
CRYPTOGRAPHIC SYSTEM FOR SUPPLY

CHAINS OVER RFID IMPLEMENTATION

Daniel Moreno Rosselló

January 2008, Politecnico di Torino

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41802454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I would like to thank Maurizio Rebaudengo and Filippo Gandino,
at the Politecnico di Torino, for their support along the realization
of the project, giving all the facilities to carry out.

1

Contents

1 INTRODUCTION 6

2 PREVIOUS CONCEPTS 7

2.1 NSCCA . 7

2.2 Public key cryptography . 10

2.2.1 RSA . 10

2.3 RFID . 12

2.3.1 Overview . 12

2.3.2 RFID Systems . 12

3 DEVELOPING 15

3.1 Development platform . 15

3.1.1 .NET COMPACT FRAMEWORK 15

3.1.2 Visual Studio .NET . 16

3.2 Program structure . 17

3.2.1 NSCCA Implementation 18

3.2.2 Reader Interface . 20

4 TESTING AND RESULTS 23

4.1 Settings . 23

4.1.1 HP IPAQ Pocket PC . 23

4.1.2 Tag reader: OMNIKEY® 4543 E-ID Mobile 24

4.1.3 RFID Tags: SRIX4K . 25

4.2 Results . 26

4.2.1 Reader performance . 26

4.2.2 Encryption testing . 26

4.2.3 RFID functions testing . 27

4.2.4 NSCCA Operations . 28

2

5 USER MANUAL 30

5.1 Installing . 30

5.2 Settings con�guration . 31

5.2.1 NSCCA Chain settings 31

5.2.2 RFID Reader settings . 32

5.3 Writing Information . 33

5.4 Reading Information . 34

6 Conclusions 36

7 Program class diagrams 38

7.1 NSCCA Algorithm Class and related structures 39

7.2 RFID Reader class . 40

3

List of Figures

2.1 NSCCA Algorithm . 9

2.2 PKCS 1.5 frame structure . 11

2.3 Inductive coupling . 13

3.1 .NET Compact Framework architecure 16

3.2 RFID SCM Security Application structure 17

3.3 NSCCA Cryptosystem generation 18

3.4 Chain XML �le structure . 19

3.5 Tag information XML File . 20

3.6 Tag Reading Sequence . 21

3.7 NSCCA memory allocation in Tag along the SCM 22

4.1 Testing scenario . 23

4.2 HP IPAQ PocketPC . 24

4.3 Omnikey RFID Reader . 24

4.4 SRIX4K Tags . 25

4.5 Encryption perform time . 26

4.6 Decryption perform time . 27

4.7 Reading vs writing time comparison 28

5.1 Application wellcome screen . 31

5.2 Settings screen . 32

5.3 Reader settings . 33

5.4 Tag writing screen . 34

5.5 Read screen . 35

7.1 NSCCA Algorithm Class and structures 39

7.2 ACG RFID Reader class and structures 40

4

List of Tables

2.2 RFID Technologies . 13

3.2 Tag memory structure . 19

3.3 Minimum key length vs companies 20

4.2 Reader operation timings . 26

4.3 First stage NSCCA Encryption and writing process 28

4.4 Reading, NSCCA decryption, encryption and writing process . . 29

5

Chapter 1

INTRODUCTION

RFID is an identication technology that has a wide range of applications. One of
the main areas of interest is the Supply Chain Management (SCM), traceability
management, multimodality shopping, etc. In suppy chains readers are placed
into manufacturing facilities, the supplier attaches RFID tags to all outgoing
products and some data is stored on each tag , attached to the products. At each
stage, every player in the supply chain will be able to track relevant information
on the product. The information can be used to ensure quality, on time delivery,
fast re-stocks, ad hence greater overall e�ciency.

NSCCA (Nested Supply Chain Cryprographic System) is an algorithm derived
from the Nested Cryptographic Algorithm, that aims to ensure authenticity,
privacy and protection along one suppy chain, and is based on public cryptog-
raphy.

The scope of this project is to develop a programming class library and an appli-
cation that implement the NSCCA algorithm, as well as testing its performance,
as well as an interface that permit to communicate through an RFID reader in
order to save and load the result of the algorithm in RFID tags.

structure of this report is as follows: In Chapter 2, some important concepts
involved in the project are explained, as well as the NSSCA algorithm, public
key cryptography and RFID technology. Then, in Chapter 3 the development
framework (programming language, ID) is explained, and the program structure
is de�ned. Continuing, the Chapter 4some tests on the platform are performed,
and the main results are discussed. After that, in Chapter 5 there is a little user
manual for the application developed to test the libraries. Finally, in Chapter
6 the conclussions on the project realization are explained.

6

Chapter 2

PREVIOUS CONCEPTS

In the a secure pervasive information system (IS) is described, by employing
RFID technology and the NSCCA (Nested Supply Chain Cryptographic Algo-
rithm) algorithm to protect the data.

2.1 NSCCA

The NSCCA is an algorithm, derived from the Nested Cryptographic algorithm,
based un public key cryptography, that uses a set of nested cypherytexts to
protect the data, with small memory areas. Its structure is shown in Figure 2.1
on page 9. The memory tags are divided into Memory Slots (MS) of a certain
length, where the cyphertexts generated with the algorithm will be written.

There are di�erent set of keys involved with the algorithm:

� The Competent Authority (CA) owns 1 key set. The private (APrK) who
only the CA holds, and the public key, which is public to all the Chain
Members (CM). Both have a length of 1

2 MS.

� Every CM owns 2 key sets, one (1
2 MS length) for IDCO encryption (a

�eld with the identi�cation code for the company), and one for the data
encryption itself. This last set has a length of i · 1

2 MS, there i is the
position of the CM in the chain. As the position is higher, the keys are
longer, and so the complexity of the encryption processes.

� Also the customer owns 1 key set (1
2 MS length), for after the-point-of-sell

applications.

Each CM inserts some information about the target product:

� Some data is for the Competent Authority (CA), and is encrypted with
the CA Public key, so that only the certi�cation authority, with his own
private key, is able to decrypt it and get the message. That allows the
traceability management.

7

� Another data is for some permitted members of the SCM, and is encrypted
with the writing company's private key. The corresponding public key
is distributed only to all the members of the chain that have the access
permission, and only they can decrypt the data and get the message. That
allows the supply chain management functions.

8

Figure 2.1: NSCCA Algorithm

9

2.2 Public key cryptography

As explained in the previous section, NSCCA algorithm is based on public key
cryptography. Public key cryptography (also known as asymmetric cryptog-
raphy) uses two separate keys to exchange data, what di�erentiates it from
symmetric cryptography. A public key Cryptography system is so constructed
that calculation of one key (the 'private key') is computationally infeasible from
the other (the 'public key'), even though they are necessarily related. Instead,
both keys are generated secretly, as an interrelated pair.

One key is used to encrypt or digitally sign the data, and the other key is used
to decrypt the data or verify the digital signature. These keys are often referred
to as public/private key combinations. If an individuals public key (which can
be shared with others) is used to encrypt data, then only that same individuals
private key (which is known only to the individual) can be used to decrypt
the data. If an individuals private key is used to digitally sign data, then only
that same individuals public key can be used to verify the digital signature.
Common algorithms that implement asymmetric cryptography include RSA,
Digital Signature Algorithm (DSA), and Elliptic Curve DSA (ECDSA).

2.2.1 RSA

This RSA algorithm, named after the three inventorsRon Rivest, Adi Shamir
and Leonard Adleman. This is an asymmetric cypher and as such is able
to be used for public key cryptography. In simple terms you can send Bob
a message encrypted with his public key and when he has received it he can
decrypt it with his private key (from which his public key was derived).

The security of this system is based on the di�culty in factoring large numbers.
The private and public keys can be functions of large prime numbers. While
the process is known, recovering the plaintext from the public key is considered
to be the equivalent to factoring the product of the two prime numbers. With
large numbers this is considered a major computational task, even by to-days
standards, and is believed to be, in terms of time, beyond the capability of any
existing technique/computer combination.

The keys are generated given 2 large prime numbers p and q, and following
some formulas:

n = pq (2.1)

Φ(n) = (p − 1)(q − 1) (2.2)

d · e = 1(modΦ(n)) (2.3)

While calculating this parameters, we obtain the corresponding private and
public keys:

� Public key corresponds to the comnbination of (e, n)

10

� Private key corresponds to (d, n)

The encryption and decryption processes are performed by calculating:

� Encryption of a message m: c = mdmod(n), where c is the cyphered
message

� Decryption of a cyphered text c: m = cemod(n), where m is the original
message

PKCS 1.5 With development of cryptography methods software companies
realized the importance of standards to de�ne how to deal with data in secure
and standard manner. Microsystem, Microsoft, Applet and others joined this
process in RSA and together they de�ned PKCS standards (Public Key Cryp-
tography Standards). The most important for this project is PKCS#1� The
RSA encryption standard�. It de�nes mechanisms for encrypting and signing
data using RSA system. In this project PKCS 1.5 format is used. The encryp-
tion process consists on 4 basic steps:

1. Encryption-block formatting, to obtain the Encrypted Bytes

2. Octet-string-to-integer conversion, to obtain �x�

3. RSA computation

4. Integer-to-octet-string conversion, to obtain the Encrypted Data Octets
(ED)

The decryption process consists of the same four steps as the encryption but
reversed. The format of the encryption block in this standard is shown in Figure
2.2 on page 11.

Figure 2.2: PKCS 1.5 frame structure

Where:

� BT is the type (02 for Public-key)

� PS is the Padding String

� D is de Data

The padding String consists of k-3-||D|| octets.

11

Input Data size limits One important aspect is how much information can
we give to encrypt. It is determined by the length of the modulus, using the
(2.4).

D < K − 11 (2.4)

Where D is the Data length, and K the length of the modulus, both in bytes.
The resulting length is always positive, because k (the length of the modulus)
is always at least 12 octets. This limitation guarantees that the length of the
padding string PS is at least eight octets, which is a security condition.

For example, for a 512-Bit Key, corresponding to 64 octets, we can only encrypt
a maximum of 53 octets. For 1024-Bit key, 117 octets, and so on.

2.3 RFID

RFID is the technology used to write and read the NSCCA data into the memory
tags. In the next sections this technology is introduced

2.3.1 Overview

RFID stands for Radio-frequency identi�cation, is an identi�cation method,
relying on storing and remotely retrieving data on devices called RFID tags or
transponders.Invented in 1948 bu Harry Stockman, and begin commercial use
in 1990s. On RFID systems, the power supply to the data-carrying device and
the data exchange between the data-carrying device and the reader are achieved
using magnetic or electromagnetic �elds.

An RFID system is made up of two components:

� Transponder, which is located on the object to be identi�ed

� Reader, which, depending on the technology chosen, may read or read/write
the transponder

2.3.2 RFID Systems

There are many di�erent RFID systems that use di�erent frequency bands
and coupling techniques. Depending on their characteristics, di�erent read-
ing ranges, operations (write, write/read) and data rates can be achieved. Also
around this technologies, several standards have been de�ned. The Table 2.2
on page 13 sumarizes them.

12

LF HF UHF Microwave

Freq. Range 125 -
134KHz

13.56 MHz 866 -
915MHz

2.45 - 5.8
GHz

Read Range 10 cm 1M 2-7 M 1M
Coupling Magnetic Magnetic Electro

magnetic
Electro
magnetic

standards 11784/85,
14223

18000-3.1,
15693,14443
A, B, and

C

EPC C0,
C1, C1G2,
18000-6

18000-4

Table 2.2: RFID Technologies

This technologies di�er in the way how the physical communication between
the reader and the transponder is performed, the coupling method, depending
on the frequency band.

� In the UHF (ultra high frequency) range (868 MHz and other frequen-
cies), and in the microwave range (2.4 . . . 2.5 GHz), the near-�eld is so
small that the reader must use the far-�eld. The transponder may send
its information actively back to the reader, or it operates as so called
�backscatter� which re�ects the received energy in a certain way. The
transponder antenna modulates the re�ected signal by changing its re-
�ection characteristics between alignment and misalignment, optimally
re�ecting or deteriorating the re�ected wave. Achievable read ranges are
just a few metres.

� RFID readers for the low frequency (125 kHz, 134.2 kHz) and high fre-
quency (13.56 MHz) ranges operate within the near-�eld with inductive
coupling. The load modulation by the transponder is detected by the an-
tenna of the reader. The typically achievable read ranges are about 0. . . 1
m.

The technology used is in this project the HF with a 13.56 MHz carrier frequency
, and is represented in Figure 2.3 on page 13.

Figure 2.3: Inductive coupling

13

The main standard used for this application (and compliant with the equipment)
is the ISO/IEC 14443, which consists of four parts and describes two types of
cards: type A and type B. The main di�erences between these types concern
modulation methods, coding schemes and protocol initialization procedures.
Both type A and type B cards use the same transmission protocol, that speci�es
data block exchange and related mechanisms.

14

Chapter 3

DEVELOPING

This chapter describes the Programming framework, IDE and language chosen
for the project, as well as it main characteristics. Also the main structure of the
application is described, and how the application communicates with the RFID
Reader.

3.1 Development platform

First election, after studying the functionalities that the libraries and application
must have, has been choosing the programming platform used to develop it.
Some important things have been considered, such as well RSA support, capable
of running in smart devices (mobile), and compatible with the hardware used.
This last require has been the most restrictive, as the API provided by the RFID
Reader vendor is a DLL written in C++, and a wrapper to adapt the library
for C# code use. Also the operative system used in the devices available, that
was Windows Mobile running in the Pocket PCs available.

The main options were use JavaME (micro edition), widely adopted in most
devices, and the .NET Compact Framework (from now .NET CF). Finally, the
.NET Framework by Microsoft has been selected, compatible with the reader
API and the Windows Mobile operative system, with RSA libraries implemented
and well documented, and an intuitive development IDE as Visual Studio 2008.

3.1.1 .NET COMPACT FRAMEWORK

The Microsoft .NET Compact Framework (.NET CF) is a version of the .NET
Framework that is designed to run on Windows CE based mobile/embedded
devices such as PDAs, mobile phones, etc. The .NET CF uses some of the same
class libraries as the full .NET Framework and also a few libraries designed
speci�cally for mobile devices.

15

Figure 3.1: .NET Compact Framework architecure

The runtime is the foundation of the .NET Compact Framework. It is responsi-
ble for managing code at execution time, providing core services such as memory
management and thread management while enforcing code safety and accuracy.
Code that targets the runtime is known as managed code;

The .NET Compact Framework class library is a collection of reusable classes
that you can use to quickly and easily develop applications.The .NET Compact
Framework also implements a subset of the System.Windows.Forms and Sys-
tem.Drawing classes, which allows to construct a rich user interface for a device
application.

� .NET Compact Framework 2.0

� .NET Developer Toys

� ActiveSync

3.1.2 Visual Studio .NET

Visual Studio is an Integrated Development Environment (IDE) that combines
a number of features, such as en editor, debugger and forms designers.

In addition to all of the features found natively in Visual Studio .NET, there
are the following device-speci�c features:

� Device emulators: Testing environments that simulate speci�c devices.
Emulators run on the developer's PC, allowing for testing without the
presence of a device.

� Automatic deployment of applications: allows you to easily test to
either an emulator or a device, providing developers with a seamless testing
environment.

� Remote debugging: allows you to leverage the debugging tools o�ered
through the Visual Studio .NET IDE with your device applications. All
of the debugging tools can be used with .NET Compact Framework-based
applications running either in an emulator or on a device.

16

The .NET Compact Framework supports two development languages: C# .NET
and Visual Basic .NET. While previous versions of Windows CE development
tools favored C-based languages�namely eMbedded Visual C++�with the
.NET Compact Framework it makes little di�erence which of the languages
you choose, because both are equally powerful and functional.

here is another language limitation. Under the .NET Framework you can use
mixed-language components within a single project. In .NET Compact Frame-
work projects are restricted to a single language, either C# .NET or Visual
Basic .NET. The workaround to this single-language project limitation imposed
by .NET Compact Framework is to create additional projects using the Class
template. Add your alternate language code to the template, and then simply
add references to these classes in your application project.

3.2 Program structure

The whole program structure is represented in Figure 3.2 on page 17. The main
components developed are the Class that implements the NSCCA algorithm and
the one for the interaction with the reader. A Graphical User Interface (GUI)
was also developed, in order to interact with all the functions through some
buttons and text inputs that permit introduce data and visualize the results in
an easy way.

Figure 3.2: RFID SCM Security Application structure

The program is structure in di�erent parts. There are two main classes:

� ACGReaderInterface: Implements all the methods needed to perform all
the reading and writing functions with the RFID Reader, by also using

17

a DLL, a library made by the Reader manufacturer that provides useful
functions programmed in C++ to interact with the reader. As C# is
the native language fot the .NET Framework, also a wrapper is provided
to adapt the C++ library to C#. This class is based on one written by
Erwing Sanchez for another project, and adapted for the project purposes.

� NSCCA: Is the core library for this project, and implements all the func-
tionalities to perform the NSCCA Algorithm, through the use of the RSA
implementation of the .NET Framework.

Also 4 main structures have been de�ned to exchain data between classes and
save important parameters:

� NDFrame and NEFrame: This structures are used to save and load NSCCA
decryption and encryption �elds, such as CTA, CTO, IDC, etc, while per-
forming the decryption and encryption functions.

� ReaderParameters and NSCCAParameters: These are structures that
have the important parameters used in the respective classes, and are
also used to exchange parameteres between the Forms and the classes.

3.2.1 NSCCA Implementation

3.2.1.1 Create Cryptosystem

The program provides a method that given as inputs a Minimum Key length
and the Tag available memory, calculates the number of companies that can be
part of the chain.

Also the user must select each company that will be in each position of the chain,
and the method creates all the Key pairs of di�erent sizes, to �t the algorithm
needs, and saves all the generated keys to binary �les, one for the public key,
and another for the private key.

Figure 3.3: NSCCA Cryptosystem generation

18

Once the Crytosystem and all the components that comprises it are de�ned,
and XML �le is generated with all the parameters needed, stores them in XML
�les, inside a folder.. By doing this, the con�guration settings for the NSCCA
class can be saved and loaded as needed, and retrieved when the application is
started. The XML �le format is de�ned in Figure 3.4 on page 19.

<chain>

<company>

<cname>FirstComanyID</cname>

<keysize>1024</keysize>

<Pos>1</Pos>

</company>

<nextcomp>

<cname>ACompany</cname>

<cname>AnotherCompany</cname>

<cname>OnemoreCompany</cname>

</nextcomp>

</chain>

Figure 3.4: Chain XML �le structure

The �elds are almost save explaining:

� In <company>: cname (identi�cation code of the company), keysize
()and pos (position in the chain), refer to the actual company.

� In <nextcomp>: The �elds cname have the same meaning, but refer to
the possible next companies in the chain that can be selected.

3.2.1.2 NSCCA Encrypt / Write

3.2.1.3 Memory Tag Formatting

In the 3.2is represented the memory structure of the SRI4XK Tag. It is format-
ted in 128 blocks of 32 Bit each. The �rst 7 positions are for OTP (One-time
programable) and counters, and the next 7 can be locked. The rest is available
to store data, there are 114 available slots of EEPROM memory, that make 3904
Bit.

ADDRESS USE

07 to 0F LOCKABLE EEPROM

00 to 06 OTP & COUNTER
10 to 7F EEPROM

Table 3.2: Tag memory structure

19

4 KBit Memory Tag

If we chose a minimum key size of 512 Bit (k/2), only 2 companies would be
permitted in the chain. At the exit of the �rst stage, the �rst company will
write 2048 Bit (2*k), and at the exit of the second company, it will write 3072
Bit (2*k) on the memory. So, using a typical 4 Kbit RFID Tag, the number of
companies allowed in the security chain would be as follows:

Minimum Key Length Companies

384 3
512 2
1024 1
1952 1

Table 3.3: Minimum key length vs companies

3.2.1.4 NSCCA Read / Decrypt

Tag Information �le saving One functionality o�ered is the possibility to
save the Tag information read previously to an XML, which will have by name
the corresponding Tag ID and extension XML. That is an interesting options in
case of future threatment of the information obtained by other applications, as
XML is an extended format for structuring and exchanging information. The
information saved would have the structure showed in the next �gure:

<tag>

<lastread>Wed, 13 Apr 2005 15:24:09 GMT<lastread>

<id>D0020CB3E3C6390E</id>

<lastcomp>ITAL23412345678912</lastcomp>

<smcinfo>SMCData</smcinfo>

<Previnfo>5F0DB7A0B291B813A4D7A1DC90276B

106EC8E1FF0F2B2C345C8DA4BEC9941EDC2E2107

7D2463C6</Previnfo>

</tag>

Figure 3.5: Tag information XML File

3.2.2 Reader Interface

The reader operations follow serveral steps. The sequence (shown in the Figure
3.6 on page 21) is:

1. Detect the serial port: Needed to detect which PC port is the RFID Reader
connected to, in order to interact with it.

2. Open the the reader: Turns on the RF circuitry of the reader.

20

3. Send command and retrieve data. Either for reading or writing, the reader
sends the selected commands to the tag, and waits for a response, if the
operation was successful or, in the case of writing, it performs a reading of
the written block and returns the value, so that the application can check
if the writing was performed well.

4. Close reader: Closes the RF circuitry, and it's not possible to read or write
data.

Figure 3.6: Tag Reading Sequence

The 3.2 shows how the memory is �lled in every step of a 3-company chain,
with a Memory Slot size of 1024 Bit.

21

Figure 3.7: NSCCA memory allocation in Tag along the SCM

22

Chapter 4

TESTING AND RESULTS

4.1 Settings

The application scenario is shown in Figure 4.1 on page 23.The application was
implemented in PocketPC from the PC using the Activesync program. The
PocketPC used to test the performance was the HP iPAQ 4700, and the RFID
tags the SRIX4K.

Figure 4.1: Testing scenario

4.1.1 HP IPAQ Pocket PC

� Processor Intel® PXA270 Processor 624 MHz

� Memory User Available Memory 192 MB total memory; (128 MB Strata
Flash ROM and 64 MB SDRAM)

� Display Type 4" Resolution (W x H) 480 x 640 pixels

� SD Slot Support and CF Slot Type II

23

� Microsoft® Windows Mobile� 2003

� WiFi and Bluetooth support

Figure 4.2: HP IPAQ PocketPC

4.1.2 Tag reader: OMNIKEY® 4543 E-ID Mobile

The RFID reader used to test the application is the OMNIKEY® 4543 E-ID,
which can be connected to a PockecPC through a Compact Flash type II slot.
Its main characteristics are:

Figure 4.3: Omnikey RFID Reader

� RF Transmit Frequency: 13.56MHz

� Supported Standards: ISO14443A, ISO14443B

� Communications Interface: CF Card Type II

� Communications Protocol: Speci�c ASCII or Binary Protocol

24

� Communications Parameter: 9600 Bit/s to 115kBit/s, 8, n, 1

� S/W Driver: Virtual COM port DLL (C++) & Reader Utility available
for Pocket PC 2002 & 2003

� Reading distance: Up to 60 mm / 2,36 Inch, depending on tag

� RF Transmission speed: Up to 848 kBit/s

4.1.3 RFID Tags: SRIX4K

The tags used in this project are ST microelectronics SRIX4K model (see Figure
4.4 on page 25), which has this features:

� Anticollision and anti-clone functions

� ISO 14443-2 Type B air interface and ISO 14443-3 Type B frame format
compliant

� 13.56 MHz carrier frequency

� 847 kHz subcarrier frequency

� 106 Kbit/second data transfer

� 8 bit Chip_ID based anticollision system

� 64-bit unique identi�er

� 4096-bit EEPROM with write protect feature

� 1 million erase/write cycles and 40-year data retention

Figure 4.4: SRIX4K Tags

The reader is connected to the PocketPC via the Compact Flash Type II slot
(Type II devices are 5 mm thick while Type I devices are 3.3 mm thick) .
CompactFlash (CF) is a mass storage device format used in portable electronic
devices.

25

4.2 Results

One de�ned the scenario, installing and con�guring properly the application,
some tests have been done over the platform to check that all compoments are
working correctly, and check the performance time of the reader and the NSCCA
functions.

4.2.1 Reader performance

Operation Time

Open reader 3 s
Close reader 3 s
Select tag 21 ms / 4 Byte
Writing 37 ms / 4 Byte
Reading 2 s

Table 4.2: Reader operation timings

4.2.2 Encryption testing

This test compares the RSA encryption and decryption performing times for
di�erent key lengths, calculated on an HP IPAQ PocketPC and on a normal PC.
It is important to remark that this test has been taken with key pairs generated
with the .NET Framework RSA library. This implementation is made to put
the the major part of complexity on the private key side, which is much longer
than the public one.

The results are shown in the next �gure, where we can see that the time spent
increases exponentially with the key length. Till 2048-Bit key length we obtain
acceptable times bellow 5 seconds, but with 3072-Bit the time spent with the
PocketPC is about 20 seconds, and around 50 with a 4096-Bit key.

Figure 4.5: Encryption perform time

26

Figure 4.6: Decryption perform time

4.2.3 RFID functions testing

Some tests have been done over the platform in order to check the time spent
to perform all the common operations with the RFID Reader, such as opening,
closing the device, selecting a tag, or the most common, reading and writing
information.

To do the next test, the fastest speed available has been selected, and the writing
and reading time for di�erent sizes have been measured. The main characteristic
that can be observed is that writing in the Tag memory is slower than reading
for every size. That is because while writing a block, a check is done by reading
the same block writen.

The typical values for a 4-Byte memory slot are 21 ms reading and 37 ms
writing time.

27

Figure 4.7: Reading vs writing time comparison

4.2.4 NSCCA Operations

Let's asume a chain with 2 companies, and a MS of 1024 Bit (k) , with 1024
and 2048 (2*k) keys, apart from the 512 (k/2) IDC encryption keys.

In the First stage, the corresponding company in the chain only can write
NSCCA information, because there's no other company before that could insert
information for it. For the �rst company the next steps are performed:

� NSCCA Encryption:Encrypts his CTO (1024-Bit) , adds the IDC codes
for the CA and for the other SCM members (512-Bit each)

� RFID Writing: Tag selection and NSCCA output writing (2048 Bit).

Operation Time (ms)

NSCCA Encrypting 116
RFID Tag selection 203
2048-Bit Writing 2496

Total time 2815

Table 4.3: First stage NSCCA Encryption and writing process

In the second stage, the company the information is addressed to rewrites the
tag with his own NSCCA output:

� Reads the information from the previous stage, reading 2048 Bit.

� Decrypts the information to determine if is valid and address for him.

� Performs the NSCCA encryption.

28

� Writes the NSCCA output to the RFID Tag

Operation Time (ms)

Tag selected 205
Read data: 2048 Bit 1363

Previous CTO decryption 67
Next CTO Encryption 16
Write data: 3072 Bit 3549

Total time 5200

Table 4.4: Reading, NSCCA decryption, encryption and writing process

29

Chapter 5

USER MANUAL

A program has been developed implementing the created library. In this section
there would be explained all the components and screens, as well as all the
functions provided, and how to use them correctly.

5.1 Installing

At the application development, there have been generated 3 di�erent output
�les:

� A DLL Library grouping together the NSCCA and Reader classes, and
their respective used structures, for future uses in other projects, making
it easy to use just by importing them to the project.

� A folder with all the executables, folders and DLLs, that would work only
by copying the folder into the device.

� A installation setup in a CAB (cabinet �le), in order to make easy the
installation in any mobile device.

Notice that the application has been developed to run with the .NET Compact
Framework 3.5, which is actually a beta, but would work perfectly with .NET
CF 2.0 either. In orther to make it run, �rst the .NET CF has to be installed
on the device.

Also for copying the �les needed from the PC to the device, some conversion and
accomodation must be done. For that, ActiveSync should be used for Windows
XP, while Windows Mobile Device Center (WMDC) for Windows Vista must
be used.

30

Figure 5.1: Application wellcome screen

5.2 Settings con�guration

The program have some screens and methods to set up the parameters needed
for the RFID reading/writing and NSCCA operations. This parameters are
inserted in the applications by using the speci�c �elds in the �settings� tab, and
pressing the save button. This action imports the parameters to the structures,
and at the same tame it saves the parameters into an XML �le. There are two
di�erent con�guration subscreens: �Chain� and �RFID Reader�.

5.2.1 NSCCA Chain settings

In this screen (Figure 5.2 on page 32) the main parameters for the NSCCA
algorithm can be loaded and set. As explained in the previous section, the �eld
contents and the corresponding parameters values are also saved into an XML
�le. The one where the NSCCA Chain parameters are saved is called by default
�ChainSettings.xml�, and it is saved in the SETTINGS folder.

31

Figure 5.2: Settings screen

The parameters available are:

� AC: Identi�cation string (ID) of the actual company that is running the
application.

� Tag: RFID Tag model, i.e: SRIX4K (ST microelectronics)

� MS Size: Size of the memory slot

� Companies: Number of positions in the chain. For example, 3 positions
(with many companies of each type as we want).

� Pos: Position of the actual company in the chain. Depending on it, only
some functions can be performed. For example, the �rst company obviusly
don't need to run the �read� function, because no one could have previously
writen.

� NC: Next company ID, the company who the information is addressed to.
That's important in order to encrypt the information with his key, and
make it readable for it.

5.2.2 RFID Reader settings

In this screen, the main settings for the interaction with the Reader and reading
/ writting performance are provided.

32

Figure 5.3: Reader settings

� Baud rate: Data transfer speed can be selected through this combo box,
from the speeds range that the reader accepts.

� Retry : Number of maximum retries from a block reading / writing error.
After this number of retries have resulted in error, the operation will be
aborted.

� Serial port: Detect the serial port where the reader can be accessed.

5.3 Writing Information

This screen (Figure 5.4 on page 34) allows selecting the information to be writ-
ten, and also do the writings. There are two main �elds, which are:

� AU Data: The data addressed the CA

� SCM Data: The data addressed to the allowed members of the chain

There is a maximum amount of data to be inserted, depending on the MS size.
In this program, this data are just ASCII characters, but if necessary the library
is built so that it is possible to insert the data in other formats.

Also there are 2 options for writing information to the tag: Write, allowed
only for the �rst member of the chain, because it can't receive any previous
data from previous stages, and Rewrite, for the rest of companies in the next
chain positions. The di�erence between them is that Rewrite also reads the

33

information stored previously in the Tag, decrypts it to check that it is correct,
uses the information retrieved in the new frame and writes it to the tag.

Figure 5.4: Tag writing screen

5.4 Reading Information

In this screen (Figure 5.5 on page 35) user can perform a reading or an scanning
on RFID Tags. The reading involves reading the information from the tag and
decrypting it.

When the action is performed, the result is showed on di�erent text �elds:

� Tag ID : The identi�cation code of the read Tag.

� IDC : Identi�cation code of the last company who wrote information in
the tag

� SCM Data: Data for the permitted companies of the supply chain

There are two basic reading functions provided:

� Pressing the Read button, one read is performed on the actual Tag.

� Pressing the Scan button, many reads in a row can be done, only passing
the reader over each Tag.

34

Figure 5.5: Read screen

While reading, many di�erent situations may occur. In case that the information
was corrupted, or not addressed to the company actually reading, a message will
be shown on screen, and the program will continue working.

� Tag not found: Any RFID Tag is present in the reading area, or it isn't
close enough.

� Error during reading: While reading, one or more reading operations have
failed, it could possible be because while reading, the tag or the reader
have been moved.

35

Chapter 6

Conclusions

Personally, the realization of this project has helped me in many facets. It
helped me to learn and understand RFID technology and practice with di�erent
devices. Also helped to improve my cryptography knowledge, and �nding new
ways of applicating it, as it's the case of this project.

Related to the results obtained from this project, I think NSCCA is a good way
of giving security and privacy in Supply Chain Management applications, but it
also has actually some drawbacks, due to the limitations in the technical part,
that I think will be solved in a nearly future, as the hardware will improve and
speed up the processes.

The capacity of the actual RFID tag is not enough to store information for
chains that have more than 3-4 players in a row. That should not be a big
problem, because storage capacity is growing up in future, but has limited the
testing of the project, as only little chains could be implemented in the system.

Another interesting fact is that encryption time is also limiting factor, as the
processing time for encrypting and decrypting grows up exponientally with the
key length, and that means the achievement of more security only can be done by
wasting more time on encryption processes, that may be too longer for systems
that require little time on every product, as supply chains are.

36

Bibliography

[1] [1] M. Rebaudengo F. Gandino, B. Montrucchio. Secure pervasive informa-
tion system from producers to end users. 2009.

[2] Klaus Finkenzeller. RFID HANDBOOK: Fundamentals and Applications
in Contactless Smart Cards and Identi�cation. Wiley, 2003.

37

38

Chapter 7

Program class diagrams

7.1 NSCCA Algorithm Class and related struc-

tures

Figure 7.1: NSCCA Algorithm Class and structures

39

7.2 RFID Reader class

Figure 7.2: ACG RFID Reader class and structures

40

RFID SCM Security
1.0

Generated by Doxygen 1.5.7.1

Wed Jan 21 15:40:01 2009

Contents

1 Namespace Index 1

1.1 Namespace List . 1

2 Data Structure Index 3

2.1 Data Structures . 3

3 File Index 5

3.1 File List . 5

4 Namespace Documentation 7

4.1 ACGReader Namespace Reference 7

4.2 NSCCAlgorithm Namespace Reference 8

5 Data Structure Documentation 9

5.1 ACGReader::ACGReaderInterface Class Reference 9

5.1.1 Detailed Description . 11

5.1.2 Constructor & Destructor Documentation 11

5.1.2.1 ACGReaderInterface 11

5.1.3 Member Function Documentation 11

5.1.3.1 axtoi . 11

5.1.3.2 Close . 11

5.1.3.3 ConvertByteArrayToHex 11

5.1.3.4 ConvertHexStringToCharString 11

5.1.3.5 ConvertHexToByteArray 12

5.1.3.6 IsHexNumber . 12

5.1.3.7 isReaderOpened 12

5.1.3.8 IsValidAddress . 12

ii CONTENTS

5.1.3.9 Open . 12

5.1.3.10 ParamsFromXML 13

5.1.3.11 ParamsToXML 13

5.1.3.12 ReadBlock . 13

5.1.3.13 ReadEncTag . 13

5.1.3.14 SelectTag . 14

5.1.3.15 WriteBlock . 14

5.1.3.16 WriteEncTag . 14

5.1.4 Field Documentation . 14

5.1.4.1 Log . 14

5.1.4.2 PathToSettings . 14

5.1.4.3 ReaderACG . 15

5.1.4.4 ReaderOpened . 15

5.1.4.5 ReaderSettings . 15

5.1.4.6 RParams . 15

5.1.4.7 Timer . 15

5.1.4.8 xmlsettings . 15

5.2 NSCCAlgorithm::ChainMember Struct Reference 16

5.2.1 Detailed Description . 16

5.2.2 Field Documentation . 16

5.2.2.1 ID . 16

5.2.2.2 Position . 16

5.3 NSCCAlgorithm::DecryptDataSet Struct Reference 17

5.3.1 Detailed Description . 17

5.3.2 Field Documentation . 17

5.3.2.1 CipherTextA . 17

5.3.2.2 DataForSCM . 17

5.3.2.3 IDC . 18

5.3.2.4 IDCA . 18

5.3.2.5 IDCO . 18

5.3.2.6 NextCTO . 18

5.3.2.7 PreviousCTO . 18

5.4 NSCCAlgorithm::EncryptDataSet Struct Reference 19

5.4.1 Detailed Description . 19

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

CONTENTS iii

5.4.2 Field Documentation . 19

5.4.2.1 ActualCompID 19

5.4.2.2 DataForAuthority 19

5.4.2.3 DataForSCM . 19

5.4.2.4 NextCompID . 19

5.4.2.5 PreviousCTO . 20

5.5 NSCCAlgorithm::NSCCA Class Reference 21

5.5.1 Detailed Description . 24

5.5.2 Constructor & Destructor Documentation 24

5.5.2.1 NSCCA . 24

5.5.3 Member Function Documentation 24

5.5.3.1 AddCertAuthority 24

5.5.3.2 AddCompany . 24

5.5.3.3 CADecrypt . 25

5.5.3.4 CreateDir . 25

5.5.3.5 CreateNSCCASystem 25

5.5.3.6 Decrypt . 25

5.5.3.7 DecryptCTOData 26

5.5.3.8 DirExists . 26

5.5.3.9 Encrypt . 26

5.5.3.10 ExtractIDCS . 26

5.5.3.11 ExtractPrevCTO 26

5.5.3.12 GetChainCompanies 27

5.5.3.13 GetDataCTO . 27

5.5.3.14 GetIDC . 27

5.5.3.15 GetString . 27

5.5.3.16 hextobytearray . 28

5.5.3.17 ParamsFromXML 28

5.5.3.18 ParamsToXML 28

5.5.3.19 ReadBinKeyFromFile 28

5.5.3.20 ReverseParams . 29

5.5.3.21 SaveTagToXML 29

5.5.3.22 SetCTA . 29

5.5.3.23 SetCTO . 29

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

iv CONTENTS

5.5.3.24 SetCTO . 30

5.5.3.25 SetIDC . 30

5.5.3.26 SignBytes . 31

5.5.3.27 WriteBinKeyToFile 31

5.5.4 Field Documentation . 31

5.5.4.1 DecryptData . 31

5.5.4.2 Log . 31

5.5.4.3 Params . 31

5.5.4.4 PathChainSettings 31

5.5.4.5 PathKeys . 31

5.5.4.6 PathTags . 31

5.5.4.7 rsa . 32

5.5.4.8 Timer . 32

5.5.4.9 xmlsettings . 32

5.6 NSCCAlgorithm::NSCCAParams Struct Reference 33

5.6.1 Detailed Description . 34

5.6.2 Field Documentation . 34

5.6.2.1 actualCompID . 34

5.6.2.2 firstComp . 34

5.6.2.3 k . 34

5.6.2.4 maxDataLength 34

5.6.2.5 nextCompID . 34

5.6.2.6 numberOfCompanies 34

5.6.2.7 positionInChain 35

5.6.2.8 typeTag . 35

5.6.3 Property Documentation . 35

5.6.3.1 ActualCompID 35

5.6.3.2 FirstComp . 35

5.6.3.3 K . 35

5.6.3.4 MaxDataLength 35

5.6.3.5 NextCompID . 35

5.6.3.6 NumberOfCompanies 35

5.6.3.7 PositionInChain 36

5.6.3.8 TypeTag . 36

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

CONTENTS v

5.7 ACGReader::ReaderParams Struct Reference 37

5.7.1 Detailed Description . 37

5.7.2 Field Documentation . 37

5.7.2.1 BaudRate . 37

5.7.2.2 MaxAddress . 37

5.7.2.3 MinAddres . 37

5.7.2.4 NumRetries . 38

5.7.2.5 SerialPort . 38

6 File Documentation 39

6.1 ACGReaderInterface.cs File Reference 39

6.2 NSCCA.cs File Reference . 40

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

ACGReader . 7
NSCCAlgorithm . 8

2 Namespace Index

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

ACGReader::ACGReaderInterface (This class permits to interact with the
reader to perform read and write operations, as well as implements
methods for opening, closing the device and selecting a tag in the
coverage area. ///) . 9

NSCCAlgorithm::ChainMember (Defines a company member of the supply
chain) . 16

NSCCAlgorithm::DecryptDataSet (Groups all the parameters needed to store
the NSCCA decryption results) 17

NSCCAlgorithm::EncryptDataSet (Groups all the parameters needed to store
the NSCCA decryption inputs) . 19

NSCCAlgorithm::NSCCA (Intended to implement the algorithm functions,
such as encryption and encryption) 21

NSCCAlgorithm::NSCCAParams (Stores all the parameters needed by the
NSCCA algorithm methods) . 33

ACGReader::ReaderParams (Set of parameters needed to configure correctly
the Device and the RFID reader connection, as well as reading and
writing settings) . 37

4 Data Structure Index

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

ACGReaderInterface.cs . 39
NSCCA.cs . 40

6 File Index

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

Chapter 4

Namespace Documentation

4.1 ACGReader Namespace Reference

Data Structures

• struct ReaderParams
Set of parameters needed to configure correctly the Device and the RFID reader con-
nection, as well as reading and writing settings.

• class ACGReaderInterface
This class permits to interact with the reader to perform read and write operations,
as well as implements methods for opening, closing the device and selecting a tag in
the coverage area. ///.

8 Namespace Documentation

4.2 NSCCAlgorithm Namespace Reference

Data Structures

• struct ChainMember
Defines a company member of the supply chain.

• struct DecryptDataSet
Groups all the parameters needed to store the NSCCA decryption results.

• struct EncryptDataSet
Groups all the parameters needed to store the NSCCA decryption inputs.

• struct NSCCAParams
Stores all the parameters needed by the NSCCA algorithm methods.

• class NSCCA
The NSCCA class is intended to implement the algorithm functions, such as encryp-
tion and encryption.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

Chapter 5

Data Structure Documentation

5.1 ACGReader::ACGReaderInterface Class Refer-
ence

This class permits to interact with the reader to perform read and write operations, as
well as implements methods for opening, closing the device and selecting a tag in the
coverage area. ///.

Public Member Functions

• ACGReaderInterface ()
Initializes a new instance of the ACGReaderInterface class.

• bool isReaderOpened ()
Determines whether the reader is opened or not.

• void Close ()
Close the RFID Reader.

• String Open ()
Open the RFID Reader.

• String SelectTag ()
Selects a tag situated on the coverage area.

• bool ParamsToXML (ReaderParams ReadParams)
Save reading parameters to an XML file.

• ReaderParams ParamsFromXML ()
Loads reading parameters from an XML file.

10 Data Structure Documentation

• String ConvertHexStringToCharString (String hexstr)
Converts a string of hexadecimal values into a character string.

• String ConvertByteArrayToHex (byte[] b)
Converts a byte array to a string of hexadecimal values.

• bool WriteEncTag (int ad_int, byte[] enc)
Writes an encoding array of bytes into the RFID Tag.

• bool WriteBlock (string Hex4Byte, String addr)
Reads a 4 Byte block from the Tag.

• String ReadBlock (String addr)
Reads a block of 4 Bytes from the Tag.

• byte[] ReadEncTag (int ad_int, int numblocks)
Reads information stored in the tag.

• byte[] ConvertHexToByteArray (string hexstring)
Converts an hexadecimal string to byte array.

Private Member Functions

• bool IsValidAddress (String addr)
• uint axtoi (String hexST)
• bool IsHexNumber (char num)

Checks if a character is a valid hexadecimal character.

Private Attributes

• ACG_CFReader ReaderACG
• ACG_CFReader.presetSettings ReaderSettings
• XmlWriterSettings xmlsettings = new XmlWriterSettings()

Settings for the xml files.

• ReaderParams RParams = new ReaderParams()
• Timing Timer = new Timing()
• Logger Log
• string PathToSettings

Path to the settings file.

• bool ReaderOpened = false
Tells whether the reader is already opened or not.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.1 ACGReader::ACGReaderInterface Class Reference 11

5.1.1 Detailed Description

This class permits to interact with the reader to perform read and write operations, as
well as implements methods for opening, closing the device and selecting a tag in the
coverage area. ///.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 ACGReader::ACGReaderInterface::ACGReaderInterface ()

Initializes a new instance of the ACGReaderInterface class.

5.1.3 Member Function Documentation

5.1.3.1 uint ACGReader::ACGReaderInterface::axtoi (String hexST)
[private]

5.1.3.2 void ACGReader::ACGReaderInterface::Close ()

Close the RFID Reader.

5.1.3.3 String ACGReader::ACGReaderInterface::ConvertByteArrayToHex
(byte[] b)

Converts a byte array to a string of hexadecimal values.

Parameters:

b The byte array to convert

Returns:

The string containing the hexadecimal values

5.1.3.4 String AC-
GReader::ACGReaderInterface::ConvertHexStringToCharString
(String hexstr)

Converts a string of hexadecimal values into a character string.

Parameters:

hexstr String with hexadecimal values

Returns:

The string containing the converted values

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

12 Data Structure Documentation

5.1.3.5 byte [] ACGReader::ACGReaderInterface::ConvertHexToByteArray
(string hexstring)

Converts an hexadecimal string to byte array.

Parameters:

hexstring The hexadecimal string

Returns:

The byte array containing the result

5.1.3.6 bool ACGReader::ACGReaderInterface::IsHexNumber (char num)
[private]

Checks if a character is a valid hexadecimal character.

Parameters:

num Character to test

Returns:

true if is hexadecimal, false if not

5.1.3.7 bool ACGReader::ACGReaderInterface::isReaderOpened ()

Determines whether the reader is opened or not.

Returns:

true if the reader is opened; otherwise, false.

5.1.3.8 bool ACGReader::ACGReaderInterface::IsValidAddress (String addr)
[private]

5.1.3.9 String ACGReader::ACGReaderInterface::Open ()

Open the RFID Reader.

Returns:

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.1 ACGReader::ACGReaderInterface Class Reference 13

5.1.3.10 ReaderParams AC-
GReader::ACGReaderInterface::ParamsFromXML
()

Loads reading parameters from an XML file.

Returns:

true if the loading succeeds; otherwise, false.

5.1.3.11 bool ACGReader::ACGReaderInterface::ParamsToXML
(ReaderParams ReadParams)

Save reading parameters to an XML file.

Parameters:

ReadParams The read params to be saved

Returns:

true if the saving succeeds; otherwise, false.

5.1.3.12 String ACGReader::ACGReaderInterface::ReadBlock (String addr)

Reads a block of 4 Bytes from the Tag.

Parameters:

addr Address to read

Returns:

String with the hexadecimal value read from the Tag

5.1.3.13 byte [] ACGReader::ACGReaderInterface::ReadEncTag (int ad_int,
int numblocks)

Reads information stored in the tag.

Parameters:

ad_int Address to begin reading

numblocks Number of blocks to read

Returns:

Byte array containing the read data

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

14 Data Structure Documentation

5.1.3.14 String ACGReader::ACGReaderInterface::SelectTag ()

Selects a tag situated on the coverage area.

Returns:

string containing the identification code of the RFID Tag

5.1.3.15 bool ACGReader::ACGReaderInterface::WriteBlock (string
Hex4Byte, String addr)

Reads a 4 Byte block from the Tag.

Parameters:

Hex4Byte The 4-Byte hexadecimal data to write

addr Address to write de data

Returns:

True if ok, false if not

5.1.3.16 bool ACGReader::ACGReaderInterface::WriteEncTag (int ad_int,
byte[] enc)

Writes an encoding array of bytes into the RFID Tag.

Parameters:

ad_int Initial address to write

enc Byte array corresponding to the encoding text

Returns:

5.1.4 Field Documentation

5.1.4.1 Logger ACGReader::ACGReaderInterface::Log [private]

5.1.4.2 string ACGReader::ACGReaderInterface::PathToSettings
[private]

Path to the settings file.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.1 ACGReader::ACGReaderInterface Class Reference 15

5.1.4.3 ACG_CFReader ACGReader::ACGReaderInterface::ReaderACG
[private]

5.1.4.4 bool ACGReader::ACGReaderInterface::ReaderOpened = false
[private]

Tells whether the reader is already opened or not.

5.1.4.5 ACG_CFReader.presetSettings AC-
GReader::ACGReaderInterface::ReaderSettings
[private]

5.1.4.6 ReaderParams ACGReader::ACGReaderInterface::RParams = new
ReaderParams() [private]

5.1.4.7 Timing ACGReader::ACGReaderInterface::Timer = new Timing()
[private]

5.1.4.8 XmlWriterSettings ACGReader::ACGReaderInterface::xmlsettings =
new XmlWriterSettings() [private]

Settings for the xml files.

The documentation for this class was generated from the following file:

• ACGReaderInterface.cs

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

16 Data Structure Documentation

5.2 NSCCAlgorithm::ChainMember Struct Reference

Defines a company member of the supply chain.

Data Fields

• int Position
The position of the company in the chain.

• string ID
The Identification Code for the company.

5.2.1 Detailed Description

Defines a company member of the supply chain.

5.2.2 Field Documentation

5.2.2.1 string NSCCAlgorithm::ChainMember::ID

The Identification Code for the company.

5.2.2.2 int NSCCAlgorithm::ChainMember::Position

The position of the company in the chain.

The documentation for this struct was generated from the following file:

• NSCCA.cs

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.3 NSCCAlgorithm::DecryptDataSet Struct Reference 17

5.3 NSCCAlgorithm::DecryptDataSet Struct Refer-
ence

Groups all the parameters needed to store the NSCCA decryption results.

Data Fields

• byte[] CipherTextA

CTA structure for the authority.

• byte[] DataForSCM

Data for the allowed supply chain members.

• byte[] IDCA

Company Identification code encrypted for the authority.

• byte[] IDCO

Company Identification code encrypted for the next member in the chain.

• byte[] IDC

Company Identification code not encrypted.

• byte[] PreviousCTO

CTO from the previous stage in the chain.

• byte[] NextCTO

CTO for the next company in the chain.

5.3.1 Detailed Description

Groups all the parameters needed to store the NSCCA decryption results.

5.3.2 Field Documentation

5.3.2.1 byte [] NSCCAlgorithm::DecryptDataSet::CipherTextA

CTA structure for the authority.

5.3.2.2 byte [] NSCCAlgorithm::DecryptDataSet::DataForSCM

Data for the allowed supply chain members.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

18 Data Structure Documentation

5.3.2.3 byte [] NSCCAlgorithm::DecryptDataSet::IDC

Company Identification code not encrypted.

5.3.2.4 byte [] NSCCAlgorithm::DecryptDataSet::IDCA

Company Identification code encrypted for the authority.

5.3.2.5 byte [] NSCCAlgorithm::DecryptDataSet::IDCO

Company Identification code encrypted for the next member in the chain.

5.3.2.6 byte [] NSCCAlgorithm::DecryptDataSet::NextCTO

CTO for the next company in the chain.

5.3.2.7 byte [] NSCCAlgorithm::DecryptDataSet::PreviousCTO

CTO from the previous stage in the chain.

The documentation for this struct was generated from the following file:

• NSCCA.cs

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.4 NSCCAlgorithm::EncryptDataSet Struct Reference 19

5.4 NSCCAlgorithm::EncryptDataSet Struct Refer-
ence

Groups all the parameters needed to store the NSCCA decryption inputs.

Data Fields

• byte[] PreviousCTO
CypherText CTO from the previous chain stage.

• string DataForAuthority
Data addressed to the certification authority (CA).

• string DataForSCM
Data addressed to the allowed members of the chain.

• string ActualCompID
Actual company identification code.

• string NextCompID
Next company identification code.

5.4.1 Detailed Description

Groups all the parameters needed to store the NSCCA decryption inputs.

5.4.2 Field Documentation

5.4.2.1 string NSCCAlgorithm::EncryptDataSet::ActualCompID

Actual company identification code.

5.4.2.2 string NSCCAlgorithm::EncryptDataSet::DataForAuthority

Data addressed to the certification authority (CA).

5.4.2.3 string NSCCAlgorithm::EncryptDataSet::DataForSCM

Data addressed to the allowed members of the chain.

5.4.2.4 string NSCCAlgorithm::EncryptDataSet::NextCompID

Next company identification code.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

20 Data Structure Documentation

5.4.2.5 byte [] NSCCAlgorithm::EncryptDataSet::PreviousCTO

CypherText CTO from the previous chain stage.

The documentation for this struct was generated from the following file:

• NSCCA.cs

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.5 NSCCAlgorithm::NSCCA Class Reference 21

5.5 NSCCAlgorithm::NSCCA Class Reference

The NSCCA class is intended to implement the algorithm functions, such as encryption
and encryption.

Public Member Functions

• NSCCA (string PathAppDir)
Initializes a new instance of the NSCCA class.

• RSAParameters ReverseParams (RSAParameters original)
Reverses the RSA parameters, exchanging private and public keys, and recalculates
other derived parameters needed for the encryption and decryption functions.

• bool ParamsToXML (NSCCAParams ImportedParams)
Saves all the parameters needed to an XML File, usually called "ChainSettings.xml"
situated in the configuration files path.

• NSCCAParams ParamsFromXML ()
Loads all the parameters needed from an XML File, usually called "ChainSet-
tings.xml" situated in the configuration files path.

• bool SaveTagToXML (string TagID)
Save read information from RFID Tag into an XML tag.

• DecryptDataSet CADecrypt (byte[] EncFrame)
CAs the decrypt.

• byte[] Encrypt (EncryptDataSet EncryptionData)
Performs the Nested Supply Chain Cyphering Algorithm (NSCCA) Encryption and
returns a Byte array with the encoded information, and length (Position + 1) ∗ k Bits.

• DecryptDataSet Decrypt (byte[] EncryptedBytes)
Performs the Nested Supply Chain Cyphering Algorithm (NSCCA) decryption process
of a byte array of length (Position + 1) ∗ k Bits and returns a structure with the
decoded information fields contained in it.

• bool AddCompany (int k, int pos, string CompID)
Adds a company to the chain, creating his own IDC and Encoding Keysets.

• void CreateNSCCASystem (int k, ChainMember[] CM)
Creates the NSCCA system.

• string GetString (byte[] b)
Gets the string from a byte array.

• byte[] ExtractPrevCTO (byte[] EncFrame)

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

22 Data Structure Documentation

This method extracts all the CTO from the previous frame without decrypting it.

• string[] GetChainCompanies (string ChainName)
• byte[] hextobytearray (string hexstring)

Convert an hexadecimal string into a byte array.

Data Fields

• NSCCAParams Params = new NSCCAParams()
• string PathChainSettings

Path to the Chain settings file.

• string PathKeys

Path to the Key folder.

• string PathTags

Path to the log file.

Private Member Functions

• void CreateDir (string Dir)
• byte[] SetCTA (string AUT_Data)

with the information for the Certification Authority, and encrypt it with the CA Public
key

• byte[] SetCTO (string DataForSCM, byte[] CTABytes, byte[] PreviousCTO)

Gets the actual CTA from the SetCTA method, containing k/2 Bits, the data addressed
to the SMC, and the CTO from the previus stage, and produces an output Byte array
of (position) ∗ k Bits For example, if k = 512 and position 2 in the chain: PrevCTO:
1024 Bytes (position-1) ∗k Bits CTA: 512 Bytes (k/2) Bits Returned array: 2048 Bytes
(position) ∗ k Bits.

• byte[] SetCTO (string DataForSCM, byte[] CTABytes)

Gets the actual CTA from the SetCTA method, containing k/2 Bits, the data addressed
to the SMC, and the CTO from the previus stage, and produces an output Byte array
of (position) ∗ k Bits For example, if k = 512 and position 2 in the chain: PrevCTO:
1024 Bytes (position-1) ∗k Bits CTA: 512 Bytes (k/2) Bits Returned array: 2048 Bytes
(position) ∗ k Bits
.

• byte[] SetIDC (byte[] Enc_CTO)

Constructs the IDCA and IDCO encrypting the IDC number of the actual company,
concatenates them to the previous CTO from the SetCTO method and returns the
resulting byte array.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.5 NSCCAlgorithm::NSCCA Class Reference 23

• byte[] SignBytes (byte[] b)

Makes a "sign" from a byte array, by extracting the content of some of the bytes.

• DecryptDataSet ExtractIDCS (byte[] EncFrame)
• byte[] GetIDC (byte[] EncIDC)

Gets the Identity code of the last company who encrypted the information (IDCO
field) in order to know who it was, load his public keys and decrypt the remaining
information.

• byte[] DecryptCTOData (DecryptDataSet DecryptData, string PrevioupsCom-
pID)

Decrypts the CTO data extracted previously to a Decrypt structure.

• DecryptDataSet GetDataCTO (DecryptDataSet ND)

Gets the CTO data.

• bool AddCertAuthority (int k)

Adds the certification authority to the chain, by creating its key pairs.

Static Private Member Functions

• static bool DirExists (string dirName)

Check if the specified directory exists, and if not, creates it.

• static void WriteBinKeyToFile (byte[] binkey, string PathToFile)

Writes the bin key to file.

• static byte[] ReadBinKeyFromFile (string PathToFile)

Reads the bin key from file.

Private Attributes

• DecryptDataSet DecryptData = new DecryptDataSet()
• Logger Log
• Timing Timer = new Timing()

A Timer to calculate the time spent to perform some actions.

• RSACryptoServiceProvider rsa = new RSACryptoServiceProvider()
• XmlWriterSettings xmlsettings = new XmlWriterSettings()

xml file settings, to define some properties on the file format, like identation, line
spacing, etc

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

24 Data Structure Documentation

5.5.1 Detailed Description

The NSCCA class is intended to implement the algorithm functions, such as encryption
and encryption.

Author:

Daniel Moreno Rosselló

Version:

4.0

Date:

January 2009

5.5.2 Constructor & Destructor Documentation

5.5.2.1 NSCCAlgorithm::NSCCA::NSCCA (string PathAppDir)

Initializes a new instance of the NSCCA class.

Parameters:

PathAppDir The path to the application running, used later to determine some
paths to configuration files, key storing folders, etc

5.5.3 Member Function Documentation

5.5.3.1 bool NSCCAlgorithm::NSCCA::AddCertAuthority (int k)
[private]

Adds the certification authority to the chain, by creating its key pairs.

Parameters:

k The memory slot size

Returns:

true if created successfully; otherwise, false.

5.5.3.2 bool NSCCAlgorithm::NSCCA::AddCompany (int k, int pos, string
CompID)

Adds a company to the chain, creating his own IDC and Encoding Keysets.

Parameters:

k

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.5 NSCCAlgorithm::NSCCA Class Reference 25

pos Position of the company in the chain

CompID Identification of the company

Returns:

Whether the creation was successfull or not

5.5.3.3 DecryptDataSet NSCCAlgorithm::NSCCA::CADecrypt (byte[]
EncFrame)

CAs the decrypt.

Parameters:

EncFrame Byte array containing the encrypted information

Returns:

DecryptDataSet with the decryption results

5.5.3.4 void NSCCAlgorithm::NSCCA::CreateDir (string Dir) [private]

5.5.3.5 void NSCCAlgorithm::NSCCA::CreateNSCCASystem (int k,
ChainMember[] CM)

Creates the NSCCA system.

Parameters:

k The size of the memory slot

CM The ChainMember to add to the chain

5.5.3.6 DecryptDataSet NSCCAlgorithm::NSCCA::Decrypt (byte[]
EncryptedBytes)

Performs the Nested Supply Chain Cyphering Algorithm (NSCCA) decryption process
of a byte array of length (Position + 1) ∗ k Bits and returns a structure with the decoded
information fields contained in it.

Parameters:

EncryptedBytes The encrypted bytes.

Returns:

An NDFrame structure contained the data obtained by the method

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

26 Data Structure Documentation

5.5.3.7 byte [] NSCCAlgorithm::NSCCA::DecryptCTOData (DecryptDataSet
DecryptData, string PrevioupsCompID) [private]

Decrypts the CTO data extracted previously to a Decrypt structure.

Parameters:

DecryptData The data to be decrypted

PrevioupsCompID The previoups company Identification Code

Returns:

5.5.3.8 static bool NSCCAlgorithm::NSCCA::DirExists (string dirName)
[static, private]

Check if the specified directory exists, and if not, creates it.

Parameters:

dirName Name of the directory

Returns:

False if there was an exception, true if not

5.5.3.9 byte [] NSCCAlgorithm::NSCCA::Encrypt (EncryptDataSet
EncryptionData)

Performs the Nested Supply Chain Cyphering Algorithm (NSCCA) Encryption and
returns a Byte array with the encoded information, and length (Position + 1) ∗ k Bits.

Parameters:

EncryptionData The structure with the data to be encrypted

Returns:

Byte array contained the result data

5.5.3.10 DecryptDataSet NSCCAlgorithm::NSCCA::ExtractIDCS (byte[]
EncFrame) [private]

5.5.3.11 byte [] NSCCAlgorithm::NSCCA::ExtractPrevCTO (byte[]
EncFrame)

This method extracts all the CTO from the previous frame without decrypting it.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.5 NSCCAlgorithm::NSCCA Class Reference 27

Parameters:

EncFrame

Returns:

5.5.3.12 string [] NSCCAlgorithm::NSCCA::GetChainCompanies (string
ChainName)

5.5.3.13 DecryptDataSet NSCCAlgorithm::NSCCA::GetDataCTO
(DecryptDataSet ND) [private]

Gets the CTO data.

Parameters:

ND The ND.

Returns:

5.5.3.14 byte [] NSCCAlgorithm::NSCCA::GetIDC (byte[] EncIDC)
[private]

Gets the Identity code of the last company who encrypted the information (IDCO field)
in order to know who it was, load his public keys and decrypt the remaining informa-
tion.

Parameters:

EncIDC Byte array containing the encrypted IDCO Field

Returns:

A

5.5.3.15 string NSCCAlgorithm::NSCCA::GetString (byte[] b)

Gets the string from a byte array.

Parameters:

b The byte array

Returns:

The resulting string

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

28 Data Structure Documentation

5.5.3.16 byte [] NSCCAlgorithm::NSCCA::hextobytearray (string hexstring)

Convert an hexadecimal string into a byte array.

Parameters:

hexstring String containing the hexadecimal data

Returns:

A byte array with the information converted

5.5.3.17 NSCCAParams NSCCAlgorithm::NSCCA::ParamsFromXML ()

Loads all the parameters needed from an XML File, usually called "ChainSettings.xml"
situated in the configuration files path.

5.5.3.18 bool NSCCAlgorithm::NSCCA::ParamsToXML (NSCCAParams
ImportedParams)

Saves all the parameters needed to an XML File, usually called "ChainSettings.xml"
situated in the configuration files path.

Parameters:

ImportedParams The imported params.

Returns:

5.5.3.19 static byte [] NSCCAlgorithm::NSCCA::ReadBinKeyFromFile (string
PathToFile) [static, private]

Reads the bin key from file.

Parameters:

PathToFile The path to the file where the key is stored

Returns:

Byte array with the read key

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.5 NSCCAlgorithm::NSCCA Class Reference 29

5.5.3.20 RSAParameters NSCCAlgorithm::NSCCA::ReverseParams
(RSAParameters original)

Reverses the RSA parameters, exchanging private and public keys, and recalculates
other derived parameters needed for the encryption and decryption functions.

Parameters:

original The original RSA Parameters

Returns:

RSAParameters object containing reversed parameters

5.5.3.21 bool NSCCAlgorithm::NSCCA::SaveTagToXML (string TagID)

Save read information from RFID Tag into an XML tag.

Parameters:

TagID RFID Tag’s identification number

Returns:

Boolean value indicating if the saving was successful

5.5.3.22 byte [] NSCCAlgorithm::NSCCA::SetCTA (string AUT_Data)
[private]

with the information for the Certification Authority, and encrypt it with the CA Public
key

Parameters:

AUT_Data Data for the Certification authority

Returns:

Byte array containing the CTA

5.5.3.23 byte [] NSCCAlgorithm::NSCCA::SetCTO (string DataForSCM,
byte[] CTABytes) [private]

Gets the actual CTA from the SetCTA method, containing k/2 Bits, the data addressed
to the SMC, and the CTO from the previus stage, and produces an output Byte array
of (position) ∗ k Bits For example, if k = 512 and position 2 in the chain: PrevCTO:
1024 Bytes (position-1) ∗k Bits CTA: 512 Bytes (k/2) Bits Returned array: 2048 Bytes
(position) ∗ k Bits

.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

30 Data Structure Documentation

Parameters:

DataForSCM Data for other suppy management chain members
CTABytes CTA obtained from the setCTA method

Returns:

Byte array containing the CTO

5.5.3.24 byte [] NSCCAlgorithm::NSCCA::SetCTO (string DataForSCM,
byte[] CTABytes, byte[] PreviousCTO) [private]

Gets the actual CTA from the SetCTA method, containing k/2 Bits, the data addressed
to the SMC, and the CTO from the previus stage, and produces an output Byte array
of (position) ∗ k Bits For example, if k = 512 and position 2 in the chain: PrevCTO:
1024 Bytes (position-1) ∗k Bits CTA: 512 Bytes (k/2) Bits Returned array: 2048 Bytes
(position) ∗ k Bits.

Parameters:

DataForSCM Data for other suppy management chain members
CTABytes CTA obtained from the setCTA method
PreviousCTO CTO from the previous stage

Exceptions:

ArgumentException If CTOPrev or Enc_CTA are longer than permitted

Returns:

byte[] containing the CTO

5.5.3.25 byte [] NSCCAlgorithm::NSCCA::SetIDC (byte[] Enc_CTO)
[private]

Constructs the IDCA and IDCO encrypting the IDC number of the actual company,
concatenates them to the previous CTO from the SetCTO method and returns the re-
sulting byte array.

Parameters:

Enc_CTO Previous stage CTO

Returns:

Byte array containing the final frame

For example, if k = 512 and position 2: Previous CTO: 2048 Bytes ((position)∗ k)
IDCA and IDCO: 512 Bytes (k/2) Returned array: 3072 Bytes ((position+1)∗ k)

First we generate IDCA Bytes

Then we generate IDCO Bytes

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.5 NSCCAlgorithm::NSCCA Class Reference 31

5.5.3.26 byte [] NSCCAlgorithm::NSCCA::SignBytes (byte[] b) [private]

Makes a "sign" from a byte array, by extracting the content of some of the bytes.

Parameters:

b The byte array to be signed

Returns:

A byte array containing the signature

5.5.3.27 static void NSCCAlgorithm::NSCCA::WriteBinKeyToFile (byte[]
binkey, string PathToFile) [static, private]

Writes the bin key to file.

Parameters:

binkey The binkey.

PathToFile The path.

5.5.4 Field Documentation

5.5.4.1 DecryptDataSet NSCCAlgorithm::NSCCA::DecryptData = new
DecryptDataSet() [private]

5.5.4.2 Logger NSCCAlgorithm::NSCCA::Log [private]

5.5.4.3 NSCCAParams NSCCAlgorithm::NSCCA::Params = new
NSCCAParams()

5.5.4.4 string NSCCAlgorithm::NSCCA::PathChainSettings

Path to the Chain settings file.

5.5.4.5 string NSCCAlgorithm::NSCCA::PathKeys

Path to the Key folder.

5.5.4.6 string NSCCAlgorithm::NSCCA::PathTags

Path to the log file.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

32 Data Structure Documentation

5.5.4.7 RSACryptoServiceProvider NSCCAlgorithm::NSCCA::rsa = new
RSACryptoServiceProvider() [private]

5.5.4.8 Timing NSCCAlgorithm::NSCCA::Timer = new Timing()
[private]

A Timer to calculate the time spent to perform some actions.

5.5.4.9 XmlWriterSettings NSCCAlgorithm::NSCCA::xmlsettings = new
XmlWriterSettings() [private]

xml file settings, to define some properties on the file format, like identation, line spac-
ing, etc

The documentation for this class was generated from the following file:

• NSCCA.cs

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.6 NSCCAlgorithm::NSCCAParams Struct Reference 33

5.6 NSCCAlgorithm::NSCCAParams Struct Refer-
ence

Stores all the parameters needed by the NSCCA algorithm methods.

Properties

• string ActualCompID [get, set]

Gets or sets the actual comp ID.

• string NextCompID [get, set]

Gets or sets the next comp ID.

• string TypeTag [get, set]

Gets or sets the type tag.

• int K [get, set]

Gets or sets the K.

• int PositionInChain [get, set]

Gets or sets the position in chain.

• int NumberOfCompanies [get, set]

Gets or sets the number of companies.

• int MaxDataLength [get, set]

Gets the length of the max data.

• bool FirstComp [get, set]

Gets a value indicating whether is the first comp in a chain.

Private Attributes

• string actualCompID
Actual company identification code.

• string nextCompID
Next company identification code.

• string typeTag
Type of RFID Tag used.

• int k
Size of the memory slot.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

34 Data Structure Documentation

• int positionInChain
Position of the actual company within the chain.

• int numberOfCompanies
Number of companies in a row of the chain.

• int maxDataLength
Maximum amount of data that we can insert, either SMC or CA Data.

• bool firstComp
Indicates if the actual company is the first in the chain or not.

5.6.1 Detailed Description

Stores all the parameters needed by the NSCCA algorithm methods.

5.6.2 Field Documentation

5.6.2.1 string NSCCAlgorithm::NSCCAParams::actualCompID [private]

Actual company identification code.

5.6.2.2 bool NSCCAlgorithm::NSCCAParams::firstComp [private]

Indicates if the actual company is the first in the chain or not.

5.6.2.3 int NSCCAlgorithm::NSCCAParams::k [private]

Size of the memory slot.

5.6.2.4 int NSCCAlgorithm::NSCCAParams::maxDataLength [private]

Maximum amount of data that we can insert, either SMC or CA Data.

5.6.2.5 string NSCCAlgorithm::NSCCAParams::nextCompID [private]

Next company identification code.

5.6.2.6 int NSCCAlgorithm::NSCCAParams::numberOfCompanies
[private]

Number of companies in a row of the chain.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.6 NSCCAlgorithm::NSCCAParams Struct Reference 35

5.6.2.7 int NSCCAlgorithm::NSCCAParams::positionInChain [private]

Position of the actual company within the chain.

5.6.2.8 string NSCCAlgorithm::NSCCAParams::typeTag [private]

Type of RFID Tag used.

5.6.3 Property Documentation

5.6.3.1 string NSCCAlgorithm::NSCCAParams::ActualCompID [get,
set]

Gets or sets the actual comp ID.

The actual comp ID.

5.6.3.2 bool NSCCAlgorithm::NSCCAParams::FirstComp [get, set]

Gets a value indicating whether is the first comp in a chain.

true if it is; otherwise, false.

5.6.3.3 int NSCCAlgorithm::NSCCAParams::K [get, set]

Gets or sets the K.

The K.

5.6.3.4 int NSCCAlgorithm::NSCCAParams::MaxDataLength [get, set]

Gets the length of the max data.

The length of the max data.

5.6.3.5 string NSCCAlgorithm::NSCCAParams::NextCompID [get, set]

Gets or sets the next comp ID.

The next comp ID.

5.6.3.6 int NSCCAlgorithm::NSCCAParams::NumberOfCompanies [get,
set]

Gets or sets the number of companies.

The number of companies.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

36 Data Structure Documentation

5.6.3.7 int NSCCAlgorithm::NSCCAParams::PositionInChain [get, set]

Gets or sets the position in chain.

The position in chain.

5.6.3.8 string NSCCAlgorithm::NSCCAParams::TypeTag [get, set]

Gets or sets the type tag.

The type tag.

The documentation for this struct was generated from the following file:

• NSCCA.cs

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

5.7 ACGReader::ReaderParams Struct Reference 37

5.7 ACGReader::ReaderParams Struct Reference

Set of parameters needed to configure correctly the Device and the RFID reader con-
nection, as well as reading and writing settings.

Data Fields

• int NumRetries

Maximum number of reading / writing retries in case of error.

• int MinAddres

Minimum writable address in the RFID tag memory.

• int MaxAddress

Maximum writable address in the RFID tag memory.

• int BaudRate

Bauds per second of tag writting / reading speed.

• string SerialPort

Serial port where the reader can be accessed.

5.7.1 Detailed Description

Set of parameters needed to configure correctly the Device and the RFID reader con-
nection, as well as reading and writing settings.

5.7.2 Field Documentation

5.7.2.1 int ACGReader::ReaderParams::BaudRate

Bauds per second of tag writting / reading speed.

5.7.2.2 int ACGReader::ReaderParams::MaxAddress

Maximum writable address in the RFID tag memory.

5.7.2.3 int ACGReader::ReaderParams::MinAddres

Minimum writable address in the RFID tag memory.

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

38 Data Structure Documentation

5.7.2.4 int ACGReader::ReaderParams::NumRetries

Maximum number of reading / writing retries in case of error.

5.7.2.5 string ACGReader::ReaderParams::SerialPort

Serial port where the reader can be accessed.

The documentation for this struct was generated from the following file:

• ACGReaderInterface.cs

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

Chapter 6

File Documentation

6.1 ACGReaderInterface.cs File Reference

Data Structures

• struct ACGReader::ReaderParams
Set of parameters needed to configure correctly the Device and the RFID reader con-
nection, as well as reading and writing settings.

• class ACGReader::ACGReaderInterface
This class permits to interact with the reader to perform read and write operations,
as well as implements methods for opening, closing the device and selecting a tag in
the coverage area. ///.

Namespaces

• namespace ACGReader

40 File Documentation

6.2 NSCCA.cs File Reference

Data Structures

• struct NSCCAlgorithm::ChainMember
Defines a company member of the supply chain.

• struct NSCCAlgorithm::DecryptDataSet
Groups all the parameters needed to store the NSCCA decryption results.

• struct NSCCAlgorithm::EncryptDataSet
Groups all the parameters needed to store the NSCCA decryption inputs.

• struct NSCCAlgorithm::NSCCAParams
Stores all the parameters needed by the NSCCA algorithm methods.

• class NSCCAlgorithm::NSCCA
The NSCCA class is intended to implement the algorithm functions, such as encryp-
tion and encryption.

Namespaces

• namespace NSCCAlgorithm

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

Index

ACGReader, 7
ACGReader::ACGReaderInterface, 9

ACGReaderInterface, 11
axtoi, 11
Close, 11
ConvertByteArrayToHex, 11
ConvertHexStringToCharString, 11
ConvertHexToByteArray, 11
IsHexNumber, 12
isReaderOpened, 12
IsValidAddress, 12
Log, 14
Open, 12
ParamsFromXML, 12
ParamsToXML, 13
PathToSettings, 14
ReadBlock, 13
ReadEncTag, 13
ReaderACG, 14
ReaderOpened, 15
ReaderSettings, 15
RParams, 15
SelectTag, 13
Timer, 15
WriteBlock, 14
WriteEncTag, 14
xmlsettings, 15

ACGReader::ReaderParams, 37
BaudRate, 37
MaxAddress, 37
MinAddres, 37
NumRetries, 37
SerialPort, 38

ACGReaderInterface
ACGReader::ACGReaderInterface,

11
ACGReaderInterface.cs, 39
ActualCompID

NSCCAlgorithm::EncryptDataSet,
19

NSCCAlgorithm::NSCCAParams,
35

actualCompID
NSCCAlgorithm::NSCCAParams,

34
AddCertAuthority

NSCCAlgorithm::NSCCA, 24
AddCompany

NSCCAlgorithm::NSCCA, 24
axtoi

ACGReader::ACGReaderInterface,
11

BaudRate
ACGReader::ReaderParams, 37

CADecrypt
NSCCAlgorithm::NSCCA, 25

CipherTextA
NSCCAlgorithm::DecryptDataSet,

17
Close

ACGReader::ACGReaderInterface,
11

ConvertByteArrayToHex
ACGReader::ACGReaderInterface,

11
ConvertHexStringToCharString

ACGReader::ACGReaderInterface,
11

ConvertHexToByteArray
ACGReader::ACGReaderInterface,

11
CreateDir

NSCCAlgorithm::NSCCA, 25
CreateNSCCASystem

NSCCAlgorithm::NSCCA, 25

DataForAuthority
NSCCAlgorithm::EncryptDataSet,

19

42 INDEX

DataForSCM
NSCCAlgorithm::DecryptDataSet,

17
NSCCAlgorithm::EncryptDataSet,

19
Decrypt

NSCCAlgorithm::NSCCA, 25
DecryptCTOData

NSCCAlgorithm::NSCCA, 25
DecryptData

NSCCAlgorithm::NSCCA, 31
DirExists

NSCCAlgorithm::NSCCA, 26

Encrypt
NSCCAlgorithm::NSCCA, 26

ExtractIDCS
NSCCAlgorithm::NSCCA, 26

ExtractPrevCTO
NSCCAlgorithm::NSCCA, 26

FirstComp
NSCCAlgorithm::NSCCAParams,

35
firstComp

NSCCAlgorithm::NSCCAParams,
34

GetChainCompanies
NSCCAlgorithm::NSCCA, 27

GetDataCTO
NSCCAlgorithm::NSCCA, 27

GetIDC
NSCCAlgorithm::NSCCA, 27

GetString
NSCCAlgorithm::NSCCA, 27

hextobytearray
NSCCAlgorithm::NSCCA, 27

ID
NSCCAlgorithm::ChainMember, 16

IDC
NSCCAlgorithm::DecryptDataSet,

17
IDCA

NSCCAlgorithm::DecryptDataSet,
18

IDCO
NSCCAlgorithm::DecryptDataSet,

18

IsHexNumber
ACGReader::ACGReaderInterface,

12
isReaderOpened

ACGReader::ACGReaderInterface,
12

IsValidAddress
ACGReader::ACGReaderInterface,

12

K
NSCCAlgorithm::NSCCAParams,

35
k

NSCCAlgorithm::NSCCAParams,
34

Log
ACGReader::ACGReaderInterface,

14
NSCCAlgorithm::NSCCA, 31

MaxAddress
ACGReader::ReaderParams, 37

MaxDataLength
NSCCAlgorithm::NSCCAParams,

35
maxDataLength

NSCCAlgorithm::NSCCAParams,
34

MinAddres
ACGReader::ReaderParams, 37

NextCompID
NSCCAlgorithm::EncryptDataSet,

19
NSCCAlgorithm::NSCCAParams,

35
nextCompID

NSCCAlgorithm::NSCCAParams,
34

NextCTO
NSCCAlgorithm::DecryptDataSet,

18
NSCCA

NSCCAlgorithm::NSCCA, 24
NSCCA.cs, 40
NSCCAlgorithm, 8
NSCCAlgorithm::ChainMember, 16

ID, 16

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

INDEX 43

Position, 16
NSCCAlgorithm::DecryptDataSet, 17

CipherTextA, 17
DataForSCM, 17
IDC, 17
IDCA, 18
IDCO, 18
NextCTO, 18
PreviousCTO, 18

NSCCAlgorithm::EncryptDataSet, 19
ActualCompID, 19
DataForAuthority, 19
DataForSCM, 19
NextCompID, 19
PreviousCTO, 19

NSCCAlgorithm::NSCCA, 21
AddCertAuthority, 24
AddCompany, 24
CADecrypt, 25
CreateDir, 25
CreateNSCCASystem, 25
Decrypt, 25
DecryptCTOData, 25
DecryptData, 31
DirExists, 26
Encrypt, 26
ExtractIDCS, 26
ExtractPrevCTO, 26
GetChainCompanies, 27
GetDataCTO, 27
GetIDC, 27
GetString, 27
hextobytearray, 27
Log, 31
NSCCA, 24
Params, 31
ParamsFromXML, 28
ParamsToXML, 28
PathChainSettings, 31
PathKeys, 31
PathTags, 31
ReadBinKeyFromFile, 28
ReverseParams, 28
rsa, 31
SaveTagToXML, 29
SetCTA, 29
SetCTO, 29, 30
SetIDC, 30
SignBytes, 30
Timer, 32

WriteBinKeyToFile, 31
xmlsettings, 32

NSCCAlgorithm::NSCCAParams, 33
ActualCompID, 35
actualCompID, 34
FirstComp, 35
firstComp, 34
K, 35
k, 34
MaxDataLength, 35
maxDataLength, 34
NextCompID, 35
nextCompID, 34
NumberOfCompanies, 35
numberOfCompanies, 34
PositionInChain, 35
positionInChain, 34
TypeTag, 36
typeTag, 35

NumberOfCompanies
NSCCAlgorithm::NSCCAParams,

35
numberOfCompanies

NSCCAlgorithm::NSCCAParams,
34

NumRetries
ACGReader::ReaderParams, 37

Open
ACGReader::ACGReaderInterface,

12

Params
NSCCAlgorithm::NSCCA, 31

ParamsFromXML
ACGReader::ACGReaderInterface,

12
NSCCAlgorithm::NSCCA, 28

ParamsToXML
ACGReader::ACGReaderInterface,

13
NSCCAlgorithm::NSCCA, 28

PathChainSettings
NSCCAlgorithm::NSCCA, 31

PathKeys
NSCCAlgorithm::NSCCA, 31

PathTags
NSCCAlgorithm::NSCCA, 31

PathToSettings

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

44 INDEX

ACGReader::ACGReaderInterface,
14

Position
NSCCAlgorithm::ChainMember, 16

PositionInChain
NSCCAlgorithm::NSCCAParams,

35
positionInChain

NSCCAlgorithm::NSCCAParams,
34

PreviousCTO
NSCCAlgorithm::DecryptDataSet,

18
NSCCAlgorithm::EncryptDataSet,

19

ReadBinKeyFromFile
NSCCAlgorithm::NSCCA, 28

ReadBlock
ACGReader::ACGReaderInterface,

13
ReadEncTag

ACGReader::ACGReaderInterface,
13

ReaderACG
ACGReader::ACGReaderInterface,

14
ReaderOpened

ACGReader::ACGReaderInterface,
15

ReaderSettings
ACGReader::ACGReaderInterface,

15
ReverseParams

NSCCAlgorithm::NSCCA, 28
RParams

ACGReader::ACGReaderInterface,
15

rsa
NSCCAlgorithm::NSCCA, 31

SaveTagToXML
NSCCAlgorithm::NSCCA, 29

SelectTag
ACGReader::ACGReaderInterface,

13
SerialPort

ACGReader::ReaderParams, 38
SetCTA

NSCCAlgorithm::NSCCA, 29

SetCTO
NSCCAlgorithm::NSCCA, 29, 30

SetIDC
NSCCAlgorithm::NSCCA, 30

SignBytes
NSCCAlgorithm::NSCCA, 30

Timer
ACGReader::ACGReaderInterface,

15
NSCCAlgorithm::NSCCA, 32

TypeTag
NSCCAlgorithm::NSCCAParams,

36
typeTag

NSCCAlgorithm::NSCCAParams,
35

WriteBinKeyToFile
NSCCAlgorithm::NSCCA, 31

WriteBlock
ACGReader::ACGReaderInterface,

14
WriteEncTag

ACGReader::ACGReaderInterface,
14

xmlsettings
ACGReader::ACGReaderInterface,

15
NSCCAlgorithm::NSCCA, 32

Generated on Wed Jan 21 15:40:01 2009 for RFID SCM Security by Doxygen

	thesis.pdf
	refman 1.4
	Namespace Index
	Namespace List

	Data Structure Index
	Data Structures

	File Index
	File List

	Namespace Documentation
	ACGReader Namespace Reference
	NSCCAlgorithm Namespace Reference

	Data Structure Documentation
	ACGReader::ACGReaderInterface Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	ACGReaderInterface

	Member Function Documentation
	axtoi
	Close
	ConvertByteArrayToHex
	ConvertHexStringToCharString
	ConvertHexToByteArray
	IsHexNumber
	isReaderOpened
	IsValidAddress
	Open
	ParamsFromXML
	ParamsToXML
	ReadBlock
	ReadEncTag
	SelectTag
	WriteBlock
	WriteEncTag

	Field Documentation
	Log
	PathToSettings
	ReaderACG
	ReaderOpened
	ReaderSettings
	RParams
	Timer
	xmlsettings

	NSCCAlgorithm::ChainMember Struct Reference
	Detailed Description
	Field Documentation
	ID
	Position

	NSCCAlgorithm::DecryptDataSet Struct Reference
	Detailed Description
	Field Documentation
	CipherTextA
	DataForSCM
	IDC
	IDCA
	IDCO
	NextCTO
	PreviousCTO

	NSCCAlgorithm::EncryptDataSet Struct Reference
	Detailed Description
	Field Documentation
	ActualCompID
	DataForAuthority
	DataForSCM
	NextCompID
	PreviousCTO

	NSCCAlgorithm::NSCCA Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	NSCCA

	Member Function Documentation
	AddCertAuthority
	AddCompany
	CADecrypt
	CreateDir
	CreateNSCCASystem
	Decrypt
	DecryptCTOData
	DirExists
	Encrypt
	ExtractIDCS
	ExtractPrevCTO
	GetChainCompanies
	GetDataCTO
	GetIDC
	GetString
	hextobytearray
	ParamsFromXML
	ParamsToXML
	ReadBinKeyFromFile
	ReverseParams
	SaveTagToXML
	SetCTA
	SetCTO
	SetCTO
	SetIDC
	SignBytes
	WriteBinKeyToFile

	Field Documentation
	DecryptData
	Log
	Params
	PathChainSettings
	PathKeys
	PathTags
	rsa
	Timer
	xmlsettings

	NSCCAlgorithm::NSCCAParams Struct Reference
	Detailed Description
	Field Documentation
	actualCompID
	firstComp
	k
	maxDataLength
	nextCompID
	numberOfCompanies
	positionInChain
	typeTag

	Property Documentation
	ActualCompID
	FirstComp
	K
	MaxDataLength
	NextCompID
	NumberOfCompanies
	PositionInChain
	TypeTag

	ACGReader::ReaderParams Struct Reference
	Detailed Description
	Field Documentation
	BaudRate
	MaxAddress
	MinAddres
	NumRetries
	SerialPort

	File Documentation
	ACGReaderInterface.cs File Reference
	NSCCA.cs File Reference

