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“I never teach my pupils; I only attempt to provide the conditions in which they can

learn.”
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The research on unsupervised feature selection is scarce in comparison to that for su-

pervised models, despite the fact that this is an important issue for many clustering

problems. An unsupervised feature selection method for general Finite Mixture Models

was recently proposed and subsequently extended to Generative Topographic Mapping

(GTM), a manifold learning constrained mixture model that provides data clustering

and visualization. Some of the results of previous research on this unsupervised feature

selection method for GTM suggested that its performance may be affected by insufficient

sample size and by noisy data. In this thesis, we test in detail such limitations of the

method and outline some techniques that could provide an at least partial solution to

the negative effect of the presence of uninformative noise. In particular, we provide a

detailed account of a variational Bayesian formulation of feature relevance determination

for GTM.
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Chapter 1

Introduction

1.1 Introduction

The fields of machine learning and statistics coexist with data analysis as a common

target and they overlap in what has come to be defined as Statistical Machine Learning.

An example of this can be found in Finite Mixture Models (FMM), which are flexible

and robust methods for multivariate data clustering [1]. The addition of visualization

capabilities would benefit these models in many application scenarios, helping to provide

intuitive cues about data structural patterns. One way to endow FMM with data visu-

alization is by constraining the mixture components to be centred in a low-dimensional

manifold embedded into the multivariate data space, as in Generative Topographic Map-

ping (GTM) [2]. This is a manifold learning model for simultaneous data clustering and

visualization.

The interpretability of the clustering results provided by GTM becomes difficult when

the analyzed data sets consist of a large number of features. This limitation can be

overcome with methods to estimate the ranking of the data features according to their

relative relevance, leading to feature selection (FS). The research on unsupervised FS is

scarce in comparison to that for supervised models, despite the fact that FS becomes an

issue of paramount importance for many clustering problems, regardless the unavailabil-

ity of class labels. The interpretability of the clusters obtained by unsupervised methods

would be improved by their description in terms of a reduced subset of relevant variables.

An important advance on unsupervised FS for FMM was presented in [3] and recently

extended to GTM in [4] and to one of its variants for time series analysis in [5]. This

method was preliminarily assessed in [6], where some of the results suggested that the

performance of the method may be degraded by characteristics of the data such as

1



Chapter 1. Introduction 2

insufficient sample size and the presence of noise. In this thesis, we provide evidence

of the limitations of the method through controlled experiments using mostly synthetic

but also some real data.

1.2 Motivation and objectives

The method for Feature Relevance Determination using GTM (FRD-GTM) described

in [7] was preliminarily and partially assessed in [8], where some of the results suggested

that its performance may be to some extent degraded by characteristics of the data

such as insufficient sample size and the presence of uninformative noise. In this thesis,

we provide evidence of the limitations of the method through a battery of experiments

using mostly synthetically generated data, which allows us to control the nature of the

data in terms of expected relevance for clustering.

In its basic formulation, the GTM is trained within the Maximum Likelihood (ML)

framework using Expectation-Maximization (EM), permitting the occurrence of data

overfitting unless regularization is included, a major drawback when modelling noisy

data. This limitation indeed extends to FRD-GTM. Statistical Machine Learning (SML)

provides a unified principled framework for machine learning methods and helps to

overcome some of their limitations, such as data overfitting due to the presence of noise.

In the last chapter of this thesis, we outline the basics of some possible methods to

deal with the presence of noise in the analyzed datasets. GTM, as a SML method,

allows the formulation of principled extensions, such as those providing active model

regularization. Some regularization methods for GTM described in [9, 10] are based on

Bayesian evidence approaches. They could be extended to FRD-GTM. Alternatively, a

variational Bayesian approach of the GTM was recently introduced in [11, 12] to endow

the model with regularization capabilities based on variational techniques, showing very

promising results. In this thesis, we provide the basic formulation of a FRD method for

Variational GTM. We also describe the potential use of a variation of GTM based on

the use of geodesic distances.

In summary, the objectives for this thesis are:

1. An exhaustive assessment of the effects of insufficient sample size and the presence

of uninformative noise in the performance of unsupervised FRD using GTM.

2. The description of some potential alternatives to address the negative effects of the

presence of uninformative noise, including the detailed formulation of a variational

Bayesian method for FRD-GTM.



Chapter 2

Basic Background Theory

2.1 Feature Relevance and Feature Selection

Feature Selection (FS) is the straightest of the strategies for dimensionality reduction,

consisting in the selection of a subset of inputs, discarding the remainder. This approach

can be useful if there are inputs which carry little relevant information for the solution

of the problem at hand, or if, alternatively, there are very strong correlations between

sets of inputs.

Any procedure for feature selection must be based on at least two components. First,

a criterion must be defined by which it is possible to gauge whether the relevance of a

subset of features is better than the relevance of another. Second, a systematic procedure

must be found for searching through candidate subsets of features. Some of the benefits

of feature selection include:

• Facilitating data visualisation and understanding as part of multivariate, high-

dimensional data exploration.

• Reducing measurement efforts and information storage requirements.

• Reducing computational load.

• Defying the curse of dimensionality to improve prediction performance.

The problems of FRD and the subsequent FS based on it can be studied in the context of

supervised learning. In such setting, which has been thoroughly studied, a data feature

is said to be relevant (and it is eventually selected) only if its absence (or its absence

in combination with the absence of others) worsens significantly the classification or

3
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predictive performance of the defined model. It is beyond the purpose of this chapter

to provide a complete review of the many approaches and techniques of supervised FS.

Such reviews can be found elsewhere [13]. Suffice it to say that the two main available

approaches are the wrapper and filter techniques.

In short, wrapper feature selection consists in building a classifier with an aim to achieve

the highest predictive accuracy possible and select the features used by the classifier as

the optimal features, it weigh up subsets of features according to their usefulness to a

given predictor. There is another model known, as the filter model, which is base on

distance and information measures, selecting features by ranking them with correlation

coefficients.

FS and FRD for unsupervised learning, even if sharing the dimensionality reduction

objective of their supervised counterparts, are far less investigated problems. Here, the

relevance is not longer related to a label or target variable, maybe because this label is

not available at all or only partially available, or even because the labels are available

but we are interested in the exploration of the structure of the data themselves.

Various unsupervised feature ranking criteria can be considered, including, but not lim-

ited to, saliency, entropy, smoothness, density and reliability [13]. One reason, even if

not the only, to consider a feature as salient is if it has a high variance or a large range,

as compared to others. A feature has high entropy if the distribution of examples it

generates is uniform and, therefore, irrelevant for the definition of informative struc-

ture. A feature is in a high-density region if it is highly correlated with many other

features. Finally, a feature is reliable if the measurement error bars computed by re-

peating measurements are small, as compared to the inherent variability of the feature

values.
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2.2 Finite Mixture Models

2.2.1 Unsupervised clustering by learning mixtures of Gaussians

Finite Mixture Models are Statistical Machine Learning (SML) methods for multivariate

data clustering. SML provides a unified principled framework for machine learning

methods and helps to overcome some of their limitations. Bayesian probability theory,

in particular, has important modeling implications. For instance, it requires modeling

assumptions, including parameters and prior distributions, to be made explicit, avoiding

arbitrary modelling decisions; it also automatically satisfies the likelihood principle and

provides a natural framework to handle uncertainty.

In mixture models, the observed data are assumed to be samples of a combination

or finite mixture of k = 1, . . . ,K components or underlying distributions, weighted by

unknown priors P (k). Given a D-dimensional dataset X = {xn}Nn=1, consisting of N

random observations, the corresponding mixture density is defined as:

p (x) =
K∑

k=1

p (x|k; Θk) P (k) , (2.1)

where each mixture component k is parameterized by Θk. For continuous data, the

choice of Gaussian distributions is a rather straightforward option due to their compu-

tational convenience [14], in which case

p (x|k;µk,Σk) = (2π)−D/2 |Σk|−1/2 exp
{
−1

2
(x− µk)T Σ−1

k (x− µk)
}
, (2.2)

where the adaptive parameters Θk are the mean vector and the covariance matrix of the

D-variate distribution for each mixture component, namely µk and Σk. Their Maximum

Likelihood estimates can be obtained using the EM algorithm and, for that, first we

define the complete log-likelihood as

Lc (µ,Σ|X) = log
N∏

n=1

p (xn) =
N∑

n=1

log
K∑

k=1

p (xn|k;µk,Σk)P (k) . (2.3)

In the context of the EM algorithm, we can introduce the binary indicator variables

Z = {zk}Kk=1, with Zk = (zk1, . . . , zkN ), which reflect our ignorance of which mixture

component k is responsible for the generation of data observation n. The complete

log-likelihood can now be expressed as
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Lc (µ,Σ|X,Z) =
N∑

n=1

K∑

k=1

zkn log [p (xn|k;µk,Σk)P (k)] . (2.4)

The indicators Z are effectively treated as missing data and, following the iterative EM

procedure, the re-estimation of the adaptive parameters µk, Σk requires the maximiza-

tion of the expected log-likelihood E [Lc (µ,Σ|X,Z) |X, µk,Σk].

The expectation of each of the indicators in Z, which is the probability of a mixture

component k being responsible for data observation xn (also known as responsibility

rkn) can be written as:

rkn = p (k|xn, µk,Σk) =
|Σk|−1/2 exp

{
−1

2 (xn − µk)T Σ−1
k (xn − µk)

}
P (k)

ΣK
k′=1 |Σk′ |−1/2 exp

{
−1

2 (xn − µk′)T Σ−1
k′ (xn − µk′)

}
P (k′)

(2.5)

With this, in the maximization step, the update formulae for µk, Σk are obtained as:

µ̂k =
ΣN
n=1rknxn
ΣN
n=1rkn

(2.6)

Σ̂k =
ΣN
n=1rkn (xn − µ̂k) (xn − µ̂k)T

ΣN
n=1rkn

(2.7)

2.2.2 Feature Relevance Determination in Gaussian Mixture Models

The problem of feature relative relevance determination for GMM was recently addressed

in [3]. Feature relevance in this unsupervised setting is understood as the likelihood of

a feature being useful to define the data clustering structure. In that sense, it becomes

a soft version of a FS method: no feature is actually meant to be discarded because

none is likely to be either completely useful or useless. However, the resulting relevance

ranking can be the basis of an a posteriori selection. A similar counterpart procedure

for supervised models is Automatic Relevance Determination (ARD: [15, 16]).

Formally, the saliency of feature d is defined as ρd = P (ηd = 1), where η = (η1, . . . , ηD)

is a further set of binary indicators that, like Z, can be integrated in the EM algorithm as

missing variables. A value of ηd = 1 indicates the full relevance of feature d. According

to this definition, the mixture density in Eq. 2.1 can be rewritten as:



Chapter 2. Basic Background Theory 7

p (x) =
K∑

k=1

P (k)
D∏

d=1

{ρdp (xd|k; Θk) + (1− ρd) q (xd|λd)} (2.8)

Notice that this entails the assumption that features are conditionally independent given

a mixture component, which is equivalent to the assumption of a diagonal covariance

matrix. The distribution p would be a univariate version of Eq. 2.2, and the relevance

of feature d would be given by ρd; consequently, a feature d would be considered as

irrelevant, with irrelevance (1− ρd), if, for all mixture components, p (xd|k; Θkd) =

q (xd|λd), where q (xd|λd) is a common density followed by feature d, or common mixture

component. Notice that this is tantamount to say that the distribution for feature d does

not follow the cluster structure defined by the GMM. This common component should

reflect any prior knowledge we might have regarding irrelevant features, or otherwise

take the form of a general, uninformative distribution.

The maximum likelihood criterion can now be made explicit as the estimation of those

model parameters that maximize the complete log-likelihood

Lc =
N∑

n=1

log
K∑

k=1

P (k)
D∏

d=1

(ρdp (xd|k; Θk) + (1− ρd) q (xd|λd)) (2.9)

which can be accomplished using the EM algorithm (For details, see [3]). The probability

of a component k being the generator of observation n : rkn , is computed in the

expectation step of the algorithm as:

rkn =
P (k) Πd {ρdp (xnd|k; Θkd) + (1− ρd) q (xnd|λd)}

Σk′P (k′) Πd {ρdp (xnd|k′; Θk′d) + (1− ρd) q (xnd|λd)}
. (2.10)

Then, the maximization step provides update expressions for the components’ priors

P (k) ≡ αk, for the means and variances associated to each feature d in p (·|·) and q (·|·),
as well as for the relevance parameter ρd:

α̂k = Σnrkn/N (2.11)

µ̂Θkd
=

Σn
ρdP (xnd|k;Θkd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)rknxnd

Σn
ρdP (xnd|k;Θkd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)rkn
(2.12)

Σ̂Θkd
=

Σn
ρdP (xnd|k;Θkd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)rkn (xnd − µ̂Θkd
)2

Σn
ρdP (xnd|k;Θkd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)rkn
(2.13)
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µ̂λd
=

ΣnΣk

(
(1−ρd)q(xnd|λd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)

)
xnd

ΣnΣk
(1−ρd)q(xnd|λd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)rkn
(2.14)

Σ̂λd
=

ΣnΣk

(
(1−ρd)q(xnd|λd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)

)
(xnd − µ̂λd

)2

ΣnΣk
(1−ρd)q(xnd|λd)

ρdP (xnd|k;Θkd)+(1−ρd)q(xnd|λd)rkn
(2.15)

ρ̂d =
1
N

Σn,k
ρdP (xnd|k; Θkd)

ρdP (xnd|k; Θkd) + (1− ρd) q (xnd|λd)
rkn (2.16)



Chapter 3

Unsupervised Feature Relevance

Determination for GTM

The Finite Mixture Models described in the previous chapter have settled in recent

years as a standard for statistical modelling. Gaussian Mixture Models, in particular,

have received especial attention for their computational convenience [14] to deal with

multivariate continuous data. The usefulness of these models is reinforced by the wide

spectrum of their applications.

In practice, GMM suffer from several shortcomings that may limit their applicability.

One of them is their lack of multivariate data visualization capabilities. Data visual-

ization can be especially important in the exploratory data analysis. The GTM model

was originally conceived as a constrained GMM that circumvected this limitation by en-

abling the visualization of multivariate data on a low dimensional space. In this chapter,

we provide the basic theoretical definition of GTM and its extension to perform feature

relevance determination: the FRD-GTM.

3.1 GTM: The Generative Topographic Mapping

The GTM [2] was originally formulated both as a probabilistic alternative to Kohonen’s

SOM [17] and as a constrained mixture of distributions. It is precisely its constrained

definition that allows overcoming the data and cluster visualization limitations of general

finite mixture models. The GTM is a non-linear latent variable model that defines a

mapping from a low dimensional latent space onto the multivariate data space. The

mapping is carried through by a set of basis functions generating a (mixture) density

9
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distribution. The functional form of this mapping is defined as a generalized linear

regression model:

yd (u,W) =
M∑

m

φm (u)wmd, (3.1)

where φ is a set of M basis functions φ (u) = (φ1 (u) , . . . , φM (u)) that were origi-

nally defined as spherically symmetric Gaussians φm (u) = exp
{
−‖u−µm‖2

2σ2

}
, with µm

the centres of the Gaussians and σ their common width; W is the matrix of adaptive

weights wmd that defines the mapping; and u is a point in latent space. In order to

achieve computational tractability and to provide an alternative to the clustering and

visualization space defined by the characteristic SOM lattice, the latent space of the

GTM is discretized as a regular grid of K latent points uk defined by the probability

P (u) = 1/K
K∑

k=1

δ (u− uk) , (3.2)

where δ is the Kronecker’s delta. The probability distribution for a data point x, induced

by the latent distribution in Eq. 2.9, takes the form of isotropic Gaussian noise and,

given the adaptive parameters of the model, which are the matrix W and the inverse

variance of the Gaussians β, it can be written as:

p (x|u,W, β) =
(
β

2π

)D/2
exp

{
−β/2 ‖x− y‖2

}
, (3.3)

where the elements of y are given by Eq. 3.1. Marginalizing over the latent points and

using Eq. 3.2, we obtain

p (x|u,W, β) =
∫
p (x|u,W, β)P (u) du =

1
K

K∑

k=1

(
β

2π

)D/2
exp

{
−β/2 ‖x− yk‖2

}

(3.4)

According to this general description, the GTM is a constrained mixture of Gaussians in

the sense that all the components of the mixture are equally weighted by the term 1/K,

all components share a common variance β−1 (therefore
∑

= β−1I), and the centres of

the Gaussian components yk = φ (uk) W do not move independently from each other, as

they are limited by the mapping definition to lie on a low dimensional manifold embedded

in the D-dimensional space. Notice that, given the common variance constrain, the GTM
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complies by definition with the assumption that features are conditionally independent

given a mixture component, expressed in section 2.2.2.

The complete log-likelihood can now be defined as:

Lc (W, β|X) =
N∑

n=1

log

{
1
K

K∑

k=1

(
β

2π

)D/2
exp

{
−β/2 ‖xn − yk‖2

}}
(3.5)

As for GMM, we can resort to the EM algorithm to obtain the Maximum Likelihood

estimates of the adaptive parameters W and β. Defining once again as Z the indicators

describing our lack of knowledge of which latent point uk is responsible for the generation

of data point xn, the complete log-likelihood can be rewritten as

Lc (W, β|X,Z) =
N∑

n=1

K∑

k=1

zkn log

[(
β

2π

)D/2
exp

{
−β/2 ‖xn − yk‖2

}]
(3.6)

The expected value of zkn is now an special case of Eq. 2.5

rkn = P (k|xn,W, β) =
exp

{
−β

2 ‖xn − yk‖2
}

∑K
k′=1 exp

{
−β

2 ‖xn − yk′‖2
} (3.7)

The update expressions for W and β are computed in the maximization step. We obtain

Wnew as the solution of the following system of equations in matricial form:

ΦTGΦWnew −ΦTRX = 0, (3.8)

where Φ is a K×M matrix with elements φkm = φm (uk); R is the responsibility matrix,

with elements rkn; and G is a matrix with values

gkk′ =

{ ∑N
n=1 rkn k = k′

0 k 6= k′

}

.

Notice that Eq. 3.8 is equivalent to Eq. 2.6, given that the component centres for the

GTM are described by Y = ΦW.

The update expression for β is:
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(βnew)−1 =
1
ND

N∑

n=1

K∑

k=1

rkn ‖xn − yk‖2 (3.9)

See [2] for further details on these calculations.

3.2 Feature Relevance Determination for GTM: The FRD-

GTM

The approach to FRD in unsupervised models described in section 2.2.2 can be trans-

ferred to the standard Gaussian GTM. It has to be born in mind that, to some extent,

the relevance of a feature depends on the number of clusters defined by a given solution.

Considering the GTM strictly from its definition as a constrained mixture model, each

of the points of the latent space sampling defined by Eq. 3.2 can be thought as the

generator of a single data cluster. For data visualization purposes, the number of latent

points is left rather unconstrained in the usual GTM definition. Therefore, the FRD

method applied to GTM should be understood as a constrained one in as far as it is

meant to reach a compromise between its own ability as detector of feature relevance in

clustering structure, and the data visualization capabilities of the GTM. In other words,

for FRD-GTM, individual features are relevant in the sense that they explain the specific

clustering structure provided by GTM, and not necessarily the unconstrained clustering

structure of the data.

For FRD-GTM, the complete log-likelihood in Eq. 3.5 becomes:

Lc (W,w0, β, β0,p|X) =
N∑

n=1

log

{
1
K

K∑

k=1

D∏

d=1

(aknd + bknd)

}
, (3.10)

where

aknd = ρd (β/2π)1/2 exp
(
−β

2
(xnd − Σmφm (uk)wmd)

2

)
, (3.11)

bknd = (1− ρd) (β0,d/2π)1/2 exp
(
−β0,d

2
(xnd − φ0 (u0)w0)2

)
, (3.12)

and β0 ≡ {β0,1, . . . , β0,D};ρ0 ≡ {ρ1, . . . , ρD}. The common component requires the

definition of two extra adaptive parameters w0 and β0, so that y0 = φ0 (u0)w0.
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This common component accounts for data observations that the constrained mixture

components cannot explain well; in other words, data observations that do not fit with

the cluster structure described by these components. This approach is not unlike the one

commonly used to deal with the presence of atypical data observations (outliers) when

fitting Gaussian mixtures, which entails the inclusion of an additional component with a

uniform distribution. This can be circumvented by the fitting of Student t-distribution

mixtures [18], which has also been done for GTM [19]. The FRD method presented in

this report, though, differs from the former on its featurewise approach.

Resorting again to the EM algorithm, we rewrite the complete log-likelihood of the

model as:

Lc (W,w0, β, β0,p|X,Z) = Σn,krkn

D∑

d=1

log (aknd + bknd) (3.13)

where the expected responsibiblity in Eq. 3.7 becomes:

rkn = p (k|xn,W,w0, β, β0, ρ) =
∏D
d=1 (aknd + bknd)∑K

k′=1

∏D
d=1 (ak′nd + bk′nd)

. (3.14)

The maximization of the expected log-likelihood for GTM yields the following update

formulae for parameters ρ, W, β, w0 and β0:

ρnewd =
1
N

Σn,krknuknd, (3.15)

where

uknd =
aknd

aknd + bknd
. (3.16)

βnew =
Σn,krknΣduknd

Σn,krknΣduknd (xnd − Σmφm (uk)wmd)
2 (3.17)

βnew0,d =
Σn,krknvknd

Σn,krknvknd (xnd − φ0 (u0)w0,d)
2 , (3.18)

where

vknd =
bknd

aknd + bknd
. (3.19)
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For fully relevant (ρd → 1) features, the common component variance vanishes:

(β0,d)
−1 → 0. We now obtain, for each feature d, the elements of matrix Wnew as the

solution of the following system of equations in matricial form:

ΦTG∗ΦWnew
d −ΦTR∗Xd = 0, (3.20)

where R∗ has elements r∗kn = uknd ∗ rkn for a given feature d∗ with rkn given by Eq.

3.14, and G∗ has elements

g∗kk′ =

{ ∑N
n=1 r

∗
kn k = k′

0 k 6= k′

}

.

Notice the similarity of Eq. 3.20 and Eq. 3.8. Similarly, we obtain wnew
0 , featurewise,

as the solution of:

ΦT g∗φ0wnew
0,d − φT r∗Xd = 0, (3.21)

where r∗ has elements r∗ = Σkr
∗
kn = Σkvknd∗rkn for a given feature d∗, and g∗ = Σn,kr

∗
kn.

Note that the expression ukndrkn could be considered as the responsibility of the con-

strained mixture component k for generating feature d of a data observation n. Corre-

spondingly, expression vkndrkn could actually be considered as the lack of responsibility

of the constrained mixture component k for generating feature d of a data observation

n.



Chapter 4

Experiments

4.1 Introduction

The main objective of this thesis consists in the investigation of the possible effects of

noise and sample size in the performance of unsupervised feature selection using mixture

models. The study of such effects is relevant for many reasons:

• It allows reducing the dimensionality of the data, redefining the datasets through

a smaller subset of features.

• It facilitates multivariate data visualisation and an easier understanding of the

knowledge extracted by the model.

• It has the potential to reduce measurement and computational storage require-

ments.

• It has the potential to reduce development and deployment times.

4.2 Experimental Settings

The results of statistically principled models for probability density estimation, such as

GTM and its variants, are bound to be affected, in one way or another, by sample size

and by the presence of uninformative noise in the data. Here, we assess such effects

on the FRD-GTM model described in the previous chapter. For that, data with very

specific characteristics are required. We mostly use synthetic sets similar to those in [3]

for comparative purposes.

15
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4.2.1 Data Description

4.2.1.1 Trunk data (SYNTH1)

The first synthetic set (hereafter referred to as SYNTH1 ) is a variation on the Trunk

data set used in [3], and was designed for its 10 features to be in decreasing order of

relevance. It consists of data sampled from two Gaussians N (µ1, I) and N (µ2, I), where:(
µ1 = 1, 1√

3
, . . . , 1√

2d−1
, . . . , 1√

19

)
and µ1 = −µ2. Samples of SYNTH1 of different sizes,

from 100 to 10,000 points, were used in this study to test the effect of sample size. In

order to test the effect of noise, four increasing levels of Gaussian noise, of standard

deviations 0.1, 0.2, 0.5, and 1, were added to the 10 original features of SYNTH1, for a

given sample size.

4.2.1.2 Experiment 1 (SYNTH2)

The second dataset (hereafter referred to as SYNTH2 ) consists of a contrasting com-

bination of features: the first two define four neatly separated Gaussian clusters with

centres located at (0, 3) , (1, 9) , (6, 4) and (7, 10); they are meant to be relatively relevant.

The next four features are Gaussian noise and, therefore, rather irrelevant in terms of

defining cluster structure. Similar experiments to the ones devised for SYNTH1 were

designed for this dataset.

EXP − 10000 data points

Feature 1

F
ea

tu
re

 2

−2 0 2
−5

0

5

Figure 4.1: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from Experiment 1 (SYNTH2)
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4.2.1.3 SYNTH3. 4 Gaussians (close centres)

Consists of data points from a mixture of four equiprobable Gaussians N (mi, I) and

i = {1, 2, 3, 4}, where m1 = (1 4), m2 = (1 8), m3 = (5 4) and m4 = (5 8). Four “noisy”

features (sampled from a N (0, 1) distribution) are appended to these data.

SYNTH3 − 10000 data points

Feature 1

F
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tu
re

 2

−2 0 2
−5

0

5

Figure 4.2: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from SYNTH3

4.2.1.4 SYNTH4. 4 Gaussians (flat)

Consists of data points from a mixture of four equiprobable Gaussians N (mi, I) and

i = {1, 2, 3, 4}, where m1 = (0 3), m2 = (0 9), m3 = (6 3), m4 = (6 9) and

cov =

∣∣∣∣∣
1 1.15

1.15 3

∣∣∣∣∣

Four “noisy” features (sampled from a N (0, 1) distribution) are appended to these data.
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SYNTH4 − 10000 data points
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Figure 4.3: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from SYNTH4

4.2.1.5 SYNTH5. 4 Gaussians (lineal)

Consists of data points from a mixture of four equiprobable Gaussians N (mi, I) and

i = {1, 2, 3, 4}, where m1 = (0 3), m2 = (6 3), m3 = (12 3) and m4 = (18 3). Four

“noisy” features (sampled from a N (0, 1) distribution) are appended to these data.

SYNTH5 − 10000 data points

Feature 1

F
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Figure 4.4: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from SYNTH5
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4.2.1.6 SYNTH6. 6 Gaussians

Consists of data points from a mixture of six equiprobable Gaussians N (mi, I) and

i = {1, 2, 3, 4}, where m1 = (0 3), m2 = (1 9), m3 = (6 4), m4 = (7 10), m5 = (12 5)

and m6 = (13 11). Four “noisy” features (sampled from a N (0, 1) distribution) are

appended to these data.

SYNTH6 − 10000 data points

Feature 1
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Figure 4.5: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from SYNTH6

4.2.1.7 SYNTH7. 8 Gaussians

Consists of data points from a mixture of eight equiprobable Gaussians N (mi, I) and

i = {1, 2, 3, 4}, where m1 = (0 3), m2 = (1 9), m3 = (6 3), m4 = (7 9), m5 = (12 3),

m6 = (13 9), m7 = (18 3) and m8 = (19 9). Four “noisy” features (sampled from a

N (0, 1) distribution) are appended to these data.
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SYNTH7 − 10000 data points
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Figure 4.6: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from SYNTH7

4.2.1.8 SYNTH8. 6 Gaussians (lineal)

Consists of data points from a mixture of six equiprobable Gaussians N (mi, I) and

i = {1, 2, 3, 4}, where m1 = (0 3), m2 = (1 9), m3 = (6 3), m4 = (7 9), m5 = (12 3) and

m6 = (13 9). Four “noisy” features (sampled from a N (0, 1) distribution) are appended

to this data.

SYNTH8 − 10000 data points
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Figure 4.7: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from SYNTH8
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4.2.1.9 SYNTH9. 8 Gaussians (diagonal)

Consists of data points from a mixture of eight equiprobable Gaussians N (mi, I) and

i = {1, 2, 3, 4}, where m1 = (0 3), m2 = (1 9), m3 = (6 4), m4 = (7 10), m5 = (12 5),

m6 = (13 11), m7 = (18 6) and m8 = (19 12). Four “noisy” features (sampled from a

N (0, 1) distribution) are appended to these data.

SYNTH9 − 10000 data points
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Figure 4.8: Graphical representation of the two first informative features of an illus-
trative sample of 10,000 points from SYNTH9

4.2.1.10 Real Data: the Ionosphere Dataset

The well known Ionosphere data set from the UCI Machine Learning Repository will also

be used for analysis. It contains radar data consisting of 351 instances and 34 features,

the latter consisting of 17 pairs of values. Each pair is formed by the real and complex

parts of the values of an autocorrelation function for a pulse number of the radar system

signal. The first pair was removed due to uninformative character of its complex part.

The ionosphere data were originally meant for classification, as they can be ascribed to

one of two categories or classes: “bad radar returns” and “good radar returns”. Such

classes, in turn, indicate the lack of or the existence of ionosphere structure.

4.2.2 FRD-GTM settings

One of the modelling decisions to be made when setting up a GTM model in general,

and FRD-GTM in particular, is that of the model architecture. This takes the form
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of the choice of discretization of the latent visualization space, described in the previ-

ous chapter. As happens with its close relative, the Self-Organizing Map (SOM: [17])

method, the grid of GTM latent centres can take different layouts and sizes. Previous

research [6, 7] has shown the reasonable lack of sentivity of FRD-GTM to changes in

the model’s architecture. In this thesis, we investigated different architectures without

finding any significant differences in performance regarding the results that concern the

experimental hypotheses.

Therefore, and for the sake of brevity, we report in detail here only the results corre-

sponding to a fixed grid of GTM latent centres with a square layout of 3 × 3 nodes

(i.e., 9 constrained mixture components). The corresponding grid of basis functions

was fixed to a 2 × 2 layout. The FRD-GTM parameters W and w0 were initialized

with small random values sampled from a normal distribution. Saliencies were initial-

ized at ρd = 0.5, ∀d, d = 1, . . . , D. The EM algorithm for parameter optimization by

log-likelihood maximization is prone to lead the algorithm towards local minima and

initializing the algorithm with random weights in multiple runs is meant to at least alle-

viate this shortcoming of the optimization method, making the comparative experiments

more reliable.

For the experiments with the Ionosphere data, the grid of GTM latent centres was

fixed to square layouts of 5 × 5 and 10 × 10 nodes (i.e., 25 or 100 constrained mixture

components). The corresponding grid of basis functions φm was fixed to 3× 3 and 5× 5

layouts.

4.2.3 Experimental hypotheses

This chapter aims to assess the effect of noise and sample size on the performance of the

FRD-GTM model. Such goal opens a large breadth of possible experimental designs that

is unreasonable to implement in full. Selecting a finite number of synthetic datasets has

already narrowed the choice. Then, a number of sample sizes from 10,000 down to 100

data points was considered as a sensible selection to illustrate the effect of sample size.

Not all those that were used are reported in this chapter, but the selection suffices for

the assessment. We first hypothesize (H1) that the feature relevance ranking estimated

by FRD-GTM for all these datasets will deteriorate gradually as sample size decreases.

Then again, different types of noise might have been considered for study, but, in this

thesis, we focus on Gaussian noise (noise that has the p.d.f. of the Gaussian or normal

distribution). Two different approaches were used to gauge the effect of noise. Firstly,

for all experiments, uninformative Gaussian noise of different and increasing standard

deviations was added to the informative data features. Although a wider array of values
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was used, here we report results for added noise of standard deviations 0.1 (herein

referred to as Level 1), 0.2 (Level 2), 0.5 (Level 3), and 1 (Level 4). Secondly, for the

experiments concerning different combinations of Gaussian distributions, new features,

consisting of just Gaussian noise and therefore uninformative, randomly sampled from

N (0,1), were added to the original dataset features in different numbers. Only the results

for 3 and 6 new added features are later reported in the appendices.

According to these settings it is also hypothesized that the feature relevance ranking will

deteriorate in proportion to the level of noise added to the original data features (H2.1)

and that the feature relevance ranking will deteriorate in proportion to the number of

uninformative noisy features added to the original data features (H2.2).
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4.3 Experimental results and discussion

We first report and discuss the results of the assessment of the effect of sample size on

the unsupervised saliency estimation by FRD-GTM. This is followed by the report and

discussion of the results of the assessment of the effect of noise on the same estimation.

All the reported experiments correspond to the settings detailed in section 4.2.

4.3.1 The effect of sample size on the unsupervised saliency estimation

by FRD-GTM

The FRD ranking results for the Trunk data (SYNTH1) are shown in Figures 4.9 and

4.10, for sample sizes from 10,000 down to 100 points. A deterioration of the results is

clearly observed for datasets of less than 1,000 points. This deterioration takes two forms:

Firstly, a breach of the expected monotonic decrease of the mean feature saliencies.

Secondly, a neat increase of uncertainty in the results, illustrated in Figures 4.9 and

4.10 in the form of bigger bars of the standard deviation of the estimated saliencies. As

a result, the confidence on the validity of the results for small sample sizes decreases

considerably. According to these results, the hypothesis H1, outliend in section 4.2, is

at least partially supported.

The FRD ranking results for SYNTH2, again for sample sizes from 10.000 down to 100

points, are shown in Figures 4.11 and 4.12. The problem of four Gaussians, quite well

separated and arranged in a quite symmetric layout, is a much easier easier problem

for the FRD-GTM model, and this is reflected by the fact that the saliency estimated

for the two first features is higher than that estimated for the rest of the features, even

for a sample size as small as 100 points. A deterioration of the saliency estimation is

nevertheless evident for the smallest of the sample sizes investigated. This is consistent

with the results for SYNTH1 and, again, H1 is partially supported.

To avoid cluttering the text with an excessive amount of figures, those corresponding

to the following experiments are relegated to Appendix A. The FRD ranking results for

SYNTH3, for the same sample sizes, are shown in Figures A.1 and A.2. This should be

a harder problem for the model than the one posed by SYNTH2, given that the four

artificially generated normally distributed clusters have centres that are much closer to

each other than those of SYNTH2 and, therefore, their level of overlapping is higher.

As a result, you might expect the relevance of the first two features to be more difficult

to assess. This is the case, and it is reflected by the fact that the saliency estimated for

the two first features is overall lower than that estimated for SYNTH2 . Despite the fact

that the saliency of the first two features is differentially higher than the saliency of the
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Figure 4.9: Experiments with different SYNTH1 sample sizes (indicated in the plot
titles) Mean saliencies ρd for the 10 features. The bars span from the mean minus to
the mean plus one standard deviation of the saliencies over 20 runs of the algorithm.
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Figure 4.10: Experiments with different SYNTH1 sample sizes (indicated in the plot
titles) Mean saliencies ρd for the 10 features. The bars span from the mean minus to
the mean plus one standard deviation of the saliencies over 20 runs of the algorithm

(continuation of fig. 4.9).

rest of features for large sample sizes, a fatal deterioration of the saliency estimation is

evident for sample sizes as big as 1,000. This partially supports H1 but also provides

a clear indication of the limitations of the technique for difficult, highly overlapping

datasets.

In SYNTH4, the clusters are well separated but the more complex distributions and

non-diagonal covariance matrices. The FRD ranking results for this dataset are shown

in A.3 and A.4. The saliencies estimated for the two first features (and especially for the

first one) are higher than those estimated for the rest of the (uninformative) features,

indicating that the algorithm is perfectly capturing the more complex structure of the

distributions. A deterioration of the saliency estimation is nevertheless evident for the

smallest of the sample sizes investigated.

The SYNTH5 dataset consists this time of four Gaussians aligned along the first main
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Figure 4.11: Experimental results for different SYNTH2 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure 4.12: Experimental results for different SYNTH2 sample sizes (continuation
of fig. 4.11). Representation as in previous figures.

feature. This means that the second feature has no contribution to the overall cluster

structure. The FRD ranking results for SYNTH5 are shown in Figures A.5 and A.6 and

perfectly reflect the nature of these data, as the second feature consistently ranks as low

as the uninformative noise features. A deterioration of the saliency estimation is again

in evidence for the smallest of the sample sizes investigated, especially in the form of

bigger bars of the standard deviation of the estimated saliencies.

SYNTH6, SYNTH7, SYNTH8, and SYNTH9 are variations on the same theme, and

are meant to explore whether the increase in the number of clusters has any effect on

FRD-GTM in terms of the sample size. SYNTH6 and SYNTH8 consist of 6 neatly de-

fined Gaussians, whereas SYNTH7 and SYNTH9 consist of 8. SYNTH6 and SYNTH9

are arranged in a rhomboid layout, whereas SYNTH7 and SYNTH8 are arranged in a

rectangular layout. The results are displayed in A.7 and A.8 (for SYNTH6), A.9 and

A.10 (for SYNTH7), A.11 and A.12 (for SYNTH9), and A.13 and A.14 (for SYNTH9).
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They indicate, first, that the number of Gaussians has no clear effect on saliency esti-

mation, as the results for SYNTH6 and SYNTH9 are very similar to each other, and

so are the results of SYNTH7 and SYNTH8. Secondly, they capture the modifications

in the cluster structure introduced by the different layouts: for SYNTH6 and SYNTH9

the first feature is estimated to be less relevant than the second, whereas for SYNTH6

and SYNTH8 the first feature is estimated to be more relevant than the second. For all

these datasets, and consistently with previous results involving well-defined clusters, the

estimation of the saliency deteriorates quite gracefuly, and such deterioration is only in

evidence for the smallest datasets. Overall, these results again provide partial support

for hypothesis H1.

4.3.2 The effect of Noise

In the experiments reported in Figure 4.13, four levels of Gaussian noise of increasing

level were added to a sample of 2,000 points of SYNTH1. The FRD-GTM is shown

to behave robustly even in the presence of a substantial amount of noise, although its

performance deteriorates significantly for noise of standard deviation = 1, as reflected

in the breach of the expected monotonic decrease of the mean feature saliencies. It is

also true that, comparing these results with those in Figures 4.9 (in which no noise was

added to SYNTH1 ), the most relevant feature is not so close to a saliency of 1. H2.1

is, therefore, partially supported by these results.

The FRD ranking results using the 10 original features of SYNTH1 plus 5 amd 10

Gaussian noise features, are shown in Figure 4.14. For all levels of noise, the relevance

(in the form of estimated saliency) of the original features (1 → 10) is reasonably well

estimated: the saliency for the first feature is close to 1 with almost full certainty (very

small vertical bars) and, overall, the expected monotonic decrease of the mean feature

saliencies is preserved, although breaches of such monotonicity can also be observed.

The saliencies estimated for the 5 and 10 added Gaussian noise features are regularly

estimated to be small. Interestingly, the increase in the level of noise does not seem

to affect the performance of the FRD method in any significant way: the differences

between the saliencies of the 10 original variables and the added (5 or 10) noisy ones

stay roughly the same and the decreasing relevance for the 10 original variables does not

vary substantially. According to these results, H2.2 is not supported at this stage.

The FRD-GTM is shown to behave with reasonable robustness when noise is added to

the first two features of SYNTH2, as shown in Figure 4.15. As in the case of SYNTH1, its

performance deteriorates significantly for high levels of noise. Comparing these results

with those in Figures 4.11 and 4.12 (in which no noise was added to the first two features),
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Figure 4.13: Experiments with a sample of 2,000 points from SYNTH1, to which
different levels of Gaussian noise (indicated in the plot titles) are added. Representation

as in previous figures.
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Figure 4.14: Experiments with a sample of 2,000 points from SYNTH1, to which
different levels of Gaussian noise (continuation of fig. 4.13) are added. Representation

as in previous figures.
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Figure 4.15: Experimental results for a sample size of 1000 points from SYNTH2,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure 4.16: Experimental results for a sample size of 1000 points from SYNTH2, to
which different levels of Gaussian noise (continuation of fig. 4.15) are added. Repre-

sentation as in previous figures.
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the overall deterioration becomes evident. H2.1 is again partially supported by these

results.

This support for hypothesis H2.1 is, even if partial, certainly not unexpected. As robust

as it may be, the FRD-GTM model is still prone to data overfitting. That is, at some

point, the model will start learning the noise as much as learning the underlying signal

distributions. The resulting FRD-GTM model will be over-complex and, if the noise is

uninformative (i.e., in this case, if the noise affects all data features equally), the method

of relevance determination will eventually start struggling to provide correct saliency

estimations. One way around this problem is to endow the model with regularization

capabilities to effectively control complexity [9–11]. FRD-GTM is thus likely to benefit

from the definition of extensions of the model encompassing adaptive regularization.

The FRD ranking results for the experiments using the 2 original features of SYNTH2

plus either 7 or 10 Gaussian noise features are shown, in turn, in Figure 4.16. This is

clearly a far easier problem for the FRD method. Regardless the level of noise and the

number of added noisy features, FRD-GTM consistently estimates the first 2 features

to be the most relevant. Furthermore, the differences between the saliencies estimated

for the first 2 features and the added (7 or 10) noisy ones stay roughly the same. In

contrast with the results obtained in the experiments with SYNTH1, the estimated

saliencies for all noisy features are low and quite similar. Our research hypothesis H2.2

is not supported by these results.

To avoid cluttering the text with an excessive amount of figures, those corresponding

to the following experiments are relegated to Appendix B. The FRD-GTM is shown

to behave with reasonable robustness when noise is added to the first two features of

SYNTH3 -SYNTH9. As in the case of SYNTH2, its performance deteriorates signifi-

cantly for high levels of noise. Comparing these results with those in which no noise was

added to the first two features, the overall deterioration becomes evident. H2 is again

partially supported by these results.

The FRD ranking results for the experiments using the 2 original features of SYNTH3,

SYNTH4, SYNTH6, SYNTH7, SYNTH8, SYNTH9 plus either 7 or 10 Gaussian noise,

regardless the level of noise consistently estimates the first 2 features to be the most

relevant. Furthermore, the differences between the saliencies estimated for the first 2

features and the added (7 or 10) noisy ones stay roughly the same. The FRD ranking

results for SYNTH5 where the second feature has no contribution to the overall cluster

structure shown in Figures B.5 and B.6 and perfectly reflect the nature of these data,

as the second feature consistently ranks as low as the uninformative noise features.
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4.3.3 The effect of Noise on Real Data: Ionosphere

The Ionosphere dataset described in 4.2.1.10 was also analyzed. Recall that the data

consist of 34 features, structured in 17 pairs of values. Each pair is formed by the real

and complex parts of the values of an autocorrelation function for a pulse number of

the system signal. FRD-GTM was assessed using these data in [6], showing that all real

parts had higher saliencies than their complex counterparts, meaning that the real parts

describing the original signal have a richer cluster structure. In the experiments reported

in Figure 4.17, four increasing levels of Gaussian noise were added to Ionosphere. The

deterioration of the results as noise increases are evident, although the relative ordering

of real vs. complex components of the feature pairs are reasonably well preserved for

noise levels up to 0.5.

The FRD ranking results using the 34 original features of Ionosphere to which 8 or 16

Gaussian noise features are added, are shown in Figure 4.18. For all levels of noise, the

relevance (in the form of estimated saliency) of the original features is reasonably well

estimated. The rest of the results for this experiment can be found in the Appendix B

Figure B.15. The saliencies estimated for the 8 and 16 added Gaussian noise features

are consistently estimated to be small. Interestingly, the increase in the level of added

noise does not affect the performance of the FRD method in any significant way: the

differences between the saliencies of the 34 original variables and the added (8 or 16) noisy

ones stay at roughly the same levels. According to these results, H2 is not supported.
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Figure 4.17: Experimental results for a sample size of 351 points from IONOSPHERE,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure 4.18: Experimental results for a sample size of 351 points from IONOSPHERE,
to which different levels of Gaussian noise (continuation of fig. 4.17) are added. Rep-

resentation as in previous figures.



Chapter 5

Potential Alternatives to

Minimize the Impact of Noise in

FRD-GTM

5.1 Introduction

In the previous chapter, we have evaluated the robustness of FRD-GTM in the presence

of different levels of uninformative noise. The FRD-GTM model, in its standard version,

will fit the noise indistinctly. It is therefore prone to suffer the problem of overfitting.

Overfitting, as reported in the experiments, affects the feature relevance ranking, at

least to some extent. In this chapter, we outline some of the potential approaches to

deal with this negative effect of noise in the model’s performance. They include: Firstly,

some regularized variants of GTM that make use of a partially Bayesian formulation

of the problem and of the evidence approach. Secondly, a full Bayesian approach to

GTM training with a variational algorithmic approximation. Finally, a variation of

the standard GTM that penalizes interpoint off-manifold distances while prioritizing

distances along the manifold.

38
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5.2 Regularized GTM with Feature Relevance Determina-

tion

The optimization of Eq. 3.5 does not prevent the model fitting whatever noise is present

in the dataset. As mentioned elsewhere, one of the advantages of the probabilistic

definition of the GTM is the possibility of introducing adaptive regularization in the

mapping. This procedure automatically regulates the level of map smoothing necessary

to avoid data overfitting, resorting to either a single regularization term (SRT) [9], or

to multiple ones (in a procedure called Selective Map Smoothing (SMS): [10]). The

first case entails the definition of a penalized log-likelihood of the form: `PEN (W, β) =

` (W, β) − 1
2 ς ‖w‖

2, where ` (W, β) is the log-likelihood of the original formulation of

GTM (logarithm of Eq. 3.5); ς is a regularization coefficient; and w is a vector shaped

by concatenation of the different column vectors of the weight matrix W.

A Bayesian approach to the estimation of the regularization coefficient ς, as well as the

inverse variance β, was introduced in [9]. In this procedure, Bayes’ theorem is used to

estimate the distributions of ς and β, given the data points, in the form:

p (ς, β|X) =
p (X|ς, β) p (ς, β)

p (X)
(5.1)

Assuming uninformative priors, the optimization of equation 5.1 is equivalent to the

maximization of the evidence, or marginal likelihood:

p (X|ς, β) =
∫
p (X|w, β) p (w|ς) dw, (5.2)

for which a normal prior p (w, ς) =
(
ς

2π

)W/2 exp
(
−1

2 ς ‖w‖
2
)

is choosen for the weights,

where W is the number of weights in matrix W. The log-evidence or marginal log-

likelihood for ς and β is then given by:

ln p (X|ς, β) = ` (W∗, β)− 1
2
ς ‖w∗‖2 −

1
2

ln |H∗|+
W

2
ln ς + C (5.3)

where W∗ is the value of w in matrix form at the maximum of the posterior distribution

(Eq. 5.2) and H∗ is the Hessian of p (X|w∗, β) p (w∗|ς). All the constant terms have

been grouped as C. The maximization of this equation for ς and β leads to the standard

updating formulae of the evidence approximation.

Alternatively, multiple regularization terms can also be considered, one for each basis

function. This method, known as SMS, was originally introduced in [10]. In SMS, the

prior distribution over the weights is given by
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p (w, {ςs}) =
S∏

s=1

( ςs
2π

)D/2
exp

(
−1

2

S∑

s=1

ςs ‖ws‖2
)

(5.4)

where each ςs is a regularization coefficient for each basis function, and ws is the vector

of weights in matrix W that are associated with the hyperparameter s. The marginal

log-likelihood of Eq. 5.3 is reformulated as:

ln p (X| {ςs} , β) = ` (W∗, β)− 1
2

S∑

s=1

ςs ‖w∗s‖2 −
1
2

ln |H∗ {ςs}|+
D

2

S∑

s=1

ln ςs (5.5)

The extension of these two regularization methods to FRD-GTM should be reasonably

straightforward, as it would only entail adding the regularization terms to the likelihood

expression for FRD-GTM and a differentiation with respect to the parameters of the

model in the maximization M-step of the EM algorithm.

5.3 Variational Bayesian FRD-GTM

The regularization methods have been proposed in the literature [2, 10] to avoid over-

fitting when modelling data using GTM, described in the previous section, are based

on Bayesian evidence approaches, whose efficiency is limited by some of the simplify-

ing assumptions they require. Alternatively, we could reformulate GTM within a fully

Bayesian approach and endow the model with regularization capabilities based on varia-

tional techniques. Variational inference allows approximating the marginal log-likelihood

through Jensen’s inequality as follows:

ln p (X) = ln
∫
p (X|Z,Θ) p (Z) p (Θ) dZdΘ

= ln
∫
q (Z,Θ)

p (X|Z,Θ) p (Z) p (Θ)
q (Z,Θ)

dZdΘ

≥
∫
q (Z,Θ) ln

p (X|Z,Θ) p (Z) p (Θ)
q (Z,Θ)

dZdΘ

= F (q (Z,Θ)) (5.6)

The function F (q (Z,Θ)) is a lower bound such that its convergence guarantees the

convergence of the marginal likelihood. The goal in variational inference is choosing a

suitable form for the density q (Z,Θ) in such a way that F (q) can be readily evaluated
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and yet which is sufficiently flexible that the bound is reasonably tight. A reasonable

approximation for q (Z,Θ) is based on the assumption that the hidden membership

variables Z and the model parameters Θ are independently distributed, i.e. q (Z,Θ) =

q (Z) q (Θ). Thereby, a Variational EM algorithm can be derived, consisting of the

following basic steps:

VBE-Step:

q (Z)(new) ← argmax
q(Z)

F
(
q (Z)(old) , q (Θ)

)
(5.7)

VBM-Step:

q (Θ)(new) ← argmax
q(Θ)

F
(
q (Z)(new) , q (Θ)

)
(5.8)

5.3.1 Variational Bayesian EM for FRD-GTM

The steps outlined in the previous subsection are substantiated as follows

5.3.1.1 The VBE Step

q (Z) =
N∏

n=1

K∏

k=1

γ̃zkn
kn (5.9)

where

γ̃kn =
exp

{∑D
d=1 〈ηd〉 〈ln pknd〉Y,β + (1− 〈ηd〉) 〈ln p0nd〉y0,β0

}

∑K
k′=1 exp

{∑D
d=1 〈ηd〉 〈ln pknd〉Y,β + (1− 〈ηd〉) 〈ln p0nd〉y0,β0

} (5.10)

5.3.1.2 The VBM Step

The variational distribution q (Θ) can be approximated to the product of the variational

distribution of each one of the parameters if they are assumed to be independent and

identically distributed. If so, q (Θ) is expressed as:

q (Θ) = q (Y) q (β) q (η) q (y0) q (β0) (5.11)

where natural choices of q (Y), q (β), q (η), q (y0) and q (β0) are similar distributions to

the priors p (Y), p (β), p (η), p (y0) and p (β0), respectively. Thus,
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q (Y) =
D∏

d=1

N
(
y(d)|m̃(d), Σ̃(d)

)
(5.12)

q (β) = Γ
(
β|d̃β, s̃β

)
(5.13)

q (η) =
D∏

d=1

ρ̃d
ηd (5.14)

q (y0) =
D∏

d=1

N (y0d|m̃0d, τ̃0d) (5.15)

q (β0) =
D∏

d=1

Γ
(
β0d|d̃β0d

, s̃β0d

)
(5.16)

Then, the variational parameters are estimated to be:

Σ̃(d) =

(
〈β〉 〈ηd〉

N∑

n=1

Gn + C−1

)−1

(5.17)

m̃(d) = 〈β〉 〈ηd〉 Σ̃
N∑

n=1

xnd 〈zn〉 (5.18)

d̃β = dβ +
N

2

D∑

d=1

〈ηd〉 (5.19)

s̃β = sβ +
1
2

N∑

n=1

K∑

k=1

〈zkn〉
D∑

d=1

〈ηd〉
〈

(xnd − ykd)2
〉

(5.20)

ρ̃d = ρd exp

{
N∑

n=1

K∑

k=1

〈zkn〉
[
〈ln pknd〉Y,β − 〈ln p0nd〉y0,β0

]}
(5.21)

τ̃0d = N (1− 〈ηd〉) 〈β0d〉+ τ0d (5.22)

m̃0d =
1
τ̃0d

[
(1− 〈ηd〉) 〈β0d〉

N∑

n=1

xnd + τ0dm0d

]
(5.23)
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Algorithm 1 Variational algorithm
Step 1 Initialize model parameters
repeat:

Step 2 VBE Step

Step 3 VBM Step

until convergence is guaranteed

d̃β0d
=
N

2
(1− 〈ηd〉) + dβ0d

(5.24)

s̃β0d
=

1
2

(1− 〈ηd〉)
N∑

n=1

(xnd + 〈y0d〉)2 +
N

2
(1− 〈ηd〉) τ̃0d + sβ0d

(5.25)

Details of these calculations can be found in [20]. In a nutshell, the complete algorithm

is summarized in Algorithm 1.

5.3.2 Lower Bound

We can now go back to the calculation of the lower bound expression from Eq. 5.6:

F (q) = 〈ln p (X|Z,Y, β,η,y0,β0)〉Z,Y,β,η,y0,β0

−DKL [q (Z) ||p (Z)]−DKL [q (Y) ||p (Y)]−DKL [q (β) ||p (β)]

−DKL [q (η) ||p (η)]−DKL [q (y0) ||p (y0)]−DKL [q (β0) ||p (β0)](5.26)

where:

〈ln p (X|Z,Y, β,η,y0,β0)〉Z,Y,β,η,y0,β0
=

N∑

n=1

K∑

k=1

〈zkn〉
D∑

d=1

[
〈ηd〉 〈ln pknd〉Y,β

+ (1− 〈ηd〉) 〈ln p0nd〉y0,β0

]
(5.27)

The operator DKL [q||p] is the Kullback-Leibler divergence between q and p.
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5.4 Geodesic GTM with Feature Relevance Determination

The Geo-GTM model is an extension of GTM that favours the similarity of points along

the learned manifold, while penalizing the similarity of points that are not contiguous in

the manifold, even if close in terms of the Euclidean distance. This is achieved by mod-

ifying the standard calculation of the responsibilities in proportion to the discrepancy

between the geodesic (approximated by a graph calculation) and the Euclidean dis-

tances. Such discrepancy is made operational through the definition of the exponential

distribution

E(dg|de, α) =
1
α

exp
{
−dg(xn,ym)− de(xn,ym)

α

}
, (5.28)

where de(xn,ym) and dg(xn,ym) are, in turn, the Euclidean and graph distances be-

tween data point xn and the GTM prototype ym. The responsibilities of the model are

redefined as:

zgeomn = p(um|xn,W, β) =
p′(xn|um,W, β)p(um)∑
m′ p′(xn|um′ ,W, β)p(um′)

, (5.29)

where p′(xn|um,W, β) = N (y(um,W), β)E(dg(xn,ym)2|de(xn,ym)2, 1). When there is

no agreement between the graph approximation of the geodesic distance and the Eu-

clidean distance, the value of the numerator of the fraction within the exponential in

(5.28) increases, pushing the exponential and, as a result, the modified responsibility,

towards smaller values, i.e., punishing the discrepancy between metrics. Once the re-

sponsibility is calculated in the modified E-step, the rest of the model’s parameters are

estimated following the standard EM procedure [21].

Notice that this means that points which are off-manifold will be penalized. This is what

usually happens in the presence of noise. Some preliminary results using Geo-GTM [22]

show that it recovers the underlying data generators far better than the standard GTM

counterpart in the presence of increasing levels of noise. Again, the implementation of

a Geodesic variation of FRD-GTM would be straightforward, as it would only entail a

minor modification of the E-step in the EM algorithm.

5.5 Conclusions

Several methods to deal with one of the main problems analyzed in this thesis, namely

the effect of uninformative noise in the performance of the FRD-GTM model, have been

briefly outlined in this chapter. The theory of variational FRD-GTM, in particular, has

been developed in some detail. The implementation of the other methods should be

reasonably straightforward.
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Both the full development of these methods, and its comparative assessment through

detailed experimentation are beyond the scope of this thesis and should be targets for

future research.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The effects of sample size and the presence of noise on a method of unsupervised feature

relevance determination for the manifold learning GTM model have been investigated in

some detail. The FRD-GTM has been shown to behave with reasonable robustness even

at small sample sizes and in the presence of a fair amount of noise. Even though, per-

formance deterioration has been observed at very small sample sizes and in the presence

of high levels of noise. Overall, hypotheses H1 and H2.1 have been partially supported,

while hypothesis H2.2 has not been supported at all by the experimental evidence.

The relative weakness of the method in the presence of noise makes it convenient to

consider possible strategies for model regularization and, therefore, future research will

be devoted the design of methods for automatic and proactive model regularization to

prevent or at least limit the negative effect of data overfitting on the FRD method for

GTM. Some of such methods have already been designed for the standard GTM formu-

lation [9, 10] and could be extended to FRD-GTM. Alternatively, regularization could be

accomplished through a reformulation of the GTM within a variational Bayesian theo-

retical framework [12]. Again, this could be extended to accomodate FRD as exemplified

by the theoretical development summarized in section 5.2.

46
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6.2 Future Work

Future research should also extend the current experimental design to include a wider

variety of artificial data sets of different characteristics, as well as to include compar-

isons with alternative unsupervised feature relevance determination and feature selection

techniques.

It should also address the design of strategies for adaptive model regularization for FRD-

GTM. Such kind of strategy would automatically regulate the level of map smoothing

necessary to avoid the model fitting the noise in the data, i.e. data overfitting.



Appendix A

Figures: Sample Size effect

48
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Figure A.1: Experimental results for different SYNTH3 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure A.2: Experimental results for different SYNTH3 sample sizes (continuation
of fig. A.1). Representation as in previous figures.
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Figure A.3: Experimental results for different SYNTH4 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure A.4: Experimental results for different SYNTH4 sample sizes (continuation
of fig. A.3). Representation as in previous figures.
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Figure A.5: Experimental results for different SYNTH5 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure A.6: Experimental results for different SYNTH5 sample sizes (continuation
of fig. A.5). Representation as in previous figures.
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Figure A.7: Experimental results for different SYNTH6 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure A.8: Experimental results for different SYNTH6 sample sizes (continuation
of fig. A.7). Representation as in previous figures.
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Figure A.9: Experimental results for different SYNTH7 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure A.10: Experimental results for different SYNTH7 sample sizes (continuation
of fig. A.9). Representation as in previous figures.
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Figure A.11: Experimental results for different SYNTH8 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure A.12: Experimental results for different SYNTH8 sample sizes (continuation
of fig. A.11). Representation as in previous figures.
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Figure A.13: Experimental results for different SYNTH9 sample sizes (indicated in
the plot titles). Representation as in previous figures.
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Figure A.14: Experimental results for different SYNTH9 sample sizes (continuation
of fig. A.13). Representation as in previous figures.
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Figure B.1: Experimental results for a sample size of 1000 points from SYNTH3,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure B.2: Experimental results for a sample size of 1000 points from SYNTH3, to
which different levels of Gaussian noise (continuation of fig. B.1) are added. Represen-

tation as in previous figures.
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Figure B.3: Experimental results for a sample size of 1000 points from SYNTH4,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure B.4: Experimental results for a sample size of 1000 points from SYNTH4, to
which different levels of Gaussian noise (continuation of fig. B.3) are added. Represen-

tation as in previous figures.
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Figure B.5: Experimental results for a sample size of 1000 points from SYNTH5,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure B.6: Experimental results for a sample size of 1000 points from SYNTH5, to
which different levels of Gaussian noise (continuation of fig. B.5) are added. Represen-

tation as in previous figures.
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Figure B.7: Experimental results for a sample size of 1000 points from SYNTH6,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure B.8: Experimental results for a sample size of 1000 points from SYNTH6, to
which different levels of Gaussian noise (continuation of fig. B.7) are added. Represen-

tation as in previous figures.
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Figure B.9: Experimental results for a sample size of 1000 points from SYNTH7,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure B.10: Experimental results for a sample size of 1000 points from SYNTH7, to
which different levels of Gaussian noise (continuation of fig. B.9) are added. Represen-

tation as in previous figures.



Appendix B. Figures: Noise effect 74

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Feature #

S
al

ie
nc

y
SYNTH8 − Std. dev = 0.1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Feature #

S
al

ie
nc

y

SYNTH8 − Std. dev = 0.2

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Feature #

S
al

ie
nc

y

SYNTH8 − Std. dev = 0.5

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Feature #

S
al

ie
nc

y

SYNTH8 − Std. dev = 1

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Feature #

S
al

ie
nc

y

SYNTH8 − 3 new features − Std. dev = 0.1

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Feature #

S
al

ie
nc

y

SYNTH8 − 3 new features − Std. dev = 0.2

Figure B.11: Experimental results for a sample size of 1000 points from SYNTH8,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure B.12: Experimental results for a sample size of 1000 points from SYNTH8, to
which different levels of Gaussian noise (continuation of fig. B.11) are added. Repre-

sentation as in previous figures.
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Figure B.13: Experimental results for a sample size of 1000 points from SYNTH9,
to which different levels of Gaussian noise (indicated in the plot titles) are added.

Representation as in previous figures.
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Figure B.14: Experimental results for a sample size of 1000 points from SYNTH9, to
which different levels of Gaussian noise (continuation of fig. B.13) are added. Repre-

sentation as in previous figures.
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Figure B.15: Experimental results for a sample size of 351 points from IONO-
SPHERE, to which different levels of Gaussian noise (indicated in the plot titles) are

added. Representation as in previous figures.
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The Effect of Noise and Sample Size on an Unsupervised Feature
Selection Method for Manifold Learning

Alfredo Vellido and Jorge S. Velazco

Abstract— The research on unsupervised feature selection is
scarce in comparison to that for supervised models, despite
the fact that this is an important issue for many cluster-
ing problems. An unsupervised feature selection method for
general Finite Mixture Models was recently proposed and
subsequently extended to Generative Topographic Mapping
(GTM), a manifold learning constrained mixture model that
provides data visualization. Some of the results of a previous
partial assessment of this unsupervised feature selectionmethod
for GTM suggested that its performance may be affected by
insufficient sample size and by noisy data. In this brief study,
we test in some detail such limitations of the method.

I. I NTRODUCTION

T HE fields of machine learning and statistics coexist with
data analysis as a common target and they overlap in

what has come to be defined as Statistical Machine Learning.
An example of this can be found in Finite Mixture Mod-
els, which are flexible and robust methods for multivariate
data clustering [1]. The addition of visualization capabilities
would benefit these models in many application scenarios,
helping to provide intuitive cues about data structural pat-
terns. One way to endow Finite Mixture Models with data
visualization is by constraining the mixture components to
be centered in a low-dimensional manifold embedded into
the multivariate data space, as in Generative Topographic
Mapping (GTM) [2]. This is a manifold learning model for
simultaneous data clustering and visualization.

The interpretability of the clustering results provided by
GTM becomes difficult when the analyzed data sets con-
sist of a large number of features. This limitation can be
overcome with methods to estimate the ranking of the data
features according to their relative relevance, leading to
feature selection (FS). The research on unsupervised FS is
scarce in comparison to that for supervised models, despite
the fact that FS becomes an issue of paramount importance
for many clustering problems, regardless the unavailability
of class labels. The interpretability of the clusters obtained
by unsupervised methods would be improved by their de-
scription in terms of a reduced subset of relevant variables.

An important advance on unsupervised FS for Finite
Mixture Models was presented in [3] and recently extended
to GTM in [4] and to one of its variants for time series
analysis in [5]. This method was preliminarily assessed in
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[6], where some of the results suggested that the performance
of the method may be degraded by characteristics of the data
such as insufficient sample size and the presence of noise.
In this brief study, we provide far more detailed evidence of
the limitations of the method through controlled experiments
using synthetic data.

The remaining of the paper is organized as follows. First,
brief introductions to the standard Gaussian GTM and its
extension for Feature Relevance Determination (FRD) are
provided in section 2. This is followed, in section 3, by a
description of the experimental settings and, in section 4,by
a presentation and discussion of the results. The paper closes
with a brief summary of conclusions.

II. FEATURE RELEVANCE DETERMINATION FOR GTM

A. The Standard GTM Model

The neural network-inspired GTM is a manifold learn-
ing model with sound foundations in probability theory. It
performs simultaneous clustering and visualization of the
observed data through a nonlinear and topology-preserving
mapping from a visualization latent space inℜL (with L
being usually 1 or 2 for visualization purposes) onto a
manifold embedded in theℜD space, where the observed
data reside.

For each featured, the functional form of this mapping
is the generalized linear regression modelyd (u, W) =∑M

m φm (u)wmd, whereφm is one of M basis functions,
defined here as spherically symmetric Gaussians, generating
the non-linear mapping from a latent vectoru to the manifold
in ℜD. The matrixW of adaptive weightswmd explicitely
defines this mapping.

The prior distribution ofu in latent space is constrained to
form a uniform discrete grid ofK centres. A density model
in data space is therefore generated for each componentk of
the mixture, which, assuming that the observed data setX is
constituted byN independent, identically distributed (i.i.d.)
data pointsxn, leads to the definition of a complete log-
likelihood in the form:

L(W,β|X)=
∑ N

n=1 ln
{

1
K

∑K
k=1( β

2π )D/2
exp{−β/2‖yk−xn‖2}

} (1)

whereyk is a reference or prototype vector consisting of ele-
ments (ydk =

∑M
m φm (uk)wmd), which are an instantiation

of the generalized linear regression model described above.
From Eq. (1), the adaptive parameters of the model, which
are W and the common inverse variance of the Gaussian
components,β, can be optimized by maximum likelihood



(ML) using the Expectation-Maximization (EM) algorithm.
Details can be found in [2].

B. The FRD-GTM

The problems of feature selection and feature relevance
determination are commonly understood as one of the pos-
sible strategies for data dimensionality reduction, usually
for supervised problems. In such setting, a data feature is
said to be relevant (and it is eventually selected) only if its
absence (or its absence in combination with the absence of
others) worsens significantly the classification or predictive
performance of the defined model. Feature selection and
feature relevance determination for unsupervised learning,
even if sharing the dimensionality reduction objective of their
supervised counterparts, are far less investigated problems.
Here, the relevance is not longer related to a label or
target variable, and various feature ranking criteria can be
considered, including, but not limited to,saliency, entropy,
smoothness, densityand reliability [7].

In this paper, unsupervised feature relevance is understood
as the likelihood of a feature being responsible for generating
the data cluster structure. Therefore, relevant features will
be those which better separate the natural clusters in which
the data are structured. Moreover, we are interested in
unsupervised feature selection methods that are suitable for
clustering models that also provide data visualization. With
that in mind, the FRD technique was defined for the GTM
model in [4]. For the unsupervised GTM clustering model,
relevance is defined through the concept of saliency.

The FRD problem was investigated for GTM in [4].
Feature relevance in this unsupervised setting is understood
as the likelihood of a feature being responsible for generating
the data cluster structure. In this unsupervised setting, rele-
vance is defined through the concept of saliency. Formally,
the saliency of featured can be defined asρd = P (ηd = 1),
whereη=(η1, . . . , ηD) is a set of binary indicators that can
be integrated in the EM algorithm as missing variables. A
value of ηd = 1 (ρd = 1) indicates that featured has the
maximum possible relevance. According to this definition,
the FRD-GTM mixture density can be written as:

p(x|W,β,w0,β0,ρ)=
∑ K

k=1
1
K

∏D
d=1{ρdp(xd|uk;wd,β)+(1−ρd)q(xd|u0;w0,d,β0,d)}

(2)

where wd is the vector ofW corresponding to featured
and ρ ≡ {ρ1, . . . , ρD}. A feature d will be considered
irrelevant, with irrelevance(1− ρd), if p (xd|uk; wd, β) =
q (xd|u0; w0,d, β0,d) for all the mixture componentsk, where
q is a common density followed by featured. Notice that
this is like saying that the distribution for featured does
not follow the cluster structure defined by the model. This
common component requires the definition of two extra
adaptive parameters in (2):w0 ≡ {w0,1, . . . , w0,D} and
β0 ≡ {β0,1, . . . , β0,D} (so thaty0 = φ0 (u0) w0). For fully
relevant (ρd → 1) features, the common component variance
vanishes:(β0,d)

−1 → 0. The parameters of the model can,
once again, be optimized by ML using the EM algorithm.
Detailed calculations can be found in [8].

III. E XPERIMENTAL SETTINGS

The results of statistically principled models for proba-
bility density estimation, such as GTM and its variants, are
bound to be affected, in one way or another, by sample size
and by the presence of uninformative noise in the data. Here,
we assess such effects on the FRD-GTM model described
in the previous section. For that, data with very specific
characteristics are required. We use synthetic sets similar to
those in [3] for comparative purposes.

The first synthetic set (hereafter referred to assynth1) is a
variation on theTrunkdata set used in [3]), and was designed
for its 10 features to be in decreasing order of relevance.
It consists of data sampled from two GaussiansN (µ1, I)
and N (µ2, I), where:

(
µ1 = 1, 1√

3
, . . . , 1√

2d−1
, . . . , 1√
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)

and µ1 = −µ2. We hypothesize (H1) that the feature
relevance ranking estimated by FRD-GTM for these data
will deteriorate gradually as sample size decreases. Samples
of synth1of different sizes, from 100 to 10,000 points, were
used in this study to testH1. It is also hypothesized (H2) that
the feature relevance ranking will deteriorate in proportion to
the level of noise. In order to testH2, four increasing levels
of Gaussian noise, of standard deviations 0.1, 0.2, 0.5, and1,
were added to the 10 original features ofsynth1, for a given
sample size.

The second dataset (hereafter referred to assynth2) con-
sists of a contrasting combination of features: the first two
define four neatly separated Gaussian clusters with centres
located at(0, 3) , (1, 9) , (6, 4) and(7, 10); they are meant to
be relatively relevant. The next four features are Gaussian
noise and, therefore, rather irrelevant in terms of defining
cluster structure. Similar experiments to the ones devisedfor
synth1were designed to further testH1 andH2.

The FRD-GTM parametersW and w0 were initialized
with small random values sampled from a normal distri-
bution. Saliencies were initialized atρd = 0.5, ∀d, d =
1, . . . , D. The grid of GTM latent centres was fixed to a
square layout of3 × 3 nodes (i.e., 9 constrained mixture
components). The corresponding grid of basis functionsφm

was fixed to a2× 2 layout.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments outlined in the previous section aim to
assess the effect of sample size and the presence of noise on
the performance of FRD-GTM in the process of unsupervised
feature relevance estimation.

A. The Effect of Sample Size

The FRD ranking results forsynth1are shown in Fig. 1,
for sample sizes from 10,000 down to 100 points. Further
sample sizes were tested, conforming to a similar pattern;
their results are not included for the sake of brevity. A
deterioration of the results is clearly observed for datasets
of less than 1,000 points.
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Fig. 1. Experiments with differentsynth1sample sizes (indicated in the plot titles) Mean salienciesρd for the 10 features. The bars span from the mean
minus to the mean plus one standard deviation of the saliencies over 20 runs of the algorithm.



1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

10000 data points

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

4000 data points

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

2000 data points

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

1000 data points

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

400 data points

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

300 data points

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

200 data points

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #

S
al

ie
nc

y

100 data points

Fig. 2. Experimental results for differentsynth2sample sizes (indicated in the plot titles). Representation as in previous figures.



This deterioration takes two forms: Firstly, a breach of the
expected monotonic decrease of the mean feature saliencies.
Secondly, a neat increase of uncertainty in the results,
illustrated in Fig. 1 in the form of bigger bars of the
standard deviation of the estimated saliencies. As a result,
the confidence on the validity of the results for small sample
sizes decreases considerably. According to these results,H1
is at least partially supported.

The FRD ranking results forsynth2, again for sample sizes
from 10.000 down to 100 points, are shown in Fig. 2. This is
an easier problem for the model, and this is reflected by the
fact that the saliency estimated for the two first features is
higher than that estimated for the rest of the features, evenfor
a sample size as small as 100 points. A deterioration of the
saliency estimation is nevertheless evident for the smallest
of the sample sizes investigated. This is consistent with the
results forsynth1and, again,H1 is partially supported.

B. The effect of Noise

In the experiments reported in Fig. 3, four levels of
Gaussian noise of increasing level were added to a sample of
1,000 points ofsynth1. The FRD-GTM is shown to behave
robustly even in the presence of a substantial amount of
noise, although its performance deteriorates significantly for
noise of standard deviation = 1, as reflected in the breach
of the expected monotonic decrease of the mean feature
saliencies.H2 is, therefore, partially supported by these
results.

Fig. 4 displays the results of a similar experiment for
synth2. They are fully consistent with those obtained with
synth1. The model again behaves robustly in the presence of
noise and clearly deteriorates at the highest level of added
noise, for which the model struggles to distinguish the first
two features from the purely noisy ones. HypothesisH2 is,
again, at least partially supported.

This support for hypothesisH2 is, even if partial, certainly
not unexpected. As robust as it may be, the FRD-GTM
model is still prone to data overfitting. That is, at some
point, the model will start learning the noise as much as
learning the underlying signal distributions. The resulting
FRD-GTM model will be over-complex and, if the noise
is uninformative (i.e., in this case, if the noise affects all
data features equally), the method of relevance determination
will eventually start struggling to provide correct saliency
estimations. One way around this problem is to endow the
model with regularization capabilities to effectively control
complexity [9], [10], [11]. FRD-GTM is thus likely to benefit
from the definition of extensions of the model encompassing
adaptive regularization.

V. CONCLUSIONS

In this paper, the effects of sample size and the presence
of noise on a method of unsupervised feature relevance
determination for the manifold learning GTM model, have
been investigated in some detail. The FRD-GTM has been
shown to behave with reasonable robustness even at small
sample sizes and in the presence of a fair amount of noise.

Even though, performance deterioration has been observed
at very small sample sizes and in the presence of high level
of noise.

This relative weakness of the method in the presence of
noise makes it convenient to consider possible strategies for
model regularization and, therefore, future research willbe
devoted the design of methods for automatic and proactive
model regularization to prevent or at least limit the negative
effect of data overfitting on the FRD method for GTM. Some
of such methods have already been designed for the standard
GTM formulation [9], [10] and could be extended to FRD-
GTM. Alternatively, regularization could be accomplished
through a reformulation of the GTM within a variational
Bayesian theoretical framework [11]. Again, this could be
extended to accomodate FRD.

Future research should also extend the current experimen-
tal design to include a wider variety of artificial data sets of
different characteristics, as well as to include comparisons
with alternative unsupervised feature relevance determitation
and feature selection techniques.
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Fig. 3. Experiments with a sample of 1,000 points fromsynth1, to which different levels of Gaussian noise (indicated in the plot titles) are added.
Representation as in Fig. 1.
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Fig. 4. Experimental results for a sample size of 1000 pointsfrom synth2, to which different levels of Gaussian noise (indicated in the plot titles) are
added. Representation as in previous figures.



ASSESSMENT OF THE EFFECT OF NOISE ON AN UNSUPERVISED
FEATURE SELECTION METHOD FOR GENERATIVE

TOPOGRAPHIC MAPPING

Alfredo Vellido, Jorge S. Velazco
Department of Computing Languages and Systems (LSI), Technical University of Catalonia (UPC), Barcelona, Spain

avellido@lsi.upc.edu, e00728496@est.lsi.upc.edu

Keywords: Unsupervised Feature Selection; Feature Relevance Determination; Generative Topographic Mapping; clus-
tering; uninformative noise.

Abstract: Unsupervised feature relevance determination and feature selection for dimensionality reduction are important
issues in many clustering problems. An unsupervised feature selection method for general Finite Mixture
Models was recently proposed and subsequently extended to Generative Topographic Mapping (GTM), a
nonlinear manifold learning constrained mixture model for data clustering and visualization. Some of the
results of a previous preliminary assessment of this method for GTM suggested that its performance may be
affected by the presence of uninformative noise in the dataset. In this brief study, we test in some detail such
limitation of the method.

1 INTRODUCTION

Statistical Machine Learning (SML) provides a uni-
fied principled framework for machine learning meth-
ods and helps to overcome some of their limitations.
Embedding probability theory into machine learning
techniques has important modeling implications. For
instance, it requires modeling assumptions, includ-
ing the specification of prior distributions, to be made
explicit; it also automatically satisfies the likelihood
principle and provides a natural framework to handle
uncertainty.

An example of SML can be found in Finite Mix-
ture Models (FMM), which are flexible and robust
methods for multivariate data clustering (McLachlan
and Peel, 1998). The addition of visualization capa-
bilities would benefit these models in many applica-
tion scenarios, helping to provide intuitive cues about
data structural patterns. One way to endow FMM with
data visualization is by constraining the mixture com-
ponents to be centered in a low-dimensional manifold
embedded into the multivariate data space, as in Gen-
erative Topographic Mapping (GTM) (Bishop et al.,
1999). This is a non-linear, neural network-inspired
manifold learning model for simultaneous data clus-
tering and visualization.

The interpretability of the clustering results pro-
vided by GTM becomes difficult when the analyzed
data sets consist of a large number of features. This
limitation can be overcome with methods to estimate
the ranking of the data features according to their rel-
ative relevance, leading to feature selection (FS). The
research on unsupervised FS is scarce in comparison
to that for supervised models, despite the fact that FS
becomes a paramount issue in many clustering prob-
lems. A description of the problem in terms of a re-
duced subset of relevant features would improve the
interpretability of the clusters obtained by unsuper-
vised methods.

An important advance on unsupervised FS for Fi-
nite Mixture Models was presented in (Law et al.,
2004) and recently extended to GTM (the FRD-GTM
model) in (Vellido et al., 2006) and to one of its vari-
ants for time series analysis (FRD-GTM-TT) in (Olier
and Vellido, 2006). This method was preliminarily
assessed in (Vellido, 2006), where some of the re-
sults suggested that the performance of the method
may be degraded by the presence of uninformative
noise, which would obscure the underlying cluster
structure of the data and, therefore, mislead an unsu-
pervised feature relevance estimation method. In this
brief study, we provide evidence of the limitations of



the method through controlled experiments using syn-
thetic data.

The remaining of the paper is organized as fol-
lows. First, brief introductions to the standard Gaus-
sian GTM and its extension for Feature Relevance De-
termination (FRD) are provided in section 2. This is
followed, in section 3, by a description of the exper-
imental settings and, in section 4, by a presentation
and discussion of the results. The paper closes with a
brief summary of conclusions.

2 FEATURE RELEVANCE
DETERMINATION FOR GTM

2.1 The Standard GTM Model

The neural network-inspired GTM is a manifold
learning model with sound foundations in probabil-
ity theory. It performs simultaneous clustering and
visualization of the observed data through a nonlin-
ear and topology-preserving mapping from a visual-
ization latent space in ℜL (with L being usually 1
or 2 for visualization purposes) onto a manifold em-
bedded in the ℜD space, where the observed data re-
side. For each feature d, the functional form of this
mapping is the generalized linear regression model
yd (u,W) = ∑M

m φm (u)wmd , where φm is one of M ba-
sis functions, defined here as spherically symmetric
Gaussians, generating the non-linear mapping from a
latent vector u to the manifold in ℜD. The matrix W
of adaptive weights wmd explicitely defines this map-
ping.

The prior distribution of u in latent space is con-
strained to form a uniform discrete grid of K centres.
A density model in data space is therefore generated
for each component k of the mixture, which, assuming
that the observed data set X is constituted by N inde-
pendent, identically distributed (i.i.d.) data points xn,
leads to the definition of a complete log-likelihood in
the form:

L(W,β|X)=

∑N
n=1 ln

{
1
K ∑K

k=1

(
β

2π

)D/2
exp{−β/2‖yk−xn‖2}

} (1)

where yk is a reference or prototype vector consisting
of elements (ydk = ∑M

m φm (uk)wmd), which are an in-
stantiation of the generalized linear regression model
described above. From Eq. (1), the adaptive param-
eters of the model, which are W and the common
inverse variance of the Gaussian components, β, can
be optimized by maximum likelihood (ML) using the
Expectation-Maximization (EM) algorithm. Details
can be found in (Bishop et al., 1999).

2.2 The FRD-GTM

In this paper, unsupervised feature relevance is under-
stood as the likelihood of a feature being responsible
for generating the data cluster structure. Therefore,
relevant features will be those which better separate
the natural clusters in which the data are structured.
Moreover, we are interested in unsupervised feature
selection methods that are suitable for clustering mod-
els that also provide data visualization. With that in
mind, the FRD technique was defined for the GTM
model in (Vellido et al., 2006). For the unsupervised
GTM clustering model, relevance is defined through
the concept of saliency.

The FRD problem was investigated for GTM in
(Vellido et al., 2006). Feature relevance in this unsu-
pervised setting is understood as the likelihood of a
feature being responsible for generating the data clus-
ter structure and it is quantified through the concept
of saliency. Formally, the saliency of feature d can
be defined as ρd = P(ηd = 1), where η=(η1, . . . ,ηD)
is a set of binary indicators that can be integrated in
the EM algorithm as missing variables. A value of
ηd = 1 (ρd = 1) indicates that feature d has the maxi-
mum possible relevance. According to this definition,
the FRD-GTM mixture density can be written as:

p(x|W,β,w0,β0,ρ)=

∑K
k=1

1
K ∏D

d=1{ρd p(xd |uk;wd ,β)+(1−ρd)q(xd |u0;w0,d ,β0,d)}
(2)

where wd is the vector of W corresponding to fea-
ture d and ρ ≡ {ρ1, . . . ,ρD}. A feature d will be
considered irrelevant, with irrelevance (1−ρd), if
p(xd |uk;wd ,β) = q(xd |u0;w0,d ,β0,d) for all the mix-
ture components k, where q is a common density
followed by feature d. Notice that this is like say-
ing that the distribution for feature d does not fol-
low the cluster structure defined by the model. This
common component requires the definition of two ex-
tra adaptive parameters: w0 ≡ {w0,1, . . . ,w0,D} and
β0 ≡ {β0,1, . . . ,β0,D} (so that y0 = φ0 (u0)w0). For
fully relevant (ρd → 1) features, the common compo-
nent variance vanishes:(β0,d)

−1→ 0. The parameters
of the model can, once again, be optimized by ML
using the EM algorithm. Detailed calculations can be
found in (Vellido, 2005).

3 EXPERIMENTAL SETTINGS

The results of statistically principled models for prob-
ability density estimation, such as GTM and its vari-
ants, are bound to be affected, in one way or another,
by the presence of uninformative noise in the data.
Here, we assess such effects on the FRD-GTM model



described in the previous section. For that, data with
very specific characteristics are required. We use syn-
thetic sets similar to those in (Law et al., 2004) for
comparative purposes.

The first synthetic set (hereafter referred to as
synth1) is a variation on the Trunk data set used in
(Law et al., 2004)), and was designed for its 10 fea-
tures to be in decreasing order of relevance. It con-
sists of data sampled from two Gaussians N (µ1,I) and
N (µ2,I), where

(
µ1 = 1, 1√

3
, . . . , 1√

2d−1
, . . . , 1√
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)

and µ1 = −µ2. We hypothesize (H1) that the feature
relevance ranking estimated by FRD-GTM for these
data will deteriorate gradually as noise is added to the
10 original features and in proportion to its level. In
order to test H1, four increasing levels of Gaussian
noise, of standard deviations 0.1, 0.2, 0.5, and 1, were
added to the 10 original features of synth1, for a given
sample size. It is also hypothesized (H2) that the fea-
ture relevance ranking will deteriorate as we add new
noisy features and in proportion to their level of noise.
In order to test H2, 5 and 10 dummy features consist-
ing of Gaussian noise of standard deviations 0.1, 0.2,
0.5, and 1, were, in turn, added to the 10 original fea-
tures.

The second dataset (hereafter referred to as
synth2) consists of two features defining four neatly
separated Gaussian clusters with centres located at
(0,3) ,(1,9) ,(6,4) and (7,10); they are meant to be
relatively relevant in contrast to any added noise. In
a first experiment, noise of different levels was added
to the first two features, while 4 extra noise features
were added to those two. Several other experiments,
similar to the ones devised for synth1 were designed
to further test H2.

The FRD-GTM parameters W and w0 were ini-
tialized with small random values sampled from a
normal distribution. Saliencies were initialized at
ρd = 0.5,∀d,d = 1, . . . ,D. The grid of GTM latent
centres was fixed to a square layout of 3× 3 nodes
(i.e., 9 constrained mixture components). The cor-
responding grid of basis functions φm was fixed to a
2×2 layout.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

The experiments outlined in the previous section aim
to assess the effect of the presence of uninformative
noise on the performance of FRD-GTM in the process
of unsupervised feature relevance estimation.

In the experiments reported in Figure 1, four lev-
els of Gaussian noise of increasing level were added

to a sample of 1,000 points of synth1. The FRD-GTM
is shown to behave robustly even in the presence of a
substantial amount of noise, although its performance
deteriorates significantly for noise of standard devi-
ation = 1, as reflected in the breach of the expected
monotonic decrease of the mean feature saliencies. It
is also true that, comparing these results with those in
Figure 2 (in which no noise was added to synth1), the
most relevant feature is not so close to a saliency of 1.
H1 is, therefore, partially supported by these results.

The FRD ranking results for the second experi-
ment, using the 10 original features of synth1 plus 5
Gaussian noise features, are shown in Figure 2. For
all levels of noise, the relevance (in the form of esti-
mated saliency) of the original features (1→ 10) is
reasonably well estimated: the saliency for the first
feature is close to 1 with almost full certainty (very
small vertical bars) and, overall, the expected mono-
tonic decrease of the mean feature saliencies is pre-
served, although breaches of such monotonicity can
also be observed. The saliencies estimated for the 5
added Gaussian noise features are regularly estimated
to be small. Interestingly, the increase in the level of
noise does not seem to affect the performance of the
FRD method in any significant way: the differences
between the saliencies of the 10 original variables and
the 5 noisy ones stay roughly the same and the de-
creasing relevance for the 10 original variables does
not vary substantially. According to these results, H2
is not supported at this stage.

The FRD ranking results for the third experiment,
using the 10 original features of synth1 plus 10 Gaus-
sian noise features are shown in Figure 3. Once again,
and for all levels of noise, the relevance of the 10 orig-
inal features shows, overall, the expected monotonic
decrease of the mean feature saliencies, with some
breaches of monotonicity. This time, the saliencies
estimated for the 10 added Gaussian noise features
are not that clearly small in comparison to those esti-
mated for the 10 original ones. In summary, the de-
creasing relevance for the 10 original variables does
not vary substantially, and the differences between
the saliencies of the 10 original features and the 5
noisy ones stay roughly the same regardless the noise
level. Nevertheless, the FRD method seems to be af-
fected by the increase in number of the noisy features.
According to these results, H2 is only partially sup-
ported.

The FRD-GTM is shown to behave with reason-
able robustness when noise is added to the first two
features of synth2, as shown in Figure 4. As in the
case of synth1, its performance deteriorates signifi-
cantly for high levels of noise. Comparing these re-
sults with those in Figures 5 and 6 (in which no noise



was added to the first two features), the overall dete-
rioration becomes evident. H1 is again partially sup-
ported by these results.

The FRD ranking results for the experiments us-
ing the 2 original features of synth2 plus either 7 or 10
Gaussian noise features are shown, in turn, in Figures
5 and 6. This is clearly a far easier problem for the
FRD method. Regardless the level of noise and the
number of added noisy features, FRD-GTM consis-
tently estimates the first 2 features to be the most rele-
vant. Furthermore, the differences between the salien-
cies estimated for the first 2 features and the added
(7 or 10) noisy ones stay roughly the same. In con-
trast with the results obtained in the experiments with
synth1, the estimated saliencies for all noisy features
are low and quite similar. Our research hypothesis H2
is not supported by these results.

5 CONCLUSION

In this paper, the effects of the presence of noise on a
method of unsupervised feature relevance determina-
tion for the manifold learning GTM model, have been
investigated in some detail.

The FRD-GTM has been shown to behave with
reasonable robustness even in the presence of a fair
amount of noise. It was first hypothesized that the
feature relevance ranking would deteriorate as we add
noise to the existing features and in proportion to the
level of that noise. This hypothesis has found only
limited experimental support. It was also hypothe-
sized that the feature relevance ranking would dete-
riorate as we add extra noisy features to the existing
ones and in proportion to their number and the level
of noise. This second hypothesis has found little ex-
perimental support: There is only some evidence that
the performance of the FRD method deteriorates as
we increase the number of purely noisy features and
only if the dataset is complex enough.

This relative weakness of the method in the pres-
ence of noise makes it convenient to consider possi-
ble strategies for model regularization and, therefore,
future research will be devoted the design of meth-
ods for automatic and proactive model regularization
to prevent or at least limit the negative effect of data
overfitting on the FRD method for GTM. Some of
such methods have already been designed for the stan-
dard GTM formulation (Bishop et al., 1998; Vellido
et al., 2003) and could be extended to FRD-GTM.
Alternatively, regularization could be accomplished
through a reformulation of the GTM within a varia-
tional Bayesian theoretical framework (Olier and Vel-
lido, 2008). Again, this could be extended to accomo-

date FRD.
Future research should extend the experimental

design to include a wider variety of artificial data sets
of different characteristics. It should also address the
design of strategies for adaptive model regularization
for FRD-GTM. Such kind of strategy would automat-
ically regulate the level of map smoothing necessary
to avoid the model fitting the noise in the data, i.e.
data overfitting.
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Figure 1: Experiments with a sample of 1,000 points from synth1, to which different levels of Gaussian noise (indicated in the
plot titles) were added to the existing features. Mean saliencies ρd for the 10 features. The bars span from the mean minus to
the mean plus one standard deviation of the saliencies over 20 runs of the algorithm.
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Figure 2: Experiments with a sample of 1,000 points from synth1, to which 5 extra noise features (11→ 15) of different noise
levels (indicated in the plot titles) were added. Representation as in Figure 1.
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Figure 3: Experiments with a sample of 1,000 points from synth1, to which 10 extra noise features (11→ 20) of different
noise levels (indicated in the plot titles) were added. Representation as in Figure 1.
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Figure 4: Experiments with a sample of 1,000 points from synth2, to which noise of different levels (indicated in the plot
titles) were added. Four extra noise features (3→ 6) of the same noise levels were added. Representation as in previous
figures.
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Figure 5: Experiments with a sample of 1,000 points from synth2, to which 7 extra noise features (3→ 9) of different noise
levels (indicated in the plot titles) were added. Representation as in previous figures.
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Figure 6: Experiments with a sample of 1,000 points from synth2, to which 10 extra noise features (3→ 12) of different noise
levels (indicated in the plot titles) were added. Representation as in previous figures.
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