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Abstract

This work is focused on designing and implementing a real-time video-based face iden-

ti�cation system with low memory and computational requirements and high recognition

rates. Since pro�le features are stronger and, therefore, better when characterising faces

than frontal faces, the system will detect and identify not only pure frontal but also pro�le

faces. This property of pro�le faces will help to improve face recognition rates depending

on the strategy for fusion of results used. Also, dimensionality reduction techniques will

be studied and tested in order to �nd the fastest and most e�ective one. Modi�cation in

k Nearest Neighbor classi�er will be carried out to add a penalisation factor in function

of the distance, increasing classi�cation results and strictness.

In order to �nd which are the best options for reducing computational requirements in

a face identi�cation system several simulations will be performed. Among many others,

simulations will look for optimal values of the k parameter in k Nearest Neighbor, the

number of transformed coe�cients kept in a feature vector or the minimum size of face

images and will test dimensionality reduction in images, variation of the number of models

or fusion of results.

Finally, this work will show how a real-time system can be implemented in an ordinary

computer obtaining successful results whether it be in real-time, adverse or controlled

conditions environments.



Resumen

Este trabajo está centrado en el diseño e implementación de un sistema en tiempo real

de identi�cación de caras basado en secuencias de vídeo que ofrezca un uso computacional

y de memoria bajos y tasas de reconocimiento altas. Puesto que las características de

las caras de per�l son más fuertes y, por tanto, mejores que las características de caras

frontales, el sistema detectará e identi�cará no únicamente las caras totalmente frontales

sino también las de per�l. Esta propiedad de las caras de per�l ayudará a mejorar las tasas

de reconocimiento de caras dependiendo de la estrategia de fusión de resultados que se

utilice. Se estudiarán también técnicas de reducción de dimensionalidad y se probarán con

el �n de encontrar la que sea más rápida y efectiva. Se realizarán ciertas modi�caciones

en el classi�cador k Nearest Neighbor que penalizarán en función de la distancia, cosa que

mejorará los resultados de las clasi�caciones y la rigurosidad de las mismas.

Se llevarán a cabo diversas simulaciones para encontrar las mejores opciones que per-

mitan reducir los requisitos computacionales de un sistema de identi�cación de caras.

Entre otras muchas simulaciones, se buscarán los valores óptimos para el parámetro k del

clasi�cador k Nearest Neighbor, el número de coe�cientes transformados que se conser-

varán en los vectores de características o el tamaño mínimo en las imágenes de caras y se

investigará la reducción de dimensionalidad en las imágenes, la variación del número de

modelos utilizados o la fusión de resultados.

Por último, este trabajo mostrará cómo se puede implementar en un equipo de presta-

ciones limitadas un sistema en tiempo real que obtenga resultados satisfactorios ya sea en

entornos en tiempo real, en condiciones adversas o controladas.



Resum

Aquest treball està centrat en el disseny i implementació d'un sistema en temps real

d'identi�cació de cares basat en seqüències de vídeo que ofereixi un ús computacional

i de memòria baixos i taxes de reconeixement altes. Donat que les característiques de

les cares de per�l són més fortes i, per tant, millors que les característiques de cares

frontals, el sistema detectarà i identi�carà no únicament les cares totalment frontals sinó

que també les de per�l. Aquesta propietat de les cares de per�l ajudarà a millorar les

taxes de reconeixement de cares depenent de l'estratègia de fusió de resultats que s'utilitzi.

S'estudiaran també tècniques de reducció de dimensionalitat i es provaran amb la �nalitat

de trobar la que sigui més ràpida i efectiva. Es realitzaran certes modi�cacions en el

classi�cador k Nearest Neighbor que penalitzaran en funció de la distància, que millorarà

els resultats i el rigor de les classi�cacions.

Es duran a terme diverses simulacions per a trobar les millors opcions que permetin

reduir els requisits computacionals d'un sistema d'identi�cació de cares. Entre d'altres

simulacions, es buscaran els valors òptims per al paràmetre k del classi�cador k Nearest

Neighbor, el nombre de coe�cients transformats que es conservaran en els vectors de

característiques o la grandària mínima en les imatges de cares i s'investigarà la reducció

de dimensionalitat en les imatges, la variació del nombre de models utilitzats o la fusió

de resultats.

Finalment, aquest treball mostrarà com es pot implementar en un equip de prestacions

limitades un sistema en temps real que obtingui resultats satisfactoris ja sigui en entorns

en temps real, en condicions adverses o controlades.
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Chapter 1

Introduction

1.1 Context and motivation

Intelligent video security, automatic identi�cation, tracking of individuals, indexation of

faces from videorecordings or image bases, among many other applications, are now closer

to be developed than ever. The social welfare is rapidly increasing its needs of this kind of

applications and now is the time to take full advantage of it. A wide range of opportunities

related to face identi�cation or pattern recognition are yet to be discovered.

Technical improvements experienced during the last years allow implementing a face

recognition application on current computers with any need of complex distributed pro-

cessing. A new and very interesting horizon opens in biometrics, face recognition and face

detection �elds. In contrast to �ngerprint and iris identi�cations, which are performed in

controlled and almost ideal conditions, face detection and identi�cation becomes a very

exciting problem due to not only the quality of images needs to be taken into account but

the many con�guration parameters in an identi�cation system.

Completely generic face identi�cation applications in real time may require very de-

manding computational and memory resources not matching to nowadays standards.

Strategies and techniques have to be created, implemented and tested, until a system

is ready to work in its optimal point.

There are two types of face identi�cation methods: feature-based and appearance-

based. This work will focus on building an appearance-based face identi�cation system. In

these methods faces are considered to be groups of pixels that respond to a certain pattern

which can be extracted and used for comparing between faces. Simulations involving
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several con�guration parameters will be performed and identi�cation systems will be

discussed and tested, as well.

Feature-based methods only achieve high perfomance rates when having high-resolution

face images. These methods look for relevant features in faces such as eyes, nose or mouth,

being able to determine the identity of a given individual by comparing feature distances

and positions with other candidates. It is not possible to �nd face features in environ-

ments where cameras are too far from the scene and faces are moving or have not enough

resolution, therefore in these situations only appearance-based methods can be used. The

process of extracting face features, comparing them with other faces and �nding the clos-

est one might seem apparently simple but it can be a very demanding and slow process

if the system is not well con�gured. That is why it becomes necessary to restrict the size

of images, the number of images per individual and other signi�cant parameters.

Although it is possible to isolate or segment faces from an image by hand, this can be

very une�cient when having 20 or 25 images per second and several cameras. A better

option is having a face detector executing in a computer thanks to image processing tech-

niques, which will be used in the �nal implementation of a face identi�cation system, as

detailed in this work. Face detector techniques can also be demanding if the whole image

from the camera is scanned but these demands can be extremely reduced by avoiding

certain zones where faces should not appear such as �oors, ceilings, the sky, etc.

Most of the existing face identi�cation systems only use frontal faces but in real-

time situations a signi�cant percentage of the detected faces can be pro�le faces, since

individuals may move around the scenario or change the orientation of their bodies or

heads. Also, pro�le faces are likely to be found in multicamera environments such as

smart rooms. Moreover, detecting and classifying pro�le faces increases recognition rates

by adding more temporal continuity as faces changing from frontal to pro�le orientations

will not be lost neither discarded, but will greatly contribute in fusion of results by

orientations.

The improvement obtained from fusion of results will depend on the number of faces

detected in a given set of consecutive frames or time segment, their orientation and the

fusion strategy chosen. These time segments may vary from one frame, providing instant

fusion of results, to seconds. For each frame, it is possible to perform fusion of results

if multiple versions of a same face, whether in a single or several orientations, can be

2



detected in a multicamera environment. In time segments consisting of several frames,

a fusion of instant fusion results for each frame can be performed in order to decide

which individual was tracked and detected during the whole time segment. In case of not

having instant fusion of results, a single frame-by-frame fusion of results is performed on

the tested time segment.

A remarkable e�ort will be done in this work for successfully implementing a real-time

face identi�cation system, as a part of the �Proyecto Hesperia�, funded by the Spanish

Strategic Consortiums in Technical Research (CENIT in Spanish).

1.2 Structure of the dissertation

This work will be divided in three main parts:

• Part I: State of the art. As a review of some of the existing feature extraction and

dimensionality reduction methods, Chapter 2 will introduce PCA, DCT, LDA and

LPP methods. In Chapter 3, the problem of classi�cation wil be introduced. Two

types of classi�ers will be introduced: kNN and Parzen. The k Nearest Neighbor

(kNN) data classi�er will be introduced and explained via examples. A Parzen

density estimator used as a classi�er is also presented. Chapter 4 explains the

mechanisms to combine the results of multiple individual classi�cations into a more

reliable �nal decision. Images with multiple face orientations will be used in this

process, one of the main novelties of this project.

• Part II: Setting up a face identi�cation system. Chapter 5 will describe in

detail a feature-based face identi�cation system and the stages and data resources

needed, such as face databases and recordings. In Chapter 6 extensive simulations

will be performed in order to obtain the optimal parameters that must be set in

a face identi�cation system. Experimental results will be given in Sections 6.2 to

6.10, as well as a conclusion.

• Part III: Implementation of a real-time face identi�cation system. An

implementation of a real-time face identi�cation system is detailed in Chapter 7, in-

cluding output images, computational reduction techniques applied and recognition

rates obtained.
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• Conclusions on this work will be commented in Chapter 8, as well as future work.
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Part I

State of the art
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Chapter 2

Feature extraction and dimensionality

reduction

2.1 Introduction

Feature extraction is a process that consists on �nding the set of quantitative character-

istics that better de�ne the input data in order to accomplish a goal, in this case, the

classi�cation of the faces into a set of prede�ned classes. In appearance-based face recog-

nition, input data consists on face images and the features are the pixel values. Thus,

face images can be represented by data vectors in a NxM dimensional subspace, being

N and M the width and height of the face image. For practical values of N and M this

leads to a large number of features. Classi�cation of such high-dimensional data may be a

cumbersome task for real-time applications. Fortunately, not all features are equally im-

portant for classi�cation purposes. Dimensionality reduction refers to the process of data

simpli�cation that allows keeping a small subset of features or coe�cients that, while pre-

serving the discriminative power, alleviate the computational burden of the classi�cation

process. Therefore, the importance of choosing a dimensionality reduction technique and

the right number of kept coe�cients is not trivial, since performance and results depend

on it.

Many feature extraction and dimensionality reduction techniques can be found in

the literature. Perhaps the most popular is Principal Component Analysis [17]. Other

popular techniques are Linear Discriminant Analysis [36], Discrete Cosine Transform [14]

and Locality Preserving Projections [5]. Since the study of feature extraction is not
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the main goal of this thesis, PCA and DCT will be used in the following. Due to the

modular structure of the system, any other feature extraction technique that outperforms

these two may be used in the future with just minor modi�cations. As for LDA and

LPP, these techniques are currently being tested by the Image and Video Processing

Group (Department of Signal Theory and Communications, ETSETB-UPC) and will be

introduced but not implemented due to extension restrictions.

Figure 2.1: Main steps to obtain a vector of transformed coe�cients from a face image.

All these techniques follow the same process:

1. Face images are resized, cropped or masked.

2. Images, treated as vectors or matrices, are projected using a transform matrix.

3. The �rst Q coe�cients from the transformed images are kept in the so-called �feature

vectors�.

As an explanatory example on how dimensionality reduction works, Figure 2.2 shows

the quality of a reconstructed image with PCA as the number of coe�cients kept falls.

Reconstructed images shown in Figure 2.2-d-e demonstrate that the less coe�cients taken,

the less face features are preserved. Note that when keeping as low as 10 coe�cients the

reconstructed image still preserves the most signi�cant face features and could be used

in face identi�cation. This property of dimensionality reduction techniques will be very

interesting when limiting the number of coe�cients kept after a face image is transformed

and reducing computational costs without recognition degradation.
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Figure 2.2: Example of dimensionality reduction. Number of coe�cients: a) Original
image, b) 20, c) 10, d) 5, e) 3.

LDA, PCA and LPP are data-dependent transformations. This means their projection

matrices need to be computed from the data set to be transformed and any signi�cant

modi�cation in the datased implies recalculating the matrix again. This is avoided in

DCT since data is always transformed using an inmutable matrix as explained in Section

2.3. Given su�cient sample faces, LDA is superior to PCA, but in case of very limited

number of samples, PCA can outperform LDA because LDA is sensitive to the training

data set [19]. However, a di�culty in using the LPP method for image recognition is the

very high-dimensional nature of the image space, that results in very big matrices that

can also be singular [1].

Moreover, LDA and LPP techniques need a large number of training samples to com-

pute an operational projection matrix and that is not always possible in face identi�cation

systems.

2.2 Principal Component Analysis

If a given set of images is represented by points in a multidimensional space, similar im-

ages are expected to fall in its neighborhood, forming a cluster in a delimited region. The

shape or trend of the cluster can be easily determined using Principal Component Analysis

(PCA) [17, 35]. This data-dependent technique is based on the Karhunen-Loève Trans-

form (KLT), an orthogonal transform, which decorrelates every component contained in

data and compacts energy distribution in few coe�cients. This means stronger compo-

nents characterising the data are identi�ed with high energy levels while those weaker

are super�uous and can be rejected, creating a sort of function described as RN → Rd,

being d the number of coe�cients kept. Note that rejecting weaker coe�cients should not

greatly alter the image properties nor its visual perception if parameter d is well chosen.
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Let X be a PxQ matrix containing Q images, one image in every row. Image pixels

are scanned left-to-right or top-to-bottom so an image represented by an NxM matrix

forms an 1x(NxM = P ) vector. Let C be a QxQ square matrix being the covariance

matrix of X

C =
M∑

m=1

(
Xm − µ

) (
Xm − µ

)T
and let µ be the mean of all face samples

µ [m] =
1

N

N∑
n=1

X(i, j)

In order to determine the stronger components of the data set, a Singular Value

Decomposition (SVD) is performed on C .

C = U · Σ · V T

Σ is de�ned as a positive diagonal QxQ matrix where elements in its diagonal are

known as singular values or eigenvalues. Each eigenvalue has a related orthonormal vector

in U , the so-called eigenvector. It can be shown that UTU = I, meaning that PCA is

a bijective or unitary transformation. This statement is not true when dimensionality

reduction is applied, since a reconstructed version of the data is obtained when anti-

transforming.

Once eigenvalues and eigenvectors (from now on referred as W or projection matrix)

are computed, data in X can easily be transformed and anti-transformed as follows,

respectively:

Y = W TX

X = W · Y = WW TX = X

Note that when only d dimensions are kept, the anti-transformation de�nition varies

slightly from the previous one.

X̃ = W̃ · Y = W̃ · W̃
T
·X ≈ X
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where W̃ denotes a matrix containing only the �rst d bottom eigenvectors in W . It is

interesting to remark that PCA e�ectively decorrelates data since the correlation matrix

of Y is a diagonal matrix.

A projection matrix trained with a signi�cant number of faces does not need to be

recomputed when adding or deleting feature vectors since face characteristics are already

well de�ned and changes do not greatly a�ect the results of a projection. Any projection

matrix computed under these conditions can be successfully used for projecting faces from

any other databases.

2.3 Discrete Cosine Transform

In order to reduce the computational cost of extracting face features [14, 6, 24], this

dissertation will test a technique based on the Discrete Cosine Transform or DCT. This

technique is a particular case of the Fourier Transform. There are several formal de�nitions

of the DCT. The one known as DCT-II is widely used in image processing and will be

used in this work.

Given an NxN greyscale image, the two-dimensional DCT-II transform is de�ne as

X(i, j) =
2

N
kikj

N−1∑
x=0

N−1∑
y=0

I(x, y)cos

(
π(2x+ 1)i

2N

)
cos

(
π(2y + 1)j

2N

)

ki, kj =

1/
√

2 i, j = 0

1 otherwise

The resulting matrix contains NxN DCT coe�cients which are related to one of the

non-dependent NxN DCT basis. Figure 2.3 shows the 8x8 DCT invariant bases for an

8x8 image.
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Figure 2.3: Invariant bases used for 2D DCT transformation.

As in PCA, the DCT transform has the property of compacting the energy of the

image, that is, the most relevant coe�cients for describing an image are located in the

upper left of X. This phenomenon is shown in Figure 2.4.

An NxN image has a total of NxN transformed coe�cients but a face identi�cation

system can be designed using only a small subset, as it will be explained in detail in

Part III. This will tremendously reduce computational costs and memory usage in face

identi�cation, classi�cation and face model creation stages. Face model �les stored in disk

will be much smaller, as well.

Figure 2.4: Example on how DCT compacts energy distribution around the �rst trans-
formed coe�cients.

Once DCT coe�cients are computed, they are usually scanned in a zigzag order start-

ing from X(0, 0), as shown in Figure 2.5.
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Figure 2.5: Typical zigzag scan order for an 8x8-block matrix as used in DCT.

2.4 Linear Discriminant Analysis

Linear Discriminant Analysis (based on Fisher's Discriminant Analysis, FDA[11]) is an-

other dimensionality reduction technique in high-dimensional data [36, 15]. Two scatter

matrices S
B
and S

W
are de�ned as between-class and within-class variance matrices, re-

spectively. While between-class variance is a typical data set variance calculation, within-

class variance determines the variance between each one of the existing classes represented

in the whole data set. These matrices can be found as follow

S
B

=
c∑

j=1

Nj · (µj
− µ)(µ

j
− µ)T

S
W

=
c∑

i=1

Nj∑
j=1

(xi
j − µj

)(xi
j − µj

)T

where:

• c is the number of classes

• Njis the number of data vectors in class j

• µ is the mean of all data vectors

• µ
j
is the mean of the j-th class

• xi
j is the i-th data vector of the j-th class

Unlike PCA, this technique maximises the between-class covariance to within-class co-

variance ratio in order to �nd an optimal projection that best discriminates data vectors
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W
opt

= arg max
W

W TS
B
W

W TS
W
W

where matrix W is the eigenvectors matrix of S−1

W
S

B
.

2.5 Locality Preserving Projection

LPP [5] is introduced as another linear dimensionality reduction technique. LPP is used

to build a transformation matrix that maps vectors to a subspace. The maps or a�nity

matrix A can be built as

A
i,j

= exp

(
−‖xi − xj‖2

σ2

)
Another possibility to construct the a�nity matrix is using kNN. If xi is a k -neaterst

neighbor of xj or xj is a k -neaterst neighbor of xi, the (i, j) element of the a�nity matrix

A
i,j

is set to 1. Otherwise, it is set to 0.

Finally, Laplacian eigenmaps are the optimal solution of the following expression

W
opt

= arg min
W

N∑
i=1

N∑
j=1

∥∥W Txi −W Txj

∥∥2
A

i,j
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Chapter 3

Classi�cation

3.1 Introduction

For a given set of data samples belonging to di�erent data classes, each one representing a

particular combination of usual features found in data, a classi�cation technique should be

able to successfully assign a class to each data sample. The process of assigning samples

to classes is known as classi�cation, and it is performed by minimising the distance in

a d-dimensional space between the sample and every sample in the set of data classes.

Di�erent classi�ers may o�er di�erent performances and error rates, as will be described

in Chapter 6.

This chapter will introduce two classi�ers: k Nearest Neighbor, including a modi�ca-

tion, and Parzen. Due to the possibility of choosing the most favourable distance metric

when classifying, Section 3.4 will describe the most common metrics.

3.2 k Nearest Neighbor

The main idea of k Nearest Neighbor or kNN [16, 9] classi�er is based on a simple

concept. Let P be a feature vector of length N and let Qi =
{
qi
0
, . . . , qi

N−1

}
be a matrix

with Ni training vectors of the i -th model on each row, distances between P and the

available feature vectors for every one of the Nq models are calculated and stored in a

distance vector D.

The k smallest distances in D are selected, that is the nearest feature vectors to P .

Every selected neighbor will correspond to a face model or class and its identity will

be registered as a vote. The winning class will be decided simply by taking the most voted
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rule.

Figure 3.1: Voronoi tessellation of a given distribution of sample vectors.

Given a set of points or vectors in a hyperplane, kNN classi�cates the regions around

them creating a Voronoi tessellation as in Figure 3.1.

kNN shows to be robust enough in two critical situations, despite its simplicity. Let

us assume that a test vector belonging to a given class B must be classi�ed and that it is

far enough from the other existing class, named B, as shown in Figure 3.2.

Figure 3.2: First example on kNN. Hypothetical scenario for two distant classes and a
test vector close to class B.

Step by step results of the classi�cation process and numerical values are shown in

Figure 3.3 and Tables 3.1-3.2, respectively, where Accumul. stands for Accumulated votes.
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Figure 3.3: First example on kNN. Selected neighbors. Top-to-bottom, left-to-right: k=1,
k=2, k=3.

Class A Class B

k-th NN Decision Winner Accumul. Winner Accumul Match Partial

1 B No 0 Yes 1 Yes B

2 B No 0 Yes 2 Yes B

3 B No 0 Yes 3 Yes B

Table 3.1: First example. Instant classi�cation results and votes given for each class.

Class A Class B

Accumul. Accumul. Winner class

0 3 B

Table 3.2: First example. Final decision by majority voting.

As k increases, the threshold distance to a near neighbor also increases or remains the

same as in the previous k. In this scenario, class B will continue to be selected up to k = 5

due to the proximity of the test vector to the class B cluster. Note that even choosing

k = 6 as a working parameter for kNN the classi�ed class will be class B, winning by 5

votes to 1.

Let us assume now that a second test vector belonging to a new class B must be

classi�ed and that class A is very close to class B. In this particular case an a priori guess
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of the right identity of the test vector can be dangerous as none of the classes �t best the

test vector.

Figure 3.4: Second example on kNN. Hypothetical scenario for two close classes. A test
vector is situated amid the two classes but closer to B.

Step by step results of the classi�cation process and numerical values are shown in

Figure 3.5 and Tables 3.3-3.4, respectively.

Figure 3.5: Second example on kNN. Selected neighbors. Top-to-bottom, left-to-right:
k=1, k=2, k=3.

Class A Class B

k-th NN Decision Winner Accumul. Winner Accumul. Match Partial

1 B No 0 Yes 1 Yes B

2 A Yes 1 No 1 No A/B

3 B Yes 1 No 2 Yes B

Table 3.3: First example. Instant classi�cation results and votes given for each class.
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Class A Class B

Accumul. Accumul. Winner class

1 2 B

Table 3.4: First example. Final decision by majority voting.

The fact of a test vector not being situated in a space region under the clear in�uence

of any of the existing classes makes more di�cult its classi�cation. In k = 2 (see Figure

3.5) each of the two classes has been selected once and the decision is randomly taken.

This kind of situations were random decisions needs to be taken should be avoided by

selecting only odd values of k.

In both situations the feature vector has been correctly classi�ed but when having

overlapped regions it is risky to classify using majority voting.

3.3 k Nearest Neighbor with probabilities

In both examples in Section 3.3 class B has been correctly decided although using kNN

as is could imply risks. Despite kNN can be thought to be a good option for classifying

data because of its simplicity, the majority rule voting may seem unfair as all votes score

the same regardless of the distance. In this dissertation kNN is modi�ed so that a vote

is penalised by the inverse of the distance between the test vector P and the selected

neighbor, in such a way that the bigger the distance, the more penalisation. The ki

inverse distances in di,Q
i
of a same class Qi are also normalised by the overall sum of the

k nearest neighbor inverse distances of all Q classes leading to the a posteriori probability

for each class [9]:

p(P |Qi) =

ki∑
i=1

1

di,Q
i

k∑
j

1

dj,Q

where

k =
∑

i

ki

This modi�cation on kNN is named kNN with probabilities. These probabilities for

each class allow the classi�er to give an estimation on how con�dent the classi�cation of
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the test vector is. If for a given class the classi�er outputs a probability near to 1 one can

guess that the other existing classes were far enough. On the contrary, a probability of

1/k would show that neighbors are equidistant to P .

In kNN classi�ers with probabilities a minimum probability threshold can be set to

accept or reject a classi�cation result. This threshold should be empirically adjusted de-

pending on the quality of the images or the number of coe�cients kept in transformations.

3.4 Distance metrics

When classifying vectors a distance metric needs to be chosen. The election of the proper

metric should depend on the computational costs and the recognition rates achieved. This

trade-o� will be discussed in Chapter 6 and the metric o�ering higher recognition rates

will be used as the default metric in this work. Next, a brief introduction to the metrics

taken into account.

Minkowski distance

Minkowski distance is a distance generalisation in a p-dimensional Euclidean space. For

two p-dimensional vectors, the distance between them is obtained as follows

d(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

Let p→∞, this case is known as maximum norm or Chebyshev distance, which takes

the maximum distance of all coordinates as the shortest way from x to y.

d(x, y) = lim
p→∞

(
n∑

i=1

|xi − yi|p
)1/p

= max
i
|xi − yi|

Note that the larger p is, the smaller the distance due to the inverse power of p. A

proper value of p has to be selected in feature vector classi�cations.

Euclidean distance

As a particular case of the Minkowski distance, Euclidean distance is de�ned for Euclidean

spaces based on Pythagoras' theorem.
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d(x, y) =

√
n∑

i=1

(xi − yi)
2

This distance is widely used in 2D metrics but can also be highly useful in n-dimensional

vectors such as feature vectors due to its low computational costs. This metric is a can-

didate to be chosen as a metric in face classi�ers and will be tested in detail.

Manhattan distance

Another particular case of the Minkowski distance is de�ned in this section. Manhattan

distance uses p = 1 for giving distances.

d(x, y) =
n∑

i=1

|xi − yi|

This name is given by a simple geometrical interpretation: the distance between two

points in a Manhattan-like structure is the minimum number of blocks that a person

should cross.

This metric is even simpler than Euclidean distance and will also be tested as a

candidate metric.

Mahalanobis distance

Given two n-dimensional vectors, being x the test vector and y the vector to compare

to, S
y
the covariance matrix of y and µ the mean vector of x, Mahalanobis distance is

de�ned as

d(x, y) =
√(

x− µ
)T
S−1

y

(
x− µ

)
In high-dimensional data calculations, this metric may require highly demanding.

Computing the inverse of a high-dimensional covariance matrix as in S−1

y
increases the

computational complexity greatly. Due to this complexity this metric is discarded in kNN

feature classi�cation.

Cosine similarity

Given the previous n-dimensional vectors, cosine similarity gives an idea of how similar

are the two vectors as a function of the cosine.
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d(x, y) = cos(x, y) =
xTy

‖x‖
∥∥y∥∥

The possible results are:

• −1 < cos(x, y) < 0 for opposite vectors

• zero for orthogonal vectors

• 0 < cos(x, y) < 1 for similar vectors

3.5 Parzen classi�er

Emanuel Parzen [25] published in 1962 a kernel density estimator for d -dimensional sample

vectors delimited by a hypercube of side lengths h(n) and volume Vn =
∏
n

h(n). For

simplicity, all sides are de�ned equal in length

Vn = hd
n

where hn is known as the Parzen window width or bandwidth.

Let x be a sample vector and X = {x1, x2, ..., xn} be a group of n sample vectors

described by an unknown probability density function, the number of vectors kn in X

that are contained inside the d -dimensional hypercube centered in x is

kn =
n∑

k=1

K

(
x−Xk

hn

)

where K (·) is known as Parzen window function or kernel function. It is zero-mean,

unit-variance de�ned and satis�es

ˆ
Rd

K(y)dy = 1 and

ˆ
Rd

K2(y)dy <∞. The �nal ex-

pression of the probability density function fx(x) is

fn(x) =
kn

N · Vn

=
1

N · hd
n

n∑
k=1

K

(
x−Xk

hn

)
In case that hn → 0 the kernel function approximates to a Dirac delta function. On

the contrary, as hn increases fn(x) gets smoother. In Figure 3.6 it is shown how the

density distribution of a given set of samples changes in function of h and n.

22



Figure 3.6: Evolution of a density distribution in function of parameters n and h when
using Parzen estimation [9].

In this dissertation Gaussian kernel functions will be used for Parzen density estimation

[33]. This function computes distances by Mahalanobis distance as shown next:

K

(
x−Xk

hn

)
=

1

(2π)n/2 |CX |1/2
exp

(
−(x−Xk)TC−1

X (x−Xk)

2h2
n

)
where CX is the variance matrix of the X.

Prior to this work, studies and experiments done by the author showed that recognition

rates using Parzen density estimator as a classi�er were very poor compared to kNN.

Parzen also o�ered much higher computational burdens due to Mahalanobis distance

calculations of high-dimensional data such as images. Moreover, an optimal and general

working point could not be determined since window width was highly data-dependant

and suggestions in the literature were contradictory. Thus, Parzen classi�er will not be

tested as signi�cant modi�cations are needed and it is not the main purpose of this work.
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Chapter 4

Fusion of results

4.1 Introduction

As it has been previously stated, a face identi�cation system may detect frontal, semi-

frontal or pro�le faces. Video sequences usually contain several images every second

and, because of the nature of a still scenario, faces tend to change very slowly between

frames. Fusion of results will take advantage of detecting several consecutive faces of

a same individual in a time segment with no or slow changes in orientation. This face

redundancy means lower chances to fail when classifying. Moreover, the process of a face

changing its orientation from frontal to pro�le or viceversa can last for enough frames so

the system is able to track it and merge the results.

Detected faces will be weighted by their own normalised orientation recognition rates,

which have to be previously computed, and the con�dence given by the face detector.

Recognition rates for each orientation may di�er one from another and assigning an equal

weighting would not improve results but worsen them. Avoiding such a trivial solution

requires accurate system training using well-known, labeled video sequences. For a cor-

rect training process, an identi�cation of every individual appearing in the scene must

be provided to the process so it could compare the classi�cation results with the true

identi�cation.

Fusion of results is thought to be performed in the next situations:

• When collecting several faces from a same camera, giving results after a time interval.

• When collecting faces from several cameras in di�erent face orientations, giving
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fusion of results on every frame.

• A combination of the two above, in a multi-camera environment detecting faces in

di�erent orientations and giving �nal fusion of results after each time interval.

Note that the more frames collected, the better the results should be. On the contrary,

too long time intervals reduce the possibility of giving real time results.

4.2 Fusion strategies

Once trainings are performed, an approximate recognition rate for every orientation is

ready to be used in fusion of results. In [18] a fusion strategy named Matcher Weighting

is proposed and used in biometrics for multimodal fusion of monomodal scorings. Based

on this idea, identi�cation error rates will be used as penalisation factors to create a factor

wm which is the weighting coe�cient for the m-th monomodal scoring, xm.

wm =

1
em∑M

m=1

1

em

The �nal fusion of results is de�ned as any of the existing weighted means. The

following expressions shows the most common ones.

u =
M∑

m=1

xmwm

u =

(
M∏

m=1

xwm
m

)1/

M∑
m=1

wm

u =

M∑
m=1

wm

M∑
m=1

wm

xm

The expressions above are for weighted arithmetic, geometric and harmonic means,

respectively.

Another fusion strategy is the one based on a kNN classi�er with probabilities which

is introduced in Section 3.3. For every possible model in a scenario this classi�er outputs

an identity guess of the classi�ed face and a sort of probability of being the true identity.
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In normal conditions, a focused and clear face should obtain a high probability for its true

identity and small or null probabilities for the rest. Moreover, this fusion strategy takes

into account that recognition rates can be di�erent depending on the orientation of a face

and that when using face detectors a con�dence parameter can be given.

Figure 4.1: Example of fusion of results for a sequence including frontal and right pro�le
faces.

As an example, Figure 4.1 shows a hypothetical situation where an individual is de-

tected during 6 frames. The �rst four frames are considered to be frontal while the latter

two are right pro�les. rF and rR are frontal and right pro�le recognition rates and ck is

the con�dence given by the face detector for the k -th frame. Frame 3 is wrongly classi�ed

as 'identity 2' and the other frames are classi�ed as 'identity 1'.

Given three possible identities in this example, the fusion of results for the i -th identity

would be as follows

vi =

Nframes∑
n=1

cnpi,nr

being

r =


rF frontal

rL left pro�le

rR right pro�le

The �nal results for the time interval in Figure 4.1 are

v1 = c1p1,1rF + c2p1,2rF + c4p1,4rF + c5p1,5rR + c6p1,6rR
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v2 = c3p2,3rF

v3 = 0

Note that by using this fusion strategy it is possible to merge di�erent types of results

as long as they are normalised. For further details, several simulations are described in

Section 6.8. Other data fusion strategies widely used in multimodal identi�cation such

as the Minimax rule [7] can be found in the literature but will not be investigated in this

work due to extension restrictions.
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Part II

Setting up a face identi�cation system
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Chapter 5

Appearance-based face identi�cation

systems

5.1 A functional scheme

A face identi�cation system can be easily described using a functional scheme made up

of modules. This simpli�cation is useful in the design and testing stages, as well as in

making the reader to better understand how the system works.

Figure 5.1: A typical functional scheme of a face identi�cation system.

Figure 5.1 shows a possible scheme which counts with �ve main stages, which are:

• Video input: Faces can be found in audiovisual data such as video streams or

separated frames stored in a disk unit or directly acquired from video cameras.
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Ideally, cameras should be placed where both frontal and pro�le faces could be

successfully obtained with an acceptable image quality.

• Face detection: Once images are acquired, faces can be detected by hand or using

image processing techniques. Both techniques imply severe trade-o�s. By hand face

segmentation and labeling is a tedious work and can take very long to complete

but, on the other hand, human perception of a face is almost always correct and

no mistakes are expected to happen. Image processing techniques such as Viola-

Jones[34] are extremely fast and achieve high detection rates but a certain number

of false positive images will be inevitably given along with positives.

• Feature extraction: Face images need to be dimensionally reduced since, as ex-

plained in Chapter 2, only some of the transformed coe�cients need to be kept to

successfully characterise a human face. Depending on the dimensionality reduction

technique used, con�guration parameters and other restrictions, recognition rates

may vary. Regions of interest of the acquired images may be reduced in order to

avoid unnecessary use of the system.

• Model creation: This module is an interface between the application and the

computer, so data vectors and models can be created, modi�ed, updated, deleted,

or loaded. Each one of these model �les represents a single individual in multiple

poses and face orientations, so the face identi�cation module can look for the closest

data vectors when a new face is detected. Note that the proposed system is a closed

system with a prede�ned number of individuals and no new models will be created

or deleted during its execution.

• Face identi�cation: This module will accept several con�guration parameters that

need to be tested by performing simulations in order to best adapt the identi�cation

system to its environment. The individual's identi�cation number and likelihood

of the classi�cation for a given feature vector will outputted after time-based or

orienation-based fusion. Results can also be given instantly, that is, without fusion

of results.
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5.2 Training stage

First of all, the detection and recognition system must be trained in order to create face

models out of individuals, who will be recorded in a normal situation. The presence of

frontal and pro�le faces can be ensured by asking individuals to look towards the camera

and to both sides.

Faces are automatically detected, segmented and transformed into dimensionally re-

duced data vectors, which are added to a face model �le. Moreover, training sets for each

individual are given an identity and a name by hand. Face models accept feature vectors

and store them based on their face orientations.

Figure 5.2: A functional scheme of the training stage in a face identi�cation system.

5.3 Testing stage

After creating face models for every individual in the closed set of identities the system

is ready to start identifying individuals. With no a priori information given, it must be

able to detect and segment faces so they can be classi�ed by comparing their transformed

coe�cients with those stored in the existing face models. When the classi�er �nds a

feature vector in a face model that minimises distance to the tested feature vector, the

identity of the chosen face model is displayed.
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Figure 5.3: A functional scheme of the testing stage in a face identi�cation system.

5.4 Face databases

In a face identi�cation system there can be several parameters to be adjusted. A �rst

step towards a real-time face identi�cation system is to use databases providing well-

known, high resolution faces. The number of coe�cients kept, minimum image sizes, and

other relevant parameters will be set up using an ideal working scenario and then results

will be validated in more adverse conditions.The �nal implemented system will surely

underperform in adverse conditions and it is critical to previously �nd a working point

showing the most consistent and robust results.

In this section, �ve databases and their main characteristics are introduced. ORL and

the Extended Yale Face B databases can be considered as best case scenarios, while the

other three describe a more realistic and challenging situation.

ORL

This database [3, 28], also known as AT&T, was recorded between 1992 and 1994 for re-

search purposes in face recognition and biometrics. The Cambridge University Engineer-

ing Department took 10 di�erent frontal images of 40 individuals in a black background

which included lighting variations, several facial expressions and facial details such as

glasses. The size of images is 92-112 pixels and 8-bit greyscale.
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Figure 5.4: Example faces from the ORL face database.

Yale

The Yale Face Database [32] was created in Yale University. The database provides 11

frontal GIF images from 15 individuals in several facial expressions and lighting variations.

The size of images is 320x243 pixels, 8-bit greyscale.

Figure 5.5: Example faces from the Yale face database.

The Extended Yale Face Database B (cropped version)

This database [13, 31] is the extended version of Yale Face Database B and contains 16128

manually cropped faces of 28 individuals. Each individual undergo a set of 9 di�erent

poses and 64 illumination variations. Faces are 8-bit, greyscale, PGM raw format and

sized 168x192. A Sony XC-75 camera was used to acquire the images.

Figure 5.6: Example faces from the ExtendedYale Face Database in its cropped version.

CLEAR Evaluation recordings

The Spring 2007 CLEAR evaluation and workshop [30, 22] is an international e�ort to

evaluate systems that are designed to recognise events, activities, and their relationships
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in interaction scenarios. The CLEAR 2007 evaluation is supported by the European

Integrated project CHIL and the US National Institute of Standards and Technology

(NIST). In CHIL (Computers in the Human Interaction Loop) project, meetings in smart

rooms were recorded by institutions such as UKA, IBM, UPC, ITC or AIT. The aim of

the project was to create an environment where computers would serve humans in an

interaction loop.

Figure 5.7: Smart rooms of four participating institutions in CHIL project. Ordered
top-to-bottom, left-to-right: UPC, UKA, IBM and AIT.

This database contains 20-minute recordings using four cameras plus one overhead

camera in di�erent scenarios. Sequences were recorded at 25 fps. Images are RGB, 28-

bit, JPEG format with a size of 640x480 pixels. A total of 28 individuals are included and

hand-labeled in this database. A signi�cant proportion of hand labelings are defective

and this may be considered as a worst case scenario face database.

HESPERIA recordings

This recording was performed in 2009 within the framework of the HESPERIA project

[2]. A total of 12 individuals were recorded while performing a model training sequence

for the implementation of a real-time face identi�cation system as explained in Chapter 7.

Each individual had to stand and speak to the front, look to the right, left and front, and

�nally leave the smart room passing by the camera. For testing purposes, every individual

had to enter and cross the smart room. In addition, individuals were asked to enter in

pairs for extra testing.
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Figure 5.8: An individual performing a recording for the HESPERIA project. This image
was used for model training purposes.

Sequences were recorded at 25 fps. Images are 24-bit RGB, JPEG format with a size

of 768 x 576 pixels.
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Chapter 6

Simulations and results

6.1 Introduction

This work requires simulations to evaluate the parameters needed to implement a face

identi�cation system and to test their performance under di�erent scenarios and condi-

tions. These parameters are supposed to be independent and joint parameter simulations

will not be performed for simplicity. In this chapter, simulations achieving conclusive

results will be explained in detail so that the reader can evaluate the performance of the

system, as well as the possible applications.

Simulations will be put forward according to the work time line and a de�nite structure

as follows:

• Introduction and data used

• Experimental results

• Conclusions on simulations, performance, or any other remarkable issues

Simulations will be initially coded in Matlab and then implemented in C++ using Im-

agePlus (proprietary image processing libraries developed by the Department of Signal

Theory and Communications, ETSETB-UPC), OpenCV [23] and Boost [4] libraries.

6.2 Size of images and recognition rates

None of the reviewed papers suggested how the resolution of face images is related to

recognition rates. This experiment will �nd if there is any relation between size and
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recognition rates and will discuss the opportunities it may o�er.

High resolution of face images can contain basic face characteristics such as shape,

eyes and nose distribution, and other important factors to face identi�cation. Besides,

these high resolution images may also contain weaker features adding noise which, if not

removed, could worsen the performance of a classi�cation system.

As images are reduced in size, only the strongest principal face characteristics are kept

and appearance-based face identi�cation is still possible while visual recognition may not.

Principal face characteristics in small images can be as speci�c as in bigger images, with

the exception of clipping some of the possible negative e�ects of lower energy components.

Computational complexity and execution times are an important trade-o� in massive

image collection such as face identi�cation in smart rooms or controlled environments.

Oversized images can lead an identi�cation system to underperform in real-time applica-

tions. The time spent in training and testing stages will be crucial and decisive for image

size selection, specially if using PCA transformation.

Experimental results

Since this experiment requires images to be enlarged or reduced from their original size,

ORL database will be used so that 112x92-pixel images may be reduced to very small sizes.

Resized images will be transformed, trained and classi�ed so that recognition rates can

be compared and used as another selection parameter, along with time spent in training

and the size of the projection matrix in memory. No dimensionality reduction will be

performed during this experiment.

Data used

Database ORL

Image size 112x92 pixels

Number of models 40

Training set 5 faces per model

Testing set 5 faces per model

Table 6.1: Details for this simulation.

For a given set of N models which are trained with M images each, being PxQ their
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size, the correlation matrix will be NxM in size and (NxM)x (PxQ) for the transforma-

tion basis.

Max. recog. rate (%)

Image size (pixels) PCA basis size Basis processing time PCA DCT

112x92 (original) 8Mb 1.9e+07 98.33 98.13

60x60 2.8M (-65%) 3.7e+06 (-81%) 93.75 98.75

32x32 805k (-90%) 1.1e+06 (-94%) 93.75 98.13

16x16 202k (-97%) 3.2e+05 (-98%) 92.50 98.13

8x8 61.2k (-99.23) 8e+04 (-99.6%) 80.63 88.13

Table 6.2: PCA and DCT maximum recognition rates are compared when resizing ORL
faces. The size and processing time of each PCA basis are also included along with the
reduction compared to the original data set.

The smaller the image is, the lowest the maximum recognition rate within the whole

range from 1 to 80 transformed coe�cients. On the other hand, even 8x8-pixel images

give acceptable results when comparing to bigger images, as well as signi�cantly lower

basis size and basis processing time. Note that processing times are given in CPU clocks,

being 10e+6 clocks about one second on a 3 GHz CPU.

Conclusions

Image reduction does not strongly a�ects performance in a PCA or DCT identi�cation

system but remarkably decreases execution times and memory usage, which can be fun-

damental improvements in real-time applications. Following these criteria, image sizes

between 16x16 and 32x32 should provide balanced performances. 32x32-pixel face images

will be used in the following simulations and DCT will be selected as the best feature

extraction technique since it is less size-dependent and proves to be faster than PCA.

6.3 Blurry faces in identi�cation systems

Images gathered from cameras usually are not well focused or are taken while the lens is

adapting to a new focal distance or illumination condition. This may cause faces to be

blurry and unrecognizable to the human eye. However, this undesirable phenomenon and
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its e�ects on face identi�cation have been barely documented. This experiment aims to

check whether blurry images of individuals lower identi�cation rates or not.

Experimental results

This simulation will embrace three minor tests for a later comparison. Since ORL face

database o�ers focused faces, a modi�ed version original ORL face database is created

applying a uniform smoothing �lter of dimension N = 3 (see �gure 6.1):

hsmooth =
1
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Figure 6.1: Left: focused ORL 16-16 pixel face; right: �ltered or blurred ORL face.

• Test A: Both testing and training sets use clear faces.

• Test B: Blurry faces classi�ed using using a clear training set.

• Test C: Blurry faces classi�ed using a blurry training set.

The whole ORL database is used in this experiment (see Table 6.3).

Data used for Tests A-B-C

Database ORL

Image size 16x16 pixels

Number of models 40

Training set 6 faces per model

Table 6.3: Details for this simulation.

The three simulations (A, B and C) will be run using kNN (k = 1) and DCT trans-

formation.
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kNN fusion-kNN

Recog. rate (%) Min. coe� Recog. rate (%) Min. coe�

Test A 95.63 53 100 7

Test B 94.37 31 100 7

Test C 96.87 19 100 11

Table 6.4: Recognition rate and minimum number of coe�cients to achieve it for the three
introduced tests. kNN is used with and without fusion of results. Min. coe� is referred
to the minimum number of coe�cients kept to obtain maximum recognition rates.

Conclusions

Given the Table 6.4, the result of Test C is remarkable. The recognition rate is higher

than in the other tests and the minimum number of coe�cients needed is much lower,

too. This might be caused by the dimensionality reduction when blurring images, that is

to say, �ltering higher frequencies or noise removal. In some way, classifying with blurred

training and testing faces using the �rst N coe�cients of the feature vectors does not

a�ect the identi�cation system performance, but it increases it.

Although blurring images in a pre-processing stage is not suitable, it is proven that

a slightly unfocused camera during both training and testing stages should not alter the

recognition rates. Test B reveals that classifying blurry faces with clear training models

is not a signi�cant impairment.

6.4 Number of transformed coe�cients kept

As far as it has been simulated, selecting the right number of transformed coe�cients to

be kept during face classi�cations is a very variable decision. This section will study the

evolution of the recognition rates using both DCT and PCA. The �nal goal is to set a

standardised number of coe�cients that provides good performance results in order to

implement the face identi�cation system in Chapter 7.

Experimental results

The simulation will run the same hypothetical scenario (see Table 6.5) 100 times, from 1

to 100 coe�cients.
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Data used

Database CLEAR

Image size variable

Number of models 10

Training set 10 faces per model

Testing set 8 faces per model

Table 6.5: Details for this simulation.

DCT and PCA results show a similar behaviour as the number of coe�cients kept

increases. At about 50 and 60 coe�cients the trends of the plots in Figure 6.2 seem

to converge to a certain recognition rate and results for higher values do not improve

performace.

Figure 6.2: Recognition rates for DCT and PCA in function of the number of transformed
coe�cients kept.

Conclusions

Thanks to this experiment, the number of transformed coe�cients kept is set to 60. This

helps avoiding too high computational costs since keeping fewer coe�cients unloads the

system and that is a very interesting point for any real-time system needing the lowest

possible computational costs.
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6.5 Choosing the best distance metric

In Section 3.4 Manhattan, Euclidean, Minkowsky and cosine similarity distances were

introduced as possible choices for face classi�cation. Choosing the distance metric that

best �ts the needs of a classi�er could sensibly improve classi�cation and identi�cation

results. This will be proven in this experiment and the result will be used as a general

rule in future experiments.

Experimental results

In order to choose a distance measurement function with results as independent from a

face database as possible, three di�erent databases are separately used:

Database Focused Di�erent poses BG Std BG Models

ORL Yes Yes Little Yes 40

Yale Yes Yes Over 50% No 15

Cropped Yale B Yes Yes None N/A 38

Table 6.6: Signi�cant features about ORL, Yale and cropped Extended Yale B databases,
where BG stands for Background appearance and Std BG tells whether the background
is uniform or not.

Table 6.6 shows if the evaluated database presents clear and sharp images, di�erent

illumination conditions or poses, the level of appearance of the background and if a stan-

dard one was used. For each model, a total of 10 faces were selected, six for training and 4

for testing purposes. A total of 60 transformed coe�cients are kept in these simulations.

Results using the DCT-based feature extraction technique are shown in Table 6.7.

Maximum recognition rate (%)

Manhattan Euclidean Cosine Sim.

ORL 93.37 91.25 80

Yale 53.75 55 55

Cropped Yale 87.5 85,62 78.75

Table 6.7: Results obtained using Manhattan, Euclidean and Cosine similarity metrics.
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Conclusions

Given the results for the three distance metrics, Manhattan is chosen to be the one used

throughout this research work. Furthermore, as said in Section 3.4 its lower computational

cost in front of the other distance metrics reinforce the �nal selection.

6.6 k parameter in kNN

As explained in Section 3.2, k denotes the k -th of data vectors closer to the test vector.

This Section will perform simulations of a face identi�cation system with di�erent values

of k and the optimal one, that is the one providing higher recognition rates, will be taken

as a reference in the rest of the work.

Experimental results

Simulations are performed using the ORL database and 30-coe�cient DCT as feature

extraction technique. kNN and kNN with probabilities will be tested. Further details of

the simulation are described in Table 6.8.

Data used

Database ORL

Image size 112x92 pixels

Number of models 40

Training set 5 faces per model

Testing set 5 faces per model

Table 6.8: Details for this simulation.

Figure 6.3 shows the evolution of the recognition rate in kNN as the k parameter

increases. It can be observed the recognition rate decreases dramatically for any value

other than k = 1. This suggests that k = 1 should be chosen for standard kNN.
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Figure 6.3: Recognition rates in function of the k parameter using ORL.

In contrast to kNN, for kNN with probabilities recognition rates do not decrease so

abruptly, as shown in Figure 6.4. For k = 2 the recognition rate is likely to be equal as

in k = 1 and higher values of k tend to stabilise at 80%. This Figure also suggests that

k = 1 should be chosen for kNN with probabilities.

Figure 6.4: Recognition rates in function of the k parameter using ORL. Probabilities are
given by kNN.

In order to reinforce the results found in Figure 6.4, another simulation is performed

using a worst-case scenario face database such as CLEAR. More details in Table 6.9.

Data used

Database CLEAR (frontal faces)

Image size variable

Number of models 10

Training set 10 faces per model

Testing set 8 faces per model

Table 6.9: Details for this simulation.

The trend of the recognition rate in Figure 6.5 reinforces the statement that the lower

the k parameter, the better results.
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Figure 6.5: Recognition rates in function of the k parameter using CLEAR, a very low
resolution database.

Conclusions

It has been proven that k = 1 o�ers the highest recognition rates in both standard kNN

and kNN with probabilities. High and low resolution face databases were used with similar

results. From now on in this work, this will be the chosen value for the k parameter.

6.7 Number of models and overall performance

As one could think, true identi�cation rates should increase inversely proportional to

number of models taken into account in a classi�cation system, as the training region

of the N -dimensional space decreases its feature vector density. In order to prove this

statement this simulation is performed using DCT and PCA, although DCT was selected

in Section 6.2 as the preferred feature extraction technique.

Experimental results

ORL face database is used in this experiment to simulate a best-case scenario due to

its high resolution images, homogeneous illumination and good focusing. In non-ideal

conditions, the system should underperform compared to the results found in this section.

As the number of coe�cients taken into account grows, the recognition rates in PCA

and DCT from each test rapidly converge to their upper bounds. Recognition rates for

20 models are mostly above of the 40-model trace but follow a very similar pattern as the

number of coe�cients increases. In case of having only 5 models on the database, results
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are outstanding and converge to 100% with only 7 coe�cients. Moreover, Tables 6.11 and

6.12 show the maximum recognition rates for PCA and DCT (using kNN), including a

5-image time-based fusion of results (fusion-kNN).

Data used

Database ORL

Image size 112x92 pixels

Number of models 40

Training set 5 faces per model

Testing set 5 faces per model

Table 6.10: Details for this simulation.

PCA results kNN fusion-kNN

Number of models Recog. rate (%) Min. coe� Recog. rate (%) Min. coe�

40 94.38 27 100 8

30 95 19 100 7

20 93.75 19 100 6

10 97.5 8 100 4

5 100 7 100 5

Table 6.11: E�ect of the number of models on the recognition rate. Results for PCA.

DCT results kNN fusion-kNN

Number of models Recog. rate (%) MinCoe� Recog. rate (%) MinCoe�

40 98.13 19 100 8

30 98.33 19 100 7

20 97.5 12 100 4

10 100 9 100 4

5 100 7 100 4

Table 6.12: E�ect of the number of models on the recognition rate. Results for DCT.
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Conclusions

An important conclusion can be drawn by observing Tables 6.11 and 6.12: there is no

signi�cant di�erence between having 20 or 40 models in terms of recognition rates, which

is a very important sign of a robust performance. This conclusion allows face identi�cation

systems to classify among large numbers of training models without noticing an abrupt

downperformance in the tested range of face models.

6.8 Fusion of face orientations using weighted scores

This experiment expects to take advantage of the possibilities o�ered by multiple camera

environments, as introduced in Chapter 4. Having cameras on every corner oriented

towards the center of the room allows the recognition system to detect faces in at least one

orientation. For simplicity only three orientations are considered: frontal (which covers

approximately [−45o,+45o] ), right pro�le ([−45o,−90o]) and left pro�le ([+45o,+90o]).

Both training and testing processes will be time-segmented, that is, training will take

place for a time interval of TTR seconds and testing for TTE seconds. TTR will restrict

the number of trained faces. Every face detected within a TTE seconds segment will be

classi�ed and subsequently be treated as a unique candidate, as error-free face tracking

is assumed.

Experimental results

This simulation will use the following data:

Data used

Database CLEAR

Recording UKA, IBM, UPC, ITC, AIT

Image size 30x30 pixels (DCT)

Number of models 28

Training set segments of 10 and 20 seconds

Testing set segments of 1, 2, 3 and 5 seconds

Table 6.13: Details for this simulation.
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Every available model on CLEAR databases and the four existing cameras (see Section

5.4) will be used in this experiment since depending on the recordings used, recognition

rates vary greatly.

Train segments will be 10 and 20 seconds of duration while test segments will adapt

their duration to real-time applications, as shown above. Test segments more than 5 sec-

onds of duration are unlikely to be used in situations suitable for real-time face recognition

such as meetings, security video footage and any other dynamic situation.

Let {ψR,E} =
{
ψF

R,E, ψ
L
R,E, ψ

R
R,E

}
be the set of weights obtained for TTR and TTE so

that every weight in {ψR,E} corresponds to the recognition rate performed on validation

tests for frontal, right and left faces (F, L and R superscripts, respectively). Every time

a test face is assigned to a certain model the scoring for that model increases by {ψR,E}

depending on the orientation of the face until the test segment is over. Majority voting

is performed to �nally select the winner model. Next, the results for training process:

Training segment duration 10 10 10 10 20 20 20 20

Testing segment duration 1 2 3 5 1 2 3 5

F+R+L fusion recog. rate (%) 78.57 82.14 89.29 92.86 82.14 92.86 96.43 96.43

Frontal faces recog. rate (%) 53.66 51.70 54.24 53.60 80.49 76.1905 75.47 72.53

Left faces recog. rate (%) 48.61 48.39 50.86 54.85 58.33 56.4516 57.14 61.54

Right faces recog. rate (%) 46.15 49.15 51.48 54.96 55.38 59.322 63.90 65.25

Table 6.14: Results for fusion, frontal, right and left pro�le recognition rates using 28
CLEAR individuals and several training and testing segment durations.

Fusion recognition rates for 20 seconds of training are remarkable better than the case

for 10 seconds and prove that even with small and fuzzy images, high recognition rates

can be achieved when using fusion of validation scores, time-segmented data and several

face orientations, thanks to multiple cameras available.

Results obtained in CLEAR 2007 Evaluations [10] are shown compared to those from

this section in Table 6.15. The authors note in [10] that due to imprecise hand-labeling,

additional frames were generated by changing the bounding box around the face so that

better results could be obtained. This modi�cation is not performed in this work and

results contain defective faces as in a worst-case scenario. Moreover, short and long

training segment durations are di�erent in these experiments, being 15 and 30 seconds
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for CLEAR, 10 and 20 for this work, respectively.

Training segment duration Short Long

Testing segment duration 1 5 1 5

CLEAR results 84.6 90.8 89.3 94.4

This work results(%) 78.57 92.86 82.14 96.43

Table 6.15: Fusion results from this work compared to those from winner of the CLEAR
2007 Evaluation.

A second experiment is performed to evaluate the classi�cation system in environments

with fewer participating models. Only 10 models out of the best performers are chosen

in this experiment in order to obtain high recognition rates.

Data used

Database CLEAR

Recordings UPC, ITC, AIT

Image size 30x30 pixels (DCT)

Number of models 10

Training set segments of 10 and 20 seconds

Testing set segments of 1, 2, 3 and 5 seconds

Table 6.16: Details for this simulation.

Training segment (s) 10 10 10 10 20 20 20 20

Testing segment (s) 1 2 3 5 1 2 3 5

Fusion recog. rate (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

F-faces recog. rate (%) 94.74 92.31 89.66 79.28 100.00 100.00 94.83 90.09

L-faces recog. rate (%) 47.06 60.71 66.67 71.05 52.94 64.29 69.05 76.32

R-faces recog. rate (%) 88.24 90.32 86.96 81.58 88.24 90.32 91.30 89.47

Table 6.17: Results for fusion, frontal, right and left pro�le recognition rates using 10
CLEAR individuals and several training and testing segment durations.

The classi�cation system achieves high performance levels for 10 models.
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Conclusions

The results obtained in these simulations are above expected. Fusion of results signi�-

cantly increases the recognition rate when using several face orientations in a multi-camera

environment. Results for 10 CLEAR models or less are remarkable given that only 10-

second training and 1-second testing segments are needed to achieve a recognition rate

of 100%. Moreover, having 28 CLEAR models under the same conditions report a recog-

nition rate of 78.57%. Therefore, using higher quality face databases or videorecordings

should noticeably improve performance.

Despite the mentioned di�erences, simulation results in Table 6.15 are quite similar

and, in testing durations of 5 seconds, those from this work outperform the winning results

of the CLEAR 2007 Evaluation contest.

6.9 Number of cameras in a smart room

This experiment will test the e�ect of incrementing the number of operating cameras

inside a smart room. The more cameras, the higher possibilities to acquire frontal and

pro�le faces in order to merge them. As it was shown in Section 6.8, the fusion of face

orientations improves the overall face identi�cation results and this leads to answering the

question of which is the number of cameras in a multi-camera environment to be suitable

for a face identi�cation system.

Experimental results

Since real-time applications require real-time results the maximum duration of the testing

segments will be 2 seconds. Table 6.18 shows the con�guration of the simulation.

Database CLEAR

Recording UKA, IBM, UPC, ITC, AIT

Image size 30x30 pixels (DCT)

Number of models 28

Training set segments of 10 and 20 seconds

Testing set segments of 1 and 2 seconds

Table 6.18: Details for this simulation.
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In Table 6.19 results for one and two cameras are shown. It is easy to observe that

having only one camera and using fusion of orientations achieves very low recognition

rates in all cases while two operative cameras helps taking some advantage of fusion of

results. These results are not acceptable enough for a face identi�cation system in an

adverse environment.

Number of cameras 1 2

Training segment duration 10 10 20 20 10 10 20 20

Testing segment duration 1 2 1 2 1 2 1 2

F+R+L fusion recog. rate (%) 39.28 39.28 53.57 53.57 64.29 67.86 67.86 75

Frontal faces recog. rate (%) 50 42.55 83.33 81.4 54.55 55.67 87.27 85.57

Left faces recog. rate (%) 33.33 39.53 60 65.71 26.67 32.08 40 43.4

Right faces recog. rate (%) 41.17 44.82 84.61 81.82 53.49 56.41 65.12 67.95

Table 6.19: Results for fusion, frontal, right and left pro�le recognition rates using one
and two cameras, 28 CLEAR individuals, several training and testing segment durations.

In contrast to the previous results, Table 6.20 shows the results for three and four

cameras. Performance is greatly improved when using more than three cameras and

training segments of 10 seconds while using 20 seconds for training overloads the system

in vain and does not improve recognition rates after fusion of results. Adding a fourth

camera has no e�ect niether on the results by orientation nor in fusion of results.

Number of cameras 3 4

Training segment duration 10 10 20 20 10 10 20 20

Testing segment duration 1 2 1 2 1 2 1 2

F+R+L fusion recog. rate (%) 78.57 82.14 82.14 92.86 78.57 82.14 82.14 92.86

Frontal faces recog. rate (%) 58.44 55.88 84.42 81.62 53.66 51.7 80.49 76.19

Left faces recog. rate (%) 50 48.96 60.71 58.33 48.61 48.39 58.33 56.45

Right faces recog. rate (%) 50.94 53.54 64.15 66.67 46.15 49.15 55.38 59.32

Table 6.20: Results for fusion, frontal, right and left pro�le recognition rates using three
and four cameras, 28 CLEAR individuals, several training and testing segment durations.

54



Conclusions

Multi-camera environments enable multiple face orientations systems. It has been stated

that the e�ectivity of adding cameras to a smart room is not a trivial matter, since results

show that for more than three cameras there is no signi�cant variation in the performance

of the system.

6.10 Auto-updating classi�cation system based on model

variance

During the testing stage in a face recognition system new faces may be included in a

certain model, whether it is as a new training feature vector or it substitutes an existing

one, or a new model may be created. Reducing a training data set variance might incur

in two situations: an excessively spread training data set becoming more compact or

a training data set shrinking its volume. The �rst situation could separate overlapped

model regions by reducing their span and deleting aberrant cases. The second one can

leave incoming faces out of their true model and be assigned to the closest one, decreasing

recognition rates.

This experiment will prove if an auto-updating classi�cation system can be imple-

mented only by reducing the model variance toward a de�ned limit.

Experimental results

The variances from the existing models need to be calculated and, for each model, the

feature vector which contributes the most to increasing the variance of its own model is be

marked. When a test feature vector is assigned to a particular model the total variance

of the model is calculated after replacing the previously marked feature vector. If the

resulting variance is less than the previous and more than a stated lower limit, the feature

vector is replaced.
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Database CLEAR

Recording UKA, IBM, UPC

Image size 30x30 pixels (DCT)

Number of models 10 (IBM 2, UKA 4, UPC 4)

Training set 10 faces per model (7 pro�le / 3 frontal)

Testing set 8 faces per model (6 pro�le / 2 frontal)

Table 6.21: Details for this simulation.

Three CLEAR databases are used for a total of 10 models and, as in the previous

experiment, frontal and pro�le faces are used.

Recognition rate (%)

UPC IBM UKA UPC+IBM+UKA

Orig Upd Orig Upd Orig Upd Orig Upd

Frontal 70.83 66.66 93.75 75 81.25 81.25 63.89 65.28

Pro�le 78.12 78.12 100 91.67 96.87 93.75 72.50 71.25

Frontal+Pro�le 56.25 56.25 81.25 87.50 93.75 96.87 60 65

Table 6.22: Recognition rates obtained after updating is performed.

In table 6.22 are shown the results for both non-updated and updated training data

sets while performing classi�cation. On average, recognition rates are worse after using

the auto-updating classi�cation system excepting when processing frontal and pro�le at

a time.

Conclusions

Besides the acceptable results for frontal+pro�le faces, increasing recognition rates as

much as 6.25%, this system cannot be safely used in other unknown circumstances at this

time. More simulations should be performed using face databases that include individuals

in time-lapse of months or even years so that the feasibility of an auto-updating system

could be properly tested.
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Part III

Implementation
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Chapter 7

A real-time face identi�cation system

7.1 Introduction

To demonstrate the previous results found in Chapter 6, a face identi�cation system is

built and run in real-time conditions. Tests will take place in the smart room described in

Section A.1 but the system should be able to operate in other environments. This means

software cannot be environment-dependent at all. The system will be coded in C++ in

the Smart Flow framework [21], which allows the possibility of running multiple processes

known as clients. Every client can receive or send data �ows through connection ports,

along with timestamps to synchronise the execution of clients.

The main purpose of the system is to track and identify every person entering a room.

Video streams will be obtained from a camera in front of the door and at height not much

higher than a person, since face detectors usually underperform when detecting overhead

faces.

As a �rst approach to this challenge, the most signi�cant features of the system are

stated:

• Viola-Jones method [34] is chosen as face detector, using frontal and pro�le �lters

cascades.

• Due to limitations in pro�le cascades, images will be vertically �ipped when having

right pro�le faces.

• DCT is chosen as feature extraction technique. The number of coe�cients kept is

set to 60.
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• kNN with probabilities will classify feature vectors, whether testing or training mode

is active.

• The area the video stream shows is reduced to a region where faces can appear,

decreasing computational costs.

• The application will also output XML strings with information to �t the client's

requirements.

7.2 Design of the system

The system will be made up of �ve clients. These �ve clients and their connections are

shown in Figure 7.1. Ports on the left of the modules are data inputs while on the right

are outputs.

Figure 7.1: Snapshot of the structure used in Smart Flow for implementing a face identi-
�cation system.

• read_sequence: loads and reads video frames stored in disk or captures video

directly from a video camera. Sends images every 1/fps seconds, where fps stands

for 'frames per second'.

• face_detection: performs Viola-Jones scanning for frontal faces. In case any

frontal face is found, left-pro�le faces and right-pro�le faces cascades are used. Pro-

�le faces cascades are only suitable for left-pro�le faces and the image must be

�ipped. In order to save computational time the client can restrict the e�ective

working area of the video stream. The right area must de�ne the size and position

of the rectangle that will mask the original frame. Moreover, a restriction on the
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maximum position change of a face is set up. Whether an individual is still or

not, his face will remain in a limited area for, at least, the next frame. When Viola-

Jones detects a face too far from its previous position, it is rejected by face_detection

client as it could be a false positive since faces do not suddenly appear in continuous

recorded video sequences. This client outputs the input �ow and basic information

about the region of interest where the face was detected, which will be used by other

clients to crop faces from a frame.

• face_model: checks if a face model �le exists, creating it if not. Receives video

�ows along with regions of interest to perform DCT transformation on cropped

faces.

• face_id_client: loads face models from disk. It also performs DCT transformation

as in face_model client and classi�es faces.

• draw_face_info: this client is able to display and save the original video stream

and highlighting the detected faces. The name of the individual displayed appears

under the highlighted face.

7.3 Training and testing recordings

In order to create models from individuals a training recording is required. Once indi-

viduals enter the smart-room or scenario it is necessary to wisely choose where they have

to look. During the recordings performed for this real-time implementation, individuals

are asked to look right, left and front for at least 2 seconds. Next, they must exit the

scenario at a normal pace. These guided recordings give the face detector good frontal and

pro�le faces, as well as faces in motion. Initially, detected faces from a same individual

are labeled with a unique identi�cation number and a default name such as 'unknown' is

given (see Figure 7.2). It is up to the user to give a short name for every individual in

the training recordings, although face classi�cation will only operate with identi�cation

numbers.
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Figure 7.2: Example frame of a training sequence where faces and their identities are still
unknown. After detecting the face, a bounding box is created and draw_face_info draws
a rectangle around it.

In testing recordings individuals are asked to normally walk around the scenario with-

out looking at the camera, since it would distort the �nal results.

7.4 Face detection

Viola and Jones introduced in [34] a face detector based on cascades of very simple and

aggressive classi�ers which look for very speci�c face features, discarding backgrounds

and other objects in an image. This technique uses Adaptive Boosting (also known as

AdaBoost) and inherits the idea of weak Haar classi�ers from Freund and Schapire's �rst

general approach in [12]. The main idea is that, if well chosen, the union of weak classi�ers

leads to a very powerful classi�er. For example, 32 classi�ers would perform up to 80,000

operations in 384x288-pixel images. The �rst classi�ers discard very strong features as

backgrounds and shape of a face while the other classi�ers scan the image for eyes and

nose position, auto-scaling their scanning area from a minimum to a maximum face size.

Scaling and strictness are adaptable parameters of a face detector, and should be carefully

used because the overall face identi�cation system could underperform.

Cascades of classi�ers are obtained after a very broad 'face/no-face' machine learning

process. Thousands of examples in di�erent scales are needed in order to obtain cascades

with low false positive rates [29, 26]. These face detectors also output a joint con�dence

parameter for all the involved weak classi�ers that could prevent the recognition system

from classifying wrong faces [8].
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This implementation will work with a face detector in OpenCV, using frontal and left

pro�le faces cascades since no cascade for right pro�le faces is available yet. The face

detection module will perform as follows:

• The detector scans the image for frontal faces from minimum to maximum sizes.

The implemented can bear one individual at a time.

• If no frontal face is found, the detector scans for left pro�le faces from minimum to

maximum sizes.

• If no left pro�le face is found, the detector vertically �ips the input image and scans

for right pro�le faces from minimum to maximum sizes.

• Finally, if the detector has found a face its coordinates will be outputted as a

bounding box. In other case, an empty bounding box is sent.

7.5 Reducing computational costs

Computational costs in real-time face identi�cation systems can be signi�cantly reduced

by applying very simple strategies that will be explained next.

Reduced constant region of interest

Video sequences from cameras might not be initially set up for face identi�cation. Given

a frame from a video sequence, as in Figure 7.3, individuals' faces may be located only in

certain regions of the frame. Not detecting in regions in margins or close to the camera

is an e�ective way to reduce computational costs. Note that in Figure 7.3 there is an

individual in the bottom-left quadrant that will not be detected as the face is unfocused.
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Figure 7.3: The individual is situated in a region of the frame where faces cannot be
detected.

The implemented face identi�cation system will allow restricting the detection region

as shown in Figure 7.4. A constant reduced region of interest can be set up by giving its

(x, y) top left coordinates, width and height. Results in Section 7.6 use a constant reduced

region of interest of 215x340 which implies a scanning area almost 5 times smaller than

in images of size 720x480 pixels.

Figure 7.4: De�nition of the coordinates and sizes of a rectangle that will mask and
restrict the region of interest.

Minimum and maximum size of faces

Frontal or pro�le cascades of Haar classi�ers accept a minimum face size when detecting

faces. This reduces computational costs since the face detector does not need to scan for

the whole range of face sizes. Figure 7.5 shows an example frame with two faces: the one

64



on the top is 20x30 pixels and the one on the bottom is 40x80 pixels, being minimum

and maximum face sizes respectively. The �rst one is located outside the smart room

and thanks to the minimum size limitation will not be detected or classi�ed. Maximum

size limitation avoids the face detector to �nd false faces around in the room, specially in

walls and tissues.

Figure 7.5: Examples of faces out of the expected size range.

Dynamic Region of Interest detection

When an individual enters a room, his path follows a trace similar to that in Figure 7.6.

Note that the trace creates the illusion of very close regions of interest around faces, even

when sampling every �ve frames as in the image.

Figure 7.6: Trace of an individual entering a smart room. Images are overlapped every 5
frames for the sake of simplicity.

In fact, in Figure 7.7 can be clearly seen that two consecutive faces will be certainly
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separated by very few pixels in vertical or horizontal dimensions. The implemented face

detector will be able to only scan around an even more restricted region of interest. Ev-

erytime a face is detected, the region of interest is dynamically centered to the individual's

face. Note that the �rst time a face is detected or a face trace is lost the face detector

should have the Dynamic Region of Interest detection mode disabled. Not disabling it

could make the system scan permanently in the last region of interest stored.

Figure 7.7: Dynamic regions of interest centered on the detected faces along the trace.

In this particular case, an aggressive region of interest of size 120x120 is set up. That

means having a scanning region 5 times smaller than in the constant reduced region of

interest and 24 times smaller than the original frame. Computational cost is extremely

reduced using this strategy.

7.6 Results

The implementation of a real-time face identi�cation system is �nally tested. The system

works as expected and results are outstanding due to the good quality of the video se-

quences. As an example, Figure 7.8 shows an individual correctly detected and classi�ed

with his name appearing in the image (see Figure 7.9 for a closer view). Note that the

individual standing outside the smart room does not interfere in the performance of the

system.

66



Figure 7.8: The individual has been classi�ed and identi�ed, and his name is drawn by
the draw_face_info module.

Figure 7.9: A closer look of the resulting identi�cation.

The testing sequence has a duration of 1 minute and 48 seconds in which 372 frontal

and 78 pro�le faces are detected. Pro�le faces are de�ned as those faces not detected by

Viola-Jones method using a frontal but a pro�le cascade of �lters. A total of 12 individuals

enter the smart room and their traces are followed for time segments of variable length.

That means after a certain number of detected faces the system performs a fusion of

results. Table 7.1 shows the evolution of instant recognition rates for frontal and pro�le

faces and fusion of results when changing the time segment length of the implemented

system.

Recognition rate

segment length (sec) fusion frontal pro�le number of fusions

5 86.02% 82.53% 97.44% 93

25 91.67% 82.53% 97.44% 24

30 91.30% 82.53% 97.44% 23

Table 7.1: Results for fusion and instant frontal and pro�le recognition rates for time
segments of lengths 5, 25 and 30 seconds.
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As segment length decreases, the number of fusions increases achieving lower instant

and fusion recognition rates since availabe information on identities is limited. On the

other hand, too long time segments do not improve fusion recognition rates as there is too

much redundant information. A permanent value for the time segment length is set to 25

frames. Using this con�guration, Table 7.2 explains the e�ects of varying the k parameter

in kNN.

Recognition rate

k param fusion frontal pro�le

1 91.97% 82.53% 97.44%

3 91.67% 80.38% 96.15%

5 91.67% 77.42% 94.87%

7 91.67% 76.34% 93.59%

Table 7.2: Results for fusion and instant frontal and pro�le recognition rates in function
of the k parameter.

Note that, as proven in Section 6.6, the higher the k, the lower the instant performance

despite fusion of results gives the same recognition rates for k = {1, 3, 5, 7}. Therefore,

better results are expected when using k = 1 and will be set as a default parameter of

the system.

Outstanding instant recognition results and fusion of results close to 92% are achieved

with this implementation of a real-time face identi�cation system, working on an ordinary

dual-core laptop.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This work has successfully achieved its �nal goal: implementing a real-time face identi-

�cation system. Hundreds of simulations have led to the con�guration parameters that

were pursued from the very beginning, achieving �nal recognition rates of 90% and above.

DCT transformation has proved to be more versatile and faster in characterising faces

than PCA, as well as better results were obtained. In cooperation with DCT, k Nearest

Neighbor is the best classi�er in terms of conceptual simplicity, lower computational costs

and ease of implementation and modi�cation. Moreover, a reviewed version of kNN was

implemented, making possible to obtain probabilities from a face classi�cation.

The main conclusions obtained from this work are detailed next:

• The size of a face does not signi�cantly a�ect the recognition rate of PCA or DCT-

based identi�cation systems. A standard size of 32x32 pixels is set to reduce com-

putational costs.

• Manhattan distance is chosen after proving better classi�cation results and less

computational cost.

• The k parameter in kNN is set to k = 1 after showing better results thant other

options. This also reduces computational costs since only one neighbor has to be

taken into account.

• Increasing the number of face models within the tested range does not strongly

a�ect recognition rates but necessarily increases computational costs.
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• Slightly blurry face imagesare not a signi�cant inconvenience to a face identi�cation

system.

• Under the multi-camera environment described there is a maximum in the number

of cameras that can provide optimal recognition rates.

• An auto-updating face identi�cation system based on face color variance is not an

option since its advantages are not conclusive

• False detections can be reduced by using an entropy-based discriminator, improving

recognition rates.

8.2 Future work

Due to limitations in time, other feature extraction techniques such as LDA and LPP

or classi�cators such as SVM were not considered in this research work but might be

interesting alternatives to PCA, DCT and kNN. A work exploring the possibilities o�ered

by these techniques could help improve the implemented identi�cation system even more.

This work is open to multimodal fusion and could be complemented by speaker iden-

ti�cation or gesture detection by testing every described weighted mean and other fusion

strategies such as the Minimax rule.

Multicamera environments allow the system to create 3D face models from several

faces taken from di�erent relative angles. The implemented system could be adapted to

�t the needs of a 3D face identi�cation system.

70



Appendix A

Smart rooms and image acquisition

A.1 A Smart room

Designing a face identi�cation system requires video recordings in controlled environments

in order to arrange all the necessary simulations and tests. The Technical University of

Catalonia, (UPC, located in Barcelona, Spain) is in possession of an advanced smart room

where video and audio data can be extracted from di�erent types of sensors.

This smart room is meant to be a test �eld for image or sound processing researchers

since it recreates a small meeting room with quite a large quantity of sensors. Some of

them are [20]:

• A 68-microphone array.

• Three clusters with four Hammer microphones each.

• Six JVC TK-C1481BEG cameras focused to the centre of the room, one on each

corner and two in the middle.

• An overhead camera in the centre of the room.

• Two PTZ cameras in the bottom of the room focused to the door.
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Figure A.1: Sensors that may be found in a smart room. Reproduced with permission of
the owner [20].

Along with all the devices detailed above, the smart room is equipped with control

and storage servers among many others, that allow the operators to easily synchronise

and acquire data from sensors. This work will only use the data directly from cameras

since no multimodal processing is expected.

The quality of the images acquired from a camera may vary the performance of a

face recognition system. The e�ect of di�erent image sizes in performance rates will be

discussed in Part II, as well as blurry or unfocused images. As long as faces be big

enough and not distorted, AdaBoost face detectors can successfully perform under severe

conditions.

PTZ cameras have a large focal length, that implies that the region of the room that

is focused is smaller than using a JVC camera. Faces from PTZ's will be bigger than

those from JVC's, and this situation could lead the recognition system to underperform

if using both cameras at the same time.

A.2 Acquiring images

Images can be de�ned as sets of light points creating visual perceptions and can be easily

represented in color or luminance matrices or vectors. RGB or YUV color models are

widely used and allow images to be represented as the addition of several light components.
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RGB images are represented into red, green and blue component matrices while YUV

images contain luminance and chrominance matrices.

Black and white images are mostly used in face identi�cation systems since color

levels do not contribute in improving recognition rates. On the contrary, having multiple

di�erent color channels increases computation costs unnecessarily.

Black and white images can be extracted applying a linear combination of the three

RGB matrices, which are also represented in the so-called Y or luminance component

matrix in YUV models

Y = WR ·R +WG ·G+WB ·B

where weighting coe�cients are usually set to

WR = 0.299

WG = 0.114

WB = 1−WR −WG

A.3 Deinterlacing images

The illusion of motion in video sequences for the human eye starts at about 10 frames/seconds[27]

but current video devices use higher frame rates. This is due to the persistence of vision in

the retina. Moreover, frame rates of 40 Hz or lower cause disturbing �ickering phenomena

and since video is usually recorded at 24-30 frames/second, video frame rates must be

doubled whether by repeating frames or by interlacing.

This interlace technique merges images of a 50 Hz video sequence into 25 Hz. Odd

and even lines of the interlaced image are drawn from odd and even lines of the original

frames. After interlacing, the human eye is not able to detect the �ickering phenomena

and images seem to be constant in illumination but fast horizontal movements create a

saw teeth e�ect as seen in Figure A.2.
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Figure A.2: Interlaced image of a face.

This situation is not desirable in face detection systems as face detectors could not

detect a face presenting such a high saw teeth e�ect. Image doubling is performed in

order to avoid this e�ect. One of the two interlaced images is extracted by taking either

odd or even lines, which are doubled and stored in the deinterlaced image as in Figure

A.3.

Figure A.3: Deinterlaced image of the same face as in Figure A.2.

If necessary, images databases in Section 5.4 will be doubled using an simple applica-

tion created for this purpose.
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Appendix B

Entropy-based invalid image

discriminator

Introduction

As an optional but useful part of a face recognition system, image discriminators can

increase recognition rates by avoiding the classi�ers to train or test images not containing

faces. Bad croppings or segmentations are usual problems in face detection and their

contribution can be very negative in face classi�cation, since invalid images may contain

plain backgrounds or partial faces.

A heuristic mathematical method based on information entropy will be proven, as

plain or semi-plain images contain signi�cantly less information than those framing a full

face.

Experimental results

Let F (p, q) be a function that returns

F (p, q) =

1 if p = q

0 if p 6= q

and let T (x, y) be a given image of size NxM . A density estimation must be performed

over T (x, y) as shown in
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p(k, T ) =
1

NM

N∑
n=1

M∑
m=1

F (T (n,m), k)

The entropy is obtained as

H(T ) = −
255∑
k=1

p(k, T )log2p(k, T )

which satis�es

lim
p(k,T )→∞

p(k, T )log2p(k, T ) = 0

For 30x30-pixel images and a color depth of 8 bits, a threshold of H(T ) < 150 is set

to reject invalid images. Next are shown some of the rejected CLEAR database images

with this discriminator.

Figure B.1: Defective faces that are rejected by the discriminator.

To numerically illustrate the e�ects of the proposed invalid image discriminator, three

data sets from IBM, ITC and UPC are simulated with a conservative threshold (see table

B.1).

Recording Total images Rejected images False negatives

IBM 1155 198 (17%) 20 (10.1%)

ITC 1793 157 (8.7%) 32 (20.4%)

UPC 3473 346 (10%) 13 (3.7%)

Table B.1: Rejection and false negative rates for CLEAR database.

Conclusions

Using an entropy-based discriminator can substantially reduce the number of invalid im-

ages from a training or testing data set. Although false negatives reduce the number of
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valid faces, in most cases these images do not appropriately represent a face fully and

clearly enough and avoids the problem of processing and classifying invalid faces.
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