
Universitat Politècnica de Catalunya
Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona

Design and Implementation of a

PTX Emulation Library

by

Albert Claret Exojo

Advisor: Isaac Gelado Fernández

Barcelona, July 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41802422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dedicado a mis padres y a Susan, por su paciencia, cariño y apoyo.

Contents

Contents i

1 Introduction 3

1.1 Motivation and Objectives 3

1.2 Emulation Library Overview 7

1.3 Thesis Overview . 8

2 Background 9

2.1 GPU History . 9

2.2 The NVIDIA CUDA Architecture 11

2.2.1 Computing Model . 11

2.2.2 Computing Hardware 14

2.3 Emulation . 17

2.3.1 Techniques . 17

2.3.2 Emulators . 18

2.4 Software Profiling . 20

3 Design and Implementation 21

3.1 Overview . 23

3.2 PTX Parser (libptx) . 24

3.3 Intermediate Code Analysis (libasm) 28

3.4 OPBF Generation (libopbf/opbfas) 33

3.5 Emulation Library (libemul) 38

3.6 CUDA Runtime Library (libecuda) 45

4 Experimental Evaluation 49

4.1 Benchmark Descriptions . 49

4.2 Testing Conditions . 52

4.3 Functional Results . 54

4.4 Performance Evaluation . 55

i

ii CONTENTS

4.5 Emulation Library Profiling 61

5 Conclusions and Future Work 63

Bibliography 65

List of Figures 69

List of Tables 70

List of Code Listings 71

Acknowledgements

Ante todo, quiero agradecer a Isaac Gelado su paciencia, ayuda y apoyo

durante estos meses. A pesar de mis infinitas dudas y preguntas, no le he

escuchado quejarse ni una sola vez.

También quiero agradecer el apoyo y la paciencia a mi madre, que proba-

blemente se alegrará tanto o más que yo de que haya acabado la carrera, a

mi padre y a Susan. Sin vosotros, no lo hubiera logrado.

Y por último, agradecer el apoyo de mis amigos, que me han aguantado

y, por algún extraño motivo, siguen aguantando todos los d́ıas. Gràcies als

Budgets, als de R3, als de DAT, als de les altres plantes de l’Edifici Omega,

a la gente del C.EE.T., a Las Niñas, a los de La Salle, a los pibes del ITBA,

al resto de los amigos que dejé en la Argentina, a los compañeros del C6-103

por ayudarme durante estos meses y a mis viejos amigos del ASB.

1

Chapter 1

Introduction

1.1 Motivation and Objectives

Intel co-founder Gordon E. Moore observed in 1965 that transistor density,

the number of transistors that could be placed in an integrated circuit per

square inch, increased exponentially, doubling roughly every two years. This

would be later known as Moore’s Law, correctly predicting the trend that

governed computing hardware manufacturing for the late 20th century.

For many decades, software developers have enjoyed a steady appli-

cation performance increase due to continuous hardware improvements as

described by Moore’s Law, as well as computer architecture improvements.

Currently, however, the memory wall, which refers to the increasing speed

difference between the CPU and memory, and the instruction-level paral-

lelism wall (ILP wall), which refers to the inability to find more operations

in an application which can be performed simultaneously due to data depen-

dency, have been reached. Application performance no longer benefits from

continuous processor frequency increases as it had before. Furthermore,

other issues such as wire delays and static and dynamic power density pre-

vent significant processor frequency increases [1].

The High-performance Computing (HPC) community has developed

several strategies to work around these limitations [2]:

• Multi-core systems, where a processor includes several independent

cores in a single integrated circuit. This strategy currently serves

as the most viable candidate to uphold Moore’s Law. Despite this,

applications that heavily rely on sequential calculations would only

see major advances if the processor frequency increased several orders

of magnitude.

3

4 CHAPTER 1. INTRODUCTION

• Specialized processors, which allow a performance boost in a spe-

cific area. Digital Signal Processors (DSPs) are a popular example

of specialized processors. They are optimized for quickly perform-

ing mathematical operations on a continuous set of data, such as

multiply-accumulate instruccions and parallel address register com-

putations. They are used extensively in TVs, cell phones and other

embedded devices. Another popular example are Graphics Processing

Units (GPUs), originally specialized in 3D graphics calculations.

• Heterogeneous computing architectures, which combine traditional

and specialized processors to work cooperatively.

HPC Applications usually contain code that could benefit from specialized

processors but also code that should be run in conventional processors.

Heterogeneous platforms allow for each type of code to run in the processor

best suited for the task, achieving accelerations of up to 100 times what a

scalar processor can achieve independently [2]. Several types of heteroge-

neous platforms exist, such as those based on FPGAs, IBM Cell processors

or GPUs. These are also called accelerator architectures [3], as they bring a

big advantage in performance, cost or power usage over a general-purpose

proces

Field-Programmable Gate Arrays (FGPAs) have been around for more

than a decade, but recently, there has been increasing interest in them to

be used as reconfigurable coprocessors. They can provide huge speedups

over conventional processors in many applications [4] by allowing the cre-

ation of a custom instruction set and allowing data parallelism by executing

the instructions concurrently on thousands of data pieces. Recently, field

programmable object arrays (FPOAs) have been proposed as an alternative

to FPGAs, allowing operation at higher frequencies, currently up to 1GHz.

FPGAs have several major drawbacks that do not make them suitable for

some applications. They usually do not have native support for floating

point operations, rely on the designer to incorporate components such as

memory or I/O, and require a design cycle much longer than traditional

software applications [4].

Several heterogeneous computing systems can be linked to create a clus-

ter, obtaining significant advantages in HPC applications. A hybrid system

cluster can perform significantly faster than a similar-sized general purpose

processor cluster [4]. A clear example of this is the IBM Roadrunner. As of

July 2009, it is the world’s fastest supercomputer, achieving 1.105 petaflop/s

[5]. It is a hybrid design with 12,960 IBMPowerXCell 8i and 6480 AMD

1.1. MOTIVATION AND OBJECTIVES 5

Opteron dual-core processors [6].

The IBM Cell combines an in-order PowerPC core that controls eight

simple SIMD cores (Single Instruction Multiple Data, which refers to a

technique where a large group of simple processors perform the same task

simultaneously, each of them with different data), called synergistic process-

ing elements (SPEs). Each of them contains a Synergistic Processing Unit

(SPU), local memory, and a memory controller [7]. The first major com-

mercial application was its usage in Sony’s PlayStation 3 gaming system,

which brought world-wide attention to the chip.

The Cell architecture offers huge potential computing performance, but

it does not come free. Existing code can not simply be recompiled, be-

cause it would all run in the main PowerPC, providing no speedup. Each

SPE has its own local memory where code and data coexist. SPE loads

and stores can only access the local memory, depending on explicit Direct

Memory Access (DMA) operations to move data from the main memory to

the local SPE store [7]. On the other hand, there are strong constrains on

memory access alignment, as they have to be aligned to 128 bit boundaries.

Writing vectorizing code, which performs the same operation on a set of

data concurrently, is particularly hard. These features make the Cell a dif-

ficult platform to develop for, requiring expert programmers to hand-craft

applications to achieve considerable speedups.

An alternative to Cell-based heterogeneous systems are GPU-based sys-

tems. General-purpose computing on graphics processing units (GPGPU)

is the recently-developed technique of using GPUs, processors specialized

in graphics calculations, to perform general-purpose calculations. With the

presence of programmable stages and precision arithmetic in the rendering

pipelines, application developers are able to use stream processing on any

data, not just graphics. The two largest GPU vendors, ATI and NVIDIA,

started pursuing this market several years ago. NVIDIA began releasing

cards supporting a C programming language API called Computer Unified

Device Architecture (CUDA), allowing for a specially crafted C program to

run on the GPU’s stream processors. The GPUs have a parallel many-core

architecture, where each core is capable of running thousands of threads

simultaneously.

CUDA allows C programs to take advantage of the GPU’s ability to

perform calculations on large sets of data concurrently, while continuing to

use the CPU for non-parallel calculations. It is also the first API that allows

direct access to the GPU resources for general purpose usage without the

limitations and complexities of using a conventional graphics API, such as

6 CHAPTER 1. INTRODUCTION

OpenGL or other direct 3D techniques. CUDA works with all GPUs from

the G8X series onwards, including Geforce, Quadro and Tesla lines while

maintaining binary compatibility between them. It allows some specific

applications with extensive optimization and tuning to gain from impressive

speedups, up to 647 times that of a CPU-only application. [8]. In general,

the speedups are usually around the 10 times mark.

CUDA applications must be compiled with a specialized compiler cre-

ated by NVIDIA, which compiles the C code into an intermediate assembly

code called Parallel Thread Execution (PTX), which is then further com-

piled into the Cubin binary format. PTX is a low-level parallel thread

execution virtual machine and instruction set architecture (ISA) [9].

The PTX assembly language has been fully documented by NVIDIA

and made public, and has been chosen by OpenCL as the standard byte

code to be generated not just by CUDA but by all OpenCL compilers. On

the other hand, the Cubin binary format is proprietary and no information

has been made public by NVIDIA, although the format has been partially

documented by some developers by using reverse engineering [10]. Further-

more, only the most basic elements of the underlying hardware architecture

have been documented by the vendor, and there are apparently no plans to

do so in the future.

The closed nature of the Cubin format does not allow for any exten-

sions or simulations. In this context, a simulator is a software application

that models the architecture of a GPU, allowing the evaluation of different

hardware designs without physically building them and obtaining detailed

performance metrics. Simulations are required in order to fully analyze and

possibly enhance heterogeneous systems based on GPUs. This is the main

motivation behind this thesis. To achieve this, an alternative to the Cubin

binary format must be developed, and since it will not be able to run on

GPU hardware, an emulator of the GPU architecture must be developed.

An emulator is defined as a system that duplicates the functionality of a

system, making the latter behave like the former. The main objective of

this thesis is to create an emulation library that parses the PTX interme-

diate assembly language generated from a CUDA application, generates a

new binary object that substitutes Cubin and then uses it to emulate the

functionality of a GPU and obtain the same numerical result.

1.2. EMULATION LIBRARY OVERVIEW 7

1.2 Emulation Library Overview

The emulation library consists of several subcomponents.

• PTX Parser

Parses the PTX intermediate assembly code generated by the CUDA

compiler with a Flex/Bison lexical analyzer.

• Intermediate Code Analysis

Performs Basic Block (BBL) identification on the parsed PTX instruc-

tions to generate a Control Flow Graph (CFG), on which it performs

liveness analysis and interference analysis, allowing it to perform reg-

ister allocation using Greedy Colouring, as the PTX code utilizes an

unlimited number of registers.

• OPBF Generation

The Open PTX Binary Format (OPBF) is the proposed alternative

to the proprietary Cubin binary format by NVIDIA. An OPBF file

is generated from the previously parsed PTX instruction in several

passes to allow label resolution, since all labels are resolved to ad-

dresses. The OPBF also includes including a partial memory map of

the kernel.

• Emulation Library

Loads the OPBF file and emulates the GPU architecture to run the

kernels contained in them. It is the most important component, since

it must emulate all of the PTX opcodes and the memory subsystems,

and must behave exactly the same as the GPU, in order to obtain the

same numerical results. The chosen emulation method is interpreta-

tion, although a code cache is built, drastically reducing the actual

number of lookups needed to execute an instructions.

• CUDA Library

The CUDA API includes hundreds of functions that allow program-

mers to transfer data to and from the GPU, call kernels, and many oth-

ers. Since this emulation library replaces NVIDIA’s libcudart (CUDA

runtime library), referenced functions must be implemented to allow

the application to execute properly and bind the application to the

emulation library.

8 CHAPTER 1. INTRODUCTION

1.3 Thesis Overview

The thesis contents, besides this introduction, are divided into three sepa-

rate sections.

• Background

Contains background information on GPUs, describes the NVIDIA

CUDA computing model and hardware, existing emulators and mod-

ern emulation techniques.

• Design and Implementation

Contains a detailed description of each section of the emulation library

as described in Section 1.2, including implementation decisions and

details of each part.

• Experimental Evaluation

In order to evaluate the library performance and its correctness, sev-

eral tests from the Parboil Benchmark Suite, developed by the Impact

Research Group at the University of Illinois, were run. The results

are presented in this section, along with a small description of each

benchmark and the particular GPU features showed in each of them.

In order to identify bottlenecks in the library’s code, profiling was

applied to the library running each benchmark. These results are also

presented here.

• Conclusions and Future Work

Contains a general conclusion to the thesis, including the general

knowledge acquired during the thesis development and proposed fu-

ture modifications and optimizations to the emulation library code in

order to increase its performance.

Chapter 2

Background

2.1 GPU History

GPUs were initially designed as specialized processors attached to a graphics

card, dedicated to accelerate graphics operations. In 1991, S3 Graphics

developed the first single-chip 2D accelerator, the S3 86C911. By 1995, all

major graphics card vendors had added 2D acceleration support. At that

time, there was increasing demand for hardware-accelerated 3D graphics.

Rendition Vérité V1000 was the first chipset that successfully integrated 2D

and 3D functionality.

In 1999, NVIDIA released the GeForce 256, a revolutionary chipset that

expanded the rendering pipeline to include a hardware transformation and

lightning engine1, revolutionizing the graphics card industry. This release

established NVIDIA as the industry leading and marked the start of a steady

decline that lead to the bankruptcy of numerous competitors, such as S3,

Matrox and specially 3dfx. Only ATI was capable of directly competing

with NVIDIA, releasing their Radeon series only a year after.

NVIDIA was the first vendor to produce a programmable shading capa-

ble chip in the GeForce 3 chipset in 2001. In 2002, ATI released the ATI

Radeon 9700, where pixel and vertex shaders2 could implement looping and

floating point operations. Since then, NVIDIA and ATI have been the two

major GPU vendors besides Intel, which is the current market leader with

low-cost, less powerful integrated GPU solutions [11]. They have been al-

ternatively taking the performance lead with different products. It should

be noted that there are three minor vendors: VIA/S3 and SiS, with a 1%

market share each, and Matrox with a 0.1% market share.

Since 2003, GPUs have steadily been leading the single precision floating-

9

10 CHAPTER 2. BACKGROUND

NV30
NV35 NV40

G70
G70-512

G71

Geforce 8800 GTX

Tesla C870

Tesla C1060

3 GHz P4 Pentium D 965
Core 2 Duo X6800

Core 2 Quad QX6700
Core i7 965

0

100

200

300

400

500

600

700

800

900

1000

Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005 Jul 2005 Jan 2006 Jul 2006 Jan 2007 Jul 2007 Jan 2008 Jul 2008 Jan 2009

G
F
L
O
P
S

Figure 2.1: GPU vs CPU Performance Gap (Based on [12, c.1, p.2])

point performance race. CPUs, on the other hand, have slowed down their

performance improvement significantly [12]. This can be clearly seen in

Figure 2.1. It should be noted that the graph shows the theoretical peak

speed that both CPUs and GPUs can achieve, which is not necessarily

reachable. This performance gap is probably the reason for the current

GPGPU trend and has motivated many application developers to move the

computationally intensive parts of their applications to the GPU when tools

have been made available.

As mentioned in Section 1.1, NVIDIA saw the potential for the GPU

to use its huge computing power for uses outside of purely graphics cal-

culations. In February 2007, they launched CUDA, a SDK and API that

allows the development of applications that run on the GPU. It has proven

to be very popular among the research community, as it can offer large

performance benefits [12].

After being bought by AMD, ATI launched a similar SDK for their

own cards called Stream SDK, formerly called Close to Metal (CTM). Even

though the first general purpose computing efforts on a GPU was on AMD

2.2. THE NVIDIA CUDA ARCHITECTURE 11

ATI cards in October 2006 [13], NVIDIA strongly backed and publicized

CUDA, leaving AMD ATI out of the public spotlight. Some people have

claimed that the original CTM API was difficult to work with, besides

coming much later than CUDA. Soon after releasing the Steam SDK which

supposedly fixed the shortcomings of the CTM API, AMD ATI and NVIDIA

announced future support for OpenCL [14].

2.2 The NVIDIA CUDA Architecture

There are three main abstractions in the CUDA architecture: thread groups,

shared memories and barrier synchronization. These are all available to the

programmer as a minimal set of C extensions. These abstractions allow

programmers to partition a problem into sub-problems that can be solved

independently in parallel. The problem can then be further split into smaller

pieces that can be solved cooperatively in parallel. This approach can be

applied to algorithms that can be expressed as data-parallel computations

with a high ratio of arithmetic to memory operations.

2.2.1 Computing Model

The CUDA API allows programmers to define C functions which are known

as kernels. The control-intensive parts of the algorithms are implemented in

the host code, while the data parallel parts are implement in kernels. The

host code is executed by the CPU, while the kernels are executed by the

GPU. When called, kernels are executed in parallel N times by N different

threads. Each of these threads is given a unique thread ID that is accessible

to the programmer by the threadIdx variable. This allows to distinguish

themselves from each other and identify the appropriate portion of the data

to process, as they all receive the same parameters.

The host code and the device code (kernels) can be stored in the same

source file. As we can see in Listing 2.1, both the kernel and host code

are written in an extended version of ANSI C. The global keyword is

used to declare a kernel, and the kernel name <<<X, Y>>> syntax is used

to specify the number of threads for each kernel call. This example adds

two vectors A and B of size N and stores the result into vector C. Each of

the threads that execute the kernel does a single addition, corresponding to

its threadIdx value.

12 CHAPTER 2. BACKGROUND

Host Device

Grid 1 Block

(0,0)

Block

(1,0)

Block

(0,1)

Block

(1,1)

Grid 2

Kernel 1

Kernel 2

Block (0,1)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(3,1,0)

Thread
(2,1,0)

Thread
(1,1,0)

Thread
(0,1,0)

Thread
(3,2,0)

Thread
(2,2,0)

Thread
(1,2,0)

Thread
(0,2,0)

T (0,0,1) T (1,0,1) T (2,0,1) T (3,0,1)

Figure 2.2: CUDA Thread Hierarchy (Based on [12, c.2, p.10])

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main(int argc, char *argv[])

{

vecAdd<<<1, N>>>(A, B, C);

return 0;

}

Listing 2.1: Basic Kernel Example (Taken from [15, p. 13])

CUDA organizes threads in a two-level hierarchy: grids and thread

blocks. This can be seen in Figure 2.2. When a kernel is launched, it is

executed by a grid of threads. This grid can be seen as a 2D array of thread

2.2. THE NVIDIA CUDA ARCHITECTURE 13

blocks. Each of the grids is usually formed by thousands to millions of GPU

threads per kernel invocation. All blocks in a grid have the same number of

threads, and are organized into a 3D array of threads. Each thread block

has a unique 2D coordinate which can be accessed by the blockIdx.x and

blockIdx.y variables. The number of blocks per grid can be accessed by

the gridDim.x and gridDim.y variables. In the case of Listing 2.1, most

of the hierarchy is ignored, and only one dimension of threadIdx is used.

Since it is actually a 3-component vector with x, y and z coordinates, it

allows threads to be identified using 1D, 2D or 3D indexes, forming 1D, 2D

or 3D thread blocks.

The first parameter passed to the kernel is the number of blocks per grid.

In Listing 2.1, this value was . The block dimensions (number of threads in

each dimension of the block) is supplied by the programmer as the second

parameter given at the kernel launch. In Listing 2.1, the block dimension

was N. Since the NVIDIA Tesla architecture limits the maximum number of

threads per block to 512, this is the total number of elements including all di-

mensions. The developer has flexibility to chose any distribution of these el-

ements on each dimension, as long as the total number does not exceed 512.

A kernel launch, is therefore defined as kernel name <<blocks per grid,

threads per block>>. It should be noted that once a kernel is launched,

its dimensions cannot change during that invocation. From a programmer

point of view, this is a disadvantage, since dynamic dimensions would allow

kernel algorithms to be refined. From a performance point of view, it is an

advantage, since fixed dimensions allow the hardware to not have resizing

capabilities, therefore increasing performance. From our emulation point of

view, supporting dimension resizing would complicate the implementation,

and therefore the lack of it is an advantage. There is ongoing research[16]

about dynamically resized kernels.

Threads within the same thread block can cooperate among themselves

by sharing data. The sharing is done through the shared memory area and

synchronization is performed by using the function syncthreads(). This

function performs barrier synchronization, a popular method of coordinat-

ing parallel execution. When called, all threads in a block will be stopped

at the location until everyone else reaches it, ensuring that all of them have

completed a phase of the execution before being allowed to continue. It

should be noted that threads in different blocks do not perform barrier syn-

chronization with each other, and therefore, different blocks can be executed

in any order and in parallel or in series. This allows application scalability,

as newer GPU cards support more blocks to be executed in parallel and

14 CHAPTER 2. BACKGROUND

Host

Grid

Block (0,0)

Shared Memory

Registers Registers

Thread (0,0) Thread (1,0)

Block (1,0)

Thread (0,0) Thread (1,0)

Shared Memory

Texture Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Global Memory

Registers Registers

Constant Memory

Figure 2.3: CUDA Memory Hierarchy (Based on [12, c.4, p.3])

therefore can benefit from the independence among different blocks.

There are several memory spaces which CUDA threads may access, as

seen in Figure 2.3. Each thread has a specific local memory and registers,

each thread block has a common shared memory and all threads have access

to a global memory space. Additionally, the constant and texture memory

spaces provide read-only access. Developers can declare variables into the

various spaces by using specific keywords, such as device shared

or device constant . Physical characteristics of the spaces are dis-

cussed in Section 2.2.2.

2.2.2 Computing Hardware

The NVIDIA Tesla architecture is based on a scalable array of multithreaded

Streaming Multiprocessors (SMs). [15] A multiprocessor contains 8 Scalar

Processor (SP) cores. The multiprocessor creates and executes threads

concurrently in hardware with a virtually zero scheduling overhead. Fast

barrier synchronization with the syncthreads() function along with the

zero-overhead scheduling allows for fine-grained parallelism: assigning, for

example, one thread per pixel.

The multiprocessor employs an architecture called Single-Instruction,

Multiple-Thread (SIMT). Each thread is mapped to one SP core, and each

SP core executes independently with a dedicated instruction address and

2.2. THE NVIDIA CUDA ARCHITECTURE 15

register state. This technique is similar to Single Instruction, Multiple Data

(SIMD), used in many architectures, such as the IBM Cell.

The use of the SM and SP terminology can lead to confusion. The

behavior of an SM is closer to a core, as it performs fetch, decode and control

on an instruction. An SP, however, is similar to an Arithmetic Logic Unit

(ALU), as it just performs the instruction execution. The terminology is

used by NVIDIA in its CUDA and PTX documentation, so we will adhere

to it.

The multiprocessor manages threads in groups of parallel threads called

warps. The size of this warps is implementation specific, in the GeForce

8800GTX, warps are made up of 32 threads. It should be noted that all

threads in a warp start at the same program address, but they are obviously

free to differ once branching occurs. Every time a new instruction can be

executed, a warp that is ready to execute is selected and run. If threads on

a warp diverge, the warp executes serially each path taken, a phenomenon

called branch divergence. It only occurs in a single warp, as different warps

will execute independently.

Warps play a crucial role in preventing long delay operations such as

global memory access from slowing down the execution. When an instruc-

tion executed by a warp is waiting for the result of a long operation, the

warp is placed on hold, and another warp that is ready for execution is

loaded in its place. When the first warp is ready, it will be queued for ex-

ecution. If there are enough warps, there will most likely always be one of

them ready for execution, effectively delaying the execution but increasing

throughput. This technique is called Simultaneous Multi Threading (SMT)

[17], and tries to exploit parallelism across multiple threads, due to the fact

that a single threads has a limited amount of ILP.

The GeForce 8800GTX, for example, has 16 SMs, allowing up to 128

thread blocks to be executed simultaneously. One important SM limitation

is the number of threads that can be scheduled. In the GeForce 8800GTX,

the limit is 768 threads per SM (24 warps), which would result in a total of

12288 threads simultaneously executing.

Figure 2.4 shows how the CUDA memory hierarchy is implemented in

the SIMT architecture. Every processor core has a complete set of 32-bit

processors, a shared memory space, shared by all cores in a SM and read-

only constant and texture cache memories shared by all cores.

In the GeForce 8800 GTX implementation, each SM has 8000 registers.

Since each SM can hold up to 768 threads, this amounts to a total of only

10 registers per thread. If each thread uses more than 10 registers, the total

16 CHAPTER 2. BACKGROUND

Grid

Multiprocessor 1

Shared Memory

Registers

Processor 1

Texture Cache

Local
Memory

Local
Memory

Constant Cache

Multiprocessor 2

Multiprocessor N...

Registers

Local
Memory

Registers

Processor 1 Processor M...

Device Memory

Instruction

Unit

Figure 2.4: GPU Hardware Model (Based on [15, p.14])

number of threads will be reduced. Since this penalty occurs at the block

level, the number of threads will be reduced significantly, such as 128 if each

block contains 128 threads. This is a clear example of the fact that memory

is a limiting factor in CUDA parallelization, and so code must be optimized

to utilize the least amount of available resources. The number of threads

can reduce the number of warps available, and therefore increase the latency

when many long-latency operations such as global memory accesses occur.

Besides the register limiting factor, excessive shared memory usage can lead

to the same problem. In the GeForce 8800 GTX, there are 16kB of shared

memory in each SM, so each block should not use more than 2kB of it, or

the number of blocks will be reduced as described before.

Memory characteristics of the different spaces available in the CUDA

architecture as implemented on a GeForce 880GTX GPU are shown in Table

2.1. The global memory serves as the storage area for the texture and

constant areas. Access to global memory is more efficient when multiple

threads access contiguous elements. On the other hand, shared memory,

whose scope is limited to threads in the same thread block, is used as a local

scratchpad. Constant memory is often used for lookup tables, due to its low

2.3. EMULATION 17

Space Size Latency Read-Only
Global 768MB total 200-300 cycles RW
Shared 16kB/SM w Register Latency RW

Constant 64kB total w Register Latency RO
Texture Up to global > 100 cycles RO
Local Up to global 200-300 cycles RW

Table 2.1: Memory spaces in a GeForce 880GTX GPU (Based on [8, p.3])

latency. Texture memory can be used to perform hardware interpolation

and can be configured to wrap around the edges of the texture. These

characteristics are used in certain applications such as video encoding. Local

memory is usually used for register spilling.

2.3 Emulation

2.3.1 Techniques

An emulator duplicates the functionality of one system using a different

system, in a way that allows the second system to behave exactly like the

first one. [18] The following is a brief list of currently employed emulation

techniques.

• Binary translation[19, 18] is the emulation of a CPU instruction set

(source) on a different instruction set (target) by using code transla-

tion. In static binary translation, a complete executable file for the

source architecture is translated into an executable file of the target

architecture. On the other hand, dynamic binary translation processes

a short sequence of code, typically a single basic block, translating it

and caching the result.

• Native execution[20], also called direct execution, is the execution of

instructions of an emulated CPU directly on the host CPU. This is

obviously only possible when both instruction sets are the same. Priv-

ileged instructions such as I/O are usually not directly executed, as

they would affect the operating system running the emulation. In-

stead, they are usually interpreted.

• Dynamic recompilation[21, 18] is a feature utilized by some emulators

where the emulator recompiles part of a program during execution.

18 CHAPTER 2. BACKGROUND

This is usually done to produce more efficient code that perhaps was

not available to the compiler or perhaps due to a poor optimization.

It is also known as just in time compilation, or JIT.

• Interpretation[18] is the slowest emulation technique available, usu-

ally performed by parsing the emulated assembly code in a high-level

language such as C, and then performing the operations described in

the code.

• Virtualization[20] is a technique used to implement a virtual machine

environment, completely emulating the underlying hardware. All soft-

ware that can run on the simulated hardware should run on the virtu-

alized environment without any modification. A key aspect of virtu-

alization is the emulation of I/O and other privileged operations that

can not be executed directly and must be emulated. It requires in-

struction set (ISA) compatibility between the emulated and emulating

hardware.

2.3.2 Emulators

The following is a list of several modern emulators which utilize the tec-

niques described in Section 2.3.1 and which were taken into consideration

when designing the PTX emulator developed in this thesis.

• QEMU [22] is a generic open source machine emulator and virtualizer.

As a processor emulator, it allows running operating systems and

applications made for one architecture on another one. Besides CPU

emulation, it also provides a set of device models for peripherals such

as video, network or sound cards, which allow it to run numerous

operating systems without any modification.

The host CPUs supported are x86 (both 32-bit and 64-bit) and Pow-

erPC, while the main supported target emulated CPUs are x86, ARM,

SPARC, MIPS, m68k and CRIS. It uses dynamic translation to achieve

reasonable performance, and an accelerated mode supporting a mix-

ture of binary translation and native execution.

Several software-based accelerators were written to speed up execu-

tion. The main one was KQEMU, which speeds up x86 on x86 emu-

lation, by running user mode code directly on the host CPU instead

of emulating it. Unlike Linux Kernel-Based Virtual Machine (KVM),

it does not require hardware CPU virtualization. Linux KVM is a

2.3. EMULATION 19

virtualization infrastructure implemented in the Linux kernel which

supports native virtualization using Intel VT or AMD-V hardware

virtualization support.

• Bochs [23] is a cross-platform open source x86 (32-bit and 64-bit) em-

ulator. It supports emulation of several processors (386, 486, Pen-

tium up to Pentium 4, and several 64-bit processors) and peripherals,

allowing the execution of many guest operating systems such as a

Linux, DOS or Windows. Since it uses interpretation and is writ-

ten in cross-platform code, it runs on many non-x86 systems such as

Solaris (Sparc), GNU/Linux (PowerPC/Alpha), MacOS (PowerPC),

IRIX (MIPS), BeOS (PowerPC), Digital Unix (Alpha) and AIX (Pow-

erPC). Its emulation method results in very slow performance, and so

it is mainly used by hobbyists or OS developers.

• PearPC [24] is a cross-platform open source PowerPC emulator, allow-

ing the execution of operating systems such as a PPC Linux or Mac

OS X to run in other architectures, mainly x86. Besides the CPU, it

also emulates a PCI bridge, an IDE controller, a network controller,

among others. If the host is running in an x86 processor, it translates

PowerPC instructions into x86 instructions and caches the results, in-

curring in a slowdown of only 15 times than the host. On non-x86

platforms, it fully emulates the CPU, making it run 500 times slower

than the host.

• VMWare Inc.[25] is the major virtualization software vendor. Its

products provide virtualized peripherals and processors, allowing users

to set up multiple x86 (32-bit and 64-bit) virtualized operating sys-

tems. They do not emulate an instruction set for different hardware

not physically present, utilizing native execution on user code and dy-

namic translation for kernel code, providing a significant performance

boost, running at 80% of the achievable speed.

• VirtualBox [26] is an x86 virtualization software, originally created by

Innotek and currently developed by Sun Microsystems. It is very

similar in features and characteristics to VMWare Workstation, but

besides a commercial version, an Open Source edition is available.

It supports hardware virtualization using the Intel VT-X and AMD

AMD-V extensions.

20 CHAPTER 2. BACKGROUND

• MINT [27] (MIPS Interpreter) is a simulator for multiprocessor sys-

tems developed in 1994. It provides a set of simulated processors that

run executables compiled for a MIPS R3000 multiprocessor, produc-

ing a list of memory events that eases the development of memory

simulators. It uses a hybrid technique of software interpretation and

native execution, minimizing the emulation overhead.

• The NVIDIA deviceemu (device emulation) emulates a G80 GPU,

allowing CUDA applications to run directly on the CPU. It is activated

by appending the compile option -deviceemu to nvcc while compiling

the application. The emulation technique utilized is unknown, as the

underlying library is closed source and not documented by NVIDIA.

2.4 Software Profiling

Software profiling is the investigation of program behavior using informa-

tion collected during program execution, as opposed to by analyzing the

source code prior to execution [28]. It allows performance analysis, by de-

termining which functions or sections of an application could benefit from

optimization. There are two types of software profiles. Statistical profilers

operate by sampling the program counter of the application at regular inter-

vals, by using interrupts. They allow the target program to run almost at

full speed, although the results presented are not accurate. Instrumenting

profilers, while slowing down the application several orders of magnitude,

provides accurate results.

The most commonly used open source statistical profilers are gprof and

oprofile. Gprof is only capable of analyzing processes in user space for a

given process, so external shared libraries and the OS kernel can not be

checked for bottlenecks. Oprofile, on the other hand, allows shared libraries

and the OS kernel to be checked.

The most commonly used instrumental profiler is valgrind [29]. The

original program does not run directly on the processor. Instead, by using

dynamic recompilation, its code is translated into an intermediate represen-

tation, which is a processor-neutral, SSA-based form. After the conversion,

a valgrind tool can alter the intermediate code, before valgrind converts it

back to machine code to let the host processor run it. This causes execution

be slowed down at least 4 to 5 times. There are multiple tools available,

that allow checking for memory leaks and other memory related problems,

generating callgraphs or detect race conditions.

Chapter 3

Design and Implementation

As explained in Section 1.1, the main objective of this thesis is to create

an emulation library that parses the PTX intermediate assembly language

generated from a CUDA application, generates a new binary object that

substitutes Cubin and then uses it to emulate the functionality of a GPU

and obtain the same numerical result. A general work flow graph for the

emulation library is shown on Figure 3.1. The proposed and implemented

emulation scheme has two main parts: compilation and execution.

PTX Parsing
Intermediate

Code Analysis

OPBF Code

Generation
kernel.opbfkernel.ptx

Compilation

OPBF Code

Loading

GPU Card

Emulation

Execution

kernel.opbf

cpu.elf
Runtime API

Replacement

Figure 3.1: General Emulator Workflow

In the compilation part, we parse the PTX intermediate assembly code

with a lexical analyzer, loading the assembly code into an organized data

structure. This allows the intermediate code to be analyzed, which includes

generating a control flow graph, performing liveness and interference anal-

ysis, and, finally, performing register allocation. Then, a binary OPBF file,

which substitutes the proprietary Cubin format, is written. It contains the

parsed and analyzed intermediate code. In the execution part, the previ-

ously generated OPBF file is loaded, allowing the stored instructions to be

emulated.

21

22 CHAPTER 3. DESIGN AND IMPLEMENTATION

Block Library Status
PTX Parsing libptx Minor additions and bug fixes

Intermediate Code Analysis libasm Major modifications
OPBF Code Generation, Loading libopbf Developed from scratch

Runtime API Replacement libecuda Developed from scratch
GPU Card Emulation libemul Developed from scratch

Table 3.1: Emulation Library Parts

Table 3.1 shows which library performs each of the blocks in Figure

3.1, and whether each block was modified or developed from scratch. The

PTX parsing library, libptx, was already implemented and working, and only

minor modifications and bug fixes had to be applied. The intermediate code

analysis library, libasm, was also previously implemented, but major parts

had to be rewritten, such as the register allocation algorithm. The OPBF

code generation library, libopbf, the runtime API replacement, libecuda, and

the GPU Card Emulation, libemul, were developed from scratch.

The language of choice for all of the libraries comprising this project is

C++. It provides an excellent combination of high level and low level fea-

tures while delivering excellent performance. It was chosen over C because

the size and complexity of the project benefit enormously from using Object

Oriented Programming. It has also provided a key feature of the emulation

process, templates, which will be described in Section 3.5.

There are currently several projects underway that are trying to achieve

the same objectives as this thesis. GPGPU-Sim [30] was developed by re-

searchers at the University of British Columbia. The source code of the tool

was published in July 2009, but is only available to approved members of a

private Google Groups group, so the internal workings are unknown. Barra

[31] was developed by researchers at the Université de Perpignan. Instead

of parsing the PTX output, Barra uses reverse-engineering techniques to

decompile the binary Cubin file. Finally, Ocelot [32] was developed by re-

searchers at the Georgia Institute of Technology. Source code was released

on a BSD License on July 2009. A brief examination of the project rev-

els that it is very similar to this thesis, but strong emphasis has been put

on supporting all of the NVIDIA CUDA SDK sample applications, leaving

out important parts such as Register Allocation. It is the most complete

emulator available at the moment.

3.1. OVERVIEW 23

3.1 Overview

nvcc is the NVIDIA-provided compiler that simplifies the process of compil-

ing CUDA applications [33]. It invokes a collection of tools that implement

the different compilation stages. A simplified flowchart of the compilation

process is shown on Figure 3.2. The first part, performed by the cudafe

tool, separates host (CPU) code from device (GPU) code. The device code

is then compiled into the propietary Cubin format from the generated PTX

intermediate assembly code. The device code can be loaded from the exter-

nal Cubin file using CUDA API calls or optionally be incorporated into the

host device code, as a global initialized data array. In the latter case, the

host code contains extra code included by nvcc, including the translation

code needed to load and launch the kernel. As noted in Figure 3.2, the

compilation to the Cubin format is propietary.

cpu.c

kernel.cu

cpu.o

kernel.ptx

gcc cpu.elf

kernel.cubinnvcc

gcc

ptxas

cudaApp.cu

cudafe

cudafe

optional propietary step
mandatory open step
mandatory propietary step

Figure 3.2: Simplified NVIDIA CUDA compilation flow

Since the Cubin format is proprietary, undocumented, and subject to

change, it cannot be used as the basis of our emulator. The step prior

to the Cubin assembly is the generated intermediate assembly language

PTX code. This code will be parsed and compiled into a Cubin format

substitute, named OPBF (Open PTX Binary Format). The modified com-

pilation flowchart is shown in Figure 3.3. The original workflow still applies,

although the option to include the resulting Cubin data into the host code

is now mandatory. Although the Cubin data itself will not be used, the

translation and launching code included in the host code is needed.

In order to create a Cubin alternative, the PTX intermediate assembly

code must be parsed and analyzed. No code optimizations are applied on the

parsed code, but register allocation through liveness analysis is performed

to reduce the number of registers to a reasonable number. The resulting

code is then encapsulated in a binary OPBF file. This is the last step of

the compilation process.

When a CUDA application with embedded Cubin data is started, a ker-

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

cpu.c

kernel.cu

cpu.o

kernel.ptx

gcc cpu.elf

kernel.opbfnvcc

gcc

opbfas

cudaApp.cu

cudafe

cudafe

kernel.cubinptxas

open step
propietary step

Figure 3.3: Modified libecuda compilation flow

nel call such as matrixMul<<< grid, threads >>>(d C, d A, d B, WA,

WB); in the host code is translated into a normal C function call, such as

device stub Z9matrixMulPfS S ii(d C, d A, d B, 3*16, 8*16), pre-

ceded by a call to the API function cudaConFigureCall(grid, threads).

The device stub kernel function is defined in the kernel cpp file generated

by nvcc, and is simply a wrapper function that contains calls to the API

functions such as cudaSetupArgument() or cudaLaunch(), which config-

ures and launches a kernel, respectively.

All of the CUDA API functions are provided by the libcudart library,

the CUDA runtime library provided by NVIDIA. To allow emulation, a

drop-in replacement of the runtime library, with a re-implementation of all

the functions, will be developed. A call to the cudaLaunch() function, for

example, will not load and run the Cubin data in the GPU as the original

function probably does. Instead, it would instruct the emulation library

to load and run the previously generated OPBF file inside the emulated

environment.

3.2 PTX Parser (libptx)

In order to analyze the code in the PTX intermediate assembly language

produced by the nvcc compiler from the higher level kernel source code, it

must first be parsed. A PTX file contains plain-text assembly language in-

structions, following the instruction set specification available in [9]. Listing

3.1 contains a small fragment of the PTX code generated from the matrix

multiplication code.

Parsing complex strings that follow a formal description such as PTX

code is usually done by using a parser generator. Its input is the gram-

mar of a programming language, while its output is the source code of a

parser. Basically, it eases the otherwise complex task of creating a parser

3.2. PTX PARSER (LIBPTX) 25

word token
mul24 INSTRUCTION
lo BITS
s32 TYPE
$r2 REGISTER
, COMMA

$r1 REGISTER
, COMMA
16 INTEGER

Table 3.2: Sample tokenization of the PTX code mul24.lo.s32 $r2,$r1,16

by hand, which would usually involve a large number of string comparisons

and conditional code. The tools chosen for the task were the flex/bison duo

[34].

77 cvt.s32.u16 $r1, %ctaid.x;

78 mul24.lo.s32 $r2, $r1, 16;

79 cvt.s32.u16 $r3, %ctaid.y;

80 ld.param.s32 $r4, [__cudaparm__Z9matrixMulPfS_S_ii_wA];

81 mul.lo.s32 $r5, $r3, $r4;

82 mul.lo.s32 $r6, $r5, 16;

83 add.s32 $r7, $r6, $r4;

84 sub.s32 $r8, $r7, 1;

85 cvt.s32.u16 $r9, %tid.x;

86 cvt.s32.u16 $r10, %tid.y;

87 ld.param.s32 $r11, [__cudaparm__Z9matrixMulPfS_S_ii_wB];

88 setp.lt.s32 $p1, $r8, $r6;

89 mov.f32 $f1, 0f00000000;

90 @$p1 bra $Lt_0_17;

Listing 3.1: matMul PTX code fragment

Flex (fast lexical analyzer generator) is a free implementation of lex, an

automatic lexical analyzer, allowing the conversion of a character sequence

into a token sequence. It requires a set of rules, specifying which set of

characters form each token. Take, for example, line 78 of Listing 3.1. It

could be tokenized as shown in Table 3.2. The grammar shown should be

completely defined in a file which is passed to flex. All possible tokens should

be defined in that grammar file. Lex would then output that grammar,

serving as the input for bison. GNU bison is a free implementation of yacc,

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

which is a parser generator, that converts a grammar into C parser code for

that grammar.

Instruction

BRSInstruction

RSInstruction CBInstruction SVSInstruction RSTInstruction GETInstruction UNIInstruction SOTInstruction OPInstruction

Figure 3.4: Instruction Classes Hierarchy

Parsed instructions are stored in a hierarchy of C++ classes, which

all derive from the base Instruction class. These classes, as shown in

Figure 3.4, are RSInstruction, BRSInstruction, CBInstruction, SVSIn

struction, RSTInstruction, GET Instruction, UNI Instruction, SOTIn

struction and OPInstruction. Instructions are organized into these differ-

ent types according to the number of modifiers and operands. The MUL24

opcode performs the multiplication of the 24 most significant bits of a reg-

ister and an integer, and stores the result in a third register. It can have up

to three modifiers: bits to consider, rounding and saturation. Therefore, it

is a BRS instruction. An Instruction object contains all the instruction

information, such as the operands, modifiers or source and/or destination

type.

Obviously, a proper flex grammar definition must be in place in order

for the bison code to be straight forward. Listing 3.2 shows a bison seman-

tics snippet for the previously mentioned MUL24 opcode. It shows how

the opcode is parsed as a sequence of tokens: the MUL24 token, a bit to-

ken, a TYPE token, and so on. Then, the Instruction object is created

and initialized with the instruction modifiers by the BRSIns function. The

addReg and addValue store the instruction parameters. In this case, the

destination and source registers and the multiplication constant.

| MUL24 bit TYPE reg COMMA reg COMMA value {

BRSIns(_mul24, (bit_t)$<i>2, _no_rnd, false, (type_t)$<i>3);

addReg(Dst, (type_t)$<i>3, $<reg>4);

addReg(Src, (type_t)$<i>3, $<reg>6);

addValue(Src, (type_t)$<i>3, $<value>8);

}

Listing 3.2: MUL24 opcode bison semantics

A basic working version of the code in libptx, including the PTX gram-

mar and parser, had already been developed by my advisor Isaac Gelado

3.2. PTX PARSER (LIBPTX) 27

prior to the beginning of this thesis. There have been, however, numerous

additions and bug fixes applied to the code during the thesis development,

including the following.

• Added the original PTX line number to an instruction to ease the

debugging process, particularly basic block visual identification, which

can now be done by the start and ending source code line.

• Added support for zero-sized vectors, which use all the available shared

memory space. This technique is used by the sad benchmark. (Section

4.1)

• Although PTX defines all fundamental types (signed integer, unsigned

integer, floating point, untyped) with different lengths (8, 16, 32 and

64 bits), these lengths were originally simplified to just 32 and 64

bits. This simplification worked for most cases, but it did not for

the sad benchmark, as several kernel parameters were 16 bit integer

arrays, which were incorrectly treated as 32 bit integer arrays due to

the simplification. Because of this, full support for all lengths was

added. More details are available in Section 3.4.

• Added support for vectors in the LD and ST opcodes, which allow di-

rect access to up to four-element vectors in a single instruction. These

instructions are parsed as a single instruction, but they are split into

separate instructions for the OPBF generation. Therefore, an instruc-

tion such as ld.global.v4.u32 $r9,$r10,$r11,$r12, [$r8+0] is

split into four separate instructions: ld.global.u32 $r9,[$r8+0],

ld.global.u32 $r10,[$r8+4], ld.global.u32 $r11,[$r8+8] and

ld.global.u32 $r12,[$r8+12].

• Added grammar support for the TEX opcode, as described in Section

3.5.

• Fixed a register allocation bug, as described in Section 3.3. It was

caused by the ST opcode when used with indirections, such as in the

example case st.volatile.shared.u32 [$r107+0], $r114. In this

case, register 114 was marked as the source register and register 107

was marked as the destination register. This was incorrect, due to the

fact that they are both source registers, as register 107’s value is used

to determine the actual memory address to access. This bug caused

register 107 to be overwritten before reaching this instruction, as it

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

was marked as a destination and not as a source, and therefore was

reused by the register allocation process.

• Fixed minor bugs, such as the incorrect parsing of the MUL24 opcode,

the incorrect parsing of negative float values.

• Added support for the volatile modifier in the grammar, which was

added in the PTX ISA 1.1. Due to the emulation architecture, this

modifier is simply ignored, as all memory locations are considered

volatile.

3.3 Intermediate Code Analysis (libasm)

The parsed instructions that result from the parsing performed by libptx

are stored in a vector of Instruction objects. libasm’s primary goal is to

perform register allocation on the PTX code. As seen on Listing 3.1, the

generated intermediate assembly language code does not perform register

allocation: it always uses a new register, without reusing unused ones.

Register allocation is the process of assigning a big number of variables

onto a reduced number of CPU registers. On a GPU architecture, the

number of registers available is abnormally large (8000) compared to a con-

ventional CPU (16 in a 32-bit x86 architecture). As noted in Section 2.2,

however, if the number of registers per thread is greater than 10, the total

available number of threads will be reduced. Therefore, register allocation

is surely performed on the PTX code when assembling the Cubin format.

Emulating it correctly, therefore, requires a reasonable register allocation

to be performed on the code.

A basic requirement of register allocation is building a control flow graph

(CFG) of the application code. A CFG represents all paths that can be

taken during the execution of an application. Figure 3.6 shows a simple

CFG. In a CFG, each node presents a basic block (BBL), which is a group

of consecutive instructions without any jumps or any jump destinations.

Therefore, a jump destination marks the start of a BBL, and a jump marks

the end of a BBL.

In order to construct the CFG, all BBLs in the code must be identi-

fied. In our case, this is performed in two steps. First, when parsing the

PTX code, as described in Section 3.2, a first approximation is to split the

code into BBLs according to those lines with labels: these mark the start

of at least some of the BBLs. Further along, in libasm, these BBLs are in-

3.3. INTERMEDIATE CODE ANALYSIS (LIBASM) 29

�����

������

�������

�������

�����	

�	����� �������

�������

�����
�

�������

������	

�
���
�

����	��

	���	��

	�	�	��

�������

		��			

		��	��

	���	��

	�	�	��

������

	�	�	��

	���	
�

	
��	
� 	
��	
�

	���	��

	���	��

	�	�	��

�������

	���	��

�������

�������

������	

�������

�������

�������

��
��	�

�	���	�

�
�����

�������

������

�������

�������

�	���	�

�������

Figure 3.5: tpacf benchmark CFG

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

spected for jump instructions, and split accordingly, resulting in a complete

identification of all BBLs.

An initial version of the register allocation implementation was devel-

oped by my advisor Isaac Gelado. Basically, registers were freed when a

their values were not found to be used in the remaining BBLs of the pro-

gram flow. Then, a register map of the allocated registers was propagated

to each BBL edge. This version worked on small CFGs, such as the matrix

multiplication benchmark (Section 4.1) CFG shown on Figure 3.6, and was

relatively efficient, in that it allocated a small number of registers. The

BBL node names identify the source code line intervals contained in each

block. The graph nodes, BBLs, were visited in a depth-first search order, in

the case of Figure 3.6, this order would be 77:90, 91:122, 126:188, 189:189,

194:203, 191:191.

�����

������

��������������

��	���

�������

Figure 3.6: matMul benchmark CFG

Problems arose, however, when more complex benchmarks such as the

tpacf benchmark were tested. The complete CFG for this benchmark is

shown on Figure 3.5. As we can see, this was a much more complex graph,

and after extensive debugging, the register allocation algorithm was found

to be failing. Later on, it was discovered that although the PTX code

was in static single assignment form (SSA) for small kernels, it was not for

larger-sized kernels, leading to complications.

Figure 3.7 shows a small subset of the tpacf benchmark CFG, from its

upper part. As we can see from the graph, the program execution flow

could take two distinct paths, either through the 129:143 BBL (lines 129

3.3. INTERMEDIATE CODE ANALYSIS (LIBASM) 31

�����	

�	����� �������

�������

Figure 3.7: Subset of the tpacf benchmark CFG

to 143 from the PTX code) or thorough the 146:161 BBL. The register

allocation algorithm failed to analyze that, even if a register was not used

in the path that goes through the 129:143 BBL, it could be used in the path

that went through path 146:161. This caused several registers to be freed

and overwritten in the 119:127 BBL, even if they were used in the 146:161

BBL.

In order to fix this bug, register dependencies had to be propagated to

parallel branches. That is, when reaching node 129:143, registers that were

previously allocated in 119:127 should not be reused in node 129:143. The

same reasoning applied to node 146:161. Then, when reaching a collecting

node such as 163:165, registers that could be freed in both branches are

actually freed. In order to perform this, the CFG must be visited in a

different order, a balanced search in this case, which in this case would be

119:127, 129:143, 146:161 and finally 163:165.

This solution was successfully implemented, although it resulted in an

excessively high number of registers, due to it being an excessive conserva-

tive approach, specially in very highly branching cases such as those shown

in Figure 3.5. Problems arose, however, when applying the algorithm to

the rpes CFG. Several hacks had to be applied in the algorithm to cor-

rectly traverse that CFG. It was clear that the existing register allocation

approach was incorrect, with a high number of registers consumed and code

changes needed when the complexity of the CFG increased, due to the more

challenging balanced graph visiting.

Several popular register allocation algorithms were then considered, to

completely replace the existing code. There are several long-established

algorithms to perform register allocation, the most popular one being graph

coloring. This method usually results in an effective allocation without a

major cost in compilation speed [35]. The final working register allocation

that was implemented was via coloring of chordal graphs [36, 37].

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

In this implementation, register allocation by graph coloring [35] is per-

formed in the following steps, as shown in Figure 3.8. First, liveness analy-

sis must be performed on the previously obtained CFG. Then, interference

analysis is performed on the CFG, building an interference graph. Finally,

registers are assigned by greedy coloring.

CFG

Generation

Liveness

Analysis

Interference

Graph

Instruction

Vector

Greedy

Colouring

Figure 3.8: Register Allocation Workflow

Liveness analysis is performed by calculating, for each BBL in the CFG,

which registers are live in each BBL of the CFG. A register is considered

to be live if its value is used at some point during the remainder of the

code, without redefining it. It is dead if its value is redefined before using

it, or not used at all. We have implemented liveness analysis by using

backward propagation [38]. Let us take, for example, the instruction x = y

+ z. According to this implementation, y and z are live at this point since

they are used in a calculation, while x is dead since its value is overwritten.

It is easy to go backwards, starting from the last instruction, and apply

these two rules. This approach is only valid on straight-line code, without

jumps and conditional branches. In that case, several iterations should be

made until no further information is acquired, typically 2 or 3 iterations are

needed.

Two registers are said to interfere if there are two BBLs where they are

simultaneously live. In this case, it is possible that they contain different

values at this point. Therefore, two registers that do not interfere can be

merged into a single register. The interference graph is built to hold the

interference information of all the registers. The nodes of the interference

graph are the application registers. An undirected edge is inserted between

two nodes if the two virtual registers interfere and should be assigned to

different real registers. For a general instruction, an edge is created between

the assigned register in that instruction and any future live registers. On a

mov instruction, an edge is created between the destination register and all

live registers live except for the source register.

Register allocation is performed via graph coloring [36, 37]. The problem

of assigning colors to a graph (coloring) with K colors is NP-complete for

K = 3. Fortunately, programs in Static Single Assignment (SSA) form

have chordal graphs, which makes the problem achievable in linear time.

A program is said to be in SSA form if every variable is assigned exactly

3.4. OPBF GENERATION (LIBOPBF/OPBFAS) 33

once. Even if the program is not in strict SSA form and does not have

a strict chordal graph, as some of our benchmarks, the algorithms behave

reasonably well. In that case, the minimal number of registers (colors) is

not used.

A node in a graph is simplicial if all neighbors of a node are connected to

each other. An ordering of all nodes in a graph is called simplicial elimina-

tion ordering if the last node of the list is simplicial. A simplicial elimination

ordering can be found in linear time by implementing a maximum cardinal-

ity search. Given an ordering, greedy coloring is applied by assigning colors

to the vertices in the exact simplicial order that has been found, always

using the lowest available color. If the graph is chordal, this algorithm is

guaranteed to use the fewest possible colors [38].

The chosen register allocation implementation is simpler than other more

efficient implementations, and works for all tested CFGs. It provides rea-

sonable efficiency: the matrixMul kernel occupies 24 registers. The original

implemented algorithm used 17 registers, while the modified algorithm used

24 registers. The NVIDIA implementation of the PTX compiler uses only

14 registers, mainly due to dead-code elimination.

3.4 OPBF Generation (libopbf/opbfas)

OPBF files are generated from a PTX file by the opbfas tool, which uses the

previously described libptx and libasm to produce an OPBF file from a PTX

file. Listing 3.3 shows a basic outline of the opbfas code. First, the input

PTX file is parsed using libptx, storing a vector of Instruction objects,

as described in Section 3.2. Then, register allocation is performed on the

code, as described in Section 3.3. Finally, OPBF instructions are generated

from PTX instructions and the binary file that contains the instructions is

written.

open(PTX file);

parse(); /* using libptx */

registerAllocation(); /* using libasm */

generateBinaryCode(); /* using libopbf */

writeBinaryCode(); /* using libopbf */

Listing 3.3: opbfas basic pseudo-code

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

OPBFOp

OPBFRbs

OPBFRs OPBFCb OPBFMem OPBFRst OPBFGet OPBFUni OPBFSot OPBFOb

Figure 3.9: OPBFOp Classes Hierarchy

OPBFOp *OPBFOp::create(const PtxProgram &global, const PtxFunction

&function, const Labels &labels, const Instruction &i)

{

switch(getFormat(i.op())) {

case _rbs:

if(i.op() == _mul || i.op() == _div) {

return new OPBFRbs(global, function, labels,

dynamic_cast<const BRSInstruction&>(i));

} else {

return new OPBFRs(global, function, labels,

dynamic_cast<const RSInstruction&>(i));

}

case _cb:

return new OPBFCb(global, function, labels,

dynamic_cast<const CBInstruction&>(i));

case _svs:

return new OPBFMem(global, function, labels,

dynamic_cast<const SVSInstruction&>(i));

case _rst:

return new OPBFRst(global, function, labels,

dynamic_cast<const RSTInstruction&>(i));

case _get:

return new OPBFGet(global, function, labels,

dynamic_cast<const GETInstruction&>(i));

case _uni:

return new OPBFUni(global, function, labels,

dynamic_cast<const UNIInstruction&>(i));

case _op:

return new OPBFOb(global, function, labels,

dynamic_cast<const OPInstruction&>(i));

}

return NULL;

}

Listing 3.4: OPBFOp creation from a PTX Instruction

3.4. OPBF GENERATION (LIBOPBF/OPBFAS) 35

Similarly to the Instruction class hierarchy, OPBFOp is a class hierar-

chy, with OPBFRs, OPBFRbs, OPBFCb, OPBFMem, OPBFRst, OPBFGet, OPBFUni

and OPBFOb as subclasses. This is shown in Figure 3.9. Each of these sub-

classes represents the same type of instructions that its Instruction class

counterpart represents. An OPBFOp object has all the instruction attributes

needed to perform an operation: the exact instruction type, a source and

destination register vector, an immediate value vector, among others.

The OPBF instructions are generated from the PTX instructions in

two passes, to be able to resolve all labels. This is due to the fact that,

although PTX code uses labels for both jump destinations and to reference

user variables (as seen in Listing 3.1, lines 90 and 80 respectively), in order

to reduce the number of lookups performed during the emulation process,

all labels are resolved to memory addresses at compilation time, since we

are generating static code.

In the first pass, a new OPBFOp object is generated for each instruction.

The OPBFOp::create method, shown in Listing 3.4, is called. Labels for

instructions that have not yet been generated will not be able to be resolved,

and so any instruction that references unknown labels will be marked as

invalid and added to a pending instructions vector. In the second pass,

all of the pending instructions are visited, trying to resolve all remaining

labels. At this point, all labels should be able to resolve, since all of the

OPBFOp objects have been created.

Once all the instructions have been created, all of the information is

written into a binary file. It should be noted that neither the binary OPBF

file nor the format itself is optimized for hardware execution, as is probably

the case with the NVIDIA Cubin format. It is solely intended for emulation

purposes. There are several parts to the OPBF file: the OPBF Header,

which includes the OPBF Kernel Headers, the code, the global descriptors,

variable initialization data, the kernel descriptors, and the label table.

The general OPBF file header is shown in Listing 3.5, and is the first

information found in the file. It contains a vector of kernel structures, as

shown in Listing 3.6, which contain basic information for each kernel in

the file, such as the kernel name or the entry point. The descriptors (both

global and kernel descriptors) contained in the OPBF file are structured as

shown in Listing 3.7. These hold information for the size of each descriptor,

which correspond to the memory spaces defined in the PTX specification.

The state spaces defined by PTX are registers (.reg), special registers

(.sreg), constant memory (.const), global memory (.global), local memory

(.local), parameters (.param), shared memory (.shared), surface memory

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

(.surf), and texture memory (.tex). The OPBF file adds an extra space for

the kernel code (.code). The different memory spaces correspond to all the

available memory spaces available in the GPU architecture, as described in

Section 2.2. The parameters space is used to access user parameters.

struct opbf_header {

uint32_t nkernels; /* Number of kernels in the file */

struct opbf_kernel kernels[nkernels];

};

Listing 3.5: OPBF Header Structure

struct opbf_kernel {

char name[128]; /* Kernel name */

uint32_t entry; /* Entry point for the kernel */

uint32_t nparams; /* Size of the kernel parameters */

uint32_t offset; /* Offset inside the file for the init data */

uint32_t params[nparams]; /* Size of each parameter */

};

Listing 3.6: OPBF Kernel Structure

struct opbf_descriptor {

uint32_t address;

uint32_t size;

};

Listing 3.7: OPBF Descriptor Structure

struct op_common {

uint8_t format:4; // Instruction format

uint8_t sreg:2; // Number of source register

uint8_t dreg:2; // Number of destination registers

uint8_t pred:1; // Has predicate?

uint8_t npred:1; // Negated Predicate?

uint8_t imm:1; // Has immediate value?

uint8_t op:5; // Operation number

};

Listing 3.8: OPBF Opcode Common Structure

The OPBF code section contains all of the kernel code, the parsed PTX

instructions. All OPBF opcodes contain two sub-structures: a common

structure for all opcodes (shown in Listing 3.8 and in Figure 3.10) and a

3.4. OPBF GENERATION (LIBOPBF/OPBFAS) 37

specific structure for each opcode class. The common part of the structure

stores basic information common to any opcode: the instruction format

(OPBFRs, OPBFRbs, OPBFCb, OPBFMem, OPBFRst, OPBFGet, OPBFUni or OPB

FOb), the number of source and destination registers, if the opcode has a

predicate, if that predicate is negated, if there is an immediate value and

the exact opcode number.

Instruction Format Src RegsDst Regs

Opcode

Bit 0 Bit 3 Bit 4 Bit 7

Pred ! Pred Imm

Figure 3.10: OPBF Opcode Common Header

After the common opcode header comes a format-specific opcode struc-

ture. Listing 3.9 shows the specific header for an Rbs opcode, which is the

most common one. The rounding, bit and saturation modifiers are included

in the specific opcode header and not in the common header because not all

opcode formats have these attributes. By doing this, the code size is reduced

significantly. The operand type contains a 4-bit encoding of the source and

destination operand types, following the tiss format: type (int, float), sign

(signed, unsigned) and size (8, 16, 32, 64). Thus, for example, 0111 is a

signed 64 bit integer. After the specific opcode header, the operands are

written, such as the source and destination registers, the predicate and the

immediate values.

struct op_rbs {

uint8_t rnd:2; // Rounding Modifier

uint8_t bit:2; // Bit Modifier

uint8_t sat:1; // Saturation Modifier

uint8_t type:4; // Operand Type

uint8_t rev:7; // Reserved

};

Listing 3.9: OPBFRbs Opcode Specific Structure

The OPBF files are particularly small due to the highly optimized data

structure used. Therefore, the matrix multiplication kernel, for example,

occupies 1856 bytes, while the cubin file for the same kernel occupies 2861

bytes. All of the tested kernels, as described in Section 4.1, are at least 30%

smaller than their Cubin counterparts.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

0x00000000 [9] _cvt._rn._s32._u16 r4108 r20

0x00000009 [13] _mul24._rn._hi._s32 r4188 r4108 (4) 16

0x00000016 [9] _cvt._rn._s32._u16 r4128 r22

0x0000001f [11] _ld.__cons._s32 r4132 (4) 0xc002000c

0x0000002a [11] _mul._rn._lo._s32 r4096 r4128 r4132

0x00000035 [13] _mul._rn._lo._s32 r4184 r4096 (4) 16

0x00000042 [11] _add._rn._hi._s32 r4096 r4184 r4132

0x0000004d [13] _sub._rn._hi._s32 r4172 r4096 (4) 1

0x0000005a [9] _cvt._rn._s32._u16 r4156 r8

0x00000063 [9] _cvt._rn._s32._u16 r4120 r10

0x0000006c [11] _ld.__cons._s32 r4112 (4) 0xc0020010

0x00000077 [11] _setp._lt._s32 r4100 r4172 r4184

0x00000082 [11] _mov._rn._hi._f32 r4096 (4) 0f00000000

0x0000008d [9] @r4100 _bra (4) 0xe00004d5

Listing 3.10: matMul OPBF code fragment

A disassembly tool was developed for debugging purposes, opbfdis, tak-

ing an OPBF file as input and displaying the opcodes, operands, modifiers,

and the global kernel descriptors. This was very straight forward to do,

thanks to the object oriented approach taken. Listing 3.10 shows the first

14 lines of output of the matrix multiplication kernel. These correspond to

the PTX instructions as shown in Listing 3.1. Note the absence of labels,

such as in the ld, mov and bra statements.

3.5 Emulation Library (libemul)

Once an OPBF file has been created from a PTX source, it can be loaded

by the emulation library libemul and executed, obtaining the same out-

put as executing on the GPU. libemul has several classes that model each

architectural component, as described in 2.2.

The Card class models a GPU, and contains objects and properties that

model different parts of the architecture, such as one or more multipro-

cessors (MP class) or the global, texture and constant memory spaces. It

provides methods such as allocating global memory, translating device ad-

dresses to host addresses or loading OPBF files, to the instantiating entity,

which will be described in Section 3.6. The MP class models a streaming

multiprocessor, and so it contains a number of processors, each with its

own register and local memory. The shared memory space is also emulated

at this level. Each MP object contains a list of Core objects. The Core class

3.5. EMULATION LIBRARY (LIBEMUL) 39

Grid

MP
1

Shared Memory

Texture Memory

Constant Memory

MP
2

MP
N...

Core
1

Local Mem

Registers

...

Card

Global Memory

Core
2

Local Mem

Registers

Core
M

Local Mem

Registers

Figure 3.11: libemul General Diagram

models a scalar processor, as defined by the architecture. It contains a set

of registers and local memory, program counter, and thus contains the code

belonging to opcode execution. This hierarchy is shown in a graphic and

clearer way in Figure 3.11. Note how this is entirely based on the CUDA

thread hierarchy, as seen in Figure 2.2.

The emulation library is multi-threaded, using the standard POSIX

threads library pthreads. If a multi-core CPU is available for execution,

the ECUDA THREADS environment variable can be used to set the number of

MP objects that will be instantiated. Thanks to the CUDA architecture, the

separation into different threads is straight forward: the total number of

blocks can be divided among all the available multiprocessors. Thus, in our

implementation, if T threads are available, MP object N works with thread

blocks T*k+N. If 3 cores were available and therefore 3 MP objects were

instantiated, the first MP object (0) would execute blocks (0, 3, 6, ...), the

second MP object (1), would execute blocks (1, 4, 7, ...) and the third MP

object (2), would execute blocks (2, 5, 8, ...). In an MP instance, the blocks

are executed sequentially. This block separation into threads allows for a

very efficient parallelization, as will be discussed in Section 4.4.

All of the memory spaces defined in the CUDA architecture are imple-

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

Start End Section Description
OxOOOOOOOO OxOOOOOfff .sreg Special Registers
OxOOOO1OOO OxOOOO2fff .reg General Purpose Registers
OxOOOO3OOO Oxbfffffff .global Global Memory
OxcOOOOOOO OxcOOOffff .const Constant Memory
OxcOO1OOOO OxcOO1ffff .local Local Memory
OxcOO2OOOO OxcOO2ffff .param Parameters/Stack
OxcOO3OOOO OxcOOfffff .shared Shared Memory
OxcO1OOOOO OxdOO7ffff .surf Surface Memory
OxdOO8OOOO Oxdfffffff .tex Texture Memory
OxeOOOOOOO Oxffffffff .code Code Memory

Table 3.3: libemul Device Memory Map

mented in the emulation library. In fact, all of the hardware resources,

including registers and special registers are included in the memory map,

as shown in Table 3.3. The texture, constant and global memory are stored

in the Card class, while the MP class holds the shared memory and the Core

class holds the registers and local memory, including the special registers.

All of these spaces are simply implemented as a data vector, except for the

special registers, which are stored as properties of the Core class. It should

be noted that, although all data type size (8, 16, 32 and 64 bits) registers

are supported, internally they are all stored as 32-bit or 64-bit registers, in

order to simplify the allocation process and ease address translation.

Each of the classes in the emul hierarchy implement a translation method

(translate()) that translates device addresses to host addresses. The ad-

dress translation is straight forward: host memory space vector start address

+ (device address - device space start address). Each class resolves the ad-

dresses for the spaces for which it stores the actual data. Thus, for example,

the Core class handles translations for normal and special registers and lo-

cal memory. Other cases are handled by calling the MP class method, which

behaves in the same way. Thus, for example, the ld. cons. s32 r4132

(4) 0xc002000c instruction (taken from Listing 3.10, line 4) requires two

device address translations: one for register 4132 and another for constant

space address 0xc002000c. The first one will be translated directly by the

Core class translation, while the constant memory address will be translated

by the MP class.

After taking into consideration all of the emulation techniques described

in Section 2.4, a refined interpretation method was chosen. The main reason

3.5. EMULATION LIBRARY (LIBEMUL) 41

for this was the excessive complexity of implementing binary translation for

x86, which would be a non-trivial task because of the important differences

between the x86 ISA and the PTX ISA and the two architectures.

In order to reduce the amount of lookups during execution, a code cache

was implemented. When loading a kernel, an encapsulating object of the

Opcode class is created for each OPBF instruction. A lookup function,

getExe(), performs a lookup on a vector by the opcode number, available

via the OPBFOp object, returning a pointer to a method of the Core class

that actually implements the given opcode. The Opcode object contains

the OPBFOp object and the previously mentioned pointer. The code cache is

implemented as an STL map container, storing the program counter value

for an opcode as the key and the Opcode object as the value. Therefore,

during execution, no interpretation takes place. When a thread reaches

a certain execution point, the code cache provides a fast lookup of which

function should be executed by looking up the program counter value. The

code cache is analogous to the trace cache found in the Intel Pentium 4

architecture, where instructions that have already been fetched and decoded

are stored in a cached, although trace caches store one or several BBLs, not

individual instructions [39].

The main execution loop for a kernel is implemented in the MP class.

In the execute() method, we iterate over the Core object array, calling

the Core::execute() method. Originally, this method performed a lookup

in the code cache via its program counter to get Opcode object and then

execute the opcode method. This was improved in later versions. Taking

into account the fact that all cores run in parallel, and therefore, they are

usually all at the same execution point, the MP::execute() method can

perform a single code cache lookup and pass the resulting Opcode object to

all cores.

An opcode can access different operand types (register, immediate, mem-

ory, address) and different data types (floats, integers). As mentioned above,

the actual methods that implement all of the PTX ISA opcodes are avail-

able in the Core class. In order to handle all operand and data types, a lot

of conditional code was originally added to the execution functions. This

proved to be extremely inefficient, as the operand and data types for an op-

code are static. Therefore, having conditional code to distinguish the cases

at runtime is inefficient and redundant, as the result will not vary.

C++ templates were introduced to reduce the amount of code needed to

implement an opcode and to eliminate the need to run type distinguishing

code at runtime. [40]. It is a feature of C++ that allow functions to operate

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

with generic types. That is, to code a single function instead of having to

code different functions for different data types or to perform runtime type-

decision code. Listing 3.11 shows a basic example of a template. With a

single function, any two operands can be compared. The calling syntax

includes the type, so a call to max<float>(4.5, 8.5) would invoke max

function with float operands. This is only an example, as an operation as

simple as calculating the maximum of two values could be achieved with a

much simpler preprocessor macro.

template <typename T>

T max(T a, T b)

{

if(a > b)

return a;

else

return b;

}

Listing 3.11: C++ template example

When a C++ program with templates is compiled, on every call to

a templatized function, the compiler creates a copy of the function with

the templatized parameters. On the previous example, the compiler would

generate a copy of the max function with double parameters. Therefore, the

use of templates increases the binary size, but does not add any runtime

overhead.

In our case, an opcode template will have a template parameter for every

operand type, and one or several template parameters based on the opcode

data types. For example, the mul opcode (Listing 3.10, line 5) has a data

type parameter and three operand type parameters. The data parameter

can be an 8, 16, 32 or 64 bit signed or unsigned integer, a float, or a double.

The first and second operand types are always registers (the destination

and source registers, respectively), but the third operand (the second source

operand for the multiplication) can either be a register or an immediate. All

of these combinations must be supported, since an opcode could potentially

use any of them, and that information will only be available when a kernel

is loaded.

A fragment of the code that decides, at runtime, which mul opcode

implementation should be invoked is shown in Listing 3.12. This code is

very repetitive and it can be automatically generated from a data type

list and small amounts of information available for each opcode. This is

3.5. EMULATION LIBRARY (LIBEMUL) 43

accomplished by a Perl script that is executed on compilation time, which

generates a function similar to the one shown in Listing 3.12 for each opcode.

It should be noted that these functions take an OPBFOp operand as a

parameter, which is used for obtaining the operation type (op.type()), or

if the opcode has an immediate value (op.hasImmediate()).

Exe Core::ExeMul(const OPBFOp &op) {

switch(op.type()) {

case _u32:

if(op.hasImmediate())

return Mul<uint32_t, reg, reg, imm>;

else

return Mul<uint32_t, reg, reg, reg>;

case _s32:

if(op.hasImmediate())

return Mul<int32_t, reg, reg, imm>;

else

return Mul<int32_t, reg, reg, reg>;

case _s16:

if(op.hasImmediate())

return Mul<int16_t, reg, reg, imm>;

else

return Mul<int16_t, reg, reg, reg>;

case _u16:

if(op.hasImmediate())

return Mul<uint16_t, reg, reg, imm>;

else

return Mul<uint16_t, reg, reg, reg>;

case _s8:

if(op.hasImmediate())

return Mul<int8_t, reg, reg, imm>;

else

return Mul<int8_t, reg, reg, reg>;

...

Listing 3.12: Mul Template Invocation

These functions are only executed when generating the code cache, since

the type parameters are fixed and cannot change at runtime. This has a

strong positive impact on performance, since once the code cache is built, a

pointer is available to the template version of the opcode execution function

for each opcode. Therefore, once a kernel execution launches, no more type

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

comparisons are necessary.

This approach also significantly reduces the amount of code needed to

actually implement an opcode. Listing 3.13 shows the complete code of the

function that implements the mul opcode. Thanks to templatization, the

code is extremely straight forward. After obtaining pointers to the operands,

they are simply multiplied and stored back. Then, the value of the program

counter is incremented. This process makes opcode implementation straight

forward. Because of this, about 60% of the opcodes defined in the PTX ISA

have been implemented. Implementing the rest of them should be trivial.

template<typename T, operand_t D, operand_t A, operand_t B>

static void Mul(Core *core, const OPBFOp &op) {

T *a, *b, *d;

getValues<T, D, A, B>(core, op, d, a, b);

*d = *a * *b;

core->incPC(op.size());

}

Listing 3.13: Mul Executor Implementation

getValues() is a templatized functions that obtains pointers to the

opcode operands. If the mul operand executor function shown above was

called with data type T and operands D, A, and B, the getValues() function

with the same parameters would be invoked. It allows a single function call

to obtain operands as different as an immediate, a register or a memory

location. Listing 3.14 shows the simplest getValues() implementation, with

only two operand parameters. It contains calls to templatized functions

getSource() and getDestination(), which retrieve pointers to the source

and destination operands, respectively.

template<typename T, operand_t D, operand_t A>

static inline void getValues(Core *c, OPBFOp &op, T *&d, T *&a) {

a = CoreExtractor<T, A>::getSource(*c, op, 0);

d = CoreExtractor<T, D>::getDestination(*c, op, 0);

}

Listing 3.14: getValues() Implementation

Since the actual retrieval of the source and destination operands is dif-

ferent if an operand is a register, a memory address or an immediate value,

complete template specialization is done, providing different versions of the

getSource() and getDestination() functions. The register versions sim-

ply call the translation methods to obtain the host address of the register.

3.6. CUDA RUNTIME LIBRARY (LIBECUDA) 45

The immediate version simply obtains the immediate location, which is

stored in the OPBFOp object. The indirection version first obtains the ad-

dress of the register that stores the address, obtains the value, and translates

it to a host address. The address version simply returns the translation of

the address, which is stored as an immediate and retrieved in the same way.

3.6 CUDA Runtime Library (libecuda)

The CUDA Runtime Library libecuda serves as a replacement for the libcu-

dart runtime library provided by NVIDIA. It implements several meth-

ods of the documented CUDA API, such as cudaMalloc or cudaMemcpy

ToArray, which basically perform execution control and memory manage-

ment. Several undocumented methods such as cudaRegisterFunction or

cudaRegisterTexture have also been implemented, as calls to them are

inserted into the host code by the nvcc compilation flow.

When a CUDA application with the Cubin data included in the host

code is started, as explained in the chapter overview, a kernel call is trans-

lated into a conventional C function call which acts as a wrapper to several

API function calls. Several other API calls are inserted before and after

the kernel call. All of these functions are implemented in the NVIDIA

CUDA runtime library, and therefore they must all be reimplemented, or

the application would not link correctly.

An initialization function init is defined in the library, which is loaded

before the program execution starts. In this function, a Card object (as de-

scribed in Section 3.5) is instantiated. The current directory is searched for

OPBF kernel files, which are loaded using the Card::addFile() method.

The ECUDA PATH environment variable can also be used to define which

directories should be searched for OPBF files. The ECUDA THREADS envi-

ronment variable is also read at this point, setting the number of threads

that will be used to run the emulation. The initialization function is needed

because there will be numerous function calls prior to the kernel execution

that will requiere the Card object to be loaded. There is an equivalent

fini function that calls the Card destructor, freeing allocated memory.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

[__cudaRegisterFatBinary] : 0x8059f80

[__cudaRegisterFatBinary] : 0x8059f40

[__cudaRegisterFunction] : 0x804b35c -> _Z9matrixMulPfS_S_ii

[cudaGetDeviceCount] : 0xffaff498 (1)

[cudaGetDeviceProperties] : Device 0

[cudaSetDevice] : 0

[cudaMalloc] : 393216 bytes, 0x3000 [0xf7908008]

[cudaMalloc] : 524288 bytes, 0x64000 [0xf7887008]

[cudaMemcpy] : 0x3000 -> 0xf79ea008 (393216 bytes) (HostToDevice)

[cudaMemcpy] : 0x64000 -> 0xf7969008 (524288 bytes) (HostToDevice)

[cudaMalloc] : 786432 bytes, 0xe5000 [0xf77c6008]

[cudaConfigureCall] : grid (32,24,1) block (16,16,1)

[cudaSetupArgument] : 4 @ 0

[cudaSetupArgument] : 4 @ 4

[cudaSetupArgument] : 4 @ 8

[cudaSetupArgument] : 4 @ 12

[cudaSetupArgument] : 4 @ 16

[cudaLaunch] : _Z9matrixMulPfS_S_ii

[cudaMemcpy] : 0xf7705008 -> 0xe5000 (786432 bytes) (DeviceToHost)

Processing time: 17092.416016 (ms)

Test PASSED

[cudaFree] : 12288

[cudaFree] : 409600

[cudaFree] : 937984

[__cudaUnRegisterFatBinary] : 0x26

[__cudaUnRegisterFatBinary] : 0x26

Listing 3.15: matMul Runtime Library calls

Listing 3.15 shows the complete output when running the matrix multi-

plication benchmark in DEBUG mode, which shows all calls to runtime library

functions. The usual flow of a CUDA application is:

1. Calls to device and kernel registration and initialization functions,

such as cudaRegisterFatBinary(), cudaGetDeviceCount(), cud

aGetDeviceProperties(), and cudaSetDevice(). Most of these calls

are not directly made by the CUDA developer. They are inserted by

the nvcc compiler.

2. Space allocation on the device, such as the cudaMalloc() call in the

above example.

3.6. CUDA RUNTIME LIBRARY (LIBECUDA) 47

3. Data copying, where the data which the kernel must process is copied

from the host to the device, such as the cudaMemcpy() call in the

above example.

4. Kernel preparation and launching, done by the cudaConfigureCall(),

cudaSetupArgument() and cudaLaunch() calls. The kernel is actu-

ally launched after the call to the cudaLaunch, which triggers a call to

the Card::SetupCall() method, which as explained in Section 3.5,

actually launches the kernel in emulated mode.

5. After the kernel execution finalizes, the calculated data must be copied

back to the host, as shown by the cudaMemcpy() call in the above

example.

6. Allocated data is freed, and destructors are called, as shown by calls

to the cudaFree and cudaUnRegisterFatBinary functions.

The implemented runtime library functions can be categorized as follows:

• Initialization functions

cudaRegisterTexture, cudaRegisterFatBinary, cudaUnregisterFatBinary,

cudaRegisterFunction, cudaRegisterShared, cudaRegisterVar

These functions are undocumented by NVIDIA, and their intended us-

age can only be deduced by the function name and parameters. The

use of some of them is unknown, and they are implement as a blank

function, to allow CUDA applications to link correctly. Most of them

are simply implemented as storing the passed values in a data struc-

ture to allow later retrieval. For example, the cudaRegisterTexture

maps a texture name to a pointer to an unknown data structure. This

pointer value must be saved, as future references to texture in other

API functions are not done by texture name but by this pointer value.

• Memory Allocation Functions

cudaMalloc, cudaFree, cudaMallocArray, cudaFreeArray

These functions are documented in the NVIDIA CUDA API [15].

They are basically wrappers around the functions Card::Malloc()

and Card::Free().

• Memory Copy Functions

cudaMemcpy2DToArray, cudaMemcpyToArray, cudaMemset, cudaMemcpy,

cudaMemcpyToSymbol

These functions basically operate by obtaining the device address, by

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

calling Card::translate(), and performing regular recalls to mem-

ory copy operations.

• Texture Functions

cudaBindTextureToArray, cudaUnbindTexture, cudaGetChannelDesc

These functions allow texture memory access, by associating the tex-

ture device address to the global memory address where the data is

stored.

• Kernel Launch Functions

cudaConfigureCall, cudaSetupArgument, cudaLaunch

The first two of these functions copy the kernel parameters to a known

area, so the device emulation will be able to obtain them and make

them available as the param memory space.

• Device Properties Functions

cudaGetLastError, cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties

These functions hide the fact that no GPU card is actually running

the kernel by returning, for example, the physical parameters (such as

global memory size or total number of registers) about the emulated

GPU card.

Chapter 4

Experimental Evaluation

Once an initial working version of the emulation library had been developed,

in order to evaluate the correctness of the implemented design, several un-

modified CUDA benchmarks were run through the emulation process. Sev-

eral major bugs were found, as mentioned in Chapter 3, some of which

crashed the emulator, and some of which simply prevented the output from

being the same as in a native GPU. All of them were fixed, making the em-

ulated output equivalent to the GPU output. Performance measurements

were then taken, comparing the libecuda emulation times against equivalent

CPU-only algorithms, the GPU, and device emulation mode. Finally, pro-

filing measurements were taken to identify major bottlenecks in the current

implementation.

4.1 Benchmark Descriptions

The chosen benchmarks were matMul, cp, tpacf, rpes, and sad. Table 4.1

shows a list of the benchmarks, with their grid dimensions and total number

of threads. The matMul benchmark was chosen as the first benchmark

due to its simplicity. The four remaining benchmarks were taken from

the Parboil Benchmark Suite [41, 8], developed by the IMPACT Research

Group at the University of Illinois at Urbana-Champaign. It offers several

benchmark that are better suited to measure a GPU platform performance

than traditional benchmark suites. They are all different in the memory

spaces they use, the PTX instructions that are generated from the source

code, and the runtime calls they make.

• The Matrix Multiplication (matMul) benchmark implements matrix

multiplication. It has been extracted from the NVIDIA CUDA SDK,

49

50 CHAPTER 4. EXPERIMENTAL EVALUATION

Benchmark Grid Dim Block Dim Total Threads
matMul (32,24,1) (16,16,1) 196608

cp (4,61,1) (16,8) 32768
rpes (65535,1,1) (64,1,1) 4194240
sad (44,36,1) (61,1,1) 96624

(44,36,1) (61,1,1) 96624
(11,9,1) (32,4,1) 12672
(11,9,1) (32,1,1) 3168

tpacf (201,1,1) (256,1,1) 51456

Table 4.1: Benchmark Properties

and is one of the most basic CUDA examples available. It uses shared

and param memory. The generated PTX uses the add (addition), bra

(branching), cvt (data type conversion), ld (load data from memory

to a register), mad (multiply and add), mov (set a register value from an

immediate value or another register), mul24 (24-bit multiplication),

mul (multiplication), setp (compares two values with a relation oper-

ation, optionally combining the result with a predicate value, writing

the result to a register), st (copy data from a register to memory) and

sub (subtract) instructions. In our tests, the two multiplied matrices

have a size of 384x256 and 256x512, yielding a 384x512 matrix as a

result. The source matrices are generated randomly at the start of

the program.

• The Coulomb Potencial (cp) benchmark measures the electric poten-

tial at each point in a 3D volume in which charges are randomly

distributed. In our tests, the atom count is 40000 and the volume size

is 512x512, the default values. Besides using the param memory, it

introduces the use of the const memory space. The only additional

instruction used is rsqrt, which performs the inverse of a square root.

The benchmark uses the cudaMemcpyToSymbol() API call, which al-

lows copying data from a host variable to a device variable. Since it

references the device variable by its name, it order to properly support

the call, we had to implement keeping a label list in the OPBF file,

allowing the runtime library access to it, to obtain the device address

of the symbol.

• The Two-point Angular Correlation Function (TPACF) describes the

4.1. BENCHMARK DESCRIPTIONS 51

angular distribution of a set of points. It is used to calculate the

probability of finding two points separated by a given angular dis-

tance. It computes the angular correlation function for a data set of

astronomical bodies. The benchmark was used with its original data

input and all of its default parameters. It uses the param, const and

shared memory spaces. Support was added for several instructions

which it introduced, such as div (division), neg (arithmetic negation),

or (bitwise or), selp (selects between source operands, based on the

predicate source operand), set (very similar to the setp instruction),

shl (binary shift-left), shr (binary shift-right).

The selp instruction is the only PTX instruction that allows immedi-

ate values, although this is not clearly stated in the PTX specification.

This caused problems in our initial implementation, which assumed

that there was only one immediate value per instruction. Also, this

benchmark builds a complex CFG, as shown in Section 3.3, which

caused register allocation problems, leading to a complete rewrite of

the register allocation algorithm. Selp has two immediates.

• The Rys Polynomial Equation Solver (rpes) calculates 2-electron re-

pulsion integrals, a molecular dynamics sub-problem, which represent

the Colomb interaction between electrons in molecules. The bench-

mark was used with its default values, 2 atoms and 5 shells. This was

the first benchmark that introduced the use of the texture memory

space, besides shared and param memory. Support was added for the

new instructions and (bitwise and), tex (texture access), ex2 (expo-

nentiate a value in base 2), rcp (take the inverse of a value) and abs

(take the absolute value). The ld instruction was used in vectorized

form, writing to four registers in a single instructions, and support for

this had to be added to the PTX parsing and the OPBF code genera-

tion. Support for 1D textures was added to support this benchmark.

Finally, it required barrier support to be properly implemented. The

matMul benchmark also used barrier calls, but they were unnecessary.

• The computation of Sums of Absolute Differences (sad) benchmark

is based on the full-pixel motion estimation algorithm found in the

reference H.264 video encoder. It basically searches for blocks in one

image that approximately match blocks in another image. It com-

putes sums of absolute differences for pairs of blocks, representing

how similar they are. The benchmark is composed of three kernels:

52 CHAPTER 4. EXPERIMENTAL EVALUATION

host CPU GPU
hercules Intel Core 2 Duo 6600 at 2.40GHz, 4GB RAM GeForce 8800 GTX
obelix 2 x Dual Core AMD Opteron 2222 at 3.0GHz, 8GB RAM GeForce GTX 280
praline 2 x Intel Quad-Core Xeon E5420 at 2.50GHz, 8GB RAM Tesla S870

Table 4.2: Benchmark Testing Hardware

one of them computes SADs for 4x4 blocks, another one takes the

results to compute SADs for up to 8x8 larger blocks, while the last

one computes SADs for blocks up to 16x16. The two source images

used are the default ones, which are two QCIF-size images (176x144)

over a 32 pixel block search area.

The benchmark uses uses the shared, param, and tex. Support was

added for the rem instruction, which calculates the remainder of an

integer division. The benchmark used 2D textures, which required

expanding the previous texture support, and it took advantage of

texture address clamping, where coordinates wrap around the maxi-

mum and minimum values, which also required explicit code changes.

It also uses dynamic shared memory, which required changes to the

PTX parsing, as it generated zero-sized shared memory vectors, and

support for the cudaRegisterShared() runtime call, which makes

the environment aware of the dynamic shared memory usage. The st

instruction was used in vectorized form, requiring similar changes to

those supporting ld vectorized instructions.

4.2 Testing Conditions

Performance measurements for the benchmarks were done on three differ-

ent machines, whose characteristics are summarized in Table 4.2. These

machines were selected due to the disparity of their configuration. Two of

them, hercules and praline are Intel-based, while obelix is AMD-based. her-

cules is capable of running 2 threads in parallel, obelix is capable of running

4, and praline is capable of running 8.

The three systems are equipped with GPUs, with obelix being the most

powerful. The GPUs in hercules and praline are essentially the same, al-

though the Tesla S870 found in praline actually contains two C870 cards

in an external rack. The rack is connected to the server through a PCI

Express extension cable. The C870 card is essentially a GeForce 8800 card

without video output. Even though praline and obelix contain two GPUs

4.2. TESTING CONDITIONS 53

each, only one of them will be used, since the tested benchmarks do not

support multiple GPU cards.

Four versions of each of the benchmarks were compiled, all of them with

the maximum available compiler optimizations (gcc -O3).

• A CPU version, with the original non-parallelized, non-GPU version

of the benchmark. It should run slower than the GPU versions, but

faster than the emulated GPU versions. It will be tested on the three

available hosts.

• A GPU version, running on the three available GPUs. It should yield,

by far, the smallest execution time, and will serve as the basis to

measure the other versions slowdown. The fastest execution should

occur on obelix.

• A deviceemu emulated GPU version, running the previous version in

an emulated environment, without using the GPU. It is expected to be

hundreds or thousands of times slower than the native GPU version.

It will be tested in the three available hosts. The fastest execution

should be on praline or obelix, which can achieve better performance

than hercules.

• A libecuda emulated GPU version, running the GPU version in our

own emulated environment, without using the GPU. It is also expected

to be hundreds or thousands of times slower than the native GPU

version. Since we can control the number of threads launched, we can

evaluate how well libecuda scales by running the test in hercules with

1 and 2 threads, in obelix with 1, 2 and 4 threads, and in praline with

1, 2, 4 and 8 threads. The fastest result should be delivered by praline

with 8 threads.

The three testing systems run Debian GNU/Linux testing, and all are

running the 2.6.26-2-amd64 kernel version. In order to obtain the most ac-

curate possible timing measurements, when running the deviceemu, libecuda,

and CPU versions of the benchmarks, the systems were running in single-

user mode. In this mode, no network interfaces are available, no daemons

are running, and no other users besides root are allowed login. Running the

GPU versions in single-user mode is not straight forward, since there are

numerous problems with the NVIDIA drivers when running in that mode.

Therefore, this test was not performed in single-user mode, but the test was

repeated numerous times, and the results did not change significantly.

54 CHAPTER 4. EXPERIMENTAL EVALUATION

Benchmark Exact? Error
matMul No < 10−6

cp No < max(0.5%, 0.005)
rpes No < 10−9 + 2%
sad Yes

tpacf No < 10% (first 3 bins), < 1% (rest)

Table 4.3: Benchmark Functional Results

The timing of the deviceemu, libecuda, and GPU versions was done by

using the benchmark provided timers, which use a timing subsystem from

the Parboil suite. The matrix multiplication benchmark uses a timing mech-

anism from the CUDA cutil library. The parboil subsystem timers give the

results broken down into IO, GPU, Copy and Compute times. These times

were all taken into consideration, since in fast benchmarks, the IO and Copy

times are much larger than the GPU processing time.

4.3 Functional Results

All of the benchmarks described in Section 4.1 can be run within the libecuda

emulation with their default data set, returning the expected output values.

These, however, are not always exactly the same, when comparing CPU,

GPU and emulated output. This is mainly due to different IEEE floating

point implementations between the CPU and the GPU, as noted by NVIDIA

[15]. Emulating this behavior would mean a performance hit, and it would

require very precise details on the floating point implementation, which

are not available. Also, several rounding modifiers described in the PTX

specification are currently ignored in our emulation process, which could

lead to accumulated rounding errors.

Table 4.3 shows the functional results of the five tested benchmarks.

Only the sad benchmark produces exact results, since it does not use floating

point operations. The rest of the benchmark make heavy use of floating

point operations, which yield different results when executed on a CPU

than on a GPU. This has been acknowledged by NVIDIA [15], since not

even their own device emulation produces the same results as the GPU.

The error values in Table 4.3 are obtained from the compare-output

Python script, which is included in all of the benchmarks in the Parboil

suite. The script compares the benchmark output with a reference output

4.4. PERFORMANCE EVALUATION 55

CPU GPU deviceemu libecuda
9.092870e-03 9.092866e-03 9.092870e-03 9.092866e-03
1.973599e-02 1.973597e-02 1.973599e-02 1.973597e-02
2.776850e-02 2.776849e-02 2.776850e-02 2.776849e-02
1.569516e-02 1.569517e-02 1.569516e-02 1.569517e-02
2.591271e-02 2.591271e-02 2.591271e-02 2.591271e-02
1.546891e-02 1.546890e-02 1.546891e-02 1.546890e-02
2.582114e-02 2.582114e-02 2.582114e-02 2.582114e-02
5.472301e-13 0.000000e-00 5.472301e-13 0.000000e-00
3.879561e-11 0.000000e-00 3.879561e-11 0.000000e-00
2.795462e-06 2.793545e-06 2.795462e-06 2.793545e-06

Table 4.4: rpes benchmark Results Comparison

calculated using the CPU-only versions of the benchmarks, and checks if

the produced values are within a tolerable margin. For the matMul bench-

mark, taken from the CUDA SDK, the error value was obtained from the

benchmark source code, where the obtained result is also compared against

a CPU-only obtained solution.

The error reaches large values, such as 10% in the tpacf benchmark, due

to the fact that the GPU parallelized algorithms are not always exactly the

same as the CPU-only algorithms. Different approximations are performed,

or in the case of the tpacf benchmark, a smaller number of samples is taken

for the first part of the calculations. Therefore, there are two main sources

of error: CPU vs GPU algorithm differences and floating point calculation

differences.

Table 4.4 shows the initial part of the output of the rpes benchmark.

NVIDIA deviceemu produces exactly the same output as the CPU version

of the algorithm, while libecuda produces exactly the same output as the

GPU version. This is not the same behavior shown on other benchmarks,

where none of the four outputs are exactly the same.

4.4 Performance Evaluation

The results of the benchmarks are shown in Table 4.5 and Figures 4.4, 4.5,

and 4.6, which show the slowdown of each benchmark version compared to

the GPU execution time. There are several conclusions which can be taken

from the data.

56 CHAPTER 4. EXPERIMENTAL EVALUATION

As expected, the GPU performs spectacularly well, achieving feats such

as a 454X speedup on the cp benchmark on hercules, in comparison to the

original CPU version of the benchmark. The values, however, fluctuate

too much among machines, and while obelix should achieve the greatest

speedups, it only does so in the matMul benchmark. This can be entirely

attributed to the fact that the GPU versions of the benchmarks execute

on a practically negligible time of only a few microseconds, and therefore,

the time spend copying the data to and from the GPU card before and

after the calculations is actually longer than the actual processing time. If

the benchmark datasets were larger, with several seconds of GPU execution

time, the speedup values would be higher. This is also the reason why the

sad benchmark results show the GPU actually taking longer than the CPU.

The deviceemu and libecuda emulations are very slow, reaching aston-

ishing slowdown values of 7569X and 38746X, respectively. This can be

obviously ascribed to two facts: we are trying to emulate an massively par-

allel architecture (GPU) on a limited parallel architecture (CPU). On top

of that, the chosen emulation technique also contributes to the slowness.

The slowdown varies considerably from benchmark to benchmark, with

the sad benchmark achieving a slowdown of only 2X on deviceemu and

4X on libecuda on praline. These fluctuations are due to the instructions

differences between the benchmarks. The sad benchmark, for example, does

not perform floating point operations, while some of the benchmarks are

entirely based on double precision floating point operations. If we compare

deviceemu and libecuda, as seen on Figure 4.3, we can see that libecuda,

by taking advantage of multiple threads, is much faster than deviceemu in

several benchmarks, while slower in others.

As it can be seen in Table 4.5 and Figure 4.6, libecuda benefits strongly

from execution with multiple threads. This can be further seen in Figure

4.1, which shows the speedup as a function of the number of threads in

praline. For all benchmarks except rpes, the speedup is almost linear, with

tpacf approaching the ideal case. The rpes benchmark is clearly below

the ideal case, achieving a speedup of about 6.3X with 8 threads. This is

probably due to an asymmetrical task distribution. As noted in Section 3.5,

thread blocks are distributed between the available threads at startup, each

taking a part of the workload. If a thread finishes its part before the others,

there would be a processor core sitting idle, while it could be working on

the remaining thread blocks.

The deviceemu emulation does not take advantage of multiple cores in a

machine, as it can be seen by observing that some benchmarks actually run

4.4. PERFORMANCE EVALUATION 57

hercules ecuda/1t ecuda/2t deviceemu CPU
matMul 8006 4047 7096 53

sad 31.0 16.1 3.3 -1.1
cp 3362 1697 452 454

rpes 6512 3678 4671 91
tpacf 38746 19301 2324 29
obelix ecuda/1t ecuda/2t ecuda/4t deviceemu CPU

matMul 10694 5490 2655 17440 101
sad 12.7 6.4 3.4 1.2 -2.5
cp 1301 677 353 90 83

rpes 3595 2417 1193 5883 28
tpacf 30141 14781 7569 4328 20
praline ecuda/1t ecuda/2t ecuda/4t ecuda/8t deviceemu CPU

matMul 8696 4356 2213 1172 7200 48
sad 25.6 13.4 7.1 4.0 2.4 -1.1
cp 1393 712 378 188 86 85

rpes 3521 2073 1029 566 5124 40
tpacf 26767 13426 6763 3194 1697 21

Table 4.5: Execution Results (Slowdown vs GPU)

slower in praline, where 8 cores are available. This can also be checked by

running the top tool while the emulation is underway: the CPU occupancy

never climbs higher than 150% (with 100% for each CPU core available,

praline could reach 800%). Also, as it can be seen in Figure 4.2, the execu-

tion time when benchmarks are emulated in deviceemu does not follow any

pattern: matMul is fastest in hercules, sad is fastest in obelix, cp is fastest in

praline, rpes is fastest in hercules, and tpacf is fastest in praline. Moreover,

the execution times in obelix are much larger than its counterparts in 3 of

the 5 benchmarks.

58 CHAPTER 4. EXPERIMENTAL EVALUATION

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

matMul

sad

cp

rpes

tpacf

Figure 4.1: libecuda Scalability Evaluation

1

10

100

1000

10000

100000

matMul sad cp rpes tpacf

E
x

ec
ut

io
n

 T
im

e
(l
og

[s
])

hercules

obelix

praline

Figure 4.2: deviceemu Execution Times

4.4. PERFORMANCE EVALUATION 59

-9

-7

-5

-3

-1

1

3

5

7

9

matMul sad cp rpes tpacf

S
pe
ed
up hercules

obelix

praline

Figure 4.3: deviceemu vs libecuda Compared Performance

1

10

100

1000

10000

100000

matMul sad cp rpes tpacf

S
lo
w
do
w
n

libecuda (1 thread) libecuda (2 threads) deviceemu CPU

Figure 4.4: libecuda Performance Evaluation in hercules

60 CHAPTER 4. EXPERIMENTAL EVALUATION

1

10

100

1000

10000

100000

matMul sad cp rpes tpacf

S
lo
w
do
w
n

libecuda (1 thread) libecuda (2 thread) libecuda (4 thread) deviceemu CPU

Figure 4.5: libecuda Performance Evaluation in obelix

1

10

100

1000

10000

100000

matMul sad cp rpes tpacf

S
lo
w
do
w
n

libecuda (1 thread) libecuda (2 thread) libecuda (4 thread) libecuda (8 thread) deviceemu CPU

Figure 4.6: libecuda Performance Evaluation in praline

4.5. EMULATION LIBRARY PROFILING 61

4.5 Emulation Library Profiling

Since we wanted to produce exact measurements, the valgrind instrument-

ing profiler was chosen. By using its callgrind tool, we can generate a call

graph of the functions contained in the application. The five benchmarks

were ran through callgrind to identify possible bottlenecks and identify code

sections which would benefit from a more efficient implementation. Since

callgrind slows down execution by a factor of at least 400, only the mat-

Mul and sad benchmarks were fully run. The remaining benchmarks were

stopped after several hours of execution. This should not alter the results

significantly, since the kernel code is basically cyclical.

Figure 4.7: Profiling Results for matMul

The kcachegrind tool was used to analyze the profiling data generated

by the callgrind tool. Besides generating a call graph, this application is

also capable of showing a flat profile of all called functions, ordering them

by cost (execution time). Figure 4.7 shows the initial part of the flat profile

for the matMul benchmark. The self column refers to the total cost of the

function itself, while the incl column refers to the cost including all called

functions.

62 CHAPTER 4. EXPERIMENTAL EVALUATION

By using this information, several bottlenecks can be identified and other

conclusions can be taken.

• The Core::execute() function, which is the main loop of execution

for a core, constitutes the most significant bottleneck. The function is

very small, with only 8 lines of code, but due to the fact that it is called

for every instruction of every core, its impact on the performance is

important.

• The Core::translate() function is called every time an device ad-

dress has to be translated to a host address. This occurs an huge

number of times: 7 million times in the matMul benchmark, accord-

ing to collected data. The translation is basically implemented as a

series of interval checks on the device address, to identify the memory

space. Then, the address is looked up in an std::map, which stores

the address pairs.

• The OPBFOp::operandsSize() and OPBFOp::size() functions, are

called many times because of a call to the OPBFOp::size() function in

the statement core->incPC(op.size()). This is called to increment

the program counter value after each instruction. Since the size of

an instruction is static, it could be calculated on creation and stored,

instead of calculating it every time.

• Calls to the opcode implementation functions are not a source of sig-

nificant bottlenecks. In this case, the call to the Core::Ld opcode

implementation is the most significant one, occupying a mere 6.6% of

the execution time.

Due to the general nature of these bottlenecks, they occur in all bench-

marks, although not exactly in the same proportion. These are the program

functions that would benefit the most of optimizing them.

Chapter 5

Conclusions and Future Work

All of the objectives of the present thesis have been met. Particularly, the

development of an emulation library that parses PTX intermediate assembly

language generated from a CUDA application, generating a new binary

object and using it to emulate the functionality of a GPU. The library,

called libecuda, successfully emulates the behavior of a GPU for the tested

benchmarks, and should work for other CUDA applications without major

changes.

Developing and debugging an emulator is a challenging task. Managing

to get the emulator to run without causing segmentation faults was rela-

tively straight forward, as identifying the causing problem was as easy as

launching gdb. The hardest part proved to be identifying problems that

caused the emulated programs to return an invalid result without crashing

the emulator. In this case, the less time consuming way was to use the

device emulation mode, provided by NVIDIA, to our advantage. This mode

allows printf() calls in the kernel code, which would make no sense in the

normal mode. By printing the thread ID and a variable value and then

identifying which register was assigned to the variable, the expected value

of a register at a certain point in time could be known. This simplified the

debugging process, which would otherwise be near to impossible.

This thesis is based on the knowledge previously acquired in the Intro-

duction to Computer Systems (C programming language), Computer Ar-

chitecture and Operating Systems I (x86 assembly language and system

architecture), Computer Architecture and Operating Systems II (operating

system programming) compulsory courses and the Advanced Programming

for Telecommunications Engineering (Java programming) elective course.

During the thesis, acquired knowledge includes C++ programming and ad-

vanced techniques, emulation techniques, compiler theory and techniques,

63

64 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

parsing techniques, and performance profiling.

There is room for several changes to the emulation code that would re-

duce its currently enormous slowdown. PTX code analysis for dead code

removal could be applied, as the code generated by the nvcc tool includes

superfluous instructions. A more sophisticated register allocation algorithm

could be implemented, which would reduce the register usage, which is cur-

rently about 70% larger than the code generated by NVIDIA for its Cubin

format. Several of the current bottlenecks listed in Section 4.5 could be ad-

dressed, with the proposed solutions. Thread parallelization performance

could increase, as it does not reach the peak value in all benchmarks. This

could be done by allocating thread blocks to multiprocessors dynamically

instead of statically at the start, which would eliminate the current unbal-

anced execution syndrome. One of the best optimizations that could be

applied would be to substitute the current instruction cache with a basic

block cache, which would reduce the number of lookups necessary. The

hardest optimization, which would require a dramatic rewrite, would be to

substitute the currently employed interpretation emulation technique with

a binary translation technique.

Bibliography

[1] Intel Corporation. A platform 2015 workload model recognition, mining and syn-
thesis moves computers to the era of tera, 2005. [cited at p. 3]

[2] Amar Shan. Heterogeneous processing: a strategy for augmenting moore’s law.
Linux Journal, January 2nd, 2006. [cited at p. 3, 4]

[3] Sanjay Patel and Wen-mei W. Hwu. Accelerator architectures. Micro, IEEE,
28(4):4–12, July-Aug. 2008. [cited at p. 4]

[4] Roger D. Chamberlain, Joseph M. Lancaster, and Ron K. Cytron. Visions for appli-
cation development on hybrid computing systems. Parallel Comput., 34(4-5):201–
216, 2008. http://rssi.ncsa.illinois.edu/proceedings/posters/rssi07_12_
poster.pdf. [cited at p. 4]

[5] Erich Strohmaier et al. Hans Meuer. Top 500. http://www.top500.org/static/

lists/2009/06/TOP500_200906_Poster.pdf, June 2009. [cited at p. 4]

[6] Ken Koch. Roadrunner platform overview, March 2008. [cited at p. 5]

[7] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The potential of the cell processor for scientific computing.
In CF ’06: Proceedings of the 3rd conference on Computing frontiers, pages 9–
20, New York, NY, USA, 2006. ACM. http://bebop.cs.berkeley.edu/pubs/

williams2006-cell-scicomp.pdf. [cited at p. 5]

[8] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-
Zee Ueng, John A. Stratton, and Wen-mei W. Hwu. Program optimization space
pruning for a multithreaded gpu. In CGO ’08: Proceedings of the sixth annual
IEEE/ACM international symposium on Code generation and optimization, pages
195–204, New York, NY, USA, 2008. ACM. http://impact.crhc.illinois.edu/
ftp/conference/cgo-08-ryoo.pdf. [cited at p. 6, 17, 49]

[9] NVIDIA Corporation. PTX ISA version 1.3, October 2008. [cited at p. 6, 24]

[10] Wladimir J. van der Laan. Cubin utilities. http://www.cs.rug.nl/~wladimir/

decuda/, 2007. [cited at p. 6]

[11] Jon Peddie Research. Computer graphics chip shipments dive in q4 ’08 according
to jon peddie research. http://jonpeddie.com/press-releases/details/

computer_graphics_chip_shipments_dive_in_q4_08_according_to_jon_

peddie_rese/, January 2009. [cited at p. 9]

65

http://rssi.ncsa.illinois.edu/proceedings/posters/rssi07_12_poster.pdf
http://rssi.ncsa.illinois.edu/proceedings/posters/rssi07_12_poster.pdf
http://www.top500.org/static/lists/2009/06/TOP500_200906_Poster.pdf
http://www.top500.org/static/lists/2009/06/TOP500_200906_Poster.pdf
http://bebop.cs.berkeley.edu/pubs/williams2006-cell-scicomp.pdf
http://bebop.cs.berkeley.edu/pubs/williams2006-cell-scicomp.pdf
http://impact.crhc.illinois.edu/ftp/conference/cgo-08-ryoo.pdf
http://impact.crhc.illinois.edu/ftp/conference/cgo-08-ryoo.pdf
http://www.cs.rug.nl/~wladimir/decuda/
http://www.cs.rug.nl/~wladimir/decuda/
http://jonpeddie.com/press-releases/details/computer_graphics_chip_shipments_dive_in_q4_08_according_to_jon_peddie_rese/
http://jonpeddie.com/press-releases/details/computer_graphics_chip_shipments_dive_in_q4_08_according_to_jon_peddie_rese/
http://jonpeddie.com/press-releases/details/computer_graphics_chip_shipments_dive_in_q4_08_according_to_jon_peddie_rese/

66 BIBLIOGRAPHY

[12] Wen mei Hwu and David Kirk. Ece 498 al programming massively parallel processors
textbook, 2006-2008. [cited at p. 10, 12, 14]

[13] Scott Wasson. Ati dives into steam computing. http://techreport.com/

articles.x/10956/1, October 2006. [cited at p. 11]

[14] Vincent Chang. Steaming into the future. http://www.hardwarezone.com/

articles/view.php?cid=3&id=2821, March 2009. [cited at p. 11]

[15] NVIDIA Corporation. CUDA programming guide 2.0. July 2008. [cited at p. 12, 14,

16, 47, 54]

[16] John H. Kelm, Daniel R. Johnson, Matthew R. Johnson, Neal C. Crago, William
Tuohy, Aqeel Mahesri, Steven S. Lumetta, Matthew I. Frank, and Sanjay J. Patel.
Rigel: an architecture and scalable programming interface for a 1000-core acceler-
ator. In ISCA, pages 140–151, 2009. https://netfiles.uiuc.edu/jkelm2/www/

papers/kelm-isca2009.pdf. [cited at p. 13]

[17] Mauricio J. Serrano, Wayne Yamamoto, Roger C. Wood, and Mario Nemirovsky.
A model for performance estimation in a multistreamed superscalar processor. In
Proceedings of the 7th international conference on Computer performance evaluation
: modelling techniques and tools, pages 213–230, Secaucus, NJ, USA, 1994. Springer-
Verlag New York, Inc. [cited at p. 15]

[18] Victor Moya. Study of the techniques for emulation programming. Master’s thesis,
Facultat d’Informàtica de Barcelona, Universitat Politècnica de Catalunya, June
2001. http://personals.ac.upc.edu/vmoya/docs/emuprog.pdf. [cited at p. 17,

18]

[19] Wikipedia. Binary translation, 2009. http://en.wikipedia.org/w/index.php?

title=Binary_translation&oldid=297418679. [cited at p. 17]

[20] Wikipedia. Virtual machine, 2009. http://en.wikipedia.org/w/index.php?

title=Virtual_machine&oldid=300097377. [cited at p. 17, 18]

[21] Wikipedia. Dynamic recompilation, 2009. http://en.wikipedia.org/w/index.

php?title=Dynamic_recompilation&oldid=285654967. [cited at p. 17]

[22] Fabrice Bellard. Qemu: Open source processor emulator. http://www.qemu.org/.
[cited at p. 18]

[23] Kevin Lawton. Bochs. http://bochs.sourceforge.net/. [cited at p. 19]

[24] Sebastian Biallas. Pearpc. http://pearpc.sourceforge.net. [cited at p. 19]

[25] VMWare Inc. Vmware. http://www.vmware.com. [cited at p. 19]

[26] Sun Microsystems. Virtualbox. http://www.virtualbox.org. [cited at p. 19]

[27] Jack Veenstra. Mint simulator. http://www.wotug.org/parallel/simulation/

architectures/mint/. [cited at p. 20]

http://techreport.com/articles.x/10956/1
http://techreport.com/articles.x/10956/1
http://www.hardwarezone.com/articles/view.php?cid=3&id=2821
http://www.hardwarezone.com/articles/view.php?cid=3&id=2821
https://netfiles.uiuc.edu/jkelm2/www/papers/kelm-isca2009.pdf
https://netfiles.uiuc.edu/jkelm2/www/papers/kelm-isca2009.pdf
http://personals.ac.upc.edu/vmoya/docs/emuprog.pdf
http://en.wikipedia.org/w/index.php?title=Binary_translation&oldid=297418679
http://en.wikipedia.org/w/index.php?title=Binary_translation&oldid=297418679
http://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=300097377
http://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=300097377
http://en.wikipedia.org/w/index.php?title=Dynamic_recompilation&oldid=285654967
http://en.wikipedia.org/w/index.php?title=Dynamic_recompilation&oldid=285654967
http://www.qemu.org/
http://bochs.sourceforge.net/
http://pearpc.sourceforge.net
http://www.vmware.com
http://www.virtualbox.org
http://www.wotug.org/parallel/simulation/architectures/mint/
http://www.wotug.org/parallel/simulation/architectures/mint/

BIBLIOGRAPHY 67

[28] Wikipedia. Software performance analysis, 2009. http://en.wikipedia.

org/w/index.php?title=Software_performance_analysis&oldid=300765281.
[cited at p. 20]

[29] Julian Seward et al. Valgrind. http://valgrind.org/. [cited at p. 20]

[30] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. Analyzing CUDA Workloads Using a Detailed GPU Simulator. In
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS 2009), pages 163–174, April 2009. http://www.ece.ubc.ca/~aamodt/

papers/gpgpusim.ispass09.pdf. [cited at p. 22]

[31] David Parello Sylvain Collange, David Defour. Barra, a modular functional gpu
simulator for gpgpu. Technical report, Université de Perpignan, 2009. http://hal.
archives-ouvertes.fr/hal-00359342. [cited at p. 22]

[32] Gregory Diamos. Ocelot: A binary translation framework for ptx. http://code.

google.com/p/gpuocelot/, July 2009. [cited at p. 22]

[33] NVIDIA Corporation. The CUDA compiler driver NVCC. http://sbel.wisc.

edu/Courses/ME964/2008/Documents/nvccCompilerInfo.pdf. [cited at p. 23]

[34] Doug Brown John Levine, Tony Mason. Lex & Yacc. O’Reilly, 2nd edition edition,
1992. [cited at p. 25]

[35] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1997. [cited at p. 31, 32]

[36] Jens Palsberg. Register allocation via coloring of chordal graphs. In CATS
’07: Proceedings of the thirteenth Australasian symposium on Theory of comput-
ing, pages 3–3, Darlinghurst, Australia, Australia, 2007. Australian Computer
Society, Inc. http://compilers.cs.ucla.edu/fernando/publications/papers/

APLAS05.pdf. [cited at p. 31, 32]

[37] Frank Pfenning. 15-411 compiler design lecture notes on register allocation. http://
www.cs.cmu.edu/~fp/courses/15411-f08/lectures/03-regalloc.pdf, Septem-
ber 2008. [cited at p. 31, 32]

[38] Frank Pfenning. 15-411 compiler design lecture notes on liveness analysis. http://
www.cs.cmu.edu/~fp/courses/15411-f08/lectures/04-liveness.pdf, Septem-
ber 2008. [cited at p. 32, 33]

[39] Wikipedia. Cpu cache, 2009. http://en.wikipedia.org/w/index.php?title=

CPU_cache&oldid=301440796. [cited at p. 41]

[40] Stephen Prata. C++ Primer Plus. Sams Publishing, 5th edition edition, November
2004. [cited at p. 41]

[41] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.
Kirk, and Wen-mei W. Hwu. Optimization principles and application performance
evaluation of a multithreaded gpu using cuda. In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming,
pages 73–82, New York, NY, USA, 2008. ACM. http://impact.crhc.illinois.

edu/ftp/conference/ppopp-08-ryoo.pdf. [cited at p. 49]

http://en.wikipedia.org/w/index.php?title=Software_performance_analysis&oldid=300765281
http://en.wikipedia.org/w/index.php?title=Software_performance_analysis&oldid=300765281
http://valgrind.org/
http://www.ece.ubc.ca/~aamodt/papers/gpgpusim.ispass09.pdf
http://www.ece.ubc.ca/~aamodt/papers/gpgpusim.ispass09.pdf
http://hal.archives-ouvertes.fr/hal-00359342
http://hal.archives-ouvertes.fr/hal-00359342
http://code.google.com/p/gpuocelot/
http://code.google.com/p/gpuocelot/
http://sbel.wisc.edu/Courses/ME964/2008/Documents/nvccCompilerInfo.pdf
http://sbel.wisc.edu/Courses/ME964/2008/Documents/nvccCompilerInfo.pdf
http://compilers.cs.ucla.edu/fernando/publications/papers/APLAS05.pdf
http://compilers.cs.ucla.edu/fernando/publications/papers/APLAS05.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f08/lectures/03-regalloc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f08/lectures/03-regalloc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f08/lectures/04-liveness.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f08/lectures/04-liveness.pdf
http://en.wikipedia.org/w/index.php?title=CPU_cache&oldid=301440796
http://en.wikipedia.org/w/index.php?title=CPU_cache&oldid=301440796
http://impact.crhc.illinois.edu/ftp/conference/ppopp-08-ryoo.pdf
http://impact.crhc.illinois.edu/ftp/conference/ppopp-08-ryoo.pdf

List of Figures

2.1 GPU vs CPU Performance Gap 10

2.2 CUDA Thread Hierarchy . 12

2.3 CUDA Memory Hierarchy . 14

2.4 GPU Hardware Model . 16

3.1 General Emulator Workflow . 21

3.2 Simplified NVIDIA CUDA compilation flow 23

3.3 Modified libecuda compilation flow 24

3.4 Instruction Classes Hierarchy 26

3.5 tpacf benchmark CFG . 29

3.6 matMul benchmark CFG . 30

3.7 Subset of the tpacf benchmark CFG 31

3.8 Register Allocation Workflow 32

3.9 OPBFOp Classes Hierarchy . 34

3.10 OPBF Opcode Common Header 37

3.11 libemul General Diagram . 39

4.1 libecuda Scalability Evaluation 58

4.2 deviceemu Execution Times . 58

4.3 deviceemu vs libecuda Compared Performance 59

4.4 libecuda Performance Evaluation in hercules 59

4.5 libecuda Performance Evaluation in obelix 60

4.6 libecuda Performance Evaluation in praline 60

4.7 Profiling Results for matMul . 61

69

List of Tables

2.1 Memory spaces in a GeForce 880GTX GPU 17

3.1 Emulation Library Parts . 22

3.2 Sample tokenization of a PTX code line 25

3.3 libemul Device Memory Map . 40

4.1 Benchmark Properties . 50

4.2 Benchmark Testing Hardware 52

4.3 Benchmark Functional Results 54

4.4 rpes benchmark Results Comparison 55

4.5 Execution results . 57

70

List of Code Listings

2.1 Basic Kernel Example . 12

3.1 matMul PTX code fragment 25

3.2 MUL24 opcode bison semantics 26

3.3 opbfas basic pseudo-code . 33

3.4 OPBFOp creation from a PTX Instruction 34

3.5 OPBF Header Structure . 36

3.6 OPBF Kernel Structure . 36

3.7 OPBF Descriptor Structure 36

3.8 OPBF Opcode Common Structure 36

3.9 OPBFRbs Opcode Specific Structure 37

3.10 matMul OPBF code fragment 38

3.11 C++ template example . 42

3.12 Mul Template Invocation . 43

3.13 Mul Executor Implementation 44

3.14 getValues() Implementation 44

3.15 matMul Runtime Library calls 46

71

	Contents
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Emulation Library Overview
	1.3 Thesis Overview

	2 Background
	2.1 GPU History
	2.2 The NVIDIA CUDA Architecture
	2.2.1 Computing Model
	2.2.2 Computing Hardware

	2.3 Emulation
	2.3.1 Techniques
	2.3.2 Emulators

	2.4 Software Profiling

	3 Design and Implementation
	3.1 Overview
	3.2 PTX Parser (libptx)
	3.3 Intermediate Code Analysis (libasm)
	3.4 OPBF Generation (libopbf/opbfas)
	3.5 Emulation Library (libemul)
	3.6 CUDA Runtime Library (libecuda)

	4 Experimental Evaluation
	4.1 Benchmark Descriptions
	4.2 Testing Conditions
	4.3 Functional Results
	4.4 Performance Evaluation
	4.5 Emulation Library Profiling

	5 Conclusions and Future Work
	Bibliography
	List of Figures
	List of Tables
	List of Code Listings

