
UNIVERSITAT POLITÈCNICA DE CATALUNYA
DEPARTAMENT DE LLENGUATES I SISTEMES INFORMÀTICS
MÀSTER EN COMPUTACIÓ

TESI DE MÀSTER

ELASTIC ESTEREL

ESTUDIANT: Marc Galceran Oms

DIRECTORS: Jordi Cortadella i Gérard Berry

DATA: 25 de Juny de 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41802181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

UNIVERSITAT POLITÈCNICA ABSTRACT OF
DE CATALUNYA MASTER'S THESIS
Departament de Llenguatges i Sistemes Informàtics
Master in Computing

Author: Marc Galceran Oms
Title of thesis:

Elastic Esterel

Date: June 25 2007
Supervisor: Professor Jordi Cortadella
Supervisor: Professor Gérard Berry

The aim of this master's thesis is to elasticize Esterel.

Esterel is an imperative hardware description language (HDL) used to
describe reactive systems, and oriented to specify control systems. It
belongs to the family of synchronous languages, and it allows to describe
causality, concurrency and interruptions.

Elastic circuits preserve a protocol that makes it possible for the circuit
to be latency-insensitive. Besides, elastic circuits are easy to implement
and can be synthesized automatically.

The goal of the thesis is to provide an automatic synthesis method of
elastic circuits from Esterel speci�cations. At the semantic level, it is
proven that the generated elastic circuits are functionally equivalent to
the conventional circuits generated using Esterel V7 compiler.

Keywords: Elastic circuits, synchronous programming,
Esterel, reactive systems, latency-insensitive design

Language: English

Acknowledgements

A number of people has helped me making this thesis possible. I would like
to thank Prof. Jordi Cortadella for picking my interest in elastic circuits
and for his support and guidance throughout this project; Prof. Gerard
Berry for allowing me to get into the Esterel compiler source code and for
all the interesting discussions about the project; all the people who helped
me during my visit at Esterel Technologies in Antibes; and my family and
friends that have supported me while I made the project.

Barcelona June 25th 2007

Marc Galceran Oms

iii

Abbreviations and Acronyms

HDL Hardware Description Language

RTL Register Transfer Level

SELF Synchronous ELastic Flow

EB Elastic Bu�er

iv

Contents

Acknowledgements iii

Abbreviations and Acronyms iv

1 Introduction 1

1.1 Reactive Systems . 1

1.2 Statement of the Problem . 3

1.3 Description of the Chapters 4

2 The Esterel Language 6

2.1 Pure Esterel . 7

2.1.1 Modules and Signals 7

2.1.2 The Pure Esterel Kernel Language 8

2.1.3 Derived Statements . 12

2.2 Valued Esterel . 15

2.2.1 Valued Signals . 15

2.2.2 Data Types . 16

2.3 Semantics . 17

2.3.1 Correct Programs and Constructiveness 17

2.3.2 The Constructive Behavioral Semantics of Esterel . . . 20

2.3.3 Translation into Circuits 22

3 Elastic Circuits 27

3.1 SELF Protocol . 27

v

CONTENTS vi

3.1.1 Implementation . 30

3.2 Elastic Machines . 35

3.2.1 Circuits as Streams . 37

3.2.2 Elastic Machines . 39

3.2.3 Networks of Machines 43

3.3 The SELF Tool . 46

3.3.1 SELF netlists . 47

3.3.2 SELF execution . 47

4 Elasticization Process 50

4.1 Datapath . 50

4.2 Control . 53

4.3 Correctness . 56

5 Validation 57

5.1 Latency Equivalence . 57

5.1.1 Latency Equivalence and Elasticization 58

5.1.2 Implementation . 59

5.1.3 Tests . 61

5.2 Granularity . 62

5.2.1 Approach . 62

5.2.2 Results . 64

5.2.3 Conclusion . 67

6 Conclusions 68

6.1 Results . 68

6.2 Future work . 68

Appendix 73

.1 Simple Pipeline . 74

.2 Parallel Emit . 75

.3 Tra�c Lights . 76

CONTENTS vii

.4 Greatest Common Divisor . 78

List of Tables

2.1 Esterel for semantics . 20

3.1 SELF trace . 29

5.1 Simulated designs . 62

5.2 Transfer rate using 5 input channels 65

5.3 Transfer rate using 2 input channels 65

5.4 Transfer rate using 1 input channel 65

viii

List of Figures

1.1 Elasticization �ow . 4

2.1 Sample Module . 8

2.2 Multiplexer in Esterel . 9

2.3 ABO module . 11

2.4 Heart rate controller . 12

2.5 1 tick delayed multiplexer . 13

2.6 Suspend and weak suspend . 14

2.7 Esterel programs that are not logically correct 18

2.8 Interface of a block representing an statement 24

2.9 Circuit translation of s?p, q 25

3.1 Di�erence between conventional and elastic traces 28

3.2 The SELF protocol . 29

3.3 Elastic pipeline . 30

3.4 Trace showing a �ip-�op made by a pair of latches 32

3.5 Flip-�op made with a pair of latches 32

3.6 FSM of an elastic bu�er and how it is connected to the datapath 33

3.7 Implementations of an elastic bu�er control 34

3.8 Implementation of elastic join and forks 34

3.9 Elastic control layer (made of elastic bu�ers, forks and joins)
and its connection to the datapath 36

3.10 System S de�ning an and gate 38

ix

LIST OF FIGURES x

3.11 Abstract model for an EB. 42

3.12 Feedback system and dependency graph 45

3.13 Network of machines and its dependency graph ∆(N). The
sequential pairs are (A,D), (A,E) and (F,G) 45

3.14 SELF netlist speci�cation . 48

4.1 Synthesizable Verilog code for a rising edge register made using
a pair of latches . 51

4.2 Esterel code for a simple pipeline 52

4.3 Circuit implementation of the sample pipeline 52

4.4 Di�erence between conventional and elastic interfaces 52

4.5 Sequential part of the Verilog code for the pipe module 53

4.6 Sequential part of the Verilog code for the elastic pipe module 54

4.7 Elastic control interface of the pipeline example 55

5.1 Latency equivalency checking 60

5.2 Multiplication circuit . 63

5.3 Transfer Rate �gures . 66

Chapter 1

Introduction

1.1 Reactive Systems

Reactive systems were introduced in the 80s by Harel and Pnueli in [20].
The computation of such systems is a reaction to the environment's stimuli.
Its outputs are produced within a certain time limit from the environment
requests; the computation is driven by the environment.

Reactive systems can be de�ned in contrast to interactive systems, in which
clients ask for some resources and the machine is the one driving the com-
putation, and in contrast to transformational systems, in which inputs are
available at the beginning of the computation and the system halts after pro-
ducing its outputs. In practice, real world complex systems are compositions
of the three kinds of systems.

Programming of reactive systems in an essential industrial activity, as most
industrial control systems are reactive. Communication protocols, signal
processing systems, audio or video protocols, hardware controllers and bus
interfaces are some examples of such systems.

Reactive systems are usually concurrent. Even though they might be de-
signed using a single component, most complex systems are designed as a
set of parallel components communicating with each other in order to per-
form the computation. Besides, the environment can also be considered an
additional concurrent agent.

Behavioral determinism is another property of reactive systems. The out-
puts must be fully determined by its inputs and the moment when these
inputs occur. This is a key di�erence between interactive and reactive sys-
tems. Interactive systems lead the computation with no tight time restric-

1

CHAPTER 1. INTRODUCTION 2

tions. Therefore, they can perform non-deterministic choices when deciding
the resource distribution or in which order requests are answered.

Safety is critical for many reactive programs. A little bug in an airplane
controller could have terrible consequences, including human lives. Therefore,
design methods must be accurate and formal methods are often used in order
to check the system correctness.

Another property of reactive systems is timeliness. The system is a slave of
the environment, which cannot stop to wait the program. Time constraints
are an important part of the system speci�cation, and they must be satis�ed
by designs and implementations. That makes performance an important
issue, because time reactions must happen exactly in the required time.

Synchronous languages [17] were introduced in the 80s for programming
reactive systems. They are both deterministic and concurrent, and that
makes them suitable for the implementation of such systems. Furthermore,
they can be e�ciently implemented, either by software or by hardware, and
it is possible to perform correctness proofs on them.

These languages provide ideal primitives that have instantaneous reactions.
The order in which events occur is the important issue and physical time
becomes just a regular event. Hence, the computation is a set of totally
ordered logical instants. At any given instant, any event may or may not oc-
cur. Nothing happens outside these logical events. In practice, it is assumed
(and checked) that the program reacts fast enough in order to be able to
distinguish which events are happening in the same instant and which ones
happen either previously or afterwards.

Reactive systems have to handle data and control. Balance between data
and control can be very di�erent depending on the system type. On the one
hand, some systems may be control intensive and deal with data in a trivial
way, and on the other hand other systems may be data intensive and have
little control. Speci�cation and programming techniques can vary depending
on the amount of control and data. There are synchronous languages, like
Lustre [12, 18] and Signal [23, 14, 25] , which are closer to the requirements of
data intensive programming, while others, like Esterel [6, 5, 7] , Statecharts
[19] or Argos [27, 28], are more suitable for control intensive programming.

CHAPTER 1. INTRODUCTION 3

1.2 Statement of the Problem

In nanoscale technology, it is di�cult to determine latencies during the early
phases of design. Transmitting some piece of information between a sender
and a receiver may take more than one cycle, and this cannot be known until
the placement is done, which is late in the design process. In order to solve
this problem, one has to take conservative approaches during the early design
phases and go back iterating when it is not possible to reach a placement in
which wire latencies are the desired ones.

Latency-insensitive design [11] is a possible solution. Its goal is to assem-
ble components with di�erent latencies in synchronous distributed systems.
Carloni et al. [11] propose a protocol for data exchanges which enables any
variation (in terms of number of cycles) of the computing time of the com-
ponents and of the transmission delays between them.

Synchronous elastic networks [22] are inspired by the idea of latency-insensitive
design. SELF [13], a protocol for elastic circuits, provides a simple and e�-
cient design for latency-insensitive circuits.

The aim of this thesis is to elasticize circuits speci�ed with a synchronous
programming language, that is, given a program written in a synchronous
programming language that can be compiled into a synthesizable RTL circuit,
we want to create a tool that automatically compiles it into a synthesizable
RTL elastic circuit. Thus, a high level description of a circuit (a reactive
system) can be directly translated into a latency insensitive design with no
extra e�ort by the circuit designer. Besides, it is desirable to keep the circuit
as similar as the conventional (non-elastic) one as possible.

Esterel [6, 5, 7] is the synchronous language that will be elasticized. It is an
imperative hardware description language (HDL) which is oriented to specify
control intensive reactive systems, even though it can handle data as well.
Being imperative, Esterel looks closer to classical programming languages
than other synchronous languages. That makes it easier to understand for
people who are not used to HDLs.

It has been chosen because it is a synchronous language highly related to
formal methods. The Esterel compiler generates formally veri�ed code for
RTL designs, and Esterel Studio provides tools to verify properties and spec-
i�cations. Furthermore, Esterel is actually used in industry; it is being com-
mercialized by Esterel Technologies, which has costumers such as Airbus and
Texas Instruments.

The target language for the tool will be Verilog [41, 8]. Verilog is a widely

CHAPTER 1. INTRODUCTION 4

Esterel Program

Esterel Intermediate Code

Performance Evaluator

SELF netlist

Elastic Control Layer

Elastic Datapath

strleic

eicc+eicperfeichdl

SELF tool

Esterel Compiler

Figure 1.1: Elasticization �ow

used HDL. It can be used to design, verify and implement analog, digital and
mixed-signal circuits at several levels of abstraction, particularly, at the RTL
level, which is the one we are interested in. Furthermore, the Esterel compiler
can compile Esterel sources into Verilog RTL, which makes elasticization
easier.

Figure 1.1 shows the elasticization procedure embedded into the Esterel v7
compiler procedure. The elasticization procedure has been embedded into the
Esterel v7 compiler developed by Esterel Technologies. The Esterel compiler
creates an intermediate code from the Esterel program. Afterwards, eicc and
eicperf, which are two programs of the Esterel compiler, create a performance
evaluator, that can generate a SELF netlist. Then, the SELF tool creates an
elastic control layer written in Verilog from this netlist. On the other hand,
eichdl, which is another program of the Esterel compiler, creates the elastic
datapath in Verilog. This datapath is very similar to the Verilog circuit the
compiler would generate if it was creating a non-elastic design. The control
layer and the datapath constitute the elastic design.

1.3 Description of the Chapters

Chapter 1 introduces reactive systems and synchronous languages, and then
we state the objective of this thesis: to elasticize automatically an Esterel

CHAPTER 1. INTRODUCTION 5

design. The tool must create an elastic design in Verilog from an Esterel
source code.

Chapter 2 presents the Esterel synchronous language. We present the kernel
statements of the Pure Esterel language with their intuitive semantics, and
then we present some of the main derived statements. Finally, there is an
introduction to the Esterel constructive semantics and the Esterel circuit
translation.

Chapter 3 presents elastic circuits. Elastic circuits are latency-insensitive,
and hence, they can transmit meaningless data some cycles if real data is not
prepared. SELF is a protocol that implements the theory of elastic machines.

Chapter 4 presents an elasticization procedure. It modi�es the Esterel com-
piler �ow in order to elasticize the output Verilog code. There are few changes
done in the datapath and they add no overhead in latency, area and power.
Then, an addicional elastic control layer implements the elastic part of the
circuit.

Chapter 5 presents the methods used to validate that the elasticized designs
are equivalent to the original ones. The conventional Verilog code and the
elastic Verilog code are simulated in order to make sure that the order of the
output data is the same given that the order of the input data is the same.

Finally, Chapter 6 explains the conclusions of this master's thesis and future
research topics.

Chapter 2

The Esterel Language

Esterel [6, 5, 7] is a synchronous concurrent programming language used to
design reactive systems. It provides high-level control and event manipula-
tion constructs, including most control statements of any conventional im-
perative language like C. Furthermore, it provides concurrency, preemption,
exceptions and a synchronous model of time.

Esterel is scoped for control-intensive reactive behaviours. An Esterel pro-
gram is a collection of Esterel modules that communicate instantaneously
with each other through their interfaces. Moreover, modules can have paral-
lel threads, so parallelism is highly integrated into Esterel.

A program execution is a set of instants (cycles). At every instant, all mod-
ules perform an input/output computation. Such computation is called a
reaction. At each cycle, the program resumes all running concurrent threads,
waits for the inputs, computes the reaction of each thread synchronously and
suspends all threads until next cycle. The computation is said to be input
driven, because the inputs are the ones that determine the reaction and the
status in which threads will stay.

Esterel can be translated e�ciently both into hardware and software. The
Esterel software translation is based on the mathematical semantics of Esterel
and it translates the concurrent reactive program into statically scheduled
control �ow graphs (see Compiling Esterel [32] for further information about
how Esterel is compiled to software). The Esterel hardware translation [4, 2]
compiles a program into a synchronous sequential circuit .

Threads communicate with each other using signals. Signals are instanta-
neously broadcasted through all their scope, which can be a thread, a module
or a set of modules. The perfect synchrony hypothesis [1] assumes that the

6

CHAPTER 2. THE ESTEREL LANGUAGE 7

program is executed on an in�nitely fast machine; thus, signal transmission
and reactions are assumed to be instantaneous.

Every cycle, a signal is absent unless someone emits it. The presence of a
signal only holds for one cycle, so every cycle it must be emitted again if
necessary. Threads can check whether some signal is present. Therefore,
every cycle it is decided whether every signal is emitted, and instantaneously
afterwards, the reaction is performed. Some constructions using signals can
lead to paradoxes, such that if X is not present, emit X. Such programs
are forbidden because it is not possible to decide whether signals should be
emitted. Section 2.3.1 explains which Esterel programs are valid and which
ones are not.

This chapter shows some basic Esterel statements and their intuitive seman-
tics to make further examples understandable. In order to have a wider
understanding of the Esterel language, see the Esterel Primer [5] and other
scienti�c papers in Esterel Technologies webpage. Pure Esterel, described in
section 2.1, allows signals and arrays of signals while Full Esterel, described
in section 2.2, adds data handling. Valued signals, when emitted, carry a
value which can be used to perform arithmetic operations. Finally, section
2.3 gives an overview on Esterel semantics and its circuit translation.

2.1 Pure Esterel

2.1.1 Modules and Signals

Esterel Modules are the basic programming unit, providing a modular way to
write things once. Every module is a behavioral unit that can be instantiated
by other modules. Therefore, an Esterel program is a hierarchy of Esterel
modules. The top one is the main module, which call submodules in an
arbitrary way (sequencially, concurrently, . . .). Similarly, each submodule
may call its own submodules, and so on and so forth.

Every module has a header that speci�es its name and its interface, that is,
a set of input signals and a set of output signals. A module instantiating
another one can see whether its child has emitted any output signals and can
emit its child input signals. Figure 2.1 shows a sample module declaration.

Right after the interface declaration, the body of the module speci�es how
reactions are computed. Every module has a cyclic behavior: at each in-
stant, it reads which inputs have been emitted, it triggers a combinational
calculation and determines the outputs and the status for next cycle.

CHAPTER 2. THE ESTEREL LANGUAGE 8

module M :
input A, B ;
output O,X ;

module body

end module

Figure 2.1: Sample Module

A signal in pure Esterel can be seen as a wire that carries a bit. Signals are
the primary objects of Esterel. The value of a signal is its status, which can
be absent, equivalent to 0 or present, equivalent to 1.

The status of input signals is given by the environment, while the status of
the other signals is absent by default, and it may be set by the program.
In each reaction, every signal has a unique status, either absent or present,
which only holds for one instant. Broadcasting and testing of signals is
instantaneous: when a thread emits (sets its status to present) a signal S,
all other threads in the same scope that check the presence of S during the
instant will see it is present.

2.1.2 The Pure Esterel Kernel Language

The Pure Esterel Kernel Language, described in [4, 3], is a subset of Pure
Esterel from which all other statements can be derived by macro-expansion.
Therefore, the Esterel kernel is enough to program any pure Esterel program.
The set of statements that form the kernel are the following ones.

Nothing

The nothing statement terminates instantaneously. Thus, when a thread
reaches this statement, it goes on instantaneously; if there is a statement
after this one, it is executed, otherwise, the thread terminates.

Pause

Pause stops the computation one cycle, i.e., it introduces a one-instant delay.
The execution of a thread is suspended when it reaches a pause statement,
and it is resumed from the next statement in the next instant.

CHAPTER 2. THE ESTEREL LANGUAGE 9

module mux :
input S, X, Y ;
output O ;

if S then

if X then emit O

else

if Y then emit O

end

end module

Figure 2.2: Multiplexer in Esterel

Emit

Executing "emit S" sets the status of signal S to present. The status of S
is instantaneously broadcasted to all the scope of S and remains valid only
during the current instant. Therefore, if any thread checks the status of
S during the current instant it will perceive it is present. Emit terminates
instantaneously and the next statement is immediately executed.

Present

Executing "present S then p else q end" immediately starts p if signal
S is emitted in the current instant, and it immediately starts q otherwise.
In actual Esterel programming, present is obsolete and if is used instead.
However, when expanding programs to use only kernel statements, present
is used. Figure 2.2 shows a module implementing a multiplexer using if and
emit statements.

Local Signal Declaration

The statement "signal S in p end" executes p, and declares a fresh signal
S. If there is another signal with the same name, the new signal is the one
that will be taken into account. Once p terminates, the status of S is lost.

CHAPTER 2. THE ESTEREL LANGUAGE 10

Suspend

It is useful to freeze a computation during one instant so that it does not
react at all, and next instant it can continue from the point it ended during
the last instant it reacted. Suspension freezes its body on instants in which
its test is true.

When "suspend p when t" starts, it immediately starts to compute p. On
next instants, if the boolean expression t is evaluated to true, p is not com-
puted. Thus, no signal is emitted and there is no state change. Otherwise,
when t evaluates to false, p is executed from the point it paused on last
execution instant. If it terminates, so does the suspend statement.

Sequencing

Operator ';' links statements, so that when the �rst statement �nishes, the
second one starts immediately. In "p; q", p is executed to completion, and
the instant it terminates, q is started. If the �rst statement exits enclosing
traps or preemptions, then the second one is never executed. If both p and
q have no delay, the whole sequence terminates the same instant it started.

Looping

Loops are one of the basic structures of many programming languages, and
they allow to write pieces of code once and reuse them. The statement
"loop p end" executes p and when p �nishes, it is restarted during the same
instant.

The body of a loop cannot terminate instantaneously, i.e., it must have at
least a delay of one instant. Otherwise, the computation of one instant could
be in�nite. In order to get out of a loop statement, it is necessary to put it
into a preemption statement.

Parallelism

Concurrency is one of the main characteristics of reactive systems and hence
of Esterel. Threads are inherent in synchronous languages; "p || q" runs in
parallel statements p and q. The || operator forks the computation when it
starts and terminates when both branches have terminated. If some signal
is emitted by one branch, it is immediately broadcasted to all branches.

CHAPTER 2. THE ESTEREL LANGUAGE 11

module ABO :
input A,B ;
output O ;

{ await A || await B };
emit O

end module

Figure 2.3: ABO module

Figure 2.3 shows a module that waits for its two inputs to be emitted, and
then emits signal O. A and B can be emitted simultaneously or can be emitted
in di�erent instants. The parallel statements waits until both threads have
ended, that is, both signals have been emitted. Section 2.1.3 describes the
await statement.

Traps

The statement, "trap T in p end" de�nes a trap called T. The statement
immediately starts the body p. If p exits the trap, the trap statement termi-
nates instantaneously, and concurrent processes inside the trap are weakly
preempted. If p terminates, so does the trap statement. Traps are similar
to exceptions in the sense that the internal code can immediately exit a trap
executing the exit statement.

Exiting a Trap

Executing "exit T" immediately terminates the enclosing trap T. However,
if another branch exits during the same instant another trap which encloses
T, then the outermost trap is exited.

Figure 2.4 shows code for a controller that helps a patient breathing and at
the same time checks the heart rate. CheckRate is some piece of code that
executes the statement "exit tachycardia" if the condition for a tachycardia
is true. The system still executes the breathing code during the exiting
instant, because it is weakly preempted.

CHAPTER 2. THE ESTEREL LANGUAGE 12

trap tachycardia

loop

Inhale; Exhale

end loop

||
CheckRate

end trap

emit emergency

Figure 2.4: Heart rate controller

2.1.3 Derived Statements

All other Pure Esterel statements are syntactic sugar, and they can be de-
scribed in terms of kernel statements. Some of theses statements are de-
scribed in this section.

Signals

It is possible to know whether a signal was emitted during the previous
instant using the pre function. However, pre cannot be nested: it is necessary
to de�ne auxiliary signals to know whether a signal was emitted some cycles
ago. It is also possible to de�ne registered signals using the reg keyword.
Registered signals transmit their status with a one tick delay. In order to set
a registered signal it is necessary to use the emit next statement. Figure 2.5
shows di�erent ways to de�ne a multiplexer with one tick delay.

It is also possible to de�ne multiple dimension arrays, which are indexed in
a C-like style. At any instant, some parts of the array may be emitted and
others may not. It is possible to slice arrays when doing assignments. The
assignment operator is used to emit parts of the array : "emit M[0][3] <=
S and not X".

Finally, "sustain S" can be used to emit a signal every signal. Sustain is
equivalent to "loop emit S; pause end".

CHAPTER 2. THE ESTEREL LANGUAGE 13

module mux :
input S, X, Y ;
output O ;

if pre(S) then

if pre(X) then

emit O

end

else

if pre(Y) then

emit O

end

end

end module

module mux :
input S, X, Y ;
output reg O ;

if S then

if X then

emit next O

end

else

if Y then

emit next O

end

end

end module

Figure 2.5: 1 tick delayed multiplexer

Weak Suspend

Suspension has a weak suspension version. In terms of hardware design,
weak suspension is a high-level view of clock-gating the internal registers of
a circuit, that is, it disables all internal registers and lets the combinational
logic work. If its condition is evaluated to true, its body is evaluated and if it
exits a trap, so does the whole suspend statement. However, state change or
termination are ignored, and it will start from the same state it did on next
instant. However, if its condition is evaluated to false, it behaves normally,
and the body can terminate or change its state. Figure 2.6 shows a suspend
program, a weak suspend program and a trace that points di�erences between
them.

Preemption

Preemption is typically the ability of operating systems to stop an scheduled
task to execute a higher priority task. In Esterel, preemption structures
control life and death of threads: they can suspend, kill or restart them.

Await simply stops the thread until its guard is true. The format of the
guard is a combination of signals and boolean operators, possibly with the
number of times some event must happen. The guard is not checked during
the starting instant unless the immediate keyword is present, so await delays

CHAPTER 2. THE ESTEREL LANGUAGE 14

suspend

pause;
emit X;
pause

when S;
pause;
emit X

1

2
3
4

5
6
7

weak suspend

pause;
emit Y;
pause

when S;
pause;
emit Y

Instant 0 1 2 3 4 5 6
S emitted Y Y Y N Y N Y

Weak suspension
Starting line 1 2 2 2 4 4 6
Ending line 2 4 4 4 5 6 7
X emitted N N N Y N N Y
Y emitted N Y Y Y N N Y

Figure 2.6: Suspend and weak suspend

the computation at least one instant. Figure 2.3 shows a module using the
await statement.

"await S" is equivalent to "trap T in loop if S then exit T else pause

end end end". "p; await S; q" executes p, waits for someone to emit S and
then executes q, "p; await 3 times S; q" waits until S has been emitted 3
times and "p; await 3 times R or S; q" waits until there have been three
instants in which either R or S were emitted.

"abort p when guard" kills its body when its guard expression is true. Such
guard expression is the combination of signals and boolean operators. It is
also possible to wait until an event occurs a certain number of times, like
"abort p when 3 tick".

The body of an abort statement is always executed during its �rst instant,
even if its guard is true. However, a guard like "immediate A" will kill
its body if signal A is present during the starting instant. There is a weak
version like in suspend where the body is weakly preempted: it is executed
a last time during the instant in which the guard is true.

CHAPTER 2. THE ESTEREL LANGUAGE 15

2.2 Valued Esterel

Even though the main focus of Esterel are control intensive programs, it is
possible to handle data of arbitrary types. Valued signals provide a way to
deal with data in Esterel designs.

2.2.1 Valued Signals

Valued signals carry a value of some type in addition to their status. In
any instant, a valued signal has exactly one value, which is determined by
the reaction through emit statements and the values of other signals. It is
possible to combine valued signals through operators which are assumed to
be instantaneous like boolean operators on pure signals.

The status of some signal S is denoted simply by its name S, and its value is
denoted by the '?' symbol before the signal name (?S). When some statement
emits a valued signal, it assigns a value to its signal and its status is set to
present. For example, "emit ?C <= ?B + 3", sets the status of C to present
and sets its value to the value of signal B plus three. Signals B and C could be,
for example, signals of unsigned type, declared "signal {B,C} : unsigned
in . . .".

Operations on pure signals can be applied on valued signals: it is possible
to consult the previous value of any valued signal using the pre function
and to de�ne registered valued signals using the reg keyword in the signal
declaration "signal B : reg unsigned in . . .".

Hardware translations generate a wire for the signal status and another one
for the signal value. However, the status might never be consulted because
of design reasons. At the module level, such wire will be swept, but the extra
wire will still be created at the module interface level. When this happens,
signals should be declared value-only, which generates no extra wire in its
synthesis, using the value keyword. Value-only signals are assumed to be
always present, and their status cannot be tested.

Valued signals generate a register by default, i.e., they are persistent. Even
if a signal is not being emitted during the current instant, one can consult
its value, and the Esterel program will return the last emitted value. If there
is not such last emitted value, there is a run-time error unless a initial value
has been de�ned in the source code using the init keyword. However, it
is possible to de�ne temporary signals (using temp keyword), which do not
generate any register when synthesizing. Thus, one cannot consult the value

CHAPTER 2. THE ESTEREL LANGUAGE 16

of a temporary signal if it is not being emitted during the current instant.

2.2.2 Data Types

Esterel primitive types are bool, unsigned, signed, �oat, double and string.
This section focuses on the most used ones, which are bool, unsigned and
signed.

The bool type has two possible values, written true and false. The status of
a signal is considered to be of bool type when used in test expressions.

The unsigned type has lots of uses: indexing arrays, addressing memories,
counting events, performing arithmetic operations and so on and so forth.
For any natural number N > 0, the type unsigned<N> is a primitive type
that contains natural numbers in the range [0, N [. It is also possible to de�ne
a type unsigned<[N]>, which contains natural numbers in the range [0, 2N [.
By default, type unsigned is unsigned<[32]>.

The actual representation of unsigned numbers is abstract, so they are not
considered binary-encoded bit-vectors like in most programming languages.
It is possible to enforce some encoding (like unsigned binary, one-hot, . . .)
using di�erent functions.

Unsigned type supports the arithmetic operators used in most programming
languages : +,−, ∗, mod, /, Notice that integer division can lead to pro-
grams that translate into circuits which are not synthesizable. It is also
possible to combine di�erent size unsigned numbers by cutting them.

For any natural number N > 0, the type signed<N> contains all integers
in the range [−M, M [; signed<[N]> is a shorthand for signed<2**N> and
signed stands for signed<[32]> by default. Signed type also supports all
typical arithmetic operators.

Array types are built from primitive types. There can be arrays of arrays up
to any size and dimension, and they are indexed and de�ned in C-like style.
Notice that it is not the same to declare a signal array of unsigned type than
to declare an array of unsigned signals. In the �rst case, declared "signal S :
unsigned[5][5]", S is a single signal containing the whole array, and therefore
it has a unique status that indicates whether the signal is emitted. In the
second case, declared "signal S [5][5] : unsigned", S is a matrix of signals,
and each one of the 25 signals has an independent status and value. It is also
possible to build a mixed signal : "signal S [5] : unsigned [5]" is an array
of �ve signals, where each one has its own status and its value is an array of
�ve unsigned integers.

CHAPTER 2. THE ESTEREL LANGUAGE 17

Bit-vectors, which are mono-dimensional arrays of booleans, are widely used
in hardware. Esterel supports encoding from unsigned and signed to bit-
vectors and the other way round. It is also possible to perform comparison,
concatenation and other useful operations over bit-vectors.

2.3 Semantics

There are several mathematical semantics for Pure Esterel that have been
developed through the time for di�erent reasons and purposes. For example,
Esterel denotational semantics [38] precisely formalizes the intuitive tempo-
ral concepts, and Esterel behavioral semantics de�nes executions reaction
by reaction using Plotkin's Structural Operational Semantics technique [30].
Esterel denotational semantics and Esterel behavioral semantics are shown
to be equivalent by Gonthier [16].

Currently, Esterel constructive semantics [4] is the main semantics. The
Esterel v7 compiler is developed directly from this semantics, following the
example of Robin Milner's ML language [21]. Other semantics that have
been used by Esterel compilers through the time are the ones in [3, 7].

There are several equivalent variants of the Esterel constructive semantics
in [4], each one with a di�erent level of abstraction. The Esterel construc-
tive semantics solves the causality problem common to many synchronous
formalisms (see Section 2.3.1). The Esterel constructive behavioral seman-
tics is the simplest and more abstract one, and it de�nes what a program
means. Then, the Esterel constructive operational semantics de�nes a set
of microstep rewriting rules. Therefore, it is less abstract and more e�ec-
tive. Finally, the Esterel circuit semantics translates an Esterel program into
a constructive boolean circuit. It is the semantics currently used for the
Esterel hardware translation.

2.3.1 Correct Programs and Constructiveness

The language intuitive description tells us what is supposed to happen when
an Esterel program is executed, but it does not formalize reactions, and
hence, the computation is not guaranteed to be unique, not even to actually
exist.

An Esterel program is logically correct if it is possible to determine whether
every signal is emitted, that is, if there is exactly one status for each signal.
The problem is that the status of signals determine which statements are

CHAPTER 2. THE ESTEREL LANGUAGE 18

signal S in

if S else

emit S end

end

(a) Non-reactive Esterel program

if S then emit S end

(b) Non-deterministic Esterel program

Figure 2.7: Esterel programs that are not logically correct

executed, and the statements that are executed determine the status of the
signals. This loop between control and signals can lead to programs that are
not correct.

The logical correctness law states that a signal S is present in an instant if and
only if an "emit S" statement is executed in this instant. Given a program,
a �xed input event (a status for every input signal) and a global status, (a
status for every signal), the �ow of control can be uniquely determined and
it is possible to know whether any emit is executed in an instant. Then, the
global status is logically coherent if and only if at least one emit statement is
executed for all signals that are assumed to be emitted and no emit statement
is executed for the rest of the signals.

For a given program and input event, there may be either none, one or more
than one logically coherent global status. If there is at least one logically
coherent global status for a given input event, the program is logically reactive
w.r.t this input event. In the same way, if there is at most one logically
coherent global status, the program is logically deterministic w.r.t. this input
event.

Then, a program is logically correct w.r.t. the input event if it is both
logically reactive and deterministic, and it is logically correct if it is logically
correct w.r.t. all possible input events. Figure 2.7(a) shows a program that
is not logically correct because it is not reactive. On the one hand, if S is
assumed to be present there is no "emit S" in the program �ow, and on the
other hand, if S is assumed to be absent there is an "emit S" in the program
�ow. Therefore, no global status is coherent. Figure 2.7(b) shows a program
that is not logically correct because it is not deterministic: any global status
of the program is coherent.

Currently, logical correctness is not used to reject and accept Esterel pro-
grams. There are logically correct programs that make no sense in the real
world and furthermore, logical correctness is computationally expensive and
it is hard to check for it.

CHAPTER 2. THE ESTEREL LANGUAGE 19

Constructiveness was used in Esterel v5 compiler to accept Esterel programs.
The idea behind constructiveness is that information must propagate in a
cause-e�ect way through the program. For example, the program "if S then
nothing end; emit S" is logically correct, but information does not �ow
because of cause and e�ect. The emit statement is executed after the if one
but it changes how the if statement is executed; thus, this program is not
constructive.

The concept of constructive programs comes from constructive logic [15],
where proofs must describe algorithms, and instead of dealing with values like
in classical (non-constructive) logic, one deals with fact-propagating proofs.
When proving the proposition ∃n ∈ N, P (n) one would come across with an
algorithm to �nd such n.

In combinational logic, a possibly cyclic circuit is logically constructive [36,
37] if and only if all wires stabilize to either 0 or 1 within a certain time limit,
for any wire and gate propagation delay in the up-bounded inertial delay
model [10]. That means that constructive circuits may have combinational
cycles, as long as values in the wires and gates remain steady in bounded time.
Sequential circuits are constructive if their combinational part is constructive
for any input and any reachable state.

An Esterel program is constructive if its translation to a sequential circuit
is constructive. As Esterel targets are typically hardware or software con-
trollers, it must be possible to check constructiveness on large programs, with
hundreds or even thousands of signals.

In order to check constructiveness, the Esterel v5 compiler translates pro-
grams into circuits, and it checks constructiveness in linear-time for each
input. If the circuit is acyclic, the program is trivially constructive; other-
wise, the problem can be solved using a bdd-based algorithm by Shiple [36],
derived from an algorithm by Malik [26].

Currently, the Esterel v7 compiler uses cyclicity in order to decide whether
to accept or reject a program. A program is rejected if there are any cyclic
instantaneous signal dependencies, i.e., signal S1 is emitted depending on the
status of S2 during the current instant and signal S2 is emitted depending
on the status of S1 during the current instant.

This solution is more restrictive than using constructiveness, as all acyclic
programs are constructive. However, assuming that programs are acyclic al-
lows to create statically scheduled into fast code and to create faster circuits.
The acyclicity tests done while compiling Esterel are described in [32]

CHAPTER 2. THE ESTEREL LANGUAGE 20

nothing 0
pause 1
emit S !s
present S then p else q end s?p, q
suspend p when S s ⊃ q
p; q p; q
loop p end p∗

p || q p | q
trap T in p end {p}, ↑ p
exit T k with k ≥ 2
signal S in p end p\s

Table 2.1: Esterel for semantics

2.3.2 The Constructive Behavioral Semantics of Esterel

The constructive behavioral semantics of Esterel [4] de�nes executions re-
action by reaction. It only accepts constructive programs and it is derived
from the logical behavioral semantics of Esterel. Reactions are de�ned using
Plotkin's Structural Operational Semantics technique [30].

When dealing with mathematical semantics, the keywords used in program-
ming languages are too heavy and make rules and proofs di�cult to read.
Table 2.1 shows the equivalence between the Esterel kernel in keywords and
Esterel in mathematical semantics. Nothing, pause and traps are substituted
by completion codes, thus, exiting the outermost trap is the statement �2�,
the second outermost enclosing trap, the statement �3�, and so on and so
forth.

For example, the multiplexer in Figure 2.2 would be translated into

s?(x?!o, 0), (y?!o, 0)

and the Esterel program ABO in Figure 2.3 would be translated into

{(a?2, 1)∗}|{(b?2, 1)∗}; !o

In the logical behavioral semantics, and hence in the constructive behavioral
semantics, a reaction of a program P is a behavioral transition from P to P ′,
where P ′ is the derivative of P , i.e., the program that will compute the next
reaction, and I and O are the input event and the output event

P
I

GGGGA

O
P ′

CHAPTER 2. THE ESTEREL LANGUAGE 21

Reactions are computed using an auxiliary statement transition relation de-
�ned by structural induction on the kernel statements. Every transition is
made of a statement p, its derivative p′, an event E that de�nes the status of
all signals in the scope of p, an event E ′ that de�nes the signals that p emits
in the current reaction (notice that by coherence E ′ ⊆ E) and a completion
code returned by p, which is 0 if the statement terminates, 1 if it pauses, or
some k ≥ 2 if it exits some trap :

p
E ′, k

GGGGGGGGA

E
p′

Then, given a program P of body p and an input event I, the program
transition of P is de�ned as follows:

P
I

GGGGGA

O
P ′ i� p

O, k
GGGGGGGGA

I ∪O
p′ for some k

Transition relations are rules that precisely formalize the intuition behind
Esterel kernel statements. Some of these rules are :

k
∅, 0

GGGGGGGA

E
0 (compl)

which is a trivial rule: after execution, a k statement, which covers nothing,
pause and exit, returns a termination code, and then the program terminates
emitting nothing;

!s
{s+}, 0

GGGGGGGGGGGA

E
0 (emit)

which adds the signal that is being emitted to the set of emitted signals and
terminates with code 0;

p
E ′, 0

GGGGGGGGA

E
p′ q

F ′, l
GGGGGGGGA

E
q′

p; q
E ′ ∪ F ′, l

GGGGGGGGGGGGGA

E
q′

(seq2)

which starts statement q immediately after statement p returns completion
code 0. This code means that p has terminated, and hence, as p and q are
sequenced, q must be started;

CHAPTER 2. THE ESTEREL LANGUAGE 22

p
E ′, k

GGGGGGGGA

E
p′ q

F ′, l
GGGGGGGGA

E
q′

p | q
E ′ ∪ F ′, max(k, l)

GGGGGGGGGGGGGGGGGGGGGGGA

E
p′|q′

(parallel)

which synchronizes parallel statements through termination codes. Ifmax(k, l) >
1, some branch is exiting an enclosing trap, and therefore the parallel state-
ment exits a trap. If both branches exit a trap, as the outermost trap is the
one with higher code (2 is the closest one), the outermost trap will be exited.
If max(k, l) = 1, then nobody exited a trap and some branch has paused,
hence, there is at least one branch that has not terminated. Thus, the whole
parallel statement pauses and will resume execution next instant. Finally, if
max(k, l) = 0, k = 0 and l = 0, both branches have terminated, and so does
the parallel statement.

The constructive behavioral semantics adds constructive restrictions to the
rules of the logic behavioral semantics. These restrictions are predicates that
state what the program must do and what it cannot do. Such predicates
are disjoint and de�ned in a constructive way, thus, facts about signals and
statements are propagated to know what must happen and what cannot
happen.

After going through a reaction, the must predicate states which signals must
be emitted, which traps must be exited, . . . and the cannot predicate states
which signals cannot be emitted, which traps cannot be exited, . . . Then, a
signal is assumed to be present if and only if it must be emitted, and it is
assumed to be absent if and only if it cannot be emitted.

A program is constructive if and only if these predicates can determine pres-
ence or absence of all signals.

2.3.3 Translation into Circuits

Esterel programs can be implemented on hardware or software. Software
implementation is either by direct translation into another programming
language (like C); by simulating a sequential circuit or by using statically
scheduled control �ow graphs, while hardware implementation translates the
program into a sequential circuit.

Implementations build a deterministic �nite-state machine that takes care
of the control (the Pure Esterel part) and schedules data-handling actions

CHAPTER 2. THE ESTEREL LANGUAGE 23

(operations over signal values).

The circuit semantics translates Esterel imperative programs into sequen-
tial circuits, re�ning the constructive behavioral semantics. The translation
generates a set of boolean variables, split between input variables, output
variables and local variables. At the same time, variables can be split be-
tween data ones, that handle values of valued signals, and control ones, that
are usually boolean variables, and express a property of the program state
such as signal status or halt points, i.e., points where the reaction is paused
and resumed on the next reaction.

A �rst translation can be found in [2], and [4] improves it by being able to deal
with all constructive programs. Its basic idea is to associate a subcircuit with
each kernel statement, and build the whole circuit by recursive construction.
Each reaction corresponds to a clock cycle; at each cycle, the circuit reads
the input and computes the outputs and the next state from the inputs and
the current state. This is a super�cial presentation of the circuit translation,
the reincarnation problem (due to loops) makes real translation harder. The
problem was �rst solved in the Esterel constructive semantics book, and a
simpler solution was found by Olivier Tardieu [40].

All statements but the pause one generate only combinational logic; the
pause statement generates a register that records its state. The generated
combinational logic is acyclic unless there are cyclic instantaneous signal
dependencies. When cycles arise, the Esterel v7 compiler rejects the program.
The Esterel v5 compiler used to check constructiveness and the circuit was
built using Shiple's algorithms [36, 26].

Figure 2.8 shows the interface of any block representing a kernel statement.
The circuit is build by recursive construction, and hence compound state-
ments like parallel or sequential will have internal blocks with the same in-
terface. The purpose of each pin is the following one:

• GO is an input pin that restarts the statement when it is set during a
cycle.

• RES is an input pin that resumes the execution of a statement: a
statement that has not terminated its execution during previous cycles
and receives a RES continues its reaction from the point it ended on
the last execution cycle.

• SUSP is an input pin that suspends the execution of the statement
during the current cycle. It cannot be set at the same time that the

CHAPTER 2. THE ESTEREL LANGUAGE 24

E E’

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

Figure 2.8: Interface of a block representing an statement

RES pin, and when it is set the statement behaves according to the
suspend semantics.

• KILL is an input pin that unsets all registers of the statement. Kill is
set when a trap must be exited and propagates to all internal subcircuits
to unset all pause registers.

• SEL is an output pin that the statement sets when it ends a cycle in a
state selected for resumption, i.e., when some internal pause register is
set and hence, the reaction has not ended. In compound statements,
the SEL pin is propagated from inner statements to outer ones.

• K0, K1, . . . are output pins that indicate completion codes. When the
statement is started or selected and resumed, the completion code the
statement returns is set, otherwise, all of them are unset. There are
n + 2 completion wires, where n is the number of enclosing traps. The
Ki wires are one-hot encoded.

• E is a bus indicating the input event: the signals the statement must
know somebody has emitted.

• E is an output bus indicating the output event: the input event plus
the signals the statement has emitted.

The execution of a statement starts the cycle GO is set. Then, RES is set
every cycle unless the execution is suspended. At each execution cycle (when
GO ∨ (RES ∧SEL) holds), the circuit propagates its input pins and signals

CHAPTER 2. THE ESTEREL LANGUAGE 25

E E’

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

E E’

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

E

s

GO

RES

KILL

SUSP

E’

SEL

K0

K1

K2

Figure 2.9: Circuit translation of s?p, q

and generates the output event and sets the corresponding completion wire.
If the statement does not terminate, some pause statement must have been
set, and hence the SEL wire is set. The con�guration of pause registers form
the current state of the reaction. If some upper level statement must preempt
it, it sets the KILL pin to reset all pause registers and return them to the
initial state. Weak suspension is obtained by setting both RES and SUSP

Every kernel statement connects the pins of the circuit in a di�erent way
so that it behaves like the semantics states. Compound blocks connect its
interface to the interfaces of inner statements. Figure 2.9 shows the circuit
translation of the present statement. See [4] for the circuit translation of
each statement and for its correctness proof, which basically shows that the
translation follows the circuit semantics, which is shown to be equivalent to
higher level semantics.

This direct translation creates rather fast circuits which must be optimized
before they can be implemented. Circuit optimization [29] is a wide �eld
which has been broadly studied. There are basically two ways to optimize a
circuit : combinational optimization and sequential optimization.

Sequential optimization is di�cult because of the state assignment problem:

CHAPTER 2. THE ESTEREL LANGUAGE 26

�nding out a way to encode all states of the circuit into registers. Each
possible solution changes the equations of the combinational logic which can
explode exponentially in size, and that makes the problem hard. In fact, it
is NP-complete and no heuristics manage to scale up well.

Esterel encodes the state of the circuit using pause registers, which works
�ne both in the size of the combinational logic and in the number of registers
needed to encode states. Still, it uses some algorithms [34, 35] that reduce
the number of registers with no major impact in the encoding, and hence,
with no explosion in the logic size.

Combinational optimization consists basically in �nding a network of gates
and wires with good performance, either in size, speed or some trade-o�
between them. There are lots of tools and algorithms for combinational logic
optimization (see [9, 29]). As the reaction time of Esterel circuits is close to
proportional w.r.t. the number of equations, the optimization goal is to �nd
a good network size while avoiding time explosion.

Chapter 3

Elastic Circuits

A conventional synchronous design can be seen as a set of combinational
blocks connected to registers. Each block reads its inputs from the environ-
ment or from some registers when the cycle begins and writes its results to
the environment or to some registers when the cycle ends. Thus, all blocks
in the whole design compute data every cycle.

Elastic circuits [13, 22] allow idle cycles, that is, the value of some wire
can be meaningless at some cycles and it will not transmit any information.
The i-th data item is not transmitted at the i-th cycle necessarily, it can be
transmitted afterwards. The transferred data items are called tokens and
idle cycles contain bubbles.

Figure 3.1 shows the di�erence between a conventional circuit and its elasti-
cization. In Figure 3.1(a) F computes a new value of O from X and Y every
cycle. However, in Figure 3.1(b) wires X, Y and O are elastic and therefore
they do not carry information (tokens) all the time. For example, wire O
carries tokens at cycles 0, 3, 5 and 7 and bubbles on cycles 1, 2, 4 and 6.

There must be some protocol to decide whether there is a token or a bubble
in a wire. In elastic circuits it is implemented using a pair of control wires
(valid and stop) for every wire.

3.1 SELF Protocol

This section presents the SELF protocol, using some �gures from Cortadella
et al. [13] and trying to make it easy to understand. An elastic system is a
structure made of elastic modules connected with elastic channels. An elastic

27

CHAPTER 3. ELASTIC CIRCUITS 28

F
-

-

-
X

Y

O

Cycle 0 1 2 3
X A B C D
Y D C A C
O AD BC CA DC

(a) Conventional synchronous trace

F e

-

-

-
Xe

Ye

Oe

Cycle 0 1 2 3 4 5 6 7
Xe A B C D
Ye D C A C
Oe AD BC CA DC

(b) Elastic synchronous trace

Figure 3.1: Di�erence between conventional and elastic traces

module is a set of combinational blocks with latches. It may have �xed or
variable delay, even though in this thesis we will always work with one-cycle
delay modules. An elastic channel is a set of three wires. The �rst one carries
the data and the other two are the control ones (valid and stop).

Every elastic module can be related to a set of combinational logic and reg-
isters in the original design, and channels connecting these modules can be
related to wires in the original design.

If we look at a wire in a conventional synchronous design, it will carry mean-
ingful data every cycle. On the other hand, if we look at an elastic channel
the picture is not the same. If there is a token at the channel, it means
that the sender (the source of the wire) is prepared to send some piece of
information. However, it is possible that the receiver (the target of the wire)
is not prepared to receive a token. If both are prepared, the valid bit will be
set and the stop bit unset, and the token will be propagated. This is called
a transfer cycle. Otherwise, if the sender is ready but the receiver is not,
a retry cycle will occur. An idle cycle happens when there is a bubble in
the wire. Figure 3.2 shows the possible scenarios with their valid and stop
values.

CHAPTER 3. ELASTIC CIRCUITS 29

Valid

*

*

S
e
n

d
e
r

R
e
c
e
iv

e
r

Stop

Data

Valid
S

e
n

d
e
r

R
e
c
e
iv

e
r

Data

Valid

StopS
e
n

d
e
r

R
e
c
e
iv

e
r

Transfer (T) Idle (I) Retry (R)

Figure 3.2: The SELF protocol

Cycle 0 1 2 3 4 5 6 7 8 9
data * A B B B C * * D D
valid 0 1 1 1 1 1 0 0 1 1
stop 0 0 1 1 0 0 0 1 1 0
SELF I T R R T T I I R T

Table 3.1: SELF trace

Therefore, the behavior in an elastic channel will be the following one. After
a certain number of bubbles (which might be zero), some token will arrive
at the channel. If the receiver is prepared, the token will be transmitted.
Otherwise, SELF requires the sender to be persistent. The token must be kept
by the sender until the receiver is prepared and the token can be transmitted
through the channel. The behavior can be described by the regular expression
(I∗R∗T)∗. The persistent behavior is given by the fact that it is impossible
to go from a retry cycle to an idle cycle with no transfer cycle in between.

Furthermore, the SELF protocol ensures liveness. Because of persistence,
whenever a token arrives at a channel it will stay there until it is possible to
transmit it. Unless the receiver is never ready, the token will be transmitted
and the communication process will go on. A more formal explanation of
liveness properties can be found in Section 3.2.

Table 3.1 shows a trace committing the SELF protocol. In the SELF row, I
means idle cycle, R means retry cycle and T means transfer cycle. Therefore,
tokens are transmitted in cycles 1, 4, 5, 9, so the data sequence is A, B, C,
D. Data in idle cycles are irrelevant, and that is why it is labelled with a
* in cycles 0, 6, 7. Notice that persistency holds: cycles 3, 4 and 8 transmit
the same data than the previous cycle because it was a retry cycle. Finally,
it is possible for the receiver to send a stop signal even if the sender is not
transmitting anything, like in cycle 7.

CHAPTER 3. ELASTIC CIRCUITS 30

R
1

R R R
2 3 4

Figure 3.3: Elastic pipeline

3.1.1 Implementation

When implementing SELF, there are two important goals. Firstly, it is impor-
tant that the elastic circuit adds no overhead in area, latency and power to
the datapath of the original circuit and secondly, it is important to make the
elasticization process possible with no major changes in the original circuit.

The �rst goal is important because overhead is an important limitation to
any feature. Elastic circuits have no latency overhead, and they only have
some area and power overhead because a control layer is added to the circuit.

The second goal is important because that makes the elasticization process
easy. If it is only necessary to add a control layer and connect it to the
original circuit, and this can be made automatic, designers can get an elastic
design of their circuits for free, with no extra e�ort.

Double Storage and Latches

Figure 3.3 shows an elastic pipeline. Every block is an elastic bu�er (an
elastic �fo with depth one) and they are connected through elastic channels.
At every cycle, every block tries to transmit its token to the next block. If at
some cycle R4 receives a stop, it will not be able to transmit its token to the
output channel. That means that it has to store its token in order to retry
next cycle.

R3 is unaware of that fact, so it will transmit its token to R4 that cycle and
it will forget about that token. In order to avoid this, R4 must send a stop
to R3 during the same cycle that it receives the stop bit from the environ-
ment. However, that means that this stop signal should also be propagated
to R2 and R1 during the same cycle as well. That solution creates a long
combinational path, which could increase the latency of the whole circuit if
the pipeline was long enough. SELF would not be scalable and it would have
latency overhead. Both e�ects must be avoided.

CHAPTER 3. ELASTIC CIRCUITS 31

A solution to this problem is to give double storage capacity to elastic bu�ers.
Thus, when R4 receives a stop, it can store both its token and the token that
R3 is sending. Next cycle, R3 receives a stop bit from R4, because R4 cannot
store any other tokens. When R4 manages to transmit its �rst token, it keeps
sending a stop bit to R3 because R4 still has another token to send. Finally,
while R4 is sending its second token, it will allow R3 to transmit again.

There are several possible solutions to implement double storage capacity.
SELF uses latches to do so. A latch is a sequential device that is transparent
during one clock edge and keeps its information during the other edge. During
the high edge of the clock, an active high latch is completely transparent; it
acts exactly like a wire. However, during the low edge of the clock, the latch
remembers the last value it propagated during the high edge. An active low
latch works the other way round, during the low edge it works in transparent
mode and during the high edge it works in store mode.

Figure 3.4 shows the behavior of an active low latch (its input is signal D and
its output is signal mid) and the behavior of an active high latch (its input is
signal mid and its output is signal Q). When the clock is 0, mid has exactly
the same value as D, otherwise, it remembers the last value it received during
the low edge (which is 1 during the �rst four cycles and 0 during the following
three ones). Regarding the other latch, Q has exactly the same value as mid
when the clock is on the high edge, otherwise it remembers the last value in
the input during the high edge. Notice that an active low latch is an active
high latch with a not gate in the clock signal and the other way around.

A �ip-�op can be implemented using a pair of latches of di�erent polarity.
A rising edge �ip-�op is an active low latch (which is the master latch)
connected to an active high latch (which is the slave latch, that reacts only
to changes in the master latch). Figure 3.5 shows a �ip-�op made by a pair
of latches and Figure 3.4 shows a trace of such �ip-�op. Signal D is the input
of the �ip-�op, mid is the wire connecting both latches and signal Q is the
output of the �ip-�op. During the low edge of the clock, D goes through the
master latch until the input of the slave latch, which is mid. At the same
time, the output of the slave latch is the value the �ip-�op is remembering
from the previous cycle. When the cycle �nishes and the clock rises, the
master latch goes into storage mode and its output is the last value of the
previous cycle. Meanwhile, the slave latch is transparent, so mid and Q are
the same value and the �ip-�op updates its output. When the clock goes
down, the slave latch stores the value of the master latch, so the output of
the �ip-�op remains unchanged, and the master latch becomes transparent.

Then, it is possible to transform the registers of a conventional sequential

CHAPTER 3. ELASTIC CIRCUITS 32

Clock

D

mid

Q

Reset

Figure 3.4: Trace showing a �ip-�op made by a pair of latches

D

E/C

midD

E/C

E/C

D Q

flip−flop

Latch

Master Slave

Latch

Q Q Latch truth table :
E/C D Q
0 X Qprev

1 0 0
1 1 1

Figure 3.5: Flip-�op made with a pair of latches

CHAPTER 3. ELASTIC CIRCUITS 33

.

.

.

.

.

.

.

.

.

.

.

..........

..........

............

..............

................

.....
.....
....

...
...
...
...

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

...
...
...
...

.....
.....
....

................
................

..............

............

..........

..........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

............

..............

................

.....
.....
....

...
...
...
...

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

...
...
...
...

.....
.....
....

................
................

..............

............

..........

..........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

............

..............

................

.....
.....
....

...
...
...
...

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

...
...
...
...

.....
.....
....

................
................

..............

............

..........

..........

.

.

.

.

.

.

.

.

.

.

.

Empty Half Full
.

...........................

..........................

.........................

........................

.........
.........

.......

.....
.....
.....
.....
.....
.

...
...
...
...
...
...
...
...
...

.

...........................

..........................

.........................

........................

.........
.........

.......

.....
.....
.....
.....
.....
.

...
...
...
...
...
...
...
...
...

.

...
...
...
...
...
...
...
...
...

.....
.....
.....
.....
.....
.

.........
.........

.......

........................

.........................

..........................

...........................

.

...
...
...
...
...
...
...
...
...

.....
.....
.....
.....
.....
.

.........
.........

.......

........................

.........................

..........................

...........................

.

..
..
..
..
..
..

....
....
..

........
........

..........

..........

...........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...........

..........

..........

........
........

....
....
..

..
..
..
..
..
..

.

..
..
..
..
..
..

....
....
..

........
........

..........

..........

...........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...........

..........

..........

........
........

....
....
..

..
..
..
..
..
..

.

..............

............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........

.........

...........

.............

.

....
....
...

..
..
..
..
.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

..
..
..
..
.

....
....
...

............
.

...........

.........

.........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............

..............

q q

i i

j ��

�
Vr VrSl

V l Sr

Vl/EmEs VlSr/Em

V lSr Sr/Es

V lSr

VlSr/EmEs

L H

L

D
l

V
l

S
l S

r

V
r

D
r

E
m

E
s

Control

Figure 3.6: FSM of an elastic bu�er and how it is connected to the datapath

design into pairs of latches, and by making them independent, using di�erent
enable wires, transform a register into a double storage device. Using a pair
of latches makes it possible to add double storage capacity to elastic bu�ers
with no additional latency because of the capacity of working in both edges
of the clock, as consecutive latches have opposite polarity.

Elastic Bu�er Implementation

Once latches provide double storage capacity, it is necessary to have a con-
trol layer that makes them independent using enable signals. This control
must have no long combinational paths: elastic modules can be chained in
pipelines.

An elastic bu�er is an elastic �fo with depth one, one single input channel
and one single output channel. It is possible to create all control for elastic
modules by adding extra logic at the inputs and outputs of an elastic bu�er
to reduce multiple channels to a single channel. Figure 3.6 shows an FSM
speci�cation for an elastic bu�er, and how to connect it to a pair of latches
of the datapath.

The FSM speci�cation shows three states. The �rst state, labelled empty,
corresponds to the scenario in which bubbles are received. While the valid
bit is false all cycles are idle and the elastic bu�er can be considered empty.
When a token arrives, the elastic bu�er will try to transmit this token to
the output next cycle. One of the latches contains this token, so the elastic
bu�er is half full. The output valid bit is set, and a transmit cycle will occur
if the stop bit in the output is not set. Then, the elastic bu�er will move
to empty if no other token arrives or it will continue in half if a new token
arrives. On the other hand, if the stop bit is set, the elastic bu�er will move
to full state, and both latches will be storing a token. The stop from the
input channel is set because the elastic bu�er cannot store more tokens. It
will be full until the stop bit in the output channel is unset and it can go
back to half state by transmitting its tokens.

CHAPTER 3. ELASTIC CIRCUITS 34

Vl

Sl

Em
Es

Vr

Sr

Vl

Sl

Em
Es

Vr

Sr

L

H L

H

(b)
LH

L H

L

(a)

Figure 3.7: Implementations of an elastic bu�er control

V
r

S
r

V
l1

V
l2

S
l1

S
l2

(a) Join

V
r1

V
r2

S
r1

S
r2

V
l

S
l

(b) Lazy fork

V
r1

r1S

V
r2

S

1

1

V
l

S
l

(c) Eager fork

r2

Figure 3.8: Implementation of elastic join and forks

Figure 3.7 shows two possible implementations of the elastic bu�er control.
Figure 3.7 (b) uses only latches, but Figure 3.7 (a) can be synthesized using
either latches or �ip-�ops, as the pair of latches are connected with no gates
in between.

Other Structures

Elastic bu�ers can be generalized to any number of input and output channels
by connecting additional control in the inputs and the outputs. This control
must be able to generate one single pair of valid and stop bits from several
pairs of them, and to generate several valid and stop bits from a single pair
of them.

Figure 3.8(a)shows the control for a join structure. A pair of channels is
translated to a single channel. The control transmits a token forward when
both channels have a token. That means that the control waits until both

CHAPTER 3. ELASTIC CIRCUITS 35

senders are ready to transmit. If there is a token in channel one and channel
two is idle, a stop bit must be sent through channel one.

Figures 3.8(b) and (c) show the control for two possible implementations of
a fork. The lazy fork waits for both receivers before sending a token. If a
receiver is ready and the other one is not, the ready receiver has to wait until
the other one is prepared. On the other hand, the eager fork allows to send a
token to the �rst receiver that is prepared while waiting for the other. Once
the token has been sent to both receivers, the system can go on to the next
token. Notice that a join connected to a lazy fork with no elastic bu�er in
between creates a combinational loop. Eager fork can be use instead to avoid
combinational loops.

It is possible to create elastic modules with an arbitrary number of input and
output channels by chaining several join or fork structures.

Figure 3.9 shows an elastic design. The elastic control layer is made of a col-
lection of elastic bu�ers, fork and joins that are parallel to the dependencies
in the datapath and it creates the enable wires for the pairs of latches. The
internal channels contain a pair of wires (a valid bit and a stop bit) which
are explicitly shown in the input and in the output.

In this thesis, logic in the datapath between pairs of latches has one cy-
cle delay, i.e., it is only combinational. However, it is possible to support
variable-latency units. A variable latency unit must implement a handshake
with signals go, done and ack. When it receives a go, it can start computing,
and when the output is the desired one it must set the done signal. Then,
it has to maintain its output until it receives an ack. This is the typical
handshake for variable-latency units.

In order to support this protocol, it is only necessary to connect the variable
latency unit between a pair of elastic bu�ers. The input valid bit must be
connected to go. Done must be connected to the output valid bit. When
the unit is done and the output channel stop bit is unset, it must receive
an ack, because the token is being transmitted. Finally, the stop bit in the
input channel must be set either when the unit is computing or when it is
receiving a stop signal from the output channel.

3.2 Elastic Machines

This section presents the results of Synchronous Elastic Networks by Krstic
et al.[22], which introduces the theoretical foundations of elastic circuits.

CHAPTER 3. ELASTIC CIRCUITS 36

Combinational

logic

Combinational

logic

In
Out

valid_In

stop_In

valid_Out

stop_Out

F J

F

J
EB

EB

EB

Enable Wires

Elastic control layer

Fork

Figure 3.9: Elastic control layer (made of elastic bu�ers, forks and joins) and
its connection to the datapath

CHAPTER 3. ELASTIC CIRCUITS 37

Machines are a mathematical abstraction of circuits without combinational
cycles, which are not taken into account because nowadays, logic synthesis
and timing analysis cannot properly deal with them.

3.2.1 Circuits as Streams

A circuit can be modelled as a set of behaviors, where a behavior assigns to
every wire of the circuit a stream, that is, an in�nite sequence of values.

A stream over a set A is an in�nite sequence of elements of A, that is, a
sequence a[0], a[1], a[2], . . . a[i] . . . ,∀i ≥ 0, a[i] ∈ A. For example, the stream
a[i] = i over the set of naturals de�nes a stream with the naturals in increas-
ing order : (0, 1, 2, . . .).

Then, A∞ denotes the set of all possible streams over A, and Aω the set of
all possible sequences over A. Notice that streams are in�nite sequences, and
Aω also contains �nite sequences, so A∞ ⊂ Aω.

It is useful to de�ne the pre�x relation between streams. a ∼k b means that
the �rst k elements of a and b are the same. Notice that a ∼k+1 b ⇒ a ∼k b.
The ∼k relation can be seen as equivalence relations, and as k is bigger the
related elements are more similar to each other. In order to prove that two
sequences are the same, it is enough to prove that for all k, a ∼k b.

A circuit can be seen as a set W of wires, in which every wire w ∈ W has a
type type(w) . For example, a one-bit wire w1 will have type(w1) = {0, 1}, an
eight-bit wire w2 representing natural numbers will have type(w2) = [0, 28 −
1], and so on so forth. A behavior over a set of wires W (a W -behavior) is
a function σ that associates to every wire w ∈ W a stream over type(w),
that is, ∀w ∈ W, σ.w ∈ type(w)∞. Therefore, a W -behavior shows what
value has every wire at any instant, and it is similar to the concept of trace
that is usually used in hardware design. Notice that ∼k can be extended to
behaviors. σ ∼k τ if and only if ∀w ∈ W, σ.w ∼k τ.w. That is, two behaviors
have a common pre�x of length k if the streams associated to every wire have
a common pre�x of length k.

The set of all possible W -behaviors for a give set of wires W is denoted
[[W]]. A W -system is a subset of [[W]], and it characterizes a circuit. It states
which W -behaviors are possible for W and which ones are not possible. For
example, a circuit made of a pair of independent wires (W = w1, w2) in
which type(w1) = type(w2) = {0, 1} would be modeled with the W -system
S = [[W]], because the behavior of w1 is not related to the behavior of w2 and
hence, any sequence of values in the wires is possible. On the other hand,

CHAPTER 3. ELASTIC CIRCUITS 38

x

y

z

W = {x, y, z}
type(x) = type(y) = type(z) = {0, 1}

S =
{
(a, b, c) ∈ {0, 1}∞×{0, 1}∞×{0, 1}∞ | ∀i, ci = ai∧bi

}
S |= G (z = x ∧ y)

Figure 3.10: System S de�ning an and gate

if w1 and w2 are two connected wires, then there must be the same value
in both wires all the time. Thus, the possible W -behaviors are the ones in
which σ.w1 = σ.w2, so the W -system S is de�ned by all pairs of streams
(a, a), a ∈ {0, 1}∞. Figure 3.10 shows a W -System modelling an and gate,
and two ways to de�ne it using di�erent notations.

Operations on Systems

Hiding and composition are two operations de�ned to be able to create W -
systems from other W -systems. If W ′ ⊆ W , it is possible to de�ne a mapping
from a behavior over the set of wires W to a behavior the set of wires W ′,
σ 7→ σ ↓ W ′ : [[W]] → [[W ′]]. σ ↓ W ′ is the same behavior than σ but de�ned
only over the set of wires W ′.

If S is a W -system and W ′ ⊆ W , hiding W ′ produces a (W −W ′)-system
de�ned by the behaviors that can be mapped from a behavior in S. Formally,
hideW ′(S) = {τ | ∃σ ∈ S, τ = σ ↓ (W −W ′)}. For example, hiding y in the
system of Figure 3.10 produces a system in which z is 0 whenever x is 0, and
it can take any value when x is 1.

If S1 is a W1-system and S2 is a W2-system, the composition of S1 and S2 is
a (W1 ∪W2)-system de�ned as : S2 tS2 = {σ | σ ↓ W1 ∈ S1 ∧ σ ↓ W2 ∈ S2}.
In other words, a behavior of a system composed by two systems is made of
a behavior of the �rst system and a behavior of the second system. However,
it is not true that all pairs of behaviors (σ1, σ2), σ1 ∈ S1 ∧ σ2 ∈ S2 de�ne a
behavior of the composed system. Given a wire w ∈ W1 ∩ W2 and a pair
of behaviors σ1 ∈ S1, σ2 ∈ S2, if σ1(w) 6= σ2(w), the pair σ1, σ2 does not
describe a behavior of the composed system. In other words, two behaviors
of the components must agree about the shared wires in order to constitute
a behavior of the composed system.

If the sets of wires are disjoint, all pairs of behaviors form a behavior of the
composed system. Given a behavior σ ∈ (W1)-system and a behavior τ ∈

CHAPTER 3. ELASTIC CIRCUITS 39

(W2)-system where W1 and W2 are disjoint, there exists a unique behavior
ϑ ∈ (W1 ∪ W2)-system such that ϑ ↓ W1 = σ and ϑ ↓ W2 = τ . As ϑ is a
composition of σ and τ , we can write that ϑ = σ ∗ τ .

Machines

Given a pair of disjoint sets called I (inputs) and O (outputs), an (I, O)-
machine is an (I, O)-system S that satis�es the following properties :

functional :

∀σ ∈ [[I]],∃!τ ∈ [[O]], σ ∗ τ ∈ S

causal:

∀ω, ω′,∀k ≥ 0, ω ↓ I ∼k w′ ↓ I ⇒ w ↓ O ∼k ω′ ↓ O

In other words, all input behaviors must be possible, and for every behavior
in the input there must be a unique behavior in the output. This property
is called functional because it implies there is a total function between the
inputs and the outputs. The causal property states that the outputs of the
machine must be determined by the inputs that have been received so far in
the inputs. That is, the �rst k values in the inputs determine the k-th value
in the outputs for any behavior of the machine.

Figure 3.10 shows a system that is a machine. However, the system resulting
from hiding one of the inputs is not a machine.

Notice that both functionality and causality imply determinism. For any
behavior in the inputs, there is just one possible behavior of the outputs.
Formally, ∀ω, ω′ ∈ S, ω ↓ I = ω′ ↓ I ⇒ ω ↓ O = ω′ ↓ O. Therefore, a ma-
chine can be de�ned as a function from input behaviors to output behaviors
F : [[I]] → [[O]], such that F (σ) = τ when σ ∗ τ ∈ S.

3.2.2 Elastic Machines

Every data wire in elastic machines has associated a valid wire and a stop
wire. If I and O are two disjoint sets of wires, let I' be the set I∪{validX | X ∈
I} ∪ {stopX | X ∈ I}, and let O' be the set O ∪ {validX | X ∈ O} ∪ {stopX |
X ∈ O}. A [I, O]-system is a (I ′, O′)-machine. The elastic input channels
are the triples 〈X, validX , stopX〉, for all X ∈ I. Thus, the elastic output
channels are the triples 〈X, validX , stopX〉, for all X ∈ O.

CHAPTER 3. ELASTIC CIRCUITS 40

The type of all valid and stop wires is Boolean. Given a channel X, a token is
transferred during the i-th instant if validX∧¬stopX holds during this instant.
Otherwise, there is a bubble on channel X. In order to make formulas clearer,
we de�ne transferX ⇔ validX ∧ ¬stopX .

The transfer behavior associated to a behavior σ of an [I, O]-system is the
set of sequences resulting from extracting bubbles from all streams of σ. In
other words, if σ is a behavior of an [I, O]-system, for every data wire X, the
i-th element of the stream σ.X is in σT .X if σ.transferX [i] holds.

An auxiliary counter variable tctX of integer type is de�ned to express system
properties related to transfers. For every behavior σ, σ.tctX = (t[0], t[1], . . .),
where t[i] is the number of tokens that have been transferred until that state,
that is, t[i] = #{j | j < i∧σ.transferX [j]}. Let min_tctS, for any S ⊆ I ∪O
be min{tctX | X ∈ S}, the number of transfers in the wire that has had less
transfers among those in S.

Persistence

All output wires of an elastic system have a persistent behavior. If an output
wire tries to transfer a token and it cannot do so because the stop wire is
true, then it must try to transfer the same token on next cycle. Given an
[I, O]-system S, for every Y ∈ O, the following proposition written in linear
temporal logic [31] expresses the persistence condition:

S |= G (validY ∧ stopY ⇒ (validY)+ ∧ Y + = Y) (3.1)

Y + means the next-state value of variable Y. Notice that persistence implies
that if there is a token waiting to be transferred and it is always the case
that eventually the stop signal of the output is false, a transfer will occur.
This is what the handshake lemma states :

S |= G F validY ∧ G F ¬stopY ⇒ G F transferY (3.2)

Liveness

Liveness conditions of elastic components express, on the one hand, that
tokens that have been received in the inputs must eventually be ready for
transmission in the outputs, and on the other hand, that input channels that
have received less tokens that other channels must eventually be ready to
receive a token. The following expressions state these conditions :

S |= G (min_tctO = tctY ∧min_tctI > tctY ⇒ F validY) (3.3)

CHAPTER 3. ELASTIC CIRCUITS 41

S |= G (min_tctI∪O = tctX ⇒ F ¬stopX) (3.4)

In practice, elastic components satisfy simpler and stronger liveness proper-
ties. For example, Figure 3.11 shows the abstract model for an elastic bu�er
by Cortadella et al. [13] . Its liveness properties are similar to the ones
stated in equations 3.3 and 3.4, but are simpler because there is just one
input channel and one output channel in the output.

In this abstract model, an EB is a FIFO implemented as an array of data,
with a read pointer and a write pointer. Whenever a valid data item arrives
from the input channel (Vin holds), if the bu�er is prepared to receive it (Sin

does not hold), the bu�er writes the new data item in the array and updates
the write pointer. In the same way, whenever Vout holds and the environment
is ready to receive new tokens (Sout does not hold), the bu�er updates the
read pointer to the next item to transmit. If there is a token to transmit and
the environment is not ready to receive it, the EB must follow the persistence
rule and retry until the token has been transmitted.

The '*' symbol stands for do not care value, and therefore its value is de-
cided by implementations. When the FIFO is not empty and it is not full,
implementations can decide whether Vout must be set, as long as it follows
the forward latency rule: if the FIFO is not full, a token must be eventually
transmitted. In the same way, the implementation can decide whether to
set Sin and force the input channel transmitter to wait. However, by the
backward latency property, if the output channel is ready to receive a token,
the input channel must eventually be ready to receive a token.

De�nition of Elastic Machine

Consider a single channel [I, O]-system with wire Z satisfying conditions 3.1,
3.3, 3.4. An elastic consumer C for this channel is a system with a single
input wire Z and no output wires satisfying:

C |= G F ¬stopZ (3.5)

In a similar way, an elastic producer P for a channel Z is a system with a
single output wire Z and no input wires satisfying:

P |= G (validZ ∧ stopZ ⇒ (validZ)+) (3.6)

P |= G F validZ (3.7)

Informally, a consumer of a channel is a system that will be ready to consume
any token in the channel. There are no restrictions about when tokens must

CHAPTER 3. ELASTIC CIRCUITS 42

'

&

$

%

...B

rd

i+1i

wr

i+k

State variables:

B : array [0 . . .∞] of data; rd, wr : N; retry : B;
Initial state: rd = wr = 0; retry = false;
Invariant: wr ≥ rd

Combinational behavior:

Vout =

true if retry
false if rd = wr
∗ otherwise

Dout =

{
B[rd] if Vout

∗ otherwise

Sin = ∗

Sequential behavior:

rd+ =

{
rd+ 1 if Vout ∧ ¬Sout

rd otherwise
retry+ = Vout ∧ Sout

wr+ =

{
wr+ 1 if Vin ∧ ¬Sin

wr otherwise
B+[wr] = Din

Liveness properties (�nite unbounded latencies):

Forward latency: G(rd 6= wr ⇒ F Vout)
Backward latency: G(¬Sout ⇒ F ¬Sin)

Figure 3.11: Abstract model for an EB.

CHAPTER 3. ELASTIC CIRCUITS 43

be consumed, but there cannot be a transmission after which the consumer
will never be ready to consume another token. A producer of a channel is a
system that will be persistent about sending tokens, and furthermore, it will
serve an in�nite stream of tokens to the channel.

Let CZ be the {Z, validZ , stopZ}-system including the most possible num-
ber of behaviors and satisfying condition 3.5, and similarly, let PZ be the
{Z, validZ , stopZ}-system including the most possible number of behaviors
and satisfying conditions 3.6, 3.7. An [I, O]-elastic environment is the sys-
tem :

EnvI,O =
⊔

X∈I

PX t
⊔

Y ∈O

CY

EnvI,O is not a machine, because it is not functional. However, it is a system
that will produce an in�nite stream of tokens for all input channels and will
consume all tokens of output channels of an [I, O]-system. That is what
the Liveness lemma states: if S is an [I, O]-system satisfying persistence
and liveness conditions, then for every behavior ω of S t EnvI,O, all the
component sequences of the transfer behavior ωT are in�nite.

Therefore, it is possible to de�ne an (I, O)-system with the transfer behavior
of the elastic system ST = {ωT | ω ∈ S t EnvI,O}.
Finally, an [I, O]-elastic machine is an [I, O]-system that satis�es properties
3.1, 3.3, 3.4 and its associated system ST is deterministic. That is, after
removing the bubbles from input and output streams, there is a one to one
correspondence between input transfer behaviors and output transfer behav-
iors.

The main result about elastic machines is that if S is an [I, O]-elastic ma-
chine, then ST is an (I, O)-machine. Then, we can say that S is an elasti-
cization of ST and that ST is the transfer machine of S.

3.2.3 Networks of Machines

Given a set of machines with disjoint wires, it is interesting to see whether
a composition of such machines plus connecting some wires produces a ma-
chine. This section presents results that show when a network of machines
is a machine, both in the case of non-elastic and elastic machines.

Let Conn(u, v) be the {u, v}-system that connects u and v, that is, ∀σ ∈
Conn(u, v), σ.u = σ.v. Then, if S1,S2, . . .Sm are machines (or elastic ma-
chines) with disjoint wire sets, a network of machines is de�ned as N =
〈S1, . . . ,Sm | u1 = v1, . . . , un = vn〉, where u1, . . . , un are n input wires, and

CHAPTER 3. ELASTIC CIRCUITS 44

v1, . . . , vn are n output wires, and 〈S1, . . . ,Sm | u1 = v1, . . . , un = vn〉 stands
for hide{u1,...,un,v1,...,vn}(S), where S = S1 t . . . t Sm t Conn(u1, v1) t . . . t
Conn(un, vn).

Combinational Loop Theorem

A pair of wires (u, v) is sequential for S, where u is an input wire, v an output
wire and F : [[I]] → [[O]] the function characterizing S, if for every σ, σ′ ∈ [[I]]
and every k ≥ 0,

σ.u ∼k−1 σ′.u ∧ ∀x ∈ I − {u}, (σ.x ∼k σ′.x ⇒ F (σ).v ∼k F (σ′).v

This means that the value of v at a given instant does not depend on the
value u at this instant, but only on the value of the other inputs and the
value of u on previous instants.

A feedback system for a system S is the system 〈S | u = v〉, where S is
a machine, u is an input and v an output of S. Figure 3.12(a) shows a
representation of a feedback system. The feedback lemma states that if the
pair (u, v) is sequential, then the system 〈S | u = v〉 is a machine.
Given an (I, O)-machine S, its dependency graph ∆(S) is the directed graph
de�ned by ∆(S) = G(V, E), V = I ∪ O, E = {(u, v) | u ∈ I ∧ v ∈ O ∧
(u, v) is not sequential}. That is, it is a graph whose vertices are wires, and
the input wires are connected to those output wires with which they are not
sequential. Figure 3.12(b) shows a module and its dependency graph.

For a network N = 〈S1, . . . ,Sm | u1 = v1, . . . , un = vn〉, the graph ∆(N)
is the direct sum of graphs ∆(Si), in which vertices ui and vi are identi�ed,
∀i ∈ [1, n]. Figure 3.13 shows a network of systems and its dependency
graph.

The Combinational Loop Theorem states that the network system N is a
machine if the graph ∆(N) is acyclic. The intuition after this theorem is
that a machine must have no combinational loops. The network of Figure
3.13 has not cycles in ∆(N), therefore, it is a machine.

Networks of Elastic Machines and Bu�er Insertion

In the same way than in conventional machines, an elastic feedback is an
elastic machine with an output channel connected to an input channel 〈S |
P = Q ∧ validP = validQ ∧ stopP = stopQ〉. Similarly, an input channel P

CHAPTER 3. ELASTIC CIRCUITS 45

S

B

A

X

Y

Z

(a) Feedback system

S

B

A

X

Y

Z

A

B

X

Y

Z

(b) Dependency graph of a system, in which the sequential pairs
are (A,Z) and (B,X)

Figure 3.12: Feedback system and dependency graph

1

3

2

D

EA

B

C
G

H

J

KI

F B

A − I

C − G

D− F

E − J

H

K

Figure 3.13: Network of machines and its dependency graph ∆(N). The
sequential pairs are (A,D), (A,E) and (F,G)

CHAPTER 3. ELASTIC CIRCUITS 46

and an output channel Q are sequential if channel Q does not need to wait
for the �rst token of P to transmit its �rst token.

However, the fact that pairs (P, Q) and (P ′, Q) are both sequential does not
imply that they are simultaneously sequential. Therefore, for every output
channel it is necessary to know its sequentiality information, that is, for any
Y ∈ O, it is needed a set δ(Y) ⊆ I such that all elements of δ(Y) are
simultaneously sequential with Y . Note that for every P ∈ δ(Y), (P, Y) is
a sequential pair, but it is not true that these are the only inputs that are
sequential with Y . In order to be simultaneously sequential, δ function must
commit the following property for any Y ∈ O:

S |= G (min_tctI∪O = tctY ∧min_tctI−δ(Y) > tctY ⇒ F validY) (3.8)

Then, given an [I, O]-machine S with a sequentiality interface δ, ∆e(S, δ)
is the directed graph G = (V, E), V = I ∪ O,E = {(X, Y) | X ∈ I ∧ Y ∈
O ∧ X 6∈ δ(Y)}. Then, given an elastic network N = 〈〈S1, . . .Sm | X1 =
Y1, . . . , Xn = Yn〉〉, where there is a sequentiality interface δi for every Si, its
elastic dependency graph ∆e(N) is the sum of graphs ∆(Si, δi) in which each
vertex Xi is identi�ed with vertex Yi, ∀i ∈ [1, n].

Theorem 4 of Krstic et al. states that if ∆(N) and ∆e(N) are both acyclic,
then the network system N is an elastic machine and the corresponding
non-elastic system N T is a machine.

Notice that it is not enough to see that ∆e(N) is acyclic, because there might
be combinational loops that are not seen in this graph. Cycles in ∆e(N) and
cycles in ∆(N) might have no correspondence at all.

An empty elastic bu�er is an elastic machine S such that ST = Conn(X, Y)
for some X, Y . By the Bu�er Insertion Theorem, which is consequence of the
previous theorem, inserting an empty elastic bu�er in a channel of a network
N does not change the functionality of the network and the resulting network
will be an elastic machine as well.

3.3 The SELF Tool

The SELF tool generates the elastic control logic from an elastic netlist.
Roughly, an elastic netlist is a connectivity graph of a circuit with some
attributes on its modules and channels. It has been developed by UPC and
Intel SCL to simulate, synthesize and verify SELF circuits.

CHAPTER 3. ELASTIC CIRCUITS 47

3.3.1 SELF netlists

A SELF netlist is a graph whose vertices are elastic modules and whose edges
are elastic channels. Every module and channel has a set of attributes.

The SELF netlist speci�cation is a list of module and channel attributes. A
channel attribute speci�cation declares which are the source pin, the target
pin and lists the channel attributes. A module attribute speci�cation contains
the module name and a list of the module attributes.

SELF modules represent computation units or environment modules. Its in-
puts and outputs are elastic channels. The generated control consists of a
set of join structures in the input channels and a set of fork structures in
the output channels. In between, there can be a chain of latches (elastic half
bu�ers) before and after the computation unit, which can also have a set of
internal latches.

The computation unit can be de�ned to have �xed or variable delay. Variable
delays are speci�ed with a list of delay probabilities. The default delay value
is one. Before and after the computation unit there is a chain of latches.
Adjacent latches have alternating phases. After an active high latch, there
will be an active low latch, and so on so forth.

Figure 3.14 shows a self netlist with its graphical representation. There are
four environment modules, A, B, X1 and X2, which have variable delays.
Variable delays on environment modules point that they will not be able to
send and receive during all cycles. All modules but Comb_Out have two
output latches (notated with stars).

In an elastic design, a module waits for all its inputs to be valid and then
it computes its outputs and sets them to valid. However, it is possible that
depending on some input values, it is not necessary to wait all inputs. The
simplest example is a multiplexer, when only one of the data wires is needed
if the value of the control wire is known. Even though it is not used in this
thesis, SELF also provides machinery to control such early evaluations and
that can also be speci�ed in SELF netlists.

3.3.2 SELF execution

The main use of the SELF tool is to parse a SELF netlist and generate its
elastic control in several HDL languages. This elastic control takes as inputs
the valid bit of the inputs and the stop bit of the outputs and generates the
stop bit of the inputs, the valid bit of the outputs and the enable signals for

CHAPTER 3. ELASTIC CIRCUITS 48

// environment

A {olat=0 env}

B {olat=0 env}

X1 {olat=0 env}

X2 {olat=0 env}

// module attributes

Comb_Block {olat=0 phase=H}

// channels

A.out D.in

B.out E.in1

D.out1 Comb_Block.in1

D.out2 E.in2

E.out1 Comb_Block.in2

Comb_Block.out X1.in

E.out2 X2.in

// inputs and outputs with

// variable delay

A {delay="1:0.5 2:0.5"}

B {delay="1:0.5 2:0.5"}

X1 {delay="1:0.5 2:0.5"}

X2 {delay="1:0.5 2:0.5"}

Figure 3.14: SELF netlist speci�cation

CHAPTER 3. ELASTIC CIRCUITS 49

the latches in the datapath.

The SELF tool can also simulate that control using random stimuli or any
other stimuli speci�ed by the user, and it can display a picture of the graph in
the screen. However, big graphs are usually di�cult to understand through
a picture.

SELF is programmed over the Python interpreter, and it uses SIS [33], a
system that optimizes sequential digital circuits.

Chapter 4

Elasticization Process

The elasticization process is embedded into the Esterel compiler HDL gen-
erator. The Esterel compiler generates an intermediate structure from the
Esterel code. Then, HDL code is generated from that intermediate code. The
SELF option added so that compiler modi�es the Verilog generation to make
it elastic. Changes in the datapath are minimal, and the main di�erence is
an elastic control layer over the original circuit. Figure 1.1 shows the whole
process.

4.1 Datapath

There are few modi�cations to be made in the datapath. All combinational
operations from the Esterel equations remain unchanged. It is only necessary
to make one main modi�cation: substituting registers for pairs of latches.

The sequential part from the original HDL generator is not created. Instead,
a Verilog module called Double_latch is instantiated for every register that
would be created. Figure 4.1 shows the Verilog code for a rising edge Dou-
ble_latch module. It takes as input the data part of an elastic channel, a
pair of enable wires that are connected to latches, an init value and the clock
and reset signals. It generates the data part of the output elastic channel.

Figure 4.2 shows an Esterel program that will be used as an example in this
chapter. Figure 4.3 shows a circuit implementing this pipeline.

Besides from replacing the sequential part for a set of latch pairs instantia-
tions, it is necessary to add valid and stop bits to the module interface. For
example, given the Esterel code in Figure 4.2, the interface changes can be

50

CHAPTER 4. ELASTICIZATION PROCESS 51

module Double_latch_H (Q, D, En1, En2, Init, Clk, Reset);

parameter w=1;

output [w-1:0] Q;

input [w-1:0] D;

input En1;

input En2;

input [w-1:0] Init;

input Clk;

input Reset;

wire [w-1:0] mid;

Latch_H #(w) lh(Q, mid, En2, Init, Clk, Reset);

Latch_L #(w) ll(mid, D, En1, Init, Clk, Reset);

endmodule //Double_latch_H

module Latch_H (Q, D, En,

Init, Clk, Reset);

parameter w=1;

output reg [w-1:0] Q;

input [w-1:0] D;

input En;

input [w-1:0] Init;

input Clk;

input Reset;

always @(D, En, Clk, Reset)

if (Reset) Q <= Init;

else if (Clk & En) Q <= D;

endmodule // Latch_H

module Latch_L (Q, D, En,

Init, Clk, Reset);

parameter w=1;

output reg [w-1:0] Q;

input [w-1:0] D;

input En;

input [w-1:0] Init;

input Clk;

input Reset;

always @(D, En, Clk, Reset)

if (Reset) Q <= Init;

else if (~Clk & En) Q <= D;

endmodule // Latch_L

Figure 4.1: Synthesizable Verilog code for a rising edge register made using
a pair of latches

seen in Figure 4.4.

The HDL generator declares a pair of enable wires for most registers. Some
registers share the same wires. For example, multidimensional variables are
sliced until the bit-vector level, and all slices use the same pair of enable
wires.

Esterel can deal with synchronous or asynchronous reset signals. On the one
hand, registers are reset on rising edges when using a synchronous reset. On
the other hand, registers are reset whenever the reset signal rises when using
an asynchronous reset signal. As the Double_latch module use a synchronous
reset, the asynchronous reset option is disabled when using elastic Esterel.

The Esterel sequential code for the pipeline in Figure 4.2 is the one in
Figure 4.5. Its registers are V7_Out_2_data_val, V7_Reg1_3_data_val,

V7_Reg2_4_data_val, V7_F1_5_data_val, Boot_0_0. Figure 4.6 shows
the equivalent Double_latch instantiations of these registers. Notice how
the input and output wires and the initial values are equivalent.

CHAPTER 4. ELASTICIZATION PROCESS 52

module my_strl_pipe :

constant n : unsigned <> = 3;

input In1 : temp unsigned <[n]>;

input In2 : temp unsigned <[n]>;

output Out : value reg unsigned <[n+3]> init 0;

signal Reg1 : reg unsigned <[n]> init 0,

Reg2 : reg unsigned <[n]> init 0,

F1 : reg unsigned <[n+1]> init 0,

in

sustain {

next ?Reg1 <= ?In1 if In1,

next ?Reg1 <= 0 if not In1,

next ?Reg2 <= ?In2 if In2,

next ?Reg2 <= 0 if not In2,

next ?F1 <= ?Reg1 + ?Reg2,

next ?Out <= ?F1 * 4,

}

end signal;

end module

Figure 4.2: Esterel code for a simple pipeline

OutF1

Reg2

Reg1

+ x40

In1_status

In1_data

In2_data

In2_status

Out

Figure 4.3: Circuit implementation of the sample pipeline

module my_strl_pipe (

clk,

rst,

In1,

In1_data,

In2,

In2_data,

Out_data);

module my_elastic_pipe (

clk,

rst,

In1, valid_In1, stop_In1,

In1_data, valid_In1_data, stop_In1_data,

In2, valid_In2, stop_In2,

In2_data, valid_In2_data, stop_In2_data,

Out_data, valid_Out_data, stop_Out_data);

Figure 4.4: Di�erence between conventional and elastic interfaces

CHAPTER 4. ELASTICIZATION PROCESS 53

// = Sequential process =

always @(posedge clk)

begin

if (rst == 1'b1) begin

V7_Out_2_data_val <= V7_U2U(0, 6);

V7_Reg1_3_data_val <= V7_U2U(0, 3);

V7_Reg2_4_data_val <= V7_U2U(0, 3);

V7_F1_5_data_val <= V7_U2U(0, 4);

Boot_0_0 <= 1'b1;

end

else begin

V7_Out_2_data_val <= V7_Out_2_data_next;

V7_Reg1_3_data_val <= V7_Reg1_3_data_next;

V7_Reg2_4_data_val <= V7_Reg2_4_data_next;

V7_F1_5_data_val <= V7_F1_5_data_next;

Boot_0_0 <= V7_Boot_0_0_last;

end

end

Figure 4.5: Sequential part of the Verilog code for the pipe module

4.2 Control

The main change to the circuit when elasticizing is adding a control layer over
it. This layer takes valid and stop bits from the environment and computes
the enable wires for the latches in the datapath.

The SELF tool (see Section 3.3) is used to generate the elastic control from
a SELF netlist. Therefore, the goal is to generate a SELF netlist, which is a
connectivity graph of the circuit, from the Esterel code.

Eicperf is an experimental part of the Esterel compiler that generates C++
code out of Esterel programs to make performance evaluation. Eicperf

generates a signal dependency graph used to get some features of Esterel
variables such as combinational depth.

For every signal and variable in Esterel, the data structure knows which
inputs and registers it depends on. Furthermore, if the signal is part of an
array, it knows its master, which is the signal that refers to the array. For
example, signal A[4:0] will create several signals: A, whose master is itself,
A[0] whose master is A, A[1], . . .

Then, for every master that will become a register, it is necessary to get
which masters it is connected from, adding them to a list. Once it is done,
every master has its reverse adjacency list (that is, who is connected to him).
Eicperf can print a SELF netlist with that information. Every channel has
two pin names and the convention used is : if there is a channel from module
A to module B, then the self channel is written this way : �A.B_out B.A_in�.

CHAPTER 4. ELASTICIZATION PROCESS 54

// = Sequential Double Latch Instanciation =

Double_latch_H #(6) EL_V7_Out_2_data_val(

V7_Out_2_data_val,

V7_Out_2_data_next,

EL_EN_0_V7_Out_2_data_val,

EL_EN_1_V7_Out_2_data_val,

V7_U2U(0, 6),

clk,

rst

);

Double_latch_H #(3) EL_V7_Reg1_3_data_val(

V7_Reg1_3_data_val,

V7_Reg1_3_data_next,

EL_EN_0_V7_Reg1_3_data_val,

EL_EN_1_V7_Reg1_3_data_val,

V7_U2U(0, 3),

clk,

rst

);

Double_latch_H #(3) EL_V7_Reg2_4_data_val(

V7_Reg2_4_data_val,

V7_Reg2_4_data_next,

EL_EN_0_V7_Reg2_4_data_val,

EL_EN_1_V7_Reg2_4_data_val,

V7_U2U(0, 3),

clk,

rst

);

Double_latch_H #(4) EL_V7_F1_5_data_val(

V7_F1_5_data_val,

V7_F1_5_data_next,

EL_EN_0_V7_F1_5_data_val,

EL_EN_1_V7_F1_5_data_val,

V7_U2U(0, 4),

clk,

rst

);

Double_latch_H #(1) EL_Boot_0_0(

Boot_0_0,

V7_Boot_0_0_last,

EL_EN_0_Boot_0_0,

EL_EN_1_Boot_0_0,

1'b1,

clk,

rst

);

Figure 4.6: Sequential part of the Verilog code for the elastic pipe module

CHAPTER 4. ELASTICIZATION PROCESS 55

OutF1

Reg2

Reg1

+ x40

In1_status

In1_data

In2_data

In2_status

Out

ELASTIC CONTROL LAYER (TOP_CONTROL MODULE)

In2_data_stop

In2_data_valid

In2_stop

In2_valid

In1_data_stop
In1_data_valid

In1_stop

In1_valid

Out_data_valid

Out_data_stop

Figure 4.7: Elastic control interface of the pipeline example

Therefore, loops to itself are supported.

Every elastic module is assumed to be a combinational circuit between elastic
bu�ers. Variable latency units are not supported. Thus, elastic modules have
two output latches and no input latches. That means that elastic modules
have the default attributes.

SELF creates a module called TOP_CONTROL with the interface of the elastic
control layer. When generating the Verilog code in the Esterel compiler, it is
necessary to instantiate TOP_CONTROL and connect it to the datapath. Figure
4.7 shows how TOP_CONTROL is connected to the datapath in the example in
Figure 4.2.

TOP_CONTROL interface channels are the ones connecting environment mod-
ules to regular modules in the SELF netlist. For example, take an Esterel
module with an environment module In connected to registers R1 and R2.
The generated TOP_CONTROL will create valid and stop bits for the channel go-
ing from In to R1 and valid and stop bits for the channel going from In to R2.
In order to avoid this e�ect, instead of translating inputs and outputs to en-
vironment modules, they are translated to an environment module connected
to a combinational module that acts as an interface. Then, TOP_CONTROL has
the desired interface.

CHAPTER 4. ELASTICIZATION PROCESS 56

4.3 Correctness

It is interesting to determine whether the elasticization procedure is correct,
i.e., whether an elastic circuit generated by this procedure is an elasticization
of the conventional sequential circuit the Esterel v7 compiler generates.

Esterel translation into sequential boolean circuits is proved to be correct
[4]. Therefore, a circuit that has been translated from an Esterel program
behaves like the constructive semantics of Esterel states.

Furthermore, all elastic modules in the elasticization process have one-cycle
delay, there are no modules with variable-latency. Therefore, provided that
the connectivity netlist generated by the Esterel performance evaluator is
the one of the circuit, the correctness of the elastic control falls out from the
general theory of elastic machines and SELF compiler.

Notice that what is elasticized is the whole Verilog design. In order to pre-
serve Esterel semantics, the Esterel compiler adds control over the datapath.
In the example used in this chapter, the boot register is a control register. In
designs that are control intensive the number of these registers is bigger. If
some signals are apparently independent at the datapath level, but there are
dependencies between them because of Esterel semantics, these dependen-
cies will be translated into the Esterel intermediate code, in the SELF netlist
and in the elastic control layer because Esterel control registers will connect
them, even if they are not connected in the datapath.

In consequence, dependencies in the Esterel semantics level are also taken into
account by the elastic control layer when deciding which registers must be
enabled, which channels have valid data and which ones need to be stopped.

Given that the Esterel translation into circuits is correct w.r.t. the Esterel se-
mantics and the change in such circuit is to instantiate pairs of latches instead
of �ip-�ops, which are equivalent; and given that the SELF compiler creates
an elastic circuit that is correct-by-construction w.r.t. the general theory of
elastic circuits, we can conclude that the elastic circuit is an elasticization of
the Esterel program. Next chapter will validate this.

Chapter 5

Validation

Once a circuit has been elasticized using the procedure described in Chapter
4, one may want to validate that the elastic circuit is an elasticization of the
original circuit. Formal veri�cation is beyond the scope of this work, and
it can be future work. Therefore, this chapter explains how it is validated
that elasticizated circuits are functionally equivalent to the corresponding
conventional circuit.

5.1 Latency Equivalence

For every conventional circuit there is a set of circuits that are elasticizations
of it. Every circuit may be di�erent in the granularity of the modules, the
protocol it implements, . . . Therefore, there is an equivalence relation between
all elasticizations of any circuit and the circuit itself.

Informally, two circuits are latency-equivalent [24] if given the same input
behavior, their outputs have the same ordering of events. In terms of elastic
circuits, two circuits are latency-equivalent if for any transfer behavior in the
input, the transfer behavior in the output is the same.

The same property is de�ned in [39] as �ow-equivalence. Two behaviors are
�ow-equivalent if and only if they have the same domain and every wire has
the same values in the same order.

57

CHAPTER 5. VALIDATION 58

5.1.1 Latency Equivalence and Elasticization

Given a set of input wires I and a set of output wires O which are disjoint,
then an [I, O]-elastic machineMe with an [I, O]-elastic environment EnvI,O

like the one de�ned in Section 3.2.2 and a (I, O)-machine M are latency
equivalent if and only if for every behavior σ ∈ M and every behavior τ ∈
Me t EnvI,O, τT ↓ I = σ ↓ I ⇒ τT ↓ O = σ ↓ O. That is, given a
pair of behaviors, if the input behavior of M is equal to the input transfer
behavior of Me, the output behavior of M must be equal to the output
transfer behavior of Me.

An elastic machine has a unique transfer machine, and it is interesting to
determine whether latency equivalence can decide if a circuit is the transfer
machine of an elastic design.

Therefore, we must prove : Me and M are latency equivalent if and only if
MT

e = M, where MT
e = {ωT | ω ∈ Me t EnvI,O}, the transfer machine of

Me.

Proof

⇒
(∀σ ∈ M,∀τ ∈ Me t EnvI,O, τT ↓ I = σ ↓ I ⇒ τT ↓ O = σ ↓ O) ⇒
MT

e = M
Assuming that Me and M are latency equivalence, we must see that
all behaviors of MT

e are behaviors of M and the other way around.

MT
e ⊆ M : Let ω be a behavior of Me, then ωT must belong to M.

M is a machine, and hence, it is functional. Therefore, for any σ ∈ [[I]],
there exists a unique τ ∈ [[O]] such that σ ∗ τ ∈M. In particular, there
is a σ such that σ = ωT ↓ I and σ ∗ τ ∈M. AsMe andM are latency
equivalent, σ = ωT ↓ I implies that τ = ωT ↓ O. If σ = ωT ↓ I,
τ = ωT ↓ O and the set of wires is I ∪ O, then ωT = σ ∗ τ , therefore,
as σ ∗ τ ∈M, ωT ∈M.

M ⊆ MT
e : Let ϑ be a behavior of M, then ϑ must belong to MT

e .
Given that MT

e = {ωT | ω ∈ Me t EnvI,O}, Me is an [I, O]-elastic
machine and EnvI,O is the largest (in behavior inclusion) elastic envi-
ronment, MT

e is a machine by Theorem 2 of Krstic et al. [22]. Then,
MT

e is functional: for any σ ∈ [[I]], there exists a unique τ ∈ [[O]] such
that σ ∗ τ ∈ MT

e and there is some ω ∈ Me such that ωT = σ ∗ τ .
Therefore, there is a σ such that σ = ϑ ↓ I and σ ∗ τ ∈MT

e , and some
ω ∈ Me such that σ = ωT ↓ I and τ = ωT ↓ O. As Me and M are
latency equivalent, ωT ↓ I = ϑ ↓ I implies that ωT ↓ O = ϑ ↓ O. If

CHAPTER 5. VALIDATION 59

σ = ϑ ↓ I, τ = ϑ ↓ O and the set of wires is I ∪O, then ϑ = σ ∗ τ , and
�nally, as σ ∗ τ ∈MT

e , ϑ ∈MT
e .

⇐
MT

e = M⇒ (∀σ ∈M,∀τ ∈Me t EnvI,O, τT ↓ I = σ ↓ I ⇒
τT ↓ O = σ ↓ O)

As bothMT
e andM are machines, they are both deterministic. Deter-

minism is ∀ω ∈ M,∀ω′ ∈ M, ω ↓ I = ω′ ↓ I ⇒ ω ↓ O = ω′ ↓ O.
As it is assumed that MT

e = M, we can substitute MT
e for M:

∀ω ∈ M,∀ω′ ∈ MT
e , ω ↓ I = ω′ ↓ I ⇒ ω ↓ O = ω′ ↓ O). By

MT
e de�nition, there exists one behavior of the elastic machine whose

transfer behavior is ω′ for any ω′ in the transfer machine, that is, ∀ω′ ∈
MT

e ,∃σ ∈MetEnvI,O, σT = ω′. Then, as all behaviors inMT
e are re-

lated to at least one behavior inMe, the previous formula can be rewrit-
ten as ∀ω ∈M,∀σ ∈MetEnvI,O, σT ↓ I = ω ↓ I ⇒ σT ↓ O = ω ↓ O,
which is the de�nition of latency equivalence.

5.1.2 Implementation

In order to check equivalence for a given transfer input behavior σ, it is
necessary to simulate the conventional circuit that Esterel generates using
σ, simulate the elastic circuit using an elastic behavior ω such that ωT = σ,
and compare the output behavior of the conventional circuit to the output
transfer behavior of the elastic one.

Every input channel is connected to an elastic producer. In the initial cycle,
the producer can decide whether to put a bubble or a token in the channel. In
case it is a token, the data wire transmits the �rst data item of the transfer
input behavior that is being simulated. Next cycle, the producer decides
again whether to put a bubble or a token, unless there was a token and it
could not be transmitted. In this case, the producer is persistent and tries
to transmit the same token until it is possible to do so. Each input producer
is independent from all other producers.

Similarly, each output of the elastic circuit is connected to an elastic con-
sumer. Each cycle, every elastic consumer decides whether to set its stop bit
to force the circuit to transmit the corresponding output again next cycle.

Each simulation has three parameters. The �rst one is the number of tokens
to be transmitted: the number of cycles that the conventional circuit is
simulated is this number of tokens, as there is a new token every cycle, and
the elastic circuit is simulated until all output channels have received that

CHAPTER 5. VALIDATION 60

+

X

Z

Y

Elastic

Producer

Elastic

Producer

Checksum

Checksum

Latency

Equivalence

+

X

Z

Y
e

Elastic

Consumer

=

Stream

[1,2,3,4...]X=

Y=

Output Stream

[4,5,6,7...]

[5,7,9,11...]

[4,4,5,6,*,*,7...]

[*,1,2,3,*,4,4...]

Elastic Stream

Elastic Stream

[5,7,9,11...]

Transfer Stream

[*
,5

,7
,9

,*
,*

,1
1

..
.]

Figure 5.1: Latency equivalency checking

number of tokens. The second one is the valid probability: every time a
producer has to decide whether to transmit a new token or insert a bubble,
this probability is used to make this decision. Finally, the third one is the
stop probability: every time a consumer has to decide whether to be ready
to receive a new token, it uses this parameter to do so. The valid probability
must be greater than 0, and the stop probability must be less than 1 in order
to ensure termination of the simulation. Otherwise, some producer could
decide to transmit no tokens, or a consumer could decide to be never ready.

Once one has simulated several times a circuit, every time with a di�erent
input and with di�erent valid and stop probabilities, and the outputs are
latency equivalent in all of them, we can assume that the elastic circuit and
the conventional circuit are behaviorally equivalent.

Figure 5.1 shows how latency equivalence of a circuit with two inputs and
one output is checked. Firstly, the simulation produces a random �nite se-
quence for each input. Then, the conventional circuit is simulated using the
generated input sequence, and the outputs it generates each cycle are used
to create a checksum (it would be too memory expensive to store all outputs
of all cycles). Then, the same input sequences are connected to the elastic
producers, that send them to the elastic circuit with some inserted bubbles.
The elastic consumer in the output sets the stop bit at random cycles, and
the received tokens are used to compute a checksum. Finally, both checksums
are compared to check latency equivalence.

CHAPTER 5. VALIDATION 61

5.1.3 Tests

The elasticization procedure has been executed on four di�erent designs in
order to test latency equivalence between the conventional Verilog designs
created by the Esterel compiler and the elastic Verilog designs.

Each design is simulated 125 times with di�erent valid and stop probabilities
in the elastic consumers and producers, and each simulation transmits 5000
tokens. Therefore, the simulation does not end until all output channels
have received 5000 tokens. Latency equivalence has been achieved in all
simulations, validating the elasticization procedure presented in this work.

The Esterel code of these designs can be found in the appendix. Table 5.1
shows some features of the designs : the number of inputs and outputs,
whether it deals with data (otherwise it is a pure Esterel program), and the
number of elastic modules and channels in the elastic design.

The �rst design is a simple pipeline. There are no preemptions or other
control structures, and hence, there is no need for synchronization registers.

The second design has two parallel statements of the form "await input;
emit output". Being independent, there should be no synchronization be-
tween them. However, they are enclosed in a loop, and therefore, by the Es-
terel semantics, a loop execution cannot start until the previous one ended.
The Esterel compiler creates a register called "PauseReg_20_0" that syn-
chronizes both inputs. This register is taken into account when elasticizing,
and therefore, the input channels are synchronized so that one channel cannot
send two tokens if there is not a token of the other channel in between.

The third design is from the Esterel v7 primer [5] and simulates a tra�c light
controller in the intersection of two roads. The controller receives requests
and decides which road tra�c light must be green. It is a pure Esterel design,
and it is the one that creates more elastic modules and channels because it
is control intensive.

Finally, the forth design computes the greatest common divisor of the inputs.
It is also from the Esterel v7 primer [5]. It uses both data and control
structures and it iteratively substracts the smaller number to the larger one
until the gcd is found.

CHAPTER 5. VALIDATION 62

Design inputs outputs data elastic modules elastic channels

pipeline 2 1 Y 16 21
parallel emits 2 2 Y 24 64
tra�c lights 3 6 N 32 237
gcd 3 1 Y 18 58

Table 5.1: Simulated designs

5.2 Granularity

Elaticization can be applied to di�erent levels of granularity in terms of block
size and in terms of number of channels.

On the one hand, one can arbitrarily choose the size of the elasticizated
blocks. It is possible to consider the whole design as a block; it is possible to
consider functional units as elastic modules with some �xed or variable delay
(as long as all of them follow the SELF protocol for variable delay units) and
synchronize them using elastic circuits; etcetera. The �nest grain solution is
the one in which every combinational logic block in an elastic module. This
is the solution used in this thesis.

On the other hand, one can choose the number of input and output channels
in terms of number of valid and stop pairs. If some inputs are known to be
always either both valid or none of them valid, one may make them share
valid and stop bits in order to improve control size and performance. This
can be detected and implemented either manually or automatically.

Both approaches are design decisions that have an impact into performance
and circuit size. This section uses a sample circuit to show how the per-
formance changes when merging channels so that di�erent inputs share the
same valid and stop bits.

5.2.1 Approach

Performance evaluation is an important issue in system design. A possible
way to measure the performance of an elastic channel is the transfer rate,
i.e., the number of transfers per cycle. Optimally, a new token is transferred
every cycle, and the transfer rate is 1. The transfer rate of a channel that is
an output of an elastic module depends on the transfer rates of the module
inputs and the number of cycles in which the output receivers are ready for
the transmission. Furthermore, the elastic join structures that synchronize

CHAPTER 5. VALIDATION 63

x x

<<8
+

x x

+
<<16

+
<<24

X[31..0]

Y[7..0]

Y[15..8]

Y[23..16]

Y[31..24]

P

Figure 5.2: Multiplication circuit

input channels in the elastic modules will decrease the performance because
of this synchronization.

In order to evaluate the impact of granularity, the circuit in Figure 5.2 is used.
It multiplies two unsigned integers of 32 bits and the result is a unsigned
integer of 64 bits. The second operand is divided into four numbers of 8 bits
each. Thus, the multiplication is done in 4 pipelined stages. Each part of the
second operand has a di�erent pipeline depth, so that a di�erent number of
tokens can be stored in each one.

The circuit has been generated using an Esterel program, and then manually
edited in order to achieve three di�erent implementations. Every implemen-
tation merges input channels from the previous one in the SELF netlist, and
then plugs each enable wire to the registers it must be connected. In the �rst
one, there are �ve channels, one per input. In the second one, all bytes of
the second operand share the same valid and stop bits. In the last one, there
is one input channel for all data.

As there is just one output, the di�erence in performance between implemen-
tations is due to input synchronization. The more input channels, the less
performance there should be.

The simulation of each design is done like validation was. Therefore, it is
checked whether implementations are latency equivalent to the conventional

CHAPTER 5. VALIDATION 64

Esterel design and, at the same time, the simulator computes the number of
tokens per cycle in the output. There are two di�erent values that can be
tuned. The �rst one is the rate of tokens in the inputs. That is, the proba-
bility of producing a token every time the environment can decide whether
to produce a token or a bubble in some input channel. The second one is the
probability of setting the stop bit of the output.

5.2.2 Results

Tables 5.2, 5.3 and 5.4 show the results of the executions. Every implementa-
tion has been tested with 25 di�erent con�gurations of valid and stop rates.
Every con�guration has been simulated 5 times, each time transmitting 5000
tokens. Thus, the number of simulated cycles is more than 5000, depending
on the performance of the circuit.

Each row in the tables shows the transfer rate (number of tokens transferred
per cycle) for a given valid frequency in the inputs. For example, the �rst
row shows the transfer rate in the output when elastic producers inserts new
tokens each cycle with a probability of 20 %. Notice that each input is
independent from the other ones. The fact that the probability is 20 % does
not necessarily mean that there are tokens in exactly a 20 % of the cycles.
However, the number of tokens should be around 20 %.

Each column in the tables shows the transfer rate for a given stop frequency
of the output. For example, the �rst column shows the transfer rate in a
simulation where the stop bit of the output is never set, the second column
shows the transfer rate in a simulation where the stop bit is set in a cycle
with a 20 % probability. Thus, every position of the table shows the average
transfer rate for a given con�guration.

When the stop rate of the output is 0, the transfer rate is very close to
the valid rate of the inputs, as the bubbles of the outputs are only due to
synchronization of the inputs. Therefore, in Table 5.4, where there is just
one input channel, the transfer rate in the �rst column is nearly the valid
rate. The little di�erence between the expected value and the real value is
because the random insertion of bubbles in the inputs does not guarantee
that the percentage of tokens is exactly its probability.

Figure 5.3(a) shows the transfer rate of all simulations in function of the valid
rate of the inputs, and Figure 5.3(b) shows the transfer rate of all simulations
in function of the stop rate of the output. Clearly, the valid rate and the
transfer rate are proportional, and the stop rate and the transfer rate are
inverse proportional.

CHAPTER 5. VALIDATION 65

Valid Rate
at Inputs

Stop Rate
at Outputs 0.0 0.2 0.4 0.6 0.8

0.2 0.13 0.13 0.13 0.13 0.12
0.4 0.27 0.27 0.27 0.26 0.20
0.6 0.42 0.42 0.42 0.38 0.23
0.8 0.61 0.60 0.56 0.44 0.25
1.0 1.00 0.87 0.71 0.52 0.29

Table 5.2: Transfer rate using 5 input channels

Valid Rate
at Inputs

Stop Rate
at Outputs 0.0 0.2 0.4 0.6 0.8

0.2 0.15 0.15 0.15 0.15 0.14
0.4 0.31 0.31 0.31 0.30 0.21
0.6 0.49 0.48 0.47 0.40 0.23
0.8 0.70 0.67 0.60 0.46 0.25
1.0 1.00 0.87 0.71 0.52 0.29

Table 5.3: Transfer rate using 2 input channels

Valid Rate
at Inputs

Stop Rate
at Outputs 0.0 0.2 0.4 0.6 0.8

0.2 0.19 0.20 0.20 0.20 0.18
0.4 0.41 0.39 0.39 0.36 0.22
0.6 0.62 0.60 0.55 0.44 0.24
0.8 0.81 0.75 0.64 0.48 0.27
1.0 1.00 0.87 0.71 0.52 0.29

Table 5.4: Transfer rate using 1 input channel

CHAPTER 5. VALIDATION 66

(a) Transfer rate related to percentage of tokens in the inputs

(b) Transfer rate related to the percentage of cycles in which the receiver
is not ready

Figure 5.3: Transfer Rate �gures

CHAPTER 5. VALIDATION 67

5.2.3 Conclusion

Both the tables and the �gures show that the less channels, the more per-
formance. When a module has two input channels, it needs to synchronize
them: if there is a token in one channel and a bubble in the other one, the
channel that is trying to transmit the token must wait until the other one is
ready. During this time, the outputs of such module will carry bubbles, and
therefore the transfer rate of the outputs will always be less than the transfer
rate of the inputs.

However, when there is either a lot of congestion or very few congestion, the
di�erence between implementations is not that big. When the output channel
has the stop bit set most of the cycles, channels are waiting to transmit a
token most of the time, and there are few cycles in which it is necessary to
insert bubbles in the output to synchronize the inputs.

Similarly, when there are tokens most of the cycles, all inputs are always ready
to transmit, and the elastic modules do not have to stop channels in order
to synchronize them. Therefore, the di�erence between implementations is
mostly seen when there is average congestion.

As a conclusion, whenever it is possible to merge channels by allowing them
to share the valid and stop bits, it should be done to increase the performance.
This is just a test case over a single circuit. Further research can be done in
order to con�rm this hypothesis.

Chapter 6

Conclusions

6.1 Results

The validation of latency equivalence shows that generated elastic designs
preserve the functionality of the original Esterel code. The automatic elasti-
cization of Esterel designs allows to create a latency-insensitive design from
a high level language with no extra e�ort. Thus, the amount of time needed
to create a synchronous circuit and a synchronous elastic circuit which is
functionally equivalent is the same.

Furthermore, SELF adds little overhead, as changes in the datapath are slight
and it is only necessary to add a control layer. The elasticization creates
synthesizable circuits as long as the original Esterel design is synthesizable.
These facts make elastic circuits an attractive option for microarchitectural
designs.

As a result of this work, future versions of the Esterel v7 compiler developed
by Esterel Technologies will be able to generate elastic circuits out of Esterel
programs. The author has embedded into the Esterel compiler source code
this functionality.

6.2 Future work

The elasticization procedure is highly embedded into the Esterel compilation
procedure. A possible direction for future work can be making elasticization
independent of the hardware description language that is used.

Furthermore, this master's thesis validates latency equivalence of the elas-

68

CHAPTER 6. CONCLUSIONS 69

ticized circuits, but does not check that the procedure works using formal
methods such as veri�cation. This can also be done as future work.

Finally, further research can be done in correct-by-construction microarchi-
tectural transformations. The main idea here is to apply changes in elastic
designs, such as retiming, merging elastic channels, and so on and so forth
in order to improve the performance of the circuit.

Bibliography

[1] Benveniste, A., and Berry, G. The synchronous approach to reac-
tive and real-time systems. Proceedings of the IEEE 79 (1991), 1270�
1282.

[2] Berry, G. Esterel on hardware. Mechanized reasoning and hardware
design (1992), 87�104.

[3] Berry, G. Preemption and concurrency. Proc. FSTTCS. Lecture Notes
in Computer Science 761, Springer Verlag 93 (1993), 72�93.

[4] Berry, G. The Constructive Semantics of Pure Esterel. Draft book,
available at http://www.esterel-technologies.com/technology/scienti�c-
papers/ (1999).

[5] Berry, G. The Esterel Primer. Available at http://www.esterel-
technologies.com/technology/scienti�c-papers/ (2000).

[6] Berry, G. The Foundations of Esterel. Proof, language, and interac-
tion: essays in honour of Robin Milner. MIT Press (2000), 425�454.

[7] Berry, G., and Gonthier, G. The Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation. Science of Com-
puter Programming 19, 2 (1992), 87�152.

[8] Bhasker, J. A Verilog HDL Primer. Star Galaxy, 1997.

[9] Brayton, R., Hachtel, G., and Sangiovanni-Vincentelli, A.

Multilevel logic synthesis. Proceedings of the IEEE 78, 2 (1990), 264�
300.

[10] Brzozowski, J., and Seger, C. Asynchronous Circuits. Springer-
Verlag, 1995.

70

BIBLIOGRAPHY 71

[11] Carloni, L., McMillan, K., and Sangiovanni-Vincentelli, A.

Theory of latency-insensitive design. IEEE Transactions on CAD 20, 9
(Sept 2001).

[12] Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. LUS-
TRE: A declarative language for programming synchronous systems.
14th Symposium on Principles of Programming Languages (POPL 87),
Munich (1987).

[13] Cortadella, J., Kishinevsky, M., and Grundmann, B. Synthe-
sis of synchronous elastic architectures. In Proc. ACM/IEEE Design
Automation Conference (July 2006), pp. 657�662.

[14] Gautier, T., Le Guernic, P., and Besnard, L. SIGNAL: A
declarative language for synchronous programming of real-time systems.
Springer-Verlag London, UK, 1987.

[15] Girard, J. Y., Lafont, Y., and Taylor, P. Proofs and types.
Cambridge University Press New York, 1989.

[16] Gonthier, G. Semantique et modeles d'execution des langages reac-
tifs synchrones; applicationa Esterel. These d'informatique, Universite
d'Orsay (1988).

[17] Halbwachs, N. Synchronous programming of reactive systems.
Springer, 1998.

[18] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. The
synchronous data �ow programming language LUSTRE. Proceedings of
the IEEE 79, 9 (1991), 1305�1320.

[19] Harel, D., et al. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming 8, 3 (1987), 231�274.

[20] Harel, D., and Pnueli, A. On the development of reactive systems.
Logics and models of concurrent systems (1985), 477�498.

[21] Harper, R., Milner, R., and Tofte, M. The De�nition of Standard
ML. MIT Press, 1991.

[22] Krsti¢, S., Cortadella, J., Kishinevsky, M., and O'Leary, J.

Synchronous elastic networks. In International Conference on Formal
Methods in Computer-Aided Design (FMCAD) (Nov. 2006).

BIBLIOGRAPHY 72

[23] Le Guernic, P., Benveniste, A., Bournai, P., and Gautier, T.

Signal � A data �ow-oriented language for signal processing. Acoustics,
Speech, and Signal Processing [see also IEEE Transactions on Signal
Processing], IEEE Transactions on 34, 2 (1986), 362�374.

[24] Le Guernic, P., Talpin, J., and Le Lann, J. Polychrony for system
design. Journal for Circuits, Systems and Computers 12, 3 (2003), 261�
304.

[25] LeGuernic, P., Gautier, T., Le Borgne, M., and Le Maire, C.

Programming real-time applications with SIGNAL. Proceedings of the
IEEE 79, 9 (1991), 1321�1336.

[26] Malik, S. Analysis of cyclic combinational circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 13, 7
(1994), 950�956.

[27] Maraninchi, F. Argos: un langage graphique pour la conception, la
description et la validation des systemes reactifs. PhD thesis, Universite
Joseph Fourier, Grenoble I, Janvier 1990.

[28] Maraninchi, F. Argonaute: graphical description, semantics and ver-
i�cation of reactive systems by using a process algebra. Proceedings of
the international workshop on Automatic veri�cation methods for �nite
state systems (1990), 38�53.

[29] Micheli, G. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[30] Plotkin, G. A structural approach to operational semantics. Re-
port DAIMI FN-19. Computer Science Department, Aarhus University
(1981).

[31] Pnueli, A. The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on Foundations of Computer Science (1977), pp. 46�
57.

[32] Potop-Butucaru, D., Edwards, S., and Berry, G. Compiling
ESTEREL. Springer, 2007.

[33] Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai,

R., Saldanha, A., Savoj, H., Stephan, P., Brayton, R., and

Sangiovanni-Vincentelli, A. SIS: A system for sequential circuit
synthesis. Tech. rep., University of California, Berkeley, 1992.

BIBLIOGRAPHY 73

[34] Sentovich, E., Toma, H., and Berry, G. Latch optimization in
circuits generated from high-level descriptions. Proc. International Conf.
on Computer-Aided Design (ICCAD) (1996).

[35] Sentovich, E., Toma, H., and Berry, G. E�cient latch optimiza-
tion using exclusive sets. Proceedings of the 34th annual conference on
Design automation conference (1997), 8�11.

[36] Shiple, T., Berry, G., and Touati, H. Constructive analysis of
cyclic circuits. Proc. International Design and Test Conference ITDC
(1996).

[37] Shiple, T., Singhal, V., Berry, G., Brayton, R., and

Sangiovanni-Vincentelli, A. Analysis of combinational cycles.
Tech. rep., Technical Report UCB/ERL M96, 1996.

[38] Stoy, J. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press Cambridge, MA, USA, 1977.

[39] Suhaib, S., Berner, D., Mathaikutty, D., Talpin, J., and

Shukla, S. Presentation and formal veri�cation of a family of proto-
cols for latency insensitive design. Tech. rep., Technical report, Virginia
Tech, 2005.

[40] Tardieu, O., and De Simone, R. Loops in Esterel. Transactions on
Embedded Computing Systems 4, 4 (2005), 708�750.

[41] Thomas, D., and Moorby, P. The Verilog (r) Hardware Description
Language. Kluwer Academic Publishers, 2002.

BIBLIOGRAPHY 74

APPENDIX

.1 Simple Pipeline

main module my_strl_pipe:
constant n : unsigned <> = 3;
input In1 : temp unsigned <[n]>;
input In2 : temp unsigned <[n]>;
output Out : value reg unsigned <[n+3]> init 0;
signal Reg1 : reg unsigned <[n]> init 0,

Reg2 : reg unsigned <[n]> init 0,
F1 : reg unsigned <[n+1]> init 0,
F2 : value reg unsigned <[n+3]> init 0

in

sustain {
next ?Reg1 <= ?In1 if In1,
next ?Reg1 <= 0 if not In1 and In2,
next ?Reg2 <= ?In2 if In2,
next ?Reg2 <= 0 if not In2 and In1,
next ?F1 <= ?Reg1 + ?Reg2,
next ?F2 <= ?F1 * 3,
next ?Out <= ?F2

}

end signal

end module

BIBLIOGRAPHY 75

.2 Parallel Emit

main module parallel_emit:
constant n : unsigned <> = 3;
input In1 : unsigned <[n]> init 0;
input In2 : unsigned <[n]> init 0;
output Out1 : unsigned <[n]> init 0;
output Out2 : unsigned <[n]> init 0;
loop

{

await immediate In1; emit ?Out1 <= ?In1;

||
await immediate In2; emit ?Out2 <= ?In2;

};
pause

end loop

end module

BIBLIOGRAPHY 76

.3 Tra�c Lights

module toggle:
input i;
output o;
sustain o <= i xor pre(o)
end module

main module tra�c_lights:
input second;
input north_road_req, west_road_req;
output north_red, north_yellow, north_green;
output west_red, west_yellow, west_green;
signal change_open_road, north_road_open in

run toggle [change_open_road/i, north_road_open/o]

||
loop

abort

await 30 second

||
if north_road_open then
await west_road_req

else

await north_road_req
end if

when 60 second;
emit change_open_road

end loop

||
loop

abort

if north_road_open then
sustain {north_red, west_yellow}

else

sustain {west_red, north_yellow}
end if

when 2 second;
abort

BIBLIOGRAPHY 77

sustain {west_red, north_red}

when 1 second;
if north_road_open then

sustain {north_green, west_red}
else

sustain {west_green, north_red}
end if

each change_open_road

end signal

end module

BIBLIOGRAPHY 78

.4 Greatest Common Divisor

main module gcd:
input {a,b} : value unsigned;
input restart;
output d : unsigned;
loop

signal r0 : value reg unsigned init ?a,
r1 : value reg unsigned init ?b

in

weak abort

always

var {l,s} : temp unsigned in //larger, smaller

if ?r0 >= ?r1 then
l := ?r0;
s := ?r1;

else

l := ?r1;
s := ?r0;

end if;

emit {
next ?r0 <= l-s,
next ?r1 <= s,
?d <= next(?r1) if next(?r0) = 0

}

end var

end always

when d
end signal

each restart
end module

