

MASTER THESIS

TITLE: Advanced orchestration services

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: David Rivas Cordero

DIRECTOR: Toni Oller Arcas

DATE: June 30th 2009

TITLE: Advanced orchestration services

AUTHOR: David Rivas Cordero

DIRECTOR: Toni Oller Arcas

DATE: June 30th 2009

Overview

Nowadays, it is known that the success of new telecommunications networks is
directly related to the success of offered services that enhance their use. The
arrival of the IP Multimedia Subsystem (IMS) promises helping service
providers to deploy a complete array of services on real-time, customized
business and consumer multimedia services over any access network.

This project describes a new service plain for IMS to give support to the service
development. This new service plain is a new platform, the orchestration
platform, offered by the network operator to allow the easy development of new
and complex services for professional and nonprofessional developers, and to
provide a better time-to-market.

On other hand, there is a clearly evolution of Internet applications to the web
2.0 concept based applications, which enhances the role of the user into the
applications.

Also, this project presents the adaption of the IMS provisioning and service
enablers to the orchestration platform, and conserves the network interaction
for the orchestration services with the aim of making a powerful platform and to
promote the service web 2.0 concept based applications development.

Finally, to see completely the platform and network functionality, the project
contains also an application over the orchestration platform and also a client
side application developed on .NET for Windows Operative System and
Windows Mobile Operative System.

INDEX

INTRODUCTION .. 2

Objectives .. 3

Document description .. 4

CHAPTER 1. THE CONTEXT ... 6

1.1. The IP Multimedia Subsystem .. 6

1.1.1. Architecture... 6

1.1.2. IMS provisioning / enablers .. 8

1.2. Ericsson Service Development Studio .. 8

1.2.1. IMS Provisioning ... 9

1.2.2. Presence enabler ... 10

1.3. Session Initiation Protocol ... 18

1.3.1. SIP Messages... 18

CHAPTER 2. THE ORCHESTRATION PLATFORM 20

2.1. Selected Technologies .. 20

2.2. Project Architecture .. 21

2.3. Technologies of Architecture ... 22

2.3.1. Tomcat .. 22

2.3.2. ODE .. 22

2.3.3. Processes definitions .. 22

2.3.4. UDDI ... 22

2.3.5. GlassFish Sailfin ... 23

2.3.6. Web Services.. 23

2.3.7. Web Interface ... 23

CHAPTER 3. TWIMSER ... 25

3.1. The architecture ... 25

3.1.1. The Presence Wrapper .. 26

3.1.2. Home Subscriber service ... 26

3.1.3. RedBox service .. 26

3.1.4. IMS-Messaging simulator ... 26

3.1.5. The Web Tool ... 27

3.1.6. SIP Server .. 27

3.1.7. TWIMSER ... 27

3.2. Use cases ... 27

3.2.1. Edit buddy case .. 27

3.2.2. Sending update status case ... 28

CHAPTER 4. THE PRESENCE WRAPPER ... 30

4.1. Architecture .. 30

4.1.1. The presence Web service ... 31

4.1.2. The Web Application .. 33

CHAPTER 5. THE TWIMSER CLIENT ... 35

5.1. Technology ... 35

5.1.1. Microsoft .NET Framework ... 35

5.1.2. SIP Stack .. 35

5.2. The Application .. 36

5.2.1. Project structure ... 36

5.2.2. Graphical User Interface ... 38

CHAPTER 6. WORK PLAN .. 41

CHAPTER 7. ENVIRONMENTAL IMPACT & CONCLUSIONS 43

7.1. Environmental impact ... 43

7.2. Conclusion ... 43

7.3. Personal Conclusion ... 43

ACRONYMS .. 45

REFERENCES ... 47

ANNEXES .. 49

FIGURE INDEX

Figure 1 Business logic changes .. 2

Figure 2 IMS and layering architecture ... 7

Figure 3 Service Development Studio .. 9

Figure 4 Presence service architecture .. 11

Figure 5 Example of document creation ... 13

Figure 6 Example of document request .. 13

Figure 7 Document Retrieve Result ... 14

Figure 8 Example Document Deletion .. 14

Figure 9 Example of information addition ... 14

Figure 10 Presence flow diagram ... 15

Figure 11 Presence SIP Publish message ... 16

Figure 12 SDS PGM Web tool .. 18

Figure 13 SIP Message Header example ... 19

Figure 14 Project Architecture .. 21

Figure 15 Orchestration Platform Web Interface .. 24

Figure 16 Twimser application .. 25

Figure 17 Twimser Architecture .. 25

Figure 18 Edit buddy case .. 28

Figure 19 Sending update status case ... 29

Figure 20 Presence service architecture .. 30

Figure 21 Presence Wrapper architecture .. 31

Figure 22 UML Diagram ... 33

Figure 23 Login Web page ... 33

Figure 24 Principal Web page .. 34

Figure 25 Adding new friend page and Modifying friend information page 34

Figure 26 Twimser Client Application structure .. 37

Figure 27 Twimser Client Configuration frame ... 38

Figure 28 Register successful notification .. 39

Figure 29 Update Status frame .. 39

Figure 30 SIP Message Notifycation .. 40

Figure 31 Gantt diagram .. 41

Figure 32 Dedicated time table ... 42

2 Advanced orchestration services

INTRODUCTION

In the last years the telecommunication business model has changed. Before
the services and connectivity were supplied by the telecommunications operator
and in the present time there is the service provider to offer services and the
network operator to offer connectivity. In the current business model the
network operator requires good services from service provider to success in
business.

Nowadays, the client side in the networks has acquired more importance. The
clients are becoming more powerful due to the increase of computation power
and the increase of the bandwidth. This fact makes available the possibility of
emerging new business logics where the client is not only a service consumer,
but also he can become a service provider. In a future it can become a P2P
service network.

Figure 1 Business logic changes

The Next Generation Network (NGN) considers important the availability of new
support business logics and the promotion of the development of new services
to increase the usage of the new networks. One example of this is the IP
Multimedia Subsystem (IMS) which supports the current business logic.

In the application development field the new Web 2.0 concept model has been
successful. Nowadays, the most extended Internet applications are the Web 2.0
[1] concept-based technologies.

The Web 2.0 refers to a second generation of Web development and design,
which makes easier to secure communicate information sharing,
interoperability, and collaboration on the World Wide Web. Web 2.0 concepts
have led to the development and evolution of Web-based communities, hosted
services, and applications such as social-networking sites, video-sharing sites,
wikis, blogs, mashup and folksonomies.

Introduction 3

The concept of Web 2.0 is based on a group of concepts:

• The information is not offered by an only application, instead the users
are who share their own information to other users.

• The users collaborate between them to have a richer use experience.

• There is not only static content, also there are multimedia content.

• The user uses the Web browser as like own computer desktop,
launching complex logic applications throw any type of terminal.

• In the programmer side is extended the free code APIs and Frameworks
use.

• The graphical user interface changes and becomes dynamic. Appear the
new technologies like Flash, AJAX, XML and CSS to contribute the
designers function.

The best known example applications of the Web 2.0 concept are the following:

The RSS: The Rich Site Summary (RSS) [2] is a family of Web feed formats
used to publish frequently updated works in a standardized format. An RSS
document includes full or summarized text, plus metadata such as publishing
dates and authorship.

The Blogs: Blogs [3] are a type of Website, usually maintained by an individual
with regular entries of commentary, descriptions of events, or other material
such as graphics or video. Entries are commonly displayed in reverse-
chronological order. The relation between blogs and the Web 2.0 concept is the
user shared comments of the content.

Social Networks: A social network [4] is a social structure made of nodes
(which are generally individuals or organizations) that are tied by one or more
specific types of interdependency, such as values, visions, ideas, financial
exchange, friendship, sexual relationships, kinship, dislike, conflict or trade.

Objectives

This project is part of a work of a new platform to develop new services for a
Spanish telecommunications company. The global project is developed in
collaboration with i2CAT Foundation. The i2CAT Foundation is a non-profit
organization whose aim is to promote research and innovation in advanced
Internet technology, and promotes the deployment of services and wideband
applications from both public and private research and innovation communities.

The main objective of the project is the development of a platform to increase
the new application publishing and development for the NGN; concretely for the
IMS network.

The solution is the Orchestration platform. This platform must improve three
essential parts: a directory of services where the third parties can publish his
services, an orchestration engine which provides the capability of creating new

4 Advanced orchestration services

applications through the direction of published services, and finally the Interface
that provides access to the platform for the final user.

The success of this platform depends on a group of characteristics:

• Easy to integrate with IMS

• Provide network interaction for new services development.

• Provide service interaction, including different vendors.

• Provide an easiy, quick and flexible integration of applications.

• Easy to use for service publishing.

• Easy to use for service development.

• Easy to manage.

In the project objectives there is also included the development of a new
orchestration platform application as an example of the project function. Having
in consideration the success of Web 2.0 applications as described before, the
chosen application is a micro-blogging called Twimser.

Twimser is also an integration example between the IMS network resources
and the orchestration platform, because it requires of a present service, the
Presence Wrapper.

The Presence Wrapper is a service based on IMS Presence Service. Also, the
Presence Wrapper is developed as an orchestration platform service to provide
presence service for new developed services. The aim of the Presence
Wrapper is also to bring the Web 2.0 concept near to IMS.

Document description

In this document we start explaining the technological scenario imposed bases.
These bases are related to the Next Generation Network election to host the
orchestration platform. The bases are three: first we explain the NGN chosen,
after this, there is a wide explanation of the simulation network studio and most
used resources, and finally the technological requirement for the development
of the network client side.

Once introduced the scenario we have the orchestration platform described
where an overview of the requirements, the functionalities and the architecture
can be found.

After this we have the explanation of the orchestration platform developed
service, Twimser. In this part we show the service developed, the features, the
use cases, and finally the architecture.

The next part of the document is dedicated to the core of Twimser, the
Presence Wrapper. This wrapper is an important orchestration service for the

Introduction 5

development of Web 2.0 based services on the IMS through the orchestration
platform.

After the developed service, we show the client side developed application for
Windows and Windows Mobile Operative System.
Finally the last part of this document is a conclusion from the developed work.

6 Advanced orchestration services

CHAPTER 1. THE CONTEXT

In this part, the technological situation of the project is shown. Firstly we will
explain the IMS, the telecommunications network imposed by the
telecommunications company. After this we have the software development tool
for the IMS platform, the Ericsson Software Development Studio. This tool is
also chosen by the telecommunication operator because it is more
recommended for the real network integration. In this part, it is also explained
that the Presence Enabler is an important part for the orchestration platform
services. Finally, there is an explanation of Session Initiation Protocol (SIP),
which is the Protocol required by the IMS client development.

1.1. The IP Multimedia Subsystem

The IP Multimedia Subsystem (IMS) [5] is a global, access-independent and
standard-based IP connectivity and service control architecture that enables
various types of multimedia services to end-users using common Internet-based
protocols.

IMS uses the Session Initiation Protocol (SIP) for session setup and teardown,
while Diameter is used as an AAA (Authorization, Authentication and
Accounting) protocol.

The IP Multimedia Subsystem was initially developed by the Third Generation
Partnership Project (3GPP). Its original formulation (3GPP R5) represented an
approach to delivering "Internet services" over GPRS. This vision was later
updated by 3GPP, 3GPP2 and TISPAN by requiring support of networks other
than GPRS, such as Wireless LAN, CDMA2000 and fixed line.

The IMS network architecture has been defined to be access independent. This
means that the access technology used to transport user SIP messages to the
IMS network does not influence the functionality of the IMS network itself.
Consequently, any access can be used.

1.1.1. Architecture

IMS decomposes the network infrastructure into separate functions with
standardized interfaces between them. Each interface is specified as a
"reference point", which defines both the protocol over the interface and the
functions between which operates. The standards do not say which functions
should be used, as this depends on the scale of the application, and a single
device may contain several functions.

The 3GPP architecture is split into three main planes or layers, each of which is
described by a number of equivalent names: Service or Application Plane,
Control or Signaling Plane, and User or Transport Plane. Figure 2 shows the
design.

Chapter 1. The context 7

Figure 2 IMS and layering architecture

Application plane: The application plane provides an infrastructure for the
provision and management of services, and defines standard interfaces to
common functionality including:

• Configuration storage, identity management, user status (such as
presence and location), which is held by the Home Subscriber Server
(HSS).

• Billing services, provided by a Charging Gateway Function (CGF).

• Control of voice and video calls and messaging, provided by the control
plane.

Control plane: The control plane is placed between the application and user
planes. It routes the call signaling, tells the user plane which traffic to allow, and
generates billing information for the use of the network.

Several roles of SIP servers, called CSCF (Call Session Control Function), are
used to process SIP signaling packets in the IMS.

The control plane also controls the user plane traffic through the Resource and
Admission Control Subsystem (RACS). This consists on the Policy Decision
Function (PDF), which implements local policy on resource usage, for example
to prevent overload of particular access links, and Access-RAC Function
(ARACF), which controls QoS within the access network.

8 Advanced orchestration services

User plane: The User plane provides an IPv6 QoS-enabled core network with
access from the user. This infrastructure is designed to provide a wide range of
IP multimedia server-based and P2P services.

Access to the core network is realized through Border Gateways
(GGSN/PDG/BAS). They enforce the policy provided by the IMS core,
controlling traffic flows between the access and the core networks.

Within the User Plane there can be deployed:

• The Interconnect Border Control Function (I-BCF) controls transport level
security and tells the RACS what resources are required for a call.

• The I-BGF, A-BGF Border Gateway Functions provide media relay to
hide endpoint addresses with managed pinholes to prevent bandwidth
theft, and implement NAPT and NAT/Firewall traversal for media flows.

1.1.2. IMS provisioning / enablers

The IMS application plane enables creation of new, converged applications that
include capabilities such as presence, mixed media (e.g. telephony and
message exchange in the same session), and seamless working across fixed
and mobile boundaries. These capabilities are supplied by the IMS provisioning
services and the IMS Enablers.

The IMS provisioning: IMS provides a wide range of session border control,
including call access control, reach ability and security. It also provides a
framework for the deployment of both basic calling services and enhanced
services, including:

• Multimedia messaging

• Video on demand

• Presence-based services

• Push-to-talk

The IMS enablers: [6] are feature-specific servers that provide Internet and
communication services with productivity and community-enhancing features,
such as instant messaging (IM), IP conferencing, presence/availability, location,
group list management, gaming, and Web 2.0 type of value-added capabilities.

1.2. Ericsson Service Development Studio

Ericsson Service Development Studio (SDS) [7] is a fully comprehensive tool for
development and end-to-end testing of the client and server side of new IMS
applications.

Chapter 1. The context 9

The SDS server side includes an IMS core network emulator and can also be
configured as a Java EE/SIP server execution environment for live user or for
market IMS service trials. The SDS also includes advanced capabilities, the
enablers, such as Presence and Group Management (PGM), Voice over IP
(VoIP), Push-to-Talk (PTT), IMS-M and Combinational (CS Voice + PS
sessions).

The SDS test part provides a Simulated Environment with diverse tools, where
the nodes within the core IMS network are simulated. This allows the SDS to
act as a virtual IMS network for a developer.

Finally for the client side, Ericsson defines the IMS client framework so that it
will support:

• Easy and quick development

• Downloading of new IMS clients (to Open-OS devices and as Java ME
clients)

• Co-existence of several clients (ICP multi-tasking)

• Seamless integration with device capabilities

• Seamless integration with IMS network CoSe enablers (for example,
Presence and Groups, PTT, IMS Messaging)

Figure 3 Service Development Studio

1.2.1. IMS Provisioning

The SDS includes IMS Provisioning for the IMS network core configuration and
management. The IMS Provisioning is composed of a DNS provisioning, an
HSS provisioning, and a Registrar.

DNS Provisioning: Resolves the general call flow sessions between users by
matching domain addresses, globalized telephone numbers, IP addresses, and

10 Advanced orchestration services

transport protocols. The DNS provisioning also enables the operator to solve
the general call flow sessions between two nodes. It must determine the IP
address, port, and transport protocol of the next hop element or the server
domain that will receive the request.

HSS Provisioning: It allows creating Initial Filter Criteria and their coranswering
Service Point Triggers to redirect the service requests. Also HSS Provisioning
allows creating, modifying, and deleting user profiles, service profiles, and
Public Service Identity profiles.

BGCF Provisioning: It allows configuring the BGCF using tables to determine
where requests must be routed to: Calling Party Table, Called Party Table, and
External Network Pool Tables.

Registrar: It displays the registration and expiration time of users in the
simulated environment.

1.2.2. Presence enabler

The IMS presence enabler is a network service that adds value by enhancing
person-to-person communication. It enables new services as well as enhances
existing ones, leading to a richer communication experience. It totally adds a
new dimension for client communication and can be used in many different
applications.

1.2.2.1. Presence architecture

The presence is a dynamic profile of status information of people, applications,
or machines that is visible to others. The presence feature enables a user
(person or application) to store, manage, and publish presence information that
can be viewed by authorized users.

The presence service is composed by the IMS server, the presence server and
the XCAP Server as shown in Figure 4.

Chapter 1. The context 11

Figure 4 Presence service architecture

The IMS server is the IMS network emulator, concretely the CSCF. The IMS
features that are used are the services of Authorization, Authentication and
Accounting, and the initial filter criteria for management of SIP requests.

The presence server is the core of presence service. It is the responsible of the
management, the subscription and notification of publish states. The
information of presence service is stored in XML by the XCAP server.

The XCAP server is the responsible of the XML Configuration Access Protocol
(XCAP) that allows the writing, modification, and deleting of data stored in XML
format. The XML data elements are mapped to HTTP Uniform Resource
Identifiers (URIs) to allow easy access to each of the elements, i.e. it is possible
to store XML documents on the server by using HTTP requests.

1.2.2.2. CSCF

The CSCF [8] is responsible for all signaling via SIP between the Transport
Plane, Control Plane, and the Application Plane of IMS. The CSCF consists of
the Proxy CSCF (P-CSCF), Interrogating CSCF (I-CSCF), and the Serving
CSCF (S-CSCF), which each have unique functions within IMS.

The P-CSCF is responsible for interfacing directly with the Transport Plane
components and is the first point of signaling within IMS for any end-point. The
P-CSCF receives the SIP messages of publishes, subscribes, notifies, and uses
a DNS look-up to determine from which I-CSCF sending SIP messages, which
could be an I-CSCF in its own network or another I-CSCF across an
administrative domain.

The main function of the I-CSCF is to simply proxy between the P-CSCF as
entry point and S-CSCF as control point for applications found in the
Applications Plane. When the I-CSCF receives these SIP messages, it will
perform a Home Subscriber Server (HSS) look-up via Diameter to determine

12 Advanced orchestration services

the S-CSCF that is associated with the end-point terminal. Once it receives this
information, it will forward the SIP message to the appropriate S-CSCF for
further treatment.

The S-CSCF is responsible for interfacing with the Application Servers (AS) in
the Application Plane. The S-CSCF is also responsible for routing all SIP
messages to the AS allowing the Control Plane session control to interact with
the Application Plane application logic. To do this the S-CSCF uses information
obtained from the HSS in the form of Initial Filter Criteria (IFC) that acts as a
trigger against inbound session establishment requests. When the S-CSCF
receives the SIP messages, routes them to the Presence Server.

1.2.2.3. Presence Server

The Presence Server (PS) is an entity that accepts, stores and distributes
presence information. The PS performs the following functions:

• Handles publications from one or multiple Presence Source(s) of a
certain presentity. This includes refreshing presence information,
replacing existing presence information with newly published information,
or removing presence information, for a given Presence Source.

• Composes the presence information received from one or multiple
Presence Source(s) into a single presence document

• Handles subscriptions from watchers to presence information and
generates notifications about the presence information state changes.

• Handles subscriptions from watcher information subscribers to watcher
information and generates notifications about the watcher information
state changes.

• Authorizes the watcher’s subscription to the presentity’s presence
information and applies policies .

• Applies the watcher’s event notification filtering preferences, as
appropriate .

• Applies rate control mechanisms to the notifications, as appropriate.

1.2.2.4. XCAP Server & Documents

XCAP server is server able to handle XCAP requests, and also for storing
“presence interesting” data. The presence data is stored in XML files and is
form by three types of documents:

Chapter 1. The context 13

• Presence-rules: this file contains the presence rules control which users
are blocked (i.e. these users will not receive a NOTIFY of the user's
presence status), and which users are allowed.

• Group List Management: The Group List Management keeps track of
buddy lists on the server.

• Resource List Server: This document can contain references to users
buddy lists.

Every type of document is stored in a different folder, and every user has his
three own files. The users can edit them using XCAP as the following section
explains.

1.2.2.5. XCAP

XCAP is an HTTP-based protocol to access remote configuration data. Data is
stored in XML format and XCAP protocol allows querying, modifying or deleting
parts of such data. This protocol is described in the RFC 4825 [9].

The creation or modification of a document is performed using the HTTP PUT
method.

The following code shows how a user called Bob can create a document:

An HTTP GET can be used to retrieve a document.

To retrieve the document created in Figure 5, use the following request:

GET /services/resource-lists/users/bob/fr.xml HTTP/1.1

PUT /services/resource-lists/users/bob/fr.xml HTTP/1.1

Content-Type: application/resource-lists+xml

<?xml version="1.0" encoding="UTF-8"?>

<resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">

<list name="friends">

</list>

</resource-lists>

Figure 5 Example of document creation

Figure 6 Example of document request

14 Advanced orchestration services

The response from the simulation is as follows:

Figure 7 Document Retrieve Result

An HTTP DELETE request can be used to delete a document.

Deleting the document created in Example can be done with the request:

Figure 8 Example Document Deletion

Finally, an HTTP PUT request can be used with a node selector. The body of
the request contains the element to add.

To add a new <entry> element for Alice to the list named “friends” for the
document created in Example use the following code:

DELETE /services/resource-lists/users/bob/fr.xml HTTP/1.1

PUT /services/resource-lists/users/bob/fr.xml/~~/

resource-lists/list[@name="friends"]/entry HTTP/1.1

Content-Type: application/xcap-el+xml

<entry uri="sip:alice@i2cat.dyndns.org">

 <display-name>Alice</display-name>

</entry>

HTTP/1.1 200 OK

Content-Type: application/resource-lists+xml

<?xml version="1.0" encoding="UTF-8"?>

<resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">

 <list name="friends">

 <entry uri="sip:alice@i2cat.dyndns.org">

 <display-name>Alice</display-name>

 </entry>

 </list>

</resource-lists>

Figure 9 Example of information addition

Chapter 1. The context 15

1.2.2.6. Presence flow diagram

In this section we show an example of the presence service showing the
presence flow messaging.

The scenario of this example is formed by two IMS clients: Alice and Bob, the
IMS CSCF server (called Server) and the SIP application server that is the SIP
server which contains the presence service. In this example Bob subscribes
himself to Alice status, and Alice updates the status.

Figure 10 Presence flow diagram

First of all, both clients have to register their profiles into IMS (messages 1 to 4)

Once the users are registered, Bob announces to IMS the intention of
subscribing to Alice status sending a SIP SUBSCRIBE Message (message 5).

16 Advanced orchestration services

The IMS redirects the message to the presence server emplaced on SIP
Application Server (message 6).
The presence server requests the presence information of Alice and answers
considering this information. In this case Bob is in Allow list of Alice presence
information, and the presence server answers a “200 OK” message (messages
7 and 8).

After that, Alice updates her status sending a Publish message with the
pertinent XML information (message 9 and 10). The next figure shows this XML.

PUBLISH sip:alice@i2cat.dyndns.org SIP/2.0

Max-Forwards: 70

Event: presence

CSeq: 11293 PUBLISH

Expires: 7200

Content-Length: 230

User-Agent: ICP30PGMAID

To: <sip:alice@i2cat.dyndns.org>

From: <sip:alice@i2cat.dyndns.org>;tag=119fad4-2c1c.1c38

Route: <sip:orig@127.0.0.1:5081;lr>

Call-ID: 2dd8-a41-214321ac@127.0.0.1

Content-Type: application/pidf+xml

Via: SIP/2.0/UDP 127.0.0.1:6050;branch=z9hG4bK42.49e1.1c38

<presence xmlns="urn:ietf:params:xml:ns:pidf" entity="sip:alice@i2cat.dyndns.org">

 <tuple id="t1308495763">

 <status>

 <basic>open</basic>

 </status>

 <contact priority="High">sip:alice@i2cat.dyndns.org</contact>

 </tuple>

</presence>

Figure 11 Presence SIP Publish message

Chapter 1. The context 17

If the published message is correct the Presence Server answers a “200 OK”
message (messages 11 and 13).

Finally the Presence Server sends a notification of Alice to his subscribers using
a SIP NOTIFY message. In this case the Presence Server sends a NOTIFY
message to Bob, and him answers a “200 OK” message when receives it.

1.2.2.7. PGM Simulator

The SDS Presence and Group List Management (PGM) is a simulation that
allows your client managing the presence of individual users or groups.

The SDS 4.1 presence simulation is a SIP application installed on the Sailfin
SIP container. To use it, SDS comes preconfigured with a Presence iFC and
eight SPTs.

The client application for PGM can be any kind of IMS client and the only
requirement is that must support the standard presence documents.

Some features to point out are:

• When you start the SIP AS, the PGM simulation is automatically started
as a service on the SIP Container.

• SDS is installed by default as a preconfigured Presence iFC and SPT.

• The PGM simulation have no kind of provisioning, so it will accept any
subscriptions/publications sent to it.

• The PGM simulation does not authenticate requests.

• Authorization (block/allow) can be modified using the pres-rules.

• To remove a user publication, publish with an expiration of 0. The
published content will be sent to all subscribed users with a NOTIFY
message.

The PGM simulator has also a Web tool that enables the administrator to know
the Presence XCAP files configuration, the user subscriptions and the user
notifications. This tool is provided in Sailfin as a service Web application.

18 Advanced orchestration services

Figure 12 SDS PGM Web tool

1.3. Session Initiation Protocol

The Session Initiation Protocol (SIP) [10] is a signalling protocol, widely used for
setting up and tearing down multimedia communication sessions such as voice
and video calls over Internet Protocol (IP). Other feasible application examples
include video conferencing, streaming multimedia distribution, instant
messaging, presence information and online games. The protocol can be used
for creating, modifying and terminating two-party (unicast) or multiparty
(multicast) sessions consisting of one or several media streams. The
modification can involve changing addresses or ports, inviting more participants,
adding or deleting media streams, etc.

1.3.1. SIP Messages

SIP is a text-based protocol with syntax similar to that of HTTP. There are two
different types of SIP messages: requests and responses. The first line of a
request has a method, defining the nature of the request, and a Request-URI,
indicating where the request should be sent. The first line of a response has a
response code.

For SIP requests, RFC 3261 [11] defines the following methods:

• REGISTER: Used by a UA to notify its current IP address and the URLs
for which it would like to receive calls.

• INVITE: Used to establish a media session between user agents.

• ACK: Confirms reliable message exchanges.

• CANCEL: Terminates a pending request.

• BYE: Terminates a session between two users in a conference.

Chapter 1. The context 19

• OPTIONS: Requests information about the capabilities of a caller,
without setting up a call.

The SIP response types defined in RFC 3261 fall in one of the following
categories:

• Provisional (1xx): Request received and being processed.

• Success (2xx): The action was successfully received, understood, and
accepted.

• Redirection (3xx): Further action needs to be taken (typically by sender)
to complete the request.

• Client Error (4xx): The request contains bad syntax or cannot be fulfilled
at the server.

• Server Error (5xx): The server failed to fulfil an apparently valid request.

• Global Failure (6xx): The request cannot be fulfilled at any server.

1.3.1.1. SIP Message example

This is a SIP Register message example. We can see the most usual headers
of SIP.

REGISTER sip:imsvodafone.dyndns.org SIP/2.0
Via: SIP/2.0/UDP
192.168.1.5:5060;rport;branch=z9hG4bKPjYpBu4f0hGJWwSit02FGTY-
7JllO3SERM
Route: <sip:imsvodafone.dyndns.org:5081;lr>
Max-Forwards: 70
From: <sip:dani@imsvodafone.dyndns.org>;tag=Ys1WScIJQZU-
td70KSAQa9M.56MAdZcY
To: <sip:dani@imsvodafone.dyndns.org>
Call-ID: uV4kkWfgPPPl6rlcWeWOaUmGEzdn8Amn
CSeq: 32750 REGISTER
User-Agent: Sipek on PJSUA v1.0.1/win32-wince
Contact: <sip:dani@192.168.1.5:5060>
Expires: 300
Content-Length: 0

Figure 13 SIP Message Header example

20 Advanced orchestration services

CHAPTER 2. THE ORCHESTRATION PLATFORM

The orchestration platform is a group of tools that provides an infrastructure to
develop and publish new services to the IMS network. The main features of this
platform are:

• Easy development of services by unprofessional developers.

• Easy publishing of new services by third parties.

• Record time to market of new services.

• Offer integration with the network.

• Offer services integration between vendors.

To obtain the best profit of the Orchestration Platform it is necessary to offer the
same network interaction between service developers and the network as the
IMS specifies. The allowing access of IMS resources through outside networks
like Internet can also provide a new front of services that converges Internet
and IMS networks.

2.1. Selected Technologies

An important part of needed characteristics come from the paper of the new
services that will be integrated in the platform. To provide the integration
requirements the service side is based on an actual architecture technology that
is becoming important in the programming environment, the Service Oriented
Architectures (SOA).

SOA [12] is considered as the philosophy of the encapsulating application logic
in services with a uniformly defined interface and making them publicly available
via discovery mechanisms. This allows the integration and interoperability
among services built from different vendors, that can be built in different
technologies and deployed in different networks.

On another hand, to provide easy-to-use service developing we have chosen
the Orchestration Director Engine (ODE). ODE is a software tool that permits
the direction of Web Services [13], as musicians directed by the orchestra
director, and also executes business processes written in Business Process
Execution Language (BPEL) that has the role of score. BPEL is a standard
executable language for specifying interactions with Web Services. Processes
in BPEL export and import information by using Web Service interfaces
exclusively.

Finally the platform includes Web interfaces based on Web 2.0 technologies to
make easy the access and use of the platform.

Chapter 2. The Orchestration Platform 21

2.2. Project Architecture

This platform is composed by the Orchestration Director Engine (ODE), the
Web Services, the Universal Description, Discovery and Integration (UDDI)
directory, the processes definitions, and the User Interface.

• The ODE is the engine of the service orchestration, and is the core of the
unprofessional development system.

• The Web Services are the network services. This services come from
third parties, unprofessional developers or Operator provisioning.

• The UDDI folder is an Extensible Markup Language (XML) based registry
for businesses worldwide to list themselves on the Internet and on the
orchestration platform.

• The Processes definitions are the base of the new developed services.
They contain the definition of a new service created by the composition
of the Web Services.

• The User interface is a Web application that provides an easy way to
create the processes definitions.

The next figure shows the architecture of the Orchestration Platform at high
level.

Figure 14 Project Architecture

22 Advanced orchestration services

2.3. Technologies of Architecture

In this section we explain the selected and required technologies to implement
the orchestration platform.

2.3.1. Tomcat

Apache Tomcat is a servlet container developed by the Apache Software
Foundation (ASF). Tomcat implements the Java Servlet and the JavaServer
Pages (JSP) specifications from Sun Microsystems, and provides a "pure Java"
HTTP Web server environment for Java code to run.

Tomcat provides to the platform a base to use Web services and Web
applications. The most important task of Tomcat is being the base for de ODE
deployment.

2.3.2. ODE

As we have mentioned before, ODE is a business processes executor
described by the WS-BPEL standard. The ODE software is a Web service and
runs over Tomcat.

The ODE paper in the platform is being the executor of new services described
by the developers using an easy Web interface which edits the WS-BPEL
description. ODE is the attendant of call Web Services; it manages the
interfaces for processors, instances and messages.

2.3.3. Processes definitions

The processes definitions are programs written in an orchestration language.
The language employed in the project is Business Process Execution Language
(BPEL).

BPEL is an Organization for the Advancement of Structured Information
Standards (OASIS) standard that provides a language for the formal
specification of business processes and business interaction protocols. It
extends the Web Services interaction model and enables it to support business
transactions. BPEL defines an interoperable integration model that should make
easier the expansion of automated process integration in both the intra-
corporate and the business-to-business spaces.

2.3.4. UDDI

Chapter 2. The Orchestration Platform 23

UDDI is a public register designed as a structure storage of the information
about companies and the offered provided services. A UDDI business
registration consists of three components:

• White Pages — address, contact, and known identifiers;

• Yellow Pages — industrial categorizations based on standard
taxonomies;

• Green Pages — technical information about services exposed by the
business.

Through UDDI it is possible to publish and discover information about a
company and his services. The most important characteristics of UDDI are that
contains information about the technical interfaces of the companies services,
and the possibly of using a group of API XML calls based on Simple Object
Access Protocol (SOAP) to interact with UDDI in the design or execution time to
discover the services technical data to be invoked and used.

2.3.5. GlassFish Sailfin

Sailfin is a SIP servlet container developed by Glassfish, an open source
community comprising Users, Developers, Partners, and Evangelists creating
an industry leading Java EE 5 compatible enterprise-quality Application Server.

Sailfin stores SIP applications and it is the first point of access to the
orchestration platform once the SIP messages are processed by the IMS
platform.

2.3.6. Web Services

Web Service is software system designed to support interoperable machine-to-
machine interaction over a network. Web services are frequently just Internet
application programming interfaces that can be accessed over a network, such
as the Internet, and executed on a remote system hosting the requested
services.

The Web Services technology encapsulates the application logic of services
with a uniformly defined interface. This characteristic makes possibly the
interaction between services provided by different owners, and a standard way
to manage them by the orchestration platform.

2.3.7. Web Interface

The orchestration Web interface is a Web application programmed in JSP and
JavaScript that permits the user to edit a process definition without writing XML
code. This application also saves the process definitions into a file and makes it
accessible for new process definitions.

24 Advanced orchestration services

The next figure shows the main page of the Web interface where you can see
on the right frame the offered services on UDDI. In the left side you can see the
selected function of UDDI services in the bottom and the XML generated in the
top.

Figure 15 Orchestration Platform Web Interface

Chapter 3. Twimser 25

CHAPTER 3. TWIMSER

Twimser is a micro-blogging application, like Twitter, where users can send text
messages from a mobile IMS terminal or from a Web page to his followers.
These messages will arrive to the application, which will redistribute messages
to the users interested in them.

Figure 16 Twimser application

3.1. The architecture

The Twimser application is composed by a Web tool and several services: the
Twimser service, the Presence Wrapper service, the Home Subscriber service,
the Redbox service, the IMS-Messaging service and the SIP servlet.

The next figure describes the Twimser architecture at high level.

Figure 17 Twimser Architecture

26 Advanced orchestration services

3.1.1. The Presence Wrapper

The Presence Wrapper service is a presence service based on the IMS
presence enabler that includes a buddy and group management. This service
manages the buddy lists and the organization of buddies in groups. The
Presence Wrapper service also stores information of the way of a follower has
to be informed: though SMS or SIP Message. This service is described in detail
in the next chapter.

3.1.2. Home Subscriber service

Home Subscriber service is a gateway to the IMS Home Subscribe Server
(HSS) [14]. The HSS is the database of all subscriber and service data.
Parameters include user identity, allocated S-CSCF name, roaming profile,
authentication parameters and service information. The HSS also provides the
traditional Home Location Register (HLR) and Authentication Centre (AUC)
functions. This allows the user to access the packet and circuit domains of the
network initially, via IMSI authentication.

The Home Subscriber service is a Web service that enables the interaction of
the applications to the HSS database in order to provide an internetwork
authentication service. This service is also public in the UDDI, as developer
service in the orchestration platform.

To keep security in this service the Home Subscriber Web service is only able
to get requests, it has not options to add or modify HSS database information.

3.1.3. RedBox service

The RedBox service is a Web service wrapper of a third party service that offers
SMS sending service.

3.1.4. IMS-Messaging simulator

The SDS IMS Messaging (IMS-M) simulator simulates various messaging
functionalities such as the popular Chat and Instant Messaging services
currently available on the Internet. It also enables the testing of existing short
message service messaging solutions by securing their interworking with IMS
messaging application development.

The SDS IMS-M Simulator allows IMS subscribers to send and receive
messages such as voice, text, video, pictures, and application data, to and from
other users. It is an IMS enabler designed according to standards so that it may
be used by other IMS applications for their messaging functions and testing.

Chapter 3. Twimser 27

3.1.5. The Web Tool

The Web Tool is a Web application that makes easier the interaction of the user
to Presence Wrapper service. This tool enables the user to manage his buddy
list and the way to inform them with a simple interface. The Web Tool also
enables the possibly of sending messages directly from the Web. This Web tool
is also part of the Presence Wrapper and is explained in the Presence Wrapper
Chapter.

3.1.6. SIP Server

The SIP Server is the first point of the Twimser application for SIP clients. Once
the client sends a message through the Twimser client application, the iFC in
the P-CSCF of IMS redirects this request to the SIP Server.

The SIP server is a SIP container (Sailfin) with a SIP application developed in
JSR289 Specification. The SIP application receives the SIP Twimser messages
and executes the Twimser engine.

3.1.7. TWIMSER

The Twimser server is the engine of the Twimser application. This engine is a
BPEL programming code, wrapper in a Web service and executed by ODE. The
function of this engine is to connect to the Presence Wrapper to request the
buddy list, and his own way information option (SMS or SIP). Once the Twimser
application has this information, it reads the list, and delegates the sending
information action to IMS-Messaging service or RedBox service.

3.2. Use cases

In this section there are exposed two possible use cases: In the first case we
have a user that edits his buddy list; the second case a user updates his status
blog generating a new message.

3.2.1. Edit buddy case

In this part is shown a diagram flow with a description of the case of a user adds
a new friend into the buddy list.

28 Advanced orchestration services

USER WEB APPLICATION HSS SERVICEPRESENCE WRAPPER

LOGIN

LOGIN

200 OK

ADD JOSH TO

FRIENDS LIST
ADD JOSH TO

FRIENDS LIST

200 OK

GET BUDDY LIST

AND GROUPS

SEND BUDDY LIST

AND GROUPS

GET BUDDY LIST

AND GROUPS

SEND BUDDY LIST

AND GROUPS

1

2

3

4

5

6

7

Figure 18 Edit buddy case

1. The user opens the Web application and sends his IMS user and

password formulary.

2. The Web application attacks to the HSS service with the user and
password.

3. The HSS verify if the login is correct and answers to the Web application.

4. Once the Web application receives a correct authentication, attacks to
the Presence Wrapper to know his buddy list and group management.

5. The user can see his buddy list, and now has the option to modify his the
notification buddy ways, delete the user or add a new user. Then the
user adds a new user and sends the formulary.

6. The Web application sends the information to the Presence Wrapper for
storage.

7. When the Presence Wrapper executes the action, returns a “200 ok”
message and the Web application is updated.

3.2.2. Sending update status case

In this part is shown a diagram flow of the case of a user updates his status,
sending a new notification.

Chapter 3. Twimser 29

Figure 19 Sending update status case

1. The IMS client sends a SIP register message to the IMS.

2. The IMS authenticates the user and sends a “200 ok” message if the
authentication is correct.

3. The IMS client publishes a new status through a message using the
Twimser client application.

4. The message is received by the IMS platform and is redirected to the
Twimser service.

5. The Twimser service gets the buddy list, buddies address and numbers,
and the way to inform the buddies from the Presence Wrapper.

6. Once the Twimser service has the buddy information, makes sent
information request to the IMS to use the IMS-Messaging service in case
of inform using SIP, or makes the sent information request to Redbox
service in case of informing using SMS.

30 Advanced orchestration services

CHAPTER 4. THE PRESENCE WRAPPER

The Presence Wrapper is a presence service based on Ericsson SDS PGM
enabler developed for the orchestration platform with the objective of offering
presence service to the new developed services. With this wrapper the third
parties and nonprofessional developers do not have to implement their own
presence service.

This wrapper is an important service to make near the apparition of new
services based on Web 2.0 concept. The first objective of this wrapper is being
the engine of a micro-blogging application; however it can be used as a social
network application or RSS engines. Also the wrapper is presented as a Web
service. This fact enables the use of the Presence Wrapper resource through
other networks like Internet.

4.1. Architecture

As we have mentioned before, the Presence Wrapper is based on SDS PGM
enabler, which is a presence enabler service. The PGM architecture is the
same as the typical presence enabler which we have explained on the first
chapter. The follow figure shows the PGM enabler architecture.

REGISTER/

LOGON

PUBLISH/

SUBSCRIBE/

NOTIFY

PUBLISH/

SUBSCRIBE/

NOTIFY

QUERY

POLICY

UPLOAD / DOWNLOAD

POLICY

CLIENT
IMS

SERVER

PRESENCE

SERVER

XCAP

SERVER

SIP

HTTP

SIP

SIP

Figure 20 Presence service architecture

The Presence Wrapper respects the Presence enabler and amplifies his access
ways through a Web service. This new Web service offers a standard and
public interface to access to the presence service and also enables the service
to other networks. To complement the wrapper and offer an easy way to
manage the presence service, we have also included a Web application. The
next figure shows the Presence Wrapper architecture with the new added
complements.

Chapter 4. The presence wrapper 31

Figure 21 Presence Wrapper architecture

4.1.1. The presence Web service

The presence Web service is based on JAX-WS 2.0 technology. His function is
to provide a new layer that works through the management of the XCAP data
and communicating with the XCAP server. This new layer of the service offer
the advantages of creating new functions more complex, and also performing
the useful presence service to the developer.

The presence services functions where limited to put, delete or modify data
information into the XML files. These functions were designed for a general use
to store data, and this implies a complex and extended programming code to
execute a function. Also the presence service implies to process the presence
response to obtain the needed information. The most important features of the
presence Web services are to solve these complications:

• It has specific functions for presence management.

• It is the responsible of the use the correct HTML method.

• It indicates the correct file path.

• It is able to program the code to write.

• It processes the XCAP responses and offers the response in basic data
structure instead of XML format.

32 Advanced orchestration services

By using the Web service the user only has to invoke the type of function and
provide the data information. The next list shows the implemented functions of
the Web service:

• start: this method creates the required files into corresponding folders.

• exist: this method checks if a buddy exists on the buddy list

• addFriend: this method adds a buddy into buddy list in the default group.

• addFriendInGroup: this method adds a buddy into a specific group in
the buddy list

• setFriendName: this method changes the name of the buddy contact

• setFriendPhone: this method changes the phone number of buddy
contact

• setFriendGroup: this method moves the buddy to an specific group

• setFriendSMSNotifycation: this method distinguishes between the
SMS way notification or SIP message notification

• removeFriend: this method removes a buddy of the buddy list.

• getFriend: this method returns the information of a buddy (name, phone
and SIP address)

• addGroup: this method creates a new group into buddy list

• getGroupList: this method returns a list of all the groups that exists in
your buddy list

• removeGroup: this method deletes a buddy group and his buddies.

• getFriendUriList: this method returns the SIP address of all buddies.

• getFriendsPhone: this method returns the phone numbers of all
buddies.

Another advantage that presence Web services provide is that are able to edit
the three types of XCAP files using an only function. For example when a new
buddy is added using “addFriend” function, the presence Web service adds him
to the resource-list file and also includes him into allowed list in the presence-
rules file.

Chapter 4. The presence wrapper 33

Figure 22 UML Diagram

4.1.2. The Web Application

The Web application is programmed in JSP language using Salifn as servlet
container. This Web application is composed by three main Web pages. The
first Web page is the login page which function is to authenticate the IMS user.

Figure 23 Login Web page

Once the login is done succesfully, we enter to the principal page, where we
can see our buddy list and the notify way information. This Web page permits
the user modifying the friend information, add a new friend or delete a friend.

34 Advanced orchestration services

Figure 24 Principal Web page

The next figure shows the add new user page and friend information
modification page.

Figure 25 Adding new friend page and Modifying friend information page

Chapter 5. The Twimser client 35

CHAPTER 5. THE TWIMSER CLIENT

To have a complete real demonstration of the platform we have also developed
an IMS client for the Twimser application. This client is a C# language program
compatible with a Microsoft Windows Operative System (Windows XP and
Windows Vista) and also compatible with Microsoft Windows Mobile 6.0.

5.1. Technology

The client application is developed in Microsoft.NET Framework platform [15].
The core of the client is in the SIP stack, which is essential for the
communication with the IMS.

5.1.1. Microsoft .NET Framework

The Microsoft .NET Framework is a software framework that can be installed on
computers running Microsoft Windows operating systems. It includes a large
library of coded solutions to common programming problems and a virtual
machine that manages the execution of programs written specifically for the
framework. The .NET Framework is a key Microsoft offering and is intended to
be used by most new applications created for the Windows platform.

5.1.2. SIP Stack

The SIP stack chosen for the client is the PJSIP Wrapper [16], which is a
wrapper of PJSIP open source stack [17].

5.1.2.1. PJSIP

PJSIP is a SIP stack programmed in C and supporting many SIP
extensions/features, with the following key benefits:

• Extremely portable. Write the application once, and it would run on many
many platforms (all Windows flavors, Windows Mobile, Linux, all Unix
flavors, MacOS X, RTEMS, Symbian OS, etc.)

• Very small footprint. With less than 150KB for complete SIP features,
PJSIP is ideal not only for embedded development where space is costly
but also for general applications where smaller size means shorter
download time for users.

• High performance. Which means less CPU power requirement and more
SIP transactions/calls can be handled per second.

36 Advanced orchestration services

• Many features. Many SIP features/extensions such as multiple usages in
dialog, event subscription framework, presence, instant messaging, call
transfer, etc. have been implemented in the library.

• Extensive SIP documentation. There can never be enough
documentation, so we try to provide fellow developers with hundreds of
pages worth of documentation.

5.1.2.2. PJSIP Wrapper

PJSIP is a SIP stack written in C. It is a small footprint, high performance and
portable library. And as such it is ideal for Softphone GUI developers. But there
is a problem. GUI developers do not like C programming language. They prefer
more sophisticated GUI designer tools and programming languages. In this
article, a technique for C# (.Net) integration with pjsip (C) is described.

Integration with .Net framework (C#) requires a wrapper module accessible
from C# as well from C. The module itself is written in C/C++ and it is
recommended to be part of the pjsip project solution (Microsoft Visual Studio).
The wrapper output is a dynamic library (.dll) which contains a common API
needed by GUI.

5.2. The Application

In this part it is explained the .NET project SIP application. This part is important
because the application is oriented to be reusable as standard IMS client. This
client fulfils most of the basic SIP operations that IMS client requires and is
structured in layers for a better integration with other applications.

5.2.1. Project structure

The Twimser Client Project is programmed in layers separating the network
part, the business logic and the user interface. The aim of this structure is make
the application compatible with other network layers based on different SIP
stacks or future protocols, and the possibly of integrate the Twimser client into
other projects or change the interface. The following figure describes the project
structure.

Chapter 5. The Twimser client 37

SIP Manager

Data Manager

Interface

SIP Observer

Interface

GUI

SIP Stack

GUI Messages

TWIMSER

Manager

CallBack

Integration

layer

Bussines

layer

Interface

layer

Figure 26 Twimser Client Application structure

The integration layer:

The integration layer is composed by the PJ SIP Manager. The PH SIP
Manager is the responsible of the SIP network interaction. The main task of this
part is the configuration of the PJ SIP library which is done using the PJSIP
.NET Wrapper API [18].

The business logic layer:

The business logic is a level over the integration layer and his function is to
provide an standard interface to adapt the Twimser client required functions
over the network protocol stack (PJSIP in this case). The core of business logic
layer is the TwimserManager which implements two defined interfaces:
ISipDataManager and ISipObserver.

The ISIPDataManager interface implements three basic functions to program in
the TwimserManager:

• Register: this function has to register the user into IMS

• Unregister: this function is to unregister the user into IMS.

• Message: this function has to send a SIP Message.

Also, The ISipObserver interface implements four functions more:

• Log: this function is an observer of client program information.

• Register: this function is an observer of register SIP responses.

38 Advanced orchestration services

• Unregister: this function is an observer of unregister SIP response.

• MessageReceived: this function is an observer of SIP Message
received.

The interface layer:

The interface layer is the responsible of transmit the user interaction with the
interface to the business logic layer, and also being the responsible of listen and
tract the events done when an observer sends information.

5.2.2. Graphical User Interface

The Twimser client application is composed by two frames. The first frame is
the configure frame where the IMS client information is required. The IMS
required information is: the IMS Domain, the P-CSCF port, the user and
password. When all the information is completed we can register our user. In
the next figure the first frame is shown.

Figure 27 Twimser Client Configuration frame

Once the register is done correctly an alert window appears confirming the
success of the process.

Chapter 5. The Twimser client 39

Figure 28 Register successful notification

The second frame is the interface to actualize the status message of the micro-
blogging. This frame is formed by a Textbox where we can write our status and
a Send button to update the status.

Figure 29 Update Status frame

40 Advanced orchestration services

At last, when a Message is received by the terminal a new popup appears
informing of the sender and the information.

Figure 30 SIP Message Notifycation

Chapter 6. Work Plan 41

CHAPTER 6. WORK PLAN

In this chapter the different tasks that have been developed to realize Twimser
project are explained. The next figure shows the Gantt diagram.

Figure 31 Gantt diagram

The first task was the Installation, configuration and test of the SDS software.
This task consisted on a familiarization with the environment (the IMS
provisioning) and the realization of some tutorials that SDS offers.

Once we knew how SDS ran, the second task was searching a SIP Stack for
C# language in order to start developing a SIP client in “.NET framework”.

The first release of SIP Client Application was an IMS Client with the
functionalities of Register, Unregister and Send Instant Messages to execute
the SDS tutorial with a real mobile client.

The next task was the Presence Service part. The Presence Service started
with the Presence enabler study and demonstration with SDS tools. Once we
tested the Presence enabler the next objective was making it available through
the orchestration platform. At this point we studied the Web Services technology
for the network availability. And the finally part of the Presence Service was the
Web Application to complete Presence wrapper developing.

The Presence Wrapper Web application required a user authentication service,
and this was the next task of the project.

At this point the RedBox service was introduced to amplify the Twimser
application functionality.

Id. Nombre de tarea Comienzo Fin
feb 2009 mar 2009 abr 2009 may 2009 jun 2009 jul 2009

15/2 22/2 1/3 8/3 15/3 22/3 29/3 5/4 12/4 19/4 26/4 3/5 10/5 17/5 24/5 31/5 7/6 14/6 21/6 28/6 5/7 12/7

1 27/02/200916/02/2009Install, configure and test SDS

2 13/03/200902/03/2009Search C# SIP Stack

3 10/04/200916/03/2009Develop SIP Client Application

4 15/04/200913/04/2009Study Presence Service

5 29/04/200916/04/2009Study Web Services technology

6 13/05/200930/04/2009Develope Presence Wrapper

7 21/05/200915/05/2009Develope HSS Web Service

27/05/200925/05/2009Develope RedBox Web Service

11

8

10

21/07/200922/06/2009Write the documentation

22/06/200905/06/2009Install UDDI

9 04/06/200927/05/2009Develope Twimser SIP Application

42 Advanced orchestration services

Finally, developing the SIP servlet application, the Twimser application was
ended. After testing it, the next task was creating an UDDI server and
registering all the developed services.

At last the project ended with the development of this master thesis report.

TASKS HOURS
Installing and configuring SDS 80 h
Searching C# SIP Stack 80 h
Developing SIP Client Application 160 h
Studying Presence Service 20 h
Studying Web Services Technology 80 h
Developing Presence Wrapper 80 h
Developing HSS Web Service 40 h
Developing RedBox Web Service 20 h
Developing Twimser SIP
Application

60 h

Installing UDDI 90 h
Writing the documentation 160 h
TOTAL 870 h

Figure 32 Time table

Environmental Impact & conclusions 43

CHAPTER 7. ENVIRONMENTAL IMPACT &
CONCLUSIONS

7.1. Environmental impact

The capability of adding new platforms and systems inside the IMS architecture
enables the possibility of adapting future application architectures and
application business models, and modernizing the network services without the
requirement of important changes in the operator network. This fact implies a
better usability of existing network resources.

On other hand this project has disadvantages in terms of environmental impact
in terms of spent informatics resources, phone devices and all related with the
project documentation.

7.2. Conclusion

The success of the IMS platform is directly related to the usability and content
applications offered. With the aim to increase them it is necessary to make them
easier to the service developers. The orchestration platform is a very powerful
tool to provide an easier development, and also a record time to market.
Another consideration is that an orchestration engine has no sense if it has not
relation with the network provided services; the network provisioning is a very
important tool.

In this context, the Presence Wrapper is an important service for the
orchestration engine and it can supply the presence service developed for new
services. Also, the Presence Wrapper service tries to make the IMS platform
successful, increasing the use of it and approaching to the developers the new
Web 2.0 concept applications.

7.3. Personal Conclusion

The main objectives of this project have been fulfilled getting as a result a high
power potential tool. The orchestration platform has being a very interesting
work for my experience due to the architecture complexity, the new market
technologies used, and the last implanted new generation network base.

On another hand, the presence wrapper has been an important service for the
platform, showing the potential of this platform and possibilities. The presence
wrapper has become an essential part of the new Web 2.0 concept applications
and also a known essential part of the IMS resources. This second fact is
demonstrable showing the lasts Ericsson SDS department news which is
promoting a new SDS add-on of presence and messaging service called
TWITTY.

44 Advanced orchestration services

Finally, I would like to remark the satisfaction of all the project collaborating
people, and the final consumer and the telecommunications operator. And I
would also like to show my interest and enthusiasm on keeping working in this
project to improve it.

Acronyms 45

ACRONYMS

AJAX – Asynchronous JavaScript and XML

ACK – Acknowledgement

AUC – Authentication Centre

BPEL – Business Process Execution Language

BGCF – Breakout Gateway Control Function

CSCF – Call Session Control Function

CGF – Charging Gateway Function

CSS – Cascading Style Sheets

DNS – Domain Name Server

GPP – Generation Partnership Project

GPRS – General Packet Radio Service

HTML - HyperText Markup Language

HTTP - HyperText Transfer Protocol

HRL – Home Location Register

HSS – Home Subscriber Server

ICF – Initial Filter Criteria

I-CSCF – Interrogating Call Session Control Function

JAX-WS – Java API for XML-Based Web Services

JSR – Java Specification Request

IMS – IP Multimedia Subsystem

LAN – Local Area Network

NGN – Next Generation Network

OASIS – Organization for the Advancement of Structured Information
Standards

ODE – Orchestration Director Engine

P2P – Peer To Peer

P-CSCF – Proxy Call Session Control Function

PS – Presence Service

PGM – Presence and Group Management

PTT – Push-To-Talk

RFC – Request for Comments

RSS - Rich Site Summary

S-CSCF – Serving Call Session Control Function

SDS – Service Development Studio

46 Advanced orchestration services

SIP – Session Initiation Protocol

SIP AS – Session Initiation Protocol Application Server

SMS – Short Message Service

SOA – Service Oriented Architecture

SOAP – Simple Object Access Protocol

SPT – Service Point Trigger

TISPAN – Telecoms & Internet converged Services & Protocols for Advanced
Networks

UDDI – Universal Description, Discovery and Integration

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

XCAP – XML Configuration Access Protocol

XML – Extensible Markup Language

References 47

REFERENCES

[1] Parashant Sharma. Core Characteristics of Web 2.0 Services [online]
[Consulted: 2 July 2009]. Available at: <http://www.techpluto.com/web-20-
services/>.

[2] The application/rss+xml Media Type. Network Working Group [online]. May
22, 2006. [Consulted: 3 July 2009]. Available at: <http://www.rssboard.org/rss-
mime-type-application.txt>

[3] Rebeca Blood. Weblogs: a history and perspective [online] September 7,
2000 [Consulted: 2 July 2009]. Available at:
<http://www.rebeccablood.net/essays/weblog_history.html>

[4] Danah M. Boyd and Nicole B. Elison. Social Network Sites: Definition,
History, and Scholarship Journal of Computer-Mediated Communication, 13(1),
article 11 [online] 2007. [Consulted: 3 July 2009]. Available at:
<http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html>

[5] IMS Overview [online] [Consulted: 1 July 2009]. Available at:
<http://www.dataconnection.com/sbc/imsarch.htm>

[6] Mike Mc Hugh. The Need for IMS Enabler Innovation TMC net. [online]
October 2007. [Consulted: 1 July 2009]. Availabe at:
<http://www.tmcnet.com/ims/1007/industry-perspective-1007.htm>

 [7] Ericsson.com [online] October 10, 2008. [consulted 10 July 2009]. Available
at <http://www.ericsson.com/developer/sub/open/technologies/ims_poc/
docs.html>

[8] Call Session Control Function Mobilein.com [online] . [Consulted: 4 July].
Available at: <http://www.mobilein.com/CSCF.htm>

[9] The extensible Markup Languaje. Network Working Group RFC 4825
[online] May 2007. [Consulted: 3 July 2009]. Available at: <
http://tools.ietf.org/html/rfc4825>

[10] Mark A. Miller Understanding SIP [online] May 31, 2005 [Consulted: 15 July
2009]. Available at:
<http://www.voipplanet.com/backgrounders/article.php/3508601>

48 Advanced orchestration services

[11] SIP: Session Initiation Protocol. Network Working Group RFC 3261
[online] June 2002. [Consulted: 3 July 2009]. Available at: <
http://tools.ietf.org/html/rfc3261>

[12] Newcomer, Eric. Understanding SOA with Web Services. Lomow, Greg
(2005). Addison Wesley. ISBN 0-321-18086-0.

[13] JAX-WS [online] [Consulted: 12 July 2009] Guide Available at:
<http://ws.apache.org/axis2/1_5/jaxws-guide.html>

[14] Session Control in the IP Multimedia Subsystem - White Paper Page 2.
[online] [Consulted: 2 July 2009] Available at: <http://www.newport-
networks.com/whitepapers/IMS-2.html>

[15] .NET Framework Guide [online] [Consulted: 15 July 2009]. Available at:
<http://msdn.microsoft.com/es-es/library/cc160717.aspx>

[16] Sasa Coh. PJSIP.Net Wrapper 2008 [online] [Consulted: 12 July 2009].
Available at: <http://sipekphone.googlepages.com/pjsipwrapper>

[17] Benny Prijono PJSIP.ORG [online] [Consulted: 12 July 2009]. Available at:
<http://www.pjsip.org>

[18] PJSIP .NET Wrapper API [online]. [Consulted 14 July 2009]. Available at:
<http://sipekphone.googlepages.com/pjsip.netwrapperapi>

Annexes 49

ANNEXES

1. IMS Ericsson

The main component used to implement the IMS of Ericsson was the Ericsson Service
Development Studio 4.1. As follows the installation instructions are provided.

SDS 4.1 installs and runs on a standard PC platform. The procedure described here describes
that you will need to:

1. Read and accept the license agreement.

2. Enter a valid license key.

3. Choose which components you wish to install.

4. Select an installation directory.

The subsequent part of the installation has to do with the components you selected for
installation.

1.1 Before You Start

Installation of SDS 4.1 and all components is performed by a series of wizards.

• Installation of SDS requires a reboot.

• Close all applications on your workstation before installing SDS.

• Close all Windows Explorer windows before installing SDS.

• Ensure the Computer Management (or Services) window is closed.

• The SDS installation wizard detects if SDS has previously been installed, and prompts
you to uninstall it before the latest version can install.

• If SDS was installed previously, it is not necessary to uninstall UIQ 3 SDK, the phone
emulators, or any component not specifically mentioned.

1.2 SDS 4.1 Installation

50 Advanced orchestration services

Figure 1 SDS 4.1 Setup Wizard

To install SDS 4.1:

1. In the SDS 4.1 Welcome window, click Next to continue.

The License Agreement screen appears, prompting you to accept the terms of the
license.

Figure 2 License Agreement Window

Note: The Next button remains unavailable until you accept the license agreement.

2. Select the I accept the terms in the License Agreement check box and click Next to
continue.

The License Validation window appears, prompting you for your license key.

Annexes 51

Figure 3 License Validation Window

If you had an earlier version of SDS, the license key will be filled in automatically.

If you downloaded SDS from the EMW Website, a license key will be e-mailed to you at the
address you specified when you registered on the Website. If you did not receive one, contact
SDS support at support@ericsson.com.

*ABRG4WPGB0IENAC9CBZKLAV6XPWYCYXVJ8TRHKNO6LXGTDP40V4VMSNQ80JUVSK28#
"CXC4010342" version "4.1", no expiration date, exclusive

Example 1 License Key (Invalid)

Note: The part of the license key starting with # is a comment on the license type of the key and
is optional.

3. Click Next.

The Choose Components window is displayed, prompting you to select the features to
install.

Figure 4 Choose Components Window

52 Advanced orchestration services

Component Description

SDS Installs SDS 4.1 core components. This item is mandatory.

Remote Agent Installs the SDS Remote Agent. This item is mandatory.

Eclipse 3.4 JEE + Installs Eclipse 3.4 and Graphical Editing Framework (GEF).
GEF

Wireless Package Installs Wireless Package. This contains EclipseME and Antenna,
which require a wireless toolkit to use.

ICP Windows Installs IMS Client Platform (ICP) for Windows.

UIQ SDK + P1 Installs the Symbian Emulator, UIQ 3 SDK, and extension package for
the Sony Ericsson P1 handset.

Sample Code Installs sample applications that illustrate how to code programs with
SDS. Required if you wish to use the Tutorial that comes with SDS.

4. Select SDS and ICP Windows which are the components we want to install. When done,
click Next.

If Java is not found on the system PATH variable, you will be prompted by this window.

Figure 5 Select Java Directory

5. Enter the path where Java 1.5 is installed on your machine or browse and select the path.
When done, click Next.

The Choose Install Location screen appears, prompting you for the SDS install path.
The recommended (default) installation path is C:\Ericsson\SDS4.1. The path must
not contain any spaces.

Annexes 53

Figure 6 Choose Install Location

6. Click Install to accept the default C:\Ericsson\SDS4.1 installation directory.

Installation may take several minutes. A progress bar displays the status of the
installation.

If you specify your own installation path for SDS, it must not contain spaces. Installation
will fail otherwise.

If you want to display the details of the installation, click Show Details.

Figure 7 SDS 4.1 Installation Progress

54 Advanced orchestration services

1.3 Completing the SDS Installation

Once SDS is installed, the Installation Complete window is displayed. The installation
procedure of all components needed to use SDS is complete.

However, to run SDS you must reboot your computer.

1. Click next. The Completing the SDS 4.1 Setup Wizard window is displayed.

Figure 8 Completing the SDS 4.1 Wizard

2. Select the Reboot now radio button and click Finish.

Any open applications on your desktop are closed and your system reboots.

An SDS 4.1 item is added to your Start > Programs menu.

Figure 9 SDS in the Window Programs Menu

The selected SDS components and all required plug-ins are installed on your computer.

1.3.1 Starting SDS

2. To start SDS, in Windows click Start > Programs > SDS 4.1 > SDS.

Annexes 55

An Eclipse splash screen is displayed while SDS loads. This could take a few moments.

Figure 10 Eclipse Splash Screen

The Workspace Launcher appears, prompting you to choose your workspace for this session.

Figure 11 SDS Workspace Launcher

3. Enter the path to the workspace and click OK.

Note: Select Use this as the default and do not ask again if you do not wish to be
prompted with this screen every time you start SDS.

If you are installing SDS 4.1 on a laptop computer or if your DHCP IP address is
subject to change, do not select this option, as you may need to change
workspaces to accommodate different IPs.

If you do not have correct default JRE settings, you will receive this warning.

56 Advanced orchestration services

Figure 12 Incompatible JRE Warning Window

4. Click OK. Consult the Service Development Studio (SDS) 4.1 Developer's Guide, 198 17-
APR 901 753/2 for more information on how to configure the default JRE.

The first time you open Eclipse, you are presented with a Welcome screen.

Figure 13 Eclipse Welcome Screen

5. Click the X on the tab to close this window. It will not appear again.

The Eclipse workbench appears.

Annexes 57

Figure 14 Eclipse Workbench Window

• If this is the first time you are launching SDS, the workbench is blank.

Note: If you have reinstalled SDS, you may encounter a workbench restore error. This
occurs if SDS has modified a view or perspective that you had displayed when
you closed SDS. The warning message can be safely dismissed without any
consequences.

58 Advanced orchestration services

2. App Server Web Services

As follows the necessary steps to be able to create with AXIS the Web Services, which will be
inserted in the App Server, are explained.

Apache Axis is nothing else than an open source, XML based Web service framework. It
consists of a Java and a C++ implementation of the SOAP server, and various utilities and APIs
for generating and deploying Web service applications. Using Apache Axis, developers can
create interoperable, distributed computing applications.

Firstly we will revise the necessary tools to be able to proceed.

2.1 Tools

• Java Virtual Machine: Needed to be able to execute the rest of tools:

http://www.java.com/es/download/

• Apache Tomcat: Web Services application that can be downloaded from:

http://tomcat.apache.org/download-60.cgi

• Apache Axis2: Web Services development kit. It allows the Web Services execution.
Downloading link:

http://ftp.udc.es/apache-dist/ws/axis2/1_4/axis2-1.4-war.zip

• Eclipse Project: Development platform needed to realize the source code and to generate
the services through Axis2 plugins for Eclipse:

http://www.eclipse.org/downloads/

o Apache Axis 2 Service Archive Generator: Plugin for the Web Service
generation:

http://www.apache.org/dyn/mirrors/mirrors.cgi/ws/axis2/tools/1_4/axis2-eclipse-
service-archiver-wizard-1.4.zip

o Apache Axis2 Code Generator: Plugin for the WDSL and Web Service clients
generation:

http://www.apache.org/dyn/mirrors/mirrors.cgi/ws/axis2/tools/1_4/axis2-eclipse-
codegen-wizard-1.4.zip

Once all the needed tools have been downloaded we shall proceed to their installation. First we
must install the Java virtual machine, if we have not done it yet. As follows we must install
Tomcat and Eclipse.

Once we have Tomcat and Eclipse properly working we must decompress the Kit Axis2 *.war
and copy it into the “Webapps” folder from the Tomcat root directory; to end the installation we
must start the server.

Both Axis2 plugins for Eclipse must be decompressed and copied into the plugins folder of the
Eclipse root directory.

Annexes 59

2.2 Generating WSDL from the Java code

1. To create the WSDL we will choose the interface that provides the functionalities. Over
the project we want to use, we click with the secondary button and choose
“New>>Other” and we select “Axis Wizards>>Axis Code Generator”.

Figure 15 Plugin selection

2. As follows we will select the option of WSDL generation.

Figure 16 Choose the type of generation

60 Advanced orchestration services

3. We select the class that will be read indicating its route, “Add folder”.

Figure 17 Interface selection

4. Subsequently we will be able to change the name of the Web Service, if we prefer it.

Figure 18 Name for the Web Service

5. We select were to save and the name of the WSDL file, afterwards we save.

Annexes 61

Figure 19 Last step

2.3 Generating a Web Service

1. To set up the service, over the project we want to use, we click with the secondary button
and choose “New>>Other”, after we select “Axis Wizards>>Axis2 Service Archive
Generator”.

Figure 20 Plugin selection

2. The next step is indicating the path of the service binaries. Do not mark the box “Include
.class files only” if the service needs files from other types.

62 Advanced orchestration services

Figure 21 Selection of the path of the binaries

3. Afterwards we select the WSDL created in section 2.2.

Figure 22 WSDL selection

4. In this step we will select all the libraries that may be needed for the correct Web Service
operation.

Annexes 63

Figure 23 List of the selected JARs

5. We dispose that it is possible to generate the XML file unless we wish to specify one.

Figure 24 Generation "services.xml"

6. In the next step we will be able to indicate which methods we wish to include in the Web
Service. To do so we have to select the interface which has to be the same used to
generate the WSDL in section 2.2.

64 Advanced orchestration services

Figure 25 Method list of the interface

7. Finally we will indicate where we wish to save the Web Service and the name of the
future file. To deploy it onto the Tomcat Axis 2 save it in
“TOMCAT_DIR\Webapps\axis2\WEB-INF\services” where TOMCAT is the root
directory.

2.4 How to generate source code of the client

1. To create the Web Service Client, over the project we want to use, we click with the
secondary button and select “New>>Other” and then “Axis Wizards>>Axis2 Code
Generator”.

Annexes 65

Figure 26 Plugin selection

2. Now we select the option “Generate Java source code from a WSDL file”.

Figure 27 Choosing the type of generation

3. Now we select the WSDL that we generated in section 2.2.

66 Advanced orchestration services

Figure 28 WSDL selection

4. In the following screen in “Codegen Option” we must select “custom” if we wish to change
the client preferences. In “Custom package name” we can select the output path of the
generated source code.

Figure 29 Client configuration

5. At last we indicate the destination path of the code indicating that it is in the Eclipse
workspace directory. We must select “Add the Axis2 codegen.jar...” if we want the code
to dispense with the imports, calling the classes by their path, e.g.
com.apache.common. ...

Annexes 67

Figure 30 Last step

6. Once we have the Web Service Client, we have to create a class to interact with. In the
following example a login petition is shown.

Figure 31 Example of the interaction with the Web Service client

Following this example we are able to call the methods that are in the server as if we had them
in local.

