
MASTER IN COMPUTING

(VISUALIZATION, VIRTUAL REALITY, AND GRAPHIC INTERACTION)

Research on Generic Interactive
Deformable 3D Models

—Focus on the Human Inguinal Region—; Research Thesis for Master in Computing

Thesis Student:
Marc Musquera Moreno

[marc.musquera@upc.edu]

Thesis Director:
Antonio Susı́n Sánchez (MA1-UPC)

[toni.susin@upc.edu]

Thesis Reader:
Isabel Navazo Alvaro (LSI-UPC)

[isabel@lsi.upc.edu]

Spring 2008; v1.1

!Acknowledgements

You will never find time for
anything. If you want the

time, you must make it.

- Charles Buxton

First, I would like to thank my Thesis Director Dr. Antonio Susin for guiding me
through this awesome research project in physically-based animation. Many thanks also
to Prof. Isabel Navazo for her help, interest, collaboration as Thesis Reader, in addition
of her support in burocratic tasks during this project.

Also, I would like to thank the staff of the Master teachers, specially Profs. Carlos
Andújar and Pere Pau Vázquez for their unvaluable help on voxelization and shader
programming respectively, and my Master mates, Ricardo (I still remember we helping
us each other with Mac peculiarities in front of PC), Quim and Jordi, for the good mo-
ments and friendly environment during all the Master.

My most sincere gratitude also to Laia, who has corrected from Toulouse, where she is
achieving her PhD, the state of the art part in terms of making the text more comprehensive
and easier to understand. Thanks also to Alba for doing the same with the introduction
part.

And, overcoat, my most sincere gratitude for my three most closer people, who have
supported me and have helped me improving my life while they were adapting their
own to mine: my dear parents Joan and Montse, of course —I don’t know what could
I do without them—, and my particular jewel, Gemma, who has wanted to share with
me these complex times, and have lived my good research moments as long as also sup-
ported me in the bad ones all the time. The love from you three have been essential for
the success of this project.

I

*Table of Contents

Acknowledgements I

Table of Contents III

List of Figures VII

List of Tables XI

List of Codes XIII

PROJECT’S FIRST CONTACT

1 Project Abstract 3
1.1 Overview . 3

1.2 Focusing on the research thesis aims . 4
1.2.1 Interests and research fields . 4
1.2.2 Final result . 5
1.2.3 A non-interactive simulator . 5

2 Objectives and Research Contribution Overview 7
2.1 Motivations and interests . 7

2.1.1 Physically-based computing animation 7
2.1.1.1 Computer Animation typologies 7
2.1.1.2 The 3D computer animation 8
2.1.1.3 Kinds of 3D computer animation. Focus on physically-

based animation . 8
2.1.2 Human musculature studies . 9

2.1.2.1 Introduction to Human Body Modeling and Animation . 9
2.1.2.2 Evolution of Human Animation 10

III

IV Table of Contents

2.1.2.3 Main goal for this project 11
2.1.3 Surgery simulation . 12

2.1.3.1 Virtual surgery’s brief overview 12
2.1.3.2 This project’s approach and developed work 12

2.2 Research fields and contributions . 13
2.2.1 Deformable models over static meshes 13

2.2.1.1 Objectives . 13
2.2.1.2 Methodology Overview . 13

2.2.2 Multiresolution meshes . 14
2.2.2.1 Idea and motivation . 14
2.2.2.2 A little brief scheme about remeshing steps 14

2.2.3 Surgery on a 3D object . 15
2.2.3.1 A virtual scalpel for cutting 15
2.2.3.2 Proposal for this project . 16

THE STATE OF THE ART

3 Volumetric Model from a Polygonal Mesh 19

3.1 Polygonal Meshes . 19
3.1.1 Introduction to Polygonal Meshes. The Triangle Meshes 19
3.1.2 The Face-Vertex Mesh Format . 20

3.2 Mesh Voxelization . 20
3.2.1 The volumetric models. The voxelization process 20

3.2.1.1 Introduction to the voxel space 20
3.2.1.2 The 3D discrete topology 21

3.2.2 The Problem: Triangle VS Voxel . 22
3.2.2.1 Introduction . 22
3.2.2.2 The test’s simplest case: gigantic meshes in low-grid vox-

elmaps . 22
3.2.2.3 Test’s generic case: voxelization of any mesh at any LOD.

Alternative techniques . 24

3.3 The search tree structures applied to voxelization 28
3.3.1 Reasons for using trees . 28
3.3.2 The most common Search Trees Structures 28

3.3.2.1 Binary Space Partition Tree —BSP-Tree— 29
3.3.2.2 Kd-Tree . 29
3.3.2.3 Quadtree (2D) and Octree (3D) 30

4 Polygonal Mesh Reconstruction: Multiresolution Meshes 31

4.1 Introduction to Multiresolution Meshes . 31
4.1.1 The need of a multiresolution mesh capability 31

Research on Generic Interactive Deformable 3D Models

Table of Contents V

4.1.2 The IsoSurfaces . 32

4.2 VoxelMap Refilling. The Model Carving . 32
4.2.1 Space Carving . 33
4.2.2 Voxel Carving . 33

4.3 IsoSurface Extraction Algorithms . 34
4.3.1 IsoSurface extraction as multiresolution mesh construction 34
4.3.2 Marching Cubes . 34

4.3.2.1 Overview . 34
4.3.2.2 Advantages and disadvantages 36
4.3.2.3 The isosurface-voxel intersection case LUT. Shortcomings 36

4.3.3 Marching Tetrahedron . 37
4.3.3.1 Overview and shortcomings 37
4.3.3.2 The Marching Tetrahedra LUT 38

5 3D Object Model Animation/Deformation 41
5.1 Point-Oriented Deformation . 41

5.1.1 The Point-Sampled Geometry . 41
5.1.2 Point-sampled deformation . 42

5.2 Geometric Deformation . 43
5.2.1 Global or local deformation operators 43

5.2.1.1 Reminder: the jacobian matrix JF of a function F 43
5.2.1.2 Method Overview . 44
5.2.1.3 Global and local operators 44
5.2.1.4 Examples of global operator deformations 44

5.2.2 Free Form Deformation —FFD— . 47
5.2.2.1 Introduction to FFD . 47
5.2.2.2 Methodology details . 48
5.2.2.3 Grid of Control Points . 48
5.2.2.4 Capabilities and limitations 49

5.2.3 Interactive Axial Deformations —AXDF— 49
5.2.3.1 Method Overview . 49
5.2.3.2 Algorithm Details . 50
5.2.3.3 Advantages and lacks of AXDF 51

5.2.4 Deformation by Wires . 51
5.2.4.1 Introduction and wire definition 51
5.2.4.2 Algorithm overview . 52

6 Physically-Based Deformations 53
6.1 Introduction to deformation based on physics 53

6.1.1 Overview of time stepping deformation algorithms 53
6.1.1.1 Accuracy VS speed performance 53

6.1.2 A simple particle P as the deformation system 54
6.1.2.1 State Vector and Vector Field of a simple particle 54

Master Thesis in Computer Graphics by Marc Musquera Moreno

VI Table of Contents

6.1.2.2 The time step ∆t. The numerical integrator concept. The
Euler numerical integrator 54

6.1.2.3 The integration system scheme 55
6.1.2.4 The most used ODE integrators 55
6.1.2.5 Accuracy and stability of numerical integrators 56
6.1.2.6 Movement restrictions . 58

6.2 Dynamic Deformable Model Systems . 59
6.2.1 Introduction to deformable systems 59

6.2.1.1 Definition of Particle System 59
6.2.1.2 The deformable models as dependent-particle system. The

continuum elasticity . 60
6.2.2 Points of View of a Physical Simulation. Solver Typologies 61

6.3 Physical Simulation based on Lagrangian POV descriptions 62
6.3.1 Mesh Based Methods . 62

6.3.1.1 Finite Element Method —FEM— 62
6.3.1.2 Finite Differences Method 64
6.3.1.3 Boundary Element Method 64
6.3.1.4 Mass-Spring Systems . 65

6.3.2 Mesh Free Methods . 68
6.3.2.1 What are Mesh Free Methods 68
6.3.2.2 Smoothed Particle Hydrodynamics —SPH— 68
6.3.2.3 Meshless Deformations based on Shape matching 69

6.3.3 The Hybrid Approaches . 69
6.3.3.1 Overview of the hybrid simulation approaches 69
6.3.3.2 Pump it Up . 69
6.3.3.3 Mass-Spring with Volume Conservation 70

6.4 Physical Simulation based on Eulerian POV descriptions 71
6.4.1 Overview . 71
6.4.2 Fluid Simulation . 71

6.4.2.1 The Navier-Stokes equations for fluids 71
6.4.2.2 The yielding idea of display and computation 72
6.4.2.3 A small summary of variants and proposals 72

7 Topological Changes on Polygonal Meshes 75

7.1 Mesh Cutting or Mesh Splitting . 75
7.1.1 Introduction . 75
7.1.2 Motivations and applications . 76

7.1.2.1 Surgery simulation. Constraints and requirements 76
7.1.2.2 Another applications of mesh splitting 76

7.2 Mesh Dissection: Some Proposals . 76
7.2.1 Spring Framework Tools: Cutting Interaction 76

7.2.1.1 The generic alrgorithm scheme 77

Research on Generic Interactive Deformable 3D Models

Table of Contents VII

7.2.1.2 Examples and applications 77
7.2.2 Finite Element Methodologies . 78
7.2.3 Discontinuous FFD approach . 78
7.2.4 Hybrid Cutting . 79
7.2.5 Off-line virtual node algorithm based on replicas 80

CONTRIBUTIONS AND RESULTS

8 External Used Libraries and Employed Hardware 85

8.1 Mac Computers with MacOsX v10.5 “Leopard” 85

8.2 Used Developing Platforms . 86
8.2.1 QT4.4 for GUI design with C++ as Native Language 86
8.2.2 Matlab for testings . 87

9 Computer Graphics Programming 89

9.1 OPENGL as the primary graphics specification 89
9.1.1 A Little Brief on Computer Graphics using OPENGL 89
9.1.2 API overview: The OPENGL graphical computing steps 90

9.1.2.1 Initial considerations; introduction 90
9.1.2.2 Drawing primitives . 90
9.1.2.3 Vertex transformations; the matrix stack 92
9.1.2.4 Camera positioning and configuration; the viewport . . . 94

9.1.3 The Standard Graphics Pipeline . 96
9.1.4 The OPENGL Extensions. The GLEW Library 97

9.2 The programmable graphics technology . 98
9.2.1 The Shading Languages . 98
9.2.2 A New Programming Paradigm . 98

9.2.2.1 The GPU’s Vertex and Fragment Processors 98
9.2.2.2 The New Programmable Graphics Pipeline 99
9.2.2.3 Geometry Shaders . 99

9.2.3 OPENGL 2.0 and GLSL . 100
9.2.3.1 Brief introduction to OPENGL 2.0 and GLSL 100
9.2.3.2 Data types and qualifiers 100
9.2.3.3 The most important implicit variables 102
9.2.3.4 A shader example: the toon shading 102

9.3 GPGPU: The New Computing Paradigma 104
9.3.1 The Programmable Graphics Pipeline, used for General Purpose

Algorithms . 104
9.3.1.1 The Frame Buffer Object —FBO— Extension 104
9.3.1.2 General-Purpose Graphics Processor Unit —GPGPU— 105

9.3.2 The nVidia CUDA approach . 107

Master Thesis in Computer Graphics by Marc Musquera Moreno

VIII Table of Contents

9.3.2.1 The next step in GPU computation 107
9.3.2.2 GPU as a multi-threaded coprocessor 107

10 Thesis Software Suite: (1) MeshInspeQTor 109

10.1 Application Overview . 109

10.2 Loading 3D models . 110
10.2.1 The OBJ file format specification . 110

10.2.1.1 The geometry file *.obj 110
10.2.1.2 The material file *.mtl . 111

10.2.2 The OBJ parsing with modelOBJ class 113
10.2.3 Automatic modelOBJ enhancements and improvements 114

10.2.3.1 Only triangular faces . 114
10.2.3.2 Same number of vertices and normals: the per-vertex nor-

mals . 114
10.2.3.3 Automatic generation of normals 115

10.2.4 IRI’s own P3D format conversion to OBJ models 115
10.2.4.1 Dedicated GUI for file format conversion to OBJ format . 115
10.2.4.2 2D convex hulls for piecewise isosurface extraction merging116

10.3 Displaying 3D models . 118
10.3.1 Overview of MeshInspeQTor rendering capabilities. The Vertex Arrays118
10.3.2 Rendering typologies . 119

10.3.2.1 Solid object, wireframe and point set 120
10.3.2.2 Object Draft . 122

10.3.3 Additional 3D model properties’ visualization 123
10.3.3.1 Model’s bounding box . 123
10.3.3.2 Per-face normals . 124

10.3.4 GPU dedicated algorithm for realistic Phong illumination model . . 125
10.3.4.1 Introduction to the Phong illumination model 126
10.3.4.2 The Phong reflection model shaders 127

10.4 3D model arbitrary plane culling . 128
10.4.1 Introduction to the arbitrary plane culling 128
10.4.2 The VirtualCutting process . 128

10.4.2.1 Defining the planes . 128
10.4.2.2 How to process the plane culling 129

10.4.3 GPU dedicated algorithm for real-time VirtualCutter culling 132

10.5 Voxelization of polygonal meshes . 134
10.5.1 Introduction of this functionality . 134
10.5.2 The VoxelMap data structure. Format and access. 135
10.5.3 The octree as acceleration data structure for voxelization 135
10.5.4 The triangle-voxel intersection test 137

10.5.4.1 The 2D axis-aligned projection test 137
10.5.4.2 The cube space location in relation to the triangle 138

Research on Generic Interactive Deformable 3D Models

Table of Contents IX

10.5.5 The voxel vertizer module . 139
10.5.6 Operations with mesh-generated voxelmaps based on the set theory 141
10.5.7 The Voxel Carving . 141

10.5.7.1 The standard total refilling strategy 141
10.5.7.2 The thesis’ innovative hole preserving algorithm 142

10.6 Developed File Formats . 143
10.6.1 Scene *.SCN File Format . 143
10.6.2 VoxelMap *.VOX File Format . 144

11 Thesis Software Suite: (2) ForceReaQTor 145

11.1 Application Overview . 145

11.2 From VoxelMap to 3D Mass-Spring System 146
11.2.1 Overview of the main ForceReaQTor preprocess 146
11.2.2 The conversion to a mass-spring system in detail 147
11.2.3 Displaying the mass-spring system 149

11.3 The Dynamic Force Data Structure . 150
11.3.1 Predefined deformations. The Timeline Simulation Specification . 150

11.3.1.1 The GUI configuration panel 150
11.3.1.2 Independence between lists of dynamic forces and vox-

elmaps . 151
11.3.1.3 Data structure for dynamic forces 151

11.3.2 Dynamic Factor Typologies . 152
11.3.2.1 Dynamic Forces . 152
11.3.2.2 Node Fixing . 152
11.3.2.3 Spring Cuttings . 152

11.4 The Deformation Simulator . 153
11.4.1 A thread-powered module; the FPS imposed rating 153
11.4.2 The detailed deformation algorithm 155
11.4.3 The Numerical Integrators . 155

11.4.3.1 Introduction to the integration algorithms 155
11.4.3.2 Euler Integrator . 156
11.4.3.3 Verlet Integrator . 156

11.4.4 Force Accumulator . 156
11.4.4.1 Introduction to Force Accumulation 156
11.4.4.2 Stretching and Bending . 160
11.4.4.3 Shearing . 161

11.5 Volume Preservation . 163
11.5.1 The need for volume preservation 163
11.5.2 Fixing nodes for volume preservation 164
11.5.3 ForceReaQTor’s adopted solution: the autostretching 164

11.6 Collision handling . 167
11.6.1 The need of collision handling during deformation 167

Master Thesis in Computer Graphics by Marc Musquera Moreno

X Table of Contents

11.6.2 The ForceReaQTor approach: spheres approximating cubes 167
11.6.2.1 Introduction . 167
11.6.2.2 Collision testing . 168
11.6.2.3 Collision processing . 169
11.6.2.4 Adaptive acceleration for collision handling 170

11.7 Mass-Spring System Cuttings . 172
11.7.1 Introduction to the spring cutting methodology 172
11.7.2 Repercussions on physically-based deformations 173

11.8 Accelerated Force Accumulator looping . 174

11.9 Displaying the deformation system as a triangular mesh 175
11.9.1 The mass-spring system as a 3D non-rigid skeleton 175
11.9.2 A GPU-dedicated algorithm for the mesh rendering process 175

11.9.2.1 Overview of the shader program for FFD-renderization . 175
11.9.2.2 The handicap of passin the masspoints and hashing val-

ues to the GPU . 176
11.9.2.3 The vertex shader algorithm 177

11.9.3 Autogenerated skin from the mass-spring skeleton 179
11.9.3.1 Introduction . 179
11.9.3.2 ForceReaQTor and the deforming meshes 179
11.9.3.3 The wrongly parametrized triangular meshes 181
11.9.3.4 Inherent pseudo-FFD rendering adequation 183
11.9.3.5 Polygonal mesh cutting renderization capabilities 184

11.10Developed File Formats . 185
11.10.1 Dynamic Force List *.DFL File Format 185
11.10.2 VoxelMap *.VOX File Format . 185

12 Tests and Results 187

12.1 Introduction to this chapter . 187
12.1.1 A brief about the developed software and the offered results 187
12.1.2 The medical-purpose three-dimensional models 188
12.1.3 Test structure, and given results . 188
12.1.4 Testing Machine Specification . 189

12.2 Introduction test over non medical models 189
12.2.1 Brief overview . 189
12.2.2 Mesh voxelization test results . 189
12.2.3 The Marching Cubes automatic mesh extraction 190
12.2.4 Lenghten and shorten forces over a model. 191

12.3 Test over medical models; the human inguinal muscle region 191
12.3.1 Brief overview . 191
12.3.2 The oblique external muscle . 193
12.3.3 The transversus muscle . 194

Research on Generic Interactive Deformable 3D Models

Table of Contents XI

13 Project Conclusions and Future Work 195

13.1 Contributions and Derived Conclusions . 195
13.1.1 Final Conclusions . 195
13.1.2 Research Contributions . 196

13.1.2.1 Conservative mesh voxelization variant 196
13.1.2.2 New approach for an hybrid deformation system 196

13.2 Future Work . 196
13.2.1 Persistent storage of the Marching Cubes extracted meshes 196
13.2.2 Innovative mesh splitting based on breaking voxel connectivity . . 197
13.2.3 More GPGPU-Focused Algorithms 197
13.2.4 Haptic-Oriented Product . 198

13.2.4.1 The workbench prototype 198
13.2.4.2 The CAVE-oriented environment 199

BIBLIOGRAPHY AND APPENDIXES

A Bibliography 203

A.1 Project’s First Contact . 203

A.2 The State of the Art . 204

A.3 Contributions and Results . 207

A.4 Conclusions and Future Work . 209

B End-User Software Data Sheet: ‘MeshInspeQTor’ 211

B.1 Product Overview . 211
B.1.1 Highlights . 211
B.1.2 Key Features . 212

B.2 Product Details . 212
B.2.1 Models tab: 3D Model Visualization 212

B.2.1.1 Setting the 3D scene . 212
B.2.1.2 Controls and management 213

B.2.2 VirtualCutters tab: The Mesh Dissection Process 214
B.2.2.1 Setting a Virtual Cutters 214
B.2.2.2 Management . 215

B.2.3 Voxelizer tab: The VoxelMaps, Volumetric Representations 215
B.2.3.1 Building a Voxelmap from a 3D scene 215
B.2.3.2 Basic Set Theory applied to Voxelization Method 216
B.2.3.3 Using the VoxelMap Navigator 217
B.2.3.4 Carving a VoxelMap . 218
B.2.3.5 Management . 220

B.3 Requirements and recommendations . 221

Master Thesis in Computer Graphics by Marc Musquera Moreno

XII Table of Contents

C End-User Software Data Sheet: ‘ForceReaQTor’ 223
C.1 Product Overview . 223

C.1.1 Highlights . 223
C.1.2 Key Features . 224

C.2 Product Details . 224
C.2.1 Dynamic Force tab: The 3D Dynamic Deformation Model settings . 224

C.2.1.1 A little introduction; the deformable skeletons and the dy-
namic force lists . 224

C.2.1.2 The VoxelMap and the 3D non-rigid skeleton 225
C.2.1.3 Setting the Dynamic Force List 226
C.2.1.4 Controls and management 227

C.2.2 Simulator tab: The Real-Time Deformable Simulator 228
C.2.2.1 Deformable system visualization styles 228
C.2.2.2 Playing the simulation . 228
C.2.2.3 The numerical integrators: Euler and Verlet 229
C.2.2.4 The frames per second —FPS— rate specification 229
C.2.2.5 Run-Time simulation parameters 230
C.2.2.6 Controls and management 230

C.3 Requirements and recommendations . 231

Research on Generic Interactive Deformable 3D Models

*List of Figures

PROJECT’S FIRST CONTACT

1.1 A montage of a physicallu-based animation done with AERO simulator, a
animation software whose web is www.aero-simulation.de. 3

1.2 Three steps of a dolphin mouth pulling with a 50N applied force —
notice the yellow lines, representing the applied forces to the model—. The
snapshots are from one of the two developed applications for this thesis,
ForceReaQTor, that executes all the deformation simulations. 4

2.1 Examples of two and three-dimensional computer animation methodologies. 8
2.2 Some frameset examples of physically-based animation possibilities. . . . 9
2.3 The computer graphics standard human anatomy model: skin, skeleton

and muscles. 9
2.4 The articulated stick human model scheme. 10
2.5 The multi-layered human body animation proposal by Scheepers et al in

[mot2]. 11
2.6 The Surgery Simulation —or Virtual Surgery— can be an escellent surgeon

training system. 12
2.7 The previously mentioned tensor field bunny model real-time deforma-

tions from [cnt1]. 13
2.8 The cow model’sQuadric-Error-Metric —QEM— simplification algorithm

by Garland and Heckbert; source [cnt2]. 14
2.9 The Progressive Mesh —QEM— simplification algoroithm by Hughes Hoppe;

source [cnt3]. 15
2.10 The virtual scalpel real-time interaction with a polygonal mesh; source [cnt4]. 15

THE STATE OF THE ART

3.1 The wireframe essence of a polygonal mesh; here, the dyrtManArmTris. 19

XIII

file:www.aero-simulation.de

XIV List of Figures

3.2 A triangle mesh with face-vertex specification composing a cube. 20
3.3 Examples of three voxelizations of the model dolphin, executed by MeshIn-

speQTor software. 21
3.4 Voxel connectivity policies . 21
3.5 2D relative position between a square and a triangle. 22
3.6 Testing T ∩ V by triangle-box test based on vertex containing checking;

output by a Matlab code written for this thesis by its author. 23
3.7 Tipology of Bounding Boxes depending on their orientation; source [voxB]

(edited). 24
3.8 The Gernot Hoffmann Triangle-Voxel intersection test. 25
3.9 The Gernot Hoffmann Triangle-Voxel intersection test results adquired by

this document’s author by his own Matlab programmed implementation
of this proposal. 25

3.10 The first three iterations of the Sierpiński Fractal. 26
3.11 The Sierpiński Fractal Matlab plottings of the thesis’ author own adapta-

tion code for triangle area discretizations. 26
3.12 Scheme of a separator axis; notice that the normal projections of two meshes

MA and MB are not intersecting; so, the two meshes are not intersecting,
and thus, πs is a separator plane. 27

3.13 A generic tree structure for being used in computer algorithm data struc-
turation and search accelerations; in this example, A is the root of the tree,
being E, I,J,K,G,H,D nodes without children, called leaves. Moreover,
in the remarked subtree context, C is the root and G,H the leaves. 28

3.14 2D BSP construction based on a polygon, extracted from [vox8]. Notice that
the satisfactory condition for stopping the BSP construction is that the two
subspaces contain a convex polygon. 29

3.15 A point cloud based 2D Kd-Tree structure construction; source [vox9]. . . 29
3.16 The 3D Octree recursive subdivision; source [voxA]. 30

4.1 Multiresolution mesh of an airplane, at different LODs; source [mrs1]. . . . 31
4.2 Scheme of IsoSurface renderization as a triangular mesh. 32
4.3 Voxelization of the sphere model. Notice the emptiness in the voxelmap

section, so the volumetric model is not filled but empty, like the original
convex mesh. Output frameset from MeshInspeQTor. 32

4.4 The Space Carving algorithm in action; source [mrs4] (edited). 33
4.5 Detailed methodology for the Voxel Carving algorithm; source [mrs5] (edited). 33
4.6 Voxel Carving applied to a standard 64× 64× 64 voxelization of the torus

model. Since the final voxelmap is the intersection of the six voxel carving
steps, the volumetric model of torus is filled. As usual, frameset created
by the thesis purpose software MeshInspeQTor. 35

4.7 The 15 absolute cube-isosurface intersection situations; source [mrs8]. . . 36
4.8 An example of hole in a marching cubes generated mesh, as the result of

an ambiguous case; source [mrs8] (edited). 37
4.9 The Marching Tetrahedra cell subdivision scheme. Each voxel will be

treated as five independent tetrahedrons, so the method is more accu-
rate and smooth with the discrete shape of volumetric unit than marching
Cubes; source [mrs8]. 38

4.10 The Marching Tetrahedra cell subdivision scheme; source [mrs8]. 38

Research on Generic Interactive Deformable 3D Models

List of Figures XV

5.1 Hybrid system featured in [geo2], consisting in a hybrid geometry repre-
sentation combining point clouds with implcit surface definitions. Note:
the middle image is the colored sample density map. 41

5.2 Scheme of the contact handling framework developed in [geo3]. 42
5.3 Penalty and friction force processing for Γ1 in front of a Γ2 collision; source

[geo3]. 43
5.4 Example of point-sampled object animation with the [geo4] method; the

two left figures are representing the phyxel-surfel representation and the
MLS reconstructed mesh. 43

5.5 The cube and teapot undeformed models. 45
5.6 The ‘taper’ effect on cube and teapot models; source [geoA]. 45
5.7 The ‘twist’ effect on cube and teapot models; source [geoA]. 46
5.8 The ‘bend’ effect on cube and teapot models; source [geoA]. 46
5.9 The ‘vortex’ deformation over a solid primitive; source [geo7]. 47
5.10 A complete deformation animation is shown in this couple of figures: (a)

two local FFD are applied to the bar —only one is shown—, for transfor-
mating the bar onto a ‘phone receiver’, and (b) after, a global FFD bends
the ‘receiver’; source [geoC]. 47

5.11 There is a complete Free Form Deformation —FFD— executed over sev-
eral objects (cubes and spheres) clearly embedded in the bounding flexible
plastic; source [geoC]. 49

5.12 A sphere axis deformation: on the left there’s the undeformed sphere
with the defined axis, also undeformed; on the right, the sphere, deformed
in an intuitive and consistent way with the axis deformation; source [geoD]. 50

5.13 The horseshoe axis deformation. Please notice the axis, now adapted to
the object surface; thus, the deformation can be so complex as can be seen
in the right image; source [geoD]. 50

5.14 An example of a facial modeling by ‘wire’ specification, and the next ani-
mation and deformation by ‘wire’ manipulation; source [geoE]. 51

5.15 Deformation of a point P to Pdef by a wire W . The figure parameter pR is
the correspondence point, within R, of P ; source [geoE]. 52

6.1 Architecture of an iterative integration system for animation by deforma-
tion; source [phy4]. 55

6.2 Stability scheme by ODE system plottings depending on the time step h;
source [phy3]. 57

6.3 Intersection between 3D bounding volumes of 3D objects. 58
6.4 Force equilibrium in a particle system with connection restrictions; source

[phy9]. 59
6.5 ODE numerical integration scheme for a single particle P 59
6.6 Some ε elastic strain deformation parameters, from left to right: Cauchy,

Cauchy (simplified) and Green; source [phyA]. 60
6.7 Visual results of the two object animation description point of views; source

[phy5]. 61
6.8 A scheme of the approximate deformation ũ(m) of a continuous deforma-

tion u(m), done by the Finite Element Method; source [phy5]. 62
6.9 Hexahedral finite element volumetric representation of a topologically in-

consistent mesh, ready for FEM application (notice that each hexahedron is
one of the Ej subdivisions or elements); source [phy5]. 64

Master Thesis in Computer Graphics by Marc Musquera Moreno

XVI List of Figures

6.10 A typical mass-spring system three-dimensional representation; source [phy5]. 66
6.11 Effect of viscosity on a physically-based elastic deformations. Each figure

has ten times higher viscosity than its left neighbour; source [phyC]. . . . 66
6.12 Here’s the scheme of the three different internal forces for the 2D cloth

mass-spring simulation model, including the connection affecting and a
detailed visualization of the different force effects. 67

6.13 A cloth piece with four different hanging —relaxing— postures after a real-
time simulation steps by shaking the cloth and sliding it over obstacles
before allowing it to rest; source [phyD]. 67

6.14 Interface tension force SPH-based simulation between fluids of different (i)
polarity, (ii) temperature diffusion and (iii) buoyancy; source [phy5]. . . . 69

6.15 Stable original shape recovering after a —literally— rigid and heavy de-
formation; [phy5]. 69

6.16 The Chen and Zeltzer finite element mesh and contraction approach. 70
6.17 A silver block catapulting some wooden blocks into an oncoming ‘wall’ of

water; source [phy5]. 71
6.18 Sand-based bunny model deformation; source [phy5]. 72
6.19 A liquid drop falling into a liquid pool. In the six-figure frameset can

be clearly noticed the three layers of the system: the Lagrangian layer
(blue), the bridge connection layer (green) and the Eulerian one (red); source
[phyB] (edited). 73

6.20 Here is the velocity field for a certain instant time of the above frameset.
Notice the communication between the Lagrangian and Eulerian layers by
the connection stage; source [phyB]. 73

7.1 Frameset for a fractured spherical shell; source [cut1]. 75
7.2 The interactive deformation with cutting capability algorithm scheme from

[cut3]. 77
7.3 Virtual Scalpel cutting a 2-layered surface, top (left) and side (right) views;

source [cut3]. 77
7.4 The cutting plane sequence implementation over a cube model; notice the

cutting sequence from left to right; source [cut7] (edited). 78
7.5 A cut movement to a initially regularly triangulariez surface model with

delaunay triangulation on the cut primitives; source [cut8]. 78
7.6 The interactive mesh cutting implemented by Sela, Schein & Elber in [cut5]. 79
7.7 The scheme for the primitive approximatting cutting process by the [cut2]

method. 79
7.8 The interactive mesh cutting implemented by Steinemann et al in [cut2]. . 79
7.9 A complete frameset example of a volumetric mesh cutting by the [cut2]

method. 80
7.10 High resolution cutting shell of the 3D volumetric complex armadillo

model (380K tetrahedrons), by using the virtual node algorithm at [cut1]. 80
7.11 Tearing a plastically fragmentation deformation to the armadillo’s high

resolution volumetric mesh; source [cut1]. 81

Research on Generic Interactive Deformable 3D Models

List of Figures XVII

CONTRIBUTIONS AND RESULTS

8.1 Mainly used tools for the thesis’ software suite design and implementation. 86
8.2 The Trolltech’s QT4 versatile capabilities and framework diagram. 87
8.3 The Mathworks’ Matlab mathematic environment logo. 87

9.1 The OPENGL logo by Silicon Graphics Inc. 89
9.2 The OPENGL primtive drawing styles; source [gpuE]. 91
9.3 The resulting rendered triangle from CPP code 2.3. 92
9.4 A scheme of the three basic geometric transformations: ‘translation’, ‘scal-

ing’ and ‘rotation’, with the implicit correspondence between the transfor-
mation matrix and the OPENGL command. 92

9.5 The order of the multiplying applied geometric transformations is impor-
tant: it’s not the same a translation applied to a roation (left) that a rotation
applied to a rotation (right); source [gpuE]. 93

9.6 The resulting scheme of the matrix stack CPP code 2.4; source [gpuE]. . . . 93
9.7 The coordinate system transformations from scene specification to scene

screen displaying; this figure is taken directly from [gpuF]. 94
9.8 The two OPENGL available volume viewing specification and the camera

positioning and orientation methods; figure sources from [gpuF]. 95
9.9 Overview of OPENGL method for display, on screen displays, geometric

primitives —in the figure they have been markes as triangles due to the
most common case— as pixels; source [gpu3]. 96

9.10 Detailed scheme of the OPENGL’s Standard Graphics Pipeline; source [gpu4]. 97
9.11 The GPU’s vertex and fragment processor managment tasks; source [gpu3]. 98
9.12 Detailed scheme of the Programmable Graphics Pipeline; source [gpu4]. . 99
9.13 The effects of two shaders applied to two models: the upper figures show

the graphical results for a shader computing the Phong illumination model,
and in the lower ones are featured the same models with the toon shading
shader over them. This has been possible by the shader addition to this
thesis’ developed software MeshInspeQTor. 103

9.14 nVidia’s CUDA is the next (theoretical) step on GPGPU computing. 107
9.15 The new nVidia CUDA-compatible GPU architecture; source [gpuD]. 107

10.1 Informal UML diagram of MeshInspeTor internal functionalities. 109
10.2 The schematic triangularization for generic polygonal faces —here, an hexagon—

. 114
10.3 Illumination contrasts between vertex’s normal assigment in relation to

the face comprising, or the normal assignment by the mean of normals per
each vertex. 115

10.4 An example of internal oblique inguinal muscle, extracted by using the IRI

tool; please notice the defficiences on the extraction —the model is ren-
dered by remarking the polygon edges—. 115

10.5 The specific GUI within MeshInspeQTor for converting IRI-P3D format
files to OBJ. 116

10.6 An example of a 2D convex hull, executed over a 2D point set. 117
10.7 A graphical scheme for an entire process of Jarvis March 118

Master Thesis in Computer Graphics by Marc Musquera Moreno

XVIII List of Figures

10.8 MeshInspeQTor’s main rendering offerings. Notice that the dolphins.obj
model is really composed by three dolphins, each one clearly identified in
the ‘model list’ at the top of the right panel. 121

10.9 MeshInspeQTor’s ‘draft’ rendering style. Notice that, because of the flat face
shading, the triangular faces are perfectly detailed and can be clearly ob-
served. 123

10.10Renderization of a model with its bounding box surrounding it, in MeshIn-
speQTor. 123

10.11Renderization of a model with its per-face normals shown, in MeshInspe-
QTor. The model is rendered with the ‘draft’ style for a better per-face
normal visualization. 124

10.12Graphical scheme of Phong equation for the selftitled illumination model:
here the light is white, the ambient and diffuse colors are both blue, and the
specular color is white, reflecting almost all of the light hitting the surface,
but only in very narrow highlights. The intensity of the diffuse compo-
nent varies with the direction of the surface, and the ambient component
is uniform (independent of direction). Figure extracted from [ami8]. 126

10.13Differences between OPENGL standard illumination rendering and a Phong
model implemented over the programmable GPU pipeline. Notice the
more specular accuracy on the left part of the model, as well as the more
delimited shaded zones in the right one. 127

10.14Graphical scheme of a negative space located point p, and the q ≡ p′ point,
being the p projection to the plane π. 130

10.15Results example of applying a VirtualCutter to a generic three-dimensional
model with MeshInspeTor. 131

10.16An arm dissected by two VirtualCutters, featured on MeshInspeQTor. Please
notice that the computer positive space is the intersection of all the positive
spaces of all VirtualCutters. 132

10.17The ‘triangle-voxel’ testing implemented in MeshInspeQTor, based on 2D

axis projections and implicit parallelogram approximation of the triangle. 137
10.18The ‘triangle-voxel’ testing conflict situations; notice the particular loca-

tion and orientation of the triangle in relation to the cube. The test will
validate as intern every external triangle with this particularity. 139

10.192D projection of the triangle-voxel postfiltering test based on space location
of the eight cube —a square here— vertices in relation to the triangle plane
—the thick plane on the figures—. 139

10.20A clear examples of applied set theory; by considering the squares Ma

and Mb as three-dimensional volumetric representations, the application
on mesh voxelization is noticeable. 141

10.21A n× n linear tracking —the X+ one indeed— of a cylinder voxel carving. 142

11.1 Informal UML diagram of ForceReaQTor internal functionalities. 145
11.2 The total conversion from a 3D model to its mass-spring system —the vox-

elmap is omitted but it can be deduced from the mass-spring system nodes. 149
11.3 The ForceReaQTor dynamic force configuration panel —zoomed—. 150
11.4 The dynamic force configuration panels for ‘fixing’ and ’cutting’ classes. . 152
11.5 The ForceReaQTor implemented restricting forces, in a 2D scheme. 157

Research on Generic Interactive Deformable 3D Models

List of Figures XIX

11.6 ForceReaQTor applying ‘stretch’ and ‘bend’ deformation effects to a 4×4×4
cube after fixing the upper vertices and applying gravity force; notice that
the combined deformation offers more equilibred results. 161

11.7 One of the four diagonals of a single cube. 162
11.8 A 4 × 4 × 4 cube mass-spring system where it’s applied ‘shear’ deforma-

tion forces together with some ‘stretch’ and ‘bend’ factors after applying
gravity to the deformation model. 163

11.9 The shape/volume preserving example problem. 163
11.10Fixing nodes as volume preservation solution example. 164
11.11Autostretching as volume preservation solution example. 166
11.12Scheme of the ForceReaQTor mass-point volumetric approximation buy us-

ing a sphere instead of a cube. Obviously, the sphere and the cube has the
same center, and moreover, the sphere is tangent to all the cube faces. . . . 167

11.13Scheme of sphere intersection; if ||c2 − c1|| ≡ L ≤ D, it must be ensured
that the two spheres S1 and S2 are intersecting. 168

11.14Scheme of the per-mass-point adapting collision testing. 170
11.15Physically-based deformation with real-time cutting behaviour modification.173
11.16pseudo-FFD rendering process for deforming a triangular mesh w.r.t. its

inner non-rigid skeleton —the mass-spring system indeed—. 175
11.17The texture compression schemes for the desired shader data: the gray

cells of the final matrices indicate unused and value-emptied cells. 176
11.18ForceReaQTor deformable model rendering types: only the model skeleton

—mass-spring system— or the model’s skin —its triangular mesh, that
lays over the mass-spring system—. 177

11.192D curve generation by the Marching Squares —2D Marching Cubes—
technique. The example’s threshold value for curve extraction is 5. 179

11.20Example of ForceReaQTor autogenerated mesh of the highly featured 4 ×
4×4 cube; the normals are per-face configured, but by applying the Phong
illumination GLSL program —section 10.3.4—, the renderization is robust. 180

11.21Three-dimensional scheme of which voxels have to be checked for adja-
cency with a certain voxel, if it’s desired to compute the isovalue of the
LUF voxel vertex. 181

11.22Example of ForceReaQTor extracted mesh of the ‘left external oblique hu-
man muscle’, wrongly extracted from the Visual Human Project with the
extractor software provided by the IRI at UPC; notice the simplicity of
the extracted mesh by using Marching Cubes —w.r.t. the original mesh—,
but also its consistency in relation of the original. 182

11.23An example of deformation force set applied to the 4×4×4 cube Marching
Cubes autoextracted mesh in ForceReaQTor. 184

12.1 The original bunny.capped polygonal mesh surface model. 189
12.2 The resulting voxelmaps from the bunny.capped voxelization processes. 190
12.3 The resulting marching cubes’ autoextracted meshes from bunny.capped

voxelmaps. 191
12.4 Lenghten (a,c,e,g) and shorten (b,d,f,h) force set deformation examples

over the dolphins model. The rendering process has been at 25 FPS,
with ‘stretch’ restrictive forces and Euler integrator. The forces are all 20N
amount. 192

Master Thesis in Computer Graphics by Marc Musquera Moreno

XX List of Figures

12.5 A deformation force set of the obliqextmodel, based on a dense 64×64×
64 voxelmap; here there is an abbuse of the simacc adaptative method-
ology for computing Force Accumulators. The integrator is the Verlet one
using a 30 FPS animation, and the forces are 20N all 193

12.6 A deformation force set for the transversus model, based on a 32×32×
32 voxelmap; here can be seen the influence of a cutting on a dynamically
deformable model. Here there is 30 FPS animation with a Verlet integrator
with ‘stretching’ and ‘bending’; the force is 30N amount 194

13.1 Scheme of a possible splitting for a marching cubes’ extracted mesh. . . . 197
13.2 Examples of ‘workbench-haptic’ virtual environment systems. 198
13.3 The CAVE virtual environment scheme. 199

BIBLIOGRAPHY AND APPENDIXES

B.1 MeshInspeQTor rendering the dolphins model with materials and phong
algorithm illumination. Notice the three application panel functionalities:
models, virtualcutters and voxelizer. 211

B.2 From up to down, wireframe, draft —with normal displaying; see below—
and nodeset renderings of the dolphinsmodel. Notice in the right panels
the information about the dolphin1 entity, already selected: 285 vertices
composing 564 faces. 213

B.3 Here’s the bunnycapped model in dissection by a VirtualCutter. 214
B.4 The previous and final dolphins’ < 32 × 32 × 32 > voxelmap automatic

generation steps. 215
B.5 Two fish 3D models, fish1 and fish2, will be used to obtain complex

voxelizations by using basic set theory. Notice that the entity individual
bounding boxes are really intersecting. 216

B.6 The < 32 × 32 × 32 > fish1 ∩ fish2 automatic voxelization. Let’s see
that the valid nodes only those that were valid on the both two voxelizations.216

B.7 The< 32×32×32 > VoxelMap equivalent to those voxels that are contain-
ing fish1 but not fish2: so, the set theory operation is [fish1 ∩fish2]. 217

B.8 Voxelizer Navigator’s manipulation example. Notice the added cube on
the upper left screen part, within the torus voxelmap. 217

B.9 A voxelmap finite range visible with the Voxelizer Navigator’s range visu-
alization option. 218

B.10 The thesis carving purpose scene sphecylcub< 64×64×64 >VoxelMap.
Notice the emptyness of the cylinder inner space, so the contained objects
—cube and sphere— are also empty and clearly visualizable. 218

B.11 Portion of the < 64× 64× 64 > sphecylcub voxelization that shows the
absolute emptyness of the standard 3D scene objects voxelization. 219

B.12 Space Carving policy selection dialog. 219
B.13 Space Carving done with ‘Total Refilling’ policy. Notice that all the inner

zone corresponding to the more exterior voxelization is totally refilled. . . 220
B.14 Space Carving done with ‘Hole Preserving’ policy. Notice that the more

exterior voxelization is refilled, but the inner ones are considered holes, so
they are still empty. 220

Research on Generic Interactive Deformable 3D Models

List of Figures XXI

B.15 MeshInspeQTor software and hardware requirements logos. 221

C.1 ForceReaQTor’s simulation example by deformable forces to dolphinmodel.223
C.2 An example of < 16 × 16 × 16 > skeleton-node-modeling from sphere

model voxelmap. 225
C.3 The preview of a previously specified dynamic force —yellow lines, main-

taining the specified force vector direction, on the ‘front right leg’ zone—,
applied to the cow skeleton. 226

C.4 The preview of a fixed nodes application —red remarked nodes, on the
‘head’ zone—, also to the cow skeleton. 226

C.5 The preview of a specified cutting —orange remarked lines, on the ‘front
left knee’ zone—, applied to the cow skeleton too. 227

C.6 The ForceReaQTor’s Marching Cubes extracted mesh rendering of a bunny. 228
C.7 The FPS error message thrown when the framerate cannot be achieved. . . 229
C.8 ForceReaQTor’s fatal destiny: destabilized simulation. 230
C.9 ForceReaQTor software and hardware requirements logos. 231

Master Thesis in Computer Graphics by Marc Musquera Moreno

*List of Tables

PROJECT’S FIRST CONTACT

· · · ∅ · · ·

THE STATE OF THE ART

3.1 The progressive data increasing with Sierpiński Fractal adaptation . 27

4.1 Advantages and disadvantages of the Marching Cubes algorithm;
extracted details from [mrs7]. 36

6.1 Iterative ODE integration estimated errors in relation to the numer-
ical integrator. 56

CONTRIBUTIONS AND RESULTS

8.1 Used Mac computers’ specification table. 85

9.1 Basic vectorial data types on GLSL . 101
9.2 Basic texture data types on GLSL . 101
9.3 Vectorial component indexes in relation to the data type conventions.101
9.4 Most important ‘uniform’ automatically shader input variables. . . 102
9.5 Most important ‘attribute’ automatically shader input variables. . . 102
9.6 Most important ‘varying’ automatically shader input variables. . . . 102

10.1 Table of supported tokens for the developed OBJ model loader. . . . 110

XXIII

XXIV List of Tables

10.2 Table of supported tokens for the developed MTLLIB model loader. 112
10.3 Supported enumeration for the vertex array data block assignment. 119
10.4 Table of relative positions of a 3D point in relation to a plane. 130
10.5 Table of supported tokens for the developed OBJ model loader. . . . 143

11.1 Exemplification of the brutal increasing of mass-point cardinality
on a 1/8-occuping deformable system by only changing the vox-
elmap grid size. 158

11.2 Adaptive neighbour selection for collision testing w.r.t. a mass-
point moving direction. The ‘selected neighbours’ idetificators are
corresponding to the featured ones in the figure 11.14. 172

12.1 Computational times for the ‘voxelization’ and ‘voxel carving’ pro-
cessings. There have been tested the timings for two different vox-
elmap sizes: 32× 32× 32 and 128× 128× 128. 189

12.2 Computational times for the ‘per-face’ and the ‘per-vertex’ march-
ing cubes proceedings. 190

BIBLIOGRAPHY AND APPENDIXES

B.1 MeshInspeQTor mouse controls. 214

C.1 ForceReaQTor mouse controls. 227
C.2 ForceReaQTor simulation hot key controls. 231

Research on Generic Interactive Deformable 3D Models

*List of Codes

PROJECT’S FIRST CONTACT

· · · ∅ · · ·

THE STATE OF THE ART

3.1 pseudo: Triangle-box test by vertex checking. 24
3.2 pseudo: Triangle-box test based on Sierpinski fractal adaptation. . . 26

4.1 pseudo: The Marching Cubes isosurface extraction algorithm. 37

6.1 pseudo: vast algorithm for a deformation animation. 53
6.2 pseudo: Algorithm for FEM application to a problem P. 63
6.3 pseudo: Algorithm for mass-spring system deformation 65

7.1 pseudo: Interactive real-time cutting algorithm scheme. 77

CONTRIBUTIONS AND RESULTS

9.1 pseudo: OPENGL animation scene drawing steps. 90
9.2 cpp: Drawing primitives with OPENGL. 91
9.3 cpp: A colorized triangle drawn with OPENGL. 92
9.4 cpp: An example of OPENGL matrix stack usage. 93

XXV

XXVI List of Codes

9.5 pseudo: Steps for executing a GLSL shader program. 100
9.6 glsl: The ‘vertex shader’ of toon shading. 103
9.7 glsl: The ‘fragment shader’ of toon shading. 103
9.8 cpp: Creation of a FRAMEBUFFER with a previous GLEW usage. . . . 104
9.9 cpp: Creation of a FRAMEBUFFER with a previous GLEW usage. . . . 105
9.10 cpp: Drawing the GPGPU quad, using texture rectangles —texture

coordinates identical to pixel coordinates—. 106
9.11 cpp: Drawing the GPGPU quad, using 2D textures —texture coordi-

nates normalized to the range [0,1 . 106
9.12 cpp: Transferring the framebuffer content to a CPU array. 106

10.1 pseudo: OBJ file text specifying a simple cube. 111
10.2 pseudo: MTLLIB containing the specifications for 3 colors. 112
10.3 pseudo: OBJ file text specifying a simple cube with materials. 113
10.4 pseudo: Jarvis March for computing a 2D convex hull. 117
10.5 pseudo: Developed idea for merging isosurface portioned extractions.118
10.6 cpp: Solid, wireframe and point-based rendering capabilities. 120
10.7 cpp: Draft rendering mode OPENGL commands. 123
10.8 cpp: Offline process for determining the normal factor for a single

model. 124
10.9 cpp: Per-face normal renderization process. 125
10.10glsl: Vertex shader of Phong reflection equation. 127
10.11glsl: Fragment shader of Phong reflection equation. 128
10.12glsl: Vertex shader of real-time VirtualCutter activation. 133
10.13glsl: Fragment shader of real-time VirtualCutter activation. 134
10.14cpp: Internal declaration of a voxelmap. 135
10.15cpp: Internal declaration of an octree. 135
10.16cpp: Expansion of an octree node. 136
10.17cpp: Axis-aligned projection triangle-cube testing. 138
10.18cpp: Getting voxel cell coordinates of every model vertex, and its

offset w.t.r. this voxel’s center. 140
10.19pseudo: MeshInspeQTor scene file format. 144
10.20pseudo: MeshInspeQTor voxelmap file format. 144

11.1 cpp: Internal data structure for mass-spring systems. 146
11.2 cpp: Voxelmap conversion to a mass-spring system: mass point

generation. 148
11.3 cpp: Mass-spring system renderization adequation: node-spring

generation. 149
11.4 cpp: Mass-spring system Vertex Array renderization code. 150

Research on Generic Interactive Deformable 3D Models

List of Codes XXVII

11.5 cpp: Dynamic Force internal data structure. 151
11.6 cpp: Dynamic Force Container internal data structure. 151
11.7 cpp: ForceSimulator main deformation thread execution. 154
11.8 cpp: ForceReaQTor per frame mass-spring renderization update. . . . 154
11.9 cpp: ForceSimulator internal handled data. 155
11.10cpp: Euler numerical integration algorithm. 156
11.11cpp: Verlet numerical integration algorithm. 156
11.12cpp: Force Accumulator sequential force application. 158
11.13cpp: Per-spring Force Accumulator calculus. 160
11.14cpp: Longitudinal restrictive force application. 160
11.15cpp: Stretch and Bend effect application algorithm. 161
11.16cpp: Shear effect application algorithm. 162
11.17cpp: Per-phantom-spring Force Accumulator calculus. 165
11.18cpp: AutoStretching effect application algorithm. 166
11.19cpp: Collision testing between two mass-points. 169
11.20cpp: Euler collision handling function 169
11.21cpp: Euler collision handling function. 170
11.22cpp: Euler’s adaptive neighbour selection for collision testing. . . . 171
11.23cpp: Verlet’s adaptive neighbour selection for collision testing. . . . 171
11.24cpp: Internal data structure for spring cutting handling. 173
11.25cpp: The data structure capable of accelerating the force accumula-

tor loopings. 174
11.26pseudo: Mass-point ‘affected’ flag configuration within Force Accu-

mulator. 174
11.27glsl: Vertex shader for rendering deformated triangular meshes. . . 179
11.28cpp: The rough ForceReaQTor Marching Cubes algorithm. 184
11.29pseudo: ForceReaQTor dynamic force list file format. 185

BIBLIOGRAPHY AND APPENDIXES

· · · ∅ · · ·

Master Thesis in Computer Graphics by Marc Musquera Moreno

PART I
Project’s

First
Contact

CHAPTER 1Project Abstract

Overview1.1

3D polygonal meshes are, as a simple overview, collections of vertices and polygons
defined by vertex pair junctions, here called faces. They are, with no doubt, a good and
efficient discrete modelling approximation of a physically real object, widely used in
Computer Graphics, because this kind of objects are representing the surface of an ob-
ject —not its volume; the objects are empty indeed—.

On the other side, the simulation of animation or movement in 3D Computer Graph-
ics has been an important research field for some years ago, since the appearance of
Pixarr entertainment films. Not only the modelling but also the simulation of realistic
movement is essential for a good computing animation.

Figure 1.1: A montage of a physicallu-based animation done with AERO simulator, a animation software
whose web is www.aero-simulation.de.

3

file:www.aero-simulation.de

4 Chapter 1. Project Abstract

However, there are two different classes of computer animation, in relation to com-
putational time —not to the methodology complexity—:

• exact behaviour, useful for awesome performance with no matters of time, spe-
cially coherent for computer animation films, due to there isn’t real-time algorithms1;

• approximate behaviour, not exact but approximately realistic, faster and more effi-
cient. These techniques are the adequate for real-time applications like videogames
or simulators, and the interesting ones for this thesis purposes;

Focusing on the research thesis aims1.2

Interests and research fields1.2.1

The goal of this project is to research for real-time approximate methods of physically-
based animation in conjunction with static polygonal meshes with the aim of deform-
ing them and simulating an elastic behaviour for these meshes. Because of this, in
this project it has been developed a software suite capable of doing a lot of tasks, each
one from different computer graphics research fields, conforming a versatile capability
project; so, the developed applications can briefly:

• specify a volumetric representation of any polygonal mesh, and will be able to be
empty or entirely solid;

• building a reconstruction of any mesh, at any desired LOD, directly proportional
on the volumetric representation;

• interact with any polygonal mesh by a real-time physically-based deformable dy-
namic model with run-time configurable parameters, based on deforming a 3D

non-rigid skeleton built from a volumetric representation;

• split any polygonal mesh in the same way as a real solid object by a virtual scalpel;

(a) Initial step, before any exter-
nal force application. The 3D
model is relaxed, no internal
forces are activated.

(b) Deformation in curse; the re-
stricting internal forces are
not yet performing but the
elasticity is activating them .

(c) Force totally applied; now
the shape-managing restrict-
ing forces are avoiding an un-
controlled deformation.

Figure 1.2: Three steps of a dolphin mouth pulling with a 50N applied force —notice the yellow lines,
representing the applied forces to the model—. The snapshots are from one of the two developed applications
for this thesis, ForceReaQTor, that executes all the deformation simulations.

1 As also happens with the illumination methods like raytracing, which are incredibly realistic but too
much computationally expensive for real-time applications.

Research on Generic Interactive Deformable 3D Models

1.2. Focusing on the research thesis aims 5

Final result1.2.2

All the above cited characteristics will be possible and fully-functional due to the two
previously mentioned applications comprising an entire dynamic simulation software
suite based on physical laws:

1. a mesh visualizer with an integrated volumetric representation generator;

2. a dynamic model simulator that allows force applying and a kind of virtual scalpel,
and simulates a physically-based deformation behaviour to the entered 3D models;

So, though this software is able to deform any kind of 3D objects with a shape-
maintaining restricted elastic behaviour —as it can be seen in figure 1.2, where a dol-
phin’s mouth is the aim of a deformation force—, this interface will be used for a sim-
ulation of a human anatomy, focused on the inguinal region, by interacting with the
polygonal meshes as approximation of the Visual Human Project gigantic data.

A non-interactive simulator1.2.3

Pitifully, due to the lack of 2D desktop applications, the simulator hasn’t a run-time
interactive user external force interface with the simulator. This implies, it has been de-
veloped a complete external force inducer through a discretized time-line, that allows
to create, to modify and to delete external forces as long as specifying cuttings or object
fixed portions.

There was the intention of developping an interactive simulator within a workbench
equipped with a haptic device, but it hasn’t been possible by a matter of time.

Master Thesis in Computer Graphics by Marc Musquera Moreno

CHAPTER 2Objectives and Research
Contribution Overview

Motivations and interests2.1

Physically-based computing animation2.1.1

Computer Animation typologies2.1.1.1

It’s known that the generic concept of animation refers to show a set of subsequent
static images that, displayed coherently fast, offers a feeling of motion. So, the computer
animation field don’t differ at all: the basic computer animation consists in an automatic
sequence of computer generated frames. However, how this frame sequence differ each
other is the problem of computer animation:

• the simplest solution is programming explicitly each frame, but it’s at the same the
most difficult way;

• there are other techniques about specifying —parametrizing— the description of
the scene —composed by geometric objects—. Thus, the task of specifying all the
image sequences is transformed to the task of specifying how the scene changes
through the time.

Thanks to the last decade, when the first computer animation movies appeared and
the visualization quality of the videogames has been increased exponentially, a wide
variety of computer animation techniques have been created and used and improved.
However, as it’s said in [mot1], these animation techniques can be subdivided in two
fields:

• the 2D techniques, mainly worried about image manipulation;

• the 3D techniques, focused overcoat in building huge three-dimensional worlds
with also three-dimensional objects and characters, and the way of interaction be-
tween each other;

7

8 Chapter 2. Objectives and Research Contribution Overview

(a) the classical emphsprite 2D animation. (b) A 3D model with mobile articulation nodes.

Figure 2.1: Examples of two and three-dimensional computer animation methodologies.

The 3D computer animation2.1.1.2

The 2D techniques will be omitted because this research thesis is about the animation
using 3D techniques, where the clearly different three steps are:

1. model the scene, describing and placing the different elements of the scene; for this
task there is a great offer on modeling 3D tools as long as multiple 3D model data
formats with their own specifications and data storage management;

2. animate the scene, specifying how the scene elements has to be moved in the world
in relation to time —or a user actions—;

3. render, converting the instant scene description in screen displayed images;

It’s true that, really, the first and last steps are not really an animator task, but al-
though the model stage can be avoided by taking previously built models, the render
stage is really a must-have in computer graphics, and computer animation is a branch
of computer graphics —CG—. Hence, this thesis will focus the animation and render
stages.

Kinds of 3D computer animation. Focus on physically-based animation2.1.1.3

The task of specifying a computer object animation is surprisingly difficult. There
are a lot of subtle details that have important weight for getting a coherent animation, and
due to that, there are multiple developed techniques for developing three-dimensional
animated scenes:

• keyframing, that uses inverse kinematics, or linear interpolation for moving ob-
jects following determined mathematical equations. It also receives the name of
geometric deformation, because the 3D object is animated with a deformation due
to geometric shape modification.

• motion capture, consisting on position sensor capturing within a real object, and
after reproducing the different sensor movements in the modelled clone object nodes.

• procedural methods, based on using determined iterative algorithms that comput-
ing and generating the animation at any moment.

Research on Generic Interactive Deformable 3D Models

2.1. Motivations and interests 9

This thesis is focused on procedural methods, and concretely, in the physically-
based techniques. These techniques make use of physical laws —or a numeric approx-
imation to those laws2 to generate realistic motion, and due to this, are the most engi-
neeral and programming techniques in front of the more animator talent techniques.

Physycally-based simulation is obviously realistic if the model is compatible to the
physical characteristics of the method (e.g., particle systems or flexible surfaces), but the
main disadvantage is the must-be depth understanding of physical laws.

Figure 2.2: Some frameset examples of physically-based animation possibilities.

Human musculature studies2.1.2

Introduction to Human Body Modeling and Animation2.1.2.1

Since the 1970’s, one of the most interesting areas of computer graphics have been the
human figure modeling and animation. Due to the human body complexity, its move-
ment simulation has an equivalent difficulty —the human body is capable to execute a
huge number of movements—; it’s known that the human body is composed mainly
by a conglomerate of skeleton, muscles, fat and skin, as can be seen in the following
computer graphics example system figure:

(a) The skeleton-muscle animated system; source [mot2]. (b) Skin over skeleton-muscle; [mot3].

Figure 2.3: The computer graphics standard human anatomy model: skin, skeleton and muscles.

2 An approximation is maybe required in the cases —more common than the really desired— where the
exact law model is too much complex for being computed in a reasonable computational time. It has to be
noticed that the aim of this simulations is to offer a real-time simulation, so the physical behaviour has to be
implemented in direct relation to the human smooth continuous vision, between 20 and 40 frames per second
—FPS—, although a frame rate of 10 FPS is acceptable in term of interactivity instead of real-time simulation.

Master Thesis in Computer Graphics by Marc Musquera Moreno

10 Chapter 2. Objectives and Research Contribution Overview

The more standard animated model is —according to [mot2] and [mot5]—:

• the skeleton, the vertebrate body, is composed by a hierarchical tree structure, as
it’s used, for example, in [mot3] and [mot5], that links the bones between the oth-
ers, with tree nodes on the articulations with information based on the predefined
articulation mobility with respect to their degrees of freedom —DOF—;

• the muscles, independently each others, are composed by a inner skeleton covered
by a polygonal mesh; thus, the skeleton is moved and the mesh follows the skeleton;

• the idea behind the skin is the same for the polygonal muscle mesh;

• and the fat, for computer graphics, is modeled into the skin model because the fat
is a tissue located beneath the skin, between muscles and skin;

Evolution of Human Animation2.1.2.2

The goal of the human animation has always been the looking for realism of the be-
haviour movements. hence, during the last 30 years there have been a lot of approaches,
and obviously, the more the time passes, the more complexity these approaches have.

Articulated Stick Figure Models.

So, the first approaches were involved in articulated stick figure models consisting
in a hierarchical set or rigid segments —bones— connected at joints —articulations—;
besides, each joint could have up to three DOF —Degrees of Freedom— to become a real
human articulation.

(a) The front and lateral views of the human skeleton, with
the remarkes joints; source [mot3].

(b) An computerized stick articulated
male; source [mot1].

Figure 2.4: The articulated stick human model scheme.

Surface Models.

Due to the limitations of the articulated stick model— —mainly the impossibility
to perform some kind of movements like twist—, another approach appear: the surface
models, composed by a skeleton surrounded by surfaces, made from planar or curved
patches that simulate the skin. Thalmann and Thalmann developed in [mot6] the Joint-
dependent Local Deformation animation algorithm —JLD—, a method based on a local
deformation operators set that controls the evolution of these surfaces.

Research on Generic Interactive Deformable 3D Models

2.1. Motivations and interests 11

Volume Models.

Additionally, there is another proposal: a model that approximate the structure of a
3D objet by a grid of volumetric primitives, such as ellipsoids or cylinders; these are the
volumetric models3. However, they suffer from non easy control management, due to
the huge number of comprising-primitives during the animation.

Multi-layered Models.

In this approach, a skeleton is the support for intermediate layers that simulate
the body —this layers are really an abstract concept of simulation for skin, muscles, or
tissues—. Therefore, the animator only has to define the connections between the layers,
because animation is an iterative process that:

1. motion specification at joints;

2. deformation according to the new positions;

3. mapping of the overlying layer vertices to the world space;

4. relaxing algorithm for adjusting the elastic equilibrium forces;

Figure 2.5: The multi-layered human body animation proposal by Scheepers et al in [mot2].

Main goal for this project2.1.2.3

This thesis’ interests are focused on the muscle parts, concretely on their physical
behaviour and movement simulation but besides, about non-anatomic movements but
surgery interactive movements. So, the skin, fat, and human skeleton will be omitted for
being out-of-range.

Additionally, the developed animation model within the range of this thesis will be
able to deform any 3D model with the muscle’s viscuoelastic behaviour, because there
will be some configurable parameters, and therefore, any 3D object will be capable to be
treated as a cuddly toy.

3 And the VoxelMaps are the evolution of these volume models, since the cubes —voxels— can occupe all
the object volume without intersecting each other.

Master Thesis in Computer Graphics by Marc Musquera Moreno

12 Chapter 2. Objectives and Research Contribution Overview

Surgery simulation2.1.3

Virtual surgery’s brief overview2.1.3.1

The computer-assisted surgery is one of the most interesting computer graphics —
with robotics— research fields; but also the surgery simulation is an interesting com-
puter graphics field due to surgeon training tasks.

(a) The skeleton-muscle animated system at [mot9]. (b) A Patented Surgery Simulation System ([motA]).

Figure 2.6: The Surgery Simulation —or Virtual Surgery— can be an escellent surgeon training system.

The usage of 3D interactive visualizations of important organs or anatomic parts can
improve surgeons’ understanding of complex human inner structures. SO, multiple
envinroments have been developed in the last years:

1. 2D desktop applications;

2. desktop-based 3D-based systems;

3. workstations and workbenches;

4. virtual reality environments, like the CAVE4 environment;

These so different virtual systems can get responsed from a lot of user-application in-
terfaces like keyboard, mouse, haptic devices, . . . it’s obvious that surgery is an inherent
3D task, so the 2D environment and/or devices are unsuitable. However, developing
an entire 3D virtual environment is a huge effort, out-of-range of this thesis.

This project’s approach and developed work2.1.3.2

In this thesis the focus will be the physically-based simulation itself, and no device
interaction has been developed; so, there won’t be any software implemented for work-
stations nor touch-sensing devices —haptics—.

However, the muscle’s behaviour behaviour will be fully functional due to an entire
simulation software, developed for a 2D desktop software suite, that will feature a com-
plete external force and cutting specification through a simulation time-line.

4 Acronym of Cave Automatic Virtual Environment, it’s an immersive virtual reality environment where
projectors are directed to three, four, five or six of a room-sized cube walls. The name is taken from the
Plato’s Cave allegory, where a philosopher contemplates perception, reality and illusion.

Research on Generic Interactive Deformable 3D Models

2.2. Research fields and contributions 13

Research fields and contributions2.2

Deformable models over static meshes2.2.1

Objectives2.2.1.1

The first research field dealed with will be the physically-based realistic animation
for generic 3D models —although the main idea is to use the results with medical mod-
els, concretely the muscles of the human inguinal region—.

More concretely, the aim of this thesis is to build a system capable of loading any 3D

model and apply to it a generic deformable system capable to perform the movements
of a muscle; that is:

1. the contraction or elasticity of the model when a force is applied, with an implied
shorten or longed length;

2. the relaxing and return to their former length and shape after the applied forces;

Besides, according to anatomist theoretical and technical words, for achieving a generic
deformation model, only the gross muscle anatomy —composed by all the organism
muscles— will be treated, rejecting the muscle microanatomy, which comprises the
structures of a single muscle.

Methodology Overview2.2.1.2

The main idea is to build a 2-layered model for each 3D model, composed by:

• a 3D non-rigid skeleton as the underlying layer, based on the volumetric represen-
tation of the original 3D model;

• a polygonal mesh representing the surface model, that cannot be necessarily the
original 3D mesh.

The 3D skeleton will be, as it has been said, non-rigid; that means, it will be able
to receive elasticity and contraction forces, similar to the idea featured in [cnt1], where
tensor fields are applied to skeleton nodes.

Figure 2.7: The previously mentioned tensor field bunny model real-time deformations from [cnt1].

Additionally, the polygonal mesh will be mapped onto the 3D skeleton, so it will be
rendered according to the skeleton deformation.

Master Thesis in Computer Graphics by Marc Musquera Moreno

14 Chapter 2. Objectives and Research Contribution Overview

So, an iterative procedural method based on physical laws, called mass-spring sys-
tem, will be used, and each skeleton node will be literally connected to other direct neigh-
bour nodes and will be reacting to these neighbours own reactions.

At the same time, a place and shape memory will be included to all the skeleton
nodes, that will be useful for

• for the relaxing return node movements after force applying;

• for restricting, limiting and literally enclosing the possible node deformations when
forces are affecting;

Additionally, a geometric displacement method, after a parametrized model place lo-
cation, will manage the covering polygonal mesh —the original 3D model indeed— to
deform it in direct proportion of the skeleton; thus, the visualizable model will be de-
formed reacting in real-time to the 3D skeleton deformation.

Multiresolution meshes2.2.2

Idea and motivation2.2.2.1

Another aim of this generic real-time animation software project, part of this thesis,
if the remeshing of 3D models in direct proportion quality of the previously mentioned
3D non-rigid skeleton. The reasons for doing this are multiple:

1. having a varying 3D object quality in relation to the animation quality;

2. improve a possible 3D model bad specification —i.e., bad poligonization, or pos-
sible uncoherent holes—;

3. a better management of the model data, due to the remeshing has been generated
by a controlled algorithm.

Figure 2.8: The cow model’sQuadric-Error-Metric —QEM— simplification algorithm by Garland and
Heckbert; source [cnt2].

A little brief scheme about remeshing steps2.2.2.2

For a remeshing generation of any 3D mesh, there is no special contribution, though
is not int the way of the classical quadric-error-metric simplification algorithm by Garland
and Heckbert, readable from [cnt2] nor the Hughes Hoppe progressive meshes from [cnt3];
the featured method is composed by two steps:

1. to build a volumetric model composed by constant-value arbitrary regular-sized
boxes called voxels filled with the appropriate values for best 3D model approxima-
tion; this process receives the name of voxelization;

2. from this model approximation, a mesh extraction algorithm will be execute over
that to obtain a automatically generated mesh.

Research on Generic Interactive Deformable 3D Models

2.2. Research fields and contributions 15

Figure 2.9: The Progressive Mesh —QEM— simplification algoroithm by Hughes Hoppe; source [cnt3].

Surgery on a 3D object2.2.3

A virtual scalpel for cutting2.2.3.1

In the last recent years, there have been some approachs for, apart from real-time
model deformation, cutting a 3D model in real-time computing. That often implies this
algorithmic steps (or at least some of them, depending on the proposal basis scheme):

• a mesh retriangulation because some mesh-comprising polygons will be subdi-
vided into more little polygons, or if the polygon number increasing is forgiven,
those affected by the cutting must be reconfigured;

• a mesh reconnectivity, due to the new blank space between some existing previously-
connected polygons;

• the feeling of interacting with a non-empty object —a 3D model will be composed
by a polygonal mesh representing only the model surface—, so a polygon addition
to the empty space will be necessary;

• besides, if the scalpel is desired to be a virtual weighted object, two more implica-
tions have to be counted: the scalpel collision detection with the object, and a
resulting scalpel pushing force from the cutting intention;

Figure 2.10: The virtual scalpel real-time interaction with a polygonal mesh; source [cnt4].

Master Thesis in Computer Graphics by Marc Musquera Moreno

16 Chapter 2. Objectives and Research Contribution Overview

Proposal for this project2.2.3.2

In spite of these great proposals, a new contribution is tried to feature in this project.
Based again on the 3D model’s volumetric skeleton, the idea is to cut the skeleton node
connections instead of model’s primitives; thus, with a remeshing of the broken zone
—with a security perimeter volume also remeshed and reconnected to the global model—
the cuttings will appear always accurate in relation to the —approximate— volumetri-
cal topology.

In other words, this thesis offers an interactive cutting method that:

• it’s based on the 3D skeleton mesh, basis of every project’s deformation method;

• it doesn’t split any primitive, nor really cuts the model;

• the cutting action is skeleton-connectivity affected, so the mesh only has to be
restructured, and besides does implie:

– no polygon number increasing,

– no primitive subdivision,

– and no difficult recomputations.

Research on Generic Interactive Deformable 3D Models

PART II
The State
of the Art

CHAPTER 3Volumetric Model from a
Polygonal Mesh

Polygonal Meshes3.1

Introduction to Polygonal Meshes. The Triangle Meshes3.1.1

A polygonal mesh is the basic shape that we use to build our 3D model, or better said,
its surface, parametrized by a collection of polygons —composed by a set of vertices that
indicate the edges of every polygon—. On the other side, it’s known that a mesh is any
of the open spaces in a net or network; that means, an interstice. In front of this apparent
contradiction, more explanation is needed.

The reason a polygonal mesh is called a mesh, even though the form looks solid when
we do a mesh rendering, is that the previously cited surface is actually a wireframe (a
mesh of interconnected wires) that gives the surface its shape; even, this object (assum-
ing it’s convex) is empty. In the following figure can be seen this phenomenon, with
snapshots from one of the two applications developed for this thesis, MeshInspeQTor:

(a) Polygon mesh as wireframe (b) Polygon refilling (c) Phong illumination rendering

Figure 3.1: The wireframe essence of a polygonal mesh; here, the dyrtManArmTris.

Since the collection of polygons forming the mesh are called faces, it’s obvious that
every polygon must define a plane. Because of this, the most used polygons are the
triangles —three vertices always define a plane—.

19

20 Chapter 3. Volumetric Model from a Polygonal Mesh

The Face-Vertex Mesh Format3.1.2

There are a lot of mesh specifications, as commented in [vox1], but the most common
one is the face-vertex mesh format. It consists in two lists:

1. a list of vertices, consisting in the coordinates of every vertex;

2. a list of faces, consisting in a set of indexes, indicating which vertices are forming
the cited face —polygon—;

Here is a simple example of a cube with the face-vertex specification, where every face
is a triangle —a cube is composed by 8 vertices and 6 quads (12 triangles)—:

index coordinates

0 0.0 0.0 0.0
1 0.0 0.0 1.0
2 0.0 1.0 0.0
3 0.0 1.0 1.0
4 1.0 0.0 0.0
5 1.0 0.0 1.0
6 1.0 1.0 0.0
7 1.0 1.0 1.0

(a) Vertex List

index vertex indexs

0 0 6 4
1 0 2 6
2 0 3 2
3 0 1 3
4 2 7 6
5 2 3 7
6 4 6 7
7 4 7 5
8 0 4 5
9 0 5 1
10 1 5 7
11 1 7 3

(b) Face List (c) Displaying the cube

Figure 3.2: A triangle mesh with face-vertex specification composing a cube.

Mesh Voxelization3.2

The volumetric models. The voxelization process3.2.1

Introduction to the voxel space3.2.1.1

Let’s divide the computer graphics space into a grid of n × n × n tangent boxes
containing the volumetric space inside every box, or cube. Then the space has been trans-
formed to a voxel space, or voxelmap, and every box is called voxel, abbreviation for
volume element. Conceptually, the 3D voxel is the 3D counterpart of the 2D pixel, and in
the same way, exactly like a voxel is the quantum unit of volume —it has a numeric value
(or values) associated with some measurable properties of the polygonal mesh scene—.

So, through a parallelism with the process of making a photograph of the real world5,
it’s called voxelization, according to [vox2], the process of transformating a geometric
representation (a polygonal mesh, or a parametric surface) into a voxelmap where the
associated voxel values are representing the best approximation of the scene model within
the discrete voxel space.

5 More accurate and technical, the more adequate counterpart of voxelization is the rasterization —screen
drawing by pixels— of 2D geometric objects, although voxelization process does not render the voxels but
generates a discrete digitization of a continuous 3D object.

Research on Generic Interactive Deformable 3D Models

3.2. Mesh Voxelization 21

Here can be seen three different voxelizations of the same model, dolphin; notice
the ascendent accuracy as long as the number of voxels in the grid increase:

(a) Original mesh (b) 8× 8× 8 voxels

(c) 32× 32× 32 voxels (d) 128× 128× 128 voxels

Figure 3.3: Examples of three voxelizations of the model dolphin, executed by MeshInspeQTor software.

The 3D discrete topology3.2.1.2

Like any discretization process, voxelization is not infallible; that means, the vox-
elization can result in the existence of valid voxels considered invalid ones, which can
make harder the voxel entity identification with respect to the voxelmap. For solving
this problematic situations, a connectivity postfilter is needed.

This filter passes through the voxel space, or voxelmap, and analyses the connectivity
of different voxels considering three possible adjacency settings; hence, one voxel is
connected to another one by following these three policies from [vox3]:

• 6-adjacency, where two voxels are considered linked if they are adjacent by any
entire face;

• 18-adjacency, where the connectivity is accepted for the previous 6 voxels, and also
their upper and lower ones;

• 26-adjacency, where the entire surrouding voxels for each voxels are candidates;

Figure 3.4: Voxel connectivity policies

Master Thesis in Computer Graphics by Marc Musquera Moreno

22 Chapter 3. Volumetric Model from a Polygonal Mesh

The Problem: Triangle VS Voxel3.2.2

Introduction3.2.2.1

Given a mesh M , composed by a set of faces F , and a voxelmap X , the voxelization
process VX(M) that modifies X will set valid voxels —that is, voxels that are intersecting
any face composing the mesh— to true boolean value, and invalid voxels to false; so, the
final result is a discrete approximation by cubes withinX of the meshM , and it implies
that, supposing M a convex mesh (thus, empty), there will be invalid voxels outside as
long as inside the voxelization of M , VX(M).

More accurately, focusing in the intersection test between a voxel V and a triangle
T 6, both two in R3, their relative position is given by the existence of a finite and delim-
ited coplanar zone between them.

This is, two conditions must be accomplished, one more restrictive than the previous:

1. the T ’s containing plane must intersect the voxel —cube— V :

T ∩ V 6= Ø ⇐⇒ T ⊂ π ∈ R3 ∧ π ∩ V 6= Ø

2. T —or a piece of it— must intersect V :

Q ≡ π ∩ V =⇒ T ⊆ Q

Indeed, the problem is equilavent to its 2D analogue discussion: coplanar triangle-
square relative position. In the next figure the four relative positions between a triangle
and a square are featured:

Figure 3.5: 2D relative position between a square and a triangle.

The test’s simplest case: gigantic meshes in low-grid voxelmaps3.2.2.2

When a gigantic mesh M , composed by n � 10000 faces, is voxelized over a vox-
elmap V with a grid of big voxels, it can be assumed that, if the mesh is well-formed,
every triangle will be tiny with respect to the voxel face area; that implies that:

• the surrounded relative position at figure 3.5 between T and V is impossible;

• each triangle T will be included only in 1-level connectivity adjacent voxels;

• if all the triangles are adjacent to any other triangle, there won’t be valid voxels
with no mesh vertex;

Therefore, the triangle-voxel intersection in that case is very simple: the algorithm
only has to test if there are some triangle vertices within the voxel.

6 From now, faces will be triangles for a more simple point of view of the problem.

Research on Generic Interactive Deformable 3D Models

3.2. Mesh Voxelization 23

(a) 1 inner vertex (b) All inner vertices

(c) No inner vertices (d) Method unstability example

Figure 3.6: Testing T ∩ V by triangle-box test based on vertex containing checking; output by a Matlab
code written for this thesis by its author.

This method is the most powerful and fast, because the checking is direct or quasi-
direct, depending on the voxel bounding box typology, as there is in the figure 3.7:

• Axis-Aligned Bounding Box AABB: all the voxel faces are parallel to one of the
canonical axis, so with the minimum and maximum bounding box coordinates; so
the i-th vertex of a triangle t is within the cube if its (x, y, z) coordinates are all in
the box range:

T = t1t2t3 → ti ⊂ V ≡

 tix ∈ [Vminx
, Vmaxx

]
tiy ∈ [Vminy

, Vmaxy
]

tiz ∈ [Vminz , Vmaxz]
=⇒ ∃ i ∈ {1, 2, 3} t.q. ti ⊂ V =⇒ T ∩ V

• Object-Oriented Bounding Box OOBB: knowing that, given the plane π equation
and a pointP , the plane-point relative position is able for knowing the plane normal
with this calculus:

π : ax+ by + cz + d = 0, P = (px, py, pz) =⇒

π(P) > 0 → upper
π(P) > 0 → contained
π(P) > 0 → lower

;

so, the testing is done by checking if, for all the six cube faces, any vertex of a
triangle is intern.

However, if any of the three previous conditions is not fulfilled (e.g., the longest
triangle edge is greater than the middle of voxel edge), this method is too unstable.

Master Thesis in Computer Graphics by Marc Musquera Moreno

24 Chapter 3. Volumetric Model from a Polygonal Mesh

Figure 3.7: Tipology of Bounding Boxes depending on their orientation; source [voxB] (edited).

Here’s the pseudocode for the triangle-box —AABB assuming— test by vertex check-
ing; at the figure 3.6 on previous page there are some examples from the same code writ-
ten in Matlab, including an unstable test where an inner triangle is considered extern.

1 function triboxAABB_vertexcheck(Cube C, Triangle T)
2 returns bool
3 Vertex cubemin = getCubeMinorVertex(C);
4 Vertex cubemax = getCubeMajorVertex(C);
5 int innerverts = 0;
6 for k= 1 to 3 do
7 Vertex vert = T.getVertex(k);
8 if between(vert.x, [cubemin.x, cubemax.x] and ...
9 between(vert.y, [cubemin.y, cubemax.y] and ...

10 between(vert.z, [cubemin.z, cubemax.z] then
11 innerverts = innerverts + 1;
12 endif
13 endfor
14 if(innerverts > 0) return true;
15 else return false;
16 endif
17 endfunction

PSEUDO code 3.1: Triangle-box test by vertex checking.

Test’s generic case: voxelization of any mesh at any LOD. Alternative techniques3.2.2.3

Due to the huge amount of mesh pecualiarities, it cannot be supposed that vertex-
voxel testing will be always valid, so a generic case is needed. Let’s present some of the
different alternatives.

Greedy Algorithm.

The first approach, the greedy algorithm, is computationally prohibitive:

1. to find the Q area mentioned in the section 3.2.2.1, on the page 22, then, the inter-
section zone between (π ⊃ T) ∩ V ;

2. if Q is not null, check if the triangle, or a part of it, is in Q: T ⊂ Q;

because the first step implies:

• find the six intersections between (π ⊃ T) ∩ fi, i = 1..6, being fi the i-th face of V ;

• store the polygon generated by the six lines;

Research on Generic Interactive Deformable 3D Models

3.2. Mesh Voxelization 25

Intersection between triangle and voxel edges.

Gernot Hoffmann, in [vox4], presents an alternative to greedy algorithm, to give more
efficiency on the same calculus: his algorithm doesn’t find the intersection between
π ⊃ T and the six voxel faces but with its twelve edges, as can be seen in the next figure.
Finally, it’s easy to check a possible intersection between the two areas, the P intersection
polygon one, and the T one.

(a) Plane-cube intersection test at [vox4]. (b) Triangle-Point container area method (intern, extern)

Figure 3.8: The Gernot Hoffmann Triangle-Voxel intersection test.

However, this method is still unstable due to those cases where a voxel’s inner trian-
gle doesn’t intersect any cube’s edge, as it can be seen in these Matlab plots obtained by
this project’s student own code implementation of this method.

(a) Inner triangle. (b) Outer triangle. (c) Algorithm conflict.

Figure 3.9: The Gernot Hoffmann Triangle-Voxel intersection test results adquired by this document’s
author by his own Matlab programmed implementation of this proposal.

Sierpiński’s Fractal for Triangle Area Discretization.

This fractal7 was introduced in 1915 by the polish mathematic Wac law Sierpiński, and
consists, as said in [vox5] and [vox6], in this iterative triangle subdivision, that starts
with an equilater triangle:

1. draw three lines that connect the midpoints of the triangle’s sides. The result is a
centered white triangle;

2. the original triangle is now divided into three smaller triangles, and for each one,
repeat again;

7 A Fractal is a semi-geometric object with a peculiar structure: it’s repeated whatever the scale you use
to represent it.

Master Thesis in Computer Graphics by Marc Musquera Moreno

26 Chapter 3. Volumetric Model from a Polygonal Mesh

Here you can see the starting point and the first three iterations, made from an ar-
bitrary —non equilater— triangle with a Matlab code written by this thesis author for
research testing purposes:

(a) Starting point (b) 1st iteration (c) 2nd iteration (d) 3rd iteration

Figure 3.10: The first three iterations of the Sierpiński Fractal.

This fractal is able to, indeed, be used for discretizing the triangle area, by modifying
the fractal method with not rejecting the centre triangle but also counting with it for
post subdivisions, hence, the final result is a coherent and equitative discretization of
the triangle area:

(a) Starting point (b) 1st iteration (c) 2nd iteration (d) 3rd iteration

Figure 3.11: The Sierpiński Fractal Matlab plottings of the thesis’ author own adaptation code for trian-
gle area discretizations.

Since the main problem for the generic voxelization case is the abstract level of the
triangle area, this fractal can be used for implementing the fast algorithm decribed in
3.2.2.2, on page 22; that is, execute the vertex-voxel test for every vertex as result of each
triangle area discretization from a mesh, with a code like the following one:

1 function triboxAABB_sierpinski(Cube C, Triangle T, ...
2 int level)
3 returns bool
4 { ’level’ indicated the algorithm recursive steps }
5 Set<Triangle> AST = getAdaptedSierpinski(T, level);
6 for k = 1 to AST.length() do
7 if(triboxAABB_vertexcheck(C, AST.elem(k)) then
8 return true;
9 endif

10 endfor
11 return false;
12 endfunction

PSEUDO code 3.2: Triangle-box test based on Sierpinski fractal adaptation.

However, there are two great disadvantges for this methodology, both focused on
the number of desired fractal iteration levels:

Research on Generic Interactive Deformable 3D Models

3.2. Mesh Voxelization 27

• what is the most adequate iteration limit level per each triangle, due to, although
it’s a good discretization of the total triangle area, it’s not sure that if the triangle
intersects a voxel, there will be some discretization vertices within the cube;

• as long as the iteration level increases, the number of triangles also increases; con-
sequently, the number of vertices per original triangle grows very much, as it’s
shown on this table:

iteration 0 1 2 3 . . . n

triangles 1 4 16 64 . . . 4n

vertices 3 6 15 46 . . .
∑αn

i=0 i,
{

α0=2
αi=α(i−1)+(α(i−1)−1)

Table 3.1: The progressive data increasing with Sierpiński Fractal adaptation

Separating Axis Theorem Derived Approach.

Tomas Akenine-Möller featured in 2001, on [vox7], a fast testing for 3D triangle-cube
overlap checking. This method is based on the separating axis theorem, saying that two
meshes, MA and MB , are not intersecting if and only if there is a plane πs separating
them, one in each “side” of the plane:

• let πs be a considered separator plane of two meshes MA and MB ;

• let nπs the πs normal rect; if the two mesh projections over nπs don’t intersect, this
line is called separator axis; ergo, πs is a separator plane.

Figure 3.12: Scheme of a separator axis; notice that the normal projections of two meshes MA and MB are
not intersecting; so, the two meshes are not intersecting, and thus, πs is a separator plane.

Besides, Akenine-Möller proofs that, for a 3D convex meshes8 there is a more focuses
theorem; two convex meshes CA and CB are disjoint if and only if one of these three
axis are tipified as separator axis:

8 The most common 3D meshes that model a really physical object.

Master Thesis in Computer Graphics by Marc Musquera Moreno

28 Chapter 3. Volumetric Model from a Polygonal Mesh

• perpendicular to any CA face, or to any CB face;

• parallel to the cross product between any CA edge and any CB edge;

The concrete algorithm checks the disjoint of a triangle and a voxel in 13 axis:

1. 4 axis: the three cube face normals and the triangle one;

2. 9 axis: the cross product between a cube edge and a triangle edge;

The search tree structures applied to voxelization3.3

Reasons for using trees3.3.1

When the voxelization process is needed, it’s obvious to think in a voxel-discretized
space; thus, the straightforward solution is to build a regular grid of voxels, for ex-
ecuting the 3D rasterization that is the base of the mesh voxelization. It’s simple and
effective, but terribly inefficient, since to it’s not an adaptive method. The general solu-
tion approach is, then, the adaptive nature provided by the search tree structures. Let’s
see the most famous ones in versatility and widely usage, because of the disjoint space-
subdivision characteristics.

Figure 3.13: A generic tree structure for being used in computer algorithm data structuration and search
accelerations; in this example, A is the root of the tree, being E, I,J,K,G,H,D nodes without children,
called leaves. Moreover, in the remarked subtree context, C is the root and G,H the leaves.

The most common Search Trees Structures3.3.2

The main advantage of this kind of structures is its adaptability: the deeper is the
voxel-associated tree node, the minor size will have. That means, if a huge voxel is
considered all valid or invalid, it’s a valid decision for every real grid voxel contained
in this huge voxel. More technically, the tree construction algorithm for each kind of tree
will be a recursively scene space subdivision into 2 more subspaces, until a satisfactory
condition is achieved.

Besides, this tree structures can offer the same concepts in 3D (voxels) as well as in 2D

(pixels), so for better explanations, some structures will be explained in 2D.

Research on Generic Interactive Deformable 3D Models

3.3. The search tree structures applied to voxelization 29

Binary Space Partition Tree —BSP-Tree—3.3.2.1

It’s the most generic case of all the tree structures for voxelization purposes, and each
recursive subdivision step consists in specifying the better splitting plane —a line in the
2D case— that cuts the node scene space into 2 subspaces that simplifies the coherence
of the scene; therefore, for voxelization purposes, this plane should be the most valid-
invalid node classificatory: the aim will be to obtain the greatest possible nodes with
no-mesh, or mesh-containing; and, in the second case, the submeshes should be convex.

Figure 3.14: 2D BSP construction based on a polygon, extracted from [vox8]. Notice that the satisfactory
condition for stopping the BSP construction is that the two subspaces contain a convex polygon.

Kd-Tree3.3.2.2

A Kd-Tree is a subclass of the BSP-Tree. In the BSP case, the splitting plane could be
any plane ∈ R3, while in this case, the space cutting planes will always be axis-aligned
to the canonical planes < XY >, < YZ > or < XZ >.

The next figure shows the 2D Kd-Tree built structure from a point cloud; the plane-
choosing policy is the following:

1. in each recursive splitting step, the plane will be parallel to every canonical axis in
a cycle: < XY >, < YZ >, < XZ >, < XY >, . . .

2. the characteristic value of the plane will be decided by the median of the points
being put into the Kd-Tree, with respect to their coordinates in the axis being used.

(a) The Kd-Tree Scheme. (b) The Kd-Tree Data Structure.

Figure 3.15: A point cloud based 2D Kd-Tree structure construction; source [vox9].

Master Thesis in Computer Graphics by Marc Musquera Moreno

30 Chapter 3. Volumetric Model from a Polygonal Mesh

There is a Kd-Tree subclass called Bin-Tree, where the second policy step is modified
by the middle space node.

Quadtree (2D) and Octree (3D)3.3.2.3

With no doubt, the easiest and most widely used of all the search tree models. The
Octree structure creation is based on a recursive space equitative subdivision in eight
equal subboxes for each box —or subdivision in quads in the textsc2d case—, with no
matter about the space data or properties; that is, each node will have eight sons —four
in the case of the Quadtree—.

Figure 3.16: The 3D Octree recursive subdivision; source [voxA].

Research on Generic Interactive Deformable 3D Models

CHAPTER 4Polygonal Mesh Recon-
struction: Multiresolu-
tion Meshes

Introduction to Multiresolution Meshes4.1

The need of a multiresolution mesh capability4.1.1

In [mrs2], the authors focuss their work in progressive meshes, a thesis out-of-range
research field; in this document it’s noticed the importance of the multiresolution meshes
described in section 2.2.2 —page 14—. As said there, multiresolution meshes are the
basis for generating geometric objects at different levels of detail —LODs—.

The use of the multiresolution term is due to the direct relation of the resulting ap-
proximate polygonal mesh with the space cell density (e.g., the grid size of a voxelmap).

Figure 4.1: Multiresolution mesh of an airplane, at different LODs; source [mrs1].

Also, Hughes Hoppe, famous for his multiresolution contributions with the progressive
meshes ([mrs2]), remarks the importance of this kind of meshes due to:

• less triangles for the rendering process means more efficiency but not necessarily
loss of mesh quality at human’s eye (for gigantic meshes overcoat);

• easier interaction with the mesh, for data transmission or morphing transitions
(like deformations);

31

32 Chapter 4. Polygonal Mesh Reconstruction: Multiresolution Meshes

The IsoSurfaces4.1.2

An isosurface, as said in [mrs3], is a 3D surface whose points are constant scalar val-
ues within a volume of space; it usually takes the form of a f(x, y, z) = 0 ∈ R3 function
for easier computation, and it’s the most popular form of volume dataset visualization
that can be rendered as a polygonal mesh, which can be drawn on the screen efficiently,
using reconstructive mesh algorithms computing as valid or invalid the isosurface values
with respect to an arbitrary threshold value.

Once all the isosurface scalar values are extracted, a mesh is extrapolated from the
frontier voxels, voxels connected to inner and outer voxels at the same time —that is,
voxels containing partially the original objects—.

Figure 4.2: Scheme of IsoSurface renderization as a triangular mesh.

VoxelMap Refilling. The Model Carving4.2

In section 3.1.1, on the page 19, it is said that a polygonal mesh is representing only
the surface of an object. As a consequence, if the mesh is convex, the synthesized ob-
ject will be empty, and then, executing this mesh’s voxelization will result in an empty
voxelization —that is, with inner holes due to the inexistence of inner parts of the
models—. In other words, in the resulting voxelmap from a convex mesh voxelization,
there won’t be inner voxels: only outer voxels in the two disjoint subspaces split by the
frontier voxels generated by voxelization.

(a) Sphere Model (840 faces). (b) 64× 64× 64 sphere voxelmap. (c) Voxelmap transversal section.

Figure 4.3: Voxelization of the sphere model. Notice the emptiness in the voxelmap section, so the volu-
metric model is not filled but empty, like the original convex mesh. Output frameset from MeshInspeQTor.

To solve this problems there are a singular approach named carving, with the origi-
nal focus on 3D voxelmap reconstruction of a 3D real scene using multiple-angle camera
captures —space carving—, and an adapted version to a voxelmap directly —voxel carv-
ing—. This methods are able to refill potential voxelmap holes.

Research on Generic Interactive Deformable 3D Models

4.2. VoxelMap Refilling. The Model Carving 33

Space Carving4.2.1

In [mrs4], Kiriakos Kutulakos and Steven Seitz feature a new approach relative to com-
puting the 3D shape of an unknown, arbitrarily-shaped scene from multiple pho-
tographs taken at known but arbitrarily-distributed viewpoints.

They include the concept of photo hull by analyzing the relation between all the input
photographs; the photo hull, computed directly from the scene photographs, subsumes
all the 2D shapes from all the photographs for, with a probably-correct method, the space
carving, extrapolating all the 3D shapes of the scene.

Figure 4.4: The Space Carving algorithm in action; source [mrs4] (edited).

Widely, the photo hull is actually a volumetric model, and space carving modifies
—carves— an empty voxel space to adapt it to the photo hull, which the authors call
”satisfy the photo-consistency”.

Voxel Carving4.2.2

Some time later, Sainz, Bagherzadeh and Susin got inspired by Kutulakos work and pre-
sented in [mrs5] an improved approach of space carving, called voxel carving, based on
carving a bounding volume using an inner data similarity criterion.

This technique takes the advantages of performing six disjoint carvings by sweep-
ing along the positive and negative direction of each axis of the object bounding box.
Notice that in each step, only the visible cameras relative to the sweeping plane are en-
abled. Finally, the resulting voxelmap is the intersection of the six intermediate carved
voxelmaps; the result is obviously satisfactory for convex models.

(a) 6-sweep-iteration method scheme. (b) Application to a real object.

Figure 4.5: Detailed methodology for the Voxel Carving algorithm; source [mrs5] (edited).

Master Thesis in Computer Graphics by Marc Musquera Moreno

34 Chapter 4. Polygonal Mesh Reconstruction: Multiresolution Meshes

In the next page there’s a complete visual guide of the six voxel carving steps applied
to the voxelization of a torus mesh. Let’s notice the clear difference of the carved torus
voxelmap (down) with respect to the uncarved one (up), where only a standard mesh
voxelization has been executed.

IsoSurface Extraction Algorithms4.3

IsoSurface extraction as multiresolution mesh construction4.3.1

Far away from volume rendering techniques, that are out of the range of this thesis,
the aim of this section is to introduce a few techniques, the most famous ones, for gen-
erating a fast extrapolated triangular mesh from an isosurface.

It’s a computational field commonly used for medical purposes —as really aimed
this thesis—, since isosurfaces are widely created from a set of three-dimensional CT
scan, allowing the visualization of internal organs, bones, or other structures. However,
this thesis only concerns preloaded polygonal meshes; thus, the 3D isosurface generation
from this medical images is, again, out of the range of this project.

Nevertheless, the main idea of these algorithms, due to the efficient mesh generation
provided by two techniques, called Marching Cubes and Marching Tetrahedra9, is to
build a multiresolution clone of any mesh, calling one of these methods by passing
them the isosurface for the mesh voxelmap.

Marching Cubes4.3.2

Overview4.3.2.1

Originally proposed by Lorensen and Cline in their 1984 paper [mrs6], it consists basi-
cally —and without entering into implementation details— in:

1. with the support of a look up table —LUT— of all the possible unit voxel tipolo-
gies with their triangulations (precalculated in relation to a real isosurface offset), it
generates the most coherent connectivity inter slices10;

2. after that, it processes de 3D data and, using linear interpolation, calculates the
current triangle vertices;

3. for a convenient mesh shading, the normals are calculated from the original iso-
surface data gradient;

With this method, all the voxel locations where the isosurface passes through are
determined, so it’s possible to generate triangles joining this isosurface-voxel inter-
section points. The final surface is generated when all the triangles are generated and
coherently joined.

9 Although the second is really a variation of the first, considered a standard approach to the isosurface
extraction problem from a volumetric dataset.

10 This LUT, that will deserve its own section later at the page 36, , is only for frontier voxels, that is, voxels
partially included in the original isosurface. In other words, a voxel is tipified as frontier if there are some
voxel vertices considered inner the isosurface, and the rest of vertices are considered outer.

Research on Generic Interactive Deformable 3D Models

4.3. IsoSurface Extraction Algorithms 35

(a) Torus 64× 64× 64 uncarved voxelmap. (b) Transversal section of uncarved voxelmap.

⇓

(c) Voxel Carving, step 1: X+. (d) Voxel Carving, step 2: Y+. (e) Voxel Carving, step 3: Z+.

(f) Voxel Carving, step 4: X−. (g) Voxel Carving, step 5: Y−. (h) Voxel Carving, step 6: Z−.

⇓

(i) Torus 64× 64× 64 carved voxelmap.. (j) Transversal section of carved voxelmap.

Figure 4.6: Voxel Carving applied to a standard 64 × 64 × 64 voxelization of the torus model. Since the
final voxelmap is the intersection of the six voxel carving steps, the volumetric model of torus is filled. As
usual, frameset created by the thesis purpose software MeshInspeQTor.

Master Thesis in Computer Graphics by Marc Musquera Moreno

36 Chapter 4. Polygonal Mesh Reconstruction: Multiresolution Meshes

Advantages and disadvantages4.3.2.2

Advantages Disadvantages

A1 High resolution, voxelmap D1 Possible holes in the generated
size depending. mesh from the isosurface.

A2 Easy and fast rendering. D2 Final quality of the mesh is strongly
A3 Good quality meshes with isosurface-depending; and the

low cost (CPU time). isosurface is threshold-segmented
so the original data must be
excellent to avoid problems.

Table 4.1: Advantages and disadvantages of the Marching Cubes algorithm; extracted details from [mrs7].

The isosurface-voxel intersection case LUT. Shortcomings4.3.2.3

When the algorithm is analyzing the cube-isosurface intersections for a voxel, there
are 256 possible intersections; however, they are reduced to 128 by complement situa-
tions11, and by rotations, this number is reduced again, obtaining 15 absolute possible
intersections, shown in the following figure:

Figure 4.7: The 15 absolute cube-isosurface intersection situations; source [mrs8].

11 Inverting the marked intersection points within the voxel, and the triangle normals must be inverted
too for coherence.

Research on Generic Interactive Deformable 3D Models

4.3. IsoSurface Extraction Algorithms 37

However, there are some ambiguous cases where, in case of choosing a bad cube-
isosurface intersection type, a mesh hole can be produced, as the remarked table 4.1(D1)
disadvantage tells; there are some solution approaches, like those who can be found on
[mrs9] and [mrsA]. A clear example of hole can be seen in the following figure:

Figure 4.8: An example of hole in a marching cubes generated mesh, as the result of an ambiguous case;
source [mrs8] (edited).

Nevertheless, it’s a good algorithm and widely used for automatic generation of tri-
angular meshes from an isosurface —e.g., taken from tomographies and medical scanners
properly—; so its pseudocode should be something like that:

1 function marchingcubes(VoxelGrid VG, Isosurface S)
2 returns TriangularMesh
3 Set<Point> SP;
4 foreach Voxel V in VG do
5 { marks the voxel as inside or outside in
6 relation to the isosurface volume }
7 VG.setStatus(V, S);
8 foreach Edge E in V do
9 { an edge is an isosurface boundary

10 if it has an inner vertex being
11 outer the other, from isosurface }
12 if isBoundary(E, S) then
13 SP.add(middlepoint(E));
14 endif
15 endforeach
16 endforeach
17 TriangularMesh M;
18 M = generateMeshByPointSetTriangulation(SP);
19 endfunction

PSEUDO code 4.1: The Marching Cubes isosurface extraction algorithm.

Marching Tetrahedron4.3.3

Overview and shortcomings4.3.3.1

As explained previously in the introduction of this section, there is a Marching Cubes
method variant, called Marching Tetrahedra. Its approach is based on the same March-
ing Cubes philosophy but here, each voxel will be subdivided in five tetrahedrons.

This technique can produce a smoother generated mesh than the Marching Cubes
resulting one, but it’s also true that due to this tetrahedron subdivision, an increasing
number of triangles is produced, and it’s possible to have too much polygons where it
isn’t needed.

Master Thesis in Computer Graphics by Marc Musquera Moreno

38 Chapter 4. Polygonal Mesh Reconstruction: Multiresolution Meshes

Figure 4.9: The Marching Tetrahedra cell subdivision scheme. Each voxel will be treated as five indepen-
dent tetrahedrons, so the method is more accurate and smooth with the discrete shape of volumetric unit
than marching Cubes; source [mrs8].

As it can be deduced, the algorithm steps are the same that the Marching Cubes
method, but taking into acount that the planar facet approximation to the isosurface
is calculated for each tetrahedron independently. The facet vertices are determined by
linearly interpolating the place where isosurface cuts the edges of the tetrahedron, as in
Marching Cubes.

The Marching Tetrahedra LUT4.3.3.2

Figure 4.10: The Marching Tetrahedra cell subdivision scheme; source [mrs8].

Research on Generic Interactive Deformable 3D Models

4.3. IsoSurface Extraction Algorithms 39

The figure on the previous page illustrates the tetrahedron-isosurface possible inter-
sections, after complementation and rotation reducements12. The hollow and filled circles
at the vertices of the tetrahedron indicate that the vertices are on different sides of the iso-
surface.

The most important advantage with respect to its original method, Marching Cubes,
is that this triangulation intersection LUT has no ambiguous situations. But, as it has
been said, the number of generated triangles will be much greater than the Marching
Cubes generated mesh would have.

12 There is a configuration left. The case not illustrated is where all the vertices are either above of below
the isosurface; then no facets are generated.

Master Thesis in Computer Graphics by Marc Musquera Moreno

CHAPTER 53D Object Model Anima-
tion/Deformation

Point-Oriented Deformation5.1

The Point-Sampled Geometry5.1.1

There is a recent branch, appeared since 2002 due to Zwicker et al’s Pointshop3D
[geo1] proposal; it’s a system for interactive and appearance editing of 3D point-sampled
geometry; that is, a geometry with no vertex connectivity information.

Based on a novel interactive point cloud parameterization and an adaptive remesh-
ing method, this system permits to transfer the 2D image editing capabilities to an
irregular 3D point set. Unlike 2D pixels, the absence of connectivity gathered with the
irregularity of the point-sampled patterns are the reasons for this system, like a 3D photo
editing software. The idea behind that is purely based on irregular 3D points as the
image primitives. Briefly, the process is, as seen in the autoexplanatory example figure
above, to spread 2D image pixels over 3D surface pixels —surfels—.

Figure 5.1: Hybrid system featured in [geo2], consisting in a hybrid geometry representation combining
point clouds with implcit surface definitions. Note: the middle image is the colored sample density map.

41

42 Chapter 5. 3D Object Model Animation/Deformation

One year later, in 2003, Pauly et al proposed in [geo2] a free-form shape modeling
framework for point-sampled geometry that takes benefit of the minimum consistency
requirements of point clouds for developing an on-the-fly surface restructuration, sup-
porting geometric deformations in interactive time. In the figure above there’s an exam-
ple of a reconstructed planck 3D model mesh from a point cloud.

Point-sampled deformation5.1.2

In [geo3] there’s an approach for collision detecting and dynamical deformation
response, based on continuum mechanics, everything done on 3D objects where the vol-
ume as well as the representing surface are point-based sets. Developed by Müller et al
from their previous work [geo4], it offers a complete animation framework schematized
in the following figure.

Figure 5.2: Scheme of the contact handling framework developed in [geo3].

In more technical terms, in [geo3] a point-based object, called Γk, is defined as a cloud
of n surfels sk —surface elements—, animated over a set of m phyxels pk —points, phys-
ical elements— with position xk ∈ R3. So, an overview of this point-based animation
system, in relation to this nomenclature, should be the following:

• dynamic simulation; the scheme for all m sample points —and for each time step
∆t— dynamic simulation loop is something like this, extracted from [geo4] quasi-
directly:

ut
(displacements)

=⇒

 Out → εt → σt → ft
(derivatives) (strains) (stresses) (forces)

︸ ︷︷ ︸

spatial derivatives by Moving Least Squares —MLS— procedure

=⇒ ut+∆t

(integration)

where the MLS procedure is the most common position interpolation in mesh
free algorithms13, consisting in, according to [geo5], the calculation of a biased
weighted least squares measure towards the region around the point at which the
reconstructed value is requested.

13 A mesh-free is a mesh composed by a set of unorganized point samples.

Research on Generic Interactive Deformable 3D Models

5.2. Geometric Deformation 43

• collision detection; here the goal is to find new surfels inside of any of the other n
surfel-bounding objects for a collision between Γ1 and Γ2; that is, to find a contact
surface Φ1,2 lying in the intersection volume V1,2 = Γ1 ∩ Γ2. The surfels of Φ1,2 are
called contact surfels, and for each of them, there’s a penalty and friction force to be
computed, like in the following figure14:

Figure 5.3: Penalty and friction force processing for Γ1 in front of a Γ2 collision; source [geo3].

This research field is totally outside this thesis, so the details of the algorithms won’t
be explained and studied deeply. However, it’s an entire and innovative method of ren-
dering, deformation and animation, so it has deserved a special mention about its basis
and capabilities. Thus, in the following figure there’s a complete example of Max Planck
bust where elastic, plastic, melting and solidifying animation models are shown: .

Figure 5.4: Example of point-sampled object animation with the [geo4] method; the two left figures are
representing the phyxel-surfel representation and the MLS reconstructed mesh.

Geometric Deformation5.2

Global or local deformation operators5.2.1

Reminder: the jacobian matrix JF of a function F5.2.1.1

First of all, a jacobian matrix must be defined as a reminder: assuming F : Rn → Rm

a function, n,m ∈ N+, F is given by m real-value component functions:

F : Rn // Rm

x � // y = F (x)

⇓

x ∈ Rn ≡
(
x1, x2, . . . , xn

)
=⇒ y ∈ Rm ≡

(
y1(x), y2(x), . . . , ym(x)

)
14 The details won’t be explained here; for more information, please read [geo3].

Master Thesis in Computer Graphics by Marc Musquera Moreno

44 Chapter 5. 3D Object Model Animation/Deformation

So, if the partial derivatives of all these functions y1, . . . , ym really exist, they can be
organized in an m-by-n matrix called the Jacobian matrix of F , in this way:

JF =

∂y1

∂x1
· · · ∂y1

∂xn
...

. . .
...

∂ym
∂x1

· · · ∂ym
∂xn

Method Overview5.2.1.2

In 1984, Barr offered in [geo7] a hierarchical solid modeling operations for simu-
lating transformations of geometric objects, like twisting, bending or tapering, for con-
structing complex figures from simpler ones. The idea behind this was to process more
complex forms by calculating the transformed per-vertex position and normal vectors
from the original ones according to the jacobian matrix JF of a transformation function
F . Besides, this transformation matrices can be joined in a set, so this technique can build
easily an animation, like a keyframe animation15.

The transformation function F has to be defined as an R3 endomorphism

F : R3 // R3

p � // p′ = JF · p

so to apply F to an object model composed by n vertices vi, i = 1..n, the algorithm is as
simple as applying the jacobian transformation matrix JF to every vertex vi.

Global and local operators5.2.1.3

This deformation operators defined by Barr had, besides, the possibility of being
global or local, depending on the affected 3D object zone, and how the position and
normal vectors have to be computed:

• global if it modifies the global space point coordinates; that means, every model-
comprising vertex position —and normal, indeed—.

• local if it only modifies the solid tangent space16.

Examples of global operator deformations5.2.1.4

The main innovation of this proposal was the possibility of altering the transforma-
tion while it was being applied to an object. Let’s show some of the most common
geometric transformations, as specified in [geoA]: taper, twist, and bending effects. It’s
important to pay attention on that all these geometric transformations make use of the
own point position p for calculating the transformed —deformed— one; so, this will be
a real object transformation.

15 See section 2.1.1.3 on page 8 for more details.
16 A tangent space associated to a n-manifold object is a n-dimensional space that contains all the tangent

vectors to a certain manifold point. A n-manifold is a mathematical space in which every point has a neigh-
borhood composing a n-euclidean space; thus, lines are 1-manifold, planes are 2-manifold, a sphere is also
2-manifold. . .

Research on Generic Interactive Deformable 3D Models

5.2. Geometric Deformation 45

Figure 5.5: The cube and teapot undeformed models.

These two models, cube and teapot, are widely and commonly used; so, they will
be the affected models that will receive the specified geometric transformations. Notice
that the two models are very vertex-sampled —e.g., the cube has more than eight (the
minimum necessary) vertices— for convenient deformations17.

‘Taper’ geometric deformation.

As defined in [geoB], a taper deformation is a scaling transformation whose effect is
a smooth object scalability along a chosen axis —in this case, the X axis, but can easily
be extended to the other ones—. There’s a parametrization set for this deformation: user-
defined scalar-to-scalar threshold values, x0 and x1. By manipulating these threshold
values, the deformation is controlled.

Jtaper(p) =

1 0 0

0 s
(
px
)

0

0 0 s
(
px
)
 ·

px

py

pz

 ; =⇒ s(x) =

1 x ≤ x0

1− 0.5
(
x−xo

x1−xo

)
x0 < x < x1

0.5 x1 ≤ x

Figure 5.6: The ‘taper’ effect on cube and teapot models; source [geoA].

‘Twist’ geometric deformation.

A twist deformation is essentially a progressive rotation along a direction axis —
in the standard specification, the axis is one of the three canonic axis, in this case the Z
one—. The user-defined parameterization set includes the maximum rotation angle and
two threashold values again, as in taper.

17 With only eight vertices, a cube couldn’t be smoothly deformed, since there are a little amount of vertices
to be transformed into new ones. Nevertheless, with so much vertices, a smooth deformation is possible, as
can be seen in the next figures.

Master Thesis in Computer Graphics by Marc Musquera Moreno

46 Chapter 5. 3D Object Model Animation/Deformation

Jtwist(p) =

cos
(
r(pz)

)
− sin

(
r(pz)

)
0

sin
(
r(pz)

)
cos
(
r(pz)

)
0

0 0 1

·

px

py

pz

 ; =⇒ s(x) =

0 z ≤ z0

θmax

(
x−xo

x1−xo

)
z0 < z < z1

θmax z1 ≤ z

Figure 5.7: The ‘twist’ effect on cube and teapot models; source [geoA].

‘Bend’ geometric deformation.

In this last mentioned deformation —from a huge number of possible geometric
ones—, the object is bent over an specified axis. In this deformation, the user can set
the bending axis, the bending angle and radius and the bending start vertex.

Figure 5.8: The ‘bend’ effect on cube and teapot models; source [geoA].

‘Vortex’ geometric deformation.

This is a twist deformation variant. It’s known that Any spiral motion with closed
streamlines18 is a vortex flow; thus, specifying the vortex deformation is simply like
taking the twist matrix and implementing an α vortex function, like the following:

Jvortex(p) =

cos
(
α(p)

)
− sin

(
α(p)

)
0

sin
(
α(p)

)
cos
(
α(p)

)
0

0 0 1

·

px

py

pz

 ; =⇒

α(p) = r(pz) · e(−p2x+p2y)

⇓

s(x) =

0 z ≤ z0

θmax

(
x−xo

x1−xo

)
z0 < z < z1

θmax z1 ≤ z

18 The streamline is a family of curves that are instantaneously tangent to the flow’s velocity vector.

Research on Generic Interactive Deformable 3D Models

5.2. Geometric Deformation 47

Figure 5.9: The ‘vortex’ deformation over a solid primitive; source [geo7].

Free Form Deformation —FFD—5.2.2

Introduction to FFD5.2.2.1

Apart from Barr proposal in 1984, two years later, Sederberg and Parry presented in
[geoC] a method for deformating any type of surface primitives, with global as well
as local definitions. And, as Barr’s [geo7] proposal, this technique can be used easily for
simulation purposes by a keyframe animation.

The basic idea is assuming any 3D object to be deformable, no matter its shape or
type. Then, a flexible plastic bounding box is built for surrounding all the objects wished
to deform. Now, by imposing a local coordinate system on the flexible plastic bound-
ing parallelepiped region —as shown in figure 5.11(b) on the page 49—, any original
scene point has its correspondence on this coordinate system, whatever shape the flexi-
ble plastic surrounding box had.

(a) A local FFD deformation. Please notice the
‘flexible plastic’ deformation (red-lined).

(b) The global FFD deformation after object’s
symmetric local FFD executions.

Figure 5.10: A complete deformation animation is shown in this couple of figures: (a) two local FFD are
applied to the bar —only one is shown—, for transformating the bar onto a ‘phone receiver’, and (b) after,
a global FFD bends the ‘receiver’; source [geoC].

Master Thesis in Computer Graphics by Marc Musquera Moreno

48 Chapter 5. 3D Object Model Animation/Deformation

Methodology details5.2.2.2

Mathematically, the FFD approach is based on a tensor field product trivariate Bern-
stein polynomial. As a reminder, we will define the Bernstein polynomies: let f :
[0, 1]→ R a continuum function, its n-th Bernstein polynomy, calledB(n, f, x) orBn(, f, x)
is defined as

B(n, f, x) ≡ Bn(, f, x) =
n∑
k=0

f
(
k/n

) (n
k

)
xk(1− x)(n−k), where

(
n
k

)
=

n!
k!(n− k)!

So, defining the parallelepiped’s local coordinate system as < x0, (S, T ,U) >; where
xo is the origin, and S, T ,U the three axis vectors19. Hence, any point X ∈ R3 has an
(s, t, u) triplet associated as coordinates in this system such that:

X = x0 + sS + tT + uU , where

s =
T × U · (X − x0)
T × U · S

t =
S × U · (X − x0)
S × U · T

u =
S × T · (X − x0)
S × T · U

for any point X interior to the parallelepiped,

0 < s < 1, 0 < t < 1, 0 < u < 1;

however, in case of having a prismatic bounding box —a prism is a particular paral-
lelepiped case—, like in the figure 5.11, it’s known that each axis is the resulting cross
product of the other two:

S = T × U

T = S × U

U = S × T
=⇒

s = S · (X − x0) / ‖ S ‖

t = T · (X − x0) / ‖ T ‖

u = U · (X − x0) / ‖ U ‖

Grid of Control Points5.2.2.3

Once the local coordinate system for the flexible parallelepiped has been specified,
it is necessary to establish a regular grid of control points Pijk for the parallelepiped.
Hence, the deformations will be defined by moving some control points, and then the
inner scene will follow the movements by the (sr, tr, ur) triplet calculus for each point
Xr of the scene —see figures 5.11(c) and 5.11(d) for a graphical explanation—.

When the regular control points grid of size l ×m × n is defined, like in the figure
5.11(c) —where the grid is 1×2×3-sized—, there will be l+1 planes in S direction, m+1
in the T one, and n + 1 planes in the direction of U . So, the Pijk control point positions
can be easily found by this calculus:

Pijk = x0 +
i

l
· S +

j

m
· T +

k

n
· U

19 And, as it can be deduced, in the case of AABB —Axis Aligned Bounding Box, view section 3.2.2.2 for more
info— flexible plastic, they are parallel to the canonic axis (X ,Y,Z).

Research on Generic Interactive Deformable 3D Models

5.2. Geometric Deformation 49

(a) The undeformed flexible plastic. (b) The local ‘coordsys’ < x0, (S, T ,U) >.

(c) The undisplaced control points. (d) The control points in a deformed position.

Figure 5.11: There is a complete Free Form Deformation —FFD— executed over several objects (cubes and
spheres) clearly embedded in the bounding flexible plastic; source [geoC].

Capabilities and limitations5.2.2.4

The FFD proposal is very useful for 3D animation due to the possibility of creating
discretized deformation steps by a keyframe interpolation of control points; however,
there are some deformations not reachable yet, like blendings, because the starting ob-
ject shape doesn’t allow FFD to change the object’s orientation.

Interactive Axial Deformations —AXDF—5.2.3

Method Overview5.2.3.1

Lazarus, Coquillart and Jancène proposed another 3D object deformation method in
[geoD], similar —in behaviour— to FFD: based on a 3D axis user-definition, the move-
ment of the axis generates the object deformation in the same way. More technically:

1. the user defines a 3D axis —inside or outside the object, it doesn’t matter—. This
axis can have any shape, not only a simple line;

2. now, the user changes the shape of the axis, and the axis deformations will be
automatically passed to the object —or objects—;

This method, called AXDF —Axial Deformations—, offers the possibibility of applying
the same deformation axis to more than one objects; however, the passed deformations
to far objects may be problematic or even badly done due to the implicit nature of the
method.

Master Thesis in Computer Graphics by Marc Musquera Moreno

50 Chapter 5. 3D Object Model Animation/Deformation

Figure 5.12: A sphere axis deformation: on the left there’s the undeformed sphere with the defined
axis, also undeformed; on the right, the sphere, deformed in an intuitive and consistent way with the axis
deformation; source [geoD].

Algorithm Details5.2.3.2

This method’s problem is to find the way to pass the axis deformations to the object.
For managing this obstacle, the authors propose a three-step process:

1. each object vertex V has to be attached to one axis point AV , and its local coor-
dinates have to be computed; for doing this, the authors implement the closest-
vertex-point strategy, though they warn that it may be conflictive for complex
axis20.

2. the deformed transformation for finding axis point A′V —homologous to AV — is
used to compute the deformation of the object vertex’s (x, y, z) local coordinates;
the direct transformation doesn’t need any explanation, but the problem of finding
the local coordinate frames between AV and A′V is solved with the Frenet frame21.

3. in order to localize the to-be-deformed area by this local coordinate system, a zone
of influence is defined for finding the desired 3D space portion.

Figure 5.13: The horseshoe axis deformation. Please notice the axis, now adapted to the object surface;
thus, the deformation can be so complex as can be seen in the right image; source [geoD].

20 e.g., two —or more— axis points at the closest distance from a object vertex.
21 For each point of a 3D curve, the Frenet frame is represented by three ortogonal unitary vectors: tangent,

normal and binormal of the curve at that point. A binormal unit vector B associated to a curve point is defined
as the cross product of the tangent vector T and the normal one N . A non-unique normal at curve point is
obviously a huge problem

Research on Generic Interactive Deformable 3D Models

5.2. Geometric Deformation 51

Advantages and lacks of AXDF5.2.3.3

• since the deformation is object-independent, it can be re-used as much as wanted,
and besides, it can be applied to any kind of modeled objects;

• it can be combined with other deformation techniques, such FFD;

• a set of subsequent axis can be used for a keyframing object-deforming animation.

However, the technique isn’t infalible, due to a lack of ambiguity in the two steps of
deformation process: (i) it can be more than one axis point candidate for being associated
to an object vertex, and (ii) a 3D curve hasn’t a unique normal at a single point, so the
coordinate frame following the Frenet method is not a good solution. Nevertheless, for
simple axis, it’s a successful method.

Deformation by Wires5.2.4

Introduction and wire definition5.2.4.1

Related to the previous axial deformations, there is an approach from 1998 by Singh
and Fiume at [geoE], where they bring geometric and deformation modeling joined to-
gether by using a collection of wires as a representation of the object surface, and a
directly manipulated deformation primitive at the same time.

Figure 5.14: An example of a facial modeling by ‘wire’ specification, and the next animation and deforma-
tion by ‘wire’ manipulation; source [geoE].

The authors define a wire as a curve whose manipulation deforms the surface of an
associated object near the curve. Its specification is a tuple < W,R, s, r, f >, where:

• W and R are free-form parametric curves —the wire curve and the reference curve
respectively; W will be deformed and R will be useful for comparatives and trans-
formations, and can be swapped within the method for complex calculum—,

• s is a scalar that controls radial scaling around the curve,

• r is another scalar defining an influence radius around the curve,

• and f : R+ → [0, 1] is the density function, and must be at least C1 and monotonically
decreasing.

Master Thesis in Computer Graphics by Marc Musquera Moreno

52 Chapter 5. 3D Object Model Animation/Deformation

Algorithm overview5.2.4.2

Briefly, when an object is bound to the wire, the method follows these steps:

1. the wire’s domain of influence is indicated by a r-radial surface offset around the
reference curve R;

2. using f , the within-offset object points are computed to find its deformation influ-
ence;

3. W is manipulated, and every undeformed point object will be deformed if its de-
formation influence is great; next, a W -R-swapping is executed, in order to have as
reference the last deformation;

Figure 5.15: Deformation of a point P to Pdef by a wireW . The figure parameter pR is the correspondence
point, within R, of P ; source [geoE].

Research on Generic Interactive Deformable 3D Models

CHAPTER 6Physically-Based Defor-
mations

Introduction to deformation based on physics6.1

Overview of time stepping deformation algorithms6.1.1

Accuracy VS speed performance6.1.1.1

Nowadays, some precise and complex simulation methods based on physics and
dynamics have been developed from engineering22. These deformation-based anima-
tion algorithms are non-real-time because of their complexity, since they are so sofisti-
cated; however, as Thomas Jacobsen says in [phy1], for an interactive use, real-time is
the primary concert, so the accuracy is not as important as three another handicaps:

• belieavability, properly parameterized for immersive feeling improvements;

• stability: a physical deformation method isn’t good if the object seems to drift, or
vibrates, or if the model simply explodes by an iteration’s result divergence;

• execution time, because the available computational time is really a little portion
of the single-frame timing. From now, this timing will be called time step.

1 time_step = sys_clock();
2 while true do
3 time_step = sys_clock() - time_step;
4 foreach Object O in Scene S do
5 S.O = deformObject(S.O, time_step);
6 drawObject(S.O);
7 endforeach;
8 endwhile

PSEUDO code 6.1: vast algorithm for a deformation animation.

22 And almost of them are always composed by an iterative method due to the computer graphics iterative
rendering integration —each animation frame must be rendered subsequently from the previous one—.

53

54 Chapter 6. Physically-Based Deformations

A simple particle P as the deformation system6.1.2

Before entering the complex analysis and deformation management and handling
methodologies for deformation models, a list of concepts and strategies will be defined
now as if the entire system was a simple particle, called P . So, according to Susin’s
Volume Modeling Course at [phy2], there are two concepts to be taken in account: the state
vector, and the time step associated to a numerical integrator.

State Vector and Vector Field of a simple particle6.1.2.1

State vector x(t).

The P position through the time-line will be defined by its state vector x(t), which
can contain several parameters: position, velocity, previous position, mass. . . Besides, the
time-dependent evolution of the state vector is given by the following ODE23:

ẋ =
dx

dt
= f

(
x(t), t

)
where velocity ẋ is the space variation in relation to the time; so, by knowing the initial
P position, the initial value problem is about to find the P position at any time step.

The state vector dimension will, at least, be the same dimension of the space where
P is moving along. So, for the most physically-based deformation system, implement-
ing the Newton’s 2nd law, the velocity will have to be introduced as a variable (since
acceleration a is the second order derivative of the position x, ergo a ≡ ẍ:)

a =
F

m
=⇒ ẍ = f(x, t) →

{
ẋ = v
v̇ = f(x, t)

=⇒
(
ẋ
v̇

)
=⇒

(
v

f
(
x, t
)) ;

now the system dimension is 2n, being n the dimension of x ∈ Rn.

ODE vector field.

The ẋ velocity can be interpreted as the x(t) tangent line’s slope at instant t. In other
words, a vector that indicates the direction. Thus, for each space coordinates where the
ODE is defined, there will be a director vector. The set of these plane point-director vector
is called ODE vectorial field.

The time step ∆t. The numerical integrator concept. The Euler numerical integrator6.1.2.2

Almost every particle P ’s path-tracking method is based on a time discretization,
so the particle is going along its trajectory by small time steps ∆t, called here integration
steps. Thus, the next step position will be defined as

x
(
t+ ∆t

)
= x(t) + ∆tf(x, t);

so it’s easy to generate subsequent configurations x(0), x(∆t), x(2∆t), . . . , x(n∆t). Ad-
ditionally, following the previously mentioned iterative scheme, the resulting equation
is the ODE integration’s Euler method:

xn+1 = xn + ∆tf(xn, tn)

23 Acronym of Ordinary Differential Equation. An ODE is an equation that involves a function and its deriva-
tives, such that a n-order ODE has the form F

`
x, y, y′, . . . , y(n)

´
= 0.

Research on Generic Interactive Deformable 3D Models

6.1. Introduction to deformation based on physics 55

The integration system scheme6.1.2.3

The numerical integrators have been finally defined, and also the common approach
of Newton’s 2nd law for their resulting convergence. But, additionally, as said in [phy4],
there are another two important factors for any physically-based deformation iterative
system, external to the system itself and of stochastic nature:

1. collision handling; a collision can be between two objects, or self-collisions be-
tween different parts of the same object; besides, the object can be rigid or non-
rigid, and the collision handling can derive to one of two kinds: elastic or inelastic;

2. constraint management; a deformable object can be configured with some con-
straints or restrictions; e.g., volume preservation, maximum deformation angle,
elasticity or damping limit values, . . . and all those constraints must be managed
and solved if anyone is violated;

This two factors will be studied later, on the next pages, in more detail. Nevertheless,
now in the next figure there is a scheme of a simple iteration on a numerical integra-
tion system focused on physically-based deformations; please notice all the stages: the
integration step, the solver due to the Newton’s 2nd law applying to the system, and
constraint and collision management24.

Figure 6.1: Architecture of an iterative integration system for animation by deformation; source [phy4].

The most used ODE integrators6.1.2.4

Apart from the Euler method, there are other numerical integrators; the most com-
mon, however, are the following:

• Modified Euler Method, or Runge-Kutta 2; the idea is to improve the main time
step by an intermediate step; in more tecnhical terms, the formula is as follows:

xn+1 = xn + ∆t f
(
xn + (∆t/2)f(xn, tn), tn + (∆t/2)

)
24 The scheme indicates clearly that collisions and constraints are external factors of the system; that is,

stochastic events to be handled that modify extremely a particle’s state vector.

Master Thesis in Computer Graphics by Marc Musquera Moreno

56 Chapter 6. Physically-Based Deformations

• Runge-Kutta 4; following the strategy of the Runge-Kutta 2 method, but now there
are 4 subiterations:

xn+1 = xn+(1/6)
(
k1+2k2+2k3+k4

)
⇐=

k1 = ∆tf

(
xn, tn

)
k2 = ∆tf

(
xn + (k1/2), tn + (∆t/2)

)
k3 = ∆tf

(
xn + (k2/2), tn + (∆t/2)

)
k4 = ∆tf

(
xn + k3, tn + ∆t

)
• Verlet; this is an approach featured on [phy1] by Thomas Jakobsen; he calls this

method a velocityless integrator due to the velocity approximation by the differ-
ence between the actual and the previous position25:{

xnew = xold + vold∆t
vnew = vold + aold∆t

=⇒
{
xnew = (2xold − xprev) + aold∆t
xprev = xold

Accuracy and stability of numerical integrators6.1.2.5

Each possible numerical integrator has to find the equilibrium between accuracy —
the accumulated error in a certain step in relation to the real value— and stability —the
integrator must always make the system converge to the correct solution— in contrast to
the time step.

Accuracy.

The accumulated error of an iterative step cannot be calculated because the real value
isn’t available, but can be estimated in function of the time step ∆t and the numerical
integrator used; e.g., the already cited Euler method has an error of O

(
(∆t)2

)
.

Hence, there are two possible strategies to improve the particle path calculus:

1. decrease the time step; this will improve the precision but the computation step
number will increase and besides physics-dedicated-time per frame will be reduced26,
so the method modification maybe can not be possible;

2. to change the numerical integrator, with a greater error order O
(
(∆t)k

)
, k ≥ 3; in

the following table are shown the error measure estimations of the most common
numerical integrators

Numeric Integrator Estimated Error

Euler O
(
(∆t)2

)
Euler Modified (Runge-Kutta 2) O

(
(∆t)3

)
Runge-Kutta 4 O

(
(∆t)5

)
Verlet O

(
(∆t)2

)
Table 6.1: Iterative ODE integration estimated errors in relation to the numerical integrator.

25 In other words, this method doesn’t store the position and velocity values but the previous and actual
position; by this, a linear and energy-constant approximation of the velocity is assumed, but the number of
perations is dramatically reduced.

26 Here it’s studied only a particle P , but when there is a particle system, this computation step is trans-
formed to a equation system, and then the time step is very important.

Research on Generic Interactive Deformable 3D Models

6.1. Introduction to deformation based on physics 57

Stability or Convergence.

The most important requirement on a ODE deformation system like the studied in this
chapter is, with no doubt, its stability. So, is defined a stiff ODE the system who always
converges —and quickly— to an equilibrium state, whatever it is. Thus, an integration
scheme that is yielding a bounded solution —due to a suitable numerical method— is
called stable.

The stability of a system is extremely related to the time step. There is a clear example
of that in the following figure about the state vector ẋ = −kx. Notice that the system is
oscillating for a time step h > 1/k, and is completely unstable for time steps h > 2/k:

Figure 6.2: Stability scheme by ODE system plottings depending on the time step h; source [phy3].

However, there are some proposals for solving possible unstablements. For exam-
ple, by using adaptative time step handling, and always selecting the greater time step
possible, the stability will be increased27. Nevertheless, since computation requires to
establish a native minimum time step, the stability is not always warranted.

Another good solution is considering an implicit methodology, where all the pos-
sible slope changings are taken into account; indeed, the idea is to find the mean of
slopes

x(t+ ∆t) = x(t) ∆t
[
(1− λ)f(x, t) + λf(x+ ∆x, t+ ∆t)

]
;

it’s important to notice that, for λ = 1, here’s the Euler implicit method:

xn+1 = xn + ∆tf
(
xn+1, tn+1

)
and the way for solving it is isolating xn+1.

27 This is because a big time step makes the system becoming unstable, as seen in figure 6.2; however, a
very small time step may be stable but (i) not computable, or great-error-accumulating, so the system won’t
be considered stable due to converging to invalid solutions.

Master Thesis in Computer Graphics by Marc Musquera Moreno

58 Chapter 6. Physically-Based Deformations

Movement restrictions6.1.2.6

It has been seen the path-tracking and management of a single particle P within the
space, but with no counting the possible interactions and restrictions, e.g., interaction
between P and the other space objects. This restrictions can provoque extremal particle
path modifications.

Collisions.

Two or more particles can collide between them if they are in the same animation
space. At this moment, a stochastic process has occurred, and the path-tracking is being
terribly affected, so the involved particles will modify their trajectory according to an
external factor, and this affair must be managed by the deformation system after the
solver integration step, as can be seen in the figure 6.1, on page 55. Additionally, there
are two extremal kinds of collisions, and of course, the intermediate types: from a perfect
inelastic 28 colliding stucking until a 180o direction-turning by a perfect elastic29 one.

The collision management must be robust and efficient in the same level, so for a
collision between two generic 3D objects this task is really impossible. Because of that,
the collision checking is often done by reducing an object to its bounding box or even its
bounding sphere, geometrically easier30.

(a) Intersection between bounding boxes (b) Intersection between bounding spheres

Figure 6.3: Intersection between 3D bounding volumes of 3D objects.

Let’s see now the geometrical computation for checking the intersection between
two bounding spheres S1 and S2, defined by their respectives center C, radius r and
velocity vector ~v:

{
S1 = (C1, r1, ~v1)
S2 = (C2, r2, ~v2)

=⇒

C1(t) = C1 + ~v1t
C2(t) = C2 + ~v2t
rmax = max (r1, r2)

⇓

‖ C2(ti)− C1(ti) ‖ ≤ rmax → intersection in ti time instant
‖ C2(ti)− C1(ti) ‖ > rmax → no intersection in ti

28 An inelastic collision is a collision such that the involving objects suffer deformations; ideally, the two
objets will be stuck from that moment.

29 A collision is considered elastic if the kinetic energy and the linear momentum is conserved for the
implied objects.

30 A sphere is specified by its center and its radius using the equation (x−cx)2 +(y−cy)2 +(z−cz)2 = r2,
while a prismatic box is defined by 6 planes, each one delimited by its intersections with the others.

Research on Generic Interactive Deformable 3D Models

6.2. Dynamic Deformable Model Systems 59

Constraints.

A system constraint is based on particle forced behaviours, like connection with
other particles —e.g., a delimited distance range with respect to another particle, or the
same relative position between them—, or determined surface passing-through —e.g., a
forced friction with floor, or an elastic behaviour in relation to another particle or object—.

In the following figure there is a set of particles with two constraints: (i) connections
between subsequent particles —generating a kind of spring—, and (ii) delimited length
range for all these springs. Notice that, when a gravity force is applied, the constraints are
maintained —red arrows are remarking the gravity as long as the constraining forces—
by a deformation (red image) of the original relaxing shape (left image).

(a) Before g gravity force application. (b) Equilibrium state with g force applied

Figure 6.4: Force equilibrium in a particle system with connection restrictions; source [phy9].

Dynamic Deformable Model Systems6.2

Introduction to deformable systems6.2.1

Definition of Particle System6.2.1.1

A single particle P is usually displayed as a graphical point or sphere, and stores a
set of attributes, including its vector state and another object parameters such as temper-
ature, mass, lifetime, . . . These attributes are, in essence, the numerical definition of the
particle behaviour in front of dynamic deformations and movements over time, com-
puted by a solver for each animation time step.

A solver will be an algorithm that executes the time step integration for any particle
P , given its attributes, its state vector and, of course, the time step. A solver is directly
related to a numerical integrator, so each integrator within the table 6.1, on page 56 will
must have its own solver:

xn
vn
Fn
m
. . .

−→ numerical integration solver

∆t
↓

−→

xn+1

vn+1

Fn+1

m
. . .

Figure 6.5: ODE numerical integration scheme for a single particle P .

Master Thesis in Computer Graphics by Marc Musquera Moreno

60 Chapter 6. Physically-Based Deformations

A particle system, then, will be defined as a set of finite particles, each one with its
own attributes and state vectors; and besides, can be two inherent natures: independent
—in other words, omitting inter-particle forces— or dependent —with inter-particles
forces or another system constraints—:

• a system with independent particles are ideal for waterfalls, or fountains, or splashes,
due to this animations requires only a convincing and fast animation, and because
of the huge number of particles and their stochastic behaviour of that the inter-
particle forces are not required;

• however, for more stiff animations, a system with dependent particles is the most
accurate. The interaction between particles really evolve through the timeline, so
particle system —being itself a single entity and not a set of entities (particles)—
complex geometry and topological changes are easily managed using this approach;

The deformable models as dependent-particle system. The continuum elasticity6.2.1.2

Since the independent particle systems can be computed by using the methodology
explained until now —that is, each particle as a system itself, as in the previous section—,
this type of particle systems will be ommitted from now, the attention will be focused on
the dependent particle systems. So, a three-dimensional deformable object is tipycally
defined by:

1. its undeformed shape, composed by a continous connected discrete set of points
M ⊂ R3, where each point m ∈M is called the object property at this point.

2. a set of material parameters that define how the deformation occurs under external
force applications.

Hence, the 3D object will be deformes when a force is applied over it. How is de-
formed will be determined implicitly by the displacement vector u(m), that leads any
point from its undeformed position m to the deformed x(m) one. Since new locations
x(mi) are defined for all mi ∈ M , a vector field on M is defined by the set of u(mi)
displacement vectors.

Figure 6.6: Some ε elastic strain deformation parameters, from left to right: Cauchy, Cauchy (simpli-
fied) and Green; source [phyA].

From u(m) is computed the called elastic strain, named ε —a dimensionless quantity
representing a constant displacement field—, since it’s computationally measured in
terms of spatial variations of u(m):

m ∈M ⊂ R3 −→ u(m) =

 u
v
w

 =⇒ ∇u =

 Ux Uy Uz
Vx Vy Vz
Wx Wy Wz

 , A(x|y|z) ≡
∂a

∂(x|y|z)

Research on Generic Interactive Deformable 3D Models

6.3. Dynamic Deformable Model Systems 61

The most common strains in computer graphics are the left and right deformation
resultings from figure 6.20:

• Cauchy’s linear tensor: εC = 1/2 ·
(
∇u+ |∇u|T

)
;

• Green’s non-linear tensor: εG = 1/2 ·
(
∇u+ |∇u|T + |∇u|T · ∇u

)
;

The Cauchy simplified won’t be explained, because it’s an experimental proposal
featured on a prior work of [phyA] and it’s out of this project range. However, it’s a good
approach due to its advantages in multiresolution dynamic behaviour.

Points of View of a Physical Simulation. Solver Typologies6.2.2

As it’s said in [phy5], there are two general points of view of describing an object
desired to be physically-simulated, or better said, describing how an object has to be
discretized to work with it numerically:

1. the Eulerian point of view describes an object as a stationary set of points and
calculates how the material properties stored at the stationary point set are being
modified over time.

2. the Lagrangian point of view, on the other hand, describes an object as a set of
moving points —called material coordinates— that tracks a trajectory and changes
their position over time.

No one of the models is the best for any given application. Instead, a huge amount
of parameters and considerations need to be taken into account, such as (i) model repre-
sentations, (ii) physical parameter range, (iii) computational requirements of the simula-
tion —real-time, interactive, off-line, . . . —, (iv) topological changes, . . .

(a) Example of an Eulerian-based fluid animation. (b) Example of a Lagrangian-based cloth simulation.

Figure 6.7: Visual results of the two object animation description point of views; source [phy5].

So, in the next two sections the two points of view —POV— will be explained, fol-
lowing a little bit of the teachings of [phy5] with addings from another publications, a
real survey on physically-based deformation methodologies. However, this project is
focused on the Lagrangian point of view, so only a brief of the Eulerian one will be
found here.

Additionally, this thesis is about real-time —or interactive at least— physically-
based deformations; that implies, some explained methods in the next sections are in-
herently offline, so that proposals won’t be detailed, or even not explained. This decision
is made due to not making a pure clone of [phy5].

Master Thesis in Computer Graphics by Marc Musquera Moreno

62 Chapter 6. Physically-Based Deformations

Physical Simulation based on Lagrangian POV descriptions6.3

Mesh Based Methods6.3.1

Finite Element Method —FEM—6.3.1.1

This is one of the most popular methods for solving Partial Differential Equations
—PDE31— on irregular grids. This kind of methodology can be used due to the vision of
an object as a discretized connected volume in an irregular mesh. As a little overview,
it can be said that FEM is a method that approximates a continuous deformation for a
pointset m ∈ M ⊂ R3, defined by a displacement vector field u(m), to a sum of linear
approximative functions ũ(m) already defined within a set of finite elements.

Figure 6.8: A scheme of the approximate deformation ũ(m) of a continuous deformation u(m), done by
the Finite Element Method; source [phy5].

More concretely, the FEM method gives real solution’s continuous approximations
due to it’s expressed in terms of 3D local basis functionNj(r, s, q) combinations —in gen-
eral, interpolation functions—. So, for this thesis’ main problem, the generic physically-
based 3D particle system deformation case for u(m) and its implicit temporal depen-
dency —due to the iterative numerical integrators—, the solution is

u(m, t) ≡ u(r, s, q, t) =
∑
j

qj(t)Nj(r, s, q),

being qj(t) some time-depending scalar weights for every approximative function.

Continuum mechanics provides the solution.

The PDE that leads the dynamic elastic material deformation is based on the contin-
uum mechanics and the formulation is given by

ρẍ = ∇σ + f =⇒ ∇σ =

 σxxx σxyy σxzz
σyxx σyyy σyzz
σzxx σzyy σzzz

 , σ
a(x|y|z)
(x|y|z) ≡

∂σ(a, (x|y|z)
∂(x|y|z)

31 The Partial Differential Equations are a type of mathematical differential equations involving an un-
known function(s) of several independent variables and their respective partial derivatives w.r.t. those vari-
ables. This kind of equation is used to formulate some physical phenomena —like fluids or elasticity—,
and various of them can interestingly have idential PDE formulations since they are governed by the same
underlying dynamics.

Research on Generic Interactive Deformable 3D Models

6.3. Physical Simulation based on Lagrangian pov descriptions 63

where the conceptual parameters of this equation are:

• ρ is the material density,

• f are the set of external applied forces —gravity, collisions, . . . — to the model,

• ∇σ is the divergence operator, given by a transformation from the 3×3 stress tensor
to the 3-vector defined in the equation;

FEM application to a deformable model.

As it’s said in [phy2], to apply the Finite Element Method to a certain problem, de-
fined by the PDE P, consists in executing this schematic algorithm:

1 function applyFEM(Problem P, Set<BasisFunction> N)
2 returns Set<SolutionFEM>
3 Set<Domain> D = domainDecomposition(P);
4 Problem A = approximateProblem(P, N);
5 WeakForm W = getWeakForm(A, N);
6 Set<SolutionFEM> S = solveProblemByFEM(W, N);
7 return S;
8 endfunction

PSEUDO code 6.2: Algorithm for FEM application to a problem P.

So, the schematic proceeding is composed by a four-step method, more detailed —in
relation to the 3D model deformation and not in generic calculus— now:

1. Domain Decomposition; here the deformable model has to be subdivided into sub-
domains Ej called elements; in the 3D space case, these elements will be tetrahe-
drons or rectangular prisms —cubes or voxels—.

2. Approximation Functions; that is, the basis functions Nj(r, s, q) choosing step.
Generally, this functions are interpolation polynomies —Lagrange, Hermite, . . . —
, but they can also be B-splines, Fourier Series or even wavelets32. The more high
order would be the basis functions, the more exact solution —w.r.t. the continuous
deformation— will get, but also more reference points will must be taken and more
computational time will be needed.

3. Problem’s Weak Form. Given a PDE P , it has to be expressed in its differential
or weak form; that is, the aim is to find solutions for the —a priori infinitely—
discretized initial problem,∫

Ej

v(r, s, q) P dr ds dq = 0,

where v(r, s, q) is an arbitrary weight function. Tipically, the most common ap-
proach for this weight functions is the Galerkin method, that assumes the local
basis functions as the weighted ones: v(r, s, q) = Nj(r, s, q). Now the procedure for
computing each element Ej won’t be detailed here; c.f. [phy2, section 9].

32 There won’t be a reminder of all these mathematical curves, series, polynomies and formulations, be-
cause they are really within project out-of-range.

Master Thesis in Computer Graphics by Marc Musquera Moreno

64 Chapter 6. Physically-Based Deformations

4. Element Joining and Resolution. Now it’s only the problem solving left; it’s impor-
tant to notice that the connection between the elements must be taken in account,
so a certain point can be within more than one Ej . Therefore, the global problem is
approached as a k-order equation system, being k the number of reference points.

Figure 6.9: Hexahedral finite element volumetric representation of a topologically inconsistent mesh, ready
for FEM application (notice that each hexahedron is one of the Ej subdivisions or elements); source [phy5].

Finite Differences Method6.3.1.2

Basically, as [phy5] tells, this method is a simplification of the FEM by using a regular
spatial grid of elements. It’s easier than FEM (in implementation as long as in concep-
tualization), but it has two important and inherent drawbacks: approximate a model
boundary by a regular node mesh is difficult, and besides, the local approximations
used in FEM are not available here.

Due to that, a dynamic strategy is adopted, as said in [phy2], so the system will be
able to have two states: transitory and stationary, the last one referring to a minimum
energy state, understanding the energy gradient as the opposite of the force:

f = −∇E(x, y, z) =⇒
(
fx =

∂E

∂x
, fy =

∂E

∂y
, fz =

∂E

∂z

)
;

then, the dynamics of deformable models can be computed from the potential energy
stored in the eastically deformed body; and for its regularly spatial grids, the deforma-
tion energy is defined as weighted matrix norm of the difference between the metric
tensors of the deformed and the original model shapes.

Boundary Element Method6.3.1.3

Abbreviatted with BEM, this is also an interesting alternative to the standard FEM ap-
proach: while in FEM the computations are done on all the model’s volume —the inner
parts, indeed—, in the BEM the process is involving only the model’s surface.

This method yields in an extreme advantage: the three-dimensional volume compu-
tation problem is turned now onto a two-dimensional surface problem; however, there
are some too much important drawbacks for omitting them:

1. it works successfully only for homogeneic models —that is, models whose interior
is composed by a homogeneous material—;

2. topological changes are difficult to handle because only surface is computed;

Research on Generic Interactive Deformable 3D Models

6.3. Physical Simulation based on Lagrangian pov descriptions 65

Mass-Spring Systems6.3.1.4

Object of multiple research projects, these are the simplest and most intuitive of all
deformable models. The reason is based on its starting point: instead of generating a
space discretization from a PDE specification —such as in the previous methods—, here
the starting point is directly a discretized model. And this discretized model, as the
system name describes, this model simply consists of mass points connected together
by a network of massless springs.

At any instant time t, the system state is defined by a state vector for each mass point
pi, i = 1..n:

• position xi and velocity vi

• its force fi, computed due to (i) its spring connection with its neighbours, called
internal forces, and (ii) external forces like gravity, friction, and so on. Due to that,
the global sytem forces are

Fglobal = Finternal + Fexternal

1 function mass-springIteration(MassSpring MS,
2 TimeStep TS,
3 Set<Force> EF)
4 returns MassSpring
5 foreach Model M in MS do
6 M = applyExternalForces(M, EF);
7 M = applyMassSpringInternalForces(M);
8 M = doNumericalIntegrator(M, TS);
9 endforeach

10 return MS;
11 endfunction

PSEUDO code 6.3: Algorithm for mass-spring system deformation

Newton mechanics provide the solution.

To allow deformations, it will be assumed that the springs that connect mass points
together are elastic, so the internal forces derived from this spring elasticity tend to
maintain a fixed distance —configured initially as the starting, or relax, distance— be-
tween the connected particles, so when a deformation is applied, the internal forces try
to avoid this deformation.

So, the real system deformation is lead by Newton mechanics, concretely the New-
ton’s second law, like a system composed by a single particle —see the first section of this
chapter for more information—. It’s really coherent because the mass-spring system is
considered a n-set of single particle systems, with constraints in terms of connection
with other particles.

Hence, for each particle there will be a Newton’s second law ODE formula, according
to [phy2, section 7.1]

P̈i =
F

mi
=⇒

(
ẋ
v

)
=
(

v
F/mi

)
;

Master Thesis in Computer Graphics by Marc Musquera Moreno

66 Chapter 6. Physically-Based Deformations

Architecture of a mass-spring system.

Tipycally, a mass-spring system is configured such that the mass points are regularly
spaced in a lattice, connected together along the twelve edges of each hexahedron by
structural springs. Additionally, each cell —that means, empty space between eight mass
points comprising a perfect cube; in other words, a kind of voxel— masses on opposite
corners are also connected together by shear springs.

Figure 6.10: A typical mass-spring system three-dimensional representation; source [phy5].

Longitudinal and shear force formulation according to Newton mechanics.

The springs are commonly modeled with linearly elastic behaviour; therefore, the
acting force on a mass point i generated by a spring connection with another mass point
j is the following:

fi = ks
(
|xij | − lij

)
· xij
|xij |

, fj = −fi

where

• xij is the distance difference between the mass points i and j —(xj − xi)—,

• |xij | is the euclidean distance in relation to the mass point positions xi and xj ,

• ks is the spring’s stiffness —that is, the elasticity coefficient, arbitrary—,

• and lij is the initially fixed spring length.

Additionally, physical bodies are never perfectly elastic, they dissipate deformation
energy due to the damping effect; so, a dampening coefficient is used over the differ-
ence between the implied mass point velocities to give a viscoelastic behaviour to the
deformation:

fi = kd
(
vj − vi

)
, fj = −fi

Figure 6.11: Effect of viscosity on a physically-based elastic deformations. Each figure has ten times higher
viscosity than its left neighbour; source [phyC].

Research on Generic Interactive Deformable 3D Models

6.3. Physical Simulation based on Lagrangian pov descriptions 67

Clothing simulation.

One of the most interesting research contributions about mass-spring particle systems
is the cloth simulation. Interestingly, Xavier Provot introduced in 1995 on [phy7] a 2D

physically-based model for animating cloth objects directly derived from the elasti-
cally deformable mass-spring model, and due to the unrealistic behaviour when a small
region is victim of a huge number of high stresses, his method is also inspired on dy-
namic inverse procedures.

While a great amount of proposals, variants, improvements and algorithm acceler-
ations have been featured since the Provot approach, they won’t be discussed nor ex-
plained. For more information, be referred directly to [phy9], a good survey on cloth
simulation by Yongjoon Lee.

Basically, the Provot cloth model is based on a regular 2D grid of mass points, each
one connected with its neighbours with elastic springs; that is, a 2D mass-spring model,
and even maintaining the same Newton-mechanics-based internal force. Additionally,
he adds, apart from the longitudinal internal force activation, here called stretching, two
more forces: shear and bending, that can be seen in the next figure in a self-explanatory
interaction scheme with graphical reaction.

(a) Cloth internal forces’ interaction
scheme; source [phy6]

(b) Clopth internal forces’ graphical reaction (the two left images
are the two ‘stretching’ movements); source [phy8]

Figure 6.12: Here’s the scheme of the three different internal forces for the 2D cloth mass-spring simulation
model, including the connection affecting and a detailed visualization of the different force effects.

So, by executing the mass-spring generic iterative deformation animation, some cloth
pieces can be deformed by applying external forces and fixing some mass points, as
features the next figure:

Figure 6.13: A cloth piece with four different hanging —relaxing— postures after a real-time simulation
steps by shaking the cloth and sliding it over obstacles before allowing it to rest; source [phyD].

Master Thesis in Computer Graphics by Marc Musquera Moreno

68 Chapter 6. Physically-Based Deformations

Mesh Free Methods6.3.2

What are Mesh Free Methods6.3.2.1

The Mesh Free Methods enter in clear contrast with the previous Mesh Based Meth-
ods; while all the Mesh Based ones yield over a explicit connectivity and a surface
boundary, the Mesh Free are more similar to point-based animation. Indeed, the point-
based physically-based animation is found here —see the first section of the previous
chapter for a point-based geometric animation explanation—.

In this subsection a rough explanation of some of the most famous and commonly
used Mesh Free Methods will be able to be found; however, if more detail is desired, or
due to bibliographical references, please read the survey at [phy5].

Smoothed Particle Hydrodynamics —SPH—6.3.2.2

Abbreviated with the SPH letters, this is a technique where discrete and smoothed
particles are used to calculate approximate values of needed physical quantities and
their spatial derivatives. In essence, a function A is, as said in [phy5], is interpolated at a
position x ∈ R3 from its neighbors by using a summation interpolant:

A(x) =
∑
j

mj ·
(
A(xj)
ρj

)
·W (r, h),

where the interpolation parameters are:

• mj and ρj are the particle pj ’s mass and density respectively;

• W (r, h) is a smoothing kernel with the following properties —or restrictions—:∫
W (r, h)dr = 1, lim

h→0
W (x, h) = δ(x),

being r = |x− xj | and δ(x) the Dirac function.

A finite differences methodology, or even a node grid, is not necessary. Indeed, this
method is based on assigning an initial density to each particle, and then, the conti-
nuity equation —mass conservation— is then used for computing the density variation
through the timeline:

ρ̇i = −ρ∇vi,

where∇vi is called divergence of particle i’s velocity, and can be approximated to

∇vi ≈
1
ρi

∑
j 6=i

mj(vj − vi) · ∇W (r, h);

now the equations of motion can be solved by deriving forces, after finding the relation
between the density variation and the resulting internal force. Here’s an example of SPH

applied to an elastic solid melting to a fluid.

Research on Generic Interactive Deformable 3D Models

6.3. Physical Simulation based on Lagrangian pov descriptions 69

Figure 6.14: Interface tension force SPH-based simulation between fluids of different (i) polarity, (ii) tem-
perature diffusion and (iii) buoyancy; source [phy5].

Meshless Deformations based on Shape matching6.3.2.3

Proposed by Müller et al in 2005, this is a meshless method to animate deformable
objects in an iterative algorithm such that, at every time step, the original pointset con-
figuration is fitted to the actual point cloud using shape matching techniques for point
clouds with correspondence.

The nodes of a volumetric mesh are treated as mass points and are animated as a
simple particle system with no connectivity —only the shape matching and point cor-
respondence techniques—. This is a very suitable method for original shape recovering
after a heavy deformation.

Figure 6.15: Stable original shape recovering after a —literally— rigid and heavy deformation; [phy5].

The Hybrid Approaches6.3.3

Overview of the hybrid simulation approaches6.3.3.1

In the previous chapter, deformation algorithms based on geometric transformations
have been treated, instead of physically-accomplishing laws. However, there are some
approaches that are really joining these two deformation methodologies: by using a
bridge layer, a 3D is animated with geometric and physically-based deformation sim-
ulations. Thus, in this section a few methods will be featured and explained —there have
been another proposals in the recent years but they will be omitted—.

Pump it Up6.3.3.2

Proposed by Chen and Zeltzer, it’s a hybrid approach focused on tissue deformation:

• a finite element method —FEM— analysis is performed on a prismatic bounding
box embedding the muscle —or generic 3D object indeed—;

• the FEM resulting deformation is mapped onto the object surface mesh following a
Free-Form Deformation —FFD— principle.

Master Thesis in Computer Graphics by Marc Musquera Moreno

70 Chapter 6. Physically-Based Deformations

The object will be assumed to be composed by an homogeneous, incomprenssible,
linear isotropic material, so the contraction force reaction is simulated by applying bio-
mechanically-based processes on the mesh. The only problem with this method is that
is too expensive to be considered for interactive applications.

(a) Schematic hybrid model based on FEM
mesh and FFD transformation; [phyE]

(b) Muscle contraction example (relaxed in left figure, shorten in
right one); source [phyE]

Figure 6.16: The Chen and Zeltzer finite element mesh and contraction approach.

Mass-Spring with Volume Conservation6.3.3.3

Promayon and Baconnier features a previous proposal by themselves in [phyF, section
1.4] about the volume conservation constraint on physically-based deformations. The
control of the volume is necessary in order to simulate the incompressibility of 3D ob-
jects —like some human organs— as well as to control the volume variation of other
scene objects, everything in run-time.

The main advantage of this proposed method is that the volume can be preserved
constant during deformation in real-time without using an iterative process, in con-
trast to almost all other Lagrangian approaches.

So, the idea behind this method is to consider a 3D object composed by a triangular
mesh with n points p1, . . . , pn, that will be used as a particle system. Let:

• V0 the initial volume, also called the relaxing volume;

• and V (p1, . . . , pn) a volume function that describes the actual volume parameter-
ized by the particle system positions;

If, in a deformation step, the volume is deformed, this method is able to find the
particle-respective correct displacements to maintain the correct volume in the current
p1, . . . , pn system positioning, by solving the following equation system:

p1corrected
= p1 + λ

(
∂V (p1, . . . , pn)

∂p1

)
...

pncorrected
= p1 + λ

(
∂V (p1, . . . , pn)

∂pn

)
V (p1, . . . , pn) = V0

Research on Generic Interactive Deformable 3D Models

6.4. Physical Simulation based on Eulerian pov descriptions 71

Physical Simulation based on Eulerian POV descriptions6.4

Overview6.4.1

This section, as mentioned before, will not be an exhaustive reference for Eulerian
techniques; nevertheless, this simulation descriptions deserves a special mention be-
cause it’s a different point of view, and it is really being used for physically-based an-
imation.

The main drawback in relation to the Lagrangian methodologies is that the bound-
aries of the object are not being explicitly defined because the point set is stationary, so
it can be understood as a heavy world of voxels. But, this kind of representation makes
the Eulerian approach ideal for simulating fluids, since a fluid doesn’t have explicit
boundaries.

Figure 6.17: A silver block catapulting some wooden blocks into an oncoming ‘wall’ of water; source
[phy5].

Fluid Simulation6.4.2

The Navier-Stokes equations for fluids6.4.2.1

The Eulerian approach for simulating fluids —in CG— was featured and become pop-
ular due to the Foster and Metaxas paper series between 1996 and 1997 —see [phy5, sec-
tion 6] for more bibliographical references—. Their proposal solves the Navier-Stokes
fluid equations on a regular voxel grid and uses finite difference formulation for all the
equations in a single step.

So, as a reminder, there are two Navier-Stokes equations, representing, respectively,
the mass conservation and the incomprensible fluid momentum:{

(eq1) → ∇u = 0

(eq2) → ut = −(u · ∇)u + ∇(vu) − ∇p+ f ;

where the several variables are the following concepts:

• ut is the time-derivative vector field for the fluid velocity;

• p is the scalar pressure —assumed a constant density, implicitly absorbed into the
pressure term for simplicity—;

• f is the body force vector field per mass unit;

Master Thesis in Computer Graphics by Marc Musquera Moreno

72 Chapter 6. Physically-Based Deformations

then, in this Eulerian formulation the results are stored in a grid of cells —similar to
a grid of voxels—. It’s important to be noticed that the position x is not computed nor
stored, since the grid positions remain fixed.

The yielding idea of display and computation6.4.2.2

Based on Foster and Metaxas approaches, a liquid is displayed as a height field, or in
other words, a massless particle set.

These massless particles are quite different from the material coordinate particles
from the Lagrangian simulation because of the path tracking: here, the particles are pas-
sively moved into the fluid’s velocity field, and their velocity is interpolated from the
grid33.

A small summary of variants and proposals6.4.2.3

It has been said that the Eulerian approach is used in fluid simulation. It’s true, but
there’s a commonly used analogy with some non-fluid materials: the multi-particle ma-
terials, like sand, smoke or even viscoelastic materials.

Due to this, some variants and proposals have been proposed in the recent years;
a little overview of some of them is given now —for a more detailed explanation and
bibliographical references, please go to [phy5, section 6]—:

• smoke is simulated by Foster and Metaxas by defining a temperature field on the
grid, and using that temperature for defining a floating thermal nature and using
it, the turbulence motion is generated; Stam, on the other hand, defines smoke fo-
cusing their approach in a grid subdivision and defining a scalar density field that
can be used by process quantities of smoke within the same environment —grid—.

• Zhu and Briudson’s approach takes sand modeled as a fluid by using Lagrangian
simulation for moving the particles and Eulerian simulation for interpolating ve-
locities.

Figure 6.18: Sand-based bunny model deformation; source [phy5].

33 As a vast alternative explanation, and not-much-exact overview but more clear, the moving execution is
done by a stationary cell swapping between massless particles, or between massless particles and empty cells.

Research on Generic Interactive Deformable 3D Models

6.4. Physical Simulation based on Eulerian pov descriptions 73

• Goktekin et al generates viscoelastic materials —materials that have both solid and
liquid properties at the same time, which behave in a similar way to the honey (but
not exactly)— by adding elastic terms to the basic Navier-Stokes equations.

• Suárez and Susin developed in [phyB] —a reference is needed because this approach
has not been included [phy5]— another hybrid development for fluid simulation
composed by two layers: an Eulerian-based underlayer and a Lagrangian-based
surface layer for gigantic fluids where the more complex phenomena occur on the
surface. These two layers are based, respectively, on the MAC —Marker and Cell—
method, not explained here, and the Lagrangian SPH —Smoothed Particles Hydrody-
namic—, in more detail on section on page 68.

Figure 6.19: A liquid drop falling into a liquid pool. In the six-figure frameset can be clearly noticed
the three layers of the system: the Lagrangian layer (blue), the bridge connection layer (green) and the
Eulerian one (red); source [phyB] (edited).

Figure 6.20: Here is the velocity field for a certain instant time of the above frameset. Notice the commu-
nication between the Lagrangian and Eulerian layers by the connection stage; source [phyB].

Master Thesis in Computer Graphics by Marc Musquera Moreno

CHAPTER 7Topological Changes on
Polygonal Meshes

Mesh Cutting or Mesh Splitting7.1

Introduction7.1.1

As said in [cut1], there is an intimate connection between the Lagrangian simula-
tion model of a deformable solid and its discretization; because of that, research in La-
grangian simulation can be classified into three categories: (i) mesh generation —omitted
in this thesis—, (ii) mesh simulation —the main goal of this project indeed—, and finally,
(iii) mesh alteration while its simulation. This section is about this last category.

Figure 7.1: Frameset for a fractured spherical shell; source [cut1].

While some approaches have been features in the last decades —with the virtual en-
vironment appearance overcoat—, there are three main approaches for Lagrangian mesh
material splitting:

1. element cracking with connectivity preservation by arbitrary stretching;

2. mesh splitting along element boundaries;

3. continuuous remeshing based on the dissection zones;

and the first two can, a priori, produce visual artifacts on the volumetric mesh.

75

76 Chapter 7. Topological Changes on Polygonal Meshes

Motivations and applications7.1.2

Surgery simulation. Constraints and requirements7.1.2.1

As it can be decuded from section 2.1.3, on page 12, surgical simulation has become
a popular application in computer graphics researching, and within this field, one of
the most essential parts is the cutting of soft, deformable tissues. So, since volumetric
meshes —tetrahedrons or cubes— are a popular representation for volumetric objects,
methods to impose topological changes on this kind of meshes are required.

The mesh cutting, also called mesh splitting, is the computer graphics methodol-
ogy for cutting a volumetrical mesh, and it’s a non-trivial problem, because it involves
topological changes; due to that, two extremal constraints are required:

• the cutting process should not create badly shaped elements; if it’s not guaranteed,
numerical instabilities during deformation calculation will surely appear;

• well incision approximation; the user defined cut trajectory should be closely ap-
proximated for realistic appearance;

Almost proposed methods in the recent years are only concentrating on one of these
restrictions, because the two both are great research problems. Besides, most of the
methods are not real-time because of the complex model reconfiguration.

Another applications of mesh splitting7.1.2.2

Although the surgery is the main goal of this research field, many simulation prob-
lems include fractures as a critical component —and a fracture has to be considered, of
course, as a mesh topological change—:

• metallic structures’ simulation: in harsh environments they are particularly suscep-
tible to be corrosived or to be object of material failures;

• sculpting and modeling with computer aided design applications;

• tearing of textiles;

• . . .

Mesh Dissection: Some Proposals7.2

Spring Framework Tools: Cutting Interaction7.2.1

Bruyns and Montgomery, in [cut3], features an interesting approach focused on cutting
geometric primitives depending on intersected polygon or polihedral type. The final
result is a complete and generic rea-time framework for cutting and splitting single and
multiple surface objects as well as hybrid and volumetric meshes using virtual tools
with single and multiple cutting surfaces —from scalpels to scissors—. The complete
article is very versatile and offers real-time solutions for multiple cases; in this section it
will be only mentioned in a generical overview. For a more detailed explanation please
do a revision of [cut3].

Research on Generic Interactive Deformable 3D Models

7.2. Mesh Dissection: Some Proposals 77

The generic alrgorithm scheme7.2.1.1

Basically, this method is based on a state tags for every intersected primitive, as fol-
lows the scheme shown in the figure 7.2: the framework will only apply a cutting action
to those primitives no longer in collision.

1 while true do
2 foreach Primitive P in Model M do
3 if(isCollisionedByScalpel(P)) then
4 discern P.statetag
5 is NO_COLLISION so
6 P.statetag = START;
7 is START so
8 P.statetag = UPDATE;
9 enddiscern

10 else
11 if(P.statetag == UPDATE) then
12 P.statetag = MOVE;
13 endif
14 endif
15 endforeach
16 applyCuttingToMOVEPrimitives(M);
17 endwhile

PSEUDO code 7.1: Interactive real-time cutting algorithm scheme.

Figure 7.2: The interactive deformation with cutting capability algorithm scheme from [cut3].

Examples and applications7.2.1.2

This framework is capable of cutting so much tuypes of 3D models: from multi-
layered surface objects, as in the figure 7.3, simulating volume, until real volumetric
models using tetrahedron primitives.

Figure 7.3: Virtual Scalpel cutting a 2-layered surface, top (left) and side (right) views; source [cut3].

Master Thesis in Computer Graphics by Marc Musquera Moreno

78 Chapter 7. Topological Changes on Polygonal Meshes

Finite Element Methodologies7.2.2

At [cut7] and [cut8] there are offered two proposals based two both on a finite ele-
ment method—FEM— deformable model:

1. the first one is considering the cutting tool having a triangular shape, so a single
cutting range is delimited by a finite triangle. For more than one cuttings, the tri-
angle-model collisions are stored as a set, and they are computed —displaced— se-
quentially over a volumetric model composed by tetrahedrons, with no node repo-
sitioning;

Figure 7.4: The cutting plane sequence implementation over a cube model; notice the cutting sequence
from left to right; source [cut7] (edited).

2. the second one is, roughly speaking, about a Delaunay retriangulation process to
the new subdivided zones; but this approach is only working on surface or multi-
layered models;

Figure 7.5: A cut movement to a initially regularly triangulariez surface model with delaunay triangula-
tion on the cut primitives; source [cut8].

Discontinuous FFD approach7.2.3

In [cut5], Sela, Schein & Elber offers a proposal based on Discontinuous Free Form
Deformation —FFD, a special non-physical-based deformation model—, applied to an
added inner triangle set simulating the non-emptyness of the object; in other words, a
kind of strip that hides the empty object zone, better understood by watching the figure
7.6 on the next page:

Research on Generic Interactive Deformable 3D Models

7.2. Mesh Dissection: Some Proposals 79

(a) Cutting implementation scheme: retriangulation, triangle addition and DFFD applying.

(b) Facial cutting examples with this DFFD additional deformation model.

Figure 7.6: The interactive mesh cutting implemented by Sela, Schein & Elber in [cut5].

Hybrid Cutting7.2.4

[cut2] features a polygonal remeshing of the model, proposed by Steinemann et al,
where the cutting line is approximated by a sharped line that passes through the closer
nodes; then a node duplication is executed and every triangle is subdivided according
this sharped line;

Figure 7.7: The scheme for the primitive approximatting cutting process by the [cut2] method.

This method allows, besides, to define cutting curves by its stationary points —globally
thrpugh the model as long as only partially—, as can be seen in the following figure:

(a) Cutting parameterizing by global and par-
tial curves.

(b) Visual method example of partial cuts.

Figure 7.8: The interactive mesh cutting implemented by Steinemann et al in [cut2].

Master Thesis in Computer Graphics by Marc Musquera Moreno

80 Chapter 7. Topological Changes on Polygonal Meshes

Thiu method is called hybrid by the authors because it combines the topological
update by subdivision with adjustments of the existing topology, avoiding the creation
of small or degenerate tetrahedral elements.

Figure 7.9: A complete frameset example of a volumetric mesh cutting by the [cut2] method.

Off-line virtual node algorithm based on replicas7.2.5

There is in [cut1], by Molino et al, an off-line —it can result in hours of execution—
algorithm that allows so much complex processes like model cutting or even model
fragmentation to volumetric tetrahedral models, as it can be seen in the figures below:

Figure 7.10: High resolution cutting shell of the 3D volumetric complex armadillo model (380K tetra-
hedrons), by using the virtual node algorithm at [cut1].

Briefly, the method works with cutting, and more generically with 3D model mate-
rial fragmentation, as follows; it’s important to know that this method really alleviates
many shortcomings of traditional Lagrangian simulation techniques for meshes with
changing topology:

• the material within an element is fragmented by creating several replicas of the
element and assigning a portion of real material to each replica;

• this replica-comprising elements contain both real material and empty regions —
due to there are replicas that are empty space—. The missing material, so, is con-
tained in another copy (or copies) of this element;

Research on Generic Interactive Deformable 3D Models

7.2. Mesh Dissection: Some Proposals 81

• finally, the method provides the DOF34 required to simulate the partially or fully
fragmented material in a fashion consistent with the embedded geometry.

Due to this versatile, complex and generic algorithm focused on material fragmen-
tation, it can be possible to generate framesets like the following, with an exploding
animation of the armadillo volumetric model:

Figure 7.11: Tearing a plastically fragmentation deformation to the armadillo’s high resolution volu-
metric mesh; source [cut1].

34 Acronym of Degree of Freedom.

Master Thesis in Computer Graphics by Marc Musquera Moreno

PART III
Contributions

and
Results

CHAPTER 8External Used Libraries
and Employed Hardware

Mac Computers with MacOsX v10.5 “Leopard”8.1

In the development of this Master Thesis codes and software suite composed by the
two programs, MeshInspeQTor and ForceReaQTor, only Mac Computers have been used,
with the latest version of MacOsX operating system, the 10.5 one, called Leopard.

Here are the following specifications for the two used machines —only the most
importants in relation to this thesis focus—:

iMac MacBook Pro

CPU model 2.4GHz Intel Core 2 Duo 2.2GHz Intel Core 2 Duo
CPU RAM 2GB 667(Mhz) DDR2 SDRAM 2GB 667(Mhz) DDR2 SDRAM
Frontside bus freq. 800MHz bus 800MHz bus
Hard-disk capacity 500GB SATA@7200 rpm 160GB SATA@5400 rpm
Monitor Display Built-in 20-inch (viewable) MacBook Pro 15-inch new TFT

widescreen TFT active-matrix LED technology widescreen
liquid crystal display. display.

GPU model ATI Radeon HD 2600 PRO nVIDIA GeForce 8600M GT
GPU RAM 256MB GDDR3 SDRAM 128MB GDDR3 SDRAM

Table 8.1: Used Mac computers’ specification table.

85

86 Chapter 8. External Used Libraries and Employed Hardware

Used Developing Platforms8.2

QT4.4 for GUI design with C++ as Native Language8.2.1

The chosen programming language for all the software components is the structured-
programming language named C++ because of its modularity capabilities and the pos-
sibility of the generic programming:

• Every implemented algorithm and technique, from the mentioned in the past
chapter, has been isolated in an independent module, with the minimum rela-
tion between other modules (e.g., the mesh class is not directly related to the vox-
elization class, while they have generic data input and output for relating them
coherently).

• Structure inheritance and overloading operators have also been used in the code
design for a more clear and intuitive operations with the complex data transpar-
ently, for avoiding unchained errors.

On the MacOsX systems, there is a complete IDE35 called Xcode, that has been used
for deploying the two application components of this master thesis developed software
suite, MeshInspeQTor and ForceReaQTor.

(a) C++ logo. (b) Apple’s Xcode logo. (c) Trolltech’s QT4 logo.

Figure 8.1: Mainly used tools for the thesis’ software suite design and implementation.

Also, for Graphical User Interface —GUI— design and implementation, the Trolltech’s
cross-platform QT library36 (in its version 4.4) has been the chosen one, for its multiple
platform compatibilities (including MacOs X, Linux and Windows). QT is a complete
development framework for C++37 that features:

• non-standard C++ extensions that produces native C++ code in precompilation;

• obviously, all the needed GUI components and resources;

• thread management for parallel computing;

• other non-used and non-GUI features, like SQL database access, XML parsing or
NETWORK support, and others. . .

35 Acronym of Integrated Development Environment, defines the software capable of design, implement,
compile and execute applications. It normally consists of a source code editor, a compiler and/or interpreter,
build automation tools, and (usually) a debugger. Sometimes a version control system and various tools are
integrated to simplify the construction of a Graphical User Interface —GUI—.

36 http://trolltech.com/products/qt/.
37 Although there are existing bindings for other languages like C#, JAVA, Python, or PHP.

Research on Generic Interactive Deformable 3D Models

http://trolltech.com/products/qt/

8.2. Used Developing Platforms 87

Figure 8.2: The Trolltech’s QT4 versatile capabilities and framework diagram.

Matlab for testings8.2.2

Parallel to the C++ complex software suite design and implementation, for some graphic
techniques a Matlab previous testing application is developed, and its R2007a version
has been the used one.

Figure 8.3: The Mathworks’ Matlab mathematic environment logo.

Matlab38 is a powerful numerical computing environment with its own program-
ming language, the called m-code. Created by The MathWorks, Matlab features, apart
from other awesome characteristics:

• easy matrix manipulation39 and data structs —no pointers!— management;

• plotting of functions and data;

• an optional toolbox interface with the Maple symbolic engine, allowing access to
computer algebra capabilities.

Thus, some voxelization methods, or even FFD technique, have been tested firstly on
a selfmade Matlab applications, because its versatile plotting capability permits an easy
data structure visualization and besides, potential math-programming errors like bad
array pass-throughs or bad designed mathematic operations are completely avoided.

38 http://www.mathworks.com/products/matlab/.
39 Really, Matlab is the acronym of Matrix Laboratory, and within it, the float matrixMm×n ∈ R2, i, j >

0 ∈ N is a native data type, in a clear difference with other languages like textscc++ where the native data
type is the scalar.

Master Thesis in Computer Graphics by Marc Musquera Moreno

http://www.mathworks.com/products/matlab/

88 Chapter 8. External Used Libraries and Employed Hardware

Research on Generic Interactive Deformable 3D Models

CHAPTER 9Computer Graphics Pro-
gramming

OPENGL as the primary graphics specification9.1

A Little Brief on Computer Graphics using OPENGL9.1.1

As it’s said in [gpu1], OPENGL, the acronym of Open Graphics Library, is a standard
specification developed in 1992 by Silicon Graphics Inc —SGI— and defines a cross-
language cross-platform API40 for producing 2D and 3D graphics. The mentioned in-
terface permits, by calling simple primitives and setting some parameters and configura-
tions, to draw complex three-dimensional scenes.

As a simple API overview, it’s said that OPENGL is a specification; that implies that
it’s actually a document that describes the must-fulfilled functions and procedures.
From this spec, hardware vendors41 have to create spec-compatible implementations.

Figure 9.1: The OPENGL logo by Silicon Graphics Inc.

Hence, there exists so much vendor-supplied implementations of OpenGL —making
use of graphics acceleration hardware for achieving a good specification compatibility—
for multiple systems: MacOs X, Windows, Linux, many Unix platforms, and so on.

40 Acronym of Application Programming Interface, is a set of declarations of procedures that external soft-
ware, like operating systems, libraries or service provides to support requests made by computer programs.

41 The greatest vendors are at this moment nVidia and ATI, with no doubt, since it’s the GPU hardware
instead of the CPU the executing chip.

89

90 Chapter 9. Computer Graphics Programming

API overview: The OPENGL graphical computing steps9.1.2

Initial considerations; introduction9.1.2.1

This section is not pretending to be a complete tutorial for OPENGL computer graph-
ics programming; the aim of the following explanations is to give a brief of the compu-
tation style of this API, because on the next sections, this knowledgments will be so
necessary. An important thing, however, is to notice that all the OPENGL methods al-
ways begin with the gl prefix.

The classical rendering action with OPENGL hasn’t any complication, but if there’s
an animation wanted to be shown, now appears the problem: this process requires a
smooth sequence of final animation frames42, and due to this, the double buffering
technique is available. The drawing occurs on the background buffer, and once the scene
is completed, it’s brought to the front —displayed on the monitor display—.

1 { this process is done forever }
2 while true do
3 resetBackgroundBuffers();
4 setCameraViewing();
5 { now the user point of view of the scene is
6 set: ‘camera’ position and orientation, and
7 vision perspective configuration }
8 foreach Object O in Scene S do
9 { animation + rendering steps }

10 animateObject(S.O);
11 drawObject(S.O);
12 endforeach;
13 swapBuffers();
14 { by swapping buffers, the scene displaying
15 is automatic }
16 endwhile

PSEUDO code 9.1: OPENGL animation scene drawing steps.

This thesis is about the line 10, animateObject(), so this line is eclipsed by all
this document. Also the first and last commands, resetBackgroundBuffers() and
swapBuffers() will be omitted. This section, hence, will treat accurately the other
two commands —lines 4 and 11 respectively—: setCameraViewing() and the own
drawing process drawObject(Object O), based on [gpuE] and [gpuF] tecahings.

Drawing primitives9.1.2.2

For the drawing process, OPENGL needs to specify where start and where the prim-
itive generation commands finish. Since the geometric primitives, whatever they are,
are com posed by vertices, this will be the geometric primitive coherent definition; so,
any primitive will be a sequence of 3D or 2D vertices. Additionally, there are some dif-
ferent primitive styles, as the figure 9.2 shows. The constant must be declarated at the
primitive drawing starting command.

42 A final frame is a totally generated and rendered image; e.g., a sequence of two triangles is rendered
by painting each triangle sequentially, and no animator wants an animation showing one and two triangles
intermitently.

Research on Generic Interactive Deformable 3D Models

9.1. OpenGL as the primary graphics specification 91

1 glBegin(GL_PRIMITIVE_STYLE);
2 glVertex3f([...]); // v0
3 glVertex3f([...]); // v1
4 glVertex3f([...]); // v2
5 [...]
6 glVertex3f([...]); // vN
7 glEnd();

CPP code 9.2: Drawing primitives with OPENGL.

In this generic code for OPENGL primitive drawing, the glBegin() parameter, that
receives the name of GL PRIMITIVE STYLE can be one of the following constants:

Figure 9.2: The OPENGL primtive drawing styles; source [gpuE].

Besides, there’s the possibility of integrating vertex color definition with a vertex-
coords previous command that specifies the RGB color codification —RGBα if transparen-
cies are enabled—. OPENGL lighting effects are not telled here, but the primitive col-
orizing due to the vertex colors is done by a code like the following:

1 glBegin(GL_TRIANGLES);
2 glColor4f(0.0, 0.0, 1.0, 1.0);
3 glVertex3f(0.0, 0.0, 0.0);
4 glColor4f(1.0, 0.0, 0.0, 1.0);
5 glVertex3f(3.0, 0.0, 0.0);
6 glColor4f(0.0, 0.0, 1.0, 1.0);
7 glVertex3f(1.5, 3.0, 0.0);
8 glEnd();

CPP code 9.3: A colorized triangle drawn with OPENGL.

Master Thesis in Computer Graphics by Marc Musquera Moreno

92 Chapter 9. Computer Graphics Programming

Figure 9.3: The resulting rendered triangle from CPP code 2.3.

It’s not the only way to specificy primitives; there’s also the vertex buffers and the
display lists, but they won’t be detailed here.

Vertex transformations; the matrix stack9.1.2.3

The most simple animation of geometric primitives on OPENGL is based on geomet-
ric 3D transformations, concretely three of them: translation, rotation and scaling. Let’s
view on the following two figures the OPENGL command correspondence with its geo-
metric matrix transformation:

T =

0BB@
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

1CCA

(a) The ‘translation’ glTranslatef(x, y, z).

S =

0BB@
x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

1CCA

(b) The ’scaling’ glScalef(x, y, z).

R(1,0,0) =

0BB@
1 0 0 0
0 cos(angle) − sin(angle) 0
0 sin(angle) cos(angle) 0
0 0 0 1

1CCA
R(0,1,0) =

0BB@
cos(angle) 0 sin(angle) 0

0 1 0 0
− sin(angle) 0 cos(angle) 0

0 0 0 1

1CCA
R(0,0,1) =

0BB@
cos(angle) − sin(angle) 0 0
sin(angle) cos(angle) 0 0

0 0 1 0
0 0 0 1

1CCA
(c) The three Euler ‘rotation’ matrices, by glRotatef(angle, x, y, z).

Figure 9.4: A scheme of the three basic geometric transformations: ‘translation’, ‘scaling’ and ‘rotation’,
with the implicit correspondence between the transformation matrix and the OPENGL command.

Research on Generic Interactive Deformable 3D Models

9.1. OpenGL as the primary graphics specification 93

All of these transformations are able to be concatenated simply by calling the de-
sired transformations subsequently, and, as it passes when you define the order of ma-
trix transformation product items, the order of applied transformations is also impor-
tant in OPENGL:

Figure 9.5: The order of the multiplying applied geometric transformations is important: it’s not the same
a translation applied to a roation (left) that a rotation applied to a rotation (right); source [gpuE].

Because of this, OPENGL features the matrix stack to avoid conflicts between set of
transformation sets; e.g., you want two objects translated by the same transformation by
rotated by different rotations. Let’s view the following code, and the resulting scheme:

1 glPushMatrix();
2 glTranslatef(10.0, 10.0, 0.0);
3 drawRedTriangle();
4 glPushMatrix();
5 glTranslatef(20.0, 10.0, 0.0);
6 /* this (20,10,0) translation is
7 added to the previous (10,10,0) */
8 drawBlueTriangle();
9 glPopMatrix();

10 glPopMatrix();
11 /* no translation is applied to this triangle */
12 drawGreenTriangle();

CPP code 9.4: An example of OPENGL matrix stack usage.

Figure 9.6: The resulting scheme of the matrix stack CPP code 2.4; source [gpuE].

Master Thesis in Computer Graphics by Marc Musquera Moreno

94 Chapter 9. Computer Graphics Programming

Camera positioning and configuration; the viewport9.1.2.4

In OPENGL, sa it’s said on [gpuF], there are two important coordinate systems to be
counted, due to their own importance:

1. the first is the world coordinate system, also called object coordinate system; this
is used for defining the drawn scene —therefore, the coordinates used with the
glVertex3f method—.

2. and the second one is the eye coordinate system; that means, the scene with a local
coordinate system where the origin is the center of the camera —in other words,
the scene point-of-view origin—.

Figure 9.7: The coordinate system transformations from scene specification to scene screen displaying; this
figure is taken directly from [gpuF].

The Volume Viewing.

Is in the eye system where the volume viewing is defined. Briefly, a volume viewing
is a box that contains the scene that will be displayed, and is defined in eye coordinates
due to the box’s comprising-planes are specified from the scene point-of-view. And it’s
important to remark again that any object outside this box will be drawn but not shown43.

Additionally, OPENGL allows the programmer to specify two kinds of volume view-
ings projections —or scene-containing boxes—:

• a ortographic —or axonometric, or parallel— projection uses a parallelepiped for
a constant-area volume box;

• a perspective projection will be defined with a frustum, or truncated pyramid44;

43 If there’s only an object portion within the volume viewing, only that potion will be displayed; the rest
will be clipped —see the second and third blocks on the figure 9.7—.

44 This is an interestig approach for simulating the real photocamera viewing, including a little 3D space
deformation due to the non-parallelepipedic nature of the volume viewing.

Research on Generic Interactive Deformable 3D Models

9.1. OpenGL as the primary graphics specification 95

Additionally, the camera —or the eye— must be positioned and oriented, so it must
be specified by three parameters ∈ R3:

1. its position, where the eye will be placed;

2. its focusing direction, tipically is equivalent to the geometric center of the volume
viewing;

3. its view up vector —VUV—, or in other words, the vector to be considered the up
direction45;

(a) Cam settings with gluLookAt(eyeX,
eyeY, eyeZ, atX, atY, atZ, upX,
upY, upZ).

(b) Ortographic projection with glOrtgho(
left, right, bottom, top, near,
far).

(c) Perspective projection with glFrustum(
left, right, bottom, top, near,
far).

(d) Perspective —alt.— projection with
gluPerspective(fovy, aspect,
near, far).

Figure 9.8: The two OPENGL available volume viewing specification and the camera positioning and
orientation methods; figure sources from [gpuF].

The Viewport.

So, there’s also a last important technical part to be counted, the viewport, or the
display area where the scene will be drawed from the specified camera. By default, the
viewport is placed over all the display area, but it’s possible to define more than one
viewport on the same display —like in a 3D modeling software—. By doing this, there is
the following OPENGL method:

glViewPort(lowerLeftCornerX, lowerLeftCornerY,
viewportWidthInPixels, viewportHeightInPixels).

45 For a more clear explanation, if the VUV is the (0, 1, 0) vector the viewing is equivalent to our standing
vision of the world —since on computer graphics, the ~ direction is floor-perpendicular due to a conven-
tion of understanding the third coordinate as a extension of the classical 2D coordinate system—, but if it’s
(−1, 0, 0), the vision will be similar to see a vertical photograph in an horizontal orientation.

Master Thesis in Computer Graphics by Marc Musquera Moreno

96 Chapter 9. Computer Graphics Programming

The Standard Graphics Pipeline9.1.3

In a more detailed vision, OPENGL is considered a state machine46, and as it’s said
in [gpu1], serves two main purposes:

1. to gather in a single API the complexities of interfacing multiple (and different)
graphics accelerator hardwares;

2. to hide the differing capabilities of graphics hardware by specifiyinc a standard
(using software emulation if needed);

The basic operation of OPENGL’s state machine, that receives the name of Standard
Graphics Pipeline, is to receive primitives —points, lines and polygons— and to con-
vert them into pixels shown in the screen display, in the following way —without en-
tering in precise details—:

Figure 9.9: Overview of OPENGL method for display, on screen displays, geometric primitives —in the
figure they have been markes as triangles due to the most common case— as pixels; source [gpu3].

Nevertheless, there are a lot of parameters for setting the receivement of the prim-
itives, or configuring how this pipeline processes these primitives. Each stage of the
pipeline performed a fixed function and is configurable, and at the next page’s more
detailed pipeline scheme this is better explained, supported by a little brief, inspired
by [gpu5], of the most important —ordered by number— pipeline steps; the rest of the
steps are omitted because their detailed description is not necessary:

(1) the geometric primitives are send from CPU to OPENGL state machine47;

(2) the vertex processing stage, also called T&L —acronym of Transformation & Light-
ing—, because now is when each primitive vertex is treated independetly for com-
puting its final 3D position due to the possible modelling and projetion matrices,
and its correct illumination is also applied here;

46 That is, a model of behavior composed of a finite number of states, transitions between those states, and
actions. It’s also called Finite State Machine —FSM—.

47 Nowadays, every graphics accelerator hardware —Graphics Processor Unit, or GPU— contains the
OPENGL standard graphics pipeline implemented; so, since the pipeline is hardware-executed, this step
is equivalent to send the primitives from CPU to GPU.

Research on Generic Interactive Deformable 3D Models

9.1. OpenGL as the primary graphics specification 97

Figure 9.10: Detailed scheme of the OPENGL’s Standard Graphics Pipeline; source [gpu4].

(3) in primitive assembly the vertex data is collected into complete primitives;

(4) the clipping stage, when the visible part of the primitive is decided in relation to
the scene viewing volume;

(5) the rasterization stage manages decompose primitives into smaller units corre-
sponding to pixels in the destination frame buffer —data buffer that contains the
final screen display drawing—.

(8) per-fragment processing, where fragments are submitted to a set of fairly simple
test operations to decide which fragment —potential pixel— stays as pixel in the
frame buffer48;

(14) here is the rasterization process of the final screen pixel stream, read from applica-
tion memory; only a few steps more and the data will be shown on ths screen49.

The OPENGL Extensions. The GLEW Library9.1.4

The OPENGL spec allows individual vendors to provide additional functionalities
for relaxing restrictions or adding new capabilities to OPENGL. These functionalities
are known as extensions, and each vendor has an alphabetic abbreviation used for nam-
ing the necessary new functions and constants (e.g., NV for nVidia or ATI for ATI).

However, if more than one vendor implements the same extension, its abbreviation
is transformed to EXT —generic extension abbreviation—, and besides, if the OPENGL Ar-
chitecture Review Board accepts the extension for being a accepted extension in OPENGL
standard spec, the abbreviation will be ARB.

48 Obviously, passing from 3D space to 2D projection, there will be, a priori, more than one candidate
fragment to place the same frame buffer pixel.

49 However, only a frame it’s shown on the screen; for displaying a moving image, this process must be
executed a lot of times per second —getting the Frames Per Second FPS measure—, with little changes for each
frame to get a smooth animation.

Master Thesis in Computer Graphics by Marc Musquera Moreno

98 Chapter 9. Computer Graphics Programming

So, since each vendor is different, and even there are multiple graphics accelerator
models for each vendor, a availability test is required before using an extension; each
system has its own availability mechanism, but cross- platform external libraries like
GLEW50 —acronym of GL Extension Wrapper— simplify the process.

The programmable graphics technology9.2

The Shading Languages9.2.1

From the year 2002, there appeared some proposals for a new kind of programming
languages: the real-time shading languages; that is, a language used to determine the
final surface properties of an object or image, or more technically said, a language that
provides code overlapped within graphics standard pipeline51.

From the three proposals, the nVidia’s CG —acronym of C for Graphics—, the Mi-
crosoft’s HLSL —DirectX High-Level Shading Language—, and the OPENGL ARB’s GLSL

—OpenGL Shading Language—, the last is the chosen one, due to:

• appeared in 2003, it’s part of the OPENGL 2.0 API, so it’s independent of Microsoft’s
DirectX52 specification;

• it’s very similar to nVidia’s CG in syntax, though different in semantics;

• it’s included to an application by including the extensions GL ARB vertex shader
and GL ARB fragment shader.

A New Programming Paradigm9.2.2

The GPU’s Vertex and Fragment Processors9.2.2.1

For achieving this new programming paradigm focused on specific graphics data
management, the hardware vendors had to build specific GPU architecture that were
supporting that. Thus, the vertex processors and the fragment processors were born,
and there are multiple processors for each type within a single GPU:

Figure 9.11: The GPU’s vertex and fragment processor managment tasks; source [gpu3].

50 http://glew.sourceforge.net/
51 The name of shading language is received because the initial aim of this new programming paradigm

was the real-time shade and shadow generation.
52 It’s a collection of APIs for handling miultimedia tasks on Microsoft platforms. Direct3D is the concrete

API that can be compared to OPENGL with respect to concepts and aims.

Research on Generic Interactive Deformable 3D Models

http://glew.sourceforge.net/

9.2. The programmable graphics technology 99

(1) the vertex processor is the responsible of computing the final 3D vertex position,
with the peculiarity of knowing nothing about other vertices —thus, this processor
is found before the primitive assembler—;

(2) on the other side, the fragment processor has the mission of defining each fragment
—potential pixel— final color, from illumination, material and texture properties;

obviously, there’s no direct vertex-fragment computing proportion, because a single tri-
angle —3 vertices— can be placed over a lot of fragments. Nevertheless, a vertex shader
can pass data to all its derived fragment shaders by the varying variables.

The New Programmable Graphics Pipeline9.2.2.2

So, the old per-vertex operations and fragment processing stages, from the standard
graphics pipeline —figure 9.10—, now have been replaced by the vertex processor and
fragmenrt processors respectively, as can be seen in the next figure:

Figure 9.12: Detailed scheme of the Programmable Graphics Pipeline; source [gpu4].

The GLSL shader programs —vertex and fragment ones— loading process is possible
by a special OPENGL functions for sending to GPU:

• the shader codes to the adient processors;

• the shader input data structures, common for every shader execution, called uni-
form variables;

however, as it’s done for the OPENGL section, there won’t be an API tutorial, but an
overview of these kind of technologies.

Geometry Shaders9.2.2.3

In the last year, a new kind of GPU processor unit has been introduced with Shader
Model 4.0 of Microsoft DirectX 10 specification: the geometry processor, able to execute
the new geometry shaders. Although it’s really a DirectX approach, OPENGL is able to
use it by the extension, though it will likely be incorporated into the upcoming version
3.0 standard spec.

Master Thesis in Computer Graphics by Marc Musquera Moreno

100 Chapter 9. Computer Graphics Programming

Geometry shaders are executed after vertex shaders, and their input is a whole
primitive —that is, vertex-relation information, and possibily adjacency information too—
. These shaders can emit zero or more primitives as the output, and they will be rasterized
—ergo, these generated primitive fragments will be passed to the pixel shader—.

Nevertheless, this thesis has been focused into the Shader Model 3.0; hence, this kind
of shaders are not able to use, and only the vertex and fragment ones will be programmed
for determined tasks.

OPENGL 2.0 and GLSL9.2.3

Brief introduction to OPENGL 2.0 and GLSL9.2.3.1

As in OPENGL’s section 9.1.2, on 90, this won’t be a detailed tutorial for the GLSL

shading language in connection with the OPENGL specification 2.0; however, here it
can be encountered a brief vision of the basic philosophy about shader programming.

With entering to no deep details of OPENGL code for invoquing a GLSL program
loading to the GPU, it’s important that any GLSL SHADER must

• to write the gl Position variable if it’s a vertex shader;

• to write the gl FragColor variable —or to return by a discard command if the
actual fragment has to be rejected— if it’s a fragment shader;

additionally, the steps for executing a shader program —composed by a vertex shader
and a fragment shader— are the following, and they have to be done by any OPENGL
application that wants to use GPU programming:

1 { this process is executed once, at the
2 application beginning }
3 ShaderCode vs = loadShader(VERTSHADER_GLSLCODE);
4 ShaderCode fs = loadShader(FRAGSHADER_GLSLCODE);
5 ShaderProg glslprog = createGLSLProgram(vs, fs);
6 [...]
7 { the glsl program must be selected for being
8 executed before the scene drawing commands }
9 useGLSLProgram(glslprog);

10 setUniformParams(glslpros, Set<UniformParam>);
11 renderScene();

PSEUDO code 9.5: Steps for executing a GLSL shader program.

Data types and qualifiers9.2.3.2

The GLSL is a computer graphics programing language

• oriented to be executed on GPU;

• focused on performing geometric computing ;

due to this curious nature and also due to GPU’s architecture is vectorial, GLSL basic data
type is a R3 vector53 and 1D, 2D and 3D textures.

53 With 4-coord compatibibility because of possible geometric transformation sets applied to a vector or a
position.

Research on Generic Interactive Deformable 3D Models

9.2. The programmable graphics technology 101

Just like that, the next table shows the basic data types allowed by glsl —it also ac-
cepts structs, but as the specification format is analogous to the ANSI C one, they will be
ommitted here—:

Data Dimension
Format 1 2 3 4 2×2 3×3 4×4

int int ivec2 ivec3 ivec4
float float vec2 vec3 vec4 mat2 mat3 mat4
bool bool bvec2 bvec3 bvec4

Table 9.1: Basic vectorial data types on GLSL

Texture Dimension
Format N N×N N×N×N

normalized sampler1D sampler2D sampler3D
shadow sampler1DShadow sampler2DShadow

unnormalized sampler1DRect sampler2DRect

Table 9.2: Basic texture data types on GLSL

Besides, each vectorial data formats —plus the texture elements—, have indexed el-
ements: they are the two, three or four implicit elements; all of these four-index sets are
capable to index every data format, but due to the position, color and texture coordinate
convention, the coherent indexes are:

Convention Indexes

position/vector x y z w
color codification r g b a
texture coordinates s t p q

Table 9.3: Vectorial component indexes in relation to the data type conventions.

Additionally, the shader global variables can be defined with three different prefixes
that are determining their characteristics:

• uniform: vertex and fragment shader input data from OPENGL application —that
is, from CPU—; vertex set global read-only;

• attribute; the same as uniform but only for vertex shader; read-only;

• varying; fragment shader input data, interpolated from vertex shader54; read-only
for fragment shader, read-write for vertex shader;

• const; not really a kind of gobal variable, it specifies a shader-local compile-time
constant with a predetermined value;

54 Because, as a reminder, it has to be noticed that each vertex shader execution derives onto various
fragment shader processings.

Master Thesis in Computer Graphics by Marc Musquera Moreno

102 Chapter 9. Computer Graphics Programming

The most important implicit variables9.2.3.3

The OPENGL 2.0 constructs an automatic bridge with GLSL, and uses it for send-
ing some uniform and attribute automatically defined values when a shader program is
called for execution. The total number of uniform and attribute sent variables is huge and
involves a lot of graphical parameters and configurations. The most important of them
are typeset in the following tables, though all the variables can be found at [gpuG]:

Uniform Variables

mat4 gl ModelViewMatrix
mat4 gl ProjectionMatrix
mat4 gl ModelViewProjectionMatrix
mat4 gl NormalMatrix
float gl NormalScale

Table 9.4: Most important ‘uniform’ automatically shader input variables.

Attribute Variables

vec3 gl Vertex
vec3 gl Normal
vec4 gl Color
vec4 gl SecondaryColor
vec4 gl MultiTexCoord0..7

Table 9.5: Most important ‘attribute’ automatically shader input variables.

Varying Variables

vec4 gl FrontColor
vec4 gl TexCoord[]

Table 9.6: Most important ‘varying’ automatically shader input variables.

A shader example: the toon shading9.2.3.4

1 varying vec3 normal, lightDir;
2 void main()
3 {
4 vec3 vVertex = vec3(gl_ModelViewMatrix *
5 gl_Vertex);
6 lightDir = vec3(gl_LightSource[0].position.xyz -
7 vVertex);
8

9 lightDir = normalize(lightDir);
10 normal = gl_NormalMatrix * gl_Normal;
11 gl_Position = ftransform();
12 }

GLSL code 9.6: The ‘vertex shader’ of toon shading.

Research on Generic Interactive Deformable 3D Models

9.2. The programmable graphics technology 103

1 varying vec3 normal, lightDir;
2 void main()
3 {
4 float intensity;
5 vec4 color;
6 vec3 n = normalize(normal);
7

8 // intensity is the relativization of
9 // light w.r.t. the vertex normal

10 intensity = dot(lightDir, n);
11

12 // toon effect w.r.t. the intensity
13 if(intensity > 0.95)
14 color = vec4(1.0, 1.0, 1.0, 1.0);
15 else if(intensity > 0.5)
16 color = vec4(0.6, 0.6, 0.6, 1.0);
17 else if(intensity > 0.25)
18 color = vec4(0.3, 0.3, 0.3, 1.0);
19 else
20 color = vec4(0.2, 0.1, 0.1, 1.0);
21

22 gl_FragColor = color;
23 }

GLSL code 9.7: The ‘fragment shader’ of toon shading.

(a) The cow model illuminated by the GPU-Phong re-
alistic illumination model.

(b) The dyrtManArmTris model illuminated by
the GPU-Phong realistic illumination model.

(c) The GPU-implemented toon shading algorithm
over cow model.

(d) The GPU-implemented toon shading algorithm
over dyrtManArmTris model.

Figure 9.13: The effects of two shaders applied to two models: the upper figures show the graphical results
for a shader computing the Phong illumination model, and in the lower ones are featured the same models
with the toon shading shader over them. This has been possible by the shader addition to this thesis’
developed software MeshInspeQTor.

Master Thesis in Computer Graphics by Marc Musquera Moreno

104 Chapter 9. Computer Graphics Programming

GPGPU: The New Computing Paradigma9.3

The Programmable Graphics Pipeline, used for General Purpose Algorithms9.3.1

Although the vertex and fragment processors are built for executing only graphics-
oriented tasks, it’s possible to use these multi-processor capabilities offered by a GPU

for computing general tasks, in conjunction with an existent OPENGL extension called
Frabe Buffer Object —FBO—, able to be includes to an OPENGL graphics program by
the invocation of the GL EXT framebuffer object constant.

The Frame Buffer Object —FBO— Extension9.3.1.1

As it’s said on [gpu7], the FBO is an OPENGL extension that allows flexible off-screen
rendering, including rendering to a texture55. Thus, image filters and post processing
effects are able to be implemented for CPU algorithms as long as for GPU shaders.

The following code lines create a FRAMEBUFFER with previous usage of GLEW —see
section 9.1.4, on the page 97—, by a 2D texture binding and its association with the FBO:

1 unsigned int fbo, tex;
2

3 void setFBO()
4 {
5 glewInit();
6 if(!glewIsSupported(”GL EXT framebuf fe r ob ject ”))
7 {
8 std::cout << ” EXT f ramebuf f e r ob j ec t unsupported ”
9 << std::endl;

10 exit(-1);
11 }
12 // generate texture
13 glGenTextures(1, &tex);
14 glBindTexture(GL_TEXTURE_2D, tex);
15 glTexImage2D(GL_TEXTURE_2D, 0, innerFormat,
16 texSize, texSize, 0,
17 texFormat, GL_FLOAT, 0);
18 // create fbo and attach texture to it
19 glGenFramebuffersEXT(1, &fbo);
20 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
21 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
22 GL_COLOR_ATTACHMENT0_EXT,
23 GL_TEXTURE_2D, tex, 0);
24 }
25

26 void drawScene()
27 {
28 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
29 // primitive generation from now; if the normal
30 // rendering is wanted, please type the follow:
31 // glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
32 }

CPP code 9.8: Creation of a FRAMEBUFFER with a previous GLEW usage.

55 That means, the generated frame won’t appear onto screen display but stored into a CPU-read texture.

Research on Generic Interactive Deformable 3D Models

9.3. GPGPU: The New Computing Paradigma 105

General-Purpose Graphics Processor Unit —GPGPU—9.3.1.2

Due to the usability of this versatile extension, it’s possible to use theoretical tex-
tures as data matrix structures, accessible from the vertex and fragment shaders and
then, take advantage of the parallel computing capabilities of a GPU for using the graph-
ics unit as a little supercomputer.

Dominik Göddeke in his web [gpu8] offers three advanced GLSL tutorials for using
shader capabilities for executing general-purpose algorithms using the nVidia CG lan-
guage. His teachings, in a simple overview of [gpu9], are focusing on the general pur-
pose methods and algorithms by using GPU potence with the aid of the shaders. He
tells that there are three basical steps on performing that:

Textures as data arrays.

For a CPU, the native data layout is the 1D array, but for a GPU the native one is the 2D

one —but the available graphics memory is a layout size limit—. Besides, on the CPU we
define the array elements as array indices, but on the GPU they are texture coordinates56.
So, you must convert any ND-array to a 2D-array in this way: a N -length 1D array is
mapped into a texture of

√
N ×

√
N texels57 for single float values, or

√
N/4 ×

√
N/4

texels for RGBA formats, always assuming N as a power-of-two scalar value.

Shaders as Kernels.

The shaders have to be taken as kernels, so the vertex and fragment processors com-
pute general purpose algorithms to texture data in parallel within the GPU58;

One-to-one mapping from array index to texture coordinates.

The drawing process is equivalent to a parallel computing by using the FBO extension
and render-to-texture capabilities. Due to this, a similar code to the one shown on code
9.8 will be necessary. However, by doing this, this methodology must be preceeded by a
specific special projection that maps model-coordinate 3d space to 2D screen-display-
coordinate space by a 1 : 1 mapping between wished rendered pixels and accessed data
texels; a functional code would be like this:

1 void enableOneToOneMapping()
2 {
3 glMatrixMode(GL_PROJECTION);
4 glLoadIdentity();
5

6 gluOrtho2D(0.0, texSize, 0.0, texSise);
7 glMatrixMode(GL_MODELVIEW);
8 glLoadIdentity();
9 glViewport(0, 0, texSize, texSize);

10 }

CPP code 9.9: Creation of a FRAMEBUFFER with a previous GLEW usage.

56 And these coordinates are storing four-element tuples, referring the four color channels: red, green, blue,
alpha (RGBA)—.

57 A texel is a texture quantum unit; texel is an abbreviation form of texture element.
58 So, the contained data must be independent in relation to each other texture element.

Master Thesis in Computer Graphics by Marc Musquera Moreno

106 Chapter 9. Computer Graphics Programming

Besides, since the general purpose algorithm will be executed by a fragment shader,
so a fragment shader is executed for each data element we stored in the target texture.
Therefore, the idea is make sure that each data item is computed uniquely into a frag-
ment, and obviously, by a unique fragment shader.

Then, given our projection and viewport settings one-to-one mapped, this is simply
accomplished by drawing a simple quad that covers the whole viewport —with texture
coordinates correctly assigned—, with one of the next codes, depending on used texture
style:

1 glPolygonMode(GL_FRONT, FL_FILL);
2 glBegin(GL_QUADS);
3 glTexCoord2f(0.0, 0.0);
4 glVertex2f(0.0, 0.0);
5 glTexCoord2f(texSize, 0.0);
6 glVertex2f(texSize, 0.0);
7 glTexCoord2f(texSize, texSize);
8 glVertex2f(texSize, texSize);
9 glTexCoord2f(0.0, texSize);

10 glVertex2f(0.0, texSize);
11 glEnd();

CPP code 9.10: Drawing the GPGPU quad, using texture rectangles —texture coordinates
identical to pixel coordinates—.

1 glPolygonMode(GL_FRONT, FL_FILL);
2 glBegin(GL_QUADS);
3 glTexCoord2f(0.0, 0.0);
4 glVertex2f(0.0, 0.0);
5 glTexCoord2f(1.0, 0.0);
6 glVertex2f(texSize, 0.0);
7 glTexCoord2f(1.0, 1.0);
8 glVertex2f(texSize, texSize);
9 glTexCoord2f(0.0, 1.0);

10 glVertex2f(0.0, texSize);
11 glEnd();

CPP code 9.11: Drawing the GPGPU quad, using 2D textures —texture coordinates normal-
ized to the range [0,1

Additionally, for transferring data from GPU’s FBO to a CPU’s texture, after a render-
ing step the programmer should add this code:

1 void enableOneToOneMapping()
2 {
3 glReadBuffers(GL_COLOR_ATTACHMENT0_EXT);
4 float* data = new float[texSize*texSize];
5 glReadPixels(0, 0, texSize, texSize, texFormat,
6 GL_FLOAT, data);
7 }

CPP code 9.12: Transferring the framebuffer content to a CPU array.

Then, data will contain the shader program complete computation calculum. Obvi-
ously, you can use data as shader input, and create a hardware looping algorithm.

Research on Generic Interactive Deformable 3D Models

9.3. GPGPU: The New Computing Paradigma 107

The nVidia CUDA approach9.3.2

The next step in GPU computation9.3.2.1

As acronym of Compute Unified Device Architecture, CUDA is a C-precompiler that allow
programmers to use the C programming language to code general-purpose algorithms
for execution on a CUDA-compatible nVidia GPU —that is, from the 8000 series—.

(a) The nVidia logo. (b) The CUDA logo.

Figure 9.14: nVidia’s CUDA is the next (theoretical) step on GPGPU computing.

GPU as a multi-threaded coprocessor9.3.2.2

Because of the new CUDA approach, nVidia has created the new vision of a GPU: a
highly multi-threaded coprocessor; now, a GPU is viewed as a computing device that:

1. is a coprocessor of the host —CPU— with its own DRAM;

2. runs many threads in parallel due to its multiple processors59;

3. each GPU processor is an independent kernel, and each one is computing data-
parallel portions of an application, with no data intersections;.

Figure 9.15: The new nVidia CUDA-compatible GPU architecture; source [gpuD].

59 Since the 8000 series, nVidia GPU doesn’t have vertex processors and fragment processors but a unified
architecture capable of adapting to vertex or fragment requirements in relation to the resource demands.

Master Thesis in Computer Graphics by Marc Musquera Moreno

108 Chapter 9. Computer Graphics Programming

It’s an incredebly fast and robust paradigm although they are like threads because of
a great difference between the CPU-classic threads (the real ones, in a multi-core proces-
sors) and the GPU ones:

• in front of CPU threads, the GPU ones are extremely lightweight, and there is little
creation overhead;

• a multi-core CPU with many threads is inefficient, but a GPU is really efficient when
is managing hundreds of them.

However, due to nVidia technology compatibility only, and being more conformat-
ble on GLSL shading algorithms, CUDA has been rejected for this thesis development.

Research on Generic Interactive Deformable 3D Models

CHAPTER 10Thesis Software Suite:
(1) MeshInspeQTor

Application Overview10.1

As has been said in multiple times along the past chapters of this document, the de-
veloped ideas of this Thesis have been included in a software suite composed by two
applications; and one of them is this one: MeshInspeQTor, capable of: (i) loading three-
dimensional models stored in OBJ file format as well as IRI60’s own P3D format, (ii)
displaying them in multiple ways as well as (iii) culling them model dissection based
on user-defined plane culling, and (iv) building model volumetric representations.

Figure 10.1: Informal UML diagram of MeshInspeTor internal functionalities.

60 Institut de Robòtica Industrial, at Universitat Politècnica de Catalunya.

109

110 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

So, on the previous page there’s an informal UML61 diagram that contains the main
concepts and algorithmic ideas and entities. The following sections will be focused on
the three MeshInspeQTor capabilities, and related to this UML diagram.

Loading 3D models10.2

The OBJ file format specification10.2.1

Developed by Alias—Wavefront Technologies for its Advanced Visualizer animation
package, the OBJ format is an open —public— specification for geometry definition,
adopted by multiple 3D graphics application vendors. It’s based on a simple data that
represents 3D geometry, such (i) vertex position, (ii) texture coordinates, (iii), normal di-
rections, and (iv) the face set that makes each model polygon, in the face-vertex way, as
defined on section 3.1.2, on page 20.

The geometry file *.obj10.2.1.1

Called object files, the OBJ format can be in ASCII —text— mode or in binary mode —in
this case, the file extension is *.mod instead of *.obj—. Moreover, this format sup-
ports both polygonal and free-form geometry —that is, different curve and surface
parametrizations—62.

However, the parser developed for this thesis is only capable of loading the OBJ
polygonal subset, enough to load the most commonly available object files. The following
table shows the supported tokens for this thesis’ developed loader63, as [ami3] tells:

Token Format Token Description

some text A comment until the end of the line.
v float float float Single vertex space position; inherently, the first

specified vertex will have index 1, and the
following ones will be numbered sequentially.

vn float float float A normal direction; numbered like the vertices.
vt float float A texture coordinate —in 2D—.

f int int int ... A polygonal face, indexing only the vertices.
f int/int int/int ... Another face, indexing vertices and texcoords.
f int/int/int ... A vertex/texcoord/normal indexed face.

Table 10.1: Table of supported tokens for the developed OBJ model loader.

In the OBJ specification there is no maximum number of vertices per polygon; how-
ever, the modelOBJ class, contained in MeshInspeQTor, will always triangularize every
non-triangle face for better performance and flatting-ensurance.

61Unified Modelling Language, a standardized general-purpose modeling language about software engi-
neering. UML uses a set of graphical notations techniques for create abstract models of specific systems.

62See [ami4] for a complete OBJ format file specification.
63 Indeed, the parser is closely similar to the SUN JAVA 3D OBJ loader.

Research on Generic Interactive Deformable 3D Models

10.2. Loading 3d models 111

On the next code it’s listed the OBJ specification for a simple cube; notice that the set
of vertices contains eight positions and the normal set, only six directions —the face nor-
mal ones—, and, because there is no face specification for only vertex/normal puspose,
the texture coordinate is empty:

1 # cube vertex list (8 vertices)
2 v -0.500000 -0.500000 0.500000
3 v -0.500000 0.500000 0.500000
4 v 0.500000 0.500000 0.500000
5 v 0.500000 -0.500000 0.500000
6 v 0.500000 -0.500000 -0.500000
7 v 0.500000 0.500000 -0.500000
8 v -0.500000 0.500000 -0.500000
9 v -0.500000 -0.500000 -0.500000

10

11 # cube normal list (6 faces, 6 normals)
12 vn 0.000000 0.000000 1.000000
13 vn 0.000000 0.000000 -1.000000
14 vn -1.000000 0.000000 0.000000
15 vn 1.000000 0.000000 0.000000
16 vn 0.000000 1.000000 0.000000
17 vn 0.000000 -1.000000 0.000000
18

19 # cube face list (6 squares -4 vertices per face-,
20 # notice the texture coordinate emptyness indicating
21 # no texture coordinate available.
22 f 4//1 3//1 2//1 1//1
23 f 8//2 7//2 6//2 5//2
24 f 1//3 2//3 7//3 8//3
25 f 5//4 6//4 3//4 4//4
26 f 3//5 6//5 7//5 2//5
27 f 5//6 4//6 1//6 8//6

PSEUDO code 10.1: OBJ file text specifying a simple cube.

Although the number of vertices and normals won’t be, a priori, the same, modelOBJ
will force the same number of them, by calculating the mean of all normals incid-
ing each vertex —useful for obtaining a more realistic illumination model, the Gouraud
Shading, as explained in this chapter’s future sections—.

The material file *.mtl10.2.1.2

The geometry description of a model in OBJ file is done, but it’s an important factor left:
the material properties’ definition. In other words, with which color will be rendered a OBJ
model.

Because of that, there is the MTLLIB file format specification. MTLLIB is the abbrevi-
tion of Material Library, and is an independent file with extension *.mtl —assuming its
location is the same folder than the OBJ file, although if it doesn’t exist the model load-
ing is not affected64—, containing the material properties —in RGB format— of several
illumination material factors:. In the next page’s table are shown the tokens supported
by the MTLLIB file format specification, as featured in [ami5]:

64 In case of parser don’t find the material file, the model is also loaded, and the rendering is done with
standard material properties.

Master Thesis in Computer Graphics by Marc Musquera Moreno

112 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

Token Format Token Description

some text A comment until the end of the line.
newmtl <materialname> Sets a new material; subsequent materials with

the same name will override the previous
following ones will be numbered sequentially.

Ka float float float Ambient color (default: [0.2, 0.2, 0.2]).
Kd float float float Diffuse color (default: [0.8, 0.8, 0.8]).
Ks float float float Specular color (default: [1.0, 1.0, 1.0]).
illum int 0 to disable lighting, 1 for non-specular

lighting, and 2 for full lighting. The
default value is 2.

Ns float Shininess (clamped to [0.0, 128.0]). 0.0 is
the default value.

map Kd filename Texture map path.
d float Transparency (clamped to [0.0, 1.0]). The

default value is 1.0 (opaque).
Tr float Same as <d float>.

Table 10.2: Table of supported tokens for the developed MTLLIB model loader.

In the following codes there will be found the MTLLIB for red, blue and yellow diffuse
colors, and how the previous cube.obj file is modified to use this colors by:

1. loading the MTLLIB file;

2. and specifying face groups, each with its diffuse color, with the token g <groupname>.

it’s important to notice that, if in any material definition, there’s some parameters left,
they won’t be parametrized with the default values, as well as if the entire material is not
found —or even the *.mat file is not found—.

1 newmtl yellow
2 Ka 0.4000 0.4000 0.4000
3 Kd 0.8000 0.8000 0.1000
4 Ks 0.5000 0.5000 0.5000
5 illum 2
6 Ns 60.0000
7

8 newmtl red
9 Ka 0.4000 0.4000 0.4000

10 Kd 0.9000 0.3000 0.1000
11 Ks 0.7000 0.7000 0.7000
12 illum 2
13 Ns 60.0000
14

15 newmtl cyan
16 Ka 0.4000 0.4000 0.4000
17 Kd 0.0000 0.7000 0.8000
18 Ks 0.7000 0.7000 0.7000
19 illum 2
20 Ns 60.0000

PSEUDO code 10.2: MTLLIB containing the specifications for 3 colors.

Research on Generic Interactive Deformable 3D Models

10.2. Loading 3d models 113

1 mtllib yellowredcyan.mtl
2

3 # cube vertex list (8 vertices)
4 v -0.500000 -0.500000 0.500000
5 v -0.500000 0.500000 0.500000
6 v 0.500000 0.500000 0.500000
7 v 0.500000 -0.500000 0.500000
8 v 0.500000 -0.500000 -0.500000
9 v 0.500000 0.500000 -0.500000

10 v -0.500000 0.500000 -0.500000
11 v -0.500000 -0.500000 -0.500000
12

13 # cube normal list (6 faces, 6 normals)
14 vn 0.000000 0.000000 1.000000
15 vn 0.000000 0.000000 -1.000000
16 vn -1.000000 0.000000 0.000000
17 vn 1.000000 0.000000 0.000000
18 vn 0.000000 1.000000 0.000000
19 vn 0.000000 -1.000000 0.000000
20

21 # cube face list (6 squares -4 vertices per face-,
22 # notice the texture coordinate emptyness indicating
23 # no texture coordinate available.
24 g yellow_faces
25 usemtl yellow
26 f 4//1 3//1 2//1 1//1
27 f 8//2 7//2 6//2 5//2
28 g red_faces
29 usemtl red
30 f 1//3 2//3 7//3 8//3
31 f 5//4 6//4 3//4 4//4
32 g cyan_faces
33 usemtl cyan
34 f 3//5 6//5 7//5 2//5
35 f 5//6 4//6 1//6 8//6

PSEUDO code 10.3: OBJ file text specifying a simple cube with materials.

The OBJ parsing with modelOBJ class10.2.2

MeshInspeQTor contains a parser/container class of OBJ models, called modelOBJ,
that is really a minor version of the class ModelOBJ —published on the IRI’s CVS some
time ago by this thesis’ author—. This class contains another classes, comprising all a
complete OBJ model storage; every modelOBJ is composed by:

• a OBJModelMatLib, abstraction of a MTLLIB; it contains all the materials in several
MaterialOBJ objects.

• a set of OBJModelGroup, composed by multiple instances of OBJModelFace.

Then, the vertex, normal and texture coordinates are commonly stored in modelOBJ,
so every OBJModelGroup can access these sets from their local face indexings. For using
these data, the user has to extract every OBJModelGroup with its associated global data,
and this action can be done by getting a entityOBJ, understood as a mini-modelOBJ
because it’s an autonomous three-dimensional storage data extracted from a modelOBJ,
containing, for any group: (i) its vertices, normals and texture coordinates, (ii) its material
information, and (iii) its face set.

Master Thesis in Computer Graphics by Marc Musquera Moreno

114 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

Automatic modelOBJ enhancements and improvements10.2.3

Indeed, the modelOBJ parsing process is not limited to read the data from the OBJ
text file. As it has been said previously, there are some internal processes done by this
parsing —done offline, when data is loaded into memory, and directly usable once pro-
cessed without reprocessings—, due to a better performance and better data managing,
like normal adequation and triangularization of generic polygonal faces.

Only triangular faces10.2.3.1

The most common type of polygonal face is the triangle: three points are the min-
imum size for specifying a polygon, and it will sure be flat. However, the OBJ format
supports polygona faces of any size, with no limit, so the parser will triangularize non-
triangular faces following the method shown in the next figure:

Figure 10.2: The schematic triangularization for generic polygonal faces —here, an hexagon—.

Obviously, there are better methods that generate triangles from the first indexed
vertex from any non-triangular face —like the Delaunay triangulation—; however, a
priori, this will be the major face (in relation to number of vertices) because almost 3D

models are already based on triangles, so this approximation is:

1. fast, because this strategy doesn’t require to create another vertices;

2. assuming all the faces being convex, all the triangles will be surely non-intersecting;

Same number of vertices and normals: the per-vertex normals10.2.3.2

The OBJ specification supports different number of vertices and normals, so (i) a
certain normal can be assigned to more than one vertex, and (ii) the same vertex can have
different normal directions, because the same vertex will be in more than one face. Thus,
the flat shading will be probably sharped, as in the figure 10.3(a) —on the next page—.

So, for a better shading rendering, like in the figure 10.3(b), the way is so simple as
compute one normal per vertex by calculating the mean of all normals assigned to
that vertex; in more technical words, changing the normals per face ~nfi

, assigned to the
faces’ vertices v ∈ fi, to unitary normals per vertex ~nvj :

~nvj =
1
kj

kj∑
i=1

~nfi
, fi ⊃ vj , ∀ vj ∈ R3

Research on Generic Interactive Deformable 3D Models

10.2. Loading 3d models 115

(a) Normals per face. (b) Mean normals per vertex.

Figure 10.3: Illumination contrasts between vertex’s normal assigment in relation to the face comprising,
or the normal assignment by the mean of normals per each vertex.

Automatic generation of normals10.2.3.3

Moreover, this methodology can be used for generating normals for those OBJ mod-
els not containing them —not necessary for defining geometry but so much important
for a realistic model display—, by calculating all the per-face normals, and then execut-
ing the previous formula for every vertices within the geometry.

IRI’s own P3D format conversion to OBJ models10.2.4

Dedicated GUI for file format conversion to OBJ format10.2.4.1

Some time ago, Eva Monclús —researcher at IRI— told me how to extract three-
dimensional models from the Visual Human project65, available from this University. From
a previous degree project implementation, done by another student, a 3D isosurface ex-
tractor of the different human organs, listed in a database, is available; however, the
quality of that extractions is poor, due to two reasons, explained on the next image:

Figure 10.4: An example of internal oblique inguinal muscle, extracted by using the IRI tool; please notice
the defficiences on the extraction —the model is rendered by remarking the polygon edges—.

65 The Visible Human Project, as can be seen in [ami6], was a anatomical project promoted by NLM —
United States’ National Library of Medicine— in 1986 for creating a complete, anatomically detailed, 3D repre-
sentations of the normal male and female human bodies, by acquisition of transverse CT —Computed Tomo-
graphies—, MR —Magnetic Ressonances— and cryosection images from adequate corpse sectionings.

Master Thesis in Computer Graphics by Marc Musquera Moreno

116 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

• some organs are too huge for being extracted at once because of memory overflow
problems, so they have to be extracted at piecewise, with the inherent loss of quality
—because the 3D model is built from an isosurface—.

• the isosurface extraction algorithm is no good; there are great defficiences in the
triangular meshing, like dense rings of triangles.

Nevertheless, this extractor generates a three-dimensional model based on a text for-
mat called P3D, with no relation to the existent Lisp-based format for representing
general 3D models. This IRI-P3D format —named ust like that for provoquing a differ-
enciation with the another P3D format file— is a own specification for IRI purposes, and
modelOBJ supports a conversion from P3D to OBJ, by a dedicated MeshInspeQTor GUI:

Figure 10.5: The specific GUI within MeshInspeQTor for converting IRI-P3D format files to OBJ.

This IRI-P3D format wont be detailed here; however, the GUI —and, of course, the
implemented converter— will be roughly explained:

1. since the human organ will be stored into several P3D files —or maybe because the
user desired to convert more than a human organ at once—, a multiple P3D file
selector is available on the left of the gui, as well as a textbox that supports the path
for the single OBJ file destiny path where all the files will be stored.

2. before clicking on start button, there are some parametrizations of the conversion
that must be explained:

• desired resolution: one single P3D file contains three different resolutions
for the same three-dimensional representation of a isosurface extraction. The
selection will be applied to every P3D file listed in the box when its conversion
starts.

• conversion mode: as mentioned before, OBJ models support face groups to
separate different entities within the same 3D model. Hence, this option per-
mits the user to establish if every P3D is wished to be trated as an indepen-
dent group within the OBJ, or all must be combined in a unique group.

2D convex hulls for piecewise isosurface extraction merging10.2.4.2

Additionally, on the MeshInspeQTor GUI for P3D->OBJ conversion there’s a checkbox
entitled ‘‘They Are A Unique Model’’. This checkbox enables —or disables— a
experimental —not fully functional— preprocess that tries to merge in a better way
the human organs badly generated by a piecewise extraction.

Research on Generic Interactive Deformable 3D Models

10.2. Loading 3d models 117

For doing this, the process assumes that the P3D files are subsequently selected,
from left to right, and by generating a 2D convex hull for the more extreme zones
remarked as Piecewise Organ Extractions at figure 10.466; then, computing inter-convex-
hull relations between vertices, some vertex mergings are processed. The results are
shown, indeed, in the figure 10.4.

Figure 10.6: An example of a 2D convex hull, executed over a 2D point set.

So, the convex hull problem is the following: given a planar set S of n points pi ∈
R2, compute the vertices of CH(S), sorted in counterclockwise order. There are a lot of
proposals, like Graham Scan, Jarvis March, or the Quickhull —a variant of quicksort
sorting algorithm for computing convex hulls—, but the taken in account for this project
was the Jarvis March, consisting in something similar like this:

1 function jarvis-march(Set<Point2D> S)
2 returns Stack<Point2D>
3 Point2D p0 = pointWithMinimumY(S);
4 Stack<Point2D> H;
5 H.push(p0);
6 minpoint = getPointWithMinAngle(H.top(), ...
7 S.delete(H.top()));
8

9 { sort the point set w.r.t. the angle related to
10 the entered point, from monimum to maximum angle }
11 Set<float> vecAng = getPolarAnglePointRelated(S, p0);
12 Set<Point2D> vecSortedS := sortByAng(S, vecAng);
13 H.push(vecSortedS.first());
14

15 { the stack will be filled with the minimum angle
16 point sequence until the reached point will be p0 }
17 S.insert(p0);
18 while H.top() != p0 in vecSortedS do
19 minpoint = getPointWithMinAng(H.top(), ...
20 S.delete(H.top()));
21 H.push(vecSortedS.first());
22 endwhile
23 return H;
24 endfunction

PSEUDO code 10.4: Jarvis March for computing a 2D convex hull.

66 It’s possible to compute a valid 2D convex hull for a extremal zone of a isosurface extraction generated
mesh because all the vertices of these zones have one of the coordinates with the same value.

Master Thesis in Computer Graphics by Marc Musquera Moreno

118 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

A graphical scheme of Jarvis March is given in the next figure for a better feeling
about the algorithm:

Figure 10.7: A graphical scheme for an entire process of Jarvis March

so the developed algorithm for piecewise Visual Human isosurface extractions is done
by the next code within the Graph2D class, a generic module for operating with 2D

pointsets:

1 function jarvis-march(Mesh<Point3D> MA, Mesh<Point3D> MB)
2 returns Mesh<Point3D>
3 { assumed MA is adjacent and left to MB }
4 Set<Point3D> XMA = getGreaterXPoints(MA);
5 Set<Point3D> XMB = getLowerXPoints(MB);
6 { XMA and XMB have the same ’x’ coordinate,
7 so it can be omitted for having a 2D set }
8 Set<Point2D> CHA = getConvexHull(XMA);
9 Set<Point2D> CHB = getConvexHull(XMB);

10

11 { mixCHulls merges any CHA point with the
12 most euclidean-distant closer point of CHB }
13 Set<Point2D> CHmix = mixCHulls(CHA, CHB);
14

15 { Mmixed is generated by combining the sets
16 MA-XMA, MB-XMB (basic set theory), and CHmix
17 with ’x’ coordinate the mean(XMA,XMB) ’x’ }
18 Mesh<Point3D> Mmixed = ...
19 generateMesh(MA, MB, XMA, XMB, CHmix);
20 return Mmixed;
21 endfunction

PSEUDO code 10.5: Developed idea for merging isosurface portioned extractions.

Displaying 3D models10.3

Overview of MeshInspeQTor rendering capabilities. The Vertex Arrays10.3.1

Once the three-dimensional models have been charged into memory, MeshInspeQTor
is able to display them in several ways, with the aim of offering the best model display-
ing capabilities.

Research on Generic Interactive Deformable 3D Models

10.3. Displaying 3d models 119

So, by using the OPENGL technique of Vertex Arrays, the 3D model rendering is
faster than with single primitive callings with the

glBegin(...);glVertex3f(...); ... glVertex3f(...);︸ ︷︷ ︸
n vertices

glEnd();

methodology explained on section 9.1.2.2, on page 90; as mentioned in [ami7], with the
glBegin->glEnd philosophy, a lot of OPENGL calls are needed for specifying even a
simple geometry. However, with vertex arrays, the geometry associated data is placed
into arrays stored in the OPENGL client —CPU— address space.

These blocks of data may then be used to specify multiple geometric primitives with
a single OPENGL command:

glDrawElements(enum mode, sizei count, enum type, void *indices);

where mode can receives the same modes as glBegin, count specifies the length of
indices —composed it by the geometry indexes—, and type specifies the type of data
of indices: GL FLOAT, GL INT, ans so on.

Therefore, the supported OPENGL storing client arrays are the following six, which
must be enabled/disabled by the command glEnableClientState(enum array)
or glDisablelCientState(enum array):

Array Enumerator Size Supported Types

EDGE FLAG ARRAY 1 boolean

TEXTURE COORD ARRAY 1, 2, 3, 4 short,int,float,double

COLOR ARRAY 3, 4 (u)byte,(u)short,(u)int,float,double

INDEX ARRAY 1 ubyte,short,int,float,double

NORMAL ARRAY 3 byte,short,int,float,double

VERTEX ARRAY 2, 3, 4 short,int,float,double

Table 10.3: Supported enumeration for the vertex array data block assignment.

Rendering typologies10.3.2

Once the vertex arrays have been introduced67, let’s go with the different rendering
typologies offered by MeshInspeQTor, with a snapshot of the resulting rendering a three-
dimensional object —in this case, a dolphin— together with its respective code.

The different kinds of rendering include:

1. a solid object;

2. a wireframe model, similar to the solid representation but without filled faces, only
the connection edges betwen the vertices will be painted;

3. a point based representation, based on only rendering the vertex positions without
connection edges;

67 There’s another rendering methodology, called Display Lists, but in this thesis this technique has been
rejected; the Vertex Arrays give good results for this project’s purposes.

Master Thesis in Computer Graphics by Marc Musquera Moreno

120 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

4. a different style called draft, based on a mix of the two first renderings, but without
real illumination —the aim of this display style is to show the real geometry of a 3D

model, so the faces (with normal per face) as well as the edges between vertices are
clearly featured—.

Solid object, wireframe and point set10.3.2.1

There are three basically distinct ways of model rendering, but for OPENGL they
are only differing in some parameters before sending de geometry68; basically, there is
a variable called visualization that manages which renderization style is desired —
please notice that in the following code the material properties and colors are omitted—:

1 int elementsdrawed = GL_TRIANGLES;
2 switch(visualization)
3 {
4 case STYL_SOLID:
5 // the polygons will be rendered solid & filled
6 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
7 break;
8 case STYL_WIREF:
9 // only the polygon edges will be painted

10 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
11 break;
12 case STYL_NODES:
13 // the primitive won’t be a triangle but a point
14 elementsdrawed = GL_POINTS;
15 glPointSize(pointsize);
16 break;
17 }
18

19 // there are 3 components for vertex position and
20 // normal direction because we are in R3 space, and
21 // there are 3 indexes per face because every model
22 // face is a triangle; so:
23 // float* vecvertices = new float[nfaces*3];
24 // float* vecnormals = new float[nfaces*3];
25 // int* vecvertices = new int[nfaces*3];
26 glEnableClientState(GL_VERTEX_ARRAY);
27 glEnableClientState(GL_NORMAL_ARRAY);
28 glVertexPointer(3, GL_FLOAT, 0, vecvertices);
29 glNormalPointer(GL_FLOAT, 0, vecnormals);
30 glDrawElements(elementsdrawed, nfaces*3,
31 GL_UNSIGNED_INT, vecfaces);
32 glDisableClientState(GL_NORMAL_ARRAY);
33 glDisableClientState(GL_VERTEX_ARRAY);

CPP code 10.6: Solid, wireframe and point-based rendering capabilities.

On the next page figures, there can be seen these three types of rendering, within
the MeshInspeQTor GUI for a deeper feeling about the application. Please notice that the
rendering can be easily set by a combobox in the middle of the right panel.

68 It’s not really true; for point set rendering the sent geometry is different from solid and wireframe
geometry, because the vertices must be sent only once, while for polygonal rendering, each vertex must
be sent once per face comprising. However, for simplifying the task, the geometry will be the same for
polygonal and point-based rendering.

Research on Generic Interactive Deformable 3D Models

10.3. Displaying 3d models 121

(a) The ‘solid’ rendering style.

(b) The ‘wireframe’ rendering style.

(c) The ‘node’ point-based rendering style.

Figure 10.8: MeshInspeQTor’s main rendering offerings. Notice that the dolphins.obj model is really
composed by three dolphins, each one clearly identified in the ‘model list’ at the top of the right panel.

Master Thesis in Computer Graphics by Marc Musquera Moreno

122 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

Object Draft10.3.2.2

As it has been said before, there’s another rendering type, with the aim of featuring
a non-nice vision but a visual scheme of the model structure; in more technical words,
offering a solid representation of a model that at the same time schematizes its face
composition.

For doing this, this rendering is composed by two rendering iterations, a wireframe
one, with smooth shading69 and another based on solid representation, with flat shad-
ing70. Moreover, the material properties are disabled and the faces are rendered using a
quasi-white material color —for a quasi-black color for the polygon edges—.

In the following code there are the commands for achieving this kind of renderiza-
tion; pay special attention on shading configuration and specific coloring settings —then,
the original material properties disabling— for the two rendering iterations:

1 // the data array blocks are, of course, the same that
2 // the used with the previous renderization methods.
3

4 // first iteration:
5 // wireframe renderization with quasi-black
6 // material properties and smooth shading.
7 glShadeModel(GL_SMOOTH);
8 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
9 glColor4f(0.3, 0.3, 0.3, 1.0);

10 glEnableClientState(GL_VERTEX_ARRAY);
11 glEnableClientState(GL_NORMAL_ARRAY);
12 glVertexPointer(3, GL_FLOAT, 0, vecvertices);
13 glNormalPointer(GL_FLOAT, 0, vecnormals);
14 glDrawElements(GL_TRIANGLES, nfaces*3,
15 GL_UNSIGNED_INT, vecfaces);
16 glDisableClientState(GL_NORMAL_ARRAY);
17 glDisableClientState(GL_VERTEX_ARRAY);
18

19 // second iteration:
20 // solid renderization with quasi-white
21 // material properties and flat shading.
22 glShadeModel(GL_FLAT);
23 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
24 glColor4f(0.8, 0.8, 0.8, 1.0);
25 glEnableClientState(GL_VERTEX_ARRAY);
26 glEnableClientState(GL_NORMAL_ARRAY);
27 glVertexPointer(3, GL_FLOAT, 0, vecvertices);
28 glNormalPointer(GL_FLOAT, 0, vecnormals);
29 glDrawElements(GL_TRIANGLES, nfaces*3,
30 GL_UNSIGNED_INT, vecfaces);
31 glDisableClientState(GL_NORMAL_ARRAY);
32 glDisableClientState(GL_VERTEX_ARRAY);

CPP code 10.7: Draft rendering mode OPENGL commands.

69 This is the illumination model based on per-vertex normal instead of per-face normal. This mode is sup-
ported here because, as mentioned in section 10.2.3.2 on page 114, MeshInspeQTor computes always the
per-vertex normals when an OBJ file is loaded into memory.

70 This is the illumination model with per-face normal as its basis. This type of shading is enabled although
the normals are normalized per-vertex, adn the final result is lower than the smoothed one, but for the
purpose of this kind of rendering is ideal.

Research on Generic Interactive Deformable 3D Models

10.3. Displaying 3d models 123

Then, as done in the previous section, here’s an example figure featuring the cited
draft renderization methodology, using the same model that with the another methods:

Figure 10.9: MeshInspeQTor’s ‘draft’ rendering style. Notice that, because of the flat face shading, the
triangular faces are perfectly detailed and can be clearly observed.

Additional 3D model properties’ visualization10.3.3

Model’s bounding box10.3.3.1

The MeshInspeQTor parser also computes, for every model group read from an OBJ
file, its own bounding box; that is, an axis aligned prism that envolves all the model; it’s
stored simply with two vertices ∈ R3: (i) pmin, containing the minimum (x, y, z) coor-
dinates of all the group vertices —with the three coordinate values indepedendent w.r.t.
the vertex where found—, and (ii) pmax, containing the maximum ones.

The code for rendering the bounding box of a model will be omitted because follows
the same strategy for painting a square given its minimum and maximum coordinates
—though here there are six wireframe squares to be painted, one for each cube face—;
but an example will be shown in the next figure, where a bunny is sourrounded by its
bounding box —notice that the bounding box isn’t involved on lighting parameters—.

Figure 10.10: Renderization of a model with its bounding box surrounding it, in MeshInspeQTor.

Master Thesis in Computer Graphics by Marc Musquera Moreno

124 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

Per-face normals10.3.3.2

Another capability of MeshInspeQTor is to show the per-face normals by panting a
non-affecting-lighting red segments from the center of every face in direction of its
normal, as in the following figure:

Figure 10.11: Renderization of a model with its per-face normals shown, in MeshInspeQTor. The model is
rendered with the ‘draft’ style for a better per-face normal visualization.

For achieving this functionality, there’s an offline process that computes a float value
called normalfactor that is the length of this normal-representing segment, in relation
to every model71. Here’s the code for this process:

1 float determineNormalFactor(float* vecvertices,
2 int* vecfaces, int nfaces)
3 {
4 float factor = 0.0;
5 for(int i=0; i<vp.nfaces; i+=3)
6 {
7 int idx[3];
8 for(int x=0; x<3; x++)
9 idx[x] = vecfaces[i+x]*3;

10

11 // this function returns the sum of the three
12 // triangle edge lengths: in other words, the
13 // triangle perimeter.
14 factor +=
15 getTriangPerimeter(&vecvertices[idx[0]],
16 &vecvertices[idx[1]],
17 &vecvertices[idx[2]]);
18 }
19

20 // normalization of the sum of the perimeters
21 factor /= 2.0*nfaces/3.0;
22 return factor;
23 }

CPP code 10.8: Offline process for determining the normal factor for a single model.

71 Thus, the normals will always be shown on the screen with a nice size in relation to the own size of the
model —its faces, indeed—.

Research on Generic Interactive Deformable 3D Models

10.3. Displaying 3d models 125

Then, once the normalfactor is calculated when the OBJ file is read, the normal
renderization implies a code just like the next —notice that is a run-time process, so the
rendering is done by a set of glVertex callings—:

1 void renderNormals(float* vecvertices,
2 float* vecnormals, float factor,
3 int* vecfaces, int nfaces)
4 {
5 glDisable(GL_LIGHTING);
6 glColor4f(0.8, 0.2, 0.0, 1.0);
7 glBegin(GL_LINES);
8 for(int i=0; i<nfaces*3; i+=3)
9 {

10 // for every face, there are computed two
11 // values: final_vertex (center of the face)
12 // and final_normal (mean of all the vertex-
13 // composing face normals)
14 float final_vertex[3];
15 float final_normal[3];
16 for(int x=0; x<3; x++)
17 {
18 final_normal[x] = 0.0;
19 final_vertex[x] = 0.0;
20 for(int z=0; z<3; z++)
21 {
22 int idx = vecfaces[i+z]*3+x;
23 final_normal[x] += vecnormals[idx];
24 final_vertex[x] += vecvertices[idx];
25 }
26

27 final_normal[x] /= 9.0; //3verts*3coords
28 final_vertex[x] /= 9.0; //3verts*3coords
29 }
30

31 // the normal segment is computed by the
32 // final_vertex and another vertex in the
33 // normal direction from final_vertex, at
34 // normalfactor distance
35 final_normal = normalize(final_normal);
36 for(int x=0; x<3; x++)
37 final_normal[x] = final_vertex[x] +
38 factor*final_normal[x];
39

40 glVertex3fv(final_vertex);
41 glVertex3fv(final_normal);
42 }
43 glEnd();
44 glEnable(GL_LIGHTING);
45 }

CPP code 10.9: Per-face normal renderization process.

GPU dedicated algorithm for realistic Phong illumination model10.3.4

Although all this features, MeshInspeQTor displays realistically three-dimensionals by
an automatically located white lighting directed to the center of all the displayed mod-
els, and the GPU is the responsible of computing the Phong illumination model, more
realistic than the OPENGL pseudo-Phong illumination model.

Master Thesis in Computer Graphics by Marc Musquera Moreno

126 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

Introduction to the Phong illumination model10.3.4.1

Published by Bui Tuong Phong in his 1973 Ph.D., this is an empirical model of local
illumination, which describes the way a surface is lit as a combination of the diffuse
lighting of rough surfaces with the specular reflection of shiny surfaces.

For defining the Phong equation, there are two concepts to be defined first of all, as
mentioned in [ami8]: (i) the light components, and (ii) the material properties72:

• light parameters: is and id, where are its RGB specular and diffuse intensitiy com-
ponents73;

• material parameters: ks, kd and ka, being the specular, diffuse —also called Lam-
bert term— and ambient reflection constants, and α being the material shininess
constant —defining the specular shining spot—;

But that’s not all. More several directions involved in the equation must be defined,
for a good understanding of the reflection model adopted by Phong:

• L as the direction vector from a certain surface point P towards the light source;

• N as the surface normal in P ;

• R as the perfectly reflected ray of light, with P as its source point;

• V as the direction from P towards the viewer —that is, the direction from P to the
camera position—;

Figure 10.12: Graphical scheme of Phong equation for the selftitled illumination model: here the light is
white, the ambient and diffuse colors are both blue, and the specular color is white, reflecting almost all of
the light hitting the surface, but only in very narrow highlights. The intensity of the diffuse component
varies with the direction of the surface, and the ambient component is uniform (independent of direction).
Figure extracted from [ami8].

Once all these parameters have been defined, the Phong realistic —without non in-
teraction with other objects, only with the light sources— shading is given by the called
Phong reflection model that follows the next formula, being Ip the intensity received by
a surface point P

72 Close similar to the OBJ three-dimensional format specification material properties, explained on sec-
tion 10.2.1.2.

73 Also, it’s common to specify too an ambient intensity component ia, product of the common intensity
components of all the scene light sources.

Research on Generic Interactive Deformable 3D Models

10.3. Displaying 3d models 127

IP = iaka +
∑
∀ light

(
idkdLN + isks

(
RV
)α)

The Phong reflection model shaders10.3.4.2

So, by charging two shaders —vertex and fragment; see section 9.2.2 on page 98 for
more information—, the Phong Illumination Model have been executed through the
programmable pipeline of the GPU.

(a) OPENGL’s standard illumination model. (b) Phong illumination model executed in GPU.

Figure 10.13: Differences between OPENGL standard illumination rendering and a Phong model imple-
mented over the programmable GPU pipeline. Notice the more specular accuracy on the left part of the
model, as well as the more delimited shaded zones in the right one.

The strategy is based, as has been already said, in two communicated shaders:

1. the vertex shader computes, per each vertex, the vectors L, N and V of the Phong
reflection equation;

2. the fragment shader receives this computed data and process, per each fragment
—potential pixel—, the phong equation reflection; in this way, a more accurate
illumination model is obtained, better than the OPENGL standard one;

1 varying vec3 normal, lightDir, eyeVec;
2

3 void main()
4 {
5 normal = gl_NormalMatrix * gl_Normal;
6 vec3 vVertex = vec3(gl_ModelViewMatrix * gl_Vertex);
7

8 lightDir = vec3(gl_LightSource[0].position.xyz -
9 vVertex);

10 eyeVec = -vVertex;
11

12 gl_Position = ftransform();
13 }

GLSL code 10.10: Vertex shader of Phong reflection equation.

Master Thesis in Computer Graphics by Marc Musquera Moreno

128 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

1 varying vec3 normal, lightDir, eyeVec;
2

3 void main (void)
4 {
5 vec4 final_color =
6 (gl_FrontLightModelProduct.sceneColor *
7 gl_FrontMaterial.ambient) +
8 (gl_LightSource[0].ambient *
9 gl_FrontMaterial.ambient);

10

11 vec3 N = normalize(normal);
12 vec3 L = normalize(lightDir);
13 float lambertTerm = dot(N, L);
14 if(lambertTerm > 0.0)
15 {
16 final_color += gl_LightSource[0].diffuse *
17 gl_FrontMaterial.diffuse *
18 lambertTerm;
19

20 vec3 E = normalize(eyeVec);
21 vec3 R = reflect(-L, N);
22 float specular = pow(max(dot(R, E), 0.0),
23 gl_FrontMaterial.shininess);
24 final_color += gl_LightSource[0].specular *
25 gl_FrontMaterial.specular *
26 specular;
27 }
28

29 gl_FragColor = final_color;
30 }

GLSL code 10.11: Fragment shader of Phong reflection equation.

3D model arbitrary plane culling10.4

Introduction to the arbitrary plane culling10.4.1

On the previous section there have been detailed some processes for rendering three-
dimensional models on the screen display of MeshInspeQTor, and how many ways of
displaying are offered in this application. Now, it’s time to present another visualization
capability of this application: the VirtualCutters, a set of arbitrary user-defined planes
that dissect the model.

The real effect is, by specifying some culling planes, the model will be only rendered
if the occuped space is located at the so called visible zone, and it’s defined by the space
delimited by all these culling planes —and the infinite if case—.

The VirtualCutting process10.4.2

Defining the planes10.4.2.1

Basically, a VirtualCutter is a culling plane; so, a plane π ⊂ R3 can be defined in
several ways:

Research on Generic Interactive Deformable 3D Models

10.4. 3d model arbitrary plane culling 129

• specifying three points p1, p2, p3;

• a line r : p+ λ~v plus an external point q;

• two parallel lines: r : p+ λ~v, s : q + µ~v;

• two intersecting lines r : p+ λ~v, s : q + µ~w;

• a point p and two director vectors ~v and ~w;

Additionally, with the last way of plane description, itc an be obtained another one:
by specifying the plane’s normal vector associated with a displacement value, like
this74:

π : (x, y, z) = (px, py, pz) + λ(vx, vy, vz) + µ(wx, wy, wz);

now, by resolving the zero-determinant equation of the two director vectors ~v, ~w, plus
a generic point —that is the difference between a generic point X = (x, y, z) and the
plane’s given one p—, the resulting formula is the normal-based desired form:∣∣∣∣∣∣

X − p
~v
~w

∣∣∣∣∣∣ = 0 =⇒

∣∣∣∣∣∣
x− px y − py z − pz
vx vy vz
wx wy wz

∣∣∣∣∣∣ = 0

⇓

ax + by + cz + d = 0, ~n = (a, b, c)

So, every VirtualCutter will be defined by two variables: (i) its normal ~n = (a, b, c) ∈
R3 and (ii) its displacement factor d ∈ R, assuming d = 0 as a plane that automatically
passes thropugh the 3D scene center.

How to process the plane culling10.4.2.2

Plane culling pass test of an arbitrary point.

Once a VirtualCutter —or a set of them—, it’s time to decide if a zone of a three-
dimensional model must be rendered or not. So, given the normal of a VirtualCutter,
only the positive space w.r.t. this plane will be rendered; of course, if a set of Virtu-
alCutters have been specified, only the positive space that will be positive for all the
VirtualCutters will be rendered.

Therefore, the plane positive space is defined as the 3D zone greater than the plane
surface —understanding the plane normal always towards up—; so, given the reduced
form of a plane, it’s easy to know if a position p ∈ R3 is over, under, or within a plane
π{~n, d}: simply calculating the value of p on the π equation and comparing its value:

• the plane equation is equal to zero, so if π(p) = 0, then it can be sensured that p is
contained in the plane;

• if π(p) = k 6= 0, then the sign k determines the space where this point is located:
if positive, it’s in the positive space; in the negative one otherwise.

74 Indeed, the form of a point plus two director vectors is the called plane’s vectorial equation, while the
other, based on the plane’s normal vector, is the reduced form.

Master Thesis in Computer Graphics by Marc Musquera Moreno

130 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

π(x, y, z) : ax+ by + cz + d = 0 , P = (px, py, pz) ∈ R3,

⇓
π(P) > 0 → over the plane; positive space.
π(P) = 0 → within the plane; plane space.
π(P) < 0 → under the plane; negative space.

Table 10.4: Table of relative positions of a 3D point in relation to a plane.

The refinement step: a vertex projection to the culling plane.

However, there’s a step left yet: calculating the new position q for all p points located
in negative space; this q point will be the p projection over the plane π, so q will be
contained in the plane. With this process, ever negative space located p point will be
replaced on the positive space q position.

Figure 10.14: Graphical scheme of a negative space located point p, and the q ≡ p′ point, being the p
projection to the plane π.

Obtaining all the equations and equivalences from the previous figure, the strategy of
getting the q point for any p point is the following one: we wish for a q point that is

q ∈ R3 ≡ Projπ(p) →

{
q ∈ π
q ∈ r,

(
r ⊥ π, p ∈ r

)
so, q will be found by assuming it as a certain parametrization of the r line, imposed
to be contained to π:

r : p+ λ~n =⇒ q = p+ λq~n =⇒ π
(
p+ λq~n

)
= 0

⇓

a
(
px + aλq

)
+ b

(
py + bλq

)
+ c

(
pz + cλq

)
+ d = 0

Research on Generic Interactive Deformable 3D Models

10.4. 3d model arbitrary plane culling 131

λq

(
aa+ bb+ cc

)
+
(
apx + bpy + cpz

)
= 0

⇓

λq =
−
(
apx + bpy + cpz

)
a2 + b2 + c2

=
−
(
~nṗ+ d

)(
||~n||

)2
Advantages of this preprocess.

This process will be this useful for avoiding artifacts on the model rendering, be-
cause a three-dimensional model is discretized onto polygonal faces —a priori triangles—
, so a face is composed by a minimum of three vertices.

(a) An entire cow.

(b) A sectioned cow.

Figure 10.15: Results example of applying a VirtualCutter to a generic three-dimensional model with
MeshInspeTor.

Master Thesis in Computer Graphics by Marc Musquera Moreno

132 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

So, these are the three possible solutions for model arbitrary plane culling —the
render process one -some VirtualCutters enabled, indeed—; obviously, it can be clearly
seen that executing this point projection to the plane is the best idea:

• if all the vertices are located in the positive space, the face is rendered;

• if no vertex is located there, the face won’t be rendered;

• but if some vertices are in positive space, there’s a conflict:

– if the face is rendered, there will be a negative space invasion rendering;
– if the face is not rendered, an artifact will appear, provoquing a sharp shape

similar to jaws in the model zone closer to the plane;
– then, by calculating the projection of all the illegal vertices onto the plane

and rendering the modified face, there’s no negative space invasion nor arti-
facts.

In the previous page’s figures there’s an example of a dissected cow by a VirtualCutter
with values ~n = (1,−0.5,−2) and d = (0.1); and aditionally, the next figure shows a
human arm dissected by two VirtualCutters —and here will be clearly visible the concept
of positive space—.

Figure 10.16: An arm dissected by two VirtualCutters, featured on MeshInspeQTor. Please notice that the
computer positive space is the intersection of all the positive spaces of all VirtualCutters.

GPU dedicated algorithm for real-time VirtualCutter culling10.4.3

This process, of testing the space location of every model vertex, and projecting to the
VirtualCutters positive space, could be done as an offline process —for example, when
a new VirtualCutter is defined—; however, MeshInspeQTor executes this arbitrary plane
culling in real-time because of a modification of the programmable GPU pipeline that
does this job during rendering time.

For this aim, there have been build two shaders —vertex and fragment—, communi-
cated each other, that process this culling method plus computes the previously men-
tioned Phong reflection equation for the rendered pixels.

Research on Generic Interactive Deformable 3D Models

10.4. 3d model arbitrary plane culling 133

The strategy is the following one:

1. the vertex shaders tests the space location with respect all the VirtualCutters75. If
the vertex doesn’t pass the test, the plane projection of the vertex is executed and a
flag is set and passed to the fragment shader.

2. the fragment shader only executes the Phong reflection equation; however, if the
flag from the vertex shader is activated, the fragments derived from the discard
vertex will be also discard and won’t be rendered.

1 varying vec3 normal, lightDir, eyeVec;
2 varying float clipdistance;
3

4 uniform int vc_nofvc;
5 uniform mat4 vc_data1, vc_data2;
6

7 vec4 getCullingCoords(vec3 v, vec4 P)
8 {
9 float num = -(dot(v,P.xyz) + P.w);

10 float den = pow(length(P.xyz), 2.0);
11 float lambda = num/den;
12 return(vec4(v + lambda*P.xyz, 1.0));
13 }
14

15 void main()
16 {
17 // vc culling process
18 vec4 vertex = gl_Vertex;
19 vec4 plane = vec4(0.0, 0.0, 0.0, 1.0);
20 int idx = 0;
21 clipdistance = 1.0;
22 while(idx < vc_nofvc)
23 {
24 if(idx <= 4) plane = vc_data1[idx];
25 else plane = vc_data2[idx-4];
26 if(dot(vertex,plane) < 0.0)
27 {
28 clipdistance = dot(vertex,plane);
29 gl_ClipVertex = gl_ModelViewMatrix * vertex;
30 vertex = getCullingCoords(vertex.xyz, plane);
31 idx = vc_nofvc;
32 }
33 idx++;
34 }
35

36 // phong’s illumination per vertex model
37 normal = gl_NormalMatrix * gl_Normal;
38 vec3 vVertex = vec3(gl_ModelViewMatrix * vertex);
39 lightDir = vec3(gl_LightSource[0].position.xyz -
40 vVertex);
41 eyeVec = -vVertex;
42

43 gl_Position = gl_ModelViewProjectionMatrix * vertex;
44 }

GLSL code 10.12: Vertex shader of real-time VirtualCutter activation.

75 Due to implementation restrictions, the maximum size of VirtualCutters is 8, because the four values of
the i-th VirtualCutter are passed to the shader in the i-th column of a 4×4 matrix —there are two matrices—.

Master Thesis in Computer Graphics by Marc Musquera Moreno

134 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

Please notice the three uniform shader parameters: nofvcs are indicating how many
VirtualCutters have been defined, and the another two variables are the 4 × 4 matrices
containing the culling planes definitions.

1 varying vec3 normal, lightDir, eyeVec;
2 varying float clipdistance;
3

4 uniform int vc_nofvc;
5 uniform mat4 vc_data1, vc_data2;
6

7 void main (void)
8 {
9 if(clipdistance <= 0.0)

10 discard;
11 else
12 {
13 vec4 final_color =
14 (gl_FrontLightModelProduct.sceneColor *
15 gl_FrontMaterial.ambient) +
16 (gl_LightSource[0].ambient *
17 gl_FrontMaterial.ambient);
18

19 vec3 N = normalize(normal);
20 vec3 L = normalize(lightDir);
21

22 float lambertTerm = dot(N, L);
23 if(lambertTerm > 0.0)
24 {
25 final_color += gl_LightSource[0].diffuse *
26 gl_FrontMaterial.diffuse *
27 lambertTerm;
28

29 vec3 E = normalize(eyeVec);
30 vec3 R = reflect(-L, N);
31 float specular = pow(max(dot(R, E), 0.0),
32 gl_FrontMaterial.shininess);
33 final_color += gl_LightSource[0].specular *
34 gl_FrontMaterial.specular *
35 specular;
36 }
37 gl_FragColor = final_color;
38 }
39 }

GLSL code 10.13: Fragment shader of real-time VirtualCutter activation.

Voxelization of polygonal meshes10.5

Introduction of this functionality10.5.1

And finally, the main contribution of MeshInspeQTor arrives: the voxelization of three-
dimensional models; that means, the generation of volumetric representations of trian-
gular meshes, perfectly modificable by using a voxel navigator window provided by the
application GUI.

Research on Generic Interactive Deformable 3D Models

10.5. Voxelization of polygonal meshes 135

In the following sections will be explained the implementation details for all the func-
tionalities supported by MeshInspeQTor and related to the model voxelization.

The VoxelMap data structure. Format and access.10.5.2

Really, the voxelmap has been built as a static array of boolean values —true for
valid voxels, false for the invalid ones—. Since the size is predetermined by the GUI76,
and the voxelmap grid is assumed uniform and composed by a regular cube, all the
voxelmaps will have a size of

n× n× n voxels, n =
{

1, 2, 4, 8, 16, 32, 64, 128, 256
}

;

so, the static bool array will be defined as the following code:

1 bool* voxelmap = new bool[n*n*n];

CPP code 10.14: Internal declaration of a voxelmap.

Additionally, the access to any cell is totally managed by an injective function for 3-
dimensional arrays; given a voxelmap with a grid of NX × NY × NZ voxels, the cell
located at (i, j, k) is found by the following operation

voxelmap.elementAt(i,j,k) ≡ voxelmap[((i*NY) + j)*NX + k]

The octree as acceleration data structure for voxelization10.5.3

In MeshInspeQTor every operation done over a voxelmap is done over the static array
of booleans. This kind of structure allows (i) fast trackings over the voxelmap, (ii) in-
herent and easily deducible neighborhood by giving a voxel coordinate, and (iii) instant
access to data.

However, as said in section 3.3, on page 28, voxelize a 3D model over a regular grid
of voxels is terribly inefficient, since to it’s not an adaptive method. Because of that, in
that section some search trees are summarized, since they accelerate this methods.

On MeshInspeQTor the chosen search tree for voxelization process has been an octree,
which is composed, internally, as a dynamic tree structure like the following:

1 struct octree{
2 bool value; // indicates the volume value
3 // (valid/invalid voxel).
4 bool truesons; // true if all of its sons has
5 // their ’value’ at true.
6 float m_bboxmin[3]; // bbox (minimum coords).
7 float m_bboxmax[3]; // bbox (maximum coords).
8 octree* oct; // the octree’s eight sons.
9 };

10 octree* root;

CPP code 10.15: Internal declaration of an octree.

76 Changing the voxelmap size implies a total reset of previously stored data.

Master Thesis in Computer Graphics by Marc Musquera Moreno

136 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

And this is the code for expanding a previously created octree node —not valid for
the root node— and creating its eight sons from its own data:

1 void expandOctreeNode(octree* oct)
2 {
3 float min[3], max[3], XXX[3], mid[3];
4 for(int k=0; k<3; k++)
5 {
6 min[k] = oct->m_bboxmin[k];
7 max[k] = oct->m_bboxmax[k];
8 XXX[k] = (max[k] - min[k]) / 2.0;
9 mid[k] = min[k] + XXX[k];

10 }
11

12 oct->oct = new octree[8];
13 for(int k=0; k<8; k++)
14 {
15 oct->oct[k].hadfaces = false;
16 oct->oct[k].value = false;
17 oct->oct[k].truesons = false;
18 oct->oct[k].oct = NULL;
19

20 switch(k)
21 {
22 case 0:
23 bboxmin[0] = min[0];
24 bboxmin[1] = min[1];
25 bboxmin[2] = min[2];
26 break;
27 case 1:
28 bboxmin[0] = min[0];
29 bboxmin[1] = min[1];
30 bboxmin[2] = mid[2];
31 break;
32 [...]
33 case 7:
34 bboxmin[0] = mid[0];
35 bboxmin[1] = mid[1];
36 bboxmin[2] = mid[2];
37 }
38

39 for(int z=0; z<3; z++)
40 {
41 oct->oct[k].m_bboxmin[z] = bboxmin[z];
42 oct->oct[k].m_bboxmax[z] = bboxmin[x] +
43 XXX[x];
44 }
45 }
46 }

CPP code 10.16: Expansion of an octree node.

Once the octree is built with the voxelization of the model, the transformation to the
regular-grid voxelmap is executed by an algorithm based on knowing the space of each
regular-grid voxel and finding the value of that space —easily done by an octree depth
tracking since each octree cell has its own bounding box—. This code will be ommitted
here because the code is not complex and can be easily deduced.

Research on Generic Interactive Deformable 3D Models

10.5. Voxelization of polygonal meshes 137

The triangle-voxel intersection test10.5.4

The 2D axis-aligned projection test10.5.4.1

On MeshInspeQTor there’s a property method for voxelizing three-dimensional mod-
els, as a variation of the Akenine-Möller proposal, described in 3.2.2.3, on page 24. In this
own idea, a triangle is approximated by a parallelogram, similar to the generated one
when a geometric vector addition between to vectors is done77.

The parallelogram approximation isn’t a real approximation but is automatically done
when the triangle is projected over the three axisX ,Y,Z , and after, compared to a voxel
projection78; then, if there is a common domain between the cube and the triangle in
one of the three axis projections, the triangle is considered intern.

(a) A test that results in intern triangle in relation to a voxel —cube—.

(b) A test that results in extern triangle

Figure 10.17: The ‘triangle-voxel’ testing implemented in MeshInspeQTor, based on 2D axis projections
and implicit parallelogram approximation of the triangle.

77 Since a polygonal mesh will be composed by a high number of adjacent triangles, this approximation is
considered valid because the parallelogram imposed zones wil surely overlap other adjacent triangles.

78 Easily calculated because the regular grid of the voxelmap is build over the complete scene bounding
box, and it’s axis aligned.

Master Thesis in Computer Graphics by Marc Musquera Moreno

138 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

1 bool orthoProjFilter(octree* cell, float p1[3],
2 float p2[3], float p3[3])
3 {
4 // p1, p2, and p3 are the triangle vertices; so,
5 // x_rang, y_rang and z_rang are the (x,y,z)
6 // range of triangle (x,y,z) 2D projections.
7 float x_rang[0] = min3(p1[0], p2[0], p3[0]);
8 float x_rang[1] = max3(p1[0], p2[0], p3[0]);
9 float y_rang[0] = min3(p1[1], p2[1], p3[1]);

10 float y_rang[1] = max3(p1[1], p2[1], p3[1]);
11 float z_rang[0] = min3(p1[2], p2[2], p3[2]);
12 float z_rang[1] = max3(p1[2], p2[2], p3[2]);
13

14 // x_bbox, y_bbox and z_bbox are the range
15 // of cube (x,y,z) 2D projections.
16 float x_bbox[2];
17 x_bbox[0] = cell->m_bboxmin[0];
18 x_bbox[1] = cell->m_bboxmax[0];
19 float y_bbox[2];
20 y_bbox[0] = cell->m_bboxmin[1];
21 y_bbox[1] = cell->m_bboxmax[1];
22 float z_bbox[2];
23 z_bbox[0] = cell->m_bboxmin[2];
24 z_bbox[1] = cell->m_bboxmax[2];
25

26 float maxMin_X = max(x_rang[0], x_bbox[0]);
27 float maxMin_Y = max(y_rang[0], y_bbox[0]);
28 float maxMin_Z = max(z_rang[0], z_bbox[0]);
29 float minMax_X = max(x_rang[1], x_bbox[1]);
30 float minMax_Y = max(y_rang[1], y_bbox[1]);
31 float minMax_Z = max(z_rang[1], z_bbox[1]);
32

33 if(maxMin_X > minMax_X) return false;
34 if(maxMin_Y > minMax_Y) return false;
35 if(maxMin_Z > minMax_Z) return false;
36

37 return true;
38 }

CPP code 10.17: Axis-aligned projection triangle-cube testing.

The cube space location in relation to the triangle10.5.4.2

Nevertheless, there is a problem with that method, and is clearly noticeable with
the following two schemes: the common zone testing between the triangle and cube
projections is a conservative method. That means, if there is no common zone, the inter-
section won’t exist sure, but is there is a common zone, the method cannot ensure there
is really an intersection between the two geometric figures, as can be seen in figure 10.18,
on the next page.

Hence, by solving this problem, MeshInspeQTor executes a postfiltering test with ev-
ery validated intersection79, consisting in a space location of the eight vertices of the
cube in relation to the plane of the triangle —using the same formulation that shown in
table 10.4, on page 130—:

79 Since the algorithm is conservative, if the projection-based decides no intersection, it’s not necessary.

Research on Generic Interactive Deformable 3D Models

10.5. Voxelization of polygonal meshes 139

(a) An intersecting triangle-cube situation; notice the
common ranges.

(b) A non-intersecting triangle-cube situation, but
with common ranges.

Figure 10.18: The ‘triangle-voxel’ testing conflict situations; notice the particular location and orientation
of the triangle in relation to the cube. The test will validate as intern every external triangle with this
particularity.

• if all the vertices are in the same space —positive or negative—, there’s no inter-
section with the triangle plane, so there isn’t intersection with the triangle;

• if there are at least two vertices in different spaces, that means there’s an intersec-
tion with the plane; thus, because the previous testing based on common ranges
have found a valid common zone, it’s sure that the intersection exists.

(a) All vertices in negative space;
no intersection.

(b) There’s one vertex —red-
arrowed— in different space;
there’s an intersection.

(c) All vertices in negative space;
no intersection.

Figure 10.19: 2D projection of the triangle-voxel postfiltering test based on space location of the eight cube
—a square here— vertices in relation to the triangle plane —the thick plane on the figures—.

The voxel vertizer module10.5.5

Moreover, when a voxelization is executed over a preloaded three-dimensional
model, MeshInspeQTor stores within the voxelmap structure some voxel associated data
with every model vertex, and the so called VoxelVertizer module is the responsible
for that. Basically, for every vertex, the voxelmap stores:

• the cell —in (i, j, k) coordinates, relative to the n × n × n regular grid of voxels—
where the vertex is located;

• the displacement from this voxel’s center to the cited vertex; thus, it’s obtained a
relative offset, with respect to the center of voxel where the vertex is located.

Master Thesis in Computer Graphics by Marc Musquera Moreno

140 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

The respective code for vertizing a vertex set —that is, obtaining this vertex-associated
data for a regular grid of voxels— is shown now. Of course, the word vertizer and the
verb to vertize is an abuse of language, a completely invented aception, but it’s for abbre-
viating this action of transformating the vertex model data to voxelmap data.

1 struct vertizer_struct {
2 vector<unsigned char> cellidx;
3 vector<float> offsets;
4 }
5

6 vertizer_struct vertizeVoxelMap(float minbbox[3],
7 float maxbbox[3],
8 int n,
9 vector<float>* vertices)

10 {
11 float voxel_length = abs((maxbbox[0]-minbbox[0])/n);
12 float lag = voxel_length/2.0f;
13

14 float firstnode[3];
15 firstnode[0] = minbbox[0] + lag;
16 firstnode[1] = minbbox[1] + lag;
17 firstnode[2] = minbbox[2] + lag;
18

19 vertizer_struct ret;
20 for(int x=0; x<(int)vertices->size()/3; x++)
21 {
22 // cell indexes computation
23 unsigned int indexes[3];
24 for(int z=0; z<3; z++)
25 {
26 indexes[z] = (vertices->at(3*x+z)-minbbox[z]) /
27 voxel_length;
28

29 if(indexes[z] >= n) indexes[z] = n-1;
30 if(indexes[z] < 0) indexes[z] = 0;
31

32 ret.cellidx.push_back(indexes[z]);
33 }
34

35 // vertex offset from cell center computation
36 float centervox[3];
37 for(int z=0; z<3; z++)
38 {
39 centervox[z] = firstnode[z] +
40 (indexes[z]*voxel_length);
41

42 ret.offsets.push_back(vertices[3*x+z] -
43 centervox[z]);
44 }
45 }
46

47 return ret;
48 }

CPP code 10.18: Getting voxel cell coordinates of every model vertex, and its offset w.t.r. this
voxel’s center.

Research on Generic Interactive Deformable 3D Models

10.5. Voxelization of polygonal meshes 141

Operations with mesh-generated voxelmaps based on the set theory10.5.6

The voxelization process of a single three-dimensional model has been explained.
However, MeshInspeQTor permits more; now, it’s time to talk about the set theory applied
to complex sequential voxelizations. The application permits to define a 3D model by its
normal voxelmap or its inverted one —that means, validated voxels are considered invalid
and viceversa—, for combining them like sets of values by using union∪ or intersection
∩ set theory operators.

(a) Basic set theory operations. (b) A more complex set theory operations.

Figure 10.20: A clear examples of applied set theory; by considering the squares Ma and Mb as three-
dimensional volumetric representations, the application on mesh voxelization is noticeable.

An example of set theory applied to voxelmaps would be a scene composed by two
intersecting modelsMa andMb; so, if you want to obtain the voxelmap ofMa but without
the intersecting part with Mb, you have to specify, as can be seen in figure 10.20(b), the
following voxelization operation:

voxelization(Ma −Mb) ≡ Ma ∩ Mb

For achieving this purpose, MeshInspeQTor (i) executes a voxelization per model —
per OBJ group, indeed—; then (ii) applies the inverse operation if needed, and finally (iii)
combines the diverse voxelmaps per couples by applying the indicated set operator. It’s
important to notice that MeshInspeQTor only permits to apply a global intersection or a
global union with all the voxelmaps; this is a truly limitation but for the most common
cases it’s not a real problem.

For some examples of set theory application to velizations, please see section B.2.3.2
on page 216. These are the appendixs, containing user manuals for the two application
of the thesis developed software suite, so there are some snapshots of MeshInspeQTor after
applying some set theory operators to a multi-mesh voxelization are featured.

The Voxel Carving10.5.7

The standard total refilling strategy10.5.7.1

As explained before on section 4.2.2, on page 33, the objective of the voxel carv-
ing technique is to refill the empty inner zones of a convex mesh voxelization —in
the resulting voxelmap from a convex mesh voxelization, there won’t be inner voxels;
only outer voxels in the two disjoint subspaces split by the frontier voxels generated by
voxelization—.

Master Thesis in Computer Graphics by Marc Musquera Moreno

142 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

In the figure 4.6, on page 35, there is a complete six-step voxel carving for refilling
the voxelization of a three-dimensional torus. So, the code for this six steps is done by
the following commands:

1. generate an auxiliar voxelmap, completely set to true;

2. now is executed a per-boundingbox-n× n-face voxels’ linear tracking in direction
to its opposite cell —e.g., from the cell [0, 0, 0] to the [n, 0, 0] in directionX+, or from
[3, n, 2] to [3, 0, 2] in direction Y−—. In total, 6× n× n linear trackings.

3. the strategy for every linear tracking is the follow: setting all the cells to false
until the real voxelmap’s corresponding cell is true; then, the algorithm returns
and begins another linear tracking from other cell.

Figure 10.21: A n× n linear tracking —the X+ one indeed— of a cylinder voxel carving.

In this way, when the six n× n linear tracking steps are completed, the auxiliar vox-
elmap has converged to the real voxelmap —because the auxiliar cells have been rejected
until the first really validated cell is found—, with the inner parts refilled80.

The thesis’ innovative hole preserving algorithm10.5.7.2

The so called total refilling is the standard voxel carving method, but in MeshInspeQ-
Tor there has been another method, experimental and, at the same time, ideated for this
thesis. Receives the name of hole preserving, and it’s useful for execute a voxel carving
considering other inner objects as holes for the external ones.

The main differences between this new technique and the total refilling standard
one are basically:

• here the strategy is done with no optimization: six intermediate steps and the re-
sulting voxelmap is the intersection between them;

80 So, pay attention on that the algorithm does not execute six carving steps for building an intersection-
with-all new voxelmap, as indicated in the previously mentioned figure 4.6. On the figure MeshInspeQTor
was modified due to displaying the six steps, uniquely for documentation purposes.

Research on Generic Interactive Deformable 3D Models

10.6. Developed File Formats 143

• since the voxelmap is layered in the way that objects inside other objects are con-
sidered holes, and inner objects of this holes are considered again solid, and subse-
quently so on, there are more voxel typologies than the simple valid and invalid,
as shows the next table:

State Possible future carving states

EXTERNAL VOID nextcell: invalid EXTERNAL VOID
nextcell: valid OBJECT BEGINNING

OBJECT BEGINNING nextcell: invalid INTERNAL VOID
nextcell: valid OBJECT BEGINNING

INTERNAL VOID nextcell: invalid INTERNAL VOID
nextcell: valid OBJECT ENDING

OBJECT ENDING nextcell: invalid EXTERNAL VOID
nextcell: valid OBJECT ENDING

Table 10.5: Table of supported tokens for the developed OBJ model loader.

Developed File Formats10.6

Scene *.SCN File Format10.6.1

This own file specification permits store on hard-disk, for future loadings, the MeshIn-
speQTor graphical scene parameters, like the paths of the loaded OBJ models, as well as
the already parametrized VirtualCutters.

1 @3DINSPEQTOR_SCENE:FILEFORMAT_v1.0
2 @SCENE_MODELS
3 <numberof-loaded-obj-files>
4 <objpath1>
5 <model1-id>
6 <visualize-mode> <visualize-style> <bbox-wanted>
7 <numberof-groups>
8 <group1-id>
9 <visualize-mode> <visualize-style> <bbox-wanted>

10 <group2-id>
11 <visualize-mode> <visualize-style> <bbox-wanted>
12 [...]
13 <objpath2>
14 <model2-id>
15 <visualize-mode> <visualize-style> <bbox-wanted>
16 <numberof-groups>
17 [...]
18 [...]
19 @SCENE_VIRTUALCUTTERS
20 <numberof-virtualcutters>
21 <vc1-id>
22 <normalcoords> <displacementvalue> <visualize-mode>
23 <vc2-id>
24 <normalcoords> <displacementvalue> <visualize-mode>
25 [...]

PSEUDO code 10.19: MeshInspeQTor scene file format.

Master Thesis in Computer Graphics by Marc Musquera Moreno

144 Chapter 10. Thesis Software Suite: (1) MeshInspeQTor

VoxelMap *.VOX File Format10.6.2

This is the file format specification ready to store the voxelmap information, as well
as the vertized associated data if case.

1 @MESHINSPEQTOR_VOXELMAP:FILEFORMAT_v2.0
2 @VOXELMAP_GRID
3 <voxelmap-grid-size>
4 <voxelmap-boundingbox>
5 @VOXELMAP_DATA
6 <voxelmap-bytedata-;-bits-as-voxelvalue-paritybit>
7 @VOXELMAP_FFDV
8 <sizeof-model-data>
9 <vertized-model-vertices>

10 <model-normals>
11 <vertized-model-indexes>
12 <numberof-triangles>
13 <model-triangles-vertexindexes>

PSEUDO code 10.20: MeshInspeQTor voxelmap file format.

Research on Generic Interactive Deformable 3D Models

CHAPTER 11Thesis Software Suite:
(2) ForceReaQTor

Application Overview11.1

This is the second application of the software suite developed for this thesis project.
ForceReaQTor is a complete simulator of physically-based deformations composed by
a hybrid deformation system automatic generation module from three-dimensional vol-
umetric representations models: (i) the inner layer is a 3D non-rigid skeleton based on
a mass-spring system, while (ii) the surface layer is a pseudo-FFD-based deformable tri-
angular mesh. However, there’s no interactive feeling with the deformation model, but
a complete deformation specification panel set is featured on the application’s GUI for
experimenting with the generic 3D real-time deformations.

Figure 11.1: Informal UML diagram of ForceReaQTor internal functionalities.

145

146 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

In this chapter there will be described (i) all the real-time deformation algorithms to-
gether with (ii) all the simulation parameters and (iii) the different 3D rendering classes;
everything including a detailed code publication and data structure used specifications.

From VoxelMap to 3D Mass-Spring System11.2

Overview of the main ForceReaQTor preprocess11.2.1

ForceReaQTor, as said in the previous section, applies deformation forces to non-rigid
springs in a mass-spring system; and this mass-spring system is provided by a conve-
nient transformation of a generic voxelmap, previously generated by using the previous
application MeshInspeQTor —explained on the previous chapter—.

As mentioned before on section refsec:cloth, on page 65, a mass-spring model is com-
posed by mass points, connected together by a network of massless springs. Therefore,
ForceReaQTor transforms a voxelmap into a mass-spring system by:

• employing the centers of the validated voxels as the mass points of the system, by
generating automatically their relaxing coordinates;

• the network of springs is automatically generated by linking each voxelmap node
with —if it exists— its direct neighbour in the six face-cube- perpendicular direc-
tions; so: top, bottom, left, right, front and rear voxels will be —if they are really
a validated cell— the neighbour of every voxel;

the following code is the internal structure adopted by the DynamicVoxelMap class,
when ForceReaQTor imports a voxelmap by loading a VOX file and it adapts the map data
to the deformable model; notice that the vertized81 mesh-voxelmap association data is
omitted due to clarity reasons:

1 typedef struct {
2 int* hash; // acceleration hash-access
3 // data for masspoints.
4 unsigned char* cuts; // stores the possible
5 // spring cuttings.
6 bool* fixed; // indicates if a masspoint
7 // is fixed.
8 float* coords; // the masspoint set coords
9 unsigned int* nodes; // renderization data block

10 // for mass-points (OpenGL
11 // dedicated).
12 unsigned int* springs; // renderization data block
13 // for springs (OpenGL
14 // dedicated).
15 int n_nodes; // number of mass-points
16 int n_springs; // number of springs
17 int n_coords; // number of node coords
18 } DynVoxelMapData_struct;
19 DynVoxelMapData_struct dynvoxelmap;

CPP code 11.1: Internal data structure for mass-spring systems.

81 See section 10.5.5 on page 139 for more information.

Research on Generic Interactive Deformable 3D Models

11.2. From VoxelMap to 3d Mass-Spring System 147

The hash array block is used for neighbour testing and accessing in a single opera-
tion, a useful resource in a process where the computational time is a real handicap.

The conversion to a mass-spring system in detail11.2.2

There’s the conversion code from voxelmap cell center to the relaxing mass-point
coordinates; notice that, in every following code, a variable with the ‘m ’ prefix will be,
as the hungarian notation tells, module local variables.

1 // initialization of the acceleration hashing structure.
2 dynvoxelmap.hash = new int[m_nvox*m_nvox*m_nvox];
3 for(int x=0; x<m_nvox*m_nvox*m_nvox; x++)
4 dynvoxelmap.hash[x] = -1;
5

6 // m_bbox is a module variable containing the voxelmap
7 // bounding box ---elems [0,1,2] the minimum coordinates,
8 // and the [3,4,5] ones the maximum coords---; and m_int
9 // contains the regular-grid voxel edge length.

10 m_firstnode[0] = m_bbox[0] + abs(m_int/2);
11 m_firstnode[1] = m_bbox[1] + abs(m_int/2);
12 m_firstnode[2] = m_bbox[2] + abs(m_int/2);
13 vector<float> coords;
14 vector<unsigned int> nodes;
15

16 // automatic generation of the relaxing coordinates
17 // of the mass points, by assigning the voxel center
18 // position by knowing the number of voxels and the
19 // voxelmap bounding box.
20 float it = 0.0;
21 int X = m_nvox; int Y = m_nvox; int Z = m_nvox;
22 int counter = 0;
23 for(int i=0; i<m_nvox; i++)
24 for(int j=0; j<m_nvox; j++)
25 for(int k=0; k<m_nvox; k++)
26 {
27 // 3D to 1D injective association
28 int idx = ((i*Y) + j)*X + k;
29 if(voxelmap[idx])
30 {
31 dynvoxelmap.hash[idx] = counter;
32 nodes.push_back(counter);
33 counter++;
34

35 coords.push_back(firstnode[0] +
36 abs(i*m_intx));
37 coords.push_back(firstnode[1] +
38 abs(j*m_inty));
39 coords.push_back(firstnode[2] +
40 abs(k*m_intz));
41 }
42 }
43

44 dynvoxelmap.n_coords = coords.size()/3;
45 dynvoxelmap.coords = new float[coords.size()];
46 for(int x=0; x<(int)coords.size(); x++)
47 dynvoxelmap.coords[x] = coords[x];

CPP code 11.2: Voxelmap conversion to a mass-spring system: mass point generation.

Master Thesis in Computer Graphics by Marc Musquera Moreno

148 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Let’s see now the conversion code relative to the spring generation. Since the springs
are uniquely a graphical entity —for an algorithm, the spring is stored as the neighbour-
hood between two mass points—, so this code is based on the generation of the coher-
ent data block for displaying springs with the OPENGL Vertex Arrays —technique
explained on section 10.3.1, on page 118—, as well for mass-point data block.

1 dynvoxelmap.n_nodes = nodes.size();
2 dynvoxelmap.cuts = new unsigned char[nodes.size()];
3 dynvoxelmap.nodes = new unsigned int[nodes.size()];
4 for(int x=0; x<(int)nodes.size(); x++)
5 {
6 dynvoxelmap.nodes[x] = nodes[x];
7 dynvoxelmap.cuts[x] = CUT_NOCUTS;
8 }
9

10 vector<unsigned int> springs;
11 for(int facX=0; facX<m_nx; facX++)
12 for(int facY=0; facY<m_ny; facY++)
13 for(int facZ=0; facZ<m_nz; facZ++)
14 {
15 int i=facX; int j=facY; int k=facZ;
16 int idx = ((i*Y)+ j)*X + k;
17 if(dynvoxelmap.hash[idx] == -1) continue;
18

19 if(i+1 < m_nx)
20 {
21 int idx_x1 = (((i+1)*Y) + j)*X + k;
22 if(dynvoxelmap.hash[idx_x1] >= 0)
23 {
24 springs.push_back(dynvoxelmap.hash[idx]);
25 springs.push_back(dynvoxelmap.hash[idx_x1]);
26 }
27 }
28 if(j+1 < m_ny)
29 {
30 int idx_y1 = ((i*Y) + j+1)*X + k;
31 if(dynvoxelmap.hash[idx_y1] >= 0)
32 {
33 springs.push_back(dynvoxelmap.hash[idx]);
34 springs.push_back(dynvoxelmap.hash[idx_y1]);
35 }
36 }
37 if(k+1 < m_nz)
38 {
39 int idx_z1 = ((i*Y) + j)*X + k+1;
40 if(dynvoxelmap.hash[idx_z1] >= 0)
41 {
42 springs.push_back(dynvoxelmap.hash[idx]);
43 springs.push_back(dynvoxelmap.hash[idx_z1]);
44 }
45 }
46 }
47

48 dynvoxelmap.n_springs = springs.size();
49 dynvoxelmap.springs = new unsigned int[springs.size()];
50 for(int x=0; x<(int)springs.size(); x++)
51 dynvoxelmap.springs[x] = springs[x];

CPP code 11.3: Mass-spring system renderization adequation: node-spring generation.

Research on Generic Interactive Deformable 3D Models

11.2. From VoxelMap to 3d Mass-Spring System 149

Displaying the mass-spring system11.2.3

Once the dynvoxelmap.nodes and dynvoxelmap.springs Vertex Array dedi-
cated data blocks have been computed in the conversion preprocess, the displaying is
able to be done. This is the result of displaying a 8 × 8 × 8 voxelmap of a sphere as a
mass-spring system.

(a) Triangular mesh. (b) Mass-spring system.

Figure 11.2: The total conversion from a 3D model to its mass-spring system —the voxelmap is omitted
but it can be deduced from the mass-spring system nodes.

Notice that the voxelmap has been carved for a more exact non-rigid skeleton feel-
ing of the mass-spring system; ForceReaQTor deforms better mass-spring systems de-
rived from carved voxelmaps that from voxelmaps without carving process. This is due
to the carving process adds internal validated nodes, so the non-rigid skeleton will lo-
cate the masspoints in a more regular grid way.

That’s the Vertex Array renderization code by using the preprocessed data blocks.

1 glDisable(GL_LIGHTING);
2

3 // node rendering
4 glPointSize(m_voxelfactor);
5 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
6 glColor4f(0.0, 0.6, 0.6, 1.0);
7 glEnableClientState(GL_VERTEX_ARRAY);
8 glVertexPointer(3, GL_FLOAT, 0, dynvoxelmap.coords);
9 glDrawElements(GL_POINTS, dynvoxelmap.n_nodes,

10 GL_UNSIGNED_INT, dynvoxelmap.nodes);
11 glDisableClientState(GL_VERTEX_ARRAY);
12 glPointSize(1.0);
13

14 // spring rendering
15 glLineWidth(m_springfactor);
16 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
17 glColor4f(0.5, 0.5, 0.5, 1.0);
18 glEnableClientState(GL_VERTEX_ARRAY);
19 glVertexPointer(3, GL_FLOAT, 0, dynvoxelmap.coords);
20 glDrawElements(GL_LINES, dynvoxelmap.n_springs,
21 GL_UNSIGNED_INT, dynvoxelmap.springs);
22 glDisableClientState(GL_VERTEX_ARRAY);
23 glLineWidth(1.0);

CPP code 11.4: Mass-spring system Vertex Array renderization code.

Master Thesis in Computer Graphics by Marc Musquera Moreno

150 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

The Dynamic Force Data Structure11.3

Predefined deformations. The Timeline Simulation Specification11.3.1

The GUI configuration panel11.3.1.1

ForceReaQTor supports dynamic deformations based on applying forces to the mass-
spring nodes, and then computing the visoelastic effects of the springs due to the node
displacement. However, there is no interactive method for three-dimensional model
deformation, such as a deformation occurs by a keyboard, mouse, or any action pro-
vided with other device.

Indeed, there’s a configuration panel in the ForceReaQTor GUI, that allows the appli-
cation user to define a set of dynamical deformation tools. Moreover, every dynamic
element has a lifetime, specified by a starting and ending time instants, completely con-
figurable from the GUI dedicated panel.

Figure 11.3: The ForceReaQTor dynamic force configuration panel —zoomed—.

In the above figure there’s a snapshot of the previously mentioned configuration
panel for dynamic force application. As can be seen, it’s subdivided in three zones —
apart from the list of stored ones, that permits creating, deleting or modifying dynamic
applications—:

1. the id and dynamic typification zone; here there’s a textbox for typing the unique
identificator of the dynamic and the dynamic class can be chosen; there are three
options, explained in the subsequent subsection: (i) force and (ii) fixing node, ap-
plied both two to a mass-point set, and (iii) spring cutting, applied to a spring set;

2. the 3D application range zone, where the user can specify the node —or spring—
range in the three axis directions;

3. the dynamic force parameters zone, which will manage the force amount (int new-
tons N) and direction —if case—, and the lifetime of the selected dynamical force,
specified by starting and ending miliseconds;

Research on Generic Interactive Deformable 3D Models

11.3. The Dynamic Force Data Structure 151

Independence between lists of dynamic forces and voxelmaps11.3.1.2

It’s important to notice that the node set range will be never dependant of the vali-
dated cells in the voxelmap. Indeed, any list of dynamic forces is independent of any
voxelmap, so the same list can be applied to different voxelmaps, and more than one
list can be applied to the same voxelmap, because there are non-related data entities.
Hence, ForceReaQTor will automatically filter the node set range: if the range achieve
non-validated active voxelmap cells, that cells will be simply ignored.

Data structure for dynamic forces11.3.1.3

ForceReaQTor is able to manage every dynamic force class described in this section,
and for that, there are two classes, DynamicForce and ListOfDynamicForces, that
supports all these features. At first, there’s the internal structure for a dynamic force,
with methods for discerning about the typification:

1 typedef struct {
2 float x;
3 float y;
4 float z;
5 } triplet;
6

7 triplet direction;
8 vector<triplet> positions;
9 int miliseconds;

10 float newtons;
11

12 // distinction methods
13 bool isForce()
14 { return (newtons > 0); }
15 bool isFixed()
16 { return (newtons < 0); }
17 bool isCut()
18 { return (newtons == 0); }

CPP code 11.5: Dynamic Force internal data structure.

Notice, however, that here the dynamic force has no starting instant time nor ending
one but lifetime in miliseconds. There’s no variable for storing the force identificator.
So, the timeline location as well as the id management is done by the dynamic force
container, the ListOfDynamicForces module:

1 typedef struct {
2 DynForce force;
3 int startms;
4 } simulationforce;
5

6 map<string,simulationforce> mapforces;
7 vector<string> lstforces;
8

9 map<string,simulationforce>::iterator itmap;
10 vector<string>::iterator itlst;

CPP code 11.6: Dynamic Force Container internal data structure.

Master Thesis in Computer Graphics by Marc Musquera Moreno

152 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Dynamic Factor Typologies11.3.2

Dynamic Forces11.3.2.1

That’s the most common dynamical application offered by MeshInspeQTor. Indeed,
the configuration panel has been built by thinking of this kind of success, because it per-
mits to configure all the parameters. So, by specifying a nodeset range and force direction
and amount with its own lifetime, it will be stored on the ListOfDynamicForces —
sorted by starting instant time—:

• the map<string,simulationforce> mapforces variable —line 6 of the pre-
vious code— stores the dynamic force data and its starting time —the ending time
is computed by the starting time plus its duration— with instant access by using
their identificator;

• the vector<string> lstforces —line 7— is always being resorted by any cre-
ation, delete or modification of dynamic forces, for achieving a per-starting-time or-
dering of forces; so, a sequential tracking of lstforces gives the dynamic forces
in order of appearance.

Node Fixing11.3.2.2

The node fixing is a kind of dynamical force that avoids any position change for the
mass-points included in the specified node set. Because of this, the force amount and
direction are not necessary parameters, as long as the lifetime specification, because in
ForceReaQTor a mass-point is considered fixed always during a deformation.

(a) Panel for ‘fixing’ forces; notice
that only the node set range is
available for being edited.

(b) Panel for ‘cutting’ forces; since a
cutting is permanent once done,
the starting lifetime is available.

Figure 11.4: The dynamic force configuration panels for ‘fixing’ and ’cutting’ classes.

Spring Cuttings11.3.2.3

The last type of dynamical application is the most complex of the three: the spring
cutting. It’s really the most complex because the fixing avoid any modification, while the
dynamic force changes the mass-point position as well as handles the system restrictions.

Research on Generic Interactive Deformable 3D Models

11.4. The Deformation Simulator 153

Nevertheless, the spring cutting breaks the topology of the mass-spring system be-
cause it cuts the neighbouring between two initially adjacent cells. Therefore, by setting
the spring —not node— range set, and specifying the starting instant time for the cut-
ting action, everything is done, the simulator will do the rest. There won’t be any lifetime
ending because in ForceReaQTor the cutting will be considered permanent.

The Deformation Simulator11.4

A thread-powered module; the FPS imposed rating11.4.1

ForceReaQTor executes the simulation of dynamic force application within a parallel
execution to the main application thread, such that even the mass-spring system de-
formation based on numerical integration is computed in parallel to the mass-spring’s
own renderization.

1 void* run(void)
2 {
3 renderscene = true;
4 while(true)
5 {
6 if(!renderscene && timethrough_enabled)
7 {
8 clock_t clk = clock();
9 ForceAccumulator();

10 float lag = (clock()-clk) /
11 (float)CLOCKS_PER_SEC;
12 NumericalIntegration(lag);
13

14 counter += lag;
15 timestep += lag;
16 }
17 else if(renderscene)
18 {
19 timestep = 0.0;
20 renderscene = false;
21 }
22 }
23 }
24

25 // ForceReaQTor computational time execution
26 float getTimeCounter() { return counter; }
27 void resetTimeStep() { timestep = 0.0; }
28 float getTimeStep() { return timestep; }
29 bool renderScene() { if(renderscene) return false;
30 renderscene = true;
31 NumericalIntegration_GL();
32 return true; }
33

34 // ForceSimulator execution control methods
35 void play(void) { timethrough_enabled = true; }
36 void pause(void) { timethrough_enabled = false; }
37 void stop(void) { timethrough_enabled = false;
38 counter = 0.0; timestep = 0.0; }

CPP code 11.7: ForceSimulator main deformation thread execution.

Master Thesis in Computer Graphics by Marc Musquera Moreno

154 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

By using the renderScene()method —line 29—, ForceReaQTor permits a controlled
FPS renderization rate; so, assuming, for example, a 20 FPS rate, it’s known that the time
period between two frames is 1000ms/20fps = 50ms/frame. Then:

• thus, for each 50ms pass, a renderScene() calling has to occur from the main
ForceReaQTor execution thread —that whose handles the GUI—; and, as can be seen
in code’s line 31, in this calling there’s a mass-spring system integration rendering-
dedicated (the GL postfix is describing that);

• if renderScene() returns true, at least one numerical integration step has been
computed, so the new mass-spring system state matrix has to be renderized;

• so, if one calling returns false —see code for the possibility—, the simulation cannot
be done in the specified framerate, and a message error must be thrown, and the
simulation must be stopped.

all of that is resumed in the following code, executed for each frame computational time;
there are some called methods not explained before, but the method name itself it’s quite
selfexplanatory, so it can be understood easily:

1 ForceSimulator* forcesimulator;
2 ListOfDynamicForces* listdynamicforces;
3 QGLScene* glscene; // opengl context for renderization
4

5 void newFrameRenderization()
6 {
7 float simulation_time =
8 forcesimulator->getTimeCounter();
9 int ms_timelag = (int)(simulation_time*1000);

10 if(ms_timelag < simulation_timestep) return;
11

12 float timelag = forcesimulator->getTimeStep();
13 vector<DynForce*> actualactiveforces =
14 forcesimulator->getActiveDynForces();
15 vector<DynForce*> actualfixedforces =
16 listdynamicforces.getFixedDynForces();
17 for(int k=0; k<(int)actualfixedforces.size(); k++)
18 actualactiveforces.push_back(actualfixedforces[k]);
19 glscene->setListOfReactingDynForces(actualactiveforces);
20

21 vector<DynForce*> actualcutforces =
22 simulator->getActiveCutForces();
23 glscene->activeDynamicCuts(actualcutforces);
24

25 if(!simulator->renderScene())
26 {
27 forcesimulator->stop();
28 errorMessage();
29 }
30 else
31 {
32 glscene->updateDynamicSystemCoords();
33 glscene->renderScene();
34 }
35 }

CPP code 11.8: ForceReaQTor per frame mass-spring renderization update.

Research on Generic Interactive Deformable 3D Models

11.4. The Deformation Simulator 155

The detailed deformation algorithm11.4.2

As can be seen in code 11.7, there are two basic steps for computing physically-based
deformations:

• ForceAccumulator—line 9—, that computes the actual mass-spring system state
matrix together with the current dynamical active forces —or cuttings— for obtain-
ing the restricting forces for the next integration step.

• NumericalIntegration —line 12—, that gets the restricting forces computed by
the previous function and executes the numerical integration to a new mass-spring
system state matrix.

In the following pages, these two steps will be detailed in terms of algorithmic pur-
poses. However, since ForceAccumulator is the most complex of the two steps, the
explanation will begin with the other step, NumericalIntegration. But before focus-
ing into the deformation, it will be useful to show the internal structure that is handled
by the ForceSimulator module:

1 typedef struct {
2 int* hashing; // same as DynamicVoxelMap
3 unsigned char* cuts; // " "
4 bool* fixed; // " "
5 int ncoords; // " "
6 float* origin; // the initial mass-point
7 // set coordinates
8 float* cdprev; // Verlet integrator’s
9 // previous coordinate set

10 float* vecvel; // Euler integrator’s
11 // previous coordinate set
12 float* coords; // actual mass-point
13 // coordinate set
14 float* gl_coords; // rendering mass-point
15 // coordinate set
16 float* forces; // actual retricting forces
17 } DynVoxelMapSpec_struct;
18 DynVoxelMapSpec_struct mapspec;

CPP code 11.9: ForceSimulator internal handled data.

The Numerical Integrators11.4.3

Introduction to the integration algorithms11.4.3.1

Roughly speaking, in ForceReaQTor’s ForceSimulator module the numerical in-
tegrators are those whose modify the state matrix; and in ForceSimulator’s internal
data —DynVoxelMapSpec struct— it is:

• for the Verlet integrator: coords and cdprev;

• for the Euler integrator: coords and vecvel;

Additionally, there’s a pseudo-integrator for rendering purposes thrown by calling
NumericalIntegration GL(), that uniquely transfers the coords data to gl coords
data —and gl coords is the data block for the next rendered frame—.

Master Thesis in Computer Graphics by Marc Musquera Moreno

156 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Even, the following algorithms for both Euler and Verlet numerical integrators sup-
ports a preprocessed acceleration by a validnodes array, that includes, from all the
possible nodes of the original voxelmap, not only the validated cells —that is, those that
are mass-points too— but also those whose there aren’t fixed.

Euler Integrator11.4.3.2

1 void NumericalIntegration_Euler(float dt)
2 {
3 for(int z=0; z<(int)validnodes.size(); z++)
4 {
5 ValidNode nod = validnodes[z];
6 for(int k=0; k<3; k++)
7 {
8 mapspec.vecvel[nod.hash*3 + k] +=
9 mapspec.forces[nod.hash*3 + k]*dt;

10 mapspec.coords[nod.hash*3 + k] +=
11 mapspec.vecvel[nod.hash*3 + k]*dt;
12 }
13 }
14 }

CPP code 11.10: Euler numerical integration algorithm.

Verlet Integrator11.4.3.3

1 void NumericalIntegration_Verlet(float dt)
2 {
3 for(int z=0; z<(int)validnodes.size(); z++)
4 {
5 ValidNode nod = validnodes[z];
6 float actual[3];
7 for(int k=0; k<3; k++)
8 {
9 actual[k] = mapspec.coords[nod.hash*3 + k];

10 // the 1.89 and 0.89 floating values are
11 // quasi-2 and quasi-1 respective values for
12 // faster stability convergence.
13 mapspec.coords[nod.hash*3 + k] =
14 1.89*mapspec.coords[nod.hash*3 + k] -
15 0.89*mapspec.cdprev[nod.hash*3 + k] +
16 mapspec.forces[nod.hash*3 + k]*dt*dt;
17 mapspec.cdprev[nod.hash*3 + k] = actual[k];
18 }
19 }
20 }

CPP code 11.11: Verlet numerical integration algorithm.

Force Accumulator11.4.4

Introduction to Force Accumulation11.4.4.1

The complex part of deformation algorithms will be now featured. The force accu-
mulators are, in ForceReaQTor, the total amount of forces applied to the mass-spring
system, given an instant time.

Research on Generic Interactive Deformable 3D Models

11.4. The Deformation Simulator 157

Cloth 2D internal restrictive forces, applied to volumetric deformable systems.

The following featured algorithms will compute the same restrictive deformation
forces as applied for cloth simulation, as explained in section 6.3.1.4, on page 65: stretch,
shear and bending, but on a 3D scheme instead of the basic 2D one.

Figure 11.5: The ForceReaQTor implemented restricting forces, in a 2D scheme.

Besides, all the restricting force applications have been optimized by using the pre-
processed validnodes data array, so therefore, voxels without their correspondent mass-
point won’t be accessed ever.

There are another optimizations available and ready to be supported, like the fol-
lowing two, closely related to the simetric restrictive force application to opposite and
affected each together mass-points

• since the internal force between two nodes is computed with viscoelastic properties,
and all the mass-spring system is mass-regular, it can be deduced that given two
nodes na and nb, and describing ~Fab as the vectorial-component force between na
and nb but from the na point of view:

Fab = Fba ⇐⇒ ~Fab = −~Fba

so calculating the force between two nodes once and giving to the other node the
opposite value, the number of processings is divided by two;

• moreover, it’s ensured a subsequent and logical force accumulator processing, so
the same force —or its opposite— will never be computed more than once;

The great computational handicap: the number of mass-points.

The two previously mentioned optimizations —no force calculus repetition and ap-
plication of the simmetric forces— are a good chance for being implemented.

However, because of the need of applying an important optimization about the
number of mass-points that are composing the deformable system, no one of two can
be applied because a force assimetry conflict could surely be created with this new op-
timization.

Master Thesis in Computer Graphics by Marc Musquera Moreno

158 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

The mass-point deformable system has a terrible handicap w.r.t. the computational
cost of applying a force accumulator, and it’s relatively independent from the dynamic
effects processing: the cardinality of those mass-points is the key for having a fluid an-
imation, or on the other side, falling into a chaotic system. Just as easy example, imagine
a mass-point system that only occupes the 1/8 of the entire voxelmap; depending on the
voxelmap grid size, the number of mass-points will increase brutally:

VoxelMap Grid Size Total Number of Voxels 1/8 of total

16× 16× 16 4.096 512
32× 32× 32 32.768 4.096
64× 64× 64 262.144 32.768

128× 128× 128 2.097.152 262.144

Table 11.1: Exemplification of the brutal increasing of mass-point cardinality on a 1/8-occuping de-
formable system by only changing the voxelmap grid size.

So, it’s easily deducible that the more the voxel grid size increases, the more the
number of force accumulator iterations will be dramatically reduced, so the system
will be able to become chaotic or unstable with facility. For solving that, there are to be
explained some new concepts; the solution will be provided later, on future section 11.8.

The algorithm for the Force Accumulator.

Keeping in mind this computational problem of the deformable system cardinality,
let’s go with the algorithm for the Force Accumulator, thatvcan be resumed on two
steps:

1. setting the time step local forces to null —not the global mass-point set applied
forces, only the time step relative—, and then applying the external forces, if case;

2. processing the internal restrictive forces between system adjacent mass-points for
avoiding the deformation provoques by the —actual or not— external forces82

1 void ForceAccumulator()
2 {
3 setInitialForces(); // setting new mass-spring
4 // system state matrix to an
5 // initial zero-applied-force.
6 applyActualForces(); // external force application.
7

8 // restrictive internal force application; due to
9 // equivalent algorithmic behaviour, ’stretch’ and

10 // ’bend’ effects are supported by the same method.
11 if(stretch) AccumStretchBending(ACCUM_STRETCH);
12 if(shear) AccumShear();
13 if(bend) AccumStretchBending(ACCUM_BENDING);
14 }

CPP code 11.12: Force Accumulator sequential force application.

82 If a force in the past has modified the position of a mass-point, there’s still a restrictive force that will
try to return the cited mass-point to its original location. Until not achieving its relaxin position, there will
be restrictive internal forces applied over it.

Research on Generic Interactive Deformable 3D Models

11.4. The Deformation Simulator 159

Additionally, here will be shown the code for calculating the viscoelastic spring re-
strictive force between two nodes —pointed by their respective internal hashing indexes—
, as well as the respective applying force typification —stretch, shear or bending—.

By reminding the spring coeficient restrictive force between two nodes —featured
on section 6.3.1.4, on page 65—, the acting force on a mass point i generated by a spring
connection with another mass point j is

fi = ks
(
|xij | − lij

)
· xij
|xij |

, fj = −fi

where lij is the reference —initial, relaxing— spring length. In ForceReaQTor, this lij
parameter is called L; and this fixed reference length is directly proportional to the
applying force —see figure 11.5 on the previous page— as can be seen in the following
lines 17..22:

1 vector<float> getSpringCoefAccum(int hash_ini,
2 int hash_end,
3 int dynamicmode)
4 {
5 float Ks = m_param_elasticity;
6 float Kd = m_param_dampening;
7 float XX[3], VV[3]; // dir. & vel. vectors
8 float mX, L, coef, mXmL; // spring eq. params
9 for(int k=0; k<3; k++)

10 {
11 XX[k] = mapspec.coords[hash_ini*3+k] -
12 mapspec.coords[hash_end*3+k];
13 VV[k] = mapspec.vecvel[hash_ini*3+k] -
14 mapspec.vecvel[hash_end*3+k];
15 }
16

17 switch(dynamicmode)
18 {
19 case ACCUM_STRETCH: L = m_voxellength; break;
20 case ACCUM_SHEAR: L = m_diagMajor; break;
21 case ACCUM_BENDING: L = 2*m_voxellength; break;
22 }
23

24 // offsetEqual returns true if mX is within
25 // [L - L*0.1, L + L*0.1] range. This is for
26 // converging to the relax avoiding numerical
27 // integration accumulation errors.
28 mX = modulevector(XX);
29 if(offsetEqual(mX, L, 0.1) mXmL = 0.0;
30 else mXmL = mX - L;
31

32 normalizevector(XX, XX);
33 coef = (Ks*mXmL) + (Kd*dotprod(VV,XX));
34

35 vector<float> ret;
36 ret.push_back(-coef*XX[0]);
37 ret.push_back(-coef*XX[1]);
38 ret.push_back(-coef*XX[2]);
39 return ret;
40 }

CPP code 11.13: Per-spring Force Accumulator calculus.

Master Thesis in Computer Graphics by Marc Musquera Moreno

160 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Stretching and Bending11.4.4.2

As said previously, the stretch and bend dynamical effects are supported in ForceReaQ-
Tor by the same algorithm, because stretch is the longitudinal force between neighbour
nodes while bend is the 2nd order longitudinal force between two nodes —that is, there
is an existint, neighbour of both implied mass points, between them—.

The processNeighbourForces method is, then, the basis of stretch and bend effect
application to this node; this method receives the reference mass point and the spec-
ified dynamical effect —stretch or bend— and computes every longitudinal specified
force between the reference mass-points and its existing 1st or 2nd order neighbours
—depending on the applied dynamical effect—.

1 #define ACCUM_STRETCH 0
2 #define ACCUM_BENDING 1
3

4 vector<float> processNeighbourForces(int i, int j, int k,
5 int dynamicmode)
6 {
7 int step = 1+dynamicmode;
8 vector<float> coef;
9 for(int x=0; x<3; x++) coef.push_back(0.0);

10 vector<float> tmp;
11 int NX = m_nvoxels;
12 int NY = m_nvoxels;
13 int idx = ((i*NY) + j)*NX + k;
14 int hash_idx = mapspec.hashing[idx];
15

16 // application of mutual restrictive neighbouring forces
17 int neighbour[3];
18 neighbour[0] = i+step<NX ? i+step : -1; // horizontal
19 neighbour[1] = j+step<NX ? j+step : -1; // vertical
20 neighbour[2] = k+step<NX ? k+step : -1; // frontal
21 int neighidx[3];
22 neighidx[0] = (((i+step)*NY) + j)*NX + k;
23 neighidx[1] = ((i*NY) + (j+step))*NX + k;
24 neighidx[2] = ((i*NY) + j)*NX + (k+step);
25

26 for(int x=0; x<3; x++)
27 {
28 if(neighbour[x] == -1) continue;
29

30 int hash_idx_NEIGH = mapspec.hashing[neighidx[x]];
31 tmp = getSpringCoefAccum(hash_idx,
32 hash_idx_NEIGH,
33 dynamicmode);
34 for(int z=0; z<3; z++)
35 {
36 coef[z] += tmp[z];
37 mapspec.forces[3*hash_idx_NEIGH+z] -= tmp[z];
38 }
39 }
40

41 return coef;
42 }

CPP code 11.14: Longitudinal restrictive force application.

Research on Generic Interactive Deformable 3D Models

11.4. The Deformation Simulator 161

Therefore, once the n-th order neighbour longitudinal restrictive force processing has
been specified for a certain mass-point described by its (i, j, k) voxelmap indexes, the
basic scheme of this stretch and bend application is a simple tracking over the valid
nodes, as shown on the following code:

1 void AccumStretchBending(int accumulator_mode)
2 {
3 vector<float> coef;
4 for(int z=0; z<(int)validnodes.size();
5 z+=1+accumulator_mode)
6 {
7 ValidNode nod = validnodes[z];
8 coef = processNeighbourForces(nod.i, nod.j, nod.k,
9 accumulator_mode);

10

11 mapspec.forces[nod.hash*3+0] += coef[0];
12 mapspec.forces[nod.hash*3+1] += coef[1];
13 mapspec.forces[nod.hash*3+2] += coef[2];
14 }
15 }

CPP code 11.15: Stretch and Bend effect application algorithm.

At the following figures there are featured three mass-spring deformations of a 4 ×
4 × 4 cube by applying the recently explained deformation ForceReaQTor algorithms
when gravity deforms the cubic mass-spring system.

(a) ‘stretch’. (b) ‘bend’. (c) ‘stretch’ + ‘bend’.

Figure 11.6: ForceReaQTor applying ‘stretch’ and ‘bend’ deformation effects to a 4×4×4 cube after fixing
the upper vertices and applying gravity force; notice that the combined deformation offers more equilibred
results.

Shearing11.4.4.3

This is a more complex effect, because it affects a non-spring direct deformation:
shear is a restrictive internal force between a node and its cube-diagonal-opposites.

Because of that, the previously detailed method processNeighbourForces can-
not be used here; so, there’s another method, called processDiagonalForces, that
receives the mass-point reference in terms of its original location within the imported
voxelmap.

Master Thesis in Computer Graphics by Marc Musquera Moreno

162 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

However, the code of this function will not be shown because the methodology is
the same that for the stretch variant within processNeighbourForces, but linking
every node with the eight cube-diagonal-opposite ones, not the six spring-connectec
mass-points.

Figure 11.7: One of the four diagonals of a single cube.

As seen in the figure above, the only important thing to be careful with is that now
the reference distance won’t be the voxel edge length but the major diagonal83 of the
cube, as mentioned before. So, the code for the linear tracking of shear application will be
shown for a better understanding of the shear linear tracking:

1 void AccumShear()
2 {
3 // the voxel’s diagonal between the lower and greater
4 // vertices are computed here and stored on the local
5 // variable m_diagMajor, used later in the final
6 // getSpringCoefAccumulator(...) method.
7 float minordiag = (m_inty*m_inty) + (m_intz*m_intz);
8 m_diagMajor = sqrt((m_intx*m_intx) + minordiag);
9

10 vector<float> coef;
11 for(int z=0; z<(int)validnodes.size(); z++)
12 {
13 ValidNode nod = validnodes[z];
14 coef = processDiagonalForces(nod.i, nod.j, nod.k);
15

16 mapspec.forces[nod.hash*3+0] += coef[0];
17 mapspec.forces[nod.hash*3+1] += coef[1];
18 mapspec.forces[nod.hash*3+2] += coef[2];
19 }
20 }

CPP code 11.16: Shear effect application algorithm.

The figures shown in the next page features the effect of shear applied to the same
4×4×4 cube of the previous section, and also two more combinations: the middle one is
a shear effect applied with stretch84, and the right one is the mix of all the restrictive forces
—stretch, bend and also the new one, shear—85.

83 The minor diagonal of a cube will be the diagonal of a cube’s face, so the major diagonal covers the
volume of the cube instead of the face area in the case of the minor one.

84 Indeed, the stretch dynamical restriction force effect is the basic spring deformation application; with no
stretching, it’s near to impossible to obtain a realistic behavior of a deformation animation.

85 The deformation conditions, of course, are also the same: the upper mass points of the cube has been
fixed while the unique external force inciding the model is the gravity.

Research on Generic Interactive Deformable 3D Models

11.5. Volume Preservation 163

(a) ‘shear’. (b) ‘stretch’ + ‘shear’. (c) ‘stretch’ + ‘bend’ + ‘shear’.

Figure 11.8: A 4 × 4 × 4 cube mass-spring system where it’s applied ‘shear’ deformation forces together
with some ‘stretch’ and ‘bend’ factors after applying gravity to the deformation model.

Volume Preservation11.5

The need for volume preservation11.5.1

For achieving the cubical mass-spring system deformation in the figures 11.6 and 11.8,
i has been said that, apart from applying gravity force, the upper vertices were fixed. The
reason of doing this is that, though any model is initially relaxed and maintaining its
shape, when an external force is applied to at least one mass-point, a chain reaction
begins and all the model loses its original form due to the imposed deformation.

This problem can be easily seen in the following figure, featuring an initially unde-
formed mass-spring system of a dolphin voxelmap, and only 1 seconds after applying a
external 10N elevating force to its dorsal fin.

(a) the mass-spring system at external force ini-
tial application; the model is still relaxed and
maintaining its original shape.

(b) one second later, all the model has been too
much deformed and it will never recover its
form due to system’s deformating inertia.

Figure 11.9: The shape/volume preserving example problem.

Master Thesis in Computer Graphics by Marc Musquera Moreno

164 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Fixing nodes for volume preservation11.5.2

Once exposed the problem, a possible solution would be to specify some mass
points to be fixed for ensuring that not all the system will be deformed. However,
it implies:

• a post process, non automatic —a priori—, that requires to fix some system regular
spaced mass-points;

• the advantage of this technique is also its drawback: these mass points will never
be able to be moved, so the deformation can result in a strange behaviour —or
even provoquing system unstabilities—;

• the deformation will be restricted in the volume between fixed mass-points, but
also unhandled, so the will be some free shapeless deformation zones while an-
other zones will be untouched.

(a) the mass-spring system at external force initial
application.

(b) force’s one second lifetime instant; the system
couldn’t escape.

(c) the force has been disappeared; there’s only
deeformation inertia.

(d) at the end, only the fixed nodes have main-
tained the shape.

Figure 11.10: Fixing nodes as volume preservation solution example.

So much little amount of advantages in front of too much handicaps to be solved. At
the figure above there’s an example of why the problem is not avoided by fixing nodes
—though, the fixing process is vast for growing up the drawback sensation— by applying
an external force to another dolphin’s mouth, by fixing its body. Even, though achieving
a total shapeless avoiding by fixing nodes, the deformation will never become realistic.

ForceReaQTor’s adopted solution: the autostretching11.5.3

ForceReaQTor adopts a fast, good, ensure and fiable solution for maintaining and
preserving the original shape as long as also its volume. The techniue consists basically
in generating invisible springs between a phantom model, undeformable and equiva-
lent to the initially relaxing mass-spring system, and the corresponding points to the
deformable model.

Research on Generic Interactive Deformable 3D Models

11.5. Volume Preservation 165

This methodology, that in ForceReaQTor receives the name of autostretching, and it
offers the following advantages:

• an automatically handled deformation wit no losing the shape even in the defor-
mation itself;

• no other postprocesses for avoiding undesired behaviours;

• all the system is deformed in a self-managed way;

however, there’s some limitations that must be taken in account:

• the deformation is restricted in terms of distance with respect to the original mass
point position;

• not all kind of deformations are supported; extreme bending deformations won’t
be possible due to the autostretch damping;

• the mass-spring system can’t be displaced, even the displacement would be really
desired, so this preservation avoids controlled translations.

1 vector<float> getSpringCoefAutoAccum(int hash_idx)
2 {
3 float Ks = m_param_elasticity;
4 float Kd = m_param_dampening;
5 float XX[3], VV[3]; // dir. & vel. vectors
6 float mX, L, coef, mXmL; // spring eq. params
7

8 // now the XX value is the vector between the actual
9 // position and the phantom relaxing coordinates;

10 // also, the velocity is simply the actual, because
11 // the phantom model has no inherent velocity.
12 for(int k=0; k<3; k++)
13 {
14 XX[k] = mapspec.coords[hash_idx*3+k] -
15 mapspec.origin[hash_idx*3+k];
16 VV[k] = mapspec.vecvel[hash_idx*3+k];
17 }
18

19 // offsetEqual returns true if mX is within
20 // [L - L*0.1, L + L*0.1] range. This is for
21 // converging to the relax avoiding numerical
22 // integration accumulation errors.
23 mX = modulevector(XX);
24 if(offsetEqual(mX, L, 0.1) mXmL = 0.0;
25 else mXmL = mX - L;
26

27 normalizevector(XX, XX);
28 coef = (Ks*mXmL) + (Kd*dotprod(VV,XX));
29

30 vector<float> ret;
31 ret.push_back(-coef*XX[0]);
32 ret.push_back(-coef*XX[1]);
33 ret.push_back(-coef*XX[2]);
34 return ret;
35 }

CPP code 11.17: Per-phantom-spring Force Accumulator calculus.

Master Thesis in Computer Graphics by Marc Musquera Moreno

166 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Notice that the main difference between this spring coeficient force autoaccumulator
—between a mass-point and its phantom corresponding one— and the standard coefi-
cient accumulator of the code 11.13 is that only one mass-point index is needed, and the
position as well as the velocity vectors are computed w.r.t. the mass-point itself.

However, the linear application tracking is the same that for the standard stretch and
bend effects, as can be seen in the next code —although, pay attention on the heavyless
constant AUTOSTRETCH DAMPING value for no so restrictive forces as with the neigh-
borhood longitudinal restrictions—:

1 #define AUTOSTRETCH_DAMPING 0.25
2

3 void AccumAutoStretch()
4 {
5 vector<float> coef;
6 for(int z=0; z<(int)validnodes.size(); z++)
7 {
8 ValidNode nod = validnodes[z];
9 coef = getSpringCoefAutoAccum(nod.hash);

10 for(int x=0; x<3; x++)
11 mapspec.forces[nod.hash*3+x] +=
12 coef[x] * AUTOSTRETCH_DAMPENING;
13 }
14 }

CPP code 11.18: AutoStretching effect application algorithm.

Here are the same frameset of the figure ?? but now applying autostretching and elim-
inating all the fixed mass-points. As it can be seen, the deformation is perfectly handled
and no chaotic behaviour appears: when the external force disappears, the mass-spring
system returns perfectly to its relaxing shape.

(a) the mass-spring system at external force ini-
tial application.

(b) force’s one second lifetime instant; the sys-
tem deformation is more restricted but also
more well-handled.

(c) the force has been disappeared; there’s only
deformation inertia but the autostretching
yields the original system shape.

(d) at the end, the mass-spring system shape has
been preserved.

Figure 11.11: Autostretching as volume preservation solution example.

Research on Generic Interactive Deformable 3D Models

11.6. Collision handling 167

Collision handling11.6

The need of collision handling during deformation11.6.1

Till now, it has been explained that ForceReaQTor is able to manage several types
of dynamic real-time deformation while the shape and volume of the mass-spring sys-
tem is always preserved. However, there have been no words about collision handling.
ForceReaQTor has adopted an adaptive strategy that allows collision detection and ar-
ranging in run-time.

In a three-dimensional space where the physical laws have to lead the movements
of solid viscoelastic models, the collision detection and management is necessary for
a correct behaviour of untrespassable elements; so, collision handling is a must-have
algorithm section useful to avoid:

• penetrations between different mass-spring systems;

• system self-crashings by some mass-points going through the location of other
mass-points;

The ForceReaQTor approach: spheres approximating cubes11.6.2

Introduction11.6.2.1

ForceReaQTor imports voxelmaps and transforms them onto mass-spring systems.
Every mass-spring —voxelmap cell, voxel—, then, has its own domain, non-intersecting
with another mass-point domain: it has the shape of a cube. However, ForceReaQTor uses
a cube approxiomation in form of cube-concentric spheres due to geometric reasons: a
sphere is a unique geometrical object, while a cube is composed of six elements —six
squares, or delimited planes—.

(a) The voxelmap of a torus; notice the non-intersecting cu-
bic domain of every cell.

(b) The sphere approximation of a
cube for fast collision handling.

Figure 11.12: Scheme of the ForceReaQTor mass-point volumetric approximation buy using a sphere
instead of a cube. Obviously, the sphere and the cube has the same center, and moreover, the sphere is
tangent to all the cube faces.

The sphere diameter, a priori, is the same as the voxel length —and since the cubes are
regular-sized, it is equivalent to the face edge length—, so the sphere will be tangent to
the cube’s faces.

Master Thesis in Computer Graphics by Marc Musquera Moreno

168 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

It’s important to take in account the following indication: the collision testing as
well as collision processing —in case of a passing test— must be called both two
within the numerical integrator, after the integration itself —for possible integration
arrangements—. If not, the collision handling won’t be treate correctly.

Collision testing11.6.2.2

Therefore, given two spheres S1 and S2, both two with the same diameter D, there is
a collision between them if the euclidean distance between the two centers c1 and c2 is
lower or equal than D, as is shown in the next figure:

Figure 11.13: Scheme of sphere intersection; if ||c2 − c1|| ≡ L ≤ D, it must be ensured that the two
spheres S1 and S2 are intersecting.

There’s no matter with the unused cube space because although it has been said that
the sphere diameter was the voxel edge length, for avoiding continuous collision de-
tections the desired sphere diameter will be L ∗ 3/5, where L is the voxel edge length.
So, given a reference mass-point —nod— and a possible colliding mass-point, here’s the
code for their collision testing, returning also the distance between the two mass-points:

1 bool isMassPointColliding(ValidNode nod,
2 vector<int> voxeldest,
3 int hashdest,
4 float* distance)
5 {
6 if(voxeldest[0] < 0 || voxeldest[0] >= m_nx ||
7 voxeldest[1] < 0 || voxeldest[1] >= m_ny ||
8 voxeldest[2] < 0 || voxeldest[2] >= m_nz)
9 return false;

10

11 // collision test
12 float orig[3], dest[3], diff[3];
13 for(int z=0; z<3; z++)
14 {
15 orig[z] = mapspec.coords[nod.hash*3 + z];
16 dest[z] = mapspec.coords[hashdest*3 + z];
17 diff[z] = dest[z] - orig[z];
18 }
19 distance = MathUtils::modulevector(diff);
20 if(length >= m_intx*3.0/5.0) return false;
21 return true;
22 }

CPP code 11.19: Collision testing between two mass-points.

Research on Generic Interactive Deformable 3D Models

11.6. Collision handling 169

Collision processing11.6.2.3

Within ForceReaQTor, it’s called collision processing the geometrical modification of
a mass-point state vector due to a collision violation in terms of another mass-point(s).
So, the collision processing will have to:

• change the newly integrated position;

• update the velocity vector component —only in Euler integration case—;

hence, since there are two different state matrices available in the deformation engine,
it’s deducible that there will be two collision processing algorithms: (i) one for the Euler
integrator state matrix and (ii) another for the Verlet one.

The state vector arrangements processed by ForceReaQTor are purely geometric, so,
attaching the position coordinates handling, and given the distance D between the two
mass-points:

1. the reference mass-point will go back —understanding back as the opposite direc-
tion of the reference mass-point— D ∗ 2/5 from its actual position;

2. the collision victim will go forward D ∗ 3/5 from its position before colliding with
the reference mass-point;

moreover, the rest of the state vector parameters will must be modified for maintaining
the new direction from this moment.

Verlet collision management.

1 void computeCollision_VERLET(ValidNode nod,
2 float hashdest,
3 float dt, float dist)
4 {
5 float orig[3], dest[3], diff[3];
6 for(int z=0; z<3; z++)
7 {
8 orig[z] = mapspec.coords[nod.hash*3 + z];
9 dest[z] = mapspec.coords[hashdest*3 + z];

10 diff[z] = dest[z] - orig[z];
11 }
12 MathUtils::normalizevector(diff, diff);
13

14 // Verlet state vector management
15 for(int z=0; z<3; z++)
16 {
17 mapspec.cdprev[nod.hash*3 + z] =
18 mapspec.coords[nod.hash*3 + z];
19 mapspec.cdprev[hashdest*3 + z] =
20 mapspec.coords[hashdest*3 + z];
21

22 mapspec.coords[nod.hash*3 + z] -=
23 (dist*2.0/5.0)*diff[z];
24 mapspec.coords[hashdest*3 + z] +=
25 (dist*3.0/5.0)*diff[z];
26 }
27 }

CPP code 11.20: Euler collision handling function

Master Thesis in Computer Graphics by Marc Musquera Moreno

170 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Euler collision management.

1 void computeCollision_EULER(ValidNode nod,
2 float hashdest,
3 float dt, float dist)
4 {
5 float orig[3], dest[3], diff[3];
6 for(int z=0; z<3; z++)
7 {
8 orig[z] = mapspec.coords[nod.hash*3 + z];
9 dest[z] = mapspec.coords[hashdest*3 + z];

10 diff[z] = dest[z] - orig[z];
11 }
12 MathUtils::normalizevector(diff, diff);
13

14 // Euler state vector management
15 for(int z=0; z<3; z++)
16 {
17 mapspec.coords[nod.hash*3 + z] -=
18 (dist*2.0/5.0)*diff[z];
19 mapspec.coords[hashdest*3 + z] +=
20 (dist*3.0/5.0)*diff[z];
21

22 mapspec.vecvel[nod.hash*3 + z] =
23 -refdist*diff[z]/dt;
24 mapspec.vecvel[hashdest*3 + z] =
25 coldist*diff[z]/dt;
26 }
27 }

CPP code 11.21: Euler collision handling function.

Adaptive acceleration for collision handling11.6.2.4

It can be deduced that, for every numerical integration, the collision testing will be
executed six times per mass-point system; and although it’s a fast testing, the required
computational time is expensive, so an adaptive testing has been developed to avoid
testing impossible collisions.

This adaptation is based on predicting, from every mass-point moving direction,
which neighbour mass-point can be object of collision; in other words, solving which
mass-points have to be tested for a possible collision, by knowing the physical mov-
ing direction of the reference one.

Figure 11.14: Scheme of the per-mass-point adapting collision testing.

Research on Generic Interactive Deformable 3D Models

11.6. Collision handling 171

Finally, once established the adaptive selection, let’s go with the codes; pay attention
on that the moving direction is computed by different ways, depending on the selected
integrator:

• from velocity vector if there is an Euler integrator,

• from the vector difference between actual and previous position in the Verlet one.

so there are two algorithms for the adaptive selection, one per each integrator86.

1 vector<int> getAdaptiveCollidingIdx_EULER(ValidNode nod)
2 {
3 float signing[3];
4 signing[0] = (mapspec.vecvel[nod.hash*3+0] /
5 abs(mapspec.vecvel[nod.hash*3+0]));
6 signing[1] = (mapspec.vecvel[nod.hash*3+1] /
7 abs(mapspec.vecvel[nod.hash*3+1]));
8 signing[2] = (mapspec.vecvel[nod.hash*3+2] /
9 abs(mapspec.vecvel[nod.hash*3+2]));

10

11 vector<int> ret;
12 ret.push_back(signing[0]);
13 ret.push_back(signing[1]);
14 ret.push_back(signing[2]);
15 return ret;
16 }

CPP code 11.22: Euler’s adaptive neighbour selection for collision testing.

Now take in acount the change in signing variable proceedings, since the Verlet
integrator is different than the Euler one, so the moving direction is obtained also by a
different way.

1 vector<int> getAdaptiveCollidingIdx_VERLET(ValidNode nod)
2 {
3 float signing[3];
4 signing[0] = (mapspec.coords[nod.hash*3+0] -
5 mapspec.cdprev[nod.hash*3+0]);
6 signing[1] = (mapspec.coords[nod.hash*3+1] -
7 mapspec.cdprev[nod.hash*3+1]);
8 signing[2] = (mapspec.coords[nod.hash*3+2] -
9 mapspec.cdprev[nod.hash*3+2]);

10

11 signing[0] /= abs(signing[0]);
12 signing[1] /= abs(signing[1]);
13 signing[2] /= abs(signing[2]);
14

15 vector<int> ret;
16 ret.push_back(signing[0]);
17 ret.push_back(signing[1]);
18 ret.push_back(signing[2]);
19 return ret;
20 }

CPP code 11.23: Verlet’s adaptive neighbour selection for collision testing.

86 Due to computational indexing requirements, these codes returns the figure 11.14 binary codification of
the direction identifier in a 3-element vector; however, instead of 0 and 1 values, the methods will return−1
and +1, since the neighbour indexing from the mass-point (i, j, k) is done by adding or substracting 1.

Master Thesis in Computer Graphics by Marc Musquera Moreno

172 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

In the following table there’s the selected neighbours to be tested, in relation to the
reference mass-point moving direction; Just like this, the number of testings is divided
by 2, because the three neighbours located rear the mass-point won’t be tested:

Binary Code Decimal Code Selected Neighbours

000 0 L D B

001 1 L D F

010 2 L U B

011 3 L U F

100 4 R D B

101 5 R D F

110 6 R U B

111 7 R U F

Table 11.2: Adaptive neighbour selection for collision testing w.r.t. a mass-point moving direction. The
‘selected neighbours’ idetificators are corresponding to the featured ones in the figure 11.14.

Mass-Spring System Cuttings11.7

Introduction to the spring cutting methodology11.7.1

On the chapter 7, on page 75, the mesh deformation is focused in its topolgy alter-
ation, and the three types of alteration have been described: (i) mesh cracking with con-
nectivity preservation, (ii) mesh splitting and (iii) continuous remeshing. However, al-
most every technique for simulating a cutting onto a three-dimensional model requires a
lot of processing time, because the major amount of these techniques focus their efforces
on cutting the model’s triangular mesh.

Nevertheless, ForceReaQTor implements a cutting algorithm focused on the mass-
spring system connection between the nodes; in other words, when a cut is applied to
the system, the springs are the objective. So, an internal data structure is needed for
cutting management, and it has been described on the code 11.1:

1 #define CUT_NOCUTS 0x00
2 #define CUT_UP 0x01
3 #define CUT_DOWN 0x02
4 #define CUT_LEFT 0x04
5 #define CUT_RIGHT 0x08
6 #define CUT_FRONT 0x10
7 #define CUT_BACK 0x20
8

9 typedef struct {
10 int* hash; // acceleration hash-access
11 // data for masspoints.
12 unsigned char* cuts; // stores the possible
13 // spring cuttings.
14 [...]
15 } DynVoxelMapData_struct;
16 DynVoxelMapData_struct dynvoxelmap;

CPP code 11.24: Internal data structure for spring cutting handling.

Research on Generic Interactive Deformable 3D Models

11.7. Mass-Spring System Cuttings 173

This cuts array, indexed by the hash acceleration data block as usual, is mass-point
related, so when a spring is cut, two cut state values have to be modified —the two
spring mass-point extremes87—. Moreover, the value assignment is controlled by the
seven cutting definitions, six for every possible spring cutting —a masspoint is able to
have till six neighbour— and another macro for no-cutting starting state, comprising both
them bit values that can be combined for generating a cutting byte state. So, the data
setting and accessing methods are:

• adding spring up and right cuttings to a mass-point actual cutting state:

dynvoxelmap.cuts[hash idx] |= CUT UP | CUT RIGHT;

• checking if a certain mass-point has its front or back springs on cut state:

if((mapspec.cuts[hash idx] & DYNCUT FRONT) ||
(mapspec.cuts[hash idx] & DYNCUT BACK))

{ [...] }

Repercussions on physically-based deformations11.7.2

As can be noticed, when a model is totally or partially cut, not only its shape is mod-
ified; its behaviour under deformation forces is also subject of changes. ForceReaQTor
supports real-time deformations over a model that it’s being cut and dissected, by trun-
cating not only the spring connections between the isolated mass-points but also its
restricting forces.

So, the application checks if there is a cut action between two mass-points before
applying any of the dynamical deformation effects —stretch, shear or bend— where
both two are involved, by the checking command explained above. Let’s see then the
following snapshots of the example 4 × 4 × 4 cube deformation when gravity together
with a pulling external force is applied over it, and then the springs of the middle part of
the cube disappear.

(a) Deformation with the entire cube. The
pulling force is done over the ‘right’ part of
the cube but it affects the entire system.

(b) Deformation after cutting the middle ‘col-
umn’ springs; notice that the pulling force
is only affecting the right piece of the cube.

Figure 11.15: Physically-based deformation with real-time cutting behaviour modification.

87 Two mass-points, mL on the left side and mR on the right one. If the spring that connect them is cut,
mL must active its CUT RIGHT flag, and mR its CUT LEFT one.

Master Thesis in Computer Graphics by Marc Musquera Moreno

174 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

Accelerated Force Accumulator looping11.8

On the previous section 11.4.4.1, it has been said that there’s a huge handicap within
the force accumulator, dramatically associated to the number of mass-points that are com-
prising the deformable system. Now, after explaining the volume preservation —and the
autostretching concept— and the collision handling, it’s the moment to talk about the
SimAcc data structure, acronym of Simulation Accelerator:

1 typedef struct {
2 bool* affected;
3 bool refval;
4 } SimAcc;
5 SimAcc simacc;
6

7 simacc.affected = new bool[nvoxels*nvoxels*nvoxels*];
8 simacc.refval = true;

CPP code 11.25: The data structure capable of accelerating the force accumulator loopings.

The idea behind this structure is so simple; having an affected value per each voxel,
this boolean array will be accessed by the already explained hashing value for the
mass-spring system. Depending on the the hashing affected value:

• if it’s true, the mass-point with that hashing code must be passed to Force Accu-
mulator because there’s at least one force —internal or external, it doesn’t matter—
affecting it, so it must be processed;

• if it’s false, the mass-point won’t be affected by any system force, so computing a
Force Accumulator over it is unuseful;

It’s a so easy strategy, and the obtained acceleration is superb by following this
methodology for enabling and disabling a mass-point’s affected state:

1 { at the simulation beginning, all ’affected’ flags
2 must be are set to ’false’. }
3 function ForceAccumulator(float simulation_time)
4 { set to ’true’ the ’affected’ flag of those
5 mass-points affected by the external forces. }
6 setExternalForces(simulation_time);
7 foreach MassPoint mp in DefSystem DS do
8 if mp.itsAffectedFlagIsTrue() then
9 { here, every mass-point involved with

10 ’mp’ due to internal forces, must
11 set to ’true’ its ’affected’ flag. }
12 computeStretchBendShear(mp);
13 { if the autostretching results in
14 no motion because the mass-point is
15 in its relaxing position, set its
16 affected flag to ’false’. }
17 computeAutoStretching(mp);
18 endif;
19 endforeach
20 endfunction

PSEUDO code 11.26: Mass-point ‘affected’ flag configuration within Force Accumulator.

Research on Generic Interactive Deformable 3D Models

11.9. Displaying the deformation system as a triangular mesh 175

Displaying the deformation system as a triangular mesh11.9

The mass-spring system as a 3D non-rigid skeleton11.9.1

It has been explained how the mass-spring system is deformed and cut in real-time
with realistic behaviour and smooth animation by the framework developed for the sim-
ulator within ForceReaQTor. However, displaying the mass-spring system is not a good
way of showing a 3D model.

Because of that, the mass-spring syste is used as a three-dimensional non-rigid skele-
ton, whose is deformed under a static triangular mesh. Then, by applying a vertized
triangular mesh —see section 10.5.5 on page 139 for more information— over the mass-
spring system, a pseudo-FFD —section 5.2.2, page 47— deformation is applied:

1. every vertex is described by its displacement from its closest mass-point;

2. any kinf of physical deformation will displace mass-points to another positions,
and then the internal restrictive forces make their appearance;

3. so, rendering the mesh by locating each vertex in the same displacement within
the local coordinate system of its mass-point reference, the mesh is rendered af-
fected by mass-spring system deformation.

Figure 11.16: pseudo-FFD rendering process for deforming a triangular mesh w.r.t. its inner non-rigid
skeleton —the mass-spring system indeed—.

A GPU-dedicated algorithm for the mesh rendering process11.9.2

Overview of the shader program for FFD-renderization11.9.2.1

This methodology explained above is totally executed over the GPU. Since the mass-
point location is always changing due to the physically-based restrictive inner forces,
this vertex deformed position cannot be processed offline, so there must be executed in
each rendering step.

It’s known that the GPUs have an architecture focused on parallel processing of
independent vertex operations —see section 9.2, on page 98—, so it’s the best option:

Master Thesis in Computer Graphics by Marc Musquera Moreno

176 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

• this task will be many executed times faster within the GPU than from CPU because
it is able to compute several vertexs at the same time;

• the the rendering step requires less time, and consequently, CPU has more compu-
tational time for being dedicated to process real-time deformations;

The handicap of passin the masspoints and hashing values to the GPU11.9.2.2

The most complex problem of executing this task on a GPU is that it’s necessary to
transfer the mass-point actual coordinates to the GPU memory in every rendering step.
Even, due to algorithm reasons, it’s also necessary the hashing data block, because every
vertex will have associated its normal but also its mass-point reference index in triplets
(i, j, k)88, passed as 3D texture coordinates.

The ideal transfer mode of huge amount of data to the GPU is the 2D texture format,
but with some enhancements:

• using 1D textures is prohibitive because the actual graphics cards supports until
8192 texels —Texture Elements— per texture dimension;

• by using OPENGL GL ARB texture float extension, there will be 32-bit depth
not clamped data per component89.

• the 2D textures in OPENGL must be POT —power of two—, so the predefined sup-
ported sizes are 256 × 256, 1024 × 1024 and similars. This limitation will surely
provoque a huge amount of not-used texture space, but with an extension called
GL ARB texture rectangle, 2D textures can have any space.

In the following figures there are the graphical schemes —with simple examples of
easy understanding— for compressing the mass-point and hashing factors into 2D textures:

(a) The mass-point 3D coordinate scheme; since they are described by 3D positions, every
matrix cell will be a 32-bit floating RGB texture.

(b) The hashing value ‘quadruplet-compression’ scheme; since hashing factors are single
and independent values, they will be also compressed in groups of 4 elements to mini-
mizing the space with RGBA textures.

Figure 11.17: The texture compression schemes for the desired shader data: the gray cells of the final
matrices indicate unused and value-emptied cells.

88 This is because the vertexs are vertized in relation to the original voxelmap.
89 Usually, texture data contain color specifications, so the transferred data from CPU to texture is always

clamped to [0, 1] and there are 8 bits per texel component —enough for color codification–.

Research on Generic Interactive Deformable 3D Models

11.9. Displaying the deformation system as a triangular mesh 177

(a) The relaxed dolphin’s mass-spring system. (b) The relaxed dolphin’s triangular mesh.

(c) Applying external force to mass-spring system. (d) Applying external force to the mesh.

Figure 11.18: ForceReaQTor deformable model rendering types: only the model skeleton —mass-spring
system— or the model’s skin —its triangular mesh, that lays over the mass-spring system—.

The vertex shader algorithm11.9.2.3

By enabling the GL ARB texture rectangle extension also in the shader, the ver-
tex shader executes, for every entering vertex —entering it as displacement from a
mass-point position—:

• the texture coordinates are the 3D (i,j,k) triplet used for finding the hashing value,
that are located in ffd vmhash —as a d

√
ne-matrix instead of an n-array—;

• once the hashing value is obtained, it’s used for accessing the other texture, ffd vxlcnt
—whose, in the same way as ffd vmhash, in the form of a d

√
ke-matrix instead of

an k-array—, for getting the mass-point position;

• then, once the the mass-point —the dynamic voxel center indeed— position is found,
it only has to be added to the entering vertex position gl Vertex, multiply it by
the OPENGL visualization matrices, and send it to the fragment shader.

• apart, the Phong illumination model is also computed, and passed to the fragment
shader, that is the same one as used for the standard Phong illumination —code
10.11, page 128—.

Master Thesis in Computer Graphics by Marc Musquera Moreno

178 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

1 #extension GL_ARB_texture_rectangle : enable
2

3 // ffd-rendering dedicated external data
4 uniform sampler2DRect ffd_vxlcnt; // the masspoint coordset.
5 uniform sampler2DRect ffd_vmhash; // the hashing data block;
6 // the texture coordinates
7 // have the (i,j,k) values
8 // for mass-point coord.
9 uniform float ffd_vmsize; // the CPU’s voxelmap size.

10 uniform float ffd_rootvx; // the ffd_vxlcnt size.
11 uniform float ffd_rooths; // the ffd_vmhash size.
12

13 // phong illumination model data
14 varying vec3 normal, lightDir, eyeVec;
15

16 // returns the mass-point 3D position by the hashing value.
17 vec3 getTextureData_VXLCNT(float vectoridx)
18 {
19 float newidx = vectoridx;
20 vec2 matidx = vec2(int(mod(newidx,ffd_rootvx)),
21 int(floor(newidx/ffd_rootvx)));
22 vec3 vxlcnt = texture2DRect(ffd_vxlcnt, matidx).xyz;
23 return vxlcnt;
24 }
25

26 // returns the (i,j,k) hashing value from the 3D_to_1D
27 // (i,j,k) coordinate conversion.
28 float getTextureData_VMHASH(float vectoridx)
29 {
30 float newidx = floor(vectoridx/4.0);
31 vec2 matidx = vec2(int(mod(newidx,ffd_rooths)),
32 int(floor(newidx/ffd_rooths)));
33 vec4 hash_4 = texture2DRect(ffd_vmhash, matidx);
34 float coord = mod(vectoridx,4.0);
35 return hash_4[int(coord)];
36 }
37

38 void main()
39 {
40 // ffd_render
41 vec3 ffd_index = vec3(gl_MultiTexCoord0.xyz);
42 float ffd_hash = ((ffd_index.x*ffd_vmsize) +
43 ffd_index.y)*ffd_vmsize +
44 ffd_index.z;
45 float ffd_cnt = getTextureData_VMHASH(ffd_hash);
46 vec3 vxlcnt = getTextureData_VXLCNT(ffd_cnt);
47 vec4 vertex = gl_Vertex + vec4(vxlcnt, 0.0);
48

49 // phong precomputation
50 normal = gl_NormalMatrix * gl_Normal;
51 vec3 vVertex = vec3(gl_ModelViewMatrix * vertex);
52 lightDir = vec3(gl_LightSource[0].position.xyz -
53 vVertex);
54 eyeVec = -vVertex;
55

56 gl_Position = gl_ModelViewProjectionMatrix * vertex;
57 }

GLSL code 11.27: Vertex shader for rendering deformated triangular meshes.

Research on Generic Interactive Deformable 3D Models

11.9. Displaying the deformation system as a triangular mesh 179

Autogenerated skin from the mass-spring skeleton11.9.3

Introduction11.9.3.1

In the previous chapter, on section 10.5 —page 134—, the voxelmap structure (and
its vital importance on volumetric representations) has been explained. Its structure is a
boolean array of nx × ny × nz elements —cubes, voxels—that contain a logical value, de-
scribing them as original mesh recipient or not.; that is, a voxel is true if the referenced
polygonal mesh is —totally or partially– contained within its volume range.

Also, on section 4.1.2 on page 32 there’s the definition of the isosurfaces, and some
pages later, the isosurface extraction algorithms —esssentially focused on the March-
ing Cubes method— are schematized. Indeed, all the chapter 4 is about multiresolution
meshes and automatic mesh generation from isosurfaces.

As a reminder, it’s convenient to say that there’s a close relation between isosurfaces
and voxelmaps:

• an isosurface is a data structure representing a set of constant scalar values within
a space volume;

• on the other side, a voxelmap is a volumetric space discretization with constant
boolean values;

then, the isosurface extraction algorithms determine the so called boundary voxels, whose
are between the empty space and the isosurface, and by setting constant values to the
voxelmap cells, a polygonal mesh is automatically generated in relation to a constant
threshold value, following a similar scheme to this 2D curve automatic generation90.

Figure 11.19: 2D curve generation by the Marching Squares —2D Marching Cubes— technique. The
example’s threshold value for curve extraction is 5.

ForceReaQTor and the deforming meshes11.9.3.2

As said in previous pages, ForceReaQTor is able to deform not only the mass-spring
system structure but also a polygonal mesh, by an internal process where the triangles
are spread towards the deformable structure, like a skin, and by local displacements, the
three-dimensional surface model is able to follow in run-time the mass-spring defor-
mation, as it’s shown on figure 11.18.

90 The 2D version of Marching Cubes is called Marching Squares, and this methodology is identical to the
3D variant one.

Master Thesis in Computer Graphics by Marc Musquera Moreno

180 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

However, not always exists this polygonal mesh; it’s true that MeshInspeQTor is ca-
pable of generating voxelmaps from three-dimensional models, but it’s also true that a
voxelmap navigator is available in this application.

This navigator permits the application user to modify any voxel boolean value, so
voxelmaps can be manually created by setting the boolean values with the navigation
panel controls91 So, then there is no polygonal mesh associated to the voxelmap; this is
the case, for example, of the 4 × 4 × 4 cube used on almost every previous deformation
snapshot.

Because of that, ForceReaTor executes a Marching Cubes instance when a voxelmap
is imported. Moreover, apart from being a user-transparent action made by the program,
the elapsed time for evaluating the mesh autogeneration is unnoticeable, and it provides
the voxelmap of:

• a regular-sized triangular mesh inspired by the voxelmap shape —that is, the mass-
spring system structure indeed—.

• a per-vertex normal postprocessing with no repeated vertex data, so all the March-
ing Cubes data is filtered for minimizing the occuped space and redundant data92.

Nevertheless, the Marching Cubes autoextracted three-dimensional surfaces are in-
herently in a smoothed mood, with no sharp zones, due to the boundary voxels treat-
ment methodology. This phenomenon can be shown in the autogenerated cube from the
4× 4× 4 cubical voxelmap:

(a) Original Mass-Spring System. (b) Marching Cubes autoextracted mesh.

Figure 11.20: Example of ForceReaQTor autogenerated mesh of the highly featured 4 × 4 × 4 cube; the
normals are per-face configured, but by applying the Phong illumination GLSL program —section 10.3.4—,
the renderization is robust.

91 On appendix’s section B.2.3.3, on page 217, there’s a complete user tutorial and example snapshots of
this voxelmap navigator.

92 The Marching Cubes algorithm was thought for processing every vertex’s triangles and immediately
render them; so, since the method is robustly consistent, there are a lot of vertexs computed several times
—once per associated face—. The postprocessing for per-vertex normal, by having every vertex once in
memory and giving it the obtained normal by the mean of all its associated ones, is computatinally slower
than the Marching Cubes method itself, but since it’s an offline preprocess executed when the voxelmap is
imported, the lack of time is mnimal.

Research on Generic Interactive Deformable 3D Models

11.9. Displaying the deformation system as a triangular mesh 181

The ForceReaQTor isosurface generation for a subsequent three-dimensional surface
extraction is based on the boolean values. It’s known that in Marching Cubes, the bound-
ary voxels are defined by their vertices’ isovalues, so from the combination of internal
and external vertices —w.r.t. the threshold extraction value—, the triangulation is per-
formed, as explained on figure 4.7 on page 36.

So, ForceReaQTor establishes a 28-adjacency voxel connectivity, focused on the total
number of adjacent voxels of each voxel vertex, to specify if a certain voxel vertex is
connected —internal— to any other voxel, or unconnected —external— to all of them; for
example, given a certain voxel, the desired isovalue evaluation of its LUF93 vertex is done
by checking connectivity of the voxels at its:

1. of course, the own LUF direction;

2. the individual directions, L, U and F;

3. directions by combination of the three coordinates: LU, LF, FU;

Figure 11.21: Three-dimensional scheme of which voxels have to be checked for adjacency with a certain
voxel, if it’s desired to compute the isovalue of the LUF voxel vertex.

If there is at least adjacency within the per-vertex connectivity seven-voxel set, the
vertex will be considered internal and marked with a 0.0 scalar; the vertex will be con-
sidered external —scalar 1.0— to the model only when there is no adjacency in the
checking test. The isosurface extraction is done by a 0.5 threshold value.

The wrongly parametrized triangular meshes11.9.3.3

Additionaly, it has been said on the previous chapter’s section 10.2.4 that the extracted
isosurfaces from the Visual Human Project can be wrong in terms of (i) artifacts within the
triangular mesh —called dense rings on figure reffig:p3d-bad— or (ii) bad piecewise ex-
tractions due to the lack in huge organ extraction capabilities.

Then, an arrangement of this kind of problematic meshes is possible by ForceReaQ-
Tor autogenerated mesh, since the mass-spring system —the voxelmap— is density-
dependant of original mesh’s occuping volume, not of its geometrical definition. It’s
the case, for example, of the left external oblique inguinal human muscle, object of this thesis’
deformation studying.

93 Acronym of Left, Up, Front.

Master Thesis in Computer Graphics by Marc Musquera Moreno

182 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

(a) Oblique muscle’s original ‘isosurface mesh’, wrongly extracted mesh from Vi-
sual Human.

(b) Its associated mass-spring system, derived from a 64× 64× 64 voxelmap.

(c) The ForceReaQTor’s autogenerated triangular mesh from the mass-spring
system volume with Marching Cubes.

Figure 11.22: Example of ForceReaQTor extracted mesh of the ‘left external oblique human muscle’,
wrongly extracted from the Visual Human Project with the extractor software provided by the IRI
at UPC; notice the simplicity of the extracted mesh by using Marching Cubes —w.r.t. the original mesh—,
but also its consistency in relation of the original.

Research on Generic Interactive Deformable 3D Models

11.9. Displaying the deformation system as a triangular mesh 183

Inherent pseudo-FFD rendering adequation11.9.3.4

A few pages ago there has been detailed a programmable graphics algorithm for ren-
dering deformable polygonal meshes; so, this mass-spring system autoextracted mesh
is also available for supporting this pseudo-FFD rendering methodology, so the de-
formable interactions will be noticed in ths alternate polygonal skin.

This is easily done because the vertizer preprocess is so simple, due to an inherent prop-
erty to all the triangles generated by isosurface extraction by Marching Cubes: the total
surface of every generated triangle is contained within the same voxel; it’s deducible
simply viewing the figure 4.7, on page 36, that features the possible triangulation config-
urations depending on the internal-external vertices.

The detailed algorithm of the implemented Marching Cubes won’t be featured here
because it is composed of a large amount of line codes focusing the different voxel con-
figurations and vertex interpolations, but the Marching Cubes main looping execution
is the following one:

1 // Marching Cubes Isosurface Extraction Data
2 typedef struct {
3 float values[8]; // 8 isovalues per voxel.
4 float coords[24]; // 8 vertices * 3 coords.
5 bool samevalue; // ’true’ if the 8 isovalues are
6 // the same -internal or external-,
7 // that means it isn’t a boundary
8 // voxel and it can be avoided.
9 } MCData_struct;

10 MCData_struct* mcdata;
11 mcdata = new MCData_struct[nvoxels*nvoxels*nvoxels];
12

13 // Marching Cubes Rendering Data
14 float* mcVertexs; // vertex displacement from
15 // container voxel center.
16 float* mcNormals; // the normal data.
17 float* mcTriangs; // the face index data block.
18 float* mcIndexes; // the container voxel cell
19 // (i,j,k) indexes.
20

21 void doMarchingCubes()
22 {
23 // this method configure the ’mcdata’ array
24 mcGenerateVoxelMapIsovalues();
25 for(int i=0; i<nvoxels; i++)
26 for(int j=0; j<nvoxels; j++)
27 for(int k=0; k<nvoxels; k++)
28 {
29 // per-voxel triangle extraction
30 // within boundary voxels.
31 int idx = ((i*m_ny) + j)*m_nx + k;
32 if(!mcdata[idx].samevalue)
33 mcPolygonizeVoxel(i, j, k, idx);
34 }
35 // finally, the rendering data is correctly set.
36 perVertexNormalFiltering();
37 }

CPP code 11.28: The rough ForceReaQTor Marching Cubes algorithm.

Master Thesis in Computer Graphics by Marc Musquera Moreno

184 Chapter 11. Thesis Software Suite: (2) ForceReaQTor

So, by applying the same array-to-texture compression technique detailed in the pre-
vious section 11.9.2.2, on page 176, and loading the same specified FFD-rendering shader
program, the real-time deformations for the autoextracted three-dimensional surface is
available within ForceReaQTor.

(a) At first, the gravity force affects the cube; no-
tice the fixed —red— upper mass points.

(b) Subsequently, a right external force is ap-
plied and the cube is pulled.

(c) By disabling gravity, the cube reacts more af-
fected by the pulling force.

(d) Finally, disappearing the forces, the cube re-
turns at relaxing state.

Figure 11.23: An example of deformation force set applied to the 4× 4× 4 cube Marching Cubes autoex-
tracted mesh in ForceReaQTor.

Polygonal mesh cutting renderization capabilities11.9.3.5

At the moment of writing these lines, it has not been possible to achieve the mesh
cutting —or mesh splitting— based on the voxel broken connectivity, due to implemen-
tation problems within another parts of the project, in the force accumulator part —not
problems of calculus but for optimizing the code—.

Indeed, it’s the visualization part of the virtual scalpel implementation; the internal
part is fully working as can be seen on section 11.7; however, on section 13.2.2, on page
197, there is a little explanation about the innovative proposal renderization method to-
gether with a scheme.

It requires a marching cubes extraction triangular mesh, for taking advantage of
the total containing of a triangle within a single voxel, and is based on vertex cloning.
Hence, voxel cloning or dynamic topology modification isn’t necessary and only a local
marching cubes on the new empty zone will be necessary for simulating the property
of non-emptyness of the model.

Research on Generic Interactive Deformable 3D Models

11.10. Developed File Formats 185

Developed File Formats11.10

Dynamic Force List *.DFL File Format11.10.1

This own file specification permits store on hard-disk, for future loadings, the ForceReaQ-
Tor actual state of the list of dynamic forces with all their parameters and dynamic effect
typifications —force, node fixing and spring cutting—.

1 @FORCEREAQTOR_DYNFORCELIST:FILEFORMAT_v1.0
2 <numberof-dynforces>
3 <type1> <noderange1-from(x,y,z)> <noderange1-tilll(x,y,z)>
4 <direction1-(i,j,k)> <force1-amount> [...]
5 <timeline1-start> <timeline1-duration>
6 <type2> <noderange2-from(x,y,z)> <noderange2-tilll(x,y,z)>
7 <direction2-(i,j,k)> <force2-amount> [...]
8 <timeline2-start> <timeline2-duration>
9 [...]

PSEUDO code 11.29: ForceReaQTor dynamic force list file format.

where type is (i) number 0 for dynamic forces, (ii) number 1 for node fixing and (iii)
number 2 for spring cutting.

VoxelMap *.VOX File Format11.10.2

This format is imported, used and transformated for internal adequation and con-
veniences by ForceReaQTor, but cannot be managed because, as it’s said, it’s not loaded
and saved but imported. Really, this format is the same of the MeshInspeQTor voxelmap
file —indeed, this is the bridge between the two applications—, explained before on
section 10.6.2, on page 144.

Master Thesis in Computer Graphics by Marc Musquera Moreno

CHAPTER 12Tests and Results

Introduction to this chapter12.1

A brief about the developed software and the offered results12.1.1

In the last two chapters there has been presented an exhaustive and detailed journey
across the software suite developed for this project:

• on the MeshInspeQTor part, the three-dimensional visualizer and oblique plane cut-
ting tool —the VirtualCutter panel— has been described, as well as the soul of the
application: the mesh voxelizer, that builds volumetric representations of three-
dimensional objects.

• on the other hand, ForceReaQTor, the physically-based deformation simulator is
presented in the subsequent chapter; the underlying mass-spring deformable sys-
tem, dynamic force set, the two numerical integrators, the three internal restrictive
behaviours when the system is being modified. . . and finally, the skin deformable
layer, a polygonal mesh that supports the underlying mass-spring deformations
and reacts in the same way.

Though there are already some snapshots in the both two application dedicated chap-
ters, now it’s time to offer tangible and quantificable results, by animating —defor-
ming— several models, some of them about medical focus.

The global deformation software has been always though for the aim of simulat-
ing the tactile sensations of deforming human muscles in a real-time computation but
with losing so much realism. Because of that, and although this software is capable to
deform any kind of three dimensional models, the deformable system that runs deeply
in ForceReaQTor is provided by some important characteristics:

1. the mass-spring system is statically positioned; that means, external forces can be
applied over the mass-spring structure, and it will surely be deformed, but it will
never be displaced;

187

188 Chapter 12. Tests and Results

2. moreover, the deformations usually become viscoelastic —with a little viscous
damping factor—, for simulating the lengthen and shorten forces in the same way
that would affect onto flesh —although the simulation parameters can exaggerate
this effect, as it will be seen in this chapter, for a better visualization of the model
deformations—;

3. a specified deformation will never modify the original shape of the model. In
more technical words, vast bending deformations are not supported, and the ex-
ternal forces will apply to the model a strange assimetrical scaling; ergo, the initial
volume, position, orientation and shape of any deformable model will be always
maintained;

The medical-purpose three-dimensional models12.1.2

As detailed on chapter 2, on page 7 —even in this thesis’ document title is mentioned
the focusing on it—, the simulation of the human musculature has been in mind all the
time to provide the software of a real practical functionality, and my thesis director pro-
posed the human inguinal region as an interesting focus of human organ part.

Also, the extraction of the inguinal region three-dimensional models —directly
from the Visual Human Project, available from this university, UPC—, resulted in too much
noticeable model visualization drawbacks:

• wrong triangularization, including the appearance of dense rings of triangles that
only added a bad visualization of the model;

• too much forced piecewise extractions —due to remote machine RAM memory size
problem— that really avoid a continuous mesh building and the resulting mesh
after merging all the extracted portions wasn’t satisfactory;

This two clear disadvantages provoqued the consideration of including a remeshing
technique in the project objectives. And a Marching Cubes pass over the 3D model-
based generated voxelmap was the final election, since it’s a classical algorithm for iso-
surface extraction and was also able to be used for remeshing —with the requirement of
an intermediate volumetric representation of it—.

Test structure, and given results12.1.3

Since the results of this project are not static —the soul of the project is the successful
animation—, it’s hard to present results in paper; however, there will be two quantified
processes: (i) the voxelization and (ii) the marching cubes execution over a voxelmap.

For the animations, there will be featured some framesets with any human inguinal
muscle deformable system —because the non-medical models have been featured dur-
ing the rest of the document—. The tests will include

• some deformation movements, including so lenghten as well as shorten forces;

• animation with original and marching cubes’ extracted triangular meshes;

• every relevant data will be given: FPS framerate, active restricting forces, and ex-
ternal force data;

Research on Generic Interactive Deformable 3D Models

12.2. Introduction test over non medical models 189

Testing Machine Specification12.1.4

All the tests, as well as the snapshot figures included from both MeshInspeTor and
ForceReaQTor have been executed over the Apple MacBookPro specified in table 8.1, on
page 85. The result table for the another used machine, an Apple iMac, also specified
in the previous table, is not published because the both two machines are contemporary
computers and there’s no significant differences between the testings.

Introduction test over non medical models12.2

Brief overview12.2.1

Before beginning with the simulation of medical model deformation, it’s time to
quantify the two generator methods implemented for this project: (i) the three-dimensional
surface model voxelization —with its correspondent voxel carving—, and (ii) the march-
ing cubes autoextracted generation from the cited voxelmap.

For achieving these results, the polygonal mesh object is the bunny.capped one,
composed by 69.664 faces, a relatively high polygon cardinality —there’s no a gigantic
mesh but there’s no a 300-face model too— and a good computational time balance
checkpoint.

Figure 12.1: The original bunny.capped polygonal mesh surface model.

Mesh voxelization test results12.2.2

The obtained timings for the bunny.capped model, by voxelizing it with MeshInspe-
QTor, are shown in the following table, specifying the computational time needed for
voxelizing as long as for executing a voxel carving over the resulting voxelmap.

VoxelMap Grid Size Voxelization Process Voxel Carving Process

32× 32× 32 1.67425 seconds 0.010713 seconds
128× 128× 128 27.61050 seconds 0.697849 seconds

Table 12.1: Computational times for the ‘voxelization’ and ‘voxel carving’ processings. There have been
tested the timings for two different voxelmap sizes: 32× 32× 32 and 128× 128× 128.

Master Thesis in Computer Graphics by Marc Musquera Moreno

190 Chapter 12. Tests and Results

Finally, there are the resulting voxelmaps —before executing the voxel carving— be-
low these lines. The 32 × 32 × 32 voxelmap has more pointsize voxel marks for a better
visualization.

(a) 32× 32× 32 voxelgrid. (b) 128× 128× 128 voxelgrid.

Figure 12.2: The resulting voxelmaps from the bunny.capped voxelization processes.

The Marching Cubes automatic mesh extraction12.2.3

Now it’s the turn to show the results of the inverse proceeding: instead of obtaining a
volumetric representation of a 3D surface model, marching cubes generates a polygonal
—triangular— mesh from an arbitrary volumetric representation in a fast, robust and
continuous way.

So, as done before for the voxelization, here’s the timing table for the distinct march-
ing cubes executed over the previous voxelmaps.94. Since the data input for ForceReaQ-
Tor autoextracting mesh processing is really a voxelmap, the previously generated vox-
elmaps —figure above— have been used for it. Even better by using them, because in
that way there exists a bridge connection between the two processes.

VoxelMap Grid Size Per-face-normal MC Per-vertex-normal MC

32× 32× 32 0.087254 seconds 13.3000 seconds
128× 128× 128 2.637540 seconds N/A

Table 12.2: Computational times for the ‘per-face’ and the ‘per-vertex’ marching cubes proceedings.

And following this table, that proofs that Marching Cubes is really a fast algorithm
—at least for immediate mesh renderization—, and the resulting meshes are:

• simpler than the original, because it’s built from a discretized 3D space occuped
by boxes —the voxels indeed—;

• continuous and maintaining the original shape of the bunny; even in the 32×32×32
resulting one.

94 As a reminder, it’s important to know that in ForceReaQTor a marching cubes postprocessing is im-
plemented for obtaining per-vertex normals instead of per-face normals and also for avoiding vertex data
repetition.

Research on Generic Interactive Deformable 3D Models

12.3. Test over medical models; the human inguinal muscle region 191

(a) 32× 32× 32 voxelgrid. (b) 128× 128× 128 voxelgrid.

Figure 12.3: The resulting marching cubes’ autoextracted meshes from bunny.capped voxelmaps.

Lenghten and shorten forces over a model.12.2.4

For demonstrating the real-time good capabilities of the implemented collision han-
dling and the innovative autostretching technique for preserving the volume, the three
dolphins of dolphins 3D model will be taken and different forces will be applied over
them, in the two possible directions: lengthen and shorten, and the frameset will proof
the good mass-spring adequation in all the situations.

The frameset for both two phenomenons is featured on the next page in a eight-figure
set, where the left column is the frameset of a lenghten force set while the right one is for
shorten forces deformation animations.

Test over medical models; the human inguinal muscle region12.3

Brief overview12.3.1

In here this part, the medical model deformation section, there will be presented the
three human inguinal region muscles: (i) the oblique interna, (ii) the oblique external
and (iii) the transversus, both three of the left body side —the right side ones are simet-
rical w.r.t. that three ones—. So now, in a different mood that for the previous section,
there will be several concrete deformations because the mass-spring systems describing
the human muscles are huge in mass-point cardinality, so the deformations won’t be as
global as well as in the previous section, there will be focused in certain organ regions.

Also, here will make their appearance two factors not involved before:

• the affected internal acceleration flag data array, previously explained on section
11.8, on page 174;

• the Verlet integrator, because the Euler one is so much unstable for complex-structure
mass-springs ike the following ones; additionally, the mass-point set is larger than
for the previous systems, so the Force Accumulator is still sloweer than the re-
quired for the Euler integrator in most cases;

Master Thesis in Computer Graphics by Marc Musquera Moreno

192 Chapter 12. Tests and Results

(a) the initial instant, where the three ‘lenghten’
forces begin.

(b) the initial instant, where the three ‘shorten’
forces begin.

(c) one second later, with the dolphins supporting
their respective inciding ‘pulling’ forces.

(d) one second later, with the dolphins supporting
their respective inciding ‘pushing’ forces.

(e) when the forces disappear, a ‘shorten’ move-
ment is well-managed by the system.

(f) when the forces disappear, a ‘lenghten’ move-
ment is well-managed by the system.

(g) finally, the three dolphins have come back to
their relaxing positions.

(h) finally, the three dolphins have come back to
their relaxing positions.

Figure 12.4: Lenghten (a,c,e,g) and shorten (b,d,f,h) force set deformation examples over the dolphins
model. The rendering process has been at 25 FPS, with ‘stretch’ restrictive forces and Euler integrator. The
forces are all 20N amount.

Research on Generic Interactive Deformable 3D Models

12.3. Test over medical models; the human inguinal muscle region 193

As a reminder: the Verlet integrator is not as exact as the Euler one but it’s more stable
and converges better to the solution because de Verlet approach is a linear approximation
of the Euler numerical integration.

The oblique external muscle12.3.2

Over this a huge model —it is shown the marching cubes autoextracted model from
a 64 × 64 × 64 voxelmap— it has been decided to specify a 4-force set in different mus-
cle places, for featuring the affected acceleration structure. In every force accumulator
represented in a snapshot, a new force appears so new affected mass-points are born.
However, the numerical integration doesn’t require to visit every mass-point for each
accumulatr, so the simulation is correctly adapted in size of managed data.

(a) the initial instant, where no force is actuating
yet.

(b) the first deformation force; notice the local de-
formation.

(c) a second force appears, the fluid animation is
not suffering.

(d) a third force involves the muscle, whose has
three clearly independent deformation zones.

(e) the last force makes its act of presence. (f) when the forces disappear, the ‘shorten’ reac-
tion is well-managed by the system.

Figure 12.5: A deformation force set of the obliqext model, based on a dense 64 × 64 × 64 voxelmap;
here there is an abbuse of the simacc adaptative methodology for computing Force Accumulators. The
integrator is the Verlet one using a 30 FPS animation, and the forces are 20N all.

Master Thesis in Computer Graphics by Marc Musquera Moreno

194 Chapter 12. Tests and Results

The transversus muscle12.3.3

In this more curved muscle, it has been decided to proof the affected adaptative sim-
ulation handling with a mass-spring system cutting while a force is inciding in the cut
region.

(a) the force is actuating and pulling with it a
great number of mass-points.

(b) when the cutting enters the scene, the isolated
mass-points are shorten and come back to their
relaxes position.

(c) when the force disappear, the rest of deformed
mass-points begin their shorten movement.

(d) finally, the cut rests for ever but the mass-
spring system is again relaxed.

Figure 12.6: A deformation force set for the transversus model, based on a 32×32×32 voxelmap; here
can be seen the influence of a cutting on a dynamically deformable model. Here there is 30 FPS animation
with a Verlet integrator with ‘stretching’ and ‘bending’; the force is 30N amount.

Research on Generic Interactive Deformable 3D Models

CHAPTER 13Project Conclusions and
Future Work

Contributions and Derived Conclusions13.1

Final Conclusions13.1.1

In this thesis, a lot of computer graphics fields have been touched for the aim of
building a quasi-entire interactive 3D model generic deformatior —entire if the run-
time interaction is not counted—:

1. 3D polygonal meshes format understanding;

2. voxelization of meshes, or automatic volumetric representation from 3D meshes;

3. space carving for voxelmap refilling;

4. isosurface extraction algorithms from voxelmaps;

5. physically-based animation algorithms, comprising force accumulators and posi-
tion integrators based on mass-spring dynamic systems;

6. generic mesh deformation due to voxelmap’s 3D non-rigid skeleton underlapping
mapping;

7. GPU programming —shaders— for computing accelerations about applying defor-
mations or computing realistic illumination methods;

Without entering in great deepness in any of these fields, the presented project is a
conjunction of different disciplines —some of them with own contributions and algo-
rithm variants—, offering a global vision of physically realistic real-time computer
graphics animation, because of almost fields of animation are studied: from realistic il-
lumination to realistic animation by deformation due to force application.

Due to this, a software suite, composed by two applications, has been developed
entirely for this thesis. The two applications are, of course, fully-functional and end-
user-ready.

195

196 Chapter 13. Project Conclusions and Future Work

• MeshInspeQTor for mesh visualization and voxelmap generation,

• and ForceReaQTor as the physically-based deformation modeler simulator,

Research Contributions13.1.2

Conservative mesh voxelization variant13.1.2.1

Following the Akenine-Möller proposal for triangle-box intersection methods —reference
[vox7] of the bibliography—, a conservative 2D based algorithm is proposed and imple-
mented. A non-validated voxel it’s sure that is correctly evaluated, but there are some
exceptional cases where a validated voxel is really a non-valid one, due to an approxima-
tion: a triangle is considered a rectangle. However, for triangle meshes, where there are
a lot of primitives, this is a final result non-affecting approximation.

The main idea behind this method is to consider not a triangle but its three 2D pro-
jections onto the three bounding box planes —six faces, parallels in sets of two—. In
this project, since all the bounding boxes are Axis Aligned —therefore, of AABB type—,
these planes are parallel of the axis planes

New approach for an hybrid deformation system13.1.2.2

Similar to the geometric animation method called Free Form Deformation —FFD, see
section 5.2.2 on page 47—, by Sederburg and Parray, here there is an approach of 3D ob-
ject deformation is implemented by building a non-regular grid of equidistant nodes
comprising a non-rigid skeleton, that reacts to external forces due to a mass-spring
phisically-based deformation model.

Hence, there’s a 2-layer hybrid deformation system composed by:

• an underlying layer, composed by a physically-based deformation model similar
to 2D cloth deformation systems, mentioned on section 6.3.1.4 (page 65), capable of
reacting anisotropically to:

– external applied forces,
– deformation-generated internal forces,
– volumetric auto-collisions,
– original relax shape returning memory,
– splitting;

• an overlying layer, based on a geometric deformation model similar to FFD due
to a local coordinate system based on the skeleton node influence zones;

Future Work13.2

Persistent storage of the Marching Cubes extracted meshes13.2.1

It would be a great idea to save the ForceReaQTor autoextracted polygonal meshes
from the mass-spring system onto an OBJ file for future loadings and manipulations in
MeshInspeQTor, and establishing a closed circuit in the software suite. Also, it can be
useful since one of the aims of this method is the mesh rearranging.

Research on Generic Interactive Deformable 3D Models

13.2. Future Work 197

Innovative mesh splitting based on breaking voxel connectivity13.2.2

Oppositely to all the mentioned methods for virtual scalpel implementations, de-
riving onto mesh splittings and 3D object dissects, in this project a new proposal was
desired to be implemented, based on voxel connection splitting instead of cracking
the polygonal meshes; however, some complications on another research fields have im-
possibilited enough dedication; however, the internal cutting is done, this would be only
a better visualization of it.

The basic idea would be conjunction between two interconnected modules:

• the fast and robust isosurface extraction method marching cubes, for an instant
mesh local regeneration —focused, obviously, on the splitted object region—;

• a splitting of the springs of the deformable inner 3D non-rigid skeleton; by break-
ing these links, no voxel cloning is needed, and only a vertex cloning for the split-
ted voxel faces contained primitives will be necessary;

• since the splitting is done within the 3D non-rigid skeleton, this breaking will be
involving in run-time over the underlying deformable layer, so the phisically-
based system will react immediately to this system breaking;

Figure 13.1: Scheme of a possible splitting for a marching cubes’ extracted mesh.

More GPGPU-Focused Algorithms13.2.3

Due to not enough time, a GPGPU-oriented force accumulator has not been able to
be implemented; with an iterative accumulator like the ForceReaQTor one, executed in
a gpu with its parallelism capabilities and advantages —with the indications of Dominik
Göddeke at [gpu8] and [gpu9], but also here in section 9.3 on page 104—, a less unstable
system could be reached, as long as more FPS would be achieved by the simulation.

However, the briefly scheme should be the following:

1. by using the FBO —Frame Buffer Object, see section 9.3.1.1— extension, the CPU-GPU

looping is completed;

2. in each iteration, each independent 3D skeleton node is computed by applying their
time-line pertinent deformation forces, passed in as a 1D texture; the 3D skeleton
is passed as a 2D texture due to the strech, shear or bending restrictive conservation
forces application;

Master Thesis in Computer Graphics by Marc Musquera Moreno

198 Chapter 13. Project Conclusions and Future Work

3. each vertex writes on a previously specified Frabe Buffer pixel, and this buffer is re-
turned as a 2D texture to the CPU, which at this moment has the per-node computed
force accumulator;

Haptic-Oriented Product13.2.4

A haptic device is a sensor-positioned device able to interface the user via the sense
of touch by applying forces, vibrations and/or motions to the user. In other words, a
force-feedback 3D device.

So, once the simulator has been completely developed, and all the desired deforma-
tion and cutting techniques have been tested and are satisfactory, the next step would be
to build an interactive system based on a pen-shape haptic device. The shape of a pen
should be ideal for simulating a virtual scalpel that would perform the deformations and
cuttings.

The workbench prototype13.2.4.1

The first visual support proposal associated to the haptic would be a workbench dis-
playing table, like in the following images95:

(a) A prototype graphical scheme. (b) A prototype system.

Figure 13.2: Examples of ‘workbench-haptic’ virtual environment systems.

By implementing for a system like this, the haptic device would be treated as the vir-
tual scalpel, so the object splitting —or surgery incision— as long as the object external
applied forces can be interactively done by the device, and an additional software layer
should receive these actions and the physically-based model would react in real time.

Then, the experience will be more real due to an interactive device with touch-sensing
and fully-functional as a 3D mouse, ideal to the 3D model interaction such as it was a real
three-dimensional model.

95 The workbench-haptic figures are extracted from different webs; the graphical scheme in figure 13.2(a)
is from http://www.kyb.tuebingen.mpg.de/bu/projects/integration/semolab.html and in
13.2(b), it’s from http://www.sci.utah.edu/stories/2001/fall haptics img-bench-aft.html
where the real prototype system is.

Research on Generic Interactive Deformable 3D Models

http://www.kyb.tuebingen.mpg.de/bu/projects/integration/semolab.html
http://www.sci.utah.edu/stories/2001/fall_haptics_img-bench-aft.html

13.2. Future Work 199

At CRV —Centre de Realitat Virtual—, at the UPC’s Edifici U, a similar system is able to
be used, so it should be a great idea to implement ForceReaQTor with haptic’s run-time
feedback interaction.

The CAVE-oriented environment13.2.4.2

Another interesting proposal would be changing the workbench with a CAVE virtual
environment, also available at CRV for virtual reality research purposes.

The CAVE is a 10× 10× 10-foot structure placed in a 35× 25× 13-foot darkened room,
and consists in rear-projected screen walls —and maybe ceil— with a front-projected
floor that are capable to show images on the floor, walls and ceil, that by using stereo-
scopic 3D glasses, immerses the user in a real 3D virtual world, since images seem to float
in space maintaining the user correct perspective visualisation because of the glasses.

(a) A ‘really’ virtual surrounding environment.

(b) The virtual 3D world generation by multi-camera interpolation.

Figure 13.3: The CAVE virtual environment scheme.

Master Thesis in Computer Graphics by Marc Musquera Moreno

200 Chapter 13. Project Conclusions and Future Work

By a control wanda device96 with associated haptic technology, the interaction with
the deformation system would be a great —and more real than with the workbench, due
to the ‘real’ three-dimensionality— experience.

96 A wanda is a classical-joystick similar control device that permits to capture 3D movements with position
sensors; it has some action buttons and it’s the basic tool for managing the virtual environment in a CAVE
environment.

Research on Generic Interactive Deformable 3D Models

PART IV
Bibliogra-

phy and
Appendixes

APPENDIX ABibliography

PROJECT’S FIRST CONTACT

[mot1] Computer Animation;
Jessica K. Hodgins, James F. O’Brien and Robert E. Bodenheimer Jr.
[www.cc.gatech.edu/gvu/animation/papers/ency.pdf]

[mot2] Anatomy-Based Modeling of the Human Musculature;
Ferdi Scheepers, Richard E. Parent, Wayne E.Carlson, Stephen F.May
SIGGRAPH 97 conference proceedings
[accad.osu.edu/∼smay/Human/human.pdf]

[mot3] Modeling and Deformation of the Human Body Using an Anatomically-Based Approach;
Luciana Porcher Nedel, Daniel Thalmann
[ligwww.epfl.ch/∼thalmann/papers.dir/CA98.muscles.pdf]

[mot4] Wikipedia: Muscle;
[http://en.wikipedia.org/wiki/Muscle]

[mot5] Interactive Modeling of the Human Musculature;
Amaury Aubel and Daniel Thalmann
[vrlab.epfl.ch/Publications/pdf/Aubel Thalmann CA 01.pdf]

[mot6] Creation and deformation of surfaces for the animation of human bodies
Nadia Magnenat-Thalmann, Daniel Thalmann
[ligwww.epfl.ch/∼thalmann/papers.dir/deformations.MIT.pdf]

[mot7] Anatomical Human Musculature Modeling for Real-time Deformation;
ZUO Li, LI Jin-tao, WANG Zhao-qi
[wscg.zcu.cz/wscg2003/Papers 2003/C71.pdf]

[mot8] Liver Surgery Planning Using Virtual Reality;
Bernhard Reitinger, Alexander Bornik, Reinhard Beichel, and Dieter Schmalstieg
[www.computer.org/portal/cms docs cga/cga/content/Promo/promo3.pdf]

[mot9] The Karlsruhe Endoscopic Surgery Trainer as an Example for Virtual Reality in Medical
Education;
U. Kühnapfel, Ch. Kuhn, M. Hübner, H.-G. Krumm, H. Maaß, B. Neisius
[www-kismet.iai.fzk.de/KISMET/docs/UKMITAT.html]

203

http://www.cc.gatech.edu/gvu/animation/papers/ency.pdf
http://accad.osu.edu/~smay/Human/human.pdf
http://ligwww.epfl.ch/~thalmann/papers.dir/CA98.muscles.pdf
http://http://en.wikipedia.org/wiki/Muscle
http://vrlab.epfl.ch/Publications/pdf/Aubel_Thalmann_CA_01.pdf
http://ligwww.epfl.ch/~thalmann/papers.dir/deformations.MIT.pdf
http://wscg.zcu.cz/wscg2003/Papers_2003/C71.pdf
http://www.computer.org/portal/cms_docs_cga/cga/content/Promo/promo3.pdf
http://www-kismet.iai.fzk.de/KISMET/docs/UKMITAT.html

204 Appendix A. Bibliography

[motA] US Patent 7121832: Three-dimensional surgery simulation system;
[www.freepatentsonline.com/7121832.html]

[cnt1] Stable Real-Time Deformations;
Matthias Müuller, Julie Dorsey, Leonard McMillan, Robert Jagnow, Barbara Cutler
Proceedings of ACM SIGGRAPH Symposium on Computer Animation 2002
[graphics.cs.yale.edu/julie/pubs/Deform.pdf]

[cnt2] Surface Simplification Using Quadric Error Metrics;
M. Garland and P. Heckbert
Proceedings of SIGGRAPH 97
[graphics.cs.uiuc.edu/∼garland/papers/quadrics.pdf]

[cnt3] Progressive Meshes;
Hughes Hoppe
[research.microsoft.com/∼hoppe/pm.pdf]

[cnt4] Generalized Interactions Using Virtual Tools within the Spring Framework: Cutting;
Cynthia D. Bruyns, Kevin Montgomery
[biocomp.stanford.edu/papers/mmvr/02/bruyns mmvr 2002 cutting.pdf]

THE STATE OF THE ART

[vox1] Wikipedia’s Polygonal Mesh;
[http://en.wikipedia.org/wiki/Polygon mesh]

[vox2] Object Voxelization by Filtering;
Milos Sramek
[http://www.viskom.oeaw.ac.at/∼milos/page/vox/Voxelization.html]

[vox3] Volume Graphics;
Arie E. Kaufman. et al
[www.cs.sunysb.edu/∼vislab/projects/volume/Papers/Voxel/index.html]

[vox4] Cube Plane Intersection;
Gernot Hoffmann
[www.fho-emden.de/∼hoffmann/cubeplane12112006.pdf]

[vox5] Wikipedia’s Sierpiński triangle;
[http://en.wikipedia.org/wiki/Sierpinski triangle]

[vox6] Sierpinski’s Triangle Fractal;
Leonard Belfroy
[http://www.machines-x.info/mathematics/TriangleFractalText.html]

[vox7] Fast 3D Triangle-Box Overlap Testing;
Tomas Akenine-Möller
[www.cs.lth.se/home/Tomas Akenine Moller/pubs/tribox.pdf]

[vox8] Wikipedia’s Binary Space Partitioning;
[http://en.wikipedia.org/wiki/Binary space partitioning]

[vox9] Wikipedia’s Kd-tree;
[http://en.wikipedia.org/wiki/Kd-tree]

[voxA] Wikipedia’s Octree;
[http://en.wikipedia.org/wiki/Octree]

[voxB] Animació basada en fı́sica (in catalan);
Antonio Susin
[http://www.ma1.upc.edu/∼susin/files/apuntsPart.pdf]

Research on Generic Interactive Deformable 3D Models

http://www.freepatentsonline.com/7121832.html
http://graphics.cs.yale.edu/julie/pubs/Deform.pdf
http://graphics.cs.uiuc.edu/~garland/papers/quadrics.pdf
http://research.microsoft.com/~hoppe/pm.pdf
http://biocomp.stanford.edu/papers/mmvr/02/bruyns_mmvr_2002_cutting.pdf
http://http://en.wikipedia.org/wiki/Polygon_mesh
http://http://www.viskom.oeaw.ac.at/~milos/page/vox/Voxelization.html
http://www.cs.sunysb.edu/~vislab/projects/volume/Papers/Voxel/index.html
http://www.fho-emden.de/~hoffmann/cubeplane12112006.pdf
http://http://en.wikipedia.org/wiki/Sierpinski_triangle
http://http://www.machines-x.info/mathematics/TriangleFractalText.html
http://www.cs.lth.se/home/Tomas_Akenine_Moller/pubs/tribox.pdf
http://http://en.wikipedia.org/wiki/Binary_space_partitioning
http://http://en.wikipedia.org/wiki/Kd-tree
http://http://en.wikipedia.org/wiki/Octree
http://http://www.ma1.upc.edu/~susin/files/apuntsPart.pdf

References for ‘The State of the Art’ 205

[mrs1] Progressive Meshes;
Hugh Hoppe
[research.microsoft.com/∼hoppe/pm.pdf]

[mrs2] Multiresolution 3D Rendering on Mobile Devices;
Javier Lluch, Rafa Gaitán, Miguel Escrivá and Emilio Camahort
[www.gametools.org/archives/publications/UPV jlluch cggm2006.pdf]

[mrs3] Wikipedia’s Isosurface;
[http://en.wikipedia.org/wiki/Isosurface]

[mrs4] A Theory of Shape by Space Carving;
Kiriakos N. Kutulakos
[www.cs.toronto.edu/∼kyros/pubs/00.ijcv.carve.pdf]

[mrs5] Hardware Accelerated Voxel Carving;
Miguel Sainz, Nader Bagherzadeh and Antonio Susin
[www-ma1.upc.es/∼susin/files/SIACG2002.pdf]

[mrs6] Marching cubes: a high resolution 3D surface construction algorithm;
W. Lorensen and H. Cline
ACM Computer Graphicsm 1987
[undergraduate.csse.uwa.edu.au/units/CITS4241/Project/references/Lorensen-Cline-brief.pdf]

[mrs7] Algoritmo de construcción de superficies 3D de alta resolución: Marching Cubes (in
spanish);
Fernando Carmona, David Bitar, Miguel Cancelo, and Fernando Granado
[ma1.eii.us.es/miembros/rogodi/td0708/32/doc.pdf]

[mrs8] The Marching Cubes Algorithm;
Diane Lingrand et al
[http://www.polytech.unice.fr/∼lingrand/MarchingCubes/algo.html]

[mrs9] Topological considerations in isosurface generation;
J. Wilhelms and A. Van Gelder
ACM Computer Graphics, 1990
[http://portal.acm.org/citation.cfm?id=902785]

Extended abstract at: [http://portal.acm.org/citation.cfm?id=99307.99325]
[mrsA] Discretized Marching Cubes;

C. Montani, R. Scateni, and R. Scopigno.
[kucg.korea.ac.kr/education/2003 2/vip618/paper/dmc.pdf]

[mrsB] Polygonising a scalar field;
Paul Bourke
[http://local.wasp.uwa.edu.au/∼pbourke/geometry/polygonise/index.html]

[geo1] Pointshop 3D: An Interactive System for Point-Based Surface Editing;
Matthias Zwicker, Mark Pauly, Oliver Knoll, Markus Gross
SIGGRAPH 2002
[graphics.ethz.ch/Downloads/Publications/Papers/2002/Zwi02/Zwi02.pdf]

[geo2] Shape Modeling with Point-sampled Geometry;
M. Pauly, R. Keiser, L. Kobbelt, M. Gross,
SIGGRAPH 2003
[portal.acm.org/citation.cfm?id=882319]

[geo3] Contact Handling for Deformable Point-Based Objects;
Richard Keiser, Matthias Müller, Bruno Heidelberger, Matthias Teschner, Markus Gross
[www.beosil.com/download/ContactHandling VMV04.pdf]

[geo4] Point Based Animation of Elastic, Plastic and Melting Objects;
M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross and M. Alexa
[graphics.ethz.ch/∼mattmuel/publications/sca04.pdf]

[geo5] Wikipedia’s Moving Least Squares;
[http://en.wikipedia.org/wiki/Moving least squares]

Master Thesis in Computer Graphics by Marc Musquera Moreno

http://research.microsoft.com/~hoppe/pm.pdf
http://www.gametools.org/archives/publications/UPV_jlluch_cggm2006.pdf
http://http://en.wikipedia.org/wiki/Isosurface
http://www.cs.toronto.edu/~kyros/pubs/00.ijcv.carve.pdf
http://www-ma1.upc.es/~susin/files/SIACG2002.pdf
http://undergraduate.csse.uwa.edu.au/units/CITS4241/Project/references/Lorensen-Cline-brief.pdf
http://ma1.eii.us.es/miembros/rogodi/td0708/32/doc.pdf
http://http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
http://http://portal.acm.org/citation.cfm?id=902785
http://http://portal.acm.org/citation.cfm?id=99307.99325
http://kucg.korea.ac.kr/education/2003_2/vip618/paper/dmc.pdf
http://http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/index.html
http://graphics.ethz.ch/Downloads/Publications/Papers/2002/Zwi02/Zwi02.pdf
http://portal.acm.org/citation.cfm?id=882319
http://www.beosil.com/download/ContactHandling_VMV04.pdf
http://graphics.ethz.ch/~mattmuel/publications/sca04.pdf
http://en.wikipedia.org/wiki/Moving_least_squares

206 Appendix A. Bibliography

[geo6] Wikipedia’s Jacobian Matrix;
[http://en.wikipedia.org/wiki/Jacobian]

[geo7] Global and local deformations of solid primitives;
Alan H. Barr
SIGGRAPH 1984
[http://portal.acm.org/citation.cfm?id=808573]

[geo8] Wikipedia’s Tangent Space;
[http://en.wikipedia.org/wiki/Tangent space]

[geo9] Wikipedia’s Manifold;
[http://en.wikipedia.org/wiki/Manifold]

[geoA] Models Deformables; (in catalan and english)
Antonio Susin
N/A link

[geoB] A Framework for Geometric Warps and Deformations;
Tim Milliron, Robert J. Jensen, Ronen Barzel, Adam Finkelstein
[www.ronenbarzel.org/papers/warp.pdf]

[geoC] Free-Form Deformation of Solid Geometric Models;
Thomas W. Sederberg, Scott R. Parry
SIGGRAPH 1986
[portal.acm.org/citation.cfm?id=15903]

[geoD] Interactive Axial Deformations;
Francis Lazarus, Sabine Coquillart and Pierre Jancène
IFIP Working Conference on Geometric Modeling and Computer Graphics, 1993
[ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-1891.pdf]

[geoE] Wires: A Geometric Deformation Technique;
Karan Singh, Eugene Fiume (Alias—Wavefront)
[www.dgp.toronto.edu/ karan/pdf/ksinghpaperwire.pdf]

[phy1] Advanced Character Physics;
Thomas Jakobsen (IO Interactive)
[www.ma1.upc.edu/∼susin/files/AdvancedCharacterPhysics.pdf]

[phy2] Curs de Modelatge de Volums: Models Deformables;
Antonio Susin
N/A link

[phy3] Models Deformables; (in catalan and english)
Antonio Susin
N/A link

[phy4] Analysis of numerical methods for the simulation of deformable models;
Michael Hauth, Olaf EtzmuSS, Wolfgang StraSSer
[springerlink.metapress.com/content/aaxt761nm1wvvbch/]

[phy5] Physically Based Deformable Models in Computer Graphics;
Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman and Mark Carlson
[graphics.ethz.ch/∼mattmuel/publications/egstar2005.pdf]

[phy6] Decomposing Cloth;
Eddy Boxerman and Uri Ascher
[www.cs.ubc.ca/spider/ascher/papers/ba.pdf]

[phy7] Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior;
Xavier Provot
[graphics.stanford.edu/courses/cs468-02-winter/Papers/Rigidcloth.pdf]

[phy8] Cloth Animation;
Christopher Twigg
[www.cs.cmu.edu/∼djames/pbmis/notes/pbmis class14 cloth.pdf]

Research on Generic Interactive Deformable 3D Models

http://en.wikipedia.org/wiki/Jacobian
http://portal.acm.org/citation.cfm?id=808573
http://en.wikipedia.org/wiki/Tangent_space
http://en.wikipedia.org/wiki/Manifold
http://www.ronenbarzel.org/papers/warp.pdf
http://portal.acm.org/citation.cfm?id=15903
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-1891.pdf
http://www.dgp.toronto.edu/~karan/pdf/ksinghpaperwire.pdf
http://www.ma1.upc.edu/~susin/files/AdvancedCharacterPhysics.pdf
http://springerlink.metapress.com/content/aaxt761nm1wvvbch/
http://graphics.ethz.ch/~mattmuel/publications/egstar2005.pdf
http://www.cs.ubc.ca/spider/ascher/papers/ba.pdf
http://graphics.stanford.edu/courses/cs468-02-winter/Papers/Rigidcloth.pdf
http://www.cs.cmu.edu/~djames/pbmis/notes/pbmis_class14_cloth.pdf

References for ‘Contributions and Results’ 207

[phy9] A Survey on Cloth Simulation;
Yongjoon Lee
[tclab.kaist.ac.kr/∼sungeui/SGA07/Students/YJL-mid.pdf]

[phyA] Dynamic Real-Time Deformations using Space & Time Adaptive Sampling;
Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, Alan H. Barr
[www-evasion.imag.fr/Publications/2001/DDCB01/DDCB01.pdf]

[phyB] Desarrollo de un mètodo mixto malla-partı́cula para la animación de fluidos.; (in span-
ish)
N. Suárez, A. Susin
[www-ma1.upc.es/∼susin/files/CEIG05-Fluidos.pdf]

[phyC] Fluid Simulation for Computer Animation;
Greg Turk
[www-static.cc.gatech.edu/∼turk/powerpoint presentations/fluids.ppt]

[phyD] Interactive Animation of Cloth-like Objects in Virtual Reality;
Mark Meyer, Gilles Debunne, Mathieu Desbrun, Alan H. Barr
[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7036&rep=rep1&type=pdf]

[phyE] emphPump it up: computer animation of a biomechanically based model of muscle
using the finite element method;
David T. Chen, David Zeltzer
SIGGRAPH 1992
[http://portal.acm.org/citation.cfm?id=134016]

[phyF] A 3D Discrfete Model of the Diaphragm and Human Trunk Emmanuel Promayon, Pierre
Baconnier
[www.esaim-proc.org/articles/proc/pdf/2008/02/proc082305.pdf]

[cut1] A Virtual Node Algorithm for Changing Mesh Topology During Simulation;
Neil Molino, Zhaosheng Bao, Ron Fedkiw
[physbam.stanford.edu/∼fedkiw/papers/stanford2004-01.pdf]

[cut2] Hybrid Cutting of Deformable Solids;
Denis Steinemann, Matthias Harders, Markus Gross, Gabor Szekely
[ieeexplore.ieee.org/iel5/11055/34910/01667624.pdf]

[cut3] Generalized Interactions Using Virtual Tools within the Spring Framework: Cutting;
Cynthia D. Bruyns, Kevin Montgomery
[biocomp.stanford.edu/papers/mmvr/02/bruyns mmvr 2002 cutting.pdf]

[cut4] Action Areas: On interacting in a virtual environment;
Cynthia D. Bruyns, Steven Senger, Simon Wildermuth and Kevin Montgomery
[www.vis.uni-stuttgart.de/vmv01/dl/posters/9.pdf]

[cut5] Real-time Incision Simulation Using Discontinuous Free Form Deformation;
Guy Sela, Sagi Schein, and Gershon Elber
[www.cs.technion.ac.il/∼schein/publications/Scalpel.pdf]

[cut7] Combining FEM and cutting: a first approach;
N/A —master thesis chapter—
[igitur-archive.library.uu.nl/dissertations/2003-0721-093328/c3.pdf]

[cut8] A Delaunay approach to interactive cutting in triangulated surfaces;
N/A —master thesis chapter—
[igitur-archive.library.uu.nl/dissertations/2003-0721-093328/c5.pdf]

CONTRIBUTIONS AND RESULTS

[lib1] Wikipedia’s C++;
[http://en.wikipedia.org/wiki/C%2B%2B]

Master Thesis in Computer Graphics by Marc Musquera Moreno

http://tclab.kaist.ac.kr/~sungeui/SGA07/Students/YJL-mid.pdf
http://www-evasion.imag.fr/Publications/2001/DDCB01/DDCB01.pdf
http://www-ma1.upc.es/~susin/files/CEIG05-Fluidos.pdf
http://www-static.cc.gatech.edu/~turk/powerpoint_presentations/fluids.ppt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7036&rep=rep1&type=pdf
http://http://portal.acm.org/citation.cfm?id=134016
http://www.esaim-proc.org/articles/proc/pdf/2008/02/proc082305.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2004-01.pdf
http://ieeexplore.ieee.org/iel5/11055/34910/01667624.pdf
http://biocomp.stanford.edu/papers/mmvr/02/bruyns_mmvr_2002_cutting.pdf
http://www.vis.uni-stuttgart.de/vmv01/dl/posters/9.pdf
http://www.cs.technion.ac.il/~schein/publications/Scalpel.pdf
http://igitur-archive.library.uu.nl/dissertations/2003-0721-093328/c3.pdf
http://igitur-archive.library.uu.nl/dissertations/2003-0721-093328/c5.pdf
http://http://en.wikipedia.org/wiki/C%2B%2B

208 Appendix A. Bibliography

[lib2] Wikipedia’s Qt;
[http://en.wikipedia.org/wiki/Qt]

[lib3] Wikipedia’s Matlab;
[http://en.wikipedia.org/wiki/Matlab]

[gpu1] Wikipedia’s OpenGL;
[http://en.wikipedia.org/wiki/OpenGL]

[gpu2] Programming Graphics Hardware;
Randy Fernando, Cyril Zeller (nVidia Developer Technology Group), I3D
[http://s217587280.mialojamiento.es/resources/I3D 05 IntroductionToGPU.pdf]

[gpu3] Programming the GPU: High-Level Shading Languages;
Randy Fernando (nVidia Developer Technology Group), I3D
[http://www.lsi.upc.edu/∼ppau/filesWeb/I3D 05 ProgrammingLanguages.pdf]

[gpu4] Introduction, OpenGL basics, OpenGL buffers;
Pere-Pau Vázquez
[http://s217587280.mialojamiento.es/resources/OpenGL1.pdf]

[gpu5] GPU Programming;
Pere-Pau Vázquez
[http://www.lsi.upc.edu/∼ppau/filesWeb/GPUProgramming1.pdf]

[gpu6] GPU Programming, GLSL Language Description;
[http://www.lsi.upc.edu/∼ppau/filesWeb/GPUProgramming3.pdf]

[gpu7] Wikipedia’s Frame Buffer Object;
[http://en.wikipedia.org/wiki/Framebuffer Object]

[gpu8] Dominik Göddeke’s GPGPU Tutorials;
Dominik Göddeke
[http://www.mathematik.uni-dortmund.de/∼goeddeke/gpgpu/index.html]

[gpu9] Dominik Göddeke’s GPGPU Basic Math Tutorial;
Dominik Göddeke
[http://www.mathematik.uni-dortmund.de/∼goeddeke/gpgpu/tutorial.html]

[gpuA] Programming the GPU ... and a brief intro to OpenGL Shading Language;
Marcelo Cohen
[www.comp.leeds.ac.uk/vvr/papers/gpu-vvr2.pdf]

[gpuB] nVidia’s CUDA Home Page;
[http://www.nvidia.com/object/cuda get.html]

[gpuC] Wikipedia’s CUDA;
[http://en.wikipedia.org/wiki/CUDA]

[gpuD] SUPERCOMPUTING 2007 Tutorial: High Performance Computing with CUDA, 02. Pro-
gramming CUDA;
Massimiliano Fatica, David Luebke (nVIDIA Corporation)
[http://www.gpgpu.org/sc2007/]

[gpuE] Introduction to OpenGL;
Michael Papasimeon
[www.cs.mu.oz.au/380/2007/slides/OpenGL 6up.pdf]

[gpuF] Computer Graphics: Introduction and Graphics Primitives;
PM Burrage, GB Ericksson
[www.itee.uq.edu.au/∼comp3201/OGL1 4.pdf]

[gpuG] GLSL Quick Reference Guide;
[www.opengl.org/sdk/libs/OpenSceneGraph/glsl quickref.pdf]

[ami1] Wikipedia’s UML;
[http://en.wikipedia.org/wiki/Unified Modeling Language]

[ami2] Wikipedia’s OBJ file format;
[http://en.wikipedia.org/wiki/Obj]

[ami3] OBJ format;
[www.eg-models.de/formats/Format Obj.html]

Research on Generic Interactive Deformable 3D Models

http://http://en.wikipedia.org/wiki/Qt
http://http://en.wikipedia.org/wiki/Matlab
http://http://en.wikipedia.org/wiki/OpenGL
http://http://s217587280.mialojamiento.es/resources/I3D_05_IntroductionToGPU.pdf
http://http://www.lsi.upc.edu/~ppau/filesWeb/I3D_05_ProgrammingLanguages.pdf
http://http://s217587280.mialojamiento.es/resources/OpenGL1.pdf
http://http://www.lsi.upc.edu/~ppau/filesWeb/GPUProgramming1.pdf
http://http://www.lsi.upc.edu/~ppau/filesWeb/GPUProgramming3.pdf
http://http://en.wikipedia.org/wiki/Framebuffer_Object
http://http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/index.html
http://http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html
http://www.comp.leeds.ac.uk/vvr/papers/gpu-vvr2.pdf
http://http://www.nvidia.com/object/cuda_get.html
http://http://en.wikipedia.org/wiki/CUDA
http://http://www.gpgpu.org/sc2007/
http://www.cs.mu.oz.au/380/2007/slides/OpenGL_6up.pdf
http://www.itee.uq.edu.au/~comp3201/OGL1_4.pdf
http://www.opengl.org/sdk/libs/OpenSceneGraph/glsl_quickref.pdf
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Obj
http://www.eg-models.de/formats/Format_Obj.html

References for ‘Conclusions and Future Work’ 209

[ami4] OBJ file format complete specification v3.0;
[www.martinreddy.net/gfx/3d/OBJ.spec]

[ami5] Material definitions for OBJ files;
[https://people.scs.fsu.edu/∼burkardt/data/mtl/mtl.html]

[ami6] The NLM’s Visual Human Project;
[www.nlm.nih.gov/research/visible/visible human.html]

[ami7] OpenGL Vertex Arrays;
[www.opengl.org/documentation/specs/version1.1/glspec1.1/node21.html]

[ami8] Wikipedia’s Phong Shading;
[http://en.wikipedia.org/wiki/Phong shading]

CONCLUSIONS AND FUTURE WORK

[] · · · ∅ · · ·

Master Thesis in Computer Graphics by Marc Musquera Moreno

http://www.martinreddy.net/gfx/3d/OBJ.spec
https://people.scs.fsu.edu/~burkardt/data/mtl/mtl.html
http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.opengl.org/documentation/specs/version1.1/glspec1.1/node21.html
http://en.wikipedia.org/wiki/Phong_shading

APPENDIX BEnd-User Software Data
Sheet: ‘MeshInspeQTor’

Product OverviewB.1

HighlightsB.1.1

MeshInspeQTor is a graphical application that permits the user open 3D models and
visualizing them in a great variety of modes. Additionally, there is a cutting modality
that, specifying some cutting planes, the 3D model will be visible only in the upper plane
subspaces; this is a useful tool for inspecting the model.

Besides, you can use MeshInspeQTor for generating fast and robust voxelmaps; that
is, volumetric representations of any 3D scene involving some 3D models. Even, you can
refill them or editing these volumetric representations with a voxel navigator tool.

Figure B.1: MeshInspeQTor rendering the dolphins model with materials and phong algorithm illumi-
nation. Notice the three application panel functionalities: models, virtualcutters and voxelizer.

211

212 Appendix B. End-User Software Data Sheet: ‘MeshInspeQTor’

Key FeaturesB.1.2

• OBJ model format importation, with material specification included;

• mesh visualization editor, including four kinds of mesh rendering: solid, wireframe,
nodeset and draft, a non-smoothed face remarking illumination method;

• capable to dissect any 3D model with the cutting planes;

• property SCN file format, comprised by the 3D models —plus their visual settings—
and the previously set cutting planes;

• scene concept totally editable; the 3D models, as the cutting planes, can be included
or rejected from the scene, or hidden —so, their occuped space matters—;

• creation and edition of voxelmaps automatically from the actual 3D scene, or manually
with the voxelmap navigator, with a previously specified sizes from < 1 × 1 × 1 > to
< 256× 256× 256 > regular voxel grid;

• besides, the automatic voxelmap generation from the 3D scene is basic-set-theory ca-
pable, so the generated voxelmap can be the result for intersection or union of models
—or its inverted spaces—;

• the voxelmap navigator can manipulate automatically-generated voxelmaps;

• automatic voxelmap refilling with two different carving methods;

• the voxelmaps are totally able to be saved for future loadings with a property VOX file
format; indeed, this file format specification is the input for the other software app in
the package, ForceReaQTor —se appendix C for more information—;

Product DetailsB.2

Models tab: 3D Model VisualizationB.2.1

Setting the 3D sceneB.2.1.1

This program works with the concept of scenes; that is, a set of 3D models within
the same 3D space; besides, each OBJ file format can include more than one object, so
MeshInspeQTor is able to charge so much OBJ files to the same scene.

So, once the models are available on the scene, they are shown on the scene screen,
with the point-of-view centered on the scene center97 and with al the models viewable
—except for occlusions, of course—. They will be illuminated by a white light placed at
north-west, behind the user position.

Then, each 3D object —from now, they will be called entities, or group entities if it’s a
group containing various entities— can be consulted, by clicking on the model selection
panel, for getting information about:

97 That is, the geometric center counting all the models. This center of scene point is not necessarily an
existing point within one of the models.

Research on Generic Interactive Deformable 3D Models

B.2. Product Details 213

1. number of vertices, normals and faces;

2. material info —i.e., the ambient, diffuse and specular color emission—;

and also for selecting the entity visualization properties, that really modifies the visual
style and scene involucration of the entity set:

• an entity can be, though charged on the scene, hidden or rejected;

• you can select four types of rendering: solid, wireframe, nodeset, and draft, a non-
beuaty rendering mode with great usefulness for mesh composition purposes: it’s a
mix of solid and wireframe modes, but with non-smoothing illumination and no
material properties;

Figure B.2: From up to down, wireframe, draft —with normal displaying; see below— and nodeset ren-
derings of the dolphins model. Notice in the right panels the information about the dolphin1 entity,
already selected: 285 vertices composing 564 faces.

Also, some add-on visualizations are available for every model:

1. the entity material (in case of its existence) can be disabled;

2. the individual bounding box for each entity or group entity is displayable;

3. there’s the possibility of rendering all the entities’ face normals;

Controls and managementB.2.1.2

Everything is saveable —and loadable— by the File menu, from where the user can
reset the scene, load a new one or save the actual one on a SCN file, or importing a new
OBJ file to the current scene. And additionally98 from the Camera menu it’s possible to
center the camera again or changing the camera point-of-view: top, side or front —front
camera is the default configuration—.

98 And this involves the general application visualization, not only the 3D model —entity— displaying;
that is, the following text is compatible with the three tabs of MeshInspeQTor state panel.

Master Thesis in Computer Graphics by Marc Musquera Moreno

214 Appendix B. End-User Software Data Sheet: ‘MeshInspeQTor’

Besides, the scene display screen is interactive in terms of camera configuration by
dragging the mouse while one of the three buttons are pressed99:

Mouse Button Action while dragging

Left Scene Rotation
Middle Center-of-Scene Displacement
Right Camera Zoom

Table B.1: MeshInspeQTor mouse controls.

VirtualCutters tab: The Mesh Dissection ProcessB.2.2

Setting a Virtual CuttersB.2.2.1

As said previously, a VirtualCutter is a plane that, once specified his normal vector
(a, b, c) and the displacement value d, the plane equation

πvc : ax + by + cz + d = 0

is assigned to it; those values can be modified, as long as can also be deleted. From this
moment, the 3D scene will be visible only where it’s positive in relation to the Virtual-
Cutter; that is, following the point-plane relative position cases, being p = (px, py, pz):

πvc(p) : apx + bpy + cpz + d > 0 =⇒ ⊕ ≡ p > πvc
πvc(p) : apx + bpy + cpz + d = 0 =⇒ ∅ ≡ p ∈ πvc
πvc(p) : apx + bpy + cpz + d < 0 =⇒ 	 ≡ p < πvc

Also, as in the case of the 3d entities, a VirtualCutter can be stored but can be selected
—active and displayed—, hidden —active but invisible— and rejected —no loaded—.
In the following figure it’s shown the dissection effect of the VirtualCutters:

Figure B.3: Here’s the bunnycapped model in dissection by a VirtualCutter.

99 This is applicable to all the MeshInspeQTor panels and functionalities, not only the models one.

Research on Generic Interactive Deformable 3D Models

B.2. Product Details 215

ManagementB.2.2.2

The VirtualCutters are implicitly —if there is any VirtualCutter set— saved in a SCN
file; so, if you want to save a set of cutting planes, you must do it by saving a scene
—with or without entities, it doesn’t matter—.

Voxelizer tab: The VoxelMaps, Volumetric RepresentationsB.2.3

Building a Voxelmap from a 3D sceneB.2.3.1

Once the 3D scene is set as the user wants, it’s time for enter to the Voxelizer panel,
selecting the desired VoxelMap size (it will be always a regular grid) and click on the
Generate VoxelMap by Scene button. Then, the scene voxelization will begin.

(a) The voxelization’s previous step: scene bounding box plenty of null —yellow— voxels.

(b) The final result. The valid nodes —in green— now have size 2 for better visualization.

Figure B.4: The previous and final dolphins’ < 32× 32× 32 > voxelmap automatic generation steps.

Master Thesis in Computer Graphics by Marc Musquera Moreno

216 Appendix B. End-User Software Data Sheet: ‘MeshInspeQTor’

Basic Set Theory applied to Voxelization MethodB.2.3.2

This is the basic voxelization method: the union of all entities’s single voxelization;
however, MeshInspeQTor permits applying basic set theory to the voxelization method,
and the intersection of voxelizations is also available. Besides, every entity can have as-
signed the nrm or the inv values; the first one is the standard entity but the second one
will apply the inverse of that entity voxelization, thus, its complement.

In this way, using the complementary unary operator with the binary operators
union ∪ and intersection ∩100, some complex voxelizations are possible to be got:

Figure B.5: Two fish 3D models, fish1 and fish2, will be used to obtain complex voxelizations by
using basic set theory. Notice that the entity individual bounding boxes are really intersecting.

Figure B.6: The < 32×32×32 > fish1 ∩ fish2 automatic voxelization. Let’s see that the valid nodes
only those that were valid on the both two voxelizations.

100 However, union and intersection will be applied to all entities at the same time, so it’s not possible
to apply intersection and union at the same time.

Research on Generic Interactive Deformable 3D Models

B.2. Product Details 217

Figure B.7: The < 32 × 32 × 32 > VoxelMap equivalent to those voxels that are containing fish1 but
not fish2: so, the set theory operation is [fish1 ∩fish2].

Using the VoxelMap NavigatorB.2.3.3

MeshInspeQTor is capable, as it’s been seen, for generating voxelizations from a 3D

scene even applying basic set theory with the entities as sets. However, there’s also the
possibility to modify a voxelmap manually, with the Voxelizer Navigator, that allows
the user:

• edit a cubic finite voxelmap region with the values valid, invalid or inverting the actual
value; see figure B.8 for an example within the torus voxelmap;

Figure B.8: Voxelizer Navigator’s manipulation example. Notice the added cube on the upper left screen
part, within the torus voxelmap.

• view a enclosed —cubic— range of the entire torus voxelmap, as it’s shown on figure
B.9 in the next page;

Master Thesis in Computer Graphics by Marc Musquera Moreno

218 Appendix B. End-User Software Data Sheet: ‘MeshInspeQTor’

Figure B.9: A voxelmap finite range visible with the Voxelizer Navigator’s range visualization option.

Carving a VoxelMapB.2.3.4

When you request for a 3D scene voxelization, it’s correctly and robustly well-done.
However, a 3D object is only simulating a solid object, so the polygonal mesh is represent-
ing the object surface —that is, the inner object space is really empty—.

It’s clearly viewable in the following figure, representing the voxelization of a spe-
cial scene composed specially for this thesis, comprising a cylinder with two more
non-intersecting objects within it: a cube and a sphere101; this 3D scene has been called
sphecylcub, a obvious contraction of the scene composing geometric shapes.

Figure B.10: The thesis carving purpose scene sphecylcub < 64 × 64 × 64 > VoxelMap. Notice the
emptyness of the cylinder inner space, so the contained objects —cube and sphere— are also empty and
clearly visualizable.

101 This voxelization is done with all the objects in nrm mode and the union set operation. See the section
B.2.3.2 for more information about basic set theory on voxelmaps.

Research on Generic Interactive Deformable 3D Models

B.2. Product Details 219

In the next figure a voxelization portion is visible, for more bright visualization of the
respective emptyness of all object voxelizations.

Figure B.11: Portion of the < 64 × 64 × 64 > sphecylcub voxelization that shows the absolute
emptyness of the standard 3D scene objects voxelization.

So, the voxel space carving is the ideal tool for refill empty volumetric represen-
tations. If you want to voxelize a 3D scene, and you want it completely volumetric,
solid, simply click on Space Carving button after the voxelization is executed. Then,
a method selection dialog like the featured in the next figure will appear —two space
carving methods are available—:

Figure B.12: Space Carving policy selection dialog.

• the total refilling algorithm is the most simple and the most obvious at the same time.
It’s performed as six cameras were on each scene bounding box face, focusing the scene
itself, and the resulting refilling is the intersection of the six camera projections. The
final result is correct for convex meshes, but if the mesh is not convex, there can exist
some incorrectly refilled zones.

Master Thesis in Computer Graphics by Marc Musquera Moreno

220 Appendix B. End-User Software Data Sheet: ‘MeshInspeQTor’

Figure B.13: Space Carving done with ‘Total Refilling’ policy. Notice that all the inner zone corresponding
to the more exterior voxelization is totally refilled.

• the hole preserving algorithm is ideal for non-convex objects, or as in the case, ob-
jects containing another objects that are representing geometric holes. This method
performs the same method as the previous carving policy but now when another vox-
elization —inner to an already visited one— is encountered, it’s considered a hole.
The final result can be seen in the following figure;

Figure B.14: Space Carving done with ‘Hole Preserving’ policy. Notice that the more exterior voxelization
is refilled, but the inner ones are considered holes, so they are still empty.

ManagementB.2.3.5

The VoxelMaps, carved or not carved, manually or automatically generated, can be
saved to, or loaded from, the VOX file format, that contains all the necessary information
about the VoxelMap, independently from the 3D scene —in case it exists—. Besides, once
a voxelmap is loaded, it can be modified as always as the user wants by the Voxelizer
Navigator.

Research on Generic Interactive Deformable 3D Models

B.3. Requirements and recommendations 221

If you want to save additionally the scene parameters, you will have to save the scene
on a separate SCN file. However, they won’t be directly relationated, they will be two
really different files with no connection.

Requirements and recommendationsB.3

MeshInspeQTor is a capable 3D model visualizer for OBJ file format objects, with a
information panel and a lot of visualization settings and modes. Also, it offers the possi-
bility of dissect any model —or set of models, called scene— by the VirtualCutter panel,
and aditionally, by using the Voxelizer panel a scene complex volumetric representation
can be generated and modified.

(a) The Apple logo. (b) The Mac logo. (c) The MeshInspeQTor logo.

Figure B.15: MeshInspeQTor software and hardware requirements logos.

This application has been developed for Apple Mac Intel platforms using the QT4
framework for GUI design and OPENGL API for the graphics displaying. A Shader Model
3.0 compatible GPU is recommended for the model visualization, and required for the
virtualcutter dissection processes.

Master Thesis in Computer Graphics by Marc Musquera Moreno

APPENDIX CEnd-User Software Data
Sheet: ‘ForceReaQTor’

Product OverviewC.1

HighlightsC.1.1

ForceReaQTor is a visual dynamic deformable system simulator able to generate,
from any previously generated voxelmap, a non-rigid 3D skeleton that can be deformed
by dynamic force set application in a enclosed cycle of time, following real-time physica-
lly-based laws with collision control.

Also, the simulator is able to perform some cuttings like a virtual scalpel usability,
for virtual surgery purposes. A mesh will be capable to be cut and subdivided so much
times user wants, until the 3D skeleton reaches his deformation limit.

Figure C.1: ForceReaQTor’s simulation example by deformable forces to dolphin model.

223

224 Appendix C. End-User Software Data Sheet: ‘ForceReaQTor’

Key FeaturesC.1.2

• VOX model format importation —see appendix B for more information—;

• three kinds of visualization: textsc3d non-rigid skeleton, original mesh —if it exists—,
and regenerated mesh (with polygon density in direct proportion to the 3D skeleton
structure density);

• all the visualizations can be deformed in the same way by the same dynamic force
configuration;

• complete simulation settings tab, with capabilities for (i) timeline controlling, (ii) dy-
namic forces configuration (with preview), (iii) active cuttings; (iv) besides, some 3D

skeleton parts are capable to be fixed —rigid—;

• there’s no real-time interactive user-model interfacing but, as said, a set of forces and
cuttings through time; this set can be saveable and loadable by the property DFL file
format;

• the simulator performs the previously set dynamic force list, and can be paused or
stopped;

• the simulation is FPS-rate-controlling: you can set the performing FPS-rate, submitted
to an error message if the desired rate is too much for the computer and/or algorithm
capabilities;

• the physically-based deformable system has some configurations able to be enabled
and disabled in simulation run-time: three kinds of real-time deformable relaxing
inner forces: stretch, shear and bending and the value of two kinds of relaxing pa-
rameters: elasticity and dampening;

Product DetailsC.2

Dynamic Force tab: The 3D Dynamic Deformation Model settingsC.2.1

A little introduction; the deformable skeletons and the dynamic force listsC.2.1.1

As a deformable model simulator with non-interactive interface but list of time-
line-related deformable actions, ForceReaQTor works with two basic data formats:

1. a 3D non-rigid skeleton,

2. and a dynamic force list, completely configurable, applied to this skeleton for deformat-
ing it following realistic physical laws;

However, it’s important to notice that, though the force list will be applied to a de-
formable skeleton, these two data structures have no implicit relation between them,
according to the ForceReaQTor specifications. That means, the same dynamic force list
can be applied to different skeletons, or even, the same skeletons can be associated to
more than one dynamic force list.

Research on Generic Interactive Deformable 3D Models

C.2. Product Details 225

The VoxelMap and the 3D non-rigid skeletonC.2.1.2

ForceReaQTor uses a standard voxelmap for generating a 3D non-rigid skeleton, by
using the centers of validated voxels as skeleton nodes, and using a 6-connectivity pol-
icy102, it creates a non-rigid spring. The final result is a kind of complex net with axis
parallel wires and nodes coinciding with the voxelmap valid voxel centers.

Thus, as a bridge of the thesis’ entire developed software package, ForceReaQTor uses
the MeshInspeQTor generable VoxelMaps. Let’s see this software relation in the two
following figures: the first is from MeshInspeQTor after generating a voxelmap, and the
second is ForceReaQTor generating the 3D non-rigid skeleton from this voxelmap.

(a) The MeshInspeQTor’s automatically generated voxelmap —see appendix B for more
details—.

(b) The ForceReaQTor 3D skeleton processed from the voxelmap.

Figure C.2: An example of < 16× 16× 16 > skeleton-node-modeling from sphere model voxelmap.

102 That is, two voxels are connected if they have a common face; ergo, a voxel will be full-connected if there
are six adjacent voxels, each one with one of the six cube common faces.

Master Thesis in Computer Graphics by Marc Musquera Moreno

226 Appendix C. End-User Software Data Sheet: ‘ForceReaQTor’

Setting the Dynamic Force ListC.2.1.3

As said on the previous page, independelty of having a 3D skeleton charged in mem-
ory, ForreReaQTor offers a complete configuration panel for creating, deleting and up-
dating dynamic actions through the time-line, for setting three types of dynamic suc-
cesses, each one with some restricted parameters:

• dynamic forces; this item has all the available paramaters: (i) skeleton node range, (ii)
force direction, (iii) force amount —in newtons— and (iv) time-line active action —that
is, initial and final milisecond of force enabling—;

Figure C.3: The preview of a previously specified dynamic force —yellow lines, maintaining the specified
force vector direction, on the ‘front right leg’ zone—, applied to the cow skeleton.

• fixed skeleton nodes; obviously, force direction and amount is unnecessary, and be-
sides, ForceReaQTor will fix these nodes during all the simulation, so the time-line is
also unnecessary. Then, only the skeleton node range is available here.

Figure C.4: The preview of a fixed nodes application —red remarked nodes, on the ‘head’ zone—, also to
the cow skeleton.

Research on Generic Interactive Deformable 3D Models

C.2. Product Details 227

• skeleton spring cuttings; as in the fixed nodes settings, force amount and direction
will be disabled; nevertheless, a cut is permanent but only from the moment of cut, so
apart from the node range, the initial time-line milisecond are the available settings.

Figure C.5: The preview of a specified cutting —orange remarked lines, on the ‘front left knee’ zone—,
applied to the cow skeleton too.

As it can be seen in the figures C.3, C.4 and C.5, every dynamic action can be pre-
viewed on the previously charged 3D skeleton. This process is error-managed; that
means, if there is some dynamic action which node range is skeleton-out-of-range, ForceReaQ-
Tor does nothing, and the same with existing but not validated nodes.

Controls and managementC.2.1.4

Since 3D non-rigid skeletons are generated automatically in the MeshInspeQTor Vox-
elMap file format importing action, the VOX file format will be the chosen for loading this
kind of data. Additionally, the dynamic force lists —including forces, node fixing and
spring cutting— are saveable and loadable by the property DFL file format.

Also, as for the dynamic action preview as long as for the simulation playing, there
is some visualization camera settings by Camera menu, where camera can be automat-
ically skeleton-centered, or its position can be modified: top-view, side-view and front-
view —this last is the default one—.

Besides, there are itneractive camera controls with the dragging mouse movement
while any mouse button is pressed; these are the mouse actions:

Mouse Button Action while dragging

Left Scene Rotation
Middle Center-of-Scene Displacement
Right Camera Zoom

Table C.1: ForceReaQTor mouse controls.

Master Thesis in Computer Graphics by Marc Musquera Moreno

228 Appendix C. End-User Software Data Sheet: ‘ForceReaQTor’

Simulator tab: The Real-Time Deformable SimulatorC.2.2

Deformable system visualization stylesC.2.2.1

ForceReaQTor offers three types of deformable system rendering for the visualiza-
tion, perfectly modificable in simulation run-time:

1. the first of them has been seen in all the previous figures, it’s the 3D skeleton model;,
comprising nodes and springs;

2. the second mode is the original polygonal mesh from where the voxelmap was gener-
ated —in case it exists—;

3. the another mode is the Marching Cubes’ extracted polygonal mesh, an automati-
cally generated mesh from the 3D skeleton shape by using the isosurface extraction
algorithm Marching Cubes;

Figure C.6: The ForceReaQTor’s Marching Cubes extracted mesh rendering of a bunny.

Playing the simulationC.2.2.2

Once there is a 3D skeleton charged in memory, and a dinamyc force list is correctly
configured —by a DFL file loading, or manually—, the deformation set can be simulated
in the Simulation tab.

There are three main buttons for simulation controlling:

• PLAY, that reproduces the previously specified deformation set in a discrete smoothed
time-line, applying subsequently all the set dynamic deformable actions;

• PAUSE, that pauses the simulation; if then the user clicks on textbfPLAY again, the
simulation continues from the pause moment;

• STOP, that resets the simulation; that is, a pause but with a returning-to-zero timing
—by clicking PLAY again, the simulation doesn’t continue but begins again—;

Research on Generic Interactive Deformable 3D Models

C.2. Product Details 229

additionally, it’s important to notice that in every simulation moment —played, paused,
stopped—, the scene visualization is interactively enabled by using the specified mouse
controls on the table C.1.

The numerical integrators: Euler and VerletC.2.2.3

Before starting a simulation, the user must choose a numerical integrator for the 3D

non-rigid skeleton; there are two possible choices:

1. the Euler numerical integrator, more accurate and realistic but also more unstable un-
der time step closer to the limit;

2. the Verlet one, more stable for extremal conditions; however, it is also a linear ap-
proximation of the Euler iterator, and that implies two things: it’s more faster but the
simulation is more still restricting on deformations.

The frames per second —FPS— rate specificationC.2.2.4

In ForceReaQTor there is also a pre-beginning simulation parameter: the FPS-rate.
The simulation displaying and the deformation algorithm execution are computation-
ally independent —although they are really data-dependent—, so the user can specify
which framerate desires.

Figure C.7: The FPS error message thrown when the framerate cannot be achieved.

However, if the specified FPS rate is too much high an error message will be shown
and the simulation will be stopped. There are —briefly— two reasons for that:

1. too much high framerate in FPS for so much complex deformation system —so, the
computer is inherently not capable to display so much FPS—;

2. the specified framerate has a normal value but the deformable system has too much
deformation restrictions —e.g. the three effects, stretch, shear and bending—; it will may
execute only with stretch restriction;

Master Thesis in Computer Graphics by Marc Musquera Moreno

230 Appendix C. End-User Software Data Sheet: ‘ForceReaQTor’

Besides, if the numerical integrator selection has been the Euler one, it can be a good
solution trying the Verlet integrator, due to its more efficiency and more stability —
though caused by its more deformative restrictions—.

Run-Time simulation parametersC.2.2.5

ForceReaQTor provides real run-time simulation parameters that modify the defor-
mation characteristics; that is, parameters that can be enabled/disabled/modified before
as long as during simulation. These run-time modifying parameters can:

• define the deformation nature by enabling or disabling some restricting and relaxing
forces that avoid the total chaos of the skeleton deformations: stretch, shear and bending;
those restricting forces acts between skeleton nodes and springs, and habiliting each
one increases the computational time;

• set the numerical values of elasticity and dampening of the 3D skeleton node connec-
tion springs; these values can easily destabilize the system103.

Figure C.8: ForceReaQTor’s fatal destiny: destabilized simulation.

Controls and managementC.2.2.6

The file format management is the same that for the dynamic force list, due to the
skeleton is the deformable base and the list of forces is the deformation settings through
the time-line; so, the file formats VOX and DFL are required104. Additionaly, apart from
the mouse controls of the table C.1, there are some hot keys —actionable by pressing at
the same time CMD + the specified hotkey— for controlling the simulation in an easy
and fast way, instead of the mouse clickings:

103 Indeed, by enabling more than one restricting force can also destabilize the system, but due to compu-
tational reasons, not to numerical reasons.

104 However, the dynamic force lists can be defined manually with the intervention of a DFL file loading.

Research on Generic Interactive Deformable 3D Models

C.3. Requirements and recommendations 231

Hot Key Simulation Action

CMD + ‘I’ Play Simulation
CMD + ‘J’ Pause Simulation
CMD + ‘K’ Stop Simulation

Table C.2: ForceReaQTor simulation hot key controls.

Requirements and recommendationsC.3

ForceReaQTor is a complete dynamic physically-based deformable model simulator,
that admits any volumetric representation —voxelmap— and the application transforms
into a 3D non-rigid skeleton. ForceReaQTor is capable to perform any kind of force
deformation by a three —accumulative— relaxing types of forces as long as also imple-
ments a virtual mesh cutting that acts as a virtual scalpel.

However, theres no user-app interface105 but a dynamic time-line panel that permits
to set a dynamic force list —admitting cuttings too—, saveable and loadable as DFL files.

(a) The Apple logo. (b) The Mac logo. (c) The ForceReaQTor logo.

Figure C.9: ForceReaQTor software and hardware requirements logos.

This application has been developed for Apple Mac Intel platforms using the QT4
framework for GUI design and OPENGL API for the graphics displaying. A Shader Model
3.0 compatible GPU with minimum of 128MB of own textscram is required for the de-
formable model visualization and computations.

105 So, this is only a real-time simulator, not a complete interactive system.

Master Thesis in Computer Graphics by Marc Musquera Moreno

	Contents
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Codes

	Project's First Contact
	Project Abstract
	Overview
	Focusing on the research thesis aims
	Interests and research fields
	Final result
	A non-interactive simulator

	Objectives and Research Contribution Overview
	Motivations and interests
	Physically-based computing animation
	Computer Animation typologies
	The 3d computer animation
	Kinds of 3d computer animation. Focus on physically-based animation

	Human musculature studies
	Introduction to Human Body Modeling and Animation
	Evolution of Human Animation
	Main goal for this project

	Surgery simulation
	Virtual surgery's brief overview
	This project's approach and developed work

	Research fields and contributions
	Deformable models over static meshes
	Objectives
	Methodology Overview

	Multiresolution meshes
	Idea and motivation
	A little brief scheme about remeshing steps

	Surgery on a 3d object
	A virtual scalpel for cutting
	Proposal for this project

	The State of the Art
	Volumetric Model from a Polygonal Mesh
	Polygonal Meshes
	Introduction to Polygonal Meshes. The Triangle Meshes
	The Face-Vertex Mesh Format

	Mesh Voxelization
	The volumetric models. The voxelization process
	Introduction to the voxel space
	The 3d discrete topology

	The Problem: Triangle vs Voxel
	Introduction
	The test's simplest case: gigantic meshes in low-grid voxelmaps
	Test's generic case: voxelization of any mesh at any lod. Alternative techniques

	The search tree structures applied to voxelization
	Reasons for using trees
	The most common Search Trees Structures
	Binary Space Partition Tree ---bsp-Tree---
	Kd-Tree
	Quadtree (2d) and Octree (3d)

	Polygonal Mesh Reconstruction: Multiresolution Meshes
	Introduction to Multiresolution Meshes
	The need of a multiresolution mesh capability
	The IsoSurfaces

	VoxelMap Refilling. The Model Carving
	Space Carving
	Voxel Carving

	IsoSurface Extraction Algorithms
	IsoSurface extraction as multiresolution mesh construction
	Marching Cubes
	Overview
	Advantages and disadvantages
	The isosurface-voxel intersection case lut. Shortcomings

	Marching Tetrahedron
	Overview and shortcomings
	The Marching Tetrahedra lut

	3D Object Model Animation/Deformation
	Point-Oriented Deformation
	The Point-Sampled Geometry
	Point-sampled deformation

	Geometric Deformation
	Global or local deformation operators
	Reminder: the jacobian matrix JF of a function F
	Method Overview
	Global and local operators
	Examples of global operator deformations

	Free Form Deformation ---ffd---
	Introduction to ffd
	Methodology details
	Grid of Control Points
	Capabilities and limitations

	Interactive Axial Deformations ---AxDf---
	Method Overview
	Algorithm Details
	Advantages and lacks of AxDf

	Deformation by Wires
	Introduction and wire definition
	Algorithm overview

	Physically-Based Deformations
	Introduction to deformation based on physics
	Overview of time stepping deformation algorithms
	Accuracy vs speed performance

	A simple particle P as the deformation system
	State Vector and Vector Field of a simple particle
	The time step t. The numerical integrator concept. The Euler numerical integrator
	The integration system scheme
	The most used ode integrators
	Accuracy and stability of numerical integrators
	Movement restrictions

	Dynamic Deformable Model Systems
	Introduction to deformable systems
	Definition of Particle System
	The deformable models as dependent-particle system. The continuum elasticity

	Points of View of a Physical Simulation. Solver Typologies

	Physical Simulation based on Lagrangian pov descriptions
	Mesh Based Methods
	Finite Element Method ---fem---
	Finite Differences Method
	Boundary Element Method
	Mass-Spring Systems

	Mesh Free Methods
	What are Mesh Free Methods
	Smoothed Particle Hydrodynamics ---sph---
	Meshless Deformations based on Shape matching

	The Hybrid Approaches
	Overview of the hybrid simulation approaches
	Pump it Up
	Mass-Spring with Volume Conservation

	Physical Simulation based on Eulerian pov descriptions
	Overview
	Fluid Simulation
	The Navier-Stokes equations for fluids
	The yielding idea of display and computation
	A small summary of variants and proposals

	Topological Changes on Polygonal Meshes
	Mesh Cutting or Mesh Splitting
	Introduction
	Motivations and applications
	Surgery simulation. Constraints and requirements
	Another applications of mesh splitting

	Mesh Dissection: Some Proposals
	Spring Framework Tools: Cutting Interaction
	The generic alrgorithm scheme
	Examples and applications

	Finite Element Methodologies
	Discontinuous ffd approach
	Hybrid Cutting
	Off-line virtual node algorithm based on replicas

	Contributions and Results
	External Used Libraries and Employed Hardware
	Mac Computers with MacOsX v10.5 ``Leopard''
	Used Developing Platforms
	Qt4.4 for gui design with C++ as Native Language
	Matlab for testings

	Computer Graphics Programming
	OpenGL as the primary graphics specification
	A Little Brief on Computer Graphics using OpenGL
	api overview: The OpenGL graphical computing steps
	Initial considerations; introduction
	Drawing primitives
	Vertex transformations; the matrix stack
	Camera positioning and configuration; the viewport

	The Standard Graphics Pipeline
	The OpenGL Extensions. The glew Library

	The programmable graphics technology
	The Shading Languages
	A New Programming Paradigm
	The gpu's Vertex and Fragment Processors
	The New Programmable Graphics Pipeline
	Geometry Shaders

	OpenGL 2.0 and glsl
	Brief introduction to OpenGL 2.0 and glsl
	Data types and qualifiers
	The most important implicit variables
	A shader example: the toon shading

	GPGPU: The New Computing Paradigma
	The Programmable Graphics Pipeline, used for General Purpose Algorithms
	The Frame Buffer Object ---fbo--- Extension
	General-Purpose Graphics Processor Unit ---gpgpu---

	The nVidia cuda approach
	The next step in gpu computation
	gpu as a multi-threaded coprocessor

	Thesis Software Suite: (1) MeshInspeQTor
	Application Overview
	Loading 3d models
	The OBJ file format specification
	The geometry file *.obj
	The material file *.mtl

	The OBJ parsing with modelOBJ class
	Automatic modelOBJ enhancements and improvements
	Only triangular faces
	Same number of vertices and normals: the per-vertex normals
	Automatic generation of normals

	iri's own P3D format conversion to OBJ models
	Dedicated gui for file format conversion to OBJ format
	2d convex hulls for piecewise isosurface extraction merging

	Displaying 3d models
	Overview of MeshInspeQTor rendering capabilities. The Vertex Arrays
	Rendering typologies
	Solid object, wireframe and point set
	Object Draft

	Additional 3d model properties' visualization
	Model's bounding box
	Per-face normals

	gpu dedicated algorithm for realistic Phong illumination model
	Introduction to the Phong illumination model
	The Phong reflection model shaders

	3d model arbitrary plane culling
	Introduction to the arbitrary plane culling
	The VirtualCutting process
	Defining the planes
	How to process the plane culling

	gpu dedicated algorithm for real-time VirtualCutter culling

	Voxelization of polygonal meshes
	Introduction of this functionality
	The VoxelMap data structure. Format and access.
	The octree as acceleration data structure for voxelization
	The triangle-voxel intersection test
	The 2d axis-aligned projection test
	The cube space location in relation to the triangle

	The voxel vertizer module
	Operations with mesh-generated voxelmaps based on the set theory
	The Voxel Carving
	The standard total refilling strategy
	The thesis' innovative hole preserving algorithm

	Developed File Formats
	Scene *.SCN File Format
	VoxelMap *.VOX File Format

	Thesis Software Suite: (2) ForceReaQTor
	Application Overview
	From VoxelMap to 3d Mass-Spring System
	Overview of the main ForceReaQTor preprocess
	The conversion to a mass-spring system in detail
	Displaying the mass-spring system

	The Dynamic Force Data Structure
	Predefined deformations. The Timeline Simulation Specification
	The gui configuration panel
	Independence between lists of dynamic forces and voxelmaps
	Data structure for dynamic forces

	Dynamic Factor Typologies
	Dynamic Forces
	Node Fixing
	Spring Cuttings

	The Deformation Simulator
	A thread-powered module; the fps imposed rating
	The detailed deformation algorithm
	The Numerical Integrators
	Introduction to the integration algorithms
	Euler Integrator
	Verlet Integrator

	Force Accumulator
	Introduction to Force Accumulation
	Stretching and Bending
	Shearing

	Volume Preservation
	The need for volume preservation
	Fixing nodes for volume preservation
	ForceReaQTor's adopted solution: the autostretching

	Collision handling
	The need of collision handling during deformation
	The ForceReaQTor approach: spheres approximating cubes
	Introduction
	Collision testing
	Collision processing
	Adaptive acceleration for collision handling

	Mass-Spring System Cuttings
	Introduction to the spring cutting methodology
	Repercussions on physically-based deformations

	Accelerated Force Accumulator looping
	Displaying the deformation system as a triangular mesh
	The mass-spring system as a 3d non-rigid skeleton
	A gpu-dedicated algorithm for the mesh rendering process
	Overview of the shader program for ffd-renderization
	The handicap of passin the masspoints and hashing values to the gpu
	The vertex shader algorithm

	Autogenerated skin from the mass-spring skeleton
	Introduction
	ForceReaQTor and the deforming meshes
	The wrongly parametrized triangular meshes
	Inherent pseudo-ffd rendering adequation
	Polygonal mesh cutting renderization capabilities

	Developed File Formats
	Dynamic Force List *.DFL File Format
	VoxelMap *.VOX File Format

	Tests and Results
	Introduction to this chapter
	A brief about the developed software and the offered results
	The medical-purpose three-dimensional models
	Test structure, and given results
	Testing Machine Specification

	Introduction test over non medical models
	Brief overview
	Mesh voxelization test results
	The Marching Cubes automatic mesh extraction
	Lenghten and shorten forces over a model.

	Test over medical models; the human inguinal muscle region
	Brief overview
	The oblique external muscle
	The transversus muscle

	Project Conclusions and Future Work
	Contributions and Derived Conclusions
	Final Conclusions
	Research Contributions
	Conservative mesh voxelization variant
	New approach for an hybrid deformation system

	Future Work
	Persistent storage of the Marching Cubes extracted meshes
	Innovative mesh splitting based on breaking voxel connectivity
	More GPGPU-Focused Algorithms
	Haptic-Oriented Product
	The workbench prototype
	The cave-oriented environment

	Bibliography and Appendixes
	Bibliography
	Project's First Contact
	The State of the Art
	Contributions and Results
	Conclusions and Future Work

	End-User Software Data Sheet: `MeshInspeQTor'
	Product Overview
	Highlights
	Key Features

	Product Details
	Models tab: 3d Model Visualization
	Setting the 3d scene
	Controls and management

	VirtualCutters tab: The Mesh Dissection Process
	Setting a Virtual Cutters
	Management

	Voxelizer tab: The VoxelMaps, Volumetric Representations
	Building a Voxelmap from a 3d scene
	Basic Set Theory applied to Voxelization Method
	Using the VoxelMap Navigator
	Carving a VoxelMap
	Management

	Requirements and recommendations

	End-User Software Data Sheet: `ForceReaQTor'
	Product Overview
	Highlights
	Key Features

	Product Details
	Dynamic Force tab: The 3d Dynamic Deformation Model settings
	A little introduction; the deformable skeletons and the dynamic force lists
	The VoxelMap and the 3d non-rigid skeleton
	Setting the Dynamic Force List
	Controls and management

	Simulator tab: The Real-Time Deformable Simulator
	Deformable system visualization styles
	Playing the simulation
	The numerical integrators: Euler and Verlet
	The frames per second ---fps--- rate specification
	Run-Time simulation parameters
	Controls and management

	Requirements and recommendations

