
 Implementation of a social Networks aggregation platform

1

Títol: Implementation of a social Networks

aggregation platform

Volum: 1

Alumne: Daniel Ariño Pla

Director/Ponent: Juan De Bravo Díez

 Maria Carme Quer Bosor

Departament: Llenguatges i Sistemes Informàtics

Data: 23/03/2009

 Implementation of a social Networks aggregation platform

2

 Implementation of a social Networks aggregation platform

3

DADES DEL PROJECTE

Títol del Projecte: Implementation of a social Networks
aggregation platform

Nom de l'estudiant: Daniel Ariño Pla

Titulació: Màster en Tecnologies de la Informació (MTI)

Crèdits: 30

Director/Ponent: Juan De Bravo Díez / Maria Carme Quer Bosor

Departament: Llenguatges i Sistemas Informàtics (LSI)

MEMBRES DEL TRIBUNAL (nom i signatura)

President: Pere Botella López

Vocal: Ferran Sabate Garriga

Secretari: Carles Farre Tost

QUALIFICACIÓ

Qualificació numèrica:

Qualificació descriptiva:

Data:

 Implementation of a social Networks aggregation platform

4

0. Content

0. CONTENT .. 4

1. INTRODUCTION .. 9

1.1. PROJECT DESCRIPTION..10

1.1.1- Project Context... 11

History and development of Social Networks .. 11

1.1.2- SociaLuna and Social Networks .. 15

1.1.3- IOBlog and SociaLuna ... 15

1.2. PROJECT STRUCTURE..16

1.3. PROJECT TARGETS...17

1.4. CONTENT OF THIS REPORT ...18

2. REQUIREMENTS .. 21

2.1. FUNCTIONAL REQUIREMENTS...21

2.1.1. SociaLuna... 21

REST Services... 22

Social networks connectors ... 23

Queues management... 23

2.1.2. IOBlog... 23

Read messages ... 24

Send messages ... 25

Profile management ... 26

2.2. NON-FUNCTIONAL REQUIREMENTS ..27

Security... 27

Usability .. 27

Attractiveness and understandability.. 28

Maintainability... 28

Efficiency .. 28

3. TECHNOLOGIES AND ENVIRONMENT .. 29

 Implementation of a social Networks aggregation platform

5

3.1. DEVELOPMENT TECHNIQUES..30

3.2. TECHNOLOGIES ..31

3.2.1. Front-End.. 31

PHP + Zend Framework .. 31

Smarty.. 33

JavaScript + AJAX + jquery ... 34

3.2.2. Back-End .. 35

Restlet .. 36

Spring ... 37

Hibernate.. 38

Apache Camel + Active MQ... 39

4. WORKING METHODOLOGY (SCRUM) ... 40

4.1. SCRUM..40

4.2. ROLES IN SCRUM..40

4.3. ELEMENTS OR ARTEFACTS IN SCRUM..42

4.3.1. Product Backlog ... 42

4.3.2. Sprint Backlog .. 43

4.3.3. Sprint Burn-down.. 43

4.4. THE SCRUM PROCESS ...44

4.4.1. Sprint .. 44

4.4.2. Sprint Planning ... 45

4.4.3. Daily Meeting.. 46

4.4.4. Sprint Review ... 46

4.4.5. Sprint Retrospective ... 47

5. PROJECT TIME-LINE ... 48

5.1. SPRINT 3 ...49

5.2. SPRINT 4 ...50

5.3. SPRINT 5 ...51

5.4. SPRINT 6 ...53

6. ECONOMIC STUDY OF THE PROJECT ... 54

 Implementation of a social Networks aggregation platform

6

6.1. HUMAN RESOURCES ...54

6.2. ENVIRONMENT RESOURCES...55

7. SOCIALUNA FRONT-END ... 56

7.1. USE CASES ...57

7.1.1. Login... 57

7.1.2. Networks settings use cases.. 58

Import social networks accounts.. 58

Change password .. 66

Delete Social Network.. 66

7.1.3. Settings – Create groups.. 67

Create group .. 68

Update group ... 68

Delete group... 69

7.1.4. Show messages ... 70

Permanent post link ... 71

7.1.5. Messages management ... 71

Filter messages.. 72

Search friends / Filter friends ... 73

Messages visualization options ... 73

Mark messages as favourites .. 76

Mark messages as read / unread .. 78

Tag messages.. 78

7.1.6. Send new message.. 82

Send message to multiple networks .. 82

Reply messages... 84

Fast post to network... 85

7.2. UX MODEL DESIGN ...86

7.3. IOBLOG STRUCTURE ..88

7.3.1. Model View Controller (MVC)... 88

7.3.2. IOBlog directories ... 90

 Implementation of a social Networks aggregation platform

7

7.3.3. PHP Controllers.. 91

PHP Zend config.ini ... 92

PHP Controller Structure.. 93

7.4. VIEW CONSTRUCTION...97

7.4.1. Smarty web development... 97

Linking PHP Controllers and Smarty templates... 98

7.4.2. JavaScript web construction... 99

Loading messages page.. 102

7.5. INTERNATIONALIZATION (I18N)..104

8. SOCIALUNA BACK-END ... 105

8.1. SOCIALUNA ARCHITECTURE..105

8.2. SOCIALUNA SERVERS ...109

9. CONCLUSIONS .. 110

10. FUTURE WORK .. 111

ANNEX 1. FINAL RESULT AND USER’S MANUAL............................... 112

ANNEX 2. OTHER SOCIALUNA APPLICATIONS 126

GLOSSARY .. 127

BIBLIOGRAPHY... 131

SPECIAL ACKNOWLEDGMENTS.. 133

 Implementation of a social Networks aggregation platform

8

 Implementation of a social Networks aggregation platform

9

1. Introduction

The current document is a Master’s Final Project titled “SociaLuna:

Implementation of a social networks aggregation platform”. The project was

developed by Daniel Ariño, student of Barcelona School of Informatics in

collaboration with Telefonica R&D, company. Telefonica R&D is an important

company of Telefonica Group specialized in research projects in the

communication sector.

This project has been leaded by Juan De Bravo Diez, as a company

representative, and it has been advised by Carme Quer, professor of LSI

department in Barcelona School of Informatics.

The aim of this project is to develop an Internet application that

introduces me to the web development technologies, so this will become a

solid knowledge base to the web development techniques.

 Implementation of a social Networks aggregation platform

10

1.1. Project description

This project is part of an innovation project developed by Telefonica

R&D. The project's goal is to develop the SociaLuna platform, which will be

an aggregator of different social networks that exist in Internet.

Because of the huge trends in social networks on the Internet, some

users of these networks need to access multiple pages to get all their social

activity. This fact leads to think of a platform to aggregate social networks,

as a great innovation project with good prospects.

The basic idea is that a user who is registered with different social

networks may get unified information of all movements on their accounts in

those networks by using the platform.

The advantages of having such a platform would be:

♦ no need to enter the reference information on each account, that

provides a clear comfort to the user by centralizing all the

information in a single application;

♦ be able to access different accounts in these networks and see all

the movements occurred in them;

♦ send and reply messages actively to contacts without accessing

into a specific network;

Due to this, SociaLuna will become an important communication tool

for users of different social networks.

Since SociaLuna will be a platform, not a final service, it is necessary

to create services to offer a specific functionality to the final user. Inside the

SociaLuna project will be developed a web application called IOBlog, such

implementation will bring the e-mail paradigm to social information,

showing in inbox and outbox the information generated by the user’s friends

and the user himself.

 Implementation of a social Networks aggregation platform

11

The project will have two development lines: the creation of the

platform SociaLuna (Backend) and the development of an application to get

the maximum performance of this platform, the IOBlog tool (Front-End).

My work inside the project will be in the Front-End part where I will

work to create an application that, using the services of SociaLuna, shows

to final user all interesting information about his or her social networks.

1.1.1- Project Context

The project context is clearly framed within the scope of social

networks and the revolution that these have caused to the Internet since its

emergence. This revolution has led many companies to focus their business

lines into the creation of new social networks as well as the development of

applications to interact with them, and then, improve and make the users

navigation easier inside their habitual social networks.

Therefore, to understand the growing interest in this field, it is

necessary to know more about the emergence and development of social

networks.

History and development of Social Networks

 [9][10] History of social networks begins in the theory of six

degrees of separation which, it argues that all the people of the planet are

connected by no more than six people. This theory, originally from the

Hungarian writer Frigyes Karinthy, was proposed in 1929 in a short story

called Chains.

 In the ‘50s, researchers from MIT and IBM were trying to

demonstrate the theory mathematically, but twenty years later of trying to

solve the problem, they were not yet capable of solving to their own

satisfaction.

 Implementation of a social Networks aggregation platform

12

[11] It was already 1967 when the U.S. psychologist Stanley Milgram

thought in a new way to test the theory. It consisted of an experiment in

which randomly selecting several people in the Midwest U.S., they had to

get postcards to a stranger located in Massachusetts (several miles away).

The only information known by the senders was the name, occupation and

approximate location of the recipient. With these data, they had to send the

package to a person who thought he could hear directly to the recipient so

that it will deliver in person; this person should do the same and so on until

the package was delivered personally to their final destination.

Although participants in this experiment thought that the chain of

intermediaries includes hundreds of people, final results showed that each

packet was delivered to the addressee at an average of between 5 and 7

brokers.

But it was not until the beginning of the twenty-first century that those

theories about social networks made the leap to the Internet, and around

years 2001 and 2002 the firsts networking circles of friends online began to

appear. Shortly after their appearance, these networks have evolved, at the

same time that they ever with a larger number of users. This mass turned

social networks into a desired and ambitious product for any company which

facilitated the quickly creation of social networks like MySpace (2003) [1],

Orkut (2004) [2] from Google, Yahoo 360º (2005) [3] of Yahoo, and many

others, as Flickr [4] of Yahoo, Twitter (2006) [5], or one of the most

recent, Facebook [6], which already has millions of users and a major

advertising investment from Microsoft.

Currently, there are a multitude of different social networks at different

levels. In this way, we can observe international networks that bring

together users around the world such as Facebook [6], MySpace [1], Orkut

[2], or Hi-5 [7] and other networks of local or national.

 Implementation of a social Networks aggregation platform

13

Image 1, located in the next page, shows the social network with more

acceptances on the basis of the geographical area in which we find

ourselves, in October 2008. It should be noted that only indicates the most

popular in terms of number of users but in many cases the growth trends of

many networks allow foresee a change in the not too distant future.

Noting the map of social networks popularity, we can conclude that the

network with more popularity in the World Wide Web is Facebook [6] that

is notable for being the only presence among the favourite of users on all

continents. Another important key of Facebook paper in the Social Networks

is that is the Social Network with a greatest growth in all the continents

[13]. Orkut [2] of Google stands firm in leading social networks in Brazil

and India, and MySpace [1] continues to dominate in the U.S. In Europe,

there is much difference between different social networks of smaller areas.

Even so, the spectacular growth of Facebook since its birth and his growth

rates as compared to other networks provide an alignment with other

networks in several countries.

 Implementation of a social Networks aggregation platform

14

Image 1: popularity index of Social Networks on date 16th October 2008

 Implementation of a social Networks aggregation platform

15

1.1.2- SociaLuna and Social Networks

Considering the segmentation of social networks market appears

SociaLuna, which aims to make easier the creation of applications that allow

access to all of them under a single interface. In this way, it will help the

end user of these networks to interact with them quickly and easily.

1.1.3- IOBlog and SociaLuna

In order to bring the platform SociaLuna into a tangible product for the

user, the web application IOBlog is being developed at the same time. As

discussed above, this application will access to the information scattered in

different social networks of the user using SociaLuna platform as a link with

the different networks. With appropriate services, SociaLuna will provide all

necessary information to IOBlog application, then IOBlog will submit to the

user all his/her activity across his/her social networks, which has been

imported into the application.

On the other hand, IOBlog will use the full potential of SociaLuna

platform allowing the users to interact with various social networks, in

which the user is a participant. In this way, the application will allow to send

messages and comments to other networks to achieve a bilateral

communication.

 Implementation of a social Networks aggregation platform

16

1.2. Project structure

SociaLuna project have a complex environment. On the one hand, it

consists on the development of a platform that allows the interaction

between multiple applications and external social networks. On the other

hand, it also includes the development of IOBlog, a web application that

aggregates different accounts in the same place.

So, from now on I will say “front-end” when I refer to IOBlog

application and “back-end” when I mean SociaLuna platform.

In the project, I am mainly assigned to the development of the Front-

End part. I am working in the development of a useful web application using

SociaLuna services to aggregate user’s social networks accounts and

proposing news services to improve the SociaLuna platform at the same

time improving IOBlog application. In the next sections I will present all the

project scope, detailing my work in the front-end part.

HT
ML
 R
eq
ue
sts

AJ
AX
 re
qu
es
ts

REST Services

BACK – END

SOCIALUNA

platformPHP + Zend

Framework

IOBlog user

IOBlog user

FRONT-END

IOBlog

Application JAVA + Spring

Apache Camel +

ActiveMQ

Image 2: Socialuna’s basic architecture

 Implementation of a social Networks aggregation platform

17

1.3. Project targets

Within developing process of the project, there are several objectives

at both, the personal level and the project itself.

On a personal level, my main goal is to finish my university education

process within a company of innovation as Telefonica R & D. With this

project, I hope to gain professional experience and to feel comfortable with

the methodology of work. At the same time, I hope to acquire knowledge

about the technologies currently used in the development of web projects of

this scale.

In project development, it had been established different targets

through meetings with the end customer. These meetings are framed within

an extreme programming methodology called Scrum, which it will be

described later.

Some of these targets are:

♦ Achieve an integration platform for different social networks

(initially it was only considered the social network Twitter and

Flickr, and after it was included Youtube and Facebook).

♦ Get all the messages of user registered within the social

networks.

♦ Allow sending messages to different social networks

simultaneously.

♦ Import all contacts in all users’ social networks to obtain

information about them in the same web.

♦ Integrate IOBlog inside customer web portal.

♦ Develop a user-friendly interface for the IOBlog application.

 Implementation of a social Networks aggregation platform

18

1.4. Content of this report

Introduced the project context, I will enter in depth all project

development phases. The project report is divided in ten chapters and two

annexes:

♦ Chapter 1 – Introduction:

On this chapter I introduce the project context and I revise the

state and evolution of social networks in Internet.

♦ Chapter 2 – Requirements:

Chapter 2 explains the different requirements to develop the

application. On it, I emphasize on functional and non-functional

requirements separating by front-end requirements or back-end

requirements.

♦ Chapter 3 – Technologies and environment:

On this chapter I will enumerate the different technologies used

in the development process, also separating between front-end

technologies and back-end technologies.

♦ Chapter 4 – Working methodology (SCRUM):

Scrum is an agile programming management method used during

all time to manage the project development. I will explain the

main points of this management framework in chapter four.

♦ Chapter 5 – Project time-line:

In this chapter I will enumerate the different tasks assigned to

each developing month and I will show contrast between

estimated time and final time with graph used as scrum

performance indicator.

 Implementation of a social Networks aggregation platform

19

♦ Chapter 6 – Economic study of the project:

Chapter 6 will analyze an estimation of the economic cost of all

phases of project development.

♦ Chapter 7 – SociaLuna Front-End:

In chapter seven I will enter in depth in all my work developed

during the project in the SociaLuna front-end application. I will

start defining the uses cases of IOBlog application and I will

continue explaining the web navigation with a UX Model Design.

Once defined the web navigation I will explained the developing

process linked to Zend Framework functions. On this developing

process I will explain two different concepts in the web

construction: the templates html creation using a template engine

called smarty and the JavaScript web construction, more complex

but with more facilities to manage the events of the user’s

navigation. Finally I will review the internationalization process to

create different dictionaries to the web.

♦ Chapter 8 – SociaLuna Back-End:

To get a better understand of all project, is necessary explain the

back-end structure of the application. In this chapter I will enter

to define the back-end architecture developed by my fellow team.

♦ Chapter 9 – Conclusions:

Finally, I will present my personal conclusions about these

months working in the project in chapter nine.

♦ Chapter 10 – Future work:

The latest chapter is dedicated to comment some possible

features to develop in the application or explain important work

to do to turn the application in a final product.

 Implementation of a social Networks aggregation platform

20

♦ Annex 1 – Final result and user’s manual:

The first Annex will show the final result of the work in different

screenshots that will serve as user’s guide to use the application.

♦ Annex 2 – Other SociaLuna Front-End applications:

In the second Annex, I will comment other applications that have

been carried out in the company at the same time, that use the

SociaLuna platform backend.

 Implementation of a social Networks aggregation platform

21

2. Requirements

This section revises the main requirements of the project divided

between the SociaLuna platform and the IOblog application. In the first

point are explained the platform important use cases, and in the next

section are defined the IOBlog use cases divided in functional requirements

and non-functional requirements.

2.1. Functional requirements

These requirements are the set of features that will offer the whole

platform SociaLuna and then they will be used by different applications, as

for example IOBlog. In order to expose these requirements clearly, first of

all, I will present the functional requirements of the whole SociaLuna

platform and after that, the web application IOBlog requirements.

2.1.1. SociaLuna

SociaLuna platform will be a bridge between some different social

networks and the web application IOBlog. Some features will be developed

to manage this link. We can bring these features in three great features:

1. Creation of rests services,

2. Creation of connectors with the external social networks,

3. Management of queues

 Implementation of a social Networks aggregation platform

22

REST Services

REST services are a set of Web Services that allow communication

between the Web server of the application and SociaLuna platform. In this

manner whenever an application wants to interact with the platform, it will

make it through requests for such services. There are several services

available, a small group of these would be:

♦ Account information: Services that allow getting information

about the user account, the user profile, or the social networks

accounts imported to SociaLuna.

♦ In posts: These services are related with the received user

messages. We can found several services that return a number of

posts grouped by friends, networks, date...

♦ Out posts: Similar to the previous group but for sending user

messages.

♦ Posts management: These useful services allow the application to

offer to the final user some functions to manage his messages.

Some functions, they can use, are selecting multiple posts as

read or unread, mark them as favourites, or sending new

messages and comments.

♦ Accounts management: These services are related to the

management of the user social accounts, giving the option of

import different social networks, allowing to change the user

password in a network or to revalidate the token that some

external social networks send to the platform to allow the offline

access.

♦ Tagging messages: Finally, these services are for add to the

platform the functions needed to assigning labels to user

messages. Some services are:

o create new labels,

o delete labels,

o apply labels to user posts, etc.

 Implementation of a social Networks aggregation platform

23

Social networks connectors

To allow the interaction with the external social networks that the

platform shall integrate, the development of different connectors with each

one is a requirement. It uses the API provided by each social network for

these purposes. The first connectors to develop are the ones that will allow

integrating Flickr and Twitter networks. Later on Facebook and Youtube will

be added to these.

Queues management

Another important question to bear in mind is that the platform will

need to be synchronized with the external networks and respects the

limitations imposed by them. To manage these connections and not

overcharge the social networks servers that SociaLuna will access, a queues

system will manage these external calls.

2.1.2. IOBlog

IOBlog application will focus on three main areas:

1. Read messages from all user imported social networks,

2. Send messages to these networks and reply or comment

friend messages,

3. Create user configurations that allow the user the

management of all his accounts and friends.

 Implementation of a social Networks aggregation platform

24

Read messages

An IOBlog user will have access to all his messages (send or received)

in all the networks that the user has imported. In this way, within the

reading of messages it can be distinguished different requirements:

♦ IN-blog, where it will be shown the received messages, the

functionality required will be:

o Order messages by date, user, network...

o Filter messages to allow the user to view only the

messages that he wants. Some filters that will be

implemented:

o Filter by date, network, friends...

o Mark messages as favourites.

o Mark messages as read or unread.

o Reply messages.

o Delete messages.

♦ OUT-blog, where it will be shown the send messages, the

functionality required will be:

o Order messages by date and network.

o Filter messages by date and network.

o Mark messages as favourites.

o Delete messages.

 Implementation of a social Networks aggregation platform

25

Send messages

Another basic function to implement in a social networks aggregator is

allowing the users to send messages to their social networks. IOBlog will

have different ways to offer these functions to the final user:

♦ Fast post in a social network:

o To send posts to the social networks that allows sending

only text messages (initially Twitter). A fast post toolbar

will be present in all windows of IOBlog application to allow

the user send a message at the moment.

♦ Reply a post / comment:

o Accessible from the IN-Blog, it will send direct replies to a

message from another user or to add new comments at a

photo of a friend.

♦ New message:

o This option will allow sending a new message to any

network that the user has imported inside our system.

Another important feature will be the option of send a

message to more than one network simultaneously. This

new feature will provide greater convenience to the user

who does not have to type the same message several

times to send a message to different social networks.

 Implementation of a social Networks aggregation platform

26

Profile management

IOBlog users can manage their user profile in order to receive all the

information in the manner that best suits their needs. Principal features that

users can edit are:

♦ Import networks:

The user can import different accounts of their social

networks to their SociaLuna account in order that the application

will directly connect to their networks to pick all the movements

that he makes.

♦ Page personalization:

The user can change some interface options of the page to

make it more usable and suitable to their preferences. For

example, it allows him to choose the number of messages per

page, or to select option of being advised when making certain

actions as mark messages as read.

♦ Groups management:

Another interesting feature is the creation of groups of

friends. Users can group their contacts to obtain a useful user

filter to search the messages of interested user friends. With this

service, for example, users can create the group university with

their university friends, or the group work…

♦ Friends management:

Similar to the previous options, users can create a special

type of groups called friends matching. If a user has a friend in

different social networks, she can create an aggregation of all

friend social networks accounts. For example, user can aggregate

the Flickr and twitter accounts of her friend assigning the name

she wants.

 Implementation of a social Networks aggregation platform

27

2.2. Non-functional requirements

In this section, we can see some non-functional requirements that are

present in all the project development. These requirements are assigned to

evaluate the application under the standard ISO 9236-1.

Security

 In all community applications, security is an important point to

manage. In the SociaLuna’s database we will have all information about

users in their own social networks. This information will be public for other

users or private in function of the privacy terms stated by the users in the

external networks. It will be necessary to differentiate on their privacy level

to show this information only to authorized users.

 Another interesting point into SociaLuna security is the passwords

storage in the database. The database will maintain not only the IOBlog

password, but also the external social networks passwords to allow

SociaLuna offline access to these networks. The passwords will be saved

encrypted to protect them of possible unauthorized access.

 It is also important to protect access to SociaLuna services calls; so

that they cannot be accessed directly by a web a navigator call, but these

will be access-controlled part of the application.

Usability

The IOBlog application, to which users will access, should be as simple

and manageable as possible to facilitate navigation. All their functions must

be clearly marked and visible to prevent that the user will lose through the

page and decide to stop using it. In addition we must be especially careful

when choosing the features that will be more useful to the user.

 Implementation of a social Networks aggregation platform

28

Attractiveness and understandability

Linked to the usability requirements, we can find the page layout or

interface design. This design has to be attractive or pleasing to the user and

understandable to avoid the user gets lost due to poor composition of the

web page.

Maintainability

The system must be easily expandable so that in future new social

networks may be added to the platform without this having a huge impact

on the code. In this way, the code must be independent of the network as

far as possible to facilitate possible expansions in the future. This

changeability requirement is very important both in the SociaLuna platform

as in the web application IOBlog.

Efficiency

 Along with the model consistency, it is necessary to test the

performance between client and server, several conditions in all web

applications. This will perform many of the features using AJAX technology

to avoid having to reload the entire page with each new user action. In

addition, it will try to group small requests, like marking a message as read

or as a favourite to send a joint request to the server instead of sending

them one by one and unnecessarily burdening the network traffic.

 Implementation of a social Networks aggregation platform

29

3. Technologies and environment

 The development environment is different in each part of the project.

As we can see in image 4, the front-end is the part that corresponds to the

development of a web application, and the back-end is the part that

supports the communication with the social networks.

We can divide the front-end development in two parts:

• The part that is in charge of executing all the logic of the application

and communications with SociaLuna platform. .This part is

developed using PHP and a PHP framework called Zend Framework

and it is running under an apache server.

• The part that is responsible of showing the webpage to a user. This

part is developed in html using a template engine called smarty and

using JavaScript to minimize the number of calls to the server. To

help us in the use of JavaScript we are using a JavaScript library

called jquery that allows multiple useful functions to facilitate DOM

management and AJAX calls.

Back-end is running under a Tomcat server and it is developed using

JAVA under a framework called Spring. Mysql is the database that is used to

manage all data needed by the platform. The queues are being managed by

Apache ActiveMQ, a powerful open source Message Broker and Enterprise

Integration Patterns provider.

The management of the versions of the software and documentation

about the whole project is done using a Subversion repository. It provides a

version control system used to maintain current and historical versions of

files such as source code, WebPages and documentation.

All these technologies will be explained with more detail in the next

sections.

 Implementation of a social Networks aggregation platform

30

3.1. Development techniques

[17] SociaLuna is developed using a TDD technique. TDD (Test-driven

development) is a software development technique that uses short

development iterations based on pre-written test cases that define desired

improvements or new functions. Each iteration produces code necessary to

pass that iteration's tests. Finally, the programmer or team refactors the

code to accommodate changes. The key of TDD concept is that, preparing

tests before coding facilitates rapid feedback changes.

The TDD cycle consists on the following steps:

1. Choose a new requirement: Choose the new feature to

develop from the requirements list.

2. Add a test: each new feature begins with writing a test. This

test must inevitably fail because it is written before the feature

has been implemented.

3. Run all tests and see if the new one fails: This validates that

the test harness is working correctly and that the new test

does not mistakenly pass without requiring any new code.

4. Write some code: write simple code to pass the test. The code

written is only designed to pass the test. To develop the code

is used the principles of KISS (Keep It Simple, Stupid) that

design simplicity should be a key goal and unnecessary

complexity avoided.

5. Run the tests again: If pass all test cases, the code meets all

the tested requirements.

6. Refactor code: Clean the code to delete duplicates without

damage other features.

7. Run the tests again: Pass all tests to be confident that

refactoring does not damage any other functionality.

8. Remove requirement from the list: Remove the functionality

implemented from the pending requirements list.

9. Repeat: Repeat alls phases with a new requirement.

 Implementation of a social Networks aggregation platform

31

3.2. Technologies

 As has explained in the previous section, multiple technologies were

being used to develop the final software. In this point are explained one by

one all these technologies.

3.2.1. Front-End

In this first chapter are explained all used technologies to develop the

front-end application. These technologies are oriented to web development

projects. They are PHP and Zend Framework, Smarty templates engine, and

JavaScript language using jquery framework.

PHP + Zend Framework

PHP is a general-purpose scripting language that is especially suited

for web development. PHP generally runs on a web server, taking PHP code

as its input and creating web pages as output. PHP can be deployed on

most web servers, many operating systems and platforms, and can be used

with many relational database management systems. It is available free of

charge, and the PHP Group provides the complete source code for users to

build, customize and extend for their own use. [18]

[19] Zend framework is a set of classes focused on building more

secure, reliable, and modern Web 2.0 applications & web services, and

consuming widely available APIs from leading vendors. This is an open

source and object-oriented framework implemented in PHP5. Some

advantages that offer this framework are:

♦ MVC: Zend framework includes multiple classes to allow

developer and web designers to their concerns and skills, making

code implementation and design easily and clearly separated.

 Implementation of a social Networks aggregation platform

32

♦ Internationalization (i18n): Zend framework also includes some

classes to localize a web application for a particular language and

culture.

♦ Authentication, authorization and session management:

Customizing data and protecting from access by unauthorized

users

♦ Web and Web Services: Web services are an integral part of Zend

Framework and this intend to be the nexus for an entire eco-

system of Web Services and APIs providers.

Why this framework?

♦ Zend Framework helps the web developing using the MVC

pattern.

♦ It offers multiple API’s to connect with different social networks,

ideal for a project of these characteristics.

♦ This framework is in an advanced and stable version (v 1.7).

♦ It is free, important in a project of a R&D Company.

Other similar frameworks in the market

♦ Symfony Framework - http://www.symfony-project.org/

♦ Kumbia PHP Framework - http://www.kumbiaphp.com/blog/

♦ Agavi - http://www.agavi.org/

 Implementation of a social Networks aggregation platform

33

Smarty

 [20] Smarty is a template engine for PHP that facilitates a

manageable way to separate application logic and content from its

presentation. This is best described in a situation where the application

programmer and the template designer play different roles, or in most

cases are not the same people.

 On this case, the designer can create the html labels in smarty

templates using the variables accorded with the programmer. If one day the

programmer need to change the application logic, this changes does not

affect the template designer and the content will still arrive in the template

exactly the same. Likewise, if the template designer wants to completely

redesign the templates, this would require no change to the application

logic.

 In other hand, smarty is very fast and only compiles once. It is smart

about recompiling only the template files that have changed and allow the

easily create your own custom functions and variable modifiers, so the

template language is extremely extensible. These and other features make

Smarty a usefull engine to develop web applications.

Why Smarty?

♦ It helps to future changes in the view layer without affect to other

layers.

♦ It is very fast and flexible.

Other similar templates engines in the market

♦ Savant - http://phpsavant.com/

♦ bTemplate - http://www.massassi.com/bTemplate/

♦ ETS (Easy Template System) - http://ets.sourceforge.net/

 Implementation of a social Networks aggregation platform

34

JavaScript + AJAX + jquery

[21] JavaScript is a scripting

language widely used for client-

side web development. It is

a dynamic, weakly typed, prototype-

based language with first-class

functions. JavaScript was influenced

by many languages and it was

designed to look like Java, but be

easier for non-programmers to work

with. The use of JavaScript in IOBlog

is very important and some pages

are being created using this

language in client-side. The reason

that impulse to develop some pages

of the application in JavaScript is the

easily to introduce AJAX in the page.

[22] AJAX (asynchronous JavaScript and XML is a group of

interrelated web development techniques used for creating interactive web

applications or rich Internet applications. With Ajax, web applications can

retrieve data from the server asynchronously in the background without

interfering with the display and behaviour of the existing page. To do this

data transfers between server and client we are using the JSON (JavaScript

Object Notation). [23] The JSON format is often used for transmitting

structured data over a network connection in a process called serialization.

Its main application is in Ajax web application programming, where it serves

as an alternative to the use of the XML format.

{

 "firstName" : "John" ,

 "lastName" : "Smith" ,

 "address" : {

 "streetAddress" : "21 2nd Street" ,

 "city" : "New York" ,

 "state" : "NY" ,

 "postalCode" : 10021

} ,

"phoneNumbers" : [

 "212 555-1234" ,

 "646 555-4567"

]

}

code 1: JSON Example

 Implementation of a social Networks aggregation platform

35

[24] To help us in JavaScript developing we are using a JavaScript

framework called jquery. This library includes multiple functions that

simplify HTML traversing, event handling, Ajax interactions and animating.

Why jquery framework?

♦ Jquery is a very extensive JavaScript library that simplifies the

developing process.

♦ This library adds different animations to be used in web pages.

Other similar JavaScript frameworks in the market

♦ Prototype - http://www.prototypejs.org/

♦ Mootools - http://mootools.net/

♦ Dojo - http://www.dojotoolkit.org/

3.2.2. Back-End

Next of explain the Front-End technologies I will comment the

technologies used to developed all Back-end functionalities. These

technologies are Java language + Spring Framework to develop the

platform, Restlet technology to translate the URL calls to java functions,

Hibernate is used for the communication with data base. Finally, Apache

Camel and Active MQ are used to manage the different queues that manage

the connectors with external networks.

 Implementation of a social Networks aggregation platform

36

Restlet

[25] Restlet is an open source REST framework for

the Java platform. This framework provides a concrete solution to build solid

applications following the REST architecture style.

Representational state transfer (REST) is a style of software

architecture for distributed hypermedia systems such as the World Wide

Web.

The next image shows typical web architectures from a REST point of

view. In it, ports represent the connector that enables the communication

between components which are represented by the larger boxes. The links

represents the particular protocol (HTTP, SMTP, etc.) used for the actual

communication.

Why Restlet framework?

♦ It simplifies the translation from web services URL calls to Java

functions.

♦ REST architecture has many advantages against SOAP

architecture, as it is easy to build, lightweight (not a lot of xml

mark-up) and the results are easy readable.

Other similar REST frameworks in the market

♦ Jersey - https://jersey.dev.java.net/

Image 3: REST Architecture

 Implementation of a social Networks aggregation platform

37

Spring

The Spring Framework is an open source application

framework for the Java platform. By design, the framework offers a lot of

freedom to Java developers yet provides well documented and easy-to-use

solutions for common practices in the industry.

Some important features of Spring Framework are:

♦ A flexible MVC web application framework highly

configurable that accommodates multiple view technologies.

Spring middle tier can easily be combined with a web tier based

on any other web MVC framework, like Struts.

♦ A JDBC abstraction layer that offers a meaningful exception

hierarchy, simplifies error handling, and greatly reduces the

amount of needed to write. The JDBC-oriented exceptions comply

with Spring's generic DAO exception hierarchy.

♦ Integration with Hibernate: in terms of resource holders,

DAO implementation support, and transaction strategies.

Why Spring framework?

♦ Adds a simplified layer against more complex technologies like

JMS messages, data base access etc.

♦ Spring framework simplifies the application of MVC pattern to the

web application.

♦ It is highly configurable and easy to use with a lot of different

technologies (like hibernate).

♦ It allows the use of DI (Dependency Injection) pattern, resulting

in more modular and testable system.

Other similar Spring frameworks in the market

♦ Aurora - http://www.auroramvc.org/

♦ Apache Struts - http://struts.apache.org/

 Implementation of a social Networks aggregation platform

38

Hibernate

[26] Hibernate is an object-relational mapping (ORM) library for

the Java language, providing a framework for mapping an object-

oriented domain model to a traditional relational database. Hibernate

solves Object-Relational impedance mismatch problems by replacing direct

persistence-related database accesses with high-level object handling

functions.

Hibernate's primary feature is mapping from Java classes to database

tables (and from Java data types to SQL data types). Hibernate also

provides data query and retrieval facilities. Hibernate generates the SQL

calls and relieves the developer from manual result set handling and object

conversion, keeping the application portable to all supported SQL

databases, with database portability delivered at very little performance

overhead.

Hibernate provides transparent persistence for Plain Old Java

Objects (POJOs). POJO is used to emphasize that the object in question is

an ordinary Java Object, not a special object, and in particular not an

Enterprise Java Bean. The only strict requirement for a persistent class is a

no-argument constructor, not compulsorily public.

Hibernate provides a dirty checking feature that avoids unnecessary

database write actions by performing SQL updates only on the modified

fields of persistent objects.

Why Hibernate framework?

♦ It simplifies the mapping of attributes between a relational

database and an object oriented application.

♦ It avoids the use of SQL queries and all related data base access

common errors, working directly with objects instead of relational

tables.

Other similar frameworks in the market

♦ iBATIS - http://ibatis.apache.org/

 Implementation of a social Networks aggregation platform

39

Apache Camel + Active MQ

[27] Apache Camel is a Spring based Integration Framework which

implements the Enterprise Integration Patterns with powerful Bean

Integration.

Apache ActiveMQ is the most popular and powerful open source

Message Broker and Enterprise Integration Patterns provider. Apache

ActiveMQ is fast, supports many Cross Language Clients and Protocols,

comes easy to use Enterprise Integration Patterns and many advanced

features while fully supporting JMS 1.1and J2EE 1.4. Apache ActiveMQ is

released under the Apache 2.0 License.

Some interesting features that ActiveMQ offers to SociaLuna Project

are:

♦ Supports a variety of Cross Language Clients and Protocols from

Java, C, C++, C#, Ruby, Perl, Python, PHP;

♦ REST API to provide technology agnostic and language neutral

web based API to messaging;

♦ Supports very fast persistence using JDBC along with a high

performance journal

Why Apache Camel and ActiveMQ?

♦ They help to manage the queues to communicate with external

networks.

♦ They facilitate the control functions creation to control external

errors.

♦ They add business logic to send and manage messages between

the different parts of the system.

Other similar frameworks in the market

♦ FUSE - http://fusesource.com/products/enterprise-camel/

 Implementation of a social Networks aggregation platform

40

4. Working methodology (SCRUM)

[14][15][16] Into the project developing process, we are following

an extreme programming methodology. This methodology is called Scrum

and is explained in detail in this chapter.

4.1. Scrum

Scrum is an agile methodology/framework mainly oriented to the

project management. This management is not based on monitoring a plan,

but it is based on the continuous adaptation to the circumstances of the

project evolution. Scrum conforms to the principles of the agile manifesto

because:

It is an adaptable development method.

It is oriented to persons rather than processes.

It uses agile development: iterative and incremental.

4.2. Roles in Scrum

Within a process we can differentiate various roles that are

distinguished primarily on set of responsibilities assigned. These roles are:

♦ Scrum Master: The Project Manager usually assumes this role

and he is responsible for ensuring the smooth operation of the

project, he is also responsible to:

o Protect the team so it can work.

o Improve the team’s productivity and facilitate the creativity

and access to necessary resources.

o Facilitate a close collaboration of all the roles and

functions, eliminating the potential barriers.

o Fix the impediments that arise in individual sprints.

o Ensure that the agile practices bring value to the team and

the project.

o Teach the costumer how to achieve his goals using Scrum.

 Implementation of a social Networks aggregation platform

41

♦ Product Owner: It represents the people that are interested in

the product. Usually is a person who works in the client company,

which hires the product and owns the final product, but also this

role can be assumed by a person's development team. It is

responsible for:

o The Product Backlog (view point 1.3.3 Artifacts of Scrum)

where is defined in business language, and in a prioritized

way, everything that is expected from the product

(requirements, features, deliveries...).

o Agreeing with the team and the Scrum Master the dates of

the releases and its contents.

o Look that during the development of Sprint, the

requirements of the Sprint in progress cannot be changed.

o Deciding whether the goal has been achieved or not when

the Sprint finishes.

o

♦ Team members: It is a group responsible for developing the

project. This team is made up with about 2 to 7 members. When

highly specialized profiles are needed within the team, there is a

search and an integration process to train a person so he would

be able to become a new member of the team. The

responsibilities’ team are:

o The Sprint backlog.

o Select the items of the Product Backlog that need to be

done in the next iteration and estimate the effort with the

Product Owner and the Scrum Master.

o Define the goal of each Sprint with the Product Owner and

the Scrum Master.

o Divide the items chosen for the Sprint in tasks of technical

working with granularity one-man-day.

o Show the results to Product Owner at the end of the Sprint.

 Implementation of a social Networks aggregation platform

42

♦ Agile Coach: Supports the smooth functioning of the project and

the use of agile practices that bring value to the team and the

project.

4.3. Elements or artefacts in Scrum

There are two basic devices in a process of development through the

Scrum methodology. These are the product backlog and the sprint backlog

which will have an important role at various points of the iteration.

4.3.1. Product Backlog

The Product Backlog is the most fundamental artefact in Scrum as it

directs what is built. The most effective and efficient team will fail if it builds

the wrong system. The Product Backlog consists in a prioritized list of

functional and non-functional requirements (new functionalities, improves,

technology, bug reports...) along with a high level estimation for the

amount of effort needed to turn each requirement into a complete element

of the system. It represents everything that customers, users, or, interested

people expect from the product. Any work to be done by the team has to be

reflected in the backlog and it never gives completely; it is continually

growing and evolving.

 To start the development, it is necessary to have a vision of the goals

the team wants to achieve with the product; this vision should be

understood and known by all the team, and also, they need to have

sufficient elements in the product backlog to carry out the first Sprint. The

basic format of a product backlog should contain the following information:

♦ Unique identifier of the functionality or work.

♦ Functionality description.

♦ Prioritized system.

♦ A temporary estimation of the cost.

 Implementation of a social Networks aggregation platform

43

4.3.2. Sprint Backlog

The Sprint backlog is a list of tasks that defines a team's work for a

Sprint. The list emerges during the Sprint planning. The tasks on the Sprint

backlog are what the team has defined as being required to turn committed

Product Backlog items into system functionality. Each task identifies who

the responsible is for doing the work and the estimated amount of work

remaining on the task on any given day during the Sprint.

It is useful because it breaks down the project into tasks of an

adequate size for assessing progress on a daily basis, and it identifies risks

and problems without the need of complex management.

4.3.3. Sprint Burn-down

The Sprint Burn-down chart gives the team a daily indication of their

velocity and progress against the work they have committed to for the

current Sprint.

For a Sprint in progress, the

line shows the total of Work

Remaining for all Sprint Backlog

Items in this Sprint. The trend lines

give an indication of whether the

Sprint will achieve its objectives on

time or not.

For a Sprint that is complete, the chart shows how progress was

viewed historically without a Capacity trend line.

Image 4: Sprint Burn-down

 Implementation of a social Networks aggregation platform

44

4.4. The Scrum process

When all the involved roles are known in the process of Scrum, a

person can begin to define and to develop the entire process and the steps

that pass along its route.

4.4.1. Sprint

Sprint is a Scrum's term for an iteration which is a time-boxed period

of time, typically 2 to 4 weeks, during which the Team works to turn the

selected Product Backlog

items it has selected into an

increment of the potentially

shippable product

functionality.

The goal and activities

for the Sprint are planned at

the beginning of each Sprint in

the Sprint Planning meeting.

At the end of the Sprint, the

team demonstrates what they

had built in the Sprint Review and they analyze their own performance and

decide how they can improve in the Sprint Retrospective.

The progress of the Sprint is tracked with the Sprint Backlog and the

Sprint Burn-down chart.

Image 5: Sprint cycle

 Implementation of a social Networks aggregation platform

45

4.4.2. Sprint Planning

The Sprint planning is an initial meeting of the whole team with the

Scrum Manager and the Product Owner. At this meeting, the product owner

presents the product backlog and the team selects what it believes it can

build during the Sprint.

The Sprint Planning Meeting consists of two parts, each one lasting up

to four hours:

♦ Backlog selection: the Product Owner presents the highest

priority backlog to the development team. They decide how much

can be turned into an increment potentially shippable of the

product functionality during the next Sprint. The team will carry

out the necessary questions, seek clarifications and make

proposals, suggestions and amendments and alternatives which

may involve changes in the Sprint Backlog. Once everything is

cleared up, the team will define what the goal of the Sprint is, or

in other words, which is the value that it will provide the product.

The result of this first meeting is the Sprint Backlog.

♦ Sprint workload planning: the team defines the architecture

and design of the functionality that it has selected, and then it

defines the work, or tasks, to build that functionality during the

next Sprint. When the tasks are defined, the team members

catch these tasks having considerations such as their knowledge,

interest and homogeneous distribution of labour. This second part

should be seen as a team meeting in which all members must be

there and they should divide the work into tasks, assigns and

estimations. The Scrum Master works as driver or moderator.

 Implementation of a social Networks aggregation platform

46

4.4.3. Daily Meeting

Daily Meeting consists in a short status meeting that is time-boxed to

15 minutes and that is held daily by each Team. During the meeting the

Team members synchronizes their work and progress and report any

impediments to the Scrum Master for removal. In it, each member of the

group should exhibit these three issues:

♦ Task where he worked yesterday.

♦ Task or tasks that will work today.

♦ If he is going to need something special or a disability expected

to do their jobs.

At the end of the meeting, the Scrum Master begins to manage the

possible needs or impediments identified.

4.4.4. Sprint Review

Sprint Review is a meeting that takes place when the Sprint is over. In

this meeting, the team shows to the Product Owner, clients and customers

the improvements that had been developed during the Sprint. With it, the

Product Owner gets a review of the progress of the system and sees the

increase in operation, in other hand, the team gets feedback, the key to

evolve and provide value to the Product Backlog.

This is an informal meeting with informative purposes. It is not aimed

to make decisions or criticize the increase. At the end of the meeting, the

Scrum Master will close the date for the next Sprint planning.

 Implementation of a social Networks aggregation platform

47

4.4.5. Sprint Retrospective

This is a meeting facilitated by the Scrum Master at which the Team

discusses the just concluded Sprint and it determines what could be

changed so it might make the next Sprint more enjoyable and productive.

The Sprint Review looks at "What" the team is building whereas the

Retrospective looks at "How" they are building.

Anything that affects how the team builds software is open for debate,

this might include: processes, practices, communication, environment,

artefacts and tools.

This meeting is an important development and continuous

improvement in the mechanism of the project cycle of life.

 Implementation of a social Networks aggregation platform

48

5. Project time-line

As I have explained in previous chapter, the project has been divided

in Sprints of one month. After each Sprint the project has an empty week to

finish pending tasks, fix known bugs, do the Sprint Review and the Sprint

Retrospective and prepare the new Sprint (Sprint planning). In the next

points I will show the tasks assigned to me in all the Sprint planning’s. I will

start by the Sprint 3 because is the Sprint where I enter in the team

project. Nevertheless I haven’t Sprint burn-down graph of this Sprint

because it was a different Sprint with team summer holidays that prevented

an effective Sprint monitoring.

 Implementation of a social Networks aggregation platform

49

5.1. Sprint 3

The Sprint 3 was between 15th July and 31st August. This sprint was longer

than normal because the dates were in summer holidays and the

development team was not complete.

Task Days estimated Status

Study used front-end technologies 5 Complete

Training examples smarty 2 Complete

Create teaser page with smarty 2 Complete

Transform inblog design to smarty template 2 Complete

Obtain and show messages in a table 3 Complete

Import twitter and Flickr networks 3 Complete

Create filters 2 Complete

Training JavaScript examples 5 Complete

Transform html messages table to JavaScript

object
5

Complete

 Implementation of a social Networks aggregation platform

50

5.2. Sprint 4

The fourth Sprint was between 1st September 2008 and 30th September

2008. My tasks on this Sprint were:

Task Days estimated Status

Front–end of send message to networks 3 Complete

Upload files (images & videos) 2 Complete

Show messages comments on Inblog 2 Complete

Error control in front-end 2 Complete

Mark all messages as read 1 Complete

Basic left menu on Inblog / Outblog 2 Complete

Friends searcher 2 Complete

Translation and internationalization 3 Complete

Import networks settings to smarty 1 Complete

The final result of all the spring (including front-end and back-end) was

paint the next sprint burn-down graph:

 Implementation of a social Networks aggregation platform

51

5.3. Sprint 5

Sprint five was developed between 9th October and 31st October from

2008. On this Sprint, the main features were the inclusion of three new

social networks (youtube, facebook and hi5). Finally hi5 can not be added

because the API was not allows all the requirements needed for SociaLuna

platform:

Task Days estimated Status

Add facebook to import networks 1 Complete

Show facebook images and status on inblog 2 Complete

Add facebook to new message 2 Complete

Add hi5 to import networks 1 Impeded

Show hi5 images and status on inblog 2 Impeded

Add hi5 to new message 1 Impeded

Add youtube to import networks 1 Complete

Show youtube videos on inblog 2 Complete

Add youtube to new message 1 Complete

Changes on user profile page 2 Complete

Add message permalink page 2 Pending

Change the inblog page from smarty to

JavaScript / AJAX
4

Complete

 Implementation of a social Networks aggregation platform

52

And the sprint burn-down graph of all team components is the shown in the

image below:

In the graph we can see that the team speeds were a little down of the ideal

to the sprint planned. This is because the time spent on studying the hi-5

API was not productive in the development of the project and the tasks

were blocked.

 Implementation of a social Networks aggregation platform

53

5.4. Sprint 6

The sprint six was developed between 13th November and 10th

December of 2008.

Task Days estimated Status

Change youtube authentication from password

to Auth_Sub
2

Complete

User Profile – Groups creation 4 Complete

Tagging messages 5 Complete

User Profile – Friends aggregation 4 Complete

Concurrence control in AJAX queries 2 Complete

End message Permalink page 1 Complete

The Sprint burn-down from the last Sprint was the following below:

 Implementation of a social Networks aggregation platform

54

6. Economic study of the project

In the next point I will summarize a brief study of the economic impact

of the project. I will divide the economic study in two points: human

resources and environment resources.

6.1. Human resources

The project SociaLuna was developed by four programmers and a

project manager. Taking as reference the next hour prices by hour:

Worker
Price/

hour

Resou

rces
Hours/week Hours/month Total

price

Programmer 20 €/ h 4 40 x 4 = 160 h 160 x 4 = 640 12800 €

Designer 20 € / h 0.5 20 h 20 x 4 = 80 1600 €

Project manager 35 € / h 1 40 h 40 x 4 =160 5600 €

Total month - - - 20000 €

Total(4 months) - - - 80000 €

The human resources project cost is around 20.000 € by month and

the project was develop in four months. The total human costs

approximation is 80.000 €

 Implementation of a social Networks aggregation platform

55

6.2. Environment resources

The environmental resources cost is divided between the licenses cost

of software and technologies used into project development process and the

cost of computers and servers used to maintain and work in the project. I

will assume the cost of the computers null because is company material

shared with all the projects developed in the company.

In the table below I show the licenses used for each technology and

the prize of its.

Software License Price

Apache Server Apache License 0 €

Apache Tomcat Server Apache License 0 €

Apache Camel Apache License 0 €

SVN Apache License 0 €

Tortoise SVN GNU GPL 0 €

Hibernate GNU GPL 0 €

Maven Apache License 0 €

MySQL GNU GPL 0 €

Spring Apache License 0 €

jQuery GNU GPL + MIT 0 €

Zend Framework BSD License 0 €

NetBeans CDDL 0 €

Eclipse Eclipse Public License 0 €

Total 0 €

 Implementation of a social Networks aggregation platform

56

7. SociaLuna Front-end

In this section I will explain all the web application created using the

SociaLuna platform. I will start with the design of the application use cases

and I will continue explaining the most interesting parts of my work that

has been developed in this part. After use cases I will show the web

navigation of the application using a UX Model Design that illustrates de

web page structure. After that, I will explain the different ways used to

develop the pages starting by the MVC pattern and Zend Framework

facilities into this way to create the web controllers. Finally I will explain the

two different ways of create the views of the webpage: html templates

using Smarty and JavaScript web construction.

 Implementation of a social Networks aggregation platform

57

7.1. Use cases

This section tries to expand all use cases that a user needs using

IOBlog. I divide these use cases in blocks to obtain a better comprehension.

The basic use cases blocks are:

♦ Login

♦ Settings

♦ View messages

♦ Messages management

♦ Send messages

7.1.1. Login

A non logged user enters to IOBlog application using a username and

password. The authentication process access SociaLuna’s Data Base or the

internal Company LDAP.

Actor – user System

1 –User enters his/her username and

password

2- The system authenticates the user

and…

2.1 – System redirect user to home

page if authentication is success.

2.1b – System alerts to the user that

authentication is failed.

User Login

Image 6: Login Use Case

 Implementation of a social Networks aggregation platform

58

7.1.2. Networks settings use cases

These are the use cases that will allow users edit his social networks

inside SociaLuna platform. These use cases allow:

♦ Import new networks to IOBlog application.

♦ Remove networks from IOBlog application.

♦ Modify networks in IOBlog application.

Import social networks accounts

A user imports a personal social network to IOBlog to allow SociaLuna

obtains his/her messages and show them in the application. Depending on

the social network to import, these are two different import use cases.

♦ Password Authentication: SociaLuna only needs the username

and password of the user into his social network. This case is less

used because social networks try to avoid that users give their

passwords to external applications. Only twitter API uses the

authentication with username and password. Youtube allows

authentication with password and token but is highly

recommended the use of token authentication.

Import network password

Change password network

Import network token

Revalidate token

User

Delete network

Import Flickr

Import Facebook

Import Youtube

Image 7: Networks Use cases

 Implementation of a social Networks aggregation platform

59

Actor – user System

1- User enters the username and

password of his social networks and

click import.

2 – System saves this information to

connect to social network.

3 – System redirects user to import

page with a successfully message.

♦ Token Authentication: Another way to authenticate a user in a

social network is getting a token from the social network that

allows the application the access to the user account. According

to the social network and the different APIs from each social

network the authentication process is something different:

[28] Flickr authentication:

1. IOBlog is registered in Flickr as a Web Application that uses

Flickr service. Flickr assigns to IOBlog an api_key (ID from

application) and a shared key to allow the communication

between Flickr and the web application.

2. When users try to import Flickr, IOBlog redirect their to Flickr

authentication passing as URL parameters the api_key and the

permissions to request (read, write, delete).

3. When the user enters in Flickr, they must give permission in

Flickr to allow IOBlog application to access to his account.

4. Flickr redirects users to the web application returning a frob (a

session key of one use only).

5. Using Flickr API, IOBlog transform this frob in a non-expire

token (infinite session).

6. This token will grant SociaLuna the access to user’s Flickr

account to obtain new feeds.

 Implementation of a social Networks aggregation platform

60

Actor – User System Actor - Flickr

1- User clicks in “go to

Flickr to import my

account”.

3- User enters his

username and password

in Flickr.

5- User click in allow

permissions.

2 – System redirects user

to Flickr authentication

page.

7 – IOBlog transforms

this frob in an infinite

token using Flickr API and

stores it.

8 – IOBlog redirects user

to import page and show

the message “Import

successfully done”.

4 – Flickr shows a

message to allow IOBlog

the access to his account.

6 – Flickr redirects to

IOBlog returning a frob.

Image 8: Flickr web authentication

 Implementation of a social Networks aggregation platform

61

Alternative flow:

5 – User doesn’t allow permissions to web application.

6 – Flickr redirects to call-back URL without frob.

7 – System ends without importing Flickr account.

[29] Facebook authentication:

1. Like Flickr, to access

Facebook accounts is

previously necessary to

register the web application

and obtain an application ID

and secret key.

2. The firsts steps into facebook

authentication are similar to

the steps seen in Flickr: the

user goes to the Facebook

page, logs in and accepts or

denies the access to his

account to an external web application.

3. The difference between other social networks and Facebook is

that this last is most restrictive with the permissions granted

to external applications and the basic permission allows access

only while user is logged into facebook network. [30] To get

other permissions is necessary to redirect the user to facebook

to demand for extended permissions. IOBlog application needs

three different extended permissions to a complete functional

work:

Image 9: Facebook application example

 Implementation of a social Networks aggregation platform

62

i. Offline access: this extended permission allows

SociaLuna Platform to access the user account when he

or she is not logged in. This is the basic permission

needed and the only one demanded for the import use

case.

ii. Status Update: extended permission needed to send an

update of user status from an external application.

iii. Image Upload: extended permission needed to send a

new image to facebook from an external application.

iv. Status Update and Image Upload will be demanded

when a user tries to send an image or update the status

from IOBlog and these permissions are not already

granted.

4. When a user allows basic permissions to IOBlog, this redirects

the user again to facebook to obtain offline access needed to

update user feeds.

5. With the user permissions, IOBLog sends the token to

SociaLuna platform to store it and redirects the user to import

page showing a confirmation message.

Image 10: Facebook web authentication

 Implementation of a social Networks aggregation platform

63

Actor – User System Actor - Facebook

1- User clicks in “go

to facebook to import

my account”.

3- User enters her

username and

password.

5- User clicks in allow

permissions.

9 – User allows offline

access to IOBlog.

2 – System redirects user to

facebook page.

7 – IOBlog redirects user to

facebook and demand offline

access.

11 – IOBlog sends the token

to SociaLuna to save the

imported account

12 – IOBlog redirects user to

import page and show the

message “Import successfully

done”.

4 – Facebook shows a

message to allow

SociaLuna the access to

her account.

6 – Facebook redirects to

IOBlog returning a session

token.

8 – Facebook shows the

alert to demand offline

access

10 – Facebook redirects to

IOBlog.

Alternative flow:

5b, 9b – User doesn’t allow permissions to web application.

6b – Facebook redirects to call-back URL without session token.

7b – System ends without import facebook account.

 Implementation of a social Networks aggregation platform

64

[31] Youtube authentication:

Youtube authentication is similar to Flickr authentication. Youtube

authentication uses the standard authentication authSub. The main

difference with other authentication methods is that is not necessary

register the application in Google accounts although it is advisable. Google

offers three levels of registration to external web applications:

♦ Unregistered: application is not recognized by Google. The Access

Request page, which prompts web application users to either

grant or deny access for the application, displays a caution

highlighted in yellow: "Non-registered, not secure. This website

has not registered with Google. We recommend that you continue

the process only if you trust this destination."

♦ Registered: application is recognized by Google. The Access

Request page displays this warning: "Registered, not secure. This

website is registered with Google to make authorization requests,

but has not been configured to send requests securely. We

recommend you continue if you trust this destination."

♦ Registered with enhanced security: registered applications with a

security certificate on file can use secure tokens. The Access

Request page displays this message: "Registered, secure. This

website is registered with Google to make authorization

requests."

Image 11: Google AUTH_SUB

 Implementation of a social Networks aggregation platform

65

Actor – User System Actor - Youtube

1- User clicks in “go to

youtube to import my

account”.

3- User enters his

username and password

in youtube.

5- User click in allow

permissions.

2 – System redirects user

to youtube authentication

page.

7 – IOBlog transforms

this token in an infinite

token with Gdata API and

stores it.

8 – IOBlog redirects user

to import page and show

the message “Import

successfully done”.

4 – Youtube shows a

message to allow IOBlog

the access to his account

with a security alert if the

application is not

registered.

6 – Youtube redirects to

IOBlog returning a token.

Alternative flow:

5b – User doesn’t allow permissions to web application.

6b – Facebook redirects to call-back URL without session token.

7b – System ends without import youtube account.

 Implementation of a social Networks aggregation platform

66

Change password

If the user changes the password to log into a social network with

password authentication, SociaLuna will not access to his/her account

because the password stored will be obsolete. When this happens, IOBlog

warns the user to change the password stored in SociaLuna to allow the

communication with the social network. In the profile page, the user will

manage his/her accounts and will have the option to change the passwords

stored in SociaLuna platform to connect with social networks.

Actor – user System

1- User clicks in “change your

password” hover the social network to

change the password.

3 – User inserts and repeats his

password and click in change button.

2 – System shows to user a form to

insert the new password to the same

account.

4 – System saves this information to

connect to social network.

Delete Social Network

A user has the option to delete the Social networks from which he/she

does not want to continue receiving updates into IOBlog. When a users

delete a social network from the application, they lose all the messages of

the network stored on IOBlog.

 Implementation of a social Networks aggregation platform

67

Actor – user System

1- User clicks in delete icon of a social

network to delete the network from the

system.

3 – User clicks in continue deleting

button.

2 – System shows an alert, advising

that this change will cause the loss of

his messages in this network.

4 – System delete the social network

7.1.3. Settings – Create groups

Another option from users is the creation of groups that create more

efficient filters to the messages search. This way, a user will create different

groups for each friend and later search only messages from users within a

group.

The different options that a user can do in profile groups are:

♦ Create empty group,

♦ Update group,

♦ Delete group

Create group

Update groupUser

(from Use Case View)

Delete group

Image 12: Groups use cases

 Implementation of a social Networks aggregation platform

68

Create group

Users can create a new empty group at any time. They only have to fill

up the form field with the name of the new group and click in create group

button.

Actor – user System

1- User fill the form field with the group

name and click in create group button.

2 – System creates group if this not

exist from this user and return to

groups profile page.

Alternative flow:

2b – If the group exists, system will do nothing and will return to

groups profile page.

Update group

Users can add or remove friends into a group to update the current

status of the group. To add friends, they only have click in the friend’s name

and this will move to the group form and the name will be deleted from

friends list. To remove a friend from a group, the user clicks over the

friend’s name in the group list. This friend will be removed from friends list

and will be added into the friends list out of the group.

 Implementation of a social Networks aggregation platform

69

Actor – user System

1 - User clicks over group name in

group list.

4 – User clicks in a friend in “friends out

of group” list.

6 – User clicks in a friend in group list.

8 – User clicks in update group

2 – System fills the friends in group list

with the friends in the group selected.

3 – System removes from “friends out of

group” list the friends in group selected.

5 – System removes this friend from the

list and adds in the list with friends in

group.

7 – System swaps this friend between lists.

9 – System updates and save the new

group configuration.

Alternative flow:

User can repeat steps 4 and 6 any time.

Delete group

Finally, users can delete created groups. To delete groups, the user

only has to click in the delete logo next to the group name in the list.

Actor – user System

1 - User clicks in delete logo to delete a group.

3 – Users confirm to delete the group.

2 – System asks for confirmation.

4 – System removes the group

from the user account.

 Implementation of a social Networks aggregation platform

70

Alternative flow:

3b - User clicks in not delete group.

4b – System do nothing.

7.1.4. Show messages

The main use case of IOBlog is the visualization of posts in all user

networks in the same interface. Users will see in their inblog page the

messages received into their social networks and in their outblog page the

messages sent by the user to each network.

Other uses cases will allow users organize the information to show, in

each moment, only the interesting information to each user.

Actor – user System

1 - User enters into inblog or outblog

page.

2 – System shows to user his messages

into selected folder.

Users can also view more information selecting the message to view.

The system will show all the information related with the post as images,

comments, etc.

User

(from Use Case View)

Show messages

Image 13: Show messages Use Case

 Implementation of a social Networks aggregation platform

71

Actor – user System

1 - User clicks over a message post

2 – System shows to user an extended

view with all information related with

the message.

Permanent post link

Permanent link is a unique page for each user’s message with all

message information, comments, images … To access this page, the user

has to click over “View all Comments” in post view table.

Another way to view a post in this page is inserting the URL of the

message manually in the web navigator. If the user in the message page is

a non logged user, the options of reply message or post a comment will not

be accessible.

All messages are visible to all Internet users because all information

collected by SociaLuna is public in user’s networks, although the URL is

created encrypting to md5 different posts parameters, so the access is very

difficult the access to third parties.

7.1.5. Messages management

For achieving good service is necessary to offer tools to allow the

management, organization and presentation of all the user’s messages.

Different use cases have been created to offer all these functions to the final

user. These use cases are:

♦ Filter messages,

♦ Sort messages,

♦ Messages visualization,

♦ Mark messages as favourites,

♦ Mark messages as read / unread,

♦ Tag messages.

 Implementation of a social Networks aggregation platform

72

Filter messages

Filter messages allow users seeing only specific posts according to

search criteria. They can filter by:

♦ An specific network,

♦ A friend,

♦ A previous assigned tag,

♦ A previous created group or

♦ The time period of the message.

Actor – user System

1 – User clicks over a filter (network,

friend, tag, group or time).

2 – System shows to user his messages

applying the selected filter. If no

messages result from the query, system

shows the messages “No messages

found”.

Filter by friend

Filter by net

Filter by time

Filter by tag

User

(from Use Case View)

Filter by group

Image 14: Filter use cases

 Implementation of a social Networks aggregation platform

73

Search friends / Filter friends

Related with the previous filter messages by friends and to facilitate

the search of friends to filter, IOBlog offers a powerful engine to find a

friend into the user friend’s list. On the other hand, users can filter the

friends list viewing all their friends or showing only the friends with unread

messages.

Actor – user System

1 – User writes a character into input

text.

3 – User writes or deletes new

characters into input text.

2 System shows into friends list the first

five results that contain the input text

string ignoring case sensitive.

Messages visualization options

Other useful feature to assist the messages view to final users is a

sorting function. This function allows the user to arrange the messages by

network friend, viewing only unread messages or all messages. The

different uses cases for IOBlog application are:

♦ Sort by (network, friend, date)

♦ View (all messages, only unread)

♦ Order messages (ascendant, descendent)

 Implementation of a social Networks aggregation platform

74

Sort by (network, date, friend)

“Sort by” use case reloads the messages table showing the same

messages in different order. If user clicks “sort by date” the messages will

be shown from newest to latest in creation date. If user clicks over “Sort by

friend” the messages will be sorted in alphabetical order from A to Z.

Finally, if user clicks over “Sort by net” the messages will be grouped

alphabetically by net name.

Actor – user System

1 – User clicks over sort menu and

choose the subject to sort the

messages.

2 – System recharges messages table

showing the messages in the selected

order.

User

(from Use Case View)

Sort by net

Sort by friendSort by

Sort by date

All messages

View messages

Unread messages

Upward

Presentation

Downward

Image 15: Message visualization use

 Implementation of a social Networks aggregation platform

75

View (all messages, only unread)

View use case is another filtering message function located in the

messages table. This use case reloads the messages table showing all the

messages that meet the selected criteria or the unread subset messages

only.

Actor – user System

1 – User clicks over view menu and

choose the option to filter messages to

show into messages table.

2 – System recharges messages table

showing the messages with the new

filter selected.

Order view

Finally, users can sort the messages in the table in ascending or

descending order.

If messages are sorted in descending order, it is only possible to click

into ascending order and if messages are sorted in ascending order, only is

possible to reorder the messages table in descending order.

Actor – user System

1 – User clicks over ascending /

descending arrows.

2 – System recharges messages table

showing the messages in selected

order.

 Implementation of a social Networks aggregation platform

76

Mark messages as favourites

Users can highlight their favourite messages and then find them more

easily. These messages can be marked one by one or selecting all the

checkbox of the messages and using the option into table menu “mark as

favourite”.

Mark message as favourite / no favourite

Actor – user System

1 - User clicks in star icon on message

row.

2 – System toggles his state between

favourite or non favourite.

Mark message as favourite

Mark message as nonfavorite

Mark multiple messages as
favorites

Mark multiple messages as
nonfavorites

User

(from Use Case View)

View favorites

Image 16: Message management use cases

 Implementation of a social Networks aggregation platform

77

Mark multiple messages as favorite / non favorite

Actor – user System

1 - User checks messages to change

their favourite status and clicks “mark

as favourite” into action menu.

1b - User checks messages to change

their favourite status and clicks “mark

as non favourite” into action menu.

2 – System mark all messages selected

as favourites. If some messages were

favourites, these messages don’t

change the status.

2b – System mark all messages

selected as non favourites. If some

messages were non favourites, these

messages don’t change the status.

View favourites

This use case shows to users their favourite messages into messages

table. View use case

Actor – user System

1 – User clicks over “favourites” button.

2 – System shows only favourite

messages into messages table.

 Implementation of a social Networks aggregation platform

78

Mark messages as read / unread

Each time a user clicks over an unread message; this message will be

marked as read. In the same way, users can mark multiple messages as

read or unread

Tag messages

An IOBlog user can manage his/her messages creating and assigning

tags to classify and filter future searches. Possible use cases to tag

messages are:

♦ Create a new tag.

♦ Assign an existent tag to selected posts.

♦ Remove a tag from selected posts

♦ Delete an existent tag.

Create tag

Assign tag to messages

Delete tag from messages

User

(from Use Case View)

Delete tag
Image 17: Tags use cases

 Implementation of a social Networks aggregation platform

79

Actor – user System

1 - User clicks tags menu

3 – User inserts new tag name into text

field and clicks in “new” button.

2 – System shows different options

related with tagging messages.

4 – System creates the tag and shows

this tag into tag list.

Create tag

Users can create tags or labels to use and apply them to different

posts. The use case create tag creates a new tag related to user without

any message associated.

Actor – user System

1 - User clicks tags menu

3 – User inserts new tag name into text

field and clicks in “new” button.

2 – System shows different options

related with tagging messages.

4 – System creates the tag and shows

this tag into tag list.

Alternative flow:

4b – If created tag by the user exists, system does nothing.

 Implementation of a social Networks aggregation platform

80

Delete tag

 Users also can delete created tags. If a tag is associated to multiple

messages, the deletion of this association will be broken and all posts with

this tag will loose the label.

Actor – user System

1 - User clicks tags menu

3 – User clicks in delete icon next to tag

name.

5 – User clicks in delete button

2 – System shows different options

related with tagging messages.

4 – System shows an alert advising that

all posts with this tag associated will

lost the tag.

6 – System deletes the tag, remove it

from tags list and delete all labels from

tagged posts.

Alternative flow:

5b – User clicks in don’t delete button.

6b – System does not delete the tag and does not remove the labels in

associated posts.

 Implementation of a social Networks aggregation platform

81

Assign tag to messages

With a tag created, users can assign these tags to different messages.

With these user associations, IOBlog will allow users filter the messages to

show in main page according user preferences.

Actor – user System

1- User selects all messages checkboxes

to tag and clicks hover tags menu

3 – User clicks a tag name into tag list.

2 – System shows different options

related with tagging messages.

4 – System tags all posts without the

tag previously assigned to each post.

Remove tag from messages

Finally users can delete associations between user’s tags and post

previously assigned.

Actor – user System

1- User selects all messages checkboxes

to remove a tag and clicks hover tags

menu

3 – User clicks a tag name into remove

tags list.

2 – System shows different options

related with tagging messages and

shows into remove tags list all possible

tags to delete in function of tags

assigned to messages selected.

4 – System remove the tag form all

selected posts.

 Implementation of a social Networks aggregation platform

82

7.1.6. Send new message

Finally, the last basic use case to interact with external social networks

is offering functions to send messages to all their networks. To achieve

these features, we raise the following use cases:

♦ Send message to networks (one or multiple networks at once)

♦ Reply friend posts

♦ Fast update of network status

Send message to multiple networks

IOBlog must be able to send messages to user social networks. In this

use case, users choose the type of message to send. They can choose

between a plain text (update status), upload an image or upload a video.

When they have chosen the message type, IOBlog will show the networks

available for this type of message according to user imported networks and

networks APIs.

youtube message

twitter message

new message

reply post / post commentUser

(from Use Case View)
flickr message

fast status update

facebook message

Image 18: Send messages use cases

 Implementation of a social Networks aggregation platform

83

Actor – user System

1- User goes to new message page to

send a new message.

3 – User selects the type of content

of the message between text, image

or video.

5 – User selects the network or

networks to send the message.

7 – User fills the form fields and clicks

send message button.

2 – System shows a form radio buttons to

select the type of content of the message.

4 – System shows the available networks

to send the message and the form fields

necessaries to create the message (title,

text, image, video…). If user has facebook

imported but has not given permissions to

SociaLuna to update images or text,

system shows an alert with a link to allow

SociaLuna send messages to Facebook.

6 – System shows the buttons send and

clear.

8 –System sends the message to selected

networks and redirect user to Inblog page

showing a message reporting that the

message has successfully sent.

Alternative flow

7b – User clicks button “Clear form”.

8b – System deletes content from all form fields.

 Implementation of a social Networks aggregation platform

84

Reply messages

Another option to send a message to a network is reply a message to a

friend. These replies depend from networks where the messages have been

posted. A reply in twitter is a new post on twitter with the text

“@friend_name_to_reply” at the beginning of the post. In an image or video

post, reply a post consists in sending a comment for the image or video.

Actor – user System

1- User clicks over a message

3 – User clicks “reply” or “post a

comment” button.

5 – User writes the message and click

“send”.

2 – System shows to user all message

information with a comments preview.

4 – Systems do visible a input text form

to write the reply.

6 – System sends the message to the

message network. If it was a image

message this reply will be an image

comment to friend post.

 Implementation of a social Networks aggregation platform

85

Fast post to network

Finally, users can send fast messages independently of IOBlog page

that they have into screen. These messages will be status updates into the

social network selected. The social networks available are twitter and

facebook and only if the user has imported these networks previously.

To send a message on this way, user must click over header page and

the text form will get focused.

Actor – user System

1- User clicks over page header

3 – User writes the status message to

send.

5 – User clicks “Update my status”

button or press enter key.

2 – System deletes the message

“Update your status” and put the focus

over text input.

4 – System updates the chars counter

with each key pulsation.

6 – System sends the message to the

selected network.

Alternative flow

5b - User press escape key or clicks out of textbox area.

6b – Form losses the focus and appears again the message “Update your

status” if text area was empty.

 Implementation of a social Networks aggregation platform

86

7.2. UX Model design

This UX diagram shows the map navigation in IOBlog application.

When a user goes to main page, the first page in appears is the teaser

page. In this page the user has to enter into login form her username and

password to authenticate that is a valid user.

Login

username : text
password : password

<<Input form>>

Send message

networksID[] : integer
title[] : text
text[] : text
File : File

<<Input form>>

Friend

Name : String
Network : String
ID : Integer
NickName : String
Avatar : url

Create Group

GroupName : text

<<Input form>>
Update Group

Group_ID : Integer
Friends_ID[] : text

<<Input form>>

Create tag

TagName : text

<<Input form>>

Apply_tag / Remove tag from posts

TagName : text
postsIDs[] : Int

<<Input form>>

Message

friend : Friend
network : String
text : String
date : Date
Comments preview : Message
Tags[] : String

View_comments()
Reply()

teaser

username : String
password : String

Login()

<<screen>>

Settings - Friends

Inblog()
Networks()
Groups()

<<screen>>

New message

network : Integer
Content : Integer
Title : String
Text : String
Image : File
Video : File

Send()
Clear_Form()

<<screen>>

Clear_Form()
Settings - Networks

Networks_available[] : Integer

Inblog()
Outblog()
Groups()
Friends()
Import()
Update()

<<screen>>

Import()

Settings - Groups

Groups[] : String
Friends[] : String
New_group_name : String
Selected_group_ID : Integer
Friends_Group[] : String

Inblog()
Networks()
Friends()
New Group()
Update Group()

<<screen>>

Groups()

Networks()

Groups()

Friends()

New_Group()

Update_group()

IOBLOG Page

friends[] : Friend
tags[] : String
NetworksID[] : Int

Settings()
Favorites()
Outblog()
Inblog()
Filter messages()
New message()
Logout()
Create new group()
Create_tag()
Apply_tag()

<<screen>>
Login()

+0..20

new message()

Logout()

Inblog()

Send()

Inblog(), Outblog(), Favorites(),
Filter_messages()

Settings()

Inblog()

Inblog() Create_new_group()

Delete Tag

TagName : text

<<Input form>>

View comments

Text : String

Return()
Reply()

<<screen>>
View_comments()

**

Return()

Reply

message : text

<<Input form>>

Reply()

Image 19: UX Model

 Implementation of a social Networks aggregation platform

87

When user authenticates, goes to IOBlog page. In this page, users can

see all the messages in all their social networks and search messages

applying filters or tags without moving of IOBlog page. To do any function

over posts (as tagging posts) or to create or delete tags is necessary to

send information in a form with the tag name or the selected posts to focus

the action.

 When user goes to edit, IOBlog settings, application redirects to new

page with networks settings. In this page, user can manage her imported

accounts and import new accounts. From this page, user can click over

different settings options and go to new pages to edit her groups and

friends preferences. Also, user can return to IOBlog from all previous

described pages.

Again at IOBlog, users can see their messages directly in IOBlog page

or can enter in a detailed message page where they can see the message

and all comments. At same time they can reply or post a comment directly

to network of the post.

Finally users can go to another web page to send a message to their

imported accounts. In this page they can send messages to different

networks at once and then return to IOBlog page.

 Implementation of a social Networks aggregation platform

88

7.3. IOBlog structure

In this section I will explain the general structure of the IOBlog web

application IOBlog developed using SociaLuna platform. I will start

explaining the Model View Controller pattern used to design the web

application. Next I will enter to explain the main directories of the

applications and the files that you can find there. With all the files located

on the project context, I will explain the PHP controllers that manage the

user interface. Finally, in the next point, I will explain the view development

techniques using Smarty and JavaScript.

7.3.1. Model View Controller (MVC)

Model View Controller (MVC) is an architectural pattern that allows

isolating the business logic from the user interface. This isolation results in

an application easier to modify and allows changes in business logic without

affecting the user interface view or vice versa.

The functions of the MVC pattern components are:

♦ Model: Is the responsible to enter the database to get data or

manipulate it. In IOBlog applications, the model is in charge of

calling the web services of the SociaLuna platform to get or

update the data.

♦ Controller: Catches the user input events and executes all the

business logic associated to the event. If it needs to access the

data, it calls the model. Also, it changes the view variables that

will be accessible from the view to show the dynamic information

to the user.

♦ View: Shows to user the application interface and waits to a user

input event.

 Implementation of a social Networks aggregation platform

89

In the image below you can see the basic structure of the MVC

pattern and a sequence diagram of the interaction between user application

events and MVC pattern:

This pattern is commonly used on web applications assuming the

view as the html code, the controller as the dynamic part of the web

managed in the web server and the model as the access to the data base.

 There are many frameworks that help the developers to apply the

Model View Controller Pattern into their web applications. The framework

used to help us in the IOBlog development process has been the Zend

Framework, which runs under free BSD license.

User

DataController Model

View

update update

show

input event

data demand access to data

Image 20: MVC dessign pattern

 : User
 : Controller : Model : View

event
data demand

update view

obtain data

Image 21: MVC pattern – Sequence diagram

 Implementation of a social Networks aggregation platform

90

7.3.2. IOBlog directories

Zend Framework, used to develop IOBlog application, offers multiple

functions to maintain a great web project clean and tidy under the MVC

pattern. The project is structured in several folders. The most significant

folders are:

♦ /app/controllers:

This folder includes all PHP files with the logic to manage all user

petitions. When it is necessary to use platform web services, calls

to functions developed in models folder.

♦ /app/models:

Includes PHP files that implement all the calls to SociaLuna web

services and returns the platform responses.

♦ /app/views/layouts:

It includes smarty templates with the basic web page structure.

The basic webpage structure consists in a header div, a middle

content div and a footer div.

♦ /app/views/scripts:

This folder includes a folder for each web page in IOBlog. In these

folders there are the necessary templates to create the content

page. In some cases, these templates are very small because

some web pages are created in JavaScript files. In profile settings

case, the web page is clearly html smarty templates created and

we can found several templates for each part of the same screen.

♦ /webroot:

Webroot is the public directory where all elements accessible from

the web can be found. Because of that, in this path there are all

the needed files to create the client-side webpage such as

JavaScript objects or CSS Style Sheets.

 Implementation of a social Networks aggregation platform

91

♦ /webroot/css:

It includes the CSS files to add style to all the web pages.

♦ /webroot/js:

Includes the JavaScript files with needed create some web pages.

The JavaScript construction will be explained in the following

sections.

♦ /webroot/gfx/img:

Includes all the necessary images used in web pages design.

♦ /libs:

The folder /libs include all the required libraries from the Zend

Framework libraries, the social networks APIs or the project

creation libraries.

7.3.3. PHP Controllers

PHP Controllers have the server logic of all the web pages.

There is a general abstract controller called

SociaLunaController that extends the abstract Zend class

Zend_Controller_Action. All the specific controllers will extend

SociaLunaController. This controller assigns the basic attributes in all

the pages such as general CSS files includes or general JavaScript

files.

Another controller is created for each other action (web page)

in the application. IOBlogController includes all needed logic to get

user friends, user messages, networks and all information showed in

IOBlog page (INBlog, Outblog or New message page). At once,

ProfileController manages all the user settings options and

AuthController has the actions to authenticate users on login.

 Implementation of a social Networks aggregation platform

92

PHP Zend config.ini

Config.ini file is a configuration file to the web responses. On this file

are stored different variables to use in the application such as the social

networks API keys, paths of log files, upload files directories or web services

base path.

In this file, are also defined the instructions to redirect the actions and

paths of the web application to a PHP controller.

This lines are assigning the paths /login, /logout, /signup and /teaser

to the actions loginAction, logoutAction, signupAction, and teaserAction in

the authController. Also it is defined the route /ioblog to the controller

ioblog and the indexAction as the default action to execute when a user

enters at this point.

; /login

; /logout

; /signup

; /teaser

route.auth.route = ":action"

route.auth.reqs.action = "login|logout|sign up|teaser"

route.auth.defaults.controller = auth

; /ioblog application

route.ioblog.route = "ioblog"

route.ioblog.defaults.controller = "ioblog"

route.ioblog.defaults.action = "index"

Code 2: Redirect actions configuration

 Implementation of a social Networks aggregation platform

93

PHP Controller Structure

All controllers are developed following the same template:

♦ Init function is the first function on loading and it is used to

assign specific page scripts or style sheets and assign them to the

view layout. This layout is the sample template and it is located in

folder /app/layout.

♦ IndexAction is the main function to load the page. This function

is executed when a user reloads the web page associated to this

controller without any specific function declared. For example, if a

user reloads the web page SociaLuna/ioblog the indexAction of

IOBlogControler is executed. If the web page reloaded is

SociaLuna/profile, indexAction of ProfileController will be

executed. On IndexAction are allocated the variables that are

needed to create the view and control all different ways

depending of the user selection. A simple example will be:

public function init()

{

parent::init(); // Executes the parent init functio n

// Assign CSS to use in the webpage of the controll er

$this->view->headLink()->appendStylesheet
('/css/ioblog.css?rev='.App :: REVISION, 'screen');

 (…)

 // Assign JavaScript files to load with the webpa ge

$this->view->headScript
('file','/js/table.js?rev='.App::REVISION);

(…)

 // Assign view layout to render webpage

 $this->view->layout()->setLayout('main-full');

 }

 Code 3: Basic controller init function

 Implementation of a social Networks aggregation platform

94

♦ myfuncAction is the function executed when the controller is

loaded with a specific function declared. For example

myfuncAction in IOBlog controller will be executed when loading

the page SociaLuna/ioblog/myfunc. This functions are often called

on form submits to execute a specific action and at the end

redirects user to indexAction.

public function indexAction(){

 /* Getting GET parameter ‘blog’ */

 $blog = $this->request->get(‘blog’);

 switch ($blog)

 {

 case ‘inblog’:

 //load inblog messages

 break;

 case ‘outblog’:

 // load outblog messages

 break;

 default:

 // load default vaiables

 }

 }

Code 4: Index action example

//HTML Code

<form action=”/ioblog/new-message” method=”post”>
 (…)

</form>

/*

 * On submit

 * PHP InblogController

 */

public function newMessageAction(){

 (…)

}

Code 5: Actions example

 Implementation of a social Networks aggregation platform

95

♦ myfuncAjaxAction is executed with the call to myfunc from a

JavaScript file. This function can return data to the JavaScript

function that calls it or redirects to an IndexAction after executing

the assigned work. When it returns data to JavaScript file, this

data is encoded to JSON format. An example of JavaScript call is:

/*

* JavaScript function

*/

SL.myfunction = function (){

var params ={

// Parameters passed to AJAX call

};

 jQuery.getJSON ("/ioblog/myfunction", params, fun ction(data)

 {

 // Function executed on AJAX call return with

 // data result

 });

}

/*

* PHP function on ioblogController

*/

public myfunctionAjaxAction(){

 // Get needed data

 $data = getData();

 //Disable ViewRenderer as we just want to output J SON

 $this->_helper->viewRenderer->setNoRender();

 $this->_helper->layout->disableLayout();

 // Encode data to JSON format to return to JavaScr ipt function

 $jsonData = Zend_Json::encode($data);

 $this->getResponse()->setBody($jsonData);

}

Code 6: Ajax Actions example

 Implementation of a social Networks aggregation platform

96

In the following image can be seen the basic interaction between the

user actions in front-end and the calls to back-end services.

The image shows how all the user actions go to the appropriate

controller action. In these actions, the controller gets the parameters

passed using GET method on the URL request or using POST method in a

form request and executes the necessary logic of the action to do. If the

action needs data from SociaLuna platform calls to a specific method in a

model class. This function of the model will call the correct web service and

will return the needed data.

Image 22: calls to server diagram

 Implementation of a social Networks aggregation platform

97

7.4. View construction

Two methods were used in the development process of the application

view. Initially, the project was developed entirely using Smarty, a template

engine for PHP that facilitates a manageable way to separate application

logic and content from its presentation. Later, with the introduction of many

AJAX calls, the content of the website was developed using JavaScript to

help handle all the possible events at the same time which gave more

dynamism to the website. In this chapter I will explain the two ways of

constructing webpage the content.

7.4.1. Smarty web development

Developing a webpage using Smarty is a simple way to create a

graphic interface without dependencies on the logic part. Smarty needs the

variables passed between the controller and the view to create the webpage

using html code.

Smarty is extremely fast and allows the programmer the creation of

custom functions, modification of variables, unlimited nesting of sections, if

statements, etc.

A “.tpl” file (Smarty template) contains a simple html webpage with

some instructions enclosed within delimiters. By default these are {,} but

they can be changed.

The most used smarty instructions into project development are:

♦ {if}...{else}... {/if}: conditional instruction.

♦ {section} ... {/section}: looping over arrays of data.

♦ {foreach} ... {/foreach}: looping over associative arrays.

♦ {assign}: Modify variable.

♦ {$this->partial(“tpl file”)}: Load the tpl file specified.

 Implementation of a social Networks aggregation platform

98

Linking PHP Controllers and Smarty templates

A view layout must be assigned to the Smarty template to link a Front

Controller in PHP. As has been seen before this assignation it is done on init

function, assigning to the layout variable of the object view the name of the

smarty template in layouts folder. If the action has no layout assigned,

Zend Framework will search the default template in the scripts folder.

On load the layout template with all project generic parts in screen as

the header or the footer content page. The specific webpage content is in

the index.tpl file at folder “/scripts/controller_name”.

Furthermore, it is often necessary to pass variables between the

controller and the view to render these data into webpage and to render or

not some parts of the view. To pass variables between views controllers and

Smarty templates using php Zend framework is as easy as assign in the

controller the value to the variable var_name into the view object of the

controller (“$this->view->var_name”). Assigning variables to the view

component, these were accessible into Smarty templates as {$var_name}.

For example, to render the settings page that has a tabs menu with

different settings the system works as follows:

ProfileController
.php

main-full.tpl header.tpl /profile/index.tpl networks.tpl groups.tpl friends.tpltabs.tpl

COND {$tab = networks}

 {$tab=friends}

 {$tab = groups}

assign variables:
- $this->view->tab
- $this->view->userName
- $this->view->networks
- ...

Image 23: Template loading example

 Implementation of a social Networks aggregation platform

99

7.4.2. JavaScript web construction

As it has been described on technologies introduction, JavaScript is

an interpreted programming language widely used for client-side web. As

other object-oriented languages, JavaScript allows inheritance but use

prototypes instead of classes for defining object properties.

The most important features of this language that are used in the

development process are:

♦ Dynamic: JavaScript is a weakly typed language. It means that

as in most scripting languages, types are associated with values,

not variables. For example, a variable x could be bound to a

number and then later rebound to a string. JavaScript supports

several types to test the type of an object.

♦ First-class functions: these are objects themselves because

they have properties and can be passed around and interacted

with like any other object

♦ Inner functions and closures: Inner functions (functions

defined within other functions) are created each time the outer

function is invoked, and variables of the outer functions for that

invocation continue existing as long as the inner functions still

exist, even after that invocation is finished. A closure is a

function that is evaluated in an environment containing one or

more bound variables. When called, the function can access these

variables.

A = function (){

 B(_privatefunction);

 _privatefunction(){

 ...

}

}

B = function (funconComplete){

 ...

 funconComplete();

}

Code 7: JavaScript classes example

 Implementation of a social Networks aggregation platform

100

♦ Prototypes: JavaScript uses prototypes instead of classes for

defining object properties, including methods, and inheritance. It

is possible to simulate many class-based features with prototypes

in JavaScript.

A = function (){

 var x = 15;

 var y = 10;

 B = function (){

 var x = 20; // Creates new x variable in this clo sure

 y = 5 // modifies variable y on function A

 var sum = x+y; // 20 + 5

 alert (sum) // shows 25

 }

 B();

var sum = x+y; // 15 + 5

 alert (sum) //Shows 20

}

Code 8: Inner functions and closures

SL = SL || {};

SL.Table = function (page,url) {…} //Constructor fu nction

/* Init function */

SL.Table.prototype.init=function (div) {

 this._setPage(0);

}

/* Private functions */

SL.Table.prototype._renderHeader () {…}

SL.Table.prototype._renderRow () {…}

...

SL.Table.prototype.refresh (data) {…}

SL.Table.prototype._setPage(page){

 this._page = page; //Object var

}

Code 9: JavaScript prototypes

 Implementation of a social Networks aggregation platform

101

♦ Functions as object constructors: Functions double as object

constructors along with their typical role. Prefixing a function call

with new creates a new object and calls that function with its

local this keyword bound to that object for that invocation. The

function's prototype property determines the new object's

prototype.

Construct a webpage in JavaScript consists on creating some

JavaScript objects with class properties and functions that render and

control all events over the object. The basic structure is a constructor

function that creates the JavaScript object and a set of functions to

manipulate the DOM from the object attributes. This way to create a

webpage completely changes the traditional way of construct html pages

using this language only to add small user interactions.

 In the project exists five basic JavaScript files with different render

and event handler functions:

♦ ioblogPage.js: Builds the basic page structure (left menu, right

info, middle info) of the messages visualization page.

♦ table.js: Renders the messages table in the middle content page.

♦ message,js: Builds the message extended view (permalink

page) of a selected message.

♦ new.js: Renders the page to send a new message to the social

networks imported.

♦ functions.js: Generic JavaScript functions to use in different

pages and non JavaScript pages.

//Printing messages table

var div = document.createElement('DIV');

div.id='table_div';

//Creating a new object table to insert in the page

this.ioblog_messages = new SL.Table(this,'/ioblog/render- messages?');

this.ioblog_messages.init(div);

this.ioblog_messages.refresh(data);

Code 10: Messages table construction

 Implementation of a social Networks aggregation platform

102

Loading messages page

The JavaScript ioblogPage.js is loaded from the Smarty template

index.tpl passing the needed variables to the init function. The process to

load the main page is the one shown in the image below:

The process to load the index.tpl is the same as described above, but

once there, the template will create the object script that would be

responsible for creating DOM elements of the website and the functions

needed to manage the events over these elements.

When the page is loaded at first time, the controller is the responsible

to get the messages that are shown in the table. However, when the user

clicks over a filter to recharge the table, the JavaScript table object is the

responsible for making an AJAX call to the controller demanding for the new

messages to show. While the new messages are loading, changes the

graphic table to add dynamism to the user demand.

ioblogController
.php

main-full.tpl /ioblog/index.tpl ioblogPage.js table.jsheader.tpl

render

renderMessagesTable

createContentPage

Image 24: Loading JavaScript page

 Implementation of a social Networks aggregation platform

103

The image below shows the different components that make up the main

page of IOBlog:

The header is loaded by file header.tpl, loaded by main-full.tpl. After loading

the header, main-full calls to index.tpl that will load the JavaScript file

ioblogPage.js. This is responsible of loading all the page content and the left

menus and of creating the object messages table calling to JavaScript file

table.js.

Image 25: IOBlog page components

 Implementation of a social Networks aggregation platform

104

7.5. Internationalization (I18N)

To create different dictionaries from all strings in the webpage, it was used

an application called Poedit. This application allows capturing all strings in a

web page, inserting a translation and saving a dictionary. After, a dictionary

can be chosen to print the strings in the language desired. To do the

translation, Zend framework has a function named t. When you write a

string in this function, the framework goes to selected dictionary to get the

translation. If this translation not exists, it shows the default language.

Image 26: POEdit

 Implementation of a social Networks aggregation platform

105

8. SociaLuna Back-End

In this section I will describe SociaLuna platform to get a better

understanding about all project scope. I will focus this description in

explain the architecture used to create the platform and all the components

that form the platform. Finally, I will explain the servers used to run the

application and the interaction between these servers.

8.1. SociaLuna Architecture

The first point that I would like to explain is the platform structure and

its operation process.

All user requests from the services created over SociaLuna platform

are received by a web server. If it is necessary to access external networks

(import profile, sending a new message, etc.), it sends a message to the

connector through a system of asynchronous queues. This connector will be

responsible of sending the request and receive the reply from the external

network. This will avoid bottlenecks caused problems outside SociaLuna.

The next picture shows in more detail the structure of SociaLuna

platform:

Image 29: SociaLuna architecture (I)

 Implementation of a social Networks aggregation platform

106

The basic blocks of SociaLuna platform architecture are:

♦ Rest interface: HTTP interface to access to SociaLuna

functionality. It is the interface used to access the service

capabilities of the platform. Using a REST syntax allows to easily

identify the resource being accessed.

♦ Internal Services: REST layer is only used as a wrapper and is

supported by the internal services layer to perform the necessary

tasks. A service includes one or more functions grouped by

subject (user profile, posts management, networks management,

etc.).

♦ Queues: asynchronous queues that serve as a means of

communication with the connectors that send and receive

information from external networks.

♦ Daemons: processes that run periodically and are responsible to

import user data that have been created/modified in the external

networks in the last time interval.

♦ Connectors: processes that connect to external networks when

they receive a signal in the form of asynchronous message

through the platform queues.

♦ DAOs: access to Data Base layer.

 Implementation of a social Networks aggregation platform

107

The complete SociaLuna platform architecture is shown in the next

image:

At previous image, we can see all extended architecture of SociaLuna

platform.

The enter point to the platform system is on www-socialuna. This

part of the diagram is the front-end application that interacts with the

platform. This front end application can be the IOBlog discussed above or

any other application with a similar purpose. In Annex 2 there are explained

other applications developed in the company over SociaLuna platform.

The layer sl_restlet has two functions. When this layer receives a

request from a front-end application is responsible to translate this call to

an understanding system call or, in other words, translate a URL path to his

correct service system call. When the service called return the data to

return to application, this layer is the responsible of translating these data

to the format desired by the application. This format can be JSON or XML.

Image 30: Socialuna architecture (II)

 Implementation of a social Networks aggregation platform

108

Sl_services layer is the layer with all business logic. In this layer are

implemented all functions that control the input to the system and execute

the needed action in any case. If the service demanded requires connecting

to an external social network, it will push into sl_queues the petition. If the

service requires save or restore data into the data base it will call to the

sl_model layer.

The layer responsible of interacting with the data base is the sl_model

layer. In this layer are defined all calls to the data base under hibernate

mapping. In this layer are launched the queries to the data base to get the

data or insert or modify new data into system data base. Also includes the

necessary logic to create the data base and the POJOs (Plain Old Java

Objects).

Sl_daemons has functions that run periodically. These functions

normally connect with the external networks to get some user information

(new posts, user profile, new friends…). Also is the receiver of all the

changes in the queues states to add a new task on pending queue if a task

has failed or return the data returned by the network to the service who

called it.

Sl_queues is the layer responsible to manage the different queues of

the platform running on an Apache ActiveMQ queues server. SociaLuna

has three queues for each connector associated. The queue pending has all

requests to the external network pending to be executed. When the request

is made, the task can go to other two queues depending on the outcome. If

the request fails, the task goes to the error queue to analyze the error and

create a new pending task if necessary. However if the query returns

correctly, the tasks goes to the complete queue that will return the data

received.

Finally, sl_connectors has all the functions needed to interact with an

external network. In some cases these connectors are open API’s published

by the network.

 Implementation of a social Networks aggregation platform

109

8.2. SociaLuna servers

SociaLuna platform is running under different servers. In image below

I show these servers running over the SociaLuna architecture graph:

The enter point to the platform is an Apache server that manage the

Front-End application. The petitions to Back-End platform enter by a tomcat

server. The daemons are running in a Java Virtual Machine (JVM1), in other

hand, connectors and queues are running in a different one (JVM2).

Therefore, these could be on different servers.

All messages between the systems are managed by Apache Camel and

ActiveMQ. The servers write and read the messages in the ActiveMQ server

to pass the information between the platform elements.

Image 31: Socialuna architecture (III)

 Implementation of a social Networks aggregation platform

110

9. Conclusions

In the current Internet situation, users navigate in several social

networks and, in many cases a user is registered in many of them. These

users commonly need to sign in into multiples sites to retrieve al their social

activity. SociaLuna solves this problem showing to the users all their social

activity altogether allowing at the same time to reply and interact with

these networks.

This situation also drives firms to invest in different projects related to

social networks and SociaLuna is one of them. Every year there are new

social networks and it is important that the platform allows future additions

to increase the scope of the applications under the platform.

At this moment, the project is a real application with all its basic use

cases implemented and running. Nevertheless, the project needs further

development to become a final web application. Some of these will be

explained in the next point.

As personal conclusions:

On these months in Telefonica R&D I have been working on web

development that is one of the most active areas within the IT sector due to

the number of potential users. This work has helped me to gain experience

in an important company of the sector, and at the same time, to deal with a

real project in a company.

 Finally, my stay in the company has helped me to learn a lot about

web technologies currently used in commercial projects. I have also learned

several techniques of projects management inside the agile methods such

as Scrum.

 Implementation of a social Networks aggregation platform

111

10. Future work

The future work to further improve the application is endlessly. I’m

currently working to improve the navigation between Ajax calls enabling the

default navigator back and forward actions. It is also necessary to improve

the usability in some use cases to get a better user experience. At the same

time, the number of social networks in Internet is very extensive and

SociaLuna works as an aggregator. Adding new social networks to

SociaLuna always provide an important enhancement to the platform, and

the applications under the platform.

The next Social Networks to be imported on IOBlog application are

keteke network and MoviStar Mobile Forum. The first social network is a

social network of Telefonica similar to facebook or tuenti. MoviStar Mobile

Forum will allow to MoviStar clients import this service to send from IOBlog

SMS or MMS messages to their mobile contacts.

Other possible feature to add to SociaLuna is the grouping of image

albums in a single post to avoid the overfreight of users’ inbox when his/her

friends upload albums of many images to their social networks.

Finally to do of IOBlog and SociaLuna a commercial application is

needed to invert some time in the study of the application general

performance with a large number of users, and work to reduce the waiting

time using caches and other techniques for this purpose.

 Implementation of a social Networks aggregation platform

112

Annex 1. Final result and user’s manual

The final result of IOBlog application is a web page that using SociaLuna

platform allows to users the aggregation of their social networks. At this

moment, the social networks allowed are Flickr, twitter, facebook and

youtube. In the next pages I show the final result of these months

developing the applications as a simple user manual with screenshots of the

application.

Teaser page:

As all web pages IOBlog has a teaser page where you can introduce

your username and password to authenticate your account and enter to the

application.

Image 32: IOblog login screen

 Implementation of a social Networks aggregation platform

113

Dashboard page:

When you authenticate your account as first time will appear a simple

web page introducing to the most important functions that you will see in

the application.

Importing social networks:

When you don’t have any social network imported, IOBlog redirects to

the import page to start including your social networks and thus, start using

the application.

Image 33: IOblog dashboard

Image 34: Networks imported

 Implementation of a social Networks aggregation platform

114

Networks management:

Once you have imported your social networks, you can remove these

networks or change the password at any time. As is explained in the use

case, change the password of a social network only change the password on

SociaLuna platform and doesn’t change it in the external network. The

passwords should always match in SociaLuna and external networks;

otherwise IOBlog will show an authentication error and will help you to

introduce the correct password.

Image 35:Changing Social network

Image 36: Deleting a network from Socialuna

 Implementation of a social Networks aggregation platform

115

Viewing your messages:

Once imported your social networks, you can start to navigate by your

inblog to see the messages of your friends in these networks and outblog to

see your messages in the networks.

You can choose between two different table visualizations to view your

messages in the way that you can see more easily all the information of

your interest.

The first view is a list view with all basic information in one line to do

the table more compact and easy to read.

The other view is an extended view with more details and the friend

avatar to do more easy to see at users the difference between all their

messages.

Inblog, Outblog and Favorites views

Image 37: Messages table in INBLOG40

Image 38: Messages table (List View)

 Implementation of a social Networks aggregation platform

116

To toggle the selected view, you can click the buttons in table header

with names “Extended view” and “List view”.

To view more information about a single post, you can click over your

interest post. This post will open showing under it some information and

other options to do with the post as reply to user, post a comment or

view all its comments in a permanent link to share it with friends.

 Image 39: Messages table (Extended View)

Image 40: Opened post information

 Implementation of a social Networks aggregation platform

117

When you click in the link “view all comments”, a new page will be

loaded with the post information, all posts comments and a text area to

send a comment or reply to user message owner.

Image 41: Permalink page
Post a comment

Image comments

Flickr image

 Implementation of a social Networks aggregation platform

118

Manage your posts:

IOBlog have multiple functionalities to help you to manage your posts

and to find quickly and easily all the messages that interest you. IOBlog

have different filters to see in the messages table only the messages of your

interest each time. The

filters created are filter by

friend (allows view only the

messages of a friend), filter

by network (allows view

only the messages of a

unique network), filter by

date (allows view the

messages from a date),

filter by group (allows view

the messages of the friends

included in a predefined

group) o filter by tag (allows

view the messages tagged

with an specific tag).

If you have imported all your social networks, is possible that the

number of friends will be very high. To help you to find a friend, IOBlog

have a searcher that filter the friends showed in the list showing only the

friends that contains the string written on the text area.

Unread

messages

 Image 42: Message filters

 Implementation of a social Networks aggregation platform

119

By default, the friends list shows only the five first found friends. To

show all your friends in the list, click over the button “View all”. The

buttons “all / unread” allows to filter the friends list with all friends or only

the friends with unread messages.

Other option to found your messages is order the messages in the

table. You can order these messages by network, received date and friend

message owner. To order the messages you only need to click in the menu

sort by on the table header.

View all friends or only friends with

unread messages

Input text to dynamic friends search

Friends list

“View all” button

Image 43: Friends filter menu

Image 44: Sort messages options

 Implementation of a social Networks aggregation platform

120

In the same way you can click in the “view” menu to select view all

messages or view only the unread messages.

Manage your favourite messages:

You can mark your favourite messages to get a quick access to them.

To mark a message as favourite you only need to click over the star at right

of the message. If the star is empty indicates that this post is not a

favourite post. Otherwise, if the star is full, this post is a favourite post.

Another way to mark as favourite different posts at the same time is

selecting the messages checkboxes, going to actions menu and selecting

the option mark as favourite.

Image 45: Message View Options

Favorite

message

no favorite

message

Image 46: Favourite messages

Image 47: Mark as favourite (multipost)

 Implementation of a social Networks aggregation platform

121

Tagging your messages:

Another option to manage the posts is the

creation an association of tags with the messages. To

create the tags you only need to click over “tags”

menu, enter a tag name in the text area appeared and

press enter key or click over “new” button.

To assign a tag to your posts you only need to

select the posts checkboxes that you would like to

apply the tag and click over the tag name in the tags menu.

To remove a tag from a post you only need to open the tags menu

with the posts that you would like to remove the tag selected. In the

“Remove tag” menu will appear the tags of the selected posts. Clicking over

a tag you will remove this tag from the selected posts.

Image 48: Tags menu

Image 49: Tags assignation

Image 50: Remove assigned tags

 Implementation of a social Networks aggregation platform

122

Finally, you can delete a tag. To delete a tag you

only have to click over delete button at right of the tag

name. A message will appear advising that all the posts

with the tag assigned will lost the association with the

tag. Click on continue deleting to delete the tag or

cancel to not delete the tag.

To view all the messages tagged with a label click in the tag name on

the filter at left menu or over the tag name in a message post. To view all

your tags created, create new tags or remove existing tags you can also go

to menu settings and click over tags tab. There you will see all your tags

with the ten latest posts from each.

Create your groups:

Also in the menu settings you will find the tab “groups”. There you can

create groups of friends. With these groups you will have more effective

filters to find at each moment the posts of your friends.

To create a new group you only have to enter the group name on the

text area and click on create new group. To add friends to a selected group,

click over the friend and this will change to the list of friends in the group.

You have a search engine as described above to find your friends more

easily. To save the group, click on the button “save group”.

Image 51: Tags menu

 Implementation of a social Networks aggregation platform

123

To remove a group, click on the icon X, next to the group name. A

warning message will appear. Click “continue” to remove the group or

cancel to don’t remove.

Note: Remove a group doesn’t remove the friends inside the group,

only remove the association between theirs.

 Image 52: Groups update

Friend’s searcher Selected group

name

Save group

button

List of friends

List of friends

in group

 Implementation of a social Networks aggregation platform

124

Send messages to your networks:

On IOBlog exists different ways to send a message to your networks. A

fast way to upload your status on twitter will appear in the header page

when you will have imported twitter network into IOBlog. This way is fast

and easy, you only have to write your status on the text area and press

enter key or click on “update my status” button.

To send a message to all your networks go to “new message”. There

you can write a new post to send to one or more networks. First of all you

want to select the type of message (text, image or video). IOBlog will show

the available networks to this type of message. Select the networks where

you want to send the message, field the form fields and click in “send the

message” button

 Image 53: Groups delete

Image 54: Fast post message

 Implementation of a social Networks aggregation platform

125

[30] To update facebook status or upload images to facebook is

necessary to obtain extended permissions from facebook. When IOBlog

loads the page to send a new message obtains from facebook the

permissions of SociaLuna in user facebook account. If no permissions have

been given to send the message, it shows and alert with a link to facebook

to obtain the needed permissions. We decided to check the permissions

when the user tries to send a message to facebook, instead of asking for

these permissions when the user imports the account, because the import

steps would be too long and too many steps will be necessary.

Selecting message type

Selecting network or networks to send the message

Facebook is not available because user has

not allowed permissions to Socialuna to

update images to Facebook.

Form fields to upload

Image 55: New message page

 Implementation of a social Networks aggregation platform

126

Annex 2. Other SociaLuna Applications

 Other projects in Telefonica R&D are being developed under

SociaLuna platform. These projects are different front-end application to

different supports.

 Nemos is a mobile phone application

that using SociaLuna platform allows users the

access to their Social Networks, download and

upload content and geolocate these content.

Other application for

SociaLuna is an Adobe Air client developed

with Adobe Flex. This application has similar

use cases that IOBlog application, but unlike

this, is a desktop application instead of a web

application.

Image 56: Nemos application

Image 57: Socialuna air application

 Implementation of a social Networks aggregation platform

127

Glossary

Apache License

Apache License is a free-software license authored by Apache

Software Foundation that allows the use of the source code for the

development of free and open source software as well as proprietary

software

Apache Software Foundation

Apache Software Foundation is a non-profit corporation to support

Apache software projects, including Apache HTTP Server or Active

MQ.

API (Application Programming Interface)

An API is a set of functions and procedures that offers a service to be

used by other service as abstract layer.

BSD License

BSD license represent a family of permissive free software licenses,

original for the Berkeley Software Distribution (BSD). The licenses

have a few restrictions compared to other licenses as GPL.

CDDL (Common Development and Distribution License)

CDDL is a free software license produced by Sun Microsystems. The

Free Software Foundation considers it a free license incompatible with

GNU GPL. Some projects under this license are Solaris Project or

NetBeans.

 Implementation of a social Networks aggregation platform

128

Copyleft

Licensing group which aims to ensure that each person receiving a

copy of a work can in turn use, modify and redistribute the work and

derived versions of it.

CSS (Cascading Style Sheet)

CSS is a style sheet language used to describe the presentation of a

document written in mark-up language. It’s most common application

is to style web pages written in HTML and XHTML.

DI (Dependency Injection)

Dependency Injection is an architecture pattern, object oriented, in

which objects are injected in a class instead create the objects in the same

class. To implement this pattern is needed a DI Container and Object POJO.

The container injects to each object, the needed objects defined in a

configuration file. Usually, this container is an external framework; in this

case, the framework selected is Spring.

DOM (Document Object Model)

DOM is a platform for representing HTML or XML documents as well

as an API for querying, traversing and manipulating such elements.

EPL (Eclipse Public License)

EPL is an open source software license used by the Eclipse Foundation

for its software. EPL is designed to be a business friendly free software

license, and features weaker copyleft provisions than contemporary

licenses such as GPL.

 Implementation of a social Networks aggregation platform

129

Framework

A framework is a re-usable design for a software system. This may

include support program, code libraries, a scripting language or other

software to help develop and glue together the different components

of a software project.

GNU GPL (GNU General Public License)

GNU GPL is a widely used free software license for GNU project. The

GPL is the most popular example of the type of strong copyleft license

that requires derived works to be available under the same copyleft.

HTML (Hypertext Mark-up Language)

HTML is the predominant mark-up language in Web pages, designed

to structured texts and present these as hypertext format.

LDAP (Lightweight Directory Access Protocol)

LDAP is an application protocol for querying and modifying directory

servers running under TCP/IP.

MIT License

MIT license is a free software license originating at Massachusetts

Institute of Technology (MIT). This license allows reusing the software

as free software or as proprietary software allowing doesn’t release

the changes on the original software.

 Implementation of a social Networks aggregation platform

130

POJO (Plain Old Java Object)

A POJO is an ordinary Java Object and not a special object. As

designs using POJOs have become more commonly-used, systems

have arisen that give POJOs some of the functionality used in

frameworks and more choice about which areas of functionality are

actually needed. Hibernate and Spring are examples.

Template

A web template is a tool used to separate content from presentation

in web design. Web templates can be used to set up any type of

website.

Webpage

A webpage is resource of information that is suitable for the World

Wide Web and can be accessed through a web browser. This

information is usually in HTML or XHTML format and provides

navigation to other web pages via hypertext links.

XML (Extensible Mark-up Language)

XML is a metalanguage extensible labelled developed by the World

Wide Web Consortium (W3C) that can define the grammar of specific

languages. XML is proposed as a standard for exchanging structured

information between different platforms.

 Implementation of a social Networks aggregation platform

131

BIBLIOGRAPHY

Social networks:

[1] MySpace - http://www.myspace.com

[2] Orkut – http://www.orkut.com

[3] Yahoo 360º - http://360.yahoo.com

[4] Flickr – http://www.flickr.com

[5] Twitter – http://www.twitter.com

[6] Facebook – http://www.facebook.com

[7] Hi5 – http://hi5.com

Social networks history:

[8] http://www.maestrosdelweb.com/editorial/redessociales/

[9] http://en.wikipedia.org/wiki/Social_network

[10] http://es.wikipedia.org/wiki/Redes_sociales

[11] http://en.wikipedia.org/wiki/Small_world_experiment

[12] http://www.oxyweb.co.uk/blog/socialnetworkmapoftheworld.php

[13] http://www.techcrunch.com/2008/08/12/facebook-is-not-only-the-worlds-largest-

social-network-it-is-also-the-fastest-growing/

Scrum, agile methods:

[14] http://www.scrumforteamsystem.com/processguidance/v2/Scrum/Scrum.aspx

[15] Flexibilidad con Scrum – Juan Palacio

(http://www.navegapolis.net/content/view/694/61/).

[16] Scrum & XP from the Trenches – Henrik Kniberg

 Implementation of a social Networks aggregation platform

132

Project technologies

[17] http://es.wikipedia.org/wiki/Tdd

[18] http://en.wikipedia.org/wiki/PHP

[19] http://framework.zend.com/about/overview

[20] http://www.smarty.net/

[21] http://es.wikipedia.org/wiki/JavaScript

[22] http://en.wikipedia.org/wiki/AJAX

[23] http://es.wikipedia.org/wiki/JSON

[24] http://en.wikipedia.org/wiki/JQuery

[25] http://www.restlet.org/about/

[26] http://www.hibernate.org/

[27] http://activemq.apache.org/camel/

User authentication

[28] Flickr: http://www.flickr.com/services/api/auth.howto.web.html

[29] Facebook:

http://wiki.developers.facebook.com/index.php/Authorizing_Applications

[30] Facebook: http://wiki.developers.facebook.com/index.php/Extended_permission

[31] Youtube: http://code.google.com/intl/es-

ES/apis/youtube/developers_guide_protocol.html#AuthSub_Authentication

 Implementation of a social Networks aggregation platform

133

Special acknowledgments

I like to spend the last page to thank everyone who made this project

possible. I would like to thank specially:

♦ All team project (Edraí, David, Juan and Pepe) for help me in all I

need with the project.

♦ Ivan for introduce me in JavaScript and Zend world.

♦ Carme and Juan for tutoring the project

♦ Karla, Joan, Judit and Valentina for help me with English revisions

