

Booking Simulator
Portage to AJAX

Master’s degree in Information Technoogy

Sotftware engineering and Information Systems Thesis

Jordi Planadecursach Soler

Directed by: Benoît Eymard

July 31st 2008
Sophia Antipolis, France

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 2

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 3

PROJECT INFORMATION

Title: Booking Simulator Portage to AJAX

Date: July 31st 2008

Student: Jordi Planadecursach Soler

Grade: Master´s degree in Information Technology, Software engineering and

Information Systems

Credits: 30 ECTS

Director: Benoît Eymard

Company: Amadeus SAS (France)

TRIBUNAL MEMBERS

President: ANTONI OLIVÉ RAMON

Vocal: JULITA CORBALAN GONZALEZ

Secretari: ANTONI URPI TUBELLA

QUALIFICATION

Numeric qualification:

Descriptive qualification:

Date:

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 4

Acknowledgments

During this project I needed support and help from various sources. I would like to
thank the following people:

� My family, for encouraging and ease my way to the university.

� My university friends for helping me going on.

� My project director, Benoît Eymard, for leading me in the project.

� My responsible, Patrick Grandjean, for giving me technical advice in Amadeus
tools and in the Simulator.

� My internship mate of the team, Ariel Waserhole, for helping me to understand

French people.

� All the members of the Revenue Management Department for their warm
welcome, help and advice that gave to me during all the internship period.
Specially Nicholas Brenwald, Karim Duval, Clément Seveillac, Emmanuel
Grosse and Elie Yared, the new intern.

� My flat mates during the internship, Ignacio Atienza and Francesc Campoy, for

they expertise in France and making me go on.

� All the colleagues I have made during the internship for making me disconnect
during the weekends. Thanks Jordi Rocamora, Ferran Pons, Marc Kirchner,
Ernesto Gonzalez, Fernando Casanova, Alberto Castro, Jaime Sanchez-
Laulhe, Jesus Rojo, Alejandro Asencio, Ricardo Sanchez and all the others I
forget. I do not forget to mention all the English and Swedish interns and
Viktor.

� Thank you Amadeus for offering internships in la Côte d’Azur.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 5

Index

Introduction ... 8

Amadeus .. 8

History ... 8

Localization .. 9

Systems ... 10

Amadeus solutions for Airlines ... 12

Airline business general knowledge ... 13

Revenue Management System .. 15

RMS department .. 16

Inventory .. 17

Booking simulator ... 19

Overview .. 19

Existing simulator ... 20

Internship Objectives ... 21

Existing simulator study ... 22

External Interactions ... 22

EDIFACT ... 23

Code analysis ... 24

Code Pollution Analysis .. 25

Functionalities .. 26

Current navigational diagram ... 27

Windows details ... 27

Login window ... 27

Flight Selection .. 28

Progress bar .. 28

Main view ... 28

Components ... 29

Amadeus Framework ... 29

JDBC ... 29

Simulator Logic .. 30

Conclusions .. 30

Project planning... 31

Main tasks .. 31

Requirements ... 32

Front-End Portability .. 32

Simulator Logic redesign ... 32

Inventory Controls feature .. 32

Multi-client concurrency policy ... 32

Requirement dependencies .. 33

Timing .. 34

Ajax Framework Study .. 36

What is AJAX? ... 36

Direct Ajax Frameworks ... 37

Ajax Components Frameworks .. 37

Server-Driven Frameworks .. 37

AJAX framework categories comparison.. 38

Server-driven Framework Implementations .. 39

GWT: Google Web Toolkit ... 39

Flex .. 39

Echo2, ThinWire, WingS .. 40

ICEFaces, ZK .. 40

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 6

Comparative tables .. 41

Statistics from Google Trends .. 44

Statistics of Google Search engine results ... 44

Choosing a Framework .. 45

Why were GWT and FLEX rejected? ... 45

The best of each category ... 45

ICEFaces vs ThinWire ... 47

Architecture plan ... 48

Review ... 48

Implementation ... 48

Components view ... 49

Communication between layers .. 50

Design plan ... 51

Redesign .. 51

Presentation layer design ... 54

Current functionallities .. 56

SignIn .. 57

FlightSelection ... 57

ProgressBar ... 57

OutputTable ... 57

InputTable .. 58

ClassTreeNavigation.. 58

Implementation .. 59

Working with Visual EDIFACT .. 59

Booking Simulator Messages ... 60

OTF Framework ... 61

Deployment scripts ... 61

Test Cases .. 62

Unit tests organization .. 63

Results .. 64

New simulation screen ... 64

Results screen ... 65

Usability enhanced ... 66

Portability and reusability enhanced ... 67

Maintainability enhanced ... 67

Performance Enhanced .. 68

Conclusions ... 70

Glossary .. 71

Appendix A: Manual test cases ... 73

Parameters... 73

Scenarios ... 73

Booking proportions ... 73

Load factor change .. 75

Cancellation proportions .. 77

All the classes shuted down ... 79

One class per cabin ... 79

Limits change during the time .. 80

Historical data source .. 81

Performance .. 82

Appendix B: Automated test cases .. 83

Connectivity .. 83

NGI Connection ... 83

MySQL Connectivity .. 83

MySQL Database Structure. .. 83

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 7

EDIFACT .. 84

Booking Clean ... 84

Booking Limit Change .. 84

Date change Request .. 84

End of Transaction (Sell, Cancel)... 85

Flight Structure .. 85

SQL .. 86

Building BOM from Local Database ... 86

Generate Demand Curves from Raw Data ... 86

Load/Save Booking Limits ... 86

Various ... 87

Date Format Tests ... 87

Random drawn .. 87

Cancellation table matrix .. 87

Booking/Cancellation/Limits Schedule ... 87

Simulation test .. 88

Full Simulation ... 88

Simulation Automatic ... 88

Appendix C: Local database schema .. 89

Local curve database ... 89

booking_limits_max, booking_limit_min, demand_curves 89

raw_data .. 89

yield_data .. 90

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 8

Introduction

Amadeus

History

Founded in 1987 by an alliance between Air France, Lufthansa, Iberia and SAS,
Amadeus is an IT group providing technology for the travel industry acting as a
Global Distribution System (GDS). As such it links buyers (travel agencies or enduser
customers) to sellers (airlines, hotels, car rental companies) who need to exchange
travel services.

In the late 60s, the main US airlines started developing and implementing CRSs
(Computerized Reservation Systems). Years later, in the mid 70s, they decided to
install terminals in travel agencies, giving access only to limited data. But as a result
of the pressure of travel agencies and different official organizations, the CRSs
started moving towards neutral systems showing all competitors' information. In the
mid 80s, US CRSs were increasing in sophistication and they began to look overseas
for opportunities to expand.

Meanwhile, in Europe, many of the national airlines had developed their own
reservation systems and distribution networks. These, however, only served their
respective national markets. Imminent deregulation of the European travel industry
made it imperative to create distribution systems able to serve the European and
global market.

In 1987, responding to these needs and business opportunities, Air France, Iberia,
Lufthansa and SAS pooled their resources in a project called Amadeus. In 1989
Amadeus was the first non-US GDS (Global Distribution System) to a neutral light
availability display and became fully operational in 1992.

There are currently four major GDS companies: Amadeus, Galileo, Sabre and
Worldspan. Amadeus, which now employs more than 7,600 people around the world,
is the youngest of these companies and the current leader on the market with more
than 500 million bookings processed annually and a market share of 31%.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 9

Localization

Headquarters, development and operational activities are split among three main
locations across Europe, responding to the origin of the companies who mainly
founded the company (Air France from France, Iberia from Spain and Lufthansa from
Germany).

The main three locations of Amadeus are:

� Headquarters, commercial and marketing: Madrid, Spain

� Product development: Sophia Antipolis, France

� Data processing centre: Erding, Germany

Additional IT services centers are located in London (UK), Miami and Boston (USA)
and Sydney (Australia). These ones made according to the new airlines who joined
Amadeus, or new companies who became customers of Amadeus.

Amadeus has subscribers in more than 215 markets worldwide, covering the local
needs of those different markets with over 70 National Marketing Companies. Over
5,300 people work in the Amadeus worldwide group, which represents 95 different
nationalities.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 10

Systems

Today, Amadeus processes over 400 million bookings annually. Through the
Amadeus System some 67,000 travel agency locations and some 10,000 airline
sales offices around the world are able to make bookings with:

� some 490 airlines, representing more than 95% of the world's scheduled
airline seats

� 51,000 hotel properties

� some 45 car rental companies, serving over 29,000 locations

� other travel provider groups (ferry, rail, cruise, insurance companies and tour
operators)

Figure 1: Amadeus is connecting providers with points of sales

The Amadeus data center (in Erding, Germany) is one of the Europe's largest civilian
data processing centers. Today, it records data on a total amount of 22 terabyte of
data storage disk capacity.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 11

The core of Amadeus’ System is clusters of processors running the IBM Real Time
Operating System TPF (Transaction Processing Facility). TPF is a specialized
operating system, offering very high throughput, very fast response times and very
high availability. It is only used by about 50 companies worldwide, most of them in
the travel Industry and banking.

� The network is attached to the Front End, which handles all the
communication software. The message rate handled by the Front End
computer exceeds 20,000 transactions per second.

� The Back End is where the application software runs and to which the main
database is attached. More than 70 millions of end-user requests are
processed in these every day.

Also, clustered Unix-based systems support sophisticated access to data base
systems. For example, one of the UNIX clusters handles a wide range of
communication protocols and conversions that are endemic to the travel industry. It is
designed to complement the Global Core Front End and allows expanding rapidly
market needs in terms of different communication protocols. New applications
developed by Amadeus are based on the Linux operating system and on C++ as
developing language.

Currently, the company is in a process of migration from de IBM-TPF Back End to the
“Open Back Ends” with Unix-SUSE management system, Oracle Database core and
Open source applications, as far as possible.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 12

Amadeus solutions for Airlines

Amadeus IT solutions for airlines are grouped under the name Altéa. Altéa
Reservation, Altéa Inventory and Altéa Departure Control System are the main
products of this offer.

� Altéa Reservation deals in particular with customer profiles, bookings
management and ticketing.

� Altéa Departure Control System allows the automation of all processes related
to an airline’s airport management operations, such as the check-in of
passengers and baggage, the boarding control, the management of the flight
before departure (calculation of the aircraft load, of its center of gravity…).

� Altéa Inventory system manages the stock of seats provided by a given airline.
Given the bookings and already made and the inventory controls such as
maximum booking limits imposed on each fare class (maximum number of
bookings which can be accepted in each fare class), the inventory derives an
availability, that means it decides to accept or not a booking request made by
a customer through the GDS.

Inventory systems were previously managed by the airlines themselves. The
Amadeus Altéa Plan actually aims to integrate the inventory system of airlines to the
Amadeus Inventory System (Altéa Inventory).

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 13

Airline business general knowledge

The Airlines structure is complex. In order to explain the main elements the figure
below give a picture of a simplified structure.

Airline Flight

*1

Flight Date
*

1

Leg

Leg Cabin

capacity

*

1

Segment

*

1

Segment Cabin
*

1

Booking Class
*

1

Subclass

yield

*

1

1 *
1

*

1

*

1

*

1

*

1

*

1

*

The Airline is the company that manages the planes. An Airline is identified by a two
letters airline code. For instance British Airways is BA and Lufthansa is LH.

Each Airline has different flights. A Flight is a route between two airports. It has a
board point and an off point. A Flight is identified by the airline code plus the flight
number. For instance BA134 is the flight 134 of British Airways. The airport code is a
3 letters identifier. For instance Barcelona is BCN and Nice is NCE.

The Flight can be operated on different dates. This is called Flight Date. For instance
BA134 at September 4th 2008 is a Flight Date.

There are some flight-dates that have several stops. A plane that goes from London
to Sydney has to stop in Bangkok to fill up the fuel tanks. Some times there is not a
direct plane from the origin to the destination and a change of plane is needed. A
direct journey from one point to another point is called a Leg. A Flight Date consists
on one or more Legs. On the other hand there is the Segment. A Segment is the
commercial name for a journey from one point to another. It can consist of one or

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 14

more legs. The following figure describes the differences between a Leg and a
Segment of a Flight that goes from Barcelona to Sydney stopping in London.

The Flight consists of two legs BCN-LHR and LHR-SYD. Nevertheless there are
three segments: BCN-LHR, LHR-SYD and BCN-SYD. The Segment is the object to
be purchased. The Leg is how the route is operated.

Each Leg has an aircraft assigned. Normally there is the same aircraft for each Leg.
An aircraft has different compartments called Cabins: For instance First Class,
Business or Economy. These various travel cabins correspond to different levels of
service. Higher travel cabins are more comfortable and more expensive. In practice
in the aircraft, the division is often marked with a curtain. Each Leg Cabin has an
availability that is the number of seats available.

The Segment Cabin is the equivalent to the Leg Cabin but seen as a commercial
product. The availability of each Segment Cabin is not easily calculated from the Leg
Cabins. There are different algorithms for calculating the availabilities.

Moreover, the various cabins are always divided into several fare classes. Two
people sitting next to each other in the same cabin (and receiving the same service)
may have paid different prices. The fare may reflect restrictions on the ticket
(refundable ticket, partly refundable ticket, non-changeable ticket, etc). Fare classes
may also vary according to how far ahead the ticket was purchased, or how long the
stay at the destination is.

Each Class is divided into several subclasses. Each Subclass has its own fare. The
difference between the subclasses that belong to a class is the point of sale. The
point of sale is from where the ticket has been purchased. A booking in the same
class may have different prices if the booking is done from Europe or from Australia.

The Revenue Analyst is in charge of analysing departed flights and creating the
pricing rules for the future flights. The revenue analyst uses a Revenue Management
System (RMS) to help them set an optimal configuration in order to get the maximal
revenue for the airline.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 15

Revenue Management System

Revenue management is an economic practice used by a number of industries
whose purpose is to predict the demand the best way possible in order to adapt their
offer to maximize their revenue.

Revenue Management aims thus to forecast consumer behavior at the
microeconomic level and to optimize the product segmentation and price, in order to
maximize revenue.

Today more and more hotels and rental cars companies are adopting Revenue
Management techniques. Revenue Management (RM) has become a strategic tool
for many companies. Some studies carried out by the Massachusetts Institute of
Technology have thus credited RM practices for 2% to 5% of airlines global
revenues.

An RMS allows its users to re-calculate automatically and quickly the forecasts and
recommendations for their fleet at regular frequencies but also enables manual
interventions on top of those automatically computed recommendations in order to
allow the integration of the airline revenue analysts’ knowledge.

Revenue Management Systems are mainly composed of two modules: the forecaster
and the optimizer.

The forecaster is in charge of estimating:

� The remaining demand for all the Flight-Dates departing in the future. This is
the main input provided to the Optimizer for seat allocation.

� Cancellations and no-show rates for all the flight-dates departing in the future.

The optimizer is in charge of computing recommendations, namely:

� Overbooking, i.e. the calculation of the optimal offered capacity.
� Optimal seat allocation.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 16

RMS department

Amadeus does not for the moment provide a Revenue Management System to
airlines. Airlines use their own Revenue Management System or the RMS of other IT
solutions providers such as PROS, Air Max or Lufthansa Systems.

However Amadeus has lots of strategic tools in the field of Revenue Management: it
already provides a successful Inventory System and it is a provider of key data such
as the real-time evolution of the number of bookings and cancellations made in
each fare-class for each flight, the number of no-shows (passengers who have
booked a seat but do not show up at departure) which are key inputs for the Revenue
Management System. It also has access to the precious PNR (Passenger Name
Record) data. PNR includes all the details about a given booking (passenger
personal information, details of its trip and its preferences) and are considered as the
future of RMS input data. Those are the reasons why Amadeus has decided to invest
in the field of Revenue Management.

Since 2005, a team in Amadeus (DWS, Data Workforce Solution) has been working
on the subject. First integrated in the department in charge of the Inventory System, it
has then been incorporated in a new department, called RMS (Revenue
Management System). This new department has 2 teams. One in charge of the
forecaster (FCT) and the other in charge of the optimizer (OPT). Currently 7
engineers are working on each team. I have been integrated into the FCT team for
my end-of-studies internship.

Interactions between RMS and the Inventory

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 17

Inventory

An Inventory System, like Altéa Inventory, manages the stock of seats offered by an
airline on all of its flights, and on selected flights operated by its commercial partners.
This stock of seats is associated with physical capacities on individual flight
departures (flight legs), whereas passengers request seat availability for an itinerary
of one or more flight segments and pay a price corresponding to both their itinerary
and the fare class they have chosen. Inventory Controls allow the airline to adjust
how seats are made available to its customers, so as to maximize its revenues and
achieve marketing objectives.

Inventory Controls are typically generated by an airline's own Revenue Management
System (RMS), based on analysis of historical booking data, forecasts of booking
demands for future flight departures and optimization of revenues associated with
each booking and/or seat sold. Given a set of Inventory Controls, there are many
ways, called "availability algorithms", to perform the availability calculation. Typically,
an airline will apply a few well-known and consistent availability calculation
algorithms for its whole flight network and all the types of request it receives. Based
on statistical no-show data, airlines overbook flight capacity in order to account for
cancellations occurring during the booking process and no-shows at the airport.

Altéa Inventory GUI is the piece of software in charge of managing the inventory. The
GUI is connected to the inventory through the network using EDIFACT protocol. This
will be explained in detail later.

A Leg Cabin as displayed in Altéa Inventory.

Leg: Leg identifier (Board Point and Off Point)
Cap: Capacity (saleable capacity)
OCap: Operational capacity (real capacity)

A Flight Structure is how the classes and subclasses of a flight are distributed. Each
airline has different ways for defining the flight structure. Some classes are nested
inside others. This means that if one booking is done in a nested class, the
availability will be decreased in both the nested and the container class. Different
nesting policies exist.

Given a flight structure the revenue manager can set different parameters. The two
relevant parameters in the internship are the booking maximums and minimums.
Other parameters such as the overbooking percentage or the yield can be set as
well. Normally these parameters are set by the RMS when the flight is optimized.

A flight is created 1 year before its departure. During this year bookings and
cancellations can be performed. Not all the classes are available during the flight’s
life. Some classes are available just in the last minute or some others just during the
first days. Depending of the number of bookings, a class may be opened or closed.
No bookings can be done when a class is closed.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 18

The maximum booking limit sets the maximum number of bookings that can be done
in a certain class. The sum of all maximums can not be larger than the cabin
capacity. When the number of bookings equals the maximum limit, the class closes.
To shut down a class the maximum limit is set to 0 (see classes H2, K2, S1 and M2
in the figure).

The minimum limit sets the number of seats which must be protected for this class
from all the other classes. If a class C has a minimum of 3, and 1 booking has been
made in it, 2 seats are protected from all the other classes.

Simplified view of the Altea Invenotry GUI Flight Structure and controls view

C: Cabin identifier.
S: Class and subclass identifier.
Yld: Price for the subclass.
MIN: Minimum booking limit.
MAX: Maximal booking limit.
Bkg: Booking counter.
Av: Availability.
OB%: Allowed overbooking percentage.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 19

Booking simulator

Overview

The booking simulator aims to see how the choice of inventory controls (in particular
booking limits imposed on booking classes) influences the total revenue of a flight.

To achieve this goal, the booking simulator:

� Simulates demand for a given flight using historical demand curves

� Submits this demand (booking requests and cancellations) and the booking

limits chosen by the user to the inventory system. The inventory decides
whether to accept or refuse the booking requests (depending on the booking
limits imposed).

� Receives the answer of the inventory and calculates the total revenue

according to the number of bookings accepted.

Interactions between the Simulator and the Inventory

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 20

Existing simulator

The booking simulator is the result of an internship which took place in 2004. It has
been developed by Nicholas Brenwald, who is now working in the FCT team. Many
interns have since worked on it adding new functionalities and improving the code.

Cedric Baxa optimized the simulation by creating a batch framework that was ran in
the inventory side. This was done in order to increase the performance of the
simulation response time.

Valerie Seguin made a study of overbooking techniques. She implemented an
overbooking module inside the simulator. She also added the functionality to send
cancellations to the inventory. As the internship of Valerie was not focused on the
simulator, just in the overbooking techniques study, she did not have time to
implement all the functionalities.

Inventory

(NGI)

Remote

User PC

Inventory

DB
Internal

calls

Booking

Simulator Simulator

Local DB

Invenotry SOA

Entry Point

Direct DB

Connections

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 21

Internship Objectives

The main objective of the internship is to port the existing simulator user interface
from Java Swing to Web 2.0 technology.

The existing simulator is basically an application coded in Java. However, some
functionality was implemented by PL/SQL scripts. This standalone application
communicates with the user through a Java Swing frontend. In order to work
properly, the simulator needs a local database to store some data. More technical
details are going to be described later.

The problem with the original simulator is the time one has to take in order to make a
first simulation in a fresh environment. There isn’t any deployment procedure
established as the simulator was an internship project.

To run it, it was necessary to download the source from a CVS repository and
compile it. A MySQL database server had to be installed onto the users PC. It had to
be filled manually with data extracted by an SQL script from a 3rd database. Once
everything was ready one could start to simulate.

With the new AJAX version the usability increases considerably. A single thin
browser is the only tool needed in order to perform simulations. Moreover, the
historical data of the already departed flights can be shared. A single local database
for each client is no longer needed.

In order to achieve the goals, a migration plan was created. Before establishing the
plan milestones, the original simulator had to be studied deeply to enable me to
make a good estimation.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 22

Existing simulator study

External Interactions

The structure of the simulator was described in documentation as follows (later on,
we will see that it was not really like this). The Java application has 3 different
interactions.

� On one side there is a Java GUI Frontend. This interface permits the
interaction of the end user with the simulator.

� In the same enviornment of the main application there is a MySQL database.
This is accessed through JDBC.

� The component object to study, the inventory, is accecced through its main
interface. This SOA interface is implemented with EDIFACT messaging. There
is an EDIFACT message for each service.

� Apart from the Inventory connection through EDIFACT, there is also a direct
connection to the inventory’s Oracle database. There are some functionalities
that were hard to perform using EDIFACT messages. To perform them, the
database was targeted directly. Later, it will be explained why this connection
was no longer useful and how we got rid of it.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 23

EDIFACT

EDIFACT stands for Electronic Data Interchange For Administration, Commerce, and
Transport. UN/EDIFACT is the international EDI standard developed under the
United Nations. EDIFACT has been adopted by the International Organization for
Standardization (ISO) as the ISO standard ISO 9735.

The EDIFACT standard provides

� A set of syntax rules to structure data,
� An interactive exchange protocol (I-EDI),
� Standard messages that allow multi-country and multi-industry exchange.

EDIFACT has a hierarchal structure where the top level is referred to as an
interchange, and lower levels contain multiple messages which consist of segments,
in turn consisting of composites. The final iteration is an element which is derived
from the United Nations Trade Data Element Directory (UNTDED) and is normalized
throughout the EDIFACT standard.

A group or segment can be mandatory (M) or conditional (C) and can be specified as
being repetitive. For example, C99 indicates between 0 and 99 repetitions of a
segment or group, while M99 signifies between 1 and 99 repetitions.

EDIFACT is used by Amadeus for intra-back-end communication and for GUI-to-
server communication. In this particular project EDIFACT was used between the
simulator and the inventory server.

When a simulator is run it starts by sending some bookings, cancellations and
configuration messages to the inventory.

The message above corresponds to a booking of a seat in an ariplane. The name of
the message is IEOTUQ (in red). Its version is 02 revision 1. The booked seat is
marked in blue. Flight BA 341, segment Nice – London Heathrow, on July 3th of
2008 at cabin G class P. In orange SEL denotes a booking. CAN would denote a
cancellation.

In order to generate and parse these messages each of them has an assigned
grammar. The grammar varies for each message and version. The same message
does not assure compatibility between versions.

Amadeus has a big database of all the messages it generates, receives or
cooperates with. There is a specific tool, Visual Edifact, used for accessing this
database.

UNB+IATB:1+1ANGUD+1ASIGUD+080703:0943+682T4M8YQR0049+00BH83JB750048++E'

UNH+1+IEOTUQ:02:1:1A+GURQY8M4T20049'ORG+1A+:NCE1A0955++++FR:EUR:FR+A043

9PGSU'TVL+030708::030708::0+NCE+LHR+BA+341:G+++P'RPI+1+SS'STX+SEL'IRV++

++::DID:26281'DUM'UNT+8+1'UNZ+1+682T4M8YQR0049'

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 24

Code analysis

In order to detect the components that the simulator consists of,
a source code analysis was performed. A static code analyzer
was used. It gives the developer an idea of how the code is
structured (layers, patterns, 3rd party components, etc).

Taking a look to the package tree the application seems well
divided and structured.

Using STAN, a code analyzer, the dependency map below was
drawn. Each connection between two nodes represents a call
to a function. The number in each link represents the number of
calls.

The red connections represent the couplings. They should not
be present in a well designed code. At the moment there are 6 couplings with 38
methods involved.
According to the results, the application did not seem to follow any design model.
Without a clear design model, it would not have been possible to cleanly extract the
GUI and replace it for another implementation. This was the first milestone to be
achieved.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 25

Code Pollution Analysis

Using the same piece of software a pollution diagram was generated. It gives an
overview of the packages, classes, and code status. The code defects are painted in
warm colours, such as red. The better the code, the colder the colour. Good code is
one which has a blue and green chart only.

As we can see in the pie chart, the main problem was tangling. Tangling is produced
by coupling between classes.

The second main problem is the flat package dependency. The average component
dependency between packages is related to it as well. That is due to the package
grouping of classes without a previous design. The packages do not follow a
hierarchy and, as we can see in the diagram above there are many calls from one to
another.

Another problem is the average absolute distance and the lack of response for a
class. That denotes a bad organization of methods among classes. Too many
different class method calls are needed to resolve a single functionality.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 26

Functionalities

After running some simulations and making some tests, we discovered that there
were some functionalities missing. The inventory max and min controls were not
properly applied to a flight during its life. This was documented in the last intern’s
documentation, so, the fix/addition of this functionality became a requirement.

Apart from this, the inventory server seemed to respond to the bookings and
cancellations and the frontend presented some charts with expected revenues.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 27

Current navigational diagram

Windows details

Login window

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 28

Flight Selection

Progress bar

Main view

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 29

Components

Basically the components of the simulator can be explained in the figure below. The
GUI part is composed of java swing components attached to the Amadeus
framework frontend. The data access layer contains connections to the relational
databases and to the inventory. The business logic connects both parts and is in
charge of performing the simulation logic.

Figure X

Amadeus Framework

It is a java middleware component that deals with the presentation layer and with the
data access layer. It allows the programmer to concentrate on the business logic (the
important part of the application).

The Amadeus Framework handles authentication by providing an advanced login
screen. The programmer has to implement its own desktop according to its needs.

As the user has to authenticate in order to connect to the desktop, the Amadeus
Framework creates a connection object called a conversation. This conversation can
be used by the programmer to send and receive message from the inventory.

JDBC

The database access part of the simulator consists of two parts: one that connects to
the local MySQL database and another that connects to the inventory database.

The first uses the MySQL JDBC driver. The only drawback is that all the queries have
to be isolated in the data layer. In the current code the GUI components access the
database directly.

The second uses the Oracle JDBC driver. This dependency had to be completely
eliminated. The inventory had to be accessed though the EDIFACT interface as the
database structure can change without previously warning and could cause critical
errors that would leave the simulator useless.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 30

Simulator Logic

The simulator logic is the tangled part. It consists of Swing forms, SQL queries,
simulation algorithms, statistical distributions and EDIFACT messages.

It is possible to distinguish the business core from the tangled simulator logic. It is the
part that is purely simulation logic.

Conclusions

The conditions of the existing simulator are not the optimal to perform a clean GUI
migration. The following problems were identified:

� The code does not follow any architecture or design pattern.
� The direct access to the Inventory should not be there.
� The calls from the presentation to the local DB should not be there.
� The inventory controls modification is not implemented
� There is not a centralized place where to configure the simulator
� There is not a logging framework

All these ments give a list of tasks that should, or could be done to ease the
migration of the presentation layer.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 31

Project planning

Main tasks

Once the objectives of the internship were clearly defined, a migration plan had to be
drawn. This plan was very similar to any software engineering project plan with some
differences. The requirements analysis is not so important in a frontend migration
because the requirements were already defined in the previous simulator.

The timeline of the project was restricted to the length of the internship: 6 months.
One person, me, will be working on the project. Moreover I was assigned a tutor,
Patrick, that gave me technical advice on Amadeus middleware and other, more
general aspects of the software development. I was also assigned a team leader that
tracked my evolution on the project, Benoit. Periodically I had to inform him, the
manager of the department about the advances of the project.

In France the number of weekly working hours varies depending on the contract.
Amadeus employees work 37.5 hours per week. From February 4th until July 31st
there has been 26 weeks. In this period there have been 5 holidays so in total the
number of hours planned to accomplish the project is 940.

The main project milestones defined have been:

� Existing simulator study
� Development plan definition
� Development
� Testing
� Packaging Deployment
� Documentation

It was hard to say how much time these tasks would last. In order to concretize and
make a time-estimation some tasks had to be done beforehand. The existing
simulator was studied during 2-3 weeks and a requirement document was written.
The existing simulator study is the one that was shown in the previous chapter. The
requirements are presented in the next section.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 32

Requirements

Front-End Portability

This was the main task to be performed. In order to cleanly migrate the frontend, a
simulator redesign was required. To carry out the portability several tasks had to be
planned. Before starting the developing process, some architectural decisions had to
be taken.

� Suitable web server.
� Web developing framework or library.
� Chart generation libraries

Those technologies depend on the original simulator and may have some
dependencies themselves. For example, the use of one technology for the web
server could avoid using a developing framework. That will be studied and discussed
further on.

Simulator Logic redesign

The simulator logic had to be redesigned before the frontend migration. This task
was important to avoid errors. It was also good to follow the MVC (model, view,
controller) pattern for portability, extensibility, robustness, debugging and other
software properties.

The main tasks are the following:

� Apply architecture and design patterns
� Get rid of the inventory Oracle DB connection.
� Remove GUI direct calls to de local database.
� Refactor source code and create a configuration framework
� Creating a logging framework

Inventory Controls feature

The inventory controls were not sent to the inventory whilst running the original
simulator. They had to be sent manually and can’t change during the flight life.
Implementing this functionality will make the simulator functional again.

Multi-client concurrency policy

The web-server application will allow several users to interact with the simulator. This
can lead to some concurrency errors because just one simulator can be run at the
same time. This problem arises from the NGI server dependency. The original
simulator actually changes the system date of the server. If many clients run parallel
simulations, this could possibly lead to interference between those simulations. The

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 33

original simulator did not support various simulations at the same time. That could be
solved by locking the queries when a simulation is in process or developing some
kind of queuing mechanism.

That was not the main point of the internship so that task became optional. In order
to prevent errors a default locking policy was developed.

Requirement dependencies

Both the frontend portability and the control features depend on the business logic
redesign.

Frontend Portability

Business Logic Redesign

Inventory Controls Feature

Multiclient concurrency policy

<<depends>> <<depends>>

The frontend migration could have been carried out without the redesign, but the
simulator would not have been very extendible, scalable or reusable. There would
have been serious problems for debugging and for adding or modifying
functionalities.

The addition of the Inventory Controls feature could have been implemented before
the redesign. We discarded this option because after implementing it, it would have
had to have been adapted to the new design.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 34

Timing

In the project there are basically 6 main steps; each of them can be divided into
smaller, more manageable tasks:

� Simuator study
� Rerun the old simuator: Check-out source code from CVS repository.

Build Simulator from source code. Configure simulator and connection
to Inventory. Install a mySQL instance. Fill the database with historical
data of departed flights extracted from a production environment.

� Study the functionallities of it and its internal design. Manual study and
perform static source code analysis.

� Make a development plan

� Requirements document elaboration and timing
� Web framework study: Choose a technology to implement the

presentation layer.
� Design and architecture.
� Preliminary visual design. High level graphical design of the screens.

� Development process
� Environment setup: Prepare the development tools as well as the

development enviornment (servers and databases).
� Layout and page development: code the presentation layer with its

interaction logic.
� Redesign and refactor.
� Functionallity integration: connect the presentation with the business

layer. Integrate the missing features identified during the simulator
study.

� Testing and bug fixing

� Test cases: Unit tests, non-regression tests
� Functional tests: Test scenarios

� Packaging and deployment
� Define installation procedures and create scripts.

� Documentation
� Javadoc, Presentations, Installation document, Final Report

The tasks were sized in time in the Gantt Diagram of the next page. The project had
a one month delay margin.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 35

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 36

Ajax Framework Study

Before defining the architecture of the new simulator there was a missing step. This
one was to choose a web technology to develop the presentation layer. This
technology is key to the portability. This decision defines the component organization
and the new structure of the simulator.

If we chose a technology like php + mysql we would need a web server like apache
that deals with php extensions and a mysql server. If we chose something like
ASP.NET we would need the Microsoft Internet and Information Server with the .NET
Framework. A Java web technology like JSP or JSF would require a Servlet
container and and/or application server.

The main requirement is that the platform/framework/technology used must be AJAX
based. A study of AJAX frameworks was carried out. Afterwards the most suitable
frameworks were selected and studied in detail and a decision was taken.

What is AJAX?

According to Wikipedia: “AJAX (Asynchronous JavaScript and XML), or Ajax, is a
group of inter-related web development techniques used for creating interactive web
applications. A primary characteristic is the increased responsiveness and
interactivity of web pages achieved by exchanging small amounts of data with the
server "behind the scenes" so that the entire web page does not have to be reloaded
each time there is a need to fetch data from the server. This is intended to increase
the web page's interactivity, speed, functionality, and usability.”

Summarizing, AJAX is not a programming language neither a single technology. We
could define it as a technique or a mash up of techniques. It is possible to program
raw AJAX applications. Raw means to program it from the scratch: dealing with the
connections and its protocols from the javascript side and handle directly DOM
elements. Even if it is possible, it is a tedious not very productive task. Depending on
the need of each developer/application, an implementation of AJAX will have to be
chosen in order to develop a rich internet application. Also called as RIA, the rich
internet applications are the web sites developed under AJAX technologies.

There are thousands of AJAX implementations. These depend on the programming
language, the abstraction level, operative system, browser, programming paradigm
etc. We could group them in the following types:

� Direct AJAX
� AJAX Components
� Server-driven Frameworks

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 37

Direct Ajax Frameworks

These frameworks require the expertise of the developer with HTML, CSS and
Javascript. The framework API deals directly with HTML elements. Normally are used
to enrich dynamic web applications that have not been designed to support AJAX
and for simple solutions.

The most common direct Ajax frameworks are also so-called JavaScript libraries.

Ajax Components Frameworks

These frameworks offer pre-built components, such as tabbed panes, calendars,
menus, etc, which automatically create and manage their own HTML. Components
are generally created via JavaScript, XML tags or by adding special attributes to
normal HTML elements. These frameworks are generally larger, and intended for
web sites rather than web applications.

Some component frameworks require the developer to have extensive
HTML/CSS/Ajax experience and to do cross-browser testing. For example, grids,
tabs, and buttons may be provided, but user input forms are expected to be authored
directly in HTML/CSS and manipulated via Ajax techniques. Other frameworks
provide a complete component suite such that only general XML and/or JavaScript
abilities are required.

Server-Driven Frameworks

Components are created and manipulated on the server using a server-side
programming language. Pages are then rendered by a combination of server-side
and client-side HTML generation and manipulation. User actions are transferred to
the server through asynchronous connections, server-side code manipulates a
server-side component model, and changes to the server component model are
reflected on the client automatically.

These frameworks offer familiarity for server-side developers at the expense of some
degree of power and performance.

There are Ajax frameworks that handle the presentation layer completely within the
browser. These offer greater responsiveness because they handle many more user
interactions without server involvement.

On the other hand in a server-driven model, some UI interactions may cause many
network requests. Furthermore, server-dependent Ajax frameworks will never be able
to offer offline support.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 38

AJAX framework categories comparison

 Direct Ajax
Ajax

Components
Server-Driven

Client/Server Side Client Client / Server Server

HTML, CSS, JScript skills needed High Medium None

Abstration level Low Medium High

Direct XMLHttpRequest manipulation Yes No No

Cross-browser testing needed Yes Yes No

Reusability Low High High

Developing Time High Medium Low

Data-Transmision Overhead Low Medium Medium/High

Client-side Overhead Low Medium/High Depend

Maintainability Cost High Medium Low

Need of an intelligent server No No Yes

High level language programming No No Yes

Personalization of components High Medium Low

Analysing the table it was possible to make a better decision on what kind of platform
was the most suitable to use.

Direct Ajax frameworks are the most efficient both in consumed resources and
resources needed to deploy the application. On the other hand, a high level of
technical skills, are needed to develop this way. The maintainability cost is very high
and the reusability of the code is practically inexistent.

In contrast Server-driven frameworks need more server-side resources but are very
user-friendly to use. The applications are coded in a high level language. This
enhances the reusability and maintainability of the code. The learning curve for this
kind of framework is much lower for an experienced Java Swing developer.

Between both categories there are the Ajax-components. They are normally used to
add Ajax functionalities to static/non-Ajax web applications. Some are closer to the
direct-Ajax platforms others are closer to the server-driven ones. Normally basic to
medium skills in HTML, JS and CSS are needed to use these frameworks. Thus, the
learning curve is higher and the maintainability as well. The reusability is high
because of the isolation of components. Normally these platforms are a mix of
technologies and do not follow standards.

As discussed, the set of frameworks that suits better the migration needs is the
server-driven. The original simulator was developed using the Java programming
language. Most of server-driven frameworks use java as the main language so it
enhances the plug-ability of the GUI. The most important requirements needed for
the application are reusability, maintainability and productivity. Server-driven is the
category that best balances these requirements.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 39

Server-driven Framework Implementations

Basically there are two kinds of server-side frameworks. The firsts handles the
presentation completely from within the browser. No server interaction is needed for
the presentation logic. This gives a high grade of responsiveness but makes the
client very heavy because big libraries are loaded into the client browser. These are
so-called thick-clients. The bandwidth overhead is low because a connection is not
needed for each user interaction. On a server failure, presentation logic would keep
working.

On the other hand there are the server-dependent frameworks. Few libraries are
loaded on the client converting it into a thin-client. Every interaction with the UI needs
a connection to the server and it decides what to do. The view state is stored and
handled in the server. The set of operations to be performed is broader because the
server provides a more advanced programming environment than a web browser.

In order to keep the dependencies of the simulator and not to add new ones, the
technologies studied have been limited to the Java based ones. Seven frameworks
have been chosen: ThinWire, GWT, Echo, WingS, ZK, ICEFaces and Flex. Flex and
GWT handle the presentation from the browser and the others are server-dependent.

GWT: Google Web Toolkit

A very popular framework built originally for developing Google’s applications.
Applications are coded in Java and transformed into web pages using a compiler. It
is basically a Java-to-JavaScript compiler that generates HTML and JS code. The
code generated does not necessary need to interact with the server. The applications
can be deployed in a static web server. The programming capabilities are low
because the compiler is reduced to a subset of java 1.4 objects.

The applications developed are distributed. They need another layer to provide the
data source, for example a web service. That implies security issues and the addition
of new components.

The GWT community is large and the product is stable. By default there are not many
widgets but there are well known extension libraries that provide a large amount of
them. The productivity is high but the learning curve is low.

Flex

It is the Adobe RIA (Rich Internet Applications) builder. It is based on the flash
technology. The coding is done through a visual editor that generates xml code. It is
compiled and converted into flash applications.

The developing is very fast and is targeted to the presentation layer. The code on the
server side has to be done using another technology like a Servlet, PHP or ASP.
Basically the Flex application retrieves a XML file with all the data needed from a web
service provided by the technology chosen.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 40

There is a large community and there exist plenty of built-in widgets and controls.
The implementation would be done with JSeamless. It is a Java wrapper for the Flex
frontend.

Echo2, ThinWire, WingS

These three frameworks have much in common. All are server-dependent based on
events and action listeners. The model is very similar to Java Swing, in the event
handling and the layout and component managing. The coding is done entirely in
Java. The application is deployed into a Servlet container. Functional and eye-candy
applications are easy to develop with this kind of frameworks. The programming
environment is uniquely Java-based with all the capabilities of the language.

The drawback is that these frameworks use a swing-like event driven model but this
is not really compliant with the standard. The separation of the view and the
controller (MVC pattern speaking) model has to be done manually, is not forced by
the framework.

The differences of each framework are not big. The study in this case is the quantity
of widgets, the documentation, the community and support. There is a lack of them in
some cases due of the immaturity of the framework.

ICEFaces, ZK

Both are based on template models. There exists a separation of the view and the
controller. The view is an XML file that is handled as an object by a java controller. In
ZK the template view is based on the XUL (Mozilla standard) components. In the
ICEFaces case the templates are based on the Java Server Faces (J2EE Standard).

The reusability of the code is high in both view and controller side. That’s because
they have plenty of widgets and controls ready to use.

JSF is supported by Sun. It has lots of documentation and a big community. There
exists visual plug-ins for the major IDEs. These allow the programmer to design
impressive interfaces, drag-and-dropping elements into the layout.

On the other hand ZK is more immature and does not have any visual editors.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 41

Comparative tables

Framework Developing
languages Deployment Debug

Browser
plugins
needed

GWT Subset of Java 1.4 Java to JS compiler,
no servlet cnt. needed

Browser
plugin No

Flex XML, JS + Server
Side Tech.

Depend on the server
side tech.

Eclipse,
Flex Builder

Flash
Player

Echo 2 Java >= 1.4.2 Servlet container Java IDE No
WingS Java >= 1.5 Servlet container >2.3 Java IDE No

ThinWire J2EE >= 1.3 Servlet container Java IDE No
ZK Java, XUL, ZUML Servlet container >2.3 Java IDE No

ICEFaces Java, JSF, XML Servlet container Java IDE +
Plugins No

Framework
Application

Server
Needed

View-State
Storage

Side

Exposed
code to
client

Documentation
available

Quantity of
available

controls/widgets
GWT No Client Yes High High (not native)

Flex Depend Client Yes, but
compiled High High

Echo 2 Yes Server No Few Normal (not native)
WingS Yes Server No Few Normal

ThinWire Yes Server No Several Normal/High
ZK Yes Server No Several High

ICEFaces Yes Server No High High

Framework Weight Window style /
Layout

Embedded
browser
support

Security
Control Licence

GWT Heavy (
>350kb) Docked Special Low Apache v2

Flex Heavy (Flash
bin + data) Free If supports

flash None MPL v1.1 &
Propertary

Echo 2 Light (N/A) Docked/Floating N/A N/A Mozilla v1.1
WingS Light (N/A) Docked N/A N/A LGPL v2.1

ThinWire Light (35kb
shared JS) Docked/Floating Yes High LGPL

ZK Light (N/A) Docked Yes External
Component GPL

ICEFaces Light (N/A) Docked Yes Highest Mozilla v1.1

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 42

Framework Table Tree

ThinWire

GWT

Echo2

Not provided

Wings

ZK

ICEFaces

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 43

Framework Date Picker Chart

ThinWire

Not provided

GWT

Echo2

Wings

Not provided

ZK Not provided

ICEFaces

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 44

Statistics from Google Trends

These statistics should not be taken as a decisional factor just as information about how
market looks. The Y axe represents the number of queries in Google for the
correspondent keyword. The frameworks that are not shown do not have enough results
to appear.

Statistics of Google Search engine results

0

200000

400000

600000

800000

1000000

1200000

1400000

Z
K

 A
ja

x

IC
E

fa
c
e
s

T
h
in

W
ir

e

E
ch

o
2

A
d
o
b
e

F
le

x
2

G
W

T

W
in

g
s

The Y axe represents the number of results in google for the corresponding query.

These charts give an idea of the most popular platforms in the market. Polularity usually
means more doumentation, examples and support.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 45

Choosing a Framework

Why were GWT and FLEX rejected?

As explained above GWT and Flex are two frameworks that handle the presentation
in the client side. That makes the browser manage much information and may reduce
responsiveness. Moreover it makes the application less scalable.

Another drawback is that these are distributed applications that need a server side
framework apart of the technology itself.

Coding in GWT is done entirely in java, but with Flex there are several new scripting
languages and templates such as ActionScript.

These are the reasons why we choose not to use these frameworks.

The best of each category

Frameworks that use templates are ZK and ICEFaces. The other three, Echo,
ThinWire and WingS are event based and coded purely in java.

The advantage that templates offer is that they force the developer to separate the
view from the controller. The templates are coded in XML. ZK follows the XUL Mozilla
standard and ICEFaces follows the JSF Sun standard. This enhances the reusability
of the widgets/controls produced. That is why these frameworks have a larger set of
built-in available widgets to use. On the other hand the layout of the pages is also
managed using templates. This makes it depend directly on HTML and developer
defined tags. In ICEFaces, everything is XML compliant but one may find HTML,
JSP, JSF and ICEFaces tags in the same template.

Between ZK and ICEFaces, the second wins the duel. JSF is broadly extended
standard on the java community. In contrast, XUL is not that extended in web
developing. Mozilla Firefox uses it to handle its presentation layer and it has not
popularly spread in other fields. The chart below gives an approximate image of the
popularity of both.

.
Templates are difficult to debug and to check for its correctness. Are also difficult to
maintain cause the lack of extensiveness.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 46

In the side of purely java coding style frameworks, the developer does not have to
deal with XML templates. The code is written entirely with the same language. That
eases the maintainability of the application. The separation of the view and the
controller, the MVC pattern, is not forced by the technology but it is the responsibility
of the developer whether to use it or not.

All these frameworks are built over a Servlet layer belonging to a Servlet container.
Taking a look to the component diagram of ICEFaces one can see that it deals with a
lot of components. The layers have been added as long as the web developing has
been advancing until the arrival of web 2.0 with AJAX and rich components.

The same architecture diagram on an event-based framework is much simpler. By
the other hand this component has been coded from the scratch thinking in the web
2.0 needs directly. It has not been an extension of a previous technology that could
not satisfy the current needs.

These diagrams do not take in consideration the request and responses below the
Servlet that are coded in HTML, CSS, XML or JSON and JavaScript. This gives a
picture of the complexity of such a framework.

Between the three event-based platforms: Echo, Thinwire and WingS, it is hard to
decide which one is the best, taking in consideration our needs. Both three are quite
recently emerged frameworks. Taking a look to the previous comparison table it is
possible to see that the documentation of both is not very big. There is a lack on
Echo2 and WingS. Regarding the quantity and quality of built in widgets ThinWire
wins the prize. Echo2 also have many widgets but are part of an external library.
ThinWire also have support for embedded devices and the security has been taken
into consideration in the design of the framework. The most popular of the three is
ThinWire followed by Echo2 and further WingS.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 47

ICEFaces vs ThinWire

The framework that fits our needs in the templates caregory is ICEFaces. In the
event-server-driven model ThinWire emerges.

ICEFaces ThinWire

Complex platform Simple platform

Up-Down Layer Overhead Low Overhead

Maturity Immaturity

Tons of documentation Some documentation

Big community Small community

Follows JSF standard Does not follow any standard

Uses templates Does not use templates

Deals with Java, Servlets, XML,
HTML, JSP, Faces and ICEfaces

Deals with Java, Servlets and
ThinWire components

High learning curve Low learning curve

Can be ported to another JSF
based framework Cannot be ported

Harder to portate from a Swing-like
application

Easier to portate from a Swing-like
application

Needs more server resources Needs few resources

Depends on many libraries Does not depend on many libraries

Have a visual GUI editor Have an immature visual GUI editor

Comparing both there is a shock between productivity and maturity. Finally, with the
advise of the members of the team, ThinWire has been choosen.

The main reason is that migrate a swing application into a swing-like event and
component one is much easier than reenginer all the logic of the presentation that
would have to be done with ICEFaces.

Appart of it, as an internship or final project, is more interesting to work in a cutting-
edge technology reather than a well-know broadly-used one.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 48

Architecture plan

Review

The Architecture that we were aiming for is represented in the following diagram.

Simulator Logic
Curves

database

EDIFACT

messaging

CLIE�T

SERVER

Browser user

interaction

REMOTE
Inventory server

Inventory Interface

HTTP Server

Frontend Logic

Implementation

That can be achieved with the chosen technologies that are described in the table.

Component Technology
Java Virtual Machine Sun Java Virtual Machine version 1.6

HTTP Server Tomcat Servlet Container 6.0.16 with
Servlet Specifications version 2.5

Frontend Framework ThinWire 1.2 RC2

Local Database MySQL 5.0 and Oracle

Local Database Interface JDBC MySQL and Oracle Java Driver

Inventory Interface JAPI Amadeus Driver

Charts library JFreeChart

Testing JUnit 4.1

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 49

Components view

The components that are involved in the original simulator, separated by layer, are the
following.

The new component architectural plan is to separate the piece of software in 3 layers as in
the diagram above. In the fourth layer there are represented the data storage services.

ThinWire

JDBC Amadeus JAPI

Local DB Inventory

 Presentation

Layer

 Model Layer

Data Access

Layer

Data Storage

Layer

Data Access Logic

Business Logic

GUI Logic

ThinWire is the Ajax Framework chosen for implementing the web-interface. It is located on
the presentation layer, interacting with the GUI logic.

In the model layer there are the model classes that build up the simulator logic.
Consequently the functionality tests have to be located in the same layer, so as not to
produce unwanted dependencies.

In the data access layer there are classes dedicated to query the data from, and to the
different storages. Accessing the local database is done through the JDBC interface. To
access the inventory the Amadeus JAPI middleware library was used. This approach is
different from the original simulator that was using the Amadeus Framework for handling the
communication. Amadeus Framework will no longer be used because it was only providing
UI support.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 50

Communication between layers

In order to have the application correctly separated into 3 layers the communication between
them has to be engineered. In the diagram above a communication between layers map has
been drawn.

That design enhances the portability, changeability and maintainability. The only
disadvantage is that it increases the overhead slightly. However its impact is minimal.

Business Layer Facade

Presentation

layer

Business

Layer
Class 1 Class N. . .

Class 1 Class N. . .

Data Layer Facace

Class 1 Class N. . .
Data Access

Layer

Local DB

JDBC MySQL Driver JAPI Amadeus Component

Data LayerInventory

Highlighted aspects of the 3-layers separated by façade controllers:

� Entry point in the presentation layer
� Up to Down communication
� Isolation of layers through façade controllers
� Free communication of classes in the same layer
� Common classes named, helpers shared with all the layers (not on the diagram)
� Conceptual isolation of the responsibility of each layer

 The data transmission between layers will be handled with the creation of a BOM (Business
Object Model) that will represent all the treated data. In the original simulator, there is a
minimal BOM and the transmission is done with various Java simple structures.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 51

Design plan

Redesign

The following figures give a snapshot of the state of the original simulator. The packages are
represented as brown squares and the classes are green circles.

As the full class structure is a bit confusing this
table maps the packages into conceptual units.

These conceptual units are easier to understand because the name reflects the function of
the mapped packages:

� Configuration: The environment variables and database parameters are coded there.
� BOM: Business Object Model, classes that encapsulates the information
� DB Access: Classes that manage the connection to the local DB and to the Inventory.
� GUI: Views and Amadeus Framework integration
� Output Manager: Interface to print debugging data to the console
� Business Logic: Simulation algorithms
� Unconstrainer: Unconstraining algorithms
� Utils: Helpers to perform different tasks
� Unit tests: Test that check the functionality of the business logic.

Package Conceptual unit

bookingSimulator Configuration

bom BOM

databaseBuilder DB Access

entry Unit Tests

factory Unconstrainer

gui GUI

outputManager Output Manager

simulator Business Logic

utils Utils

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 52

All the packages were tangled and coupled, as shown by the diagram below. The red lines
represent the couplings. The number identifying each line is the number of calls from one
package to another.

This created the need for a redesign of the package structure: GUI to be separated and put
in to a special package.

The Business Logic to be merged with the Unconstrainer Logic. Together with the Utils
package it will form the Business Layer.

In the Data Layer, two main packages appear from the DB Queries original one. One to be in
charge of managing the EDIFACT messages handled with JAPI. The other is to manage the
local database using the JDBC interface implemented with the Java MySQL driver.

The Helpers are the packages accessible from all the classes and allow the communication
between layers. This is the function of BOM. The Configuration package is where all the
parameters are set and factorized. Is a place to centralize the managing the settings of the
application. The Output Manager is the package in charge of printing the information that the
application outputs into different channels. The channels might be the standard output, log
files, presentation layer, among others.

Program exceptions to be treated uniformly throughout the application. This was not done in
the original simulator, and so makes debugging hard.

The diagram located in the next page gives an overview of the new restructuration.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 53

 BOM

Config
manager

Log
manager

GUI

Business
logic

Business
utils

Inventory
Comm.

Local DB
Comm

Helpers

All the packages have the dependency of the Helpers.

In order to restructure the package, several tasks had to be performed. The bullets below
unify all the tasks that had to be done.

� Separate the data layer into inventory and local database access. (1)
� Place all the queries to the inventory and to the local database found in the

presentation and business layer in the corresponding package. (1)
� Translate the direct SQL queries to the inventory into EDIFACT messages. (1)
� Create the business layer façade (1)
� Merge the simulator logic and the unconstrainer logic and make a unified package

called Business Logic. (2)
� Create the data access layer façade (2)
� Extract the common functions in the Business logic and place them in the Utils

package. (3)
� Unify the exception treating procedure for all the application. (3)
� Unify the Output Manager. Replace the standard outputs. (3)
� Create the configuration manager and factorize the configuration variables. (3)

All these tasks lead to a clean design ready to extend and migrate. There are tasks that are
more essential than others, illustrated in the following way: 1 essential, 2 necessary, 3
recommended

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 54

 Presentation layer design

The presentation layer will follow the MVC pattern in order to handle the view events.

The ThinWire elements organization will be done according this hierarchy.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 55

Every elements has to be assigned to a ThinWire component from the suite of
components it provides.

The diagram below is the structure of packages of the presentation layer. On one
hand, there is the GUI package that is composed of views and resources. A View is
where the components of the previous diagram and its interactions are placed.
Resources are used to store graphical components such as images, style sheets,
xml files.

On the other hand there is the controller package. It is in charge of the
communication with the business layer. It isolates and factorizes the functions. This is
the package that handles the view state.

ThinWire Components
and Layouts

Resource
s

Chart

JFreeCh
art

Controller Actions

Business
Layer

This design tries to be compilant with the MVC presentation pattern model.

Control
ThinWire

Implementation

MainContainer Panel

MainMenu Menu
SimulationsTab

Panel TabFolder

SimulationsTab
Sheet TabSheet

ClassTree
Navigator Tree

Class Viewer Panel

OutputTable GridBox

InputTable TabFolder

GraphVisualizer TabFolder

Control
ThinWire

Implementation

InputTableSheet TabSheet
GraphVisualizer

Sheet TabSheet

Sign In Dialog

Flight Selection Dialog

Progress Bar Dialog

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 56

Current functionallities

Making a simplification of the simulator there are the following views:

The connection screen is named: SignIn
The simulation selection screen is named: FlightSelection
The progress bar is named: ProgressBar
The output statistics table is named: OutputTable
The input settings table is named: InputTable
The navigation tree is named: ClassTreeNavigation

The names are equivalent with the ones in the Presentation Layer design on page 9.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 57

SignIn
Parameters: Office ID, Sign, Duty Code, Connection IP, Port
Buttons: Clear, SignIn, Exit
These parameters are necessary to establish a connection. The current

parameters have to be saved in order to remember them the next sign up.
Different sign in procedures might be implemented. The connection will be done

directly to the server without passing through the SI service.

FlightSelection
Parameters:

Load factor, range from 1 to 100
Number of trials
Flight Selection, it has to be filled with all the different flights in the local

database that are able to be simulated.
Button: Simulate

ProgressBar
Button: Cancel, cancels the current simulation
The progress bar has to be updated meanwhile the simulations run. This can be

done using server-push, the server notifies the simulation state to the view. It can
also be done from the view, asking the state of the simulation to the model. The first
option is more realistic but creates a not needed dependency.

OutputTable
Table containing these fields: Segment, Cabin, Booking class, Average fare,

Mean of bookings, Variance of bookings, Mean of rejected, Variance of rejected,
Revenue.

That table is filled with data obtained from the simulation. It can only be showed
after it. Depending on the selection done in the ClassTreeNavigation the information
about the revenue of a class has to be shown or not.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 58

InputTable
Two input tables containing the booking limits for each class. The tables are

separated with tabs. One set the booking minimums and the other the booking
maximums. These values can be fixed along the DCP timeline.

ClassTreeNavigation
Tree control that allows to walk along the different classes and cabins of a

concrete flight.

Level 1: Airline Code + Flight Number
Level 2: Segment
Level 3: Cabin code
Level 4: Class code

The tree controls the OutputTable results.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 59

Implementation

Working with Visual EDIFACT

Visual EDIFACT is an Amadeus tool that allows searching definitions in the EDIFACT
corporate message repository. It allows querying all the versions of the messages
stored and the descriptions of each field.

Screenshot of Visual EDIFACT showing the structure of the message IEOTUQ and the
flightNumber field selected.

Another interesting feature is that it is possible to store the grammar definitions in an
XML file. This XML file is then used to generate stubs and skeletons for different
programming languages. This makes the programmer not having to deal directly with
EDIFACT thus the abstraction that C++ or Java classes provide.

A complementary tool is EDI Editor. It transforms a plain EDIFACT message, plus the
definition of the grammar it has been encoded with, into a readable format. The
values can be modified visually and re-encoded. This is very useful when one has to
manually send messages to a server in order to try some functionality.

Amadeus has developed this tools because all the communications are based with
EDIFACT. This is compulsory knowledge to know when one gets into the Amadeus
subsystems.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 60

Booking Simulator Messages

The booking simulator deals with 8 different types of messages divided into 4 queries
and 4 responses. Each query has its corresponding response. Normally the queries
end with the letter Q and the responses with R.

IEOTUQ
End of Transaction Request Message: Allows making a booking or a cancellation of
a determined class belonging to a flight date. It returns a IEOTUR message that
contains the success of the message.

IINVRQ
Stands for Inventory Request: Given a flight-date returns a IINVRR message
containing the flight structure for it. It has all the classes structure with its
corresponding inventory controls.

IFLIUQ
Stands for Inventory Flight Update Query: Permits changing the inventory controls
retrieved with IINVRQ. Returns a IFLIUR messages containing illogicalities in the
controls, if there are.

ADMREQ
Allow to change the internal clock of the inventory server. This message is used to
change to simulate that the messages has been sent in the past. Returns an
ADMRSP confirmation.

The grammars for the usage of the message inside the Java application has been
generated with Angel, the Amadeus grammar generator. It generated the stubs and
skeletons to set the data to the outgoing messages and retrieve it to the ingoing
ones.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 61

OTF Framework

The OTF Framework is the core of Amadeus. It is where all the messages are
processed. It consists of a distributed application with different modules. In order to
test the simulator I just needed the FLD (flight date) and INV (inventory) modules.

I had to download the code from the CVS and build the framework in the local Linux
machines. After that I had to fill the database of the framework with some testing
data. This data was basically flight dates with its flight structure and pricing. Once
running I was able to target this instance of the inventory from the simulator.

To check whether a message has been sent successfully to the Inventory or not, the
logs of the OTF framework have to be checked.

Deployment scripts

After finishing the code part everything had to be put in place. The binary generated
by Eclipse (the development tool used) was a WAR file. This is a compressed file that
contains a Servlet definition. Inside this Servlet, there are all the simulation
interactions. This file is meant to be put in the tomcat directory. Once it is put there,
when the first tomcat instance is run, it is automatically deployed and put online.

This simplified a lot the deployment task. The installation script takes the code from
the CVS, compiles it and puts it in the Tomcat directory.

There is start-up and a shut down script too. The start-up script launches the tomcat
instance. If it is the first time, it will deploy the simulator Servlet into the
corresponding context. After, the simulator is accessible from the web. The shut
down script cleans the simulator environment and stops the tomcat server.

Apart from that, all the specific parameters can be tweaked in the simulator
configuration files and the tomcat configuration files.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 62

Test Cases

The framework used for automated testing of the Booking Simulator is JUnit 4. It can
easily be integrated in to every Java project and there is plenty of support from the
community. Most development IDEs (i.e. eclipse) provide integration tools for JUnit.

The main problem with the test cases is that the simulator interacts with non static
components such as the Inventory. Moreover in order to perform simulations random
numbers are used.

The random numbers issue has been solved by applying a fixed seed into the
random number generation engine. For testing purposes it is possible to fix it. For
simulation purposes the time is used as a seed.

The problem of the variance of the answers of the Inventory server can be solved by
hard-coding the response of the messages in Test Tool Server. This response has to
be validated manually before assuming it is a valid one. In order to validate the
correctness some automated test cases can be defined as well.

Two kinds of tests have been defined, automatic and manual. The automatic tests
(so-called unit tests), as the name suggests, can be automated. They do not need
human interaction to indicate whether a test has been successful or not. These tests
can be assembled together in a suite in order to create a non-regression framework.
The tests are executed periodically and indicate if there have been any regressions
in the program.

The manual functional tests assure the correctness of behaviours that can not be
checked by a computer and thus the results have to be interpreted by an analyst.
Even a person that is familiar with the subject would have problems to determine if
the results of the simulation are as expected. This has been solved by defining some
tricky scenarios and describing its expected results. If one wants to assure the
correctness of the simulator, one has to simulate these scenarios and compare the
obtained results with the described ones.

Both unit tests and manual scenarios are included in the appendix.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 63

Unit tests organization

The automatic tests are implemented using the Java Unit Test library. In the JUnit
framework there are 3 kinds of objects: Suites, Tests and Test Cases. It is a way to
have everything sorted hierarchally. A Suite is the main unit and contains different
Tests. A Test is the conceptual unit of something we want to assure. It contains
various Test Cases. The correctness of each one assures the correctness of the Test
itself.

In the booking Simulator the tests are organized as following:

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 64

Results

The migration was performed succesfuly. The functionallities were kept and in some
cases extended.

New simulation screen

View of the simulator’s configuration screen

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 65

Results screen

View of the simulator’s results screen

In the left there is the flight structure with its classes. In the bottom the bookings limits
can be modified with sliders. The curves above the sliders show the historical
demand curves that help to set up the limits. The main table contains the counters
(bookings, cancellations, rejections, revenue) for each class. The charts provide a
graphical representation of the revenues and the distribution of the bookings.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 66

Usability enhanced

The new version of the simulator is more usable. The installation process has been
eliminated. The only thing that the revenue analyst needs is a thin browser.
Beforehand the user had to deal with many components, such as middleware
binaries, the mysql database, etc.

Managing the simulator server is very easy, the server administrator jobs has been
drastically simplified. Some scripts were created for launching and shutting down the
application. If the application fails it can be restarted from the web. It does not require
direct access to the server. This is done through the tomcat servlet administration
web GUI.

Apart from the installation of the simulator there have been some other
enhancements. Smarter controls/components have been introduced like a calendar
selector for a flight date and an automatic file up-loader. Before, the date had to be
typed as the Amadeus standard for a flight date: YYMMDD and the historical data
uploading was done manually on the server side.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 67

One of the major UI enhancements was the implementation of a new way to set the
maximums and the minimums. Before, it was done manually with text fields. If one
wanted to shut down a class one had to set a 0 to all the text fields. In the new
versions there are some sliders to do that. Moreover they adapt automatically to the
users input.

Several simulations can be done from the same window. Each one is saved in a tab
and one can navigate from one to another in order to make comparisions. This was
not possbile before.

The last relevant new feature is the sortable table colums. It is interesting for the
analyst to sort the classes by obtained revenue, or by number of bookings.

Portability and reusability enhanced

These are the properties that a good architecture and design implies. Thanks to the
new 3-layers architecture, it would now be very easy to plug in another frontend. A
modification in the business logic does not impact the data or the presentation layer.

Beforehand the local database was running on MySQL. Migrating to Oracle has been
really easy thanks to the isolation of the data layer.

The low level design with a high level of abstraction also improves these software
properties. The presence of inheritance and interfaces makes the code easy to
extend and adapt. New functionalities can be created easily.

Maintainability enhanced

A good architecture and design also help in the maintainability. The main
improvements are:

� Exception handling: The exceptions are correctly treated in the layer to which
they correspond. The error codes have been factorized. Special screens have
been designed for printing exceptions to the user. The end user can easily
view any exceptions thrown, either using the simple error view, or the
advanced view if they need to see the full stack trace.

� Logging interface: The logs are handled with the Java Log Handling interface

that the JVM offers by default. It allows defining different granularity in the log
files (Debug, Fine, Info, etc). There is a log for every kind of service: Server,

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 68

Simulator, EDIFCAT, Oracle/MySQL, etc. This makes it is easy to detect
where the problems come from.

� Configuration interface: All the parameters of the simulator can be configured

without compiling any code. The variables are stored in text files. When there
is a parameter change the simulator automatically detects it and changes. For
example the local database connection parameters can be defined in the
db.conf file, where the logs are stored can be configured in the log.conf.

Performance Enhanced

The business logic has also been optimized for example, the message scheduling
algorithm, reducing the number of sent messages. Also the way of performing
bookings has been substantially improved. Before, two messages were required to
make a booking: The availability request and the End of transaction request. Now it is
possible to make it directly with one.

These changes resulted in an improved simulator performance, because the
bottleneck in the simulator is the inventory response delay: As the simulator now
sends fewer messages, it runs much faster (2-3 times faster).

Comparison table with a load of 250%:

 Time per run Message per
second

Data exchange
speed

Before 5m 02s 3.8 msg 4.15 kb / s
Now 1m 46s 10.62 msg 4.07 kb / s

Copy of the performance manual test found in the appendix:

Flight: BA 341 16/06/08 Load: 250 Runs: 20 Booking policy: Local (Random)
Server: APL DEV Date: 23/06/08 at 10:14

Time:

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 69

Total: 35m 25sec
Messages per second: 10.62
Kbytes per second: 4.07
Time per run: 1m 46s
Time per load % unit: 0.45 s

Messages:

Packet Count Total size Average size

All 22584 8664 Kb 393 B/msg
Sent 11292 3934 Kb 357 B/msg

Received 11292 4730 Kb 429 B/msg
IINVRQ 517 104 Kb 206 B/msg
IINVRR 517 1627 Kb 3223 B/msg
IFLIUQ 516 1221 Kb 2224 B/msg
IFLIUR 516 73 Kb 145 B/msg

IEOTUQ 10259 2609 Kb 260 B/msg
IEOTUR 10259 3030 Kb 302 B/msg

10259 IEOTUQ divided into 8800 sells (bookings) and 1459 cancellations.

Message description:

 IINVRQ: flight Structure Retrieval
 IFLIUQ: Booking limits clear / change
 IEOTUQ: Make Booking / Cancellation

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 70

Conclusions

At the end of the internship, the project was presented to the RMS team. The
binaries: installation and documentation have been delivered to all members of the
team. When the RMS product will be finished, the revenue analyst and testers will be
able to work with it and the simulator will be exploited to its full potential.

The system has met all of the functional and non-functional requirements. Working
with a cutting-edge tool has made me realize the importance of investing in new
technologies to achieve cost reductions.

I am proud of the results that ThinWire has given, making the application robust and
responsive. I have liked the idea of programming a web application in a single
language. The idea of following the Swing event and component model is really good
and intuitive. I think a very good improvement that could be done in ThinWire would
be the compliance with the Java Abstract Windows Toolkit (AWT). Then applications
that are already compliant with this standard (as Swing applications) could be
migrated easily to a web interface.

The project also gave me lots of skills and experiences. First of all, this project
helped me understand how to work in a big international development company with
development sites spread across the world. Before my internship with Amadeus I had
been working for some low-scale companies. Issues like having 9 different test
environments for each application (development, integration, user acceptance,
production...), daily non-regression tests for all functionalities were new things for me
and it was a great experience to understand why they were needed and how they
worked. I have worked both at high and low level: High level by designing the
development plan, low level by having to code all the program and writing installation
and configuration scripts in Linux machines, as well as the deployment and servers
setting-up.

Beside the technical skills, I also learned the organizational issues of a big company:
The communication between different sites of a worldwide company, between
departments, top-down communication, the operational issues, and much more
things that made this internship a really great experience that I recommend to
everybody.

To end with, I had the opportunity to work in a multicultural environment that was an
enriching experience. As well as getting to know people from different nationalities, I
had the opportunity to improve my English and to learn French.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 71

Glossary

Airline Yield
Management System

Also known as Revenue Management System. Calculates and provides the
flight controls to Altéa Inventory and gathers statistics. This system may also
be called the Optimizer.

Airport Code The 3-letter IATA identifier for an airport.
Altéa Inventory The new inventory system developed by Amadeus to replace legacy airline

inventory systems such as BABS and QUBE RS13. It includes the Inventory,
Schedule, Reference Data, Seat, Reaccommodation, and MIB servers.

Altéa Inventory GUI This is the Graphical User Interface used by users to communicate with the
Altéa Inventory sub-systems.

Amadeus System The Amadeus computer system that travel agents use to display schedules,
availability, book seats, price the itinerary, and generate the tickets. Also
referred to as the Amadeus reservation system, central system or distribution
system.

Booking Class Usually defined by a one-letter code that identifies the kind of ticket
restrictions that apply, for example, Advance Purchase and Non-Refundable.
Therefore, booking classes are attached to segments. Subclasses are
defined by additional rules and constraints, such as the location of the
requestor and the flight designator.

Class Availability Defined at the segment/subclass level, it is a Seats Equivalent availability
calculated from the class controls only. This availability is used to cap the
sum of Cumulative UPR and Net Revenue Availability in the calculation of
Segment Availability under Revenue Controls for all (sub)classes with MAX
controls. For flights under Class Control the Net Class Availability will simply
be a net version of Segment Availability.

Departure Airport The airport from which the aircraft last departed using the same flight
number.

Destination Airport The ultimate intended termination airport of a flight.
EDIFACT Electronic Data Interchange for Administration, Commerce and Transport is

an agreed message structure for exchanging data between systems.
Effective Capacity Based at a leg-cabin level, it is defined as the Operational Capacity plus the

Total Adjustment plus the regrade counter for the cabin. The Effective
Capacity is the leg-cabin capacity used by <<Re-Calculate availability>>
(e.g., to calculate the Availability Pool).

Flight Designator An airline code, a flight number, and possibly a suffix that allows a user to
identify a flight.

Flight Owner The operating carrier for the flight.
GDS Global Distribution System, offering services from different providers: airlines,

car, rail, or cruise companies. See Amadeus System.
GUI Graphical User Interface. A windows-based application. See Altéa Inventory

GUI.
IATA International Air
Transport
Association.

An association of international airlines that provides services to airlines, i.e.
assigns airline codes, and authorizes agreements between airlines and travel
agents for international ticketing.

Inventory Server The Inventory server actor is the Altéa Inventory subsystem responsible for
the inventory of flights on their operating dates.

Leg A non-stop journey between a departure airport and an arrival airport.
Market A market is a group of geographical information defined in MIB and used in

the definition criteria in Reference Data.
Marketing Carrier When describing a flight, segment, airline, carrier, this refers to a selling

company under its name but with another airline operating.
NGI New Generation Inventory, code name for Altéa Inventory.
No-show Passenger with a booking who does not come to the check-in.
Operating Carrier The carrier that physically controls the flight.
POS Point of Sale

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 72

Route A sequence of legs.
Segment A saleable journey, involving a single flight designator, between a board point

and an off-point.
Yield An estimate of how much revenue an airline gets from a sale of a ticket.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 73

Appendix A: Manual test cases

The target of the manual test is to be able to detect bugs in the simulator that cannot be
detected automatically. To detect that kind of flaws the human interaction is needed. The
manual tests are organized with scenarios and expected results. To pass a manual test the
scenario has to be followed and the obtained results compared with the expected ones.

Parameters

The flight date is the main parameter. This is the flight to simulate. The flight date structure
can vary on many aspects so that we consider a static flight structure object of the test.
The trial-number is a parameter that will not vary the results of the simulation. It is just a
value to make the results more reliable. So that, 5 trials numbers is a suitable amount of
simulations to be done per each configuration.
The load is a key value to charge the flight. It is object to changes.
The limits policy and the limits itself is the key parameter. It can be set many different ways
so that the group of cases is needed.
The historical demand data and is the main source of information. In the majority of the test
this data is fixed.

Scenarios

Booking proportions

A simulation is done to check the distribution of the classes booked. No limits are applied

and the load is 200% to assure that all the classes are full. To see that the proportions are
correct the historical data has been counted.

Flight: BA 341 10/06/08 Load: 200 Runs: 5 Booking policy: Unlimited

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 74

Comparison simulated data / historical data

Bookings
historical

%
historical

Bookings
simulation

%
simulation

%
Error

Cabin C

Class C 340 6.84 2.7 6.77 1.06
Class D 981 19.73 7 17.54 11.10
Class I 934 18.79 7 17.54 6.63
Class J 1990 40.03 16.6 41.60 3.93
Class U 726 14.60 6.6 16.54 13.26
Total 4971 100.00 39.9 100.00 0

Cabin
M

Class G 18321 47.58 128.6 50.31 5.75
Class S 4617 11.99 26.4 10.33 13.86
Class O 2768 7.19 19.6 7.67 6.68
Class Q 2166 5.62 17.4 6.81 21.02
Class N 1367 3.55 9.6 3.76 5.80
Class V 1138 2.96 6 2.35 20.57
Class L 1781 4.63 9 3.52 23.87
Class M 1595 4.14 9.2 3.60 13.10
Class K 513 1.33 5 1.96 46.84
Class H 653 1.70 3.6 1.41 16.94
Class Y 1717 4.46 9.4 3.68 17.52
Class X 1086 2.82 8.4 3.29 16.53
Class B 482 1.25 3.4 1.33 6.27
Total 38507 99.21 255.6 100.00 0.79

Conclusions

The results are the expected and the booking class proportions follow the initial

distribution. That information is extracted from the error ratio calculated from the differences
of the historical and simulated tan per cents.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 75

Load factor change

The aim of this test is to change the load percentage to see the increasing of the rejections.
The booking limits are set to unlimited. When all the cabins become full the rejections will
start to come up.

Flight: BA 341 10/06/08 Load: 50 Runs: 5 Booking policy: Unlimited

Flight: BA 341 10/06/08 Load: 100 Runs: 5 Booking policy: Unlimited

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 76

Flight: BA 341 10/06/08 Load: 150 Runs: 5 Booking policy: Unlimited

Flight: BA 341 10/06/08 Load: 200 Runs: 5 Booking policy: Unlimited

Conclusions (table)

Load
factor

Requests Rejections
Gross

Bookings
Net

Bookings
Cancel-
lations

Real
load

50% 91 0 91 59 32 32%
100% 180 0 180 114 66 63%
150% 268 9 260 161 98 89%
200% 358 63 296 166 129 92%

Increasing the load, the rejection rate increases as well. It doesn’t increase that much

because there are many cancellations and these keep some seats avaiable.

The capcaity of the flight is 179 places divided into 2 cabins C (35 seats) and M (144

seats). Taking a closer look is possible to observe that the cabin C is never filled at 100%
while the cabin M is always filled. That’s because the cabin C is a bussiness cabin and the
fares are higher.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 77

Conclusions (chart)

Analysing the data obtained changing the load factor one realizes that everything
has sense.

• The requests are a fixed value that depends directly from the load factor, so, it

is linear.
• The rejections start increasing when the cabins start to be full. When the net

bookings are close to the availability (179 seats) the rejections start increasing.
• The net bookings stop growing linearly when they are close to the availability.
• The cancellations curve keeps similar and proportional to the net bookings.
• The real load is a logarithmic curve.

0

50

100

150

200

250

300

350

400

450

500

0% 50% 100% 150% 200% 250%

Request

Rejections

Net Bookings

Cancellations

Real load

 Cancellation proportions

In order to validate the correctness of the cancellations let’s make a comparison between

the historical data and the simulation results. The data from the previous two scenarios has
been used.

Flight level cancellations

If we count the bookings that has been cancelled from the raw data and we divide it per
the total of bookings we obtain a cancellation rate of 70%

Load factor
Gross

Bookings
Cancellations

Cancellations
Rate

Error Rate
(over 70)

50% 91 32 35% 50%
100% 180 66 36% 48%
150% 260 98 37% 47%
200% 296 129 43% 38%

With the flight level cancellation study is not possible to detect what is happening

but apparently, the cancellation rate seems to be much lower than the original 70%.
The error rates are very high.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 78

Booking class level cancellations

Let study the cancellations for each class in a load of 200% and 10 runs

Cancels
Historical

Bookings
Historical

Cancels
Historical

Cancels
Simulate

Bookings
Simulate

% Cancel
%

Error

C

C 297 637 46.62 1 3 33.33 28.51 D 798 1779 44.86 3.5 8 43.75 2.47 I 735 1669 44.04 3 7.5 40.00 9.17 J 1323 3313 39.93 6 18.5 32.43 18.79 U 314 1040 30.19 4 8 50.00 65.61 TotalTotalTotalTotal 3467 8438 41.09 17.5 45 38.88 5.37

M

B 367 849 43.23 1.5 3.5 42.86 0.85 G 13947 32268 43.22 45.5 130.5 34.87 19.32 H 488 1141 42.77 2.5 5.5 45.45 6.27 K 373 886 42.10 2 3 66.67 58.36 L 1270 3051 41.63 6.5 12 54.17 30.14 M 1165 2760 42.21 5.5 9.5 57.89 37.15 N 1138 2505 45.43 2.5 10.5 23.81 47.59 O 1289 4057 31.77 13 18.5 70.27 121.17 Q 1204 3370 35.73 6 12 50.00 39.95 S 2909 7526 38.65 8 23.5 34.04 11.93 V 895 2033 44.02 3 6.5 46.15 4.83 X 482 1568 30.74 3.5 7.5 46.67 51.82 Y 1311 3028 43.30 8.5 9.5 89.47 106.65 TotalTotalTotalTotal 26471 64675 40.93 108 252 42.85 4.69

The error rate is the correlation between the simulated information and the historical data.

Is calculated like:

h

sh
error

ratiocancelsimulateds

ratiocancelhistoricalh

−

⋅=

≡

≡

100

__

__

The total error ratio is around 5% and it can be considered as acceptable. There are some
high error-ratios due the randomness. Ones compensate others and give a meaningful
average.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 79

All the classes shuted down

Shut down all the classes. The MAX Limit is set to 0 for all the classes. Any booking

should be produced.

Flight: BA 341 16/06/08 Load: 200 Runs: 5 Booking policy: Local
Booking MAX: All classes 0 Booking MIN: All classes 0

The result of the test is satisfactory. No bookings neither
cancellations has been done.

One class per cabin

Shut down all the classes except one for each cabin. The bookings should be just done to

these classes. A lot of rejections should appear because the classes cannot accept
bookings. The bookings should not be greater that the sum of the maximum of each class.

Flight: BA 341 16/06/08 Load: 200 Runs: 5 Booking policy: Local
Booking MAX: All classes 0; J,G=15 Booking MIN: All classes 0

The results are satisfactory. The Class G has been filled completely (never more than 15
bookings). The class J has been booked according to the demand curves. The limit of 15 has
not been exceeded. A total of 29 net bookings have been accomplished (of a maximum of 30
allowed).

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 80

Limits change during the time

All the classes are shut down except one. This one has different values depending of the

time.

Flight: BA 341 16/06/08 Load: 200 Runs: 1 Booking policy: Local
Booking MAX, MIN: All classes 0 exepct class G that has been set like the following.

The booking limit change messages have been sent at this time. The first message is sent

at the DTD 182 because is when the first booking is performed. The simulator can detect
when there has been a change on the booking limit and optimize the schedule.

Time: 999 Message: CleanBookings Accepted: true

Time: 182 Message: BookingLimitChange Accepted: true

Max: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:15|X:0|

Min: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:0|X:0|

. . .

Time: 70 Message: BookingLimitChange Accepted: true

Max: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:0|X:0|

Min: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:0|X:0|

. . .

Time: 28 Message: BookingLimitChange Accepted: true

Max: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:50|X:0|

Min: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:0|X:0|

. . .

Time: 8 Message: BookingLimitChange Accepted: true

Max: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:100|X:0|

Min: J:0|C:0|D:0|R:0|I:0|U:0|Y:0|B:0|H:0|K:0|M:0|L:0|V:0|N:0|Q:0|O:0|S:0|G:0|X:0|

All the message the simulator sends are saved in a log. This table has been written

extracting data from this log.

In the first period there are no rejections. The bookings are below the limit of 15. In the

second period the class is shuted but there were already some bookings. In the third period
the demand is cuted to 50. In the forth period the demand is freed again and reaches 95
bookings. The response of the simulator seems to be the expected.

 999-83 84 - 34 35 - 9 10 - 0
Gross Bookings 12 0 53 56

Cancellations 1 0 14 10
Net Bookings 11 0 38 47

Cum Net Booking 11 11 50 95
Availability 4 -11 0 4

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 81

Historical data source

The demand data is reset to 0 for all the classes except 2. The cancellations are

eliminated.

Flight: BA 341 16/06/08 Load: 100 Runs: 5 Booking policy: Unlimited
Demand data: No demand except for the classes M-X and M-G described below.

Results

Both classes are in the same cabin. The cabin has an availability of 131 seats.
The load is 100% so 176 bookings will be done (availability of all the cabins). The
number of rejections equals the availability of the other cabin: 45.

DTD Range M-X M-G

999-0 86 45
999-42 14 8
41-21 4 5
8-0 81 33

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 82

Performance

This test is just to have some statistics of simulation speed. The time of the simulation will

be calculated as well as the size of the messages sent. The local limits are randomized to
send a change of the limits for each DCP.

Flight: BA 341 16/06/08 Load: 250 Runs: 20 Booking policy: Local (Random)
Server: APL DEV Date: 23/06/08 at 10:14

Time:

Total: 35m 25sec
Messages per second: 10.62
Kbytes per second: 4.07
Time per run: 1m 46s
Time per load % unit: 0.45 s

Messages:

Packet Count Total size Average size

All 22584 8664 Kb 393 b/msg
Sent 11292 3934 Kb 357 b/msg

Received 11292 4730 Kb 429 b/msg
IINVRQ 517 104 Kb 206 b/msg
IINVRR 517 1627 Kb 3223 b/msg
IFLIUQ 516 1221 Kb 2224 b/msg
IFLIUR 516 73 Kb 145 b/msg

IEOTUQ 10259 2609 Kb 260 b/msg
IEOTUR 10259 3030 Kb 302 b/msg

10259 IEOTUQ divided into 8800 sells (bookings) and 1459 cancellations.

Message description:

 IINVRQ: flight Structure Retrieval
 IFLIUQ: Booking limits clear / change
 IEOTUQ: Make Booking / Cancellation

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 83

Appendix B: Automated test cases

Connectivity

The connectivity tests are necessary to assure the transfer of information between all the
sources. The main two sources are the local database and the NGI connection. The
authentication and codification of messages are assured.

NGI Connection

Test Case Description Assertions/Fails Dependencies
Normal Server Tries to open a connection to a

server providing host, port, sign,
office id and duty code.
Sends a Flight Structure Request
Message.

Asserts the
connection is opened.
Asserts there isn’t
error in the message
transmission.

EDIFACT /
Flight Structure

Test.

Test Server Tries to open a connection to a
test server providing host and
port. No authentication is
provided. Sends a Flight Structure
Request Message.

Asserts the
connection is opened.
Asserts there isn’t
error in the message
transmission.

EDIFACT /
Flight Structure

Test.

MySQL Connectivity

Test Case Description Assertions/Fails Dependencies

Connection Connects to the local database
with the parameters configured on
the local database. Obtains a
statement from the database.

Asserts the statement
is created correctly.

None

MySQL Database Structure.

Test Case Description Assertions/Fails Dependencies

Structure Open a connection and tries to
make a SELECT for each table in
the database. The SELECT has
all the expected fields of each
table.

Fails on exception.
For example, if a field
on the select doesn’t
match the structure of
the table.

Connectivity /
MySQL

Connectivity
Test.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 84

EDIFACT

The simulator involves different EDIFACT services. Each one is tried independently and its
impact on the NGI is checked.

Booking Clean

Test Case Description Assertions/Fails Dependencies

Send
Message

Sends a flight Structure Request.
If there are no bookings a
successful booking is done. A
Reset Bookings Message is sent.
Sends a flight Structure Request.

Assures that the
bookings before the
reset are positive and
after are equal to
zero.

EDIFACT /
Flight Structure

and End of
Transaction

Tests.

Booking Limit Change

Test Case Description Assertions/Fails Dependencies

Send
Message

A fixed max and min is set for all
the classes. Then a Flight
Structure Request is sent and
checked if the INV limits have
changed. Special emphasis in
unlimited and 0 limit.

Fails on an illogicality
sent by NGI. Assures
the expected values
are the real ones.

EDIFACT /
Flight Structure

Test.

Date change Request

Test Case Description Assertions/Fails Dependencies

Send
Message

Reset the flight bookings and the
limits. Makes a date change
request to N days before today. A
booking is made.

Fails on exception.
Manual assertion.

EDIFACT /
End of

Transaction
Test.

Is not possible to automatically check the time and date of the NGI server. The trick is to
connect directly to the NGI Oracle database and check manually. The test is to check that
the date of the last booking corresponds to the change of date we have done.
The SQL query is:

 SELECT creation_date_and_time FROM inv_booking_status ORDER BY ASC LIMIT 1;

That might not work because the database structure might be changed.

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 85

End of Transaction (Sell, Cancel)

Test Case Description Assertions/Fails

Sell (Booking) Clean bookings. Make one
booking for each class. Save the
booking DIDs. Query the Flight
Structure.

Assert equals the number of successful
bookings computed, and the ones
obtained using the flight structure
message. Checks that every DID for
each booking is different and doesn’t
not exist in a previous booking.

Cancellation Cancels all the bookings created
previously. Query the flight
structure.

Assert that all the cancellations are
successful. Asserts that the sum of
bookings using the flight structure
request message is zero.

Over Book Reset bookings and limits. Does
random bookings to all the
classes. It stops when the
number of successful bookings
equals the number of rejections.
Normally the number of
messages sent is around:
availability * 2. Saves the
successful bookings DIDs.

Fails if error or if the number of
message that are sent exceeds the limit
of: availability * 3 messages. This is a
limitation measure in order to keep the
test under control.

Over Cancel Flight Request Message. Count
the bookings. For each DID in
the list send 2 cancellations.
Count the successful and the
failed cancellations. Flight
Request Message.

The number of bookings at the
beginning has to equals the number of
successful and failed cancellations. At
the end the number of bookings has to
be 0.

All the test cases depend on each other, are prepared to be executed sequentially. Moreover
they depend on the Connectivity / NGI Connection test and on the EDIFACT / Booking Clean
and Flight Structure tests.

Flight Structure

Test Case Description Assertions/Fails Dependencies

Send
Message

Sends a Flight
Structure Query
Message and
creates its
corresponding Flight
(using the classes
defined in the BOM).

Checks the correctness of the
created BOM. Assures there are
(at least one) segments, legs, seg
cabins, leg cabins, booking
classes, subclasses. In each
subclass check the bookings and
the existence if the properties of it
(nestings, yields, etc).

Connectivity /
NGI

Connection

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 86

SQL

The queries to the local database are tested separately and its impact is checked.

Building BOM from Local Database

Test Case Description Assertions/Fails Dependencies
Demand Data

Creates a Flight Object and fills it
from data extracted from the
Demand Data table on the local
database. Load the demand
curves for each booking class.

Asserts the
correctness of the
BOM. Check that the
curves are correctly
loaded.

Connectivity /
SQL DB
Structure

Raw Data Creates a Flight Object and fills it
from data extracted from the Raw
Data table on the local database.

Asserts the
correctness of the
BOM.

Connectivity /
SQL DB
Structure

Generate Demand Curves from Raw Data
.

Test Case Description Assertions/Fails Dependencies

Generate
curves

Takes the RAW Data
as input stream and
generates the demand
curves and
cancellations for each
booking class.

Check that the curves (demand
and cancellation) are correctly
generated and consistent. By
default the curves shall not be
unconstrained.

SQL /
Building BOM
from local DB

Load/Save Booking Limits

Test Case Description Assertions/Fails Dependencies

Load booking Sends a Flight
Structure Query
message. For each
booking class each
correspondent booking
limit time vector (min
and max) is loaded
from the database.

Assures that the min and max
limit exists for each DCP.

EDIFACT /
Flight Structure

Save bookings Modifies the min and
max limits for each
class and for each DCP
randomly. Save it to a
local database. Load it
again.

Assure equals the randomly
chosen limits and the ones
loaded at the end of the
process.

Load booking
(sequential)

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 87

Various

Tests such as booking scheduling, cancellations matrix correctness, probability drawn, dates
transformation, etc, are placed here.

Date Format Tests

Test Case Description Assertions/Fails Dependencies

Formatting Tests the date conversion functions
located in the utils package. The
formats ara the Java date object,
Amadeus flight data format (ddmmyy)
and readable format (dd/mm/yyyy).
The test has some hard-coded dates
and its equivalents.

Assert equals the
transformations
and the hard-
coded
equivalents.

SQL /
Building BOM
from local DB

Random drawn

Test Case Description Assertions/Fails Dependencies
Randomize

check
Draw random numbers
using the simulator
randomize functions.
Discretisize the values and
put them in a hash map.

Check that all the values
follow a normal distribution.
Sometimes can fail.

None

Cancellation table matrix

Test Case Description Assertions/Fails Dependencies

Generate
curves

Load the BOM from
raw data. Generate the
probability cancellation
curve from the
cancellation curves.

Check the saneness of the
probability matrix. Find the
diagonal.

Building BOM
from local DB /

Raw Data

Booking/Cancellation/Limits Schedule

Test Case Description Assertions/Fails Dependencies
Schedule Perform a simulation

and cancel it before
sending messages,
so, the planning of the
message is done.

Assure the planning has as many
bookings as defined in the load of
the flight (taking in consideration
the rounding assuming a margin
of error of 2%)

Simulation

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 88

Simulation test

A full simulation with different booking limits policies is done. With the results obtained some
automated simple checks are done. The synchronization between the local and remote
results is checked here.

Full Simulation

Test Case Description Assertions/Fails Dependencies

Booking Policy
Unlimited

Runs a simulation with the
standard parameters and the
booking limits policy set to
unlimited.

Assert no errors.
Manual correctness
checked.

Everything

Booking Policy
None

Runs a simulation with the
standard parameters and the
booking limits policy set to none.

Assert no errors.
Manual correctness
checked.

Everything

Booking Policy
Local

Runs a simulation with the
standard parameters and the
booking limits policy set to local.

Assert no errors.
Manual correctness
checked.

Everything

Simulation Automatic

Test Case Description Assertions/Fails Dependencies

Simulate Runs a simulation with 1
run, 200% load factor and
booking limits unlimited.
Send a Flight Structure
Request Message.

Compare the requests,
bookings, cancellations,
rejections counted by the
simulation logic with the
same results obtained from
the inventory.

Everything

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 89

Appendix C: Local database schema

Local curve database

booking_limits_max, booking_limit_min, demand_curves

These three tables have the same structure. First two store the limits imposed by the client.
Last table contains the demand curve for each booking class. The demand curve table is
generated from the raw_data and yield_data tables.

raw_data

This table contains the booking and cancellations done for a flight in a concrete date. It also
provides the information of when the booking was done and when it was cancelled, if it was.

Field Name Format Description

airline_code Varchar(3) Code of the airline Ex: BA=British Airways

flight_number Int(3) Number of flight

board_point Varchar(3) Departure airport code

off_point Varchar(3) Arrival airport code

cabin_code Varchar(1) Cabin code (Business, First, Tourist)

booking_class Varchar(2) Booking class identifier

dmd1 Int(11) Value on dcp 1

… … …

dmd29 Int(11) Value on dcp 29

Field Name Format Description

airline_code Varchar(3) Code of the airline Ex: BA=British Airways

flight_number Int(3) Number of flight

board_point Varchar(3) Departure airport code

off_point Varchar(3) Arrival airport code

cabin_code Varchar(1) Cabin code (Business, First, Tourist)

booking_class Varchar(2) Booking class identifier

subclass Int(1) Subclass identyfier (not used)

creation_dtd Int(3) Booking creation days to departure

cancellation_dtd Int(3) Booking cancellation days to departure

flight_date Varchar(9) Date of the flight depature

nature Int(1) 1 = Booking, -1 = Cancellation

Booking Simulator portage to AJAX

Jordi Planadecursach
July 31st 2008

Page Nº 90

yield_data

This table contains basically the revenue made by the airline for a concrete cabin of a flight.
That is stored in the field yield_value. This is a simplification because in the real case the
yields used should depend on the flight_date, class, subclass and dtd.

Field Name Format Description

airline_code Varchar(3) Code of the airline Ex: BA = British Airlines

flight_number Int(3) Number of flight

board_point Varchar(3) Departure airport code

off_point Varchar(3) Arrival airport code

cabin_code Varchar(1) Cabin code (Business, First, Tourist)

yield_value Int(6) Revenue of the booking

