture to found the projection of every image to a 3D scan.

This method is probably simpler, but does not improve the method described in

this thesis for the 3D calibration, it is just an improve the quality of the matching

of the 2D images. That would require to have enough correspondences between

images to be sure that all of them will be calibrated.
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Appendix A

Table of Results

The table includes the following data:

• Number of the tested image

• Error of the reprojection based on the norm

• Error of the reprojection based on the Frobenius norm

• Number of inlier matches in the image

• Number of total correspondences

• Percentage of correspondences

The room images is from a different 3D scene to all the other results.
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Picture number Norm Frobenius Norm Viewpoint Inliers Matches %

45 0.5252 0.5453 Similar 20 192 10.4

46 0.3140 0.3147 Similar 21 195 10.8

47 0.3869 0.4617 Similar 15 159 9.4

48 0.8651 0.8746 Partial view 9 122 7.4

49 0.9708 1.0512 Partial, upper 14 126 11.1

50 0.9999 1.0920 Partial 9 116 7.8

51 0.9208 1.0497 Partial 10 135 7.4

52 0.3464 0.3649 Partial 8 144 5.5

54 0.9875 1.3905 Upward 8 90 8.89

55 0.1728 0.1734 Similar 19 172 11.0

56 0.2648 0.2704 Similar 18 169 10.7

59 0.7606 0.7879 Leftward 11 141 7.8

60 0.2963 0.3302 Rightward 14 144 9.7

61 0.5153 0.5193 Downward, rightward, closer 14 120 11.7

62 0.2065 0.2122 Similar,leftwards 27 199 13.6

63 1.0000 1.4098 Upward, rightward 6 170 3.5

64 0.1904 0.1908 Slightly rightwards, closer 36 221 16.3

65 0.6778 0.9208 Upwards 11 142 7.8

67 0.3886 0.3958 Similar, slightly upwards 24 112 21.4

69 0.7405 0.7512 Leftward, upward, closer 14 126 11.1

71 1.0000 1.3991 Upward, slightly rightward 7 88 8.0

72 1.0000 1.4141 Upwards 6 68 8.8

73 0.9398 1.0641 Downward 11 97 11.3

74 0.9843 1.3330 Downward 8 87 9.2

room 1.0000 1.4138 Partial, 3D deformed at borders 7 31 22.6

Table A.1: The results in this table include the number of inliers and the error for

the rotation matrix
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Appendix B

Calibration Pattern Images

This is the set of images used to obtain the intrinsic matrix. The calibration

pattern consist in a 9 x 7 checkerboard. The method for calculate the intrinsic

matrix is explained in section 3.1.

50



Figure B.1: Set of images with the calibration patern



Appendix C

Images

This appendix contains some representative examples of the obtained results.

These figures show the original picture, the result of the matching of features

and the inliers detected with RANSAC.
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(a) Image

(b) Matches

(c) Inliers

Figure C.1: Image 45. Even not having one of the lowest errors, the number of

inliers is high.



(a) Image

(b) Matches

(c) Inliers

Figure C.2: Image 46. With a similar point of view to the scanner, the results are

satisfactory.



(a) Image

(b) Matches

(c) Inliers

Figure C.3: Image 47. An image similar to the 3D map, despite of being too close

between thwm, the number of inliers is good.



(a) Image

(b) Matches

(c) Inliers

Figure C.4: Image 48. This is an example for a partial view. There are just a few

inliers and the resulting error is high.



(a) Image

(b) Matches

(c) Inliers

Figure C.5: Image 51. This is another example for a partial view. There are just

a few inliers and the resulting error is high.



(a) Image

(b) Matches

(c) Inliers

Figure C.6: Image 52. This is another example for a partial view. Even with a

few inliers and the result error is low. This case is an exceptional one.



(a) Image

(b) Matches

(c) Inliers

Figure C.7: Image 55. This is a more general image. Since it is not the 3D image,

there is no problem of distortion and the results are acceptable, with a fair amount

of inliers.



(a) Image

(b) Matches

(c) Inliers

Figure C.8: Image 56. As in the previous image, a fair amount of inliers can be

found.



(a) Image

(b) Matches

(c) Inliers

Figure C.9: Image 64. This image has the best results of all the set in inliers.

This image is very similar image to the 3D map, giving a lot of inliers.



(a) Image

(b) Matches

(c) Inliers

Figure C.10: Image 73. An example from a lower view. As in many other images

with a displacement to the scanner point of view, even with good matches, there

is a low amount of them and the quality of the results is poor.



(a) Image

(b) Matches

(c) Inliers

Figure C.11: Image 74. This is an example of a bad result. The number of inliers

matches is only eight and is very easy to see two bad matches, one to the top of the

lamp and another one to the scanner foam rubber protection. The viewpoint is

downward to the laser and the image includes objects not present in the scanner.



(a) Image

(b) Matches

(c) Inliers

Figure C.12: Image Room. The results for a more general image gives worst

results compared to te images from the testing set.
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