
Universitat Politècnica de Catalunya

Departament de Llenguatges i Sistemes Informàtics
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Abstract

In this master’s thesis we designed, implemented and evaluated a novel

joint syntactic and semantic parsing model.

Syntactic and semantic parsing have been and are still being ad-

dressed as sequence or pipeline of tasks. As far as we know, the

only open domain exception to this pipeline approach was published

by Musillo and Merlo (2006). The pipeline processing implies the un-

desirable and hard to recover effect of error propagation across com-

ponents. Furthermore, syntax and semantics are assumed to interact

between themselves at some degree and these interactions cannot be

modeled by a pipeline system. Thus the main objective of this work is

to design a joint model compare the pipeline and joint approaches. Also

and in spite of a fair comparison, the computing costs are evaluated.

This master’s thesis is concerned to the joint syntactic and semantic

parsing under the machine learning paradigm. Thus a dataset must be

available and evaluation measures provided. The CoNLL-2008 shared

task (Surdeanu et al., 2008), devoted to joint parsing of syntactic and

semantic dependencies, brings these elements and presents an excellent

framework to train and evaluate our model. Shared task organizes

merged together several data sources to provide training and testing

datasets. Furthermore, the shared task evaluation framework is widely

used and in addition our system can be compared to other shared task

contributing teams.

Our proposed model for joint parsing relies on an on-line structured

perceptron for learning (Collins, 2002) and on the Eisner algorithm (Eis-

ner, 1996) for inference. The Eisner algorithm is a bottom-up parser

previously successfully extended in the context of syntactic parsing (Mc-

Donald and Pereira, 2006; Carreras, 2007). Our proposal is one step

further and, as far as we know, for the first time the Eisner algorithm is

applied to jointly parse syntactic and semantic dependencies. At each

algorithm step a syntactic dependency and some semantic dependencies

iii



iv

are simultaneously computed and finally a complete optimal syntactic-

semantic structure is built.

Our implemented model shown to be feasible and efficient and pre-

sented encouraging results under the rich shared task framework. Un-

fortunately very few contributing teams presented other novel joint ap-

proaches. The overall results for the shared task were 78.11 global F1,

85.84 LAS and 70.35 semantic F1. These were moderate but encour-

aging results given the complexity achievable by a built from scratch

system developed under the hard time constraints of the shared task.

A comparison of our model to an equivalent pipeline system, one

of our first main concerns, showed that the joint system outperformed

by 4.9 points the equivalent semantic pipeline system. The comparison

between the joint system and the syntactic pipeline system presented

similar results. We concluded that a joint parsing model is completely

feasible and that some degree of syntactic and semantic interaction is

exploitable.
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Chapter 1

Introduction

Natural Language Understanding (NLU) is the set of tasks that deals

with the exploitation of semantic knowledge present in natural language.

NLU is of the major problems in Natural Language Processing (NLP).

NLP is a field in Artificial Intelligence that deals with the automated

generation and understanding of natural language.

NLU is a complex task informally considered, quoting Martin Kay,

as AI-complete implying that the difficulty of solving this problem is as

hard as solving other central Artificial Intelligence problems or also as

making computers as intelligent as human beings.

The goals of NLU are still far from being reached. A major challenge

for state-of-the-art NLP systems is The ambiguous nature of natural

language. Despite this, up to date, recent research has contributed with

significant progress in important subtasks of NLU such as dependency

parsing and shallow semantic parsing.

A wide range of applications such as Question Answering, Automatic

Summarization or Information Extraction could potentially benefit from

NLU research.

The purpose of this master’s thesis is to design a model to jointly

perform syntactic dependency parsing and semantic role labeling. The

model will be trained from a data source as we focus on the machine-

learning approach to these two problems.

Dependency parsing is the task of deriving a syntactic dependency

structure. In this structure each token has a link(dependency) to a head

token, except the root token that has no head. The syntactic structure

conforms a well defined tree.

Semantic role labeling is the annotation semantic arguments for

each sentence predicate. The core arguments to annotate typically an-

1



2 CHAPTER 1. INTRODUCTION

swers the questions who,when,what,why regarding the predicate. Also

semantic role labelling comprises the annotation of adjunct arguments

(e.g., manner, location, negation).

Figure 1.1: Syntactic and semantic dependencies

Figure 1.1 shows a sentence with syntactic dependencies (solid lines)

and semantic dependencies (dotted lines). Semantic dependencies ex-

press semantic relations between predicates (boxes with the predicate

lemma and sense) and tokens regarded as arguments. For instance, the

token of is a syntactic dependent of much and acts as a noun modi-

fier(NMOD). Token in is a semantic argument of fact, see the dotted

line labeled AM-DIS standing for adjunct argument of discourse. Note

that the syntactic structure conforms a tree.

Complex NLU problems are typically addressed by a pipeline archi-

tectures. The main advantage of this approach is the division of the

complex problem into an abordable sequence of subtasks. Unfortunately

propagated errors through the pipeline are hard to recover despite the

use of backtracking strategies. Furthermore and concerning to the top-

ics of this master’s thesis, syntax and semantics are assumed to interact

and these interactions cannot be modeled by sequential systems.

We considered after this brief discussion that two natural questions

arise:

• Can a joint system overcome the pipeline approach?

• Is it feasible to build a joint parsing system?

Our interests in this work are in seeing whether or not a joint system

can improve traditional pipeline systems and if it is possible to train

our system at a reasonable cost. Thus the main goals of this master’s

thesis are:

• Compare the joint and pipeline approaches

• Design and implement a feasible joint learning architecture
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The two previously stated questions will be recalled on the discussion

chapter.

Master’s thesis organization

The rest of this work is organized as follows:

• Chapter 2 - Problem setting

gives a description of the problem to be addressed and defines the

CoNLL-2008 shared task framework.

• Chapter 3 - Background
details the machine learning and inference methods employed by

state-of-the-art syntactic and semantic parsing systems, focusing

to the applied in this work.

• Chapter 4 - State of the art
outlines complete systems and and gives and overview of the state

of the art of the concerned topics.

• Chapter 5 - System design

describes in detail our joint model proposal and implementation.

• Chapter 6 - Results
reports the experimentation done and the results accomplished by

our system. Also includes a the CoNLL-2008 shared task final

scores.

• Chapter 7 - Final remarks
we present a deliberation about our work, the main conclusions

are drawn and the future work is outlined.

• Appendix A - Descriptive data analysis

includes an exploratory analysis of the training corpus data focus-

ing on relevant aspects for a joint parsing.

• The remaining appendices contains detailed scores and some use-
ful references.
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Chapter 2

Problem setting

Contents

2.1 The CoNLL-2008 shared task . . . . . . . . . . . . . . 5

2.1.1 Task overview . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Data overview . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Corpus format . . . . . . . . . . . . . . . . . . . 9

2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Syntactic scoring . . . . . . . . . . . . . . . . . . 12

2.2.2 Semantic scoring . . . . . . . . . . . . . . . . . . 13

2.2.3 Global scoring . . . . . . . . . . . . . . . . . . . . 15

In this chapter we describe the problem to address. It comprises

the definition of task to be addressed, the evaluation measures and the

training and testing data. The CoNLL-2008 shared task brings in a

convenient way all these required elements. The next section describes

the shared task and the evaluation measures and outlines the training

data. The analysis of the data is on appendix A, this analysis the first

step towards a better understanding of the problem data, please refer

to this appendix.

2.1 The CoNLL-2008 shared task

The CoNLL-2008 Shared Task (Surdeanu et al., 2008)1 is devoted

to the joint parsing of syntactic and semantic dependencies. Previ-

ous CoNLL-2007 and CoNLL-2006 shared tasks (Nivre et al., 2007a;

Buchholz et al., 2006) were devoted to syntactic dependency parsing.

1See the official website http://www.yr-bcn.es/conll2008/

5



6 CHAPTER 2. PROBLEM SETTING

CoNLL-2005 and CoNLL-2004 (Carreras and Màrquez, 2004; Carreras

and Màrquez, 2005) shared tasks aborded the semantic role labelling

problem. Present year CoNLL-2008 shared task should not be regarded

as a simple merging of previous years shared tasks. This shared task is

differentiated by:

• A unified formalism to express syntactic dependencies, sense predi-

cates and arguments. All are expressed by annotated links between

tokens, see section 2.1.3.

• A richer set of syntactic and semantic information by using new al-

gorithms to convert the original corpus formats to the new unified

formalism.

• SRL for both nominal and verbal predicates.

This shared task posed new challenges:

• The semantic parsing was traditionally done base upon a con-
stituent syntactic structure. This shared sets for semantic parsing

a dependency structure. The potential advantages of this change

are:

– The dependency structure may be the appropriate structure

for most NLP applications. Some of them (e.g., information

extraction and information retrieval) have been relying for

long on dependency structures. Constituent parsing is often

unnecessary for a wide range of applications.

– Dependency parsing algorithms are more efficient, linear parsers

can be build.

• The dependency structure is one of the richest available to date,

including several new syntactic labels.

• The tasks invites to a joint approach of syntactic and semantic
dependency parsing.

The CoNLL-2008 Shared Task as previous shared tasks allows the

teams to participate into two challenges:

closed challenge In this challenge the participating teams must strictly

build their system using the information provided in the training

files and tune using the development files. This constraint are

aimed to provide a fair evaluation environment.
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open challenge In this case teams can make use of any additional tools

and resources. Also the organizers provides supplementary re-

sources: tagged named entities, word net senses and a syntactic

parse obtained from MaltParser (Nivre et al., 2007b).

The closed challenge is the most attended of the two challenges as it

offers a fair framework for contributing teams. Up to date, the CoNLL-

2008 shared task had became the shared task with the largest number of

registered teams ever. More than 50 teams registered for participation,

but finally only 23 of the teams presented a system.

2.1.1 Task overview

Conceptually the task can be divided in the three parts:

• Syntactic dependency parsing.

A syntactic tree y must be computed from an input sentence x .

The tree y is rooted on a special node x0, added for this purpose.

The arcs (i , j) ∈ y are labeled arcs with syntactic tags l , also

noted i
l
→ j .

• Predicate identification and predicate sense disambiguation
A set of sentence tokens are to be tagged as predicates. There

is an exact correspondence between predicates and tokens. Fur-

thermore the identified predicates must be labeled also with their

sense, the senses are indexed and provided by a set of frames files.

• Semantic argument annotation

The predicate arguments must be detected and linked their predi-

cates. Note that not all sentence tokens are arguments nor predi-

cates. The argument annotation task consists in generating a set

of simple trees t1, . . . , tq one for each of the q identified predicates

of the sentence x . Each graph ti is a tree that does no necessarily

connects to all sentence tokens. The root of the tree corresponds

to the predicate and only direct sons are allowed. Each son is an

argument. Also the tree is labeled with the set of semantic tags.

Merging all trees will result in a Directed Acyclic Graph, but also

not necessarily covering all tokens nor being connected.

A detailed definition and further discussion of the syntactic and se-

mantic parsing tasks is to be found in the background chapter, sections

3.1,3.3.
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Figure 2.1: A sample sentence with lemma and POS

Figure 2.1 shows an input sentence with some information fields.

The fields plotted are the sentence tokens, an index of tokens and the

corresponding lemma and Part of Speech(POS) of each token. The

output to generate for each sentence is the syntactic structure (solid

lines and labels), the semantic structure (dotted lines and labels) and the

predicate identification and sense disambiguation (boxes with predicate

lemma and sense number).

2.1.2 Data overview

The shared task organizers made available resources to be used as the

only data source for the closed challenge participating teams. The

released data is:

• Training corpus file

A set of ∼40k sentences completely annotated with syntactic de-
pendencies, predicates and semantic arguments. The corpus is

based on the WSJ corpus. It is built by merging various corpus,

see section 2.1.3.

• Frames files
Also named rolesets, i,e., the number of senses and allowed argu-

ments for each predicate.

– NomBank senses

The nominal predicates and the list of allowed senses.

– PropBank senses

The verbal predicates and the list of allowed senses.

Data based on the Wall Street Journal corpus was provided for

training, developing and testing. New data from the Brown corpus
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was provided only for testing. The use of the Brown corpus data file

only for testing is because it is intended to evaluate the system in an

out-of-domain setting. Usually a significant drop in performance is ob-

served when the testing data does not come from the training domain.

This problem is commonly known as domain adaptation (Daumé III and

Marcu, 2006).

On top of this corpus data various annotation projects labeled syn-

tactic structure (PennTreebank 3 (Marcus et al., 1993), Brown Univer-

sity (Francis and Kucera, 1964)), semantic structure for verbal pred-

icates (PropBank (Palmer et al., 2006) ) and for nominal predicates

(NomBank (Meyers et al., 2004)).

Details about the conversion process from the original constituent

representation to the dependency structure are in Surdeanu et al (Sur-

deanu et al., 2008) an references therein.

A remarkable fact about the data sources is the definition of the

argument labels. The arguments a predicate can accept (e.g., agent,

patient) are neutrally labeled as A0,. . . ,A5. Adjunct arguments (e.g.,

temporal, manner ) are not predicate-specific and are labeled as AM-

TMP, AM-MNR, AM-LOC, AM-NEG, . . . . Although an effort by the

annotators was made in this direction, the same AX argument can take

different meanings across the set predicates (e.g. A3 for go is the start

point but A3 for do is the instrument). Thus a classifier for an AX

argument must in fact predict substantial different roles.

For an in depth data analysis please refer to A.

2.1.3 Corpus format

We describe2 the data format used in the CoNLL-2008 Shared Task.

The format was highly influenced by the formats used in the 2005,

2006, and 2007 shared tasks.

The data follows these general rules:

• The data files contain sentences separated by a blank line.

• A sentence consists of one or more tokens and the information for
each token is represented on a separate line.

• A token consists of at least 11 fields, described in the table below.
The fields are separated by one or more whitespace characters

2The contents of this section are mainly borrowed from the CoNLL-2008 shared task web

site http://www.yr-bcn.es/conll2008/
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(spaces or tabs). Whitespace characters are not allowed within

fields.

Table 2.1 describes the fields stored for each token in the data sets.

Col Field

name

In/out Description

1 ID INPUT Token counter, starting at 1 for

each new sentence.

2 FORM INPUT Word form or punctuation sym-

bol. The FORM field uses

the original WSJ tokenization,

i.e., hyphenated words such as

“Atlanta-based” are not split.

3 LEMMA INPUT Predicted lemma of FORM, ex-

tracted from WordNet using the

most common sense of the word.

If FORM does not exist in Word-

Net, LEMMA is set to the lower-

case version of FORM.

4 GPOS INPUT

(train/dev

only)

Gold part-of-speech (POS) tag

from the TreeBank. Note that,

in order to have a realistic eval-

uation, this field is provided only

for the training and development

sets. For the testing sets this col-

umn will contain “ ”.

5 PPOS INPUT Predicted POS tag. These tags

are predicted by a state-of-the-art

POS tagger. To avoid overfitting

the tagger on the training corpus

the tags on the training set are

generated through 10-fold cross-

validation.
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6 SPLIT

FORM

INPUT Tokens split at hyphens and

slashes. Because some argu-

ments, generally arguments of

nominal predicates, may appear

inside hyphenated words it is nec-

essary to split hyphenated con-

structs in order to correctly an-

notate such arguments. For

example, the TreeBank token

“Atlanta-based” is split into three

SPLIT FORMs: “Atlanta”, “-”,

and “based”. To ensure the same

number of rows for all columns

corresponding to one sentence,

the FORM, LEMMA, GPOS, and

PPOS columns are padded with

“ ” fields for all split tokens.

7 SPLIT

LEMMA

INPUT Predicted lemma of

SPLIT FORM, extracted from

WordNet using the most com-

mon sense of the word. If

SPLIT FORM does not exist

in WordNet, SPLIT LEMMA is

set to the lower-case version of

SPLIT FORM.

8 PPOSS INPUT Predicted POS tags of the split

forms. These tags are generated

using the same state-of-the-art

tagger and cross-validation pro-

cess as PPOS.

9 HEAD OUTPUT Syntactic head of the current to-

ken, which is either a value of ID

or zero (’0’). Note that both syn-

tactic and semantic dependencies

annotate the split-form tokens.

10 DEPREL OUTPUT Syntactic dependency relation to

the HEAD. The syntactic depen-

dency analysis is very similar to

that used for the English data sets

in the CoNLL 2007 shared task.
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11 PRED OUTPUT Rolesets of the semantic predi-

cates in this sentence. This in-

cludes both nominal and verbal

predicates. The split-form tokens

that are not semantic predicates

must be marked with “ ”. We

use the same roleset names as the

PropBank and NomBank frames.

12+ ARG OUTPUT Columns with argument labels for

the each semantic predicate fol-

lowing textual order, i.e., the first

column corresponds to the first

predicate in PRED, the second

column to the second predicate,

etc. Note that, because this al-

gorithm uniquely identifies the ID

of the corresponding predicate, it

is sufficient to store the label of

the argument here. The argu-

ment labels for verbal predicates

follow the PropBank conventions.

Labels of arguments to nominal

predicates use NomBank conven-

tions.

Table 2.1: CoNLL-2008 Shared Task datafileds

2.2 Evaluation

The evaluation of syntactic and semantic accuracy is widely preformed

using the measures defined in the context of the CoNLL-2008 shared

task (Surdeanu et al., 2008). The following sections details the syn-

tactic and semantic scorings as well as well as the combined scores.

2.2.1 Syntactic scoring

Tree measures, also used in past CoNLL-2007 and CoNLL-2006 shared

tasks (Nivre et al., 2007a; Buchholz et al., 2006), can be defined to

asses the syntactic performance:
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Labelled attachment score (LAS) measures the percentage of tokens

with only a correct head (i.e., a correct dependency arc) and also

a correct syntactic label.

Unlabelled attachment score (UAS) measures the percentage of to-

kens with a correct head (i.e., only a correct dependency arc).

Labelled accuracy score (LAC) measures the percentage of tokens

with a correct syntactic label without regarding if the dependency

points to an incorrect head.

The main measure to compare syntactics across systems is the LAS.

2.2.2 Semantic scoring

The semantic arguments are considered as semantic dependencies be-

tween the predicate and each argument, i.e., the predicate is considered

as a root and its semantic arguments as its semantic dependents.

The semantic predicates are also converted to semantic dependen-

cies. Each predicate is considered as a dependency from a virtual root

node to the predicate. This new virtual dependency is labeled with the

predicate sense as label. This is merely intended to provide a unified

point of view for semantic scoring.

The semantic structures formed are always single-rooted connected

graphs, but not necessary acyclic. This approach allows to define a

unified scoring and a partial positive scoring when the predicate sense

is incorrectly predicted.

We firstly review the precision and recall measures.

Precision is the fraction of correctly identified/tagged arguments with

respect to the number of predicted arguments.

precision =
|correct predictions|

|total predictions|

Recall is the fraction of correctly identified/tagged arguments with re-

spect to the total number of arguments to predict.

recall =
|correct predictions|

|total number of predictions to made|

F1 is the harmonic mean between Precision and Recall

F1 =
2 · Precision · Recall

Precision + Recall
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We distinguish between labeled and unlabeled measures. Unlabeled

measures do not regards semantic labels, only accounts for the identi-

fication of the semantic link between and argument and a predicate.

Unlabeled Precision the precision of predicted unannotated semantics

links.

Unlabeled Recall the recall of predicted unannotated semantics links.

Unlabeled F1 the F1 of the two previous measures.

Labeled Precision precision of the predicted semantic links and their

labels.

Labeled Recall recall of the predicted semantic links and their labels.

Labeled F1 the F1 of the two previous measures.

The labeled measures considers only a correct prediction when the ar-

gument is correctly identified and also is annotated with the correct

label in the case of the arguments or with the correct sense for the

predicates case.

Finally, another measure accounts for the complete correct semantic

annotations.

Perfect Proposition F1 scores the entire semantic frame, is computed

as the F1 of the completely correct set of arguments and sense for

each predicate. Note that it cannot be computed as the percent-

age of semantic propositions with all their arguments and sense

correct as we can overpredict or underpredict the predicates that

defines each semantic proposition

A semantic frame comprises a given predicate and all its arguments.

Note that in other contexts a semantic frames also refers to the set of

admissible arguments for a predicate.

The main measure to compare semantics across systems is the La-

belled F1.

Example 2.2.2.1 Semantic scoring

For example3, if a correct semantic output is to identify a verb and 3

predicates, say:

verb.01: ARG0, ARG1, ARGM-TMP

And the system output is

3Example extracted from the CoNLL-2008 shared task website http://www.yr-bcn.es/

conll2008/
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verb.02: ARG0, ARG1, ARGM-LOC

The labeled precision score will be 2/4. The incorrect sense for the verb

(‘01’ instead of ‘02’) accounts for one error.

2.2.3 Global scoring

Several measures combines the syntactic and semantic scores.

Exact Match is the percentage of sentences that are completely cor-

rect, including syntactic dependencies, semantic dependencies and

predicates.

Labeled Macro F1 This measure is computed using the F1 averaging

of:

Labeled macro precision

LabeledMacroPrecision = LabelSemanticPrecision + LAS

Labeled macro recall

LabeledMacroRecall = LabelSemanticRecall + LAS

Micro F1 this measure is computed considering all syntactic and se-

mantic dependencies within the same bag, i.e., each prediction

is considered an individual problem, precision and recall are com-

puted and finally the F1 score.

semantic labeled F1 / syntactic LAS this measure is intended to mea-

sure the relative performance of the semantic component. The

measure tries to capture the performance of the semantic compo-

nent with respect to the syntactic parsing. As the syntactic parsing

could significantly affect the semantic component this measure is

aimed to give a more fair comparison of the semantic components

of the systems.

The official evaluation criterion for the CoNLL-2008 shared task is

the Labeled macro F1. The systems are evaluated in a section of the

Wall Street Journal and a section of the Brown corpus.
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The purpose of this chapter is to review the approaches to syntactic

dependency parsing and semantic parsing or semantic role labelling.

The machine learning section reviews the main learning algorithms

applied to state-of-the-art syntactic and semantic parsing systems, and

specially focusing on the applied in this work. But note that we are not

intended to explore the not applied methods to the field nor to review

the complete vast amount of machine learning literature.

17
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3.1 Syntactic Dependency Parsing

The syntactic parsing is the is the task of deriving a syntactic structure.

Two main approaches are used to describe the syntactic structure of a

sentence.

• Constituent parsing

The sentence is broken into a hierarchical set of constituents or

phrases.

• Dependency parsing

In this case the structure is represented by links between words or

lexical items.

In this work we focus on dependency parsing. It is considered a more

suitable approach for a wide variety of machine learning applications.

Several efficient algorithms have been proposed for this task and are

described in the following sections.

Formalization

We assume we parse a sentence x of length n with tokens x1, . . . , xn.

The syntactic dependency structure can be defined as a graph. All

lexical items (or tokens) of x are linked by binary relations called de-

pendencies. A dependency d = 〈h,m〉 is a head h and a modifier m

(also called dependent). Usually, a syntactic dependency d = 〈h,m, l〉
is usually tagged with a syntactic label l . We represent a dependency

d = 〈h,m, l〉 also as h
l
→ m and a path from a token or lexical unit i

to j in the syntactic graph G as i
∗
→ j .

The dependency graph G can be represented as a weakly connected

Directed Acyclic Graph (DAG). With a set of labeled arcs A and a set

of ordered vertex V . The vertices of this graph are the sentence tokens.

The following properties are derived from this definition:

• G is weakly connected

if we replace the arcs of G with undirected edges the resulting

graph is connected.

• G is acyclic

there is no non-empty directed path that starts and ends on the

same node.

Usually tighter constrains are imposed.
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• Single-head constraint
every node has at most one head, i.e., if i → j then for all k 6= i

there is no k → j

• Root node constraint

a new node root x0 not accepting incoming arcs or heads is added.

An important distinction on dependency graphs is by their projec-

tivity property. Note that some parsing algorithms cannot deal with

non-projective structures.

A graph G is projective:

if i → j, then ∀i ′ such that i ← i ′,

i < i ′ < j or j < i ′ < i
(3.1)

Figure 3.1: Projective and non-projective sentences

Figure 3.1 shows an example of a projective sentence(top) and a

non-projective sentence(bottom), the last contains the non-projective

links between why-keep and does-?.

The CoNLL-2008 shared task considers sentences to be single-rooted.

Therefore the dependency graph is always a tree. All sentences of size

n will have a dependency tree of (n − 1) arcs.

The dependencies define head-modifier relations. The intuitive idea

behind these relations is (Hudson, 1987) 1

• The head determines the syntactic category of the construction
containing the modifier.

1Extracted from McDonal and Nivre Introduction to dependency parsing http://dp.

esslli07.googlepages.com/esslli1.pdf
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• The head determines the semantic category of the construction
containing the modifier.

• The head is mandatory, the modifier is optional.

• The head selects the modifier a determines if modifier is obliga-

tory.

• The form (by agreement or government) of modifier is defined by
head.

• The position of modifier is specified by reference to head.

In some cases it is not clear which token is the head and which one

the modifier. The following relations between tokens are ambiguous: 2

• auxiliary-main verb and multi-word verbs

• subordination

• coordination

• prepositional phrases

• punctuation

This ambiguities are fixed by consistent rules across the corpus. For

example, the punctuation marks are linked to the main predicate, coor-

dination and subordination are linked by following the sentence order.

A general ambiguity in dependency parsing is the prepositional phrase

attachment problem. It is the task of linking a prepositional phrase to

its head (Ratnaparkhi et al., 1994)

Example 3.1.0.1 The PP attachement problem

In sentence ‘I saw a man with a telescope’

the phrase introduced by with could be linked to the verb saw or to the

noun man

Usually the preposition does not contains enough information to de-

cide the head of the preposition (i.e., the head of the prepositional

phrase). It is regarded as necessary to consider the relation between

the head (in our case saw or man) and the grandson (telescope). Note

that edge-factored models cannot handle grandson relations, see sec-

tion 3.2.2.

2Extracted from McDonal and Nivre Introduction to dependency parsing http://dp.

esslli07.googlepages.com/esslli1.pdf
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Finally we remark some practical benefits of dependency parsing with

respect to a constituent parsing :

• Dependency parsing algorithms comprise the MST algorithm (O(n2)

time) and some versions and approximations of shift-reduce parsers

(O(n)), both faster than constituent-based parsing algorithms.

• Non-projective dependency structures can better capture the struc-
ture of free order languages. A constituent parsing is a projective

parsing.

3.2 Parsing algorithms

We describe state-of-the art syntactic dependency parsing algorithms.

The algorithms presented in this sections assumes that the reader is

familiar with the structured learning framework, for an introduction and

further details see section 3.4.

Two main categories of syntactic parsers can be defined:

• Top-down parsers
Left-left parsers

• Bottom-up parsers
Shift-reduce or Left-right parsers and also CKY-based parsers (e.g.,

Eisner parser) are considered bottom-up parsers

Next sections describes parsing algorithms.

3.2.1 MST

The Maximum Spanning Tree (MST) is the name given to the problem

of finding a tree in a graph with the highest score.

As we are dealing with dependency (tree) graphs, MST is a nat-

ural and elegant framework to generate the syntactic structure. The

application of the MST algorithm to dependency parsing was firstly in-

troduced by McDonald (2005b). One the algorithms to solve the MST

problem is the Chu-Liu-Edmonds algorithm (Edmonds, 1967).

Algorithm 3.1 is an exact algorithm that computes the MST. The

sketch of the algorithm is the following. It selects the highest scoring

incoming edge for each vertex. If a tree results, it is the MST. Otherwise

the graph contains a cycle. It removes every cycle by contracting the

cycle to a single node, recalculates the incoming edges to the new node,

and selects the new maximum scoring edges. Note that non-projective
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Algorithm 3.1 Chu-Liu-Edmonds

Input: vertices of the graph (sentence tokens) and score(·, ·) function

M ← the highest scoring incoming arcs for each vertex {GM is the subgraph

induced by M arcs}

while cycles(GM) do

K = ∅

for all c ∈cycles(GM) do

k =contract(c)

K ∪ k

for all (i , j) s.t. j ∈vertex(C), i ∈vertex(G)rvertex(c) do

score(i , k) =score(i , j)− (score(l , j)−maxj(score(l , k)), where l is

all node in vertex(G)rvertex(c)

end for

end for

for all k ∈ K do

l = argmaxl ′ score(l
′, k)

a = (l , k) ∈ S

S ← S r a

S ← S ∪ (l , k)

end for

end while

return GM
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dependencies are captured. The computational cost is O(n3), however

faster O(n2) implementations can be found (Tarjan, 1977).

Unfortunately, this framework has not been successfully extended.

Much more attention had received Eisner-based algorithms (McDonald

and Pereira, 2006) as allowed a greater degree of flexibility, see the

following sections.

3.2.2 Eisner-based parsers

The Eisner (1996) designed a dynamic programming algorithm similar

to CKY and applicable to dependency parsing. The work of McDonald

(2005a) renewed the interest in the application of this algorithm with

conjunction with discriminative learning to dependency parsing. The

Eisner’s algorithm, its extensions and the MST algorithms are consid-

ered (2005a) graph based models and conforming the Maximum Span-

ning Tree framework approach.

This algorithm cost is O(n3). An important factor to ensure the

efficiency of the algorithm is the concept of span. A span is a depen-

dency structure for a substring with the properties of no outgoing nor

incoming edges from the rest of the input sentence. Furthermore for

efficiency reasons the root of the span must be in one of the span ends.

The algorithm computes the optimal projective tree.

We distinguish tree variants:

• First order model (Eisner, 1996).

• Second order model

– McDonald (McDonald and Pereira, 2006).

– Carreras (Carreras, 2007).

The following sections details the original Eisner algorithm (first order

model) and its extensions (second order models).

First Order

We begin defining the first order model. A detailed description of the

First order model with the concerning aspects for the design of the joint

model of this work can be found of section 5.6.1.

An arc-based first order factorization is fragmentation of the score

of a tree by sum (or product) of arc-scores.

score(y) =
∑

f ∈y

score(f ) (3.2)
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A factor f is an arc of y .

y is the dependency tree

In first order models a factor is an arc of the model thus f = 〈h,m, l〉.
Tokens h and m are the head and the modifier. l is the syntactic label.

Usually the score of a factor is a linear function

score(f ) = w · φ(f ) (3.3)

w is a weight vector parameterizing the model and

φ is a feature extraction function. Note that usually in addition to the

factor, the input sentence is also considered to extract features, and

passed to the function φ.

Dependency parsing is modeled as the computation of the best scor-

ing tree among all trees for the input x :

best tree = argmax
y∈Y(x)

score tree(y , x,w) (3.4)

where Y(x) is the set of all dependency trees for x .

The Eisner algorithm performs the required inference to solve the

model (i.e., computes the arg max). The inference is restricted to

projective trees (i.e., Y(x) is the set of projective trees for x).

Algorithm 3.2 Eisner First Order

Input: sentence of length n and score(·, ·) function

C[s ][t][d ][c]← 0, ∀s, t, d, c
for k = 1, . . . , n do

for s = 0, . . . , n − k do

t ← s + k

C[s ][t][←][0] = maxs≤r<t C[s ][r ][←][1]+C[r+1][t][→][1]+score(t, s)
C[s ][t][→][0] = maxs≤r<t C[s ][r ][←][1]+C[r+1][t][→][1]+score(s, t)

C[s ][t][←][1] = maxs≤r<t C[s ][r ][←][1] + C[r ][t][→][0]

C[s ][t][→][1] = maxs<r≤t C[s ][r ][←][0] + C[r ][t][→][1]

end for

end for

Table C[s][t][↔][0] represents the best span from start token s to
end token t. As previously said a span has one of its end as a head or

partial root. The arrows indicates which end. Finally the last index can

take values {0, 1} these values stands for open and closed spans:

• open spans

the span can be extended in both ends.
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• closed spans
are finished structures but can be extended in only one of its ends.

The algorithm can be represented in a graphical form, see figure 3.2.

Figure 3.2: Eisner algorithm

The key point in algorithm 3.2 is that spans can be easily combined

bottom up. Usually the first sentence token is the root. This token is

added if not present. The best dependency tree is the span with the

head on root that covers the complete sentence.

The computational cost is O(n3). Recall that it is a non-projective

exact search algorithm. The arc-factorization to scoring is its main

drawback, see section 3.1 and following sections for extensions.

Second Order McDonald

A second order model proposed by McDonald (McDonald and Pereira,

2006) alleviates some of the first order factorization limitations. The
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model factorizes the tree in immediate adjacent dependencies:

score tree(y) =
∑

〈h,s,m,l〉∈y

score(h, s,m, l) (3.5)

Now a factor 〈h, s,m, l〉 comprises a dependency 〈h,m, l〉 and the

nearest dependency 〈h, s, l2〉. The nearest dependency should not cross
a span (i.e., it is only considered if it is inside the span being processed).

Algorithm 3.3 shows the Eisner inference implementation for this

second order model.

Algorithm 3.3 Eisner Second Order McDonald

Input: sentence of length n and score(·, ·) function

C[s ][t][d ][c]← 0, ∀s, t, d, c

for k = 1, . . . , n do

for s = 0, . . . , n − k do
t ← s + k

{sibling construction}

C[s ][t][↔][2] = maxs≤r<t C[s ][r ][←][1] + C[r + 1][t][→][1]

{building of a dependency without sibling}
C[s ][t][←][0] = C[s ][t − 1][←][1] + C[t][t][→][1] + score(t,−, s)

C[s ][t][→][0] = C[s ][s ][←][1] + C[s + 1][t][→][1] + score(s,−, t)

{building of a dependency with sibling}

C[s ][t][←][0] = maxs≤r<t {C[s ][t][←][0],
maxs≤r<t C[s ][r ][↔][2] + C[r ][t][→][0] + score(t, r, s)}

C[s ][t][→][0] = maxs≤r<t {C[s ][r ][←][0],

maxs<r≤t C[r ][t][←][0] + C[r ][t][↔][2] + score(s, r, t)}

{building of complete spans}
C[s ][t][←][1] = maxs≤r<t C[s ][r ][←][1] + C[r ][t][→][0]

C[s ][t][→][1] = maxs<r≤t C[s ][r ][←][0] + C[r ][t][→][1]

end for

end for

The algorithm is very similar to the first order algorithm. The

changes are in the scoring and labelling of a dependency. In first order

models two spans of lesser size are combined. In this case we chose

between combining two lesser size spans (i.e. a dependency without

siblings) or the two lesser size spans a sibling span (i.e., dependency

with siblings). Note the new index “2” of the dynamic programming

table that accounts for sibling structures.

The algorithm runs in O(n3). McDonald and Satta (2007) proved

that the non-projective version of this model is NP-hard to solve. Al-

though a modest enhancement of the first order model significant im-
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provement are reported (McDonald and Pereira, 2006).

Second order carreras

Carreras (2007) improved the previous second order model. The new

model is intended to deal with the PP-attachment problem, see section3.1,

capturing some grandson relations.

A factor now is defined as a f = 〈h,m, ch, cmi , cmo〉.

where,

h is the head,

m the modifier

ch is the closest child of h

cmi is the furthest child of m inside the actual span

cmo is the furthest child of m from the span to be combined.

As in the previous second order extension this relations are bounded by

spans. In the case of ch it only can be considered if it is inside the span

from h to m.

The algorithm 3.4 also visits bottom-up the span table C. The

main difference is that now the table entries are indexed by labels and

grandsons.

• closed structures
Are indexed by the start of the span s, the end token t, and in

this case also by the syntactic label l .

• open structures

Are indexed by the start of the span s, the end token t, and in

addition the a child m. m is the closet child to the head of the

span s or t.

Thus a space of O(n2L + n3) is required. Note that in algorithm 3.4

we used a combined table O(n4L) only for clarity reasons.

Again significant improvements were reported (Carreras, 2007) at a

expense of a higher algorithmic cost O(n4). Note that both second or-

der extensions only regards the adjacent sibling and grandsons relations

to the head, restricted to the span concept.

3.2.3 Shift-reduce parsers

A shift-reduce parser, bottom-up parser or LR parser can be defined as

an algorithm that parses a sentence from left to right and uses a stack
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Algorithm 3.4 Eisner Second Order Carreras

Input: sentence of length n and score(·, ·) function
C[s ][t][l ][m][d ][c]← 0, ∀s, t, l , m, d, c

for k = 1, . . . , n do

for s = 0, . . . , n − k do
t ← s + k

{open structures.}

{Note maxr,ch,cmi is O(n
2) as ch and cmi are independent}

∀l C[s ][t][l ][−][←][0] = maxr,ch,cmi C[s ][r ][−][ch][←][1] + C[r +
1][t][−][cmi ][→][1]+score(t, s)

∀l C[s ][t][l ][−][→][0] = maxr,ch,cmi C[s ][r ][−][ch][←][1] + C[r +

1][t][−][cmi ][→][1]+score(s, t)

{closed structures}
∀r C[s ][t][−][r ][←][1] = maxcmo ,l C[s ][r ][l ][−][←][1] +

C[r ][t][−][cmo ][→][0]

∀r C[s ][t][−][r ][→][1] = maxcmo ,l C[s ][r ][−][cmo][←

][0] + C[r ][t][l ][−][→][1]
end for

end for

of symbols. Note that this abstract definition of the algorithm is not

directly applicable to bottom-up Eisner parsers.

Let {α,w} the configuration of the parser in a given time.
α is a stack of symbols or partially processed items.

w the remaining input sequence.

Two basic processing rules defines a bottom up parser:

• shift
〈α, aw〉 → 〈αa, w〉

• reduce

〈βα,w〉 → 〈βA,w〉
for some grammar rule or transformation A −→ α.

Note that the algorithm is inderministic and searches for any path

from 〈λ,w〉 resulting in a configuration of the form 〈S, λ〉. Where λ is

the empty string symbol, and S the start symbol of a grammar.

3.2.4 MaltParser

Shift-reduce parsers are applied in the context of data-driven paring

by Nivre et al. (2003) and Covingtion (2001). These parsers extend
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the generic shift-reduce parsing previously defined. They can be fully

described by T and C as following.

• T is the set of transitions with transition functions t ∈ T .

• C is the set of configurations, with initial and terminal states.

A configuration c = 〈α,w, A〉 is:

• α is a stack of tokens i ≥ m,m ≥ n

• w is the remaining part of the word.

• A is a set of labeled dependency arcs, (i.e., A = {i
l
→ j} ) .

The induced graph by A, GA(vertices = {0, . . . , n}, arcs = A) is a
dependency graph.

Given a configuration we define a transition. A transition is a

function t : C → C. It is a mapping from configurations to new

configurations, it is not necessary defined for all configurations in C.

S = 〈C, T, cs , Ct〉

Stack operations noted by α|i represents that i is on top of the
stack and α is the remaining part of the stack. String operations noted

by j |w represents that j is the first token of the concatenated sequence

jw . The initial configuration of the parser for an input string x is

C(α,w, A) = {λ, x, ∅}.

We define the set of transitions between states for the arc-eager

improved Nivre’s variant:

• left arc for label l
〈α|i , j |w,A〉 →

〈

α, j |w,A ∪ (j
k
→ i , k)

〉

if i is not the root node

and there is no previous assigned head for token j (one head con-

straint).

• right arc for label l

〈α|i , j |w,A〉 →
〈

α|i |j, w, A ∪ (i
k
→ j, k)

〉

if there is no previous

assigned head for token j .

• reduce
〈α|i , w, A〉 → 〈α,w, A〉

if i has yet an assigned head.

• shift

〈α, i |w,A〉 → 〈α|i , w, A〉
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The previous parsing model definition is non-deterministic, i.e., the

set of transitions to parse the input is not defined. Usually (Nivre et

al., 2007b) we isolate the non-deterministic component of the parser

in an oracle function, later this function can be approximated by a

deterministic function.

Algorithm 3.5 Oracle shift-reduce parsing

initial configuration c = {λ, x, ∅}

while is not terminal(c) do

if α = λ then

c ← shift(c)
else

t ←oracle(c)

c ←t(c)

end if

end while

return graph(c)

Algorithm 3.5 shows the parsing algorithm using the generic oracle

function. Note that the algorithm is linear if the oracle function is

constant-time.

The parser must perform a sequence of decisions or transitions de-

fined by the oracle function. These decisions can be conditioned on

the previous history. A classifier can be trained receiving as features

the history but also features from the tokens on top of the stack, the

first token of the remaining input and from dependencies in the partially

constructed graph GA. SVM and MBL(Memory-Based Learning e.g.,

k-nearest neighbour)(Daelemans and van den Bosch, 2005) are widely

chosen machine learning methods for this task, partially because are the

implemented methods in MaltParser

Nivre arc-eager parser is a linear time parser. Although a O(n) algo-

rithm the training is costly. The constraints imposed by the admissible

transitions restricts the set of parseable dependency trees to the pro-

jective trees and even in this case it is not an exact search algorithm.

3.2.5 Projectivization algorithms

The non-projective dependencies are the crossing links in dependency

graphs, see section 3.1. Widely used algorithms for syntactic parsing

are unable to generate them. This is a problem not only because er-

rors will be produced but also because the corrections performed by
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learning algorithms could cause further misclassifications. Next sub-

sections describes common approaches to transform or projectivize a

non-projective dependency graph.

McDonald’s deprojectivization algorithm

McDonald and Pereira (2006) proposed a simple algorithm as a postpro-

cessing to transform a predicted projective graph into a non-projective

using the scoring functions trained by the learning algorithm.

Algorithm 3.6 Pseudoprojective McDonald’s technique

Input: sentence of length n and scoreTree(·) function

while ¬ max iterations do

bestIncreaseScore ← 0
increaseScoreFound ← FALSE

for newModifier← 1, . . . n and newHead← 0, . . . , n do

if (newHead, newModifier) /∈ y then

y ′ = y − (actualHead(newModifier, y), newModifier)
y = y ∪ (newHead,modifier)

if isAWellFormedTree(y ′) then

increaseScore ← scoreTree(y ′)−scoreTree(y)

if increaseScore > bestIncreaseScore then

bestIncreaseScore ← increaseScore

increaseScoreFound ← TRUE

bestHead ← newHead

bestModifier ← newModifier
end if

end if

end if

end for

if increaseScoreFound then

{// delete the old head and modifier}

y ← y ∪ (head(bestModifier), bestModifier)
{//add the new one}

y ← y ∪ (bestHead, bestModifier)

end if

end while

Algorithm 3.6 simply tries to substitute a predicted arc for another

arc with a higher score.
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Nivre and Nilsson pseudo-projectivization

Nivre and Nilsson (Nivre and Nilsson, 2005) proposed an algorithm to

transform the input non-projective dependency tree to a projective one,

and latter recover the original structure. The algorithm consists in

lifting the non-projective arcs until they become projective. A special

tagset is added to allow a posterior reconstruction.

Algorithm 3.7 Pseudoprojective Nivre and Nilsson generic algorithm

Input: parse tree y

while isNonProjective(y) do

a ← the smallest non-projective arc of y)

y = y − a∪ lift(a, A)

end while

return y

Algorithm 3.7 defines the procedure. The smallest non projective

arc is the non-projective arc with the shortest distance from the head

to the dependent. It can be proved that all non-projective trees can

be projectivized by a finite set of lift operations. The lift operation

substitutes the head of the modifier by the grandfather of the modifier.

lift(h→ m) =

{

g → m if g → h

undefined otherwise
(3.6)

The lifted arc are relabeled. Is it possible to include in the label the

precise information to reconstruct the original path, but this will increase

excessively the number of labels and so the training time. Empirical

results (Nivre and Nilsson, 2005) showed that a good strategy is the

head+path strategy.

In the head+path strategy is defined as follows. Let h
dhm→ m be the

non projective arc from h tom with label dhm. And let the grandfather of

h be g. Thus we use the g
dgh
→ h to lift the non-projective dependency.

The arc h
dhm→ m is substituted by g

dhm↓dgh
→ m and the g

dgh
→ h arc is

relabeled as g
dgh↓
→ h.

Using this strategy, the reconstruction of the original non-projective

tree is not always possible. A variety of approaches can be employed,

including sophisticated machine learning techniques.

A simple strategy is: If we found an arc g
dhm↑dgh
→ m on output, we

search the descendants of g top-down and left-right arc g
dgh↓
→ h. If
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no node g
dgh↓
→ h was found we search the descendants of g without

constraining the search to the nodes with a path tagged label. If no

node was found we remove the tags of the arc and we do not move the

dependency.

The algorithm allows us present to learning/inference method only

projective sentences. The sentences are transformed before and after

they are parsed.

3.3 Semantic Parsing

Shallow semantic parsing or Semantic Role Labelling (SRL) is the task

of identifying the who,when,what,why of the sentence predicates. It

comprises also the annotation of adjunct arguments of the predicates

(e.g, locative, temporal, manner and cause arguments). These seman-

tic dependencies express semantic links between predicates and argu-

ments and represents relations between entities and events in text.

Noun and verbs can behave as predicates and receive semantic ar-

guments. The arguments a predicate can take are defined in frames

and are also called roles. The most frequent roles are agent, patient,

instrument but also the locative, temporal, manner and cause adjuncts.

Usually the semantic dependency task was only focused in verbal

predicates. Most of published work is based on SRL for verb predicates

and assumes a constituent structure as starting point. The CoNLL-

2008 shared task introduced a new framework. Noun and verb predi-

cates are processed and semantic arguments are regarded as semantic

dependencies. See section 2.1.2 for a details. The introduction of the

dependency formalism in SRL does not modifies the consideration of

SRL simply as a classification problem.

The semantic dependency graphs are simple graphs, only relating the

predicate with all its arguments by single links, i.e., the graph has one

head and a set of semantic dependents. There is no required connection

between the dependencies across the sentence predicates. If we merge

the semantic graphs from all predicates a DAG is conformed, without

any further constraint.

Figure 3.3 shows a sample sentence with nominal and verbal predi-

cate. Note that the last predicate ends is a noun.

SRL is mainly approached by a four step architecture (Màrquez et

al., 2006). The architecture is implemented in these phases: pruning,

local scoring, identification and classification and finally joint scoring.
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Figure 3.3: Nouminal and verbal predicates

Some systems apply small variations. Other approaches are the BIO

tagging (Màrquez et al., 2005) and the tree CRF (Cohn and Blunsom,

2005).

3.3.1 Mainstream approach

We describe each one of the architecture steps of this approach. A

syntactic structure and the identification of sentence predicates is as-

sumed.

• Pruning or filtering.
A set of simple rules introduced by Xue and Palmer (2004) are

commonly used to discard improbable token candidates. There

is a huge amount of non-argument tokens with a non-balanced

distribution with respect to argument tokens (i.e., most tokens

are not arguments). This large number of non-arguments and

the uneven distribution degrades the performance and increases

the cost of machine learning algorithms. The filter step alleviates

this problem with almost no reduction in the classification upper

bounds for the subsequent phases.

• Local scoring.
Each argument candidate is scored or a computed probability is

assigned. We note this scoring as local because information about

other candidates is not used (i.e., the scoring does not depends

on the scoring of other candidates).

• Argument identification and classification
Typically a first classifier is applied to discard candidates and a

second classifier assigns the best scoring semantic label to each

selected candidate.

• Global scoring or postprocessing

The classified arguments are globally combined in this phase. Do-

main constraints (e.g., a predicate cannot take repeated core ar-

guments ) can be enforced.
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One of the most interesting point of this architecture is the global

scoring step. The step can be performed by a wide variety of techniques.

• ILP.
Integer Linear Programming (ILP) is used to ensure domain con-

straints (Punyakanok et al., 2004), see also 3.5.5.

• Reranking.

Rereanking selects the best solution among the pool of candidates

generated (Toutanova et al., 2007).

• Probabilistic models:

– generative models (Thompson et al., 2003)

– sequence tagging (Màrquez et al., 2005)

– CRF on tree structures (Cohn and Blunsom, 2005)

Finally a frequently used technique is to combine the output of vari-

ous SRL system. There is not a clear distinction between global scoring

and ensemble or combination of outputs. The global scoring techniques

are useful to combine system and in reverse, a global scoring could ben-

efit from a richer set of inputs.

3.3.2 BIO tagging

The semantic annotation can be performed by a sequential labeling of

chunks (Pradhan et al., 2005; Màrquez et al., 2005). A generic BIO

tagging architecture can be regarded as:

• Sequentialization.

Clause boundaries and other syntactic information is used to define

a chunking of the sentence in suitable fragments.

• Scoring.

Nodes are labelled with BIO tags.

• Global inference.
Conflicting previous labellings can be treated.

The scoring step tags each chunk with one or more of the following

labels:

• (B) Beginning of an argument.

• (I) Inside an argument.

• (O) Outside an argument.
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Some systems uses separate BIO labels for each argument. The

previous history can be used as a feature to predict the current BIO

label. Some constrains can be enforced at this stage, e.g., a correct

BIO structure, to not cross boundary clauses (an algorithm cannot span

across sentence clauses), and the no assignation of non accepted argu-

ments for the given predicate.

Finally, and specially if multiple labels were assigned to the same

token (i.e., a inside and outside label for the same argument but different

probabilities), postprocessing or inference must be applied to select the

best combination.

3.4 Structured learning framework

Machine learning tasks are being increasingly applied to complex prob-

lems. In this work a central topic is the prediction of a syntactic struc-

ture, a structured learning task.

We begin reviewing the classical framework for supervised machine

learning. Let S be training set with pairs of instances (x, y) where

x ∈ X is the feature representation of the instance, y ∈ Y is class (a
structure in structured learning)

We assume that the collection of examples (x, y) is drawn i.i.d from

an unknown distribution D over X × Y .

A loss function l(y , ŷ) is the cost of proposing ŷ when the correct

values was y . The goal of a learn algorithm is to find a classifier h that

minimizes the loss function and usually also a regularization function.

h : X → Y (3.7)

The structured learning problem is defined in an analogous way. In

this case y is an structured output. Table 3.1 summarizes the differ-

ences carries by the use of structures.

classification classes Y |Y | enumeration

of |Y |

loss

Binary {+,−} 1 not required 0-1 (usually)

Multiclass c1, . . . , cn n exhaustive 0-1 (usually)

Structured all structures

(trees,..)

exponential intractable precision/recall

(usually)

Table 3.1: Binary vs. structured learning
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A general form for a structured classifier h is:

h(x) = argmax
ŷ∈Y

score(x, ŷ) (3.8)

Note that the classification function cost is determined by the argmax (i.e.,

the size of Y(x)) and the scoring function. Thus scores must be computed for

all possible structures Y(x). Y(x) is exponential on the size of x . In our case,

the learning of tree structures, there are n! possible parse trees for a sentence

of length n.

The overcome this problem the key idea is to decompose the structure to

predict into fragments and combine these fragments to build the output incre-

mentally. Note also that this factorization will probably carry an approximate

search of the best output solution ŷ .

Thus simple decisions are learnt by a classifier and the chained by an infer-

ence algorithm, therefore the name learning-inference paradigm (Punyakanok

et al., 2005). All discriminative learning algorithms and a wide range of in-

ference algorithms are available. Among the inference algorithms are: BIO

tagging, Open-close tagging, Shift-reduce, Dynamic programming, viterbi de-

coders, beam search. Some statistical models (e.g., HMM, CRF, PCFG) also

assumes a factorization of the generative prediction task. Simpler probabilities

or decisions are estimated or learn and combined.

The use of discriminate learning algorithms offers some advantages over

probabilistic approaches. Probabilistic approaches assumes strong indepen-

dence assumptions, and usually suffer sparsity problems and high computing

cost. In the use of discriminative learning is a much more flexible tool, not only

local classifiers for single decisions can be learn but also some global learning

is achievable. Global training is intended to correct local decisions only when

combined are performed incorrectly.

The learning-inference paradigm is the framework we use to accomplish

the structure prediction task. Next sections will review inference algorithms

and learning methods used in conjunction with the formers. Note that in

some cases we distinct the actual inference model from the implemented infer-

ence algorithm, as sometimes the inference algorithm performs an approximate

search over a space easily defined as a model.

3.5 Machine learning methods

In this section we cover machine learning algorithms used in state-of-the-art

syntactic and semantic dependency parsing, focusing in the applied to this

work. Integer linear programming, is also covered in this section



38 CHAPTER 3. BACKGROUND

3.5.1 Structured Perceptron

The Structured Perceptron (Collins, 2002) is a variant of the well-known Per-

ceptron (Rosenblatt, 1958).

The main benefit of this algorithm is its low cost in time and memory,

as it is a simple algorithm. The memory requirements in its primal form are

independent of the size of the training set. This is an important factor in the

context of the large corpus of the shared task.

Algorithm 3.8 Structured Perceptron

Input: examples (x, y) from the training set

w ← 0

for t ← 1 to numEpochs do

for all (x, y) ∈ training set do

ŷ =inference algorithm(x,w)

for all factor ∈ y \ ŷ do

w (l) ← w (l) + φ(factor, x , ŷ)

end for

for all factor ∈ ŷ \ y do
w (l) ← w (l) − φ(factor, x , ŷ)

end for

end for

end for

In a typical dependency parsing setting the inference algorithm will be the

parser (e.g., Eisner) that generates the dependency tree ŷ and a factor will

be a dependency of that tree (e.g., factor = 〈h,m, l〉).

For each misclassified instance, we update the weights of missing(i.e., fac-

tor ∈ y \ ŷ) and overpredicted factors (i.e., factor ∈ ŷ \ y). An alternative is

to score possible factors for a given input an ensure that the correct factors

are scored higher than all the rest.

In our framework, a dual version of the perceptron is infeasible. The mem-

ory requirements will be the following: the number of instances is about 40k,

the number of features per dependency is about 200k, therefore we will need to

have in memory about 40k · num of dependencies ·200k floating point numbers

for each label.

3.5.2 Reranking perceptron

An extension of the perceptron algorithm to perform reranking of solutions

was presented by Collins (2002) and extended by Shen et al. (2005).

Algorithm 3.9 is very similar to algorithm 3.8. The GEN function generates

all the predicted structured outputs. Note that |GEN(x)| is exponential in the

case of tree predictions for x , thus this function must be constrained.
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Algorithm 3.9 Reranking Perceptron

Input: examples (x, y) from the training set and GEN function

w ← 0

for t ← 1 to numEpochs do

for all (x, y) ∈ training set do
Ŷ = GEN(x)

ŷ = argmax
ŷ ′∈Ŷ score(x, y

′,w)

for all factor ∈ y \ ŷ do

w (l) ← w (l) + φ(factor, x , ŷ)
end for

for all factor ∈ ŷ \ y do

w (l) ← w (l) − φ(factor, x , ŷ)

end for

end for

end for

The main difference with respect to the previous algorithm is the treat-

ment of the generated solutions. In the first case (structured perceptron),

the inference algorithm outputs the best solution x . In the second case, we

first generate using GEN the n best outputs for x , we constrain the num-

ber to n to avoid the exponential number of outputs. Then each one of the

generated solutions are scored. The key point is that the score is a global

function over the complete output and input, i.e., features about the whole

solution ŷ are used, these are not restricted to local features or features about

factors. Global features are regarded as necessary to capture properties of the

complete solutions.

It is fast algorithm usually applied to combine different systems output.

3.5.3 Passive-aggressive perceptron and MIRA

Crammer et al. (2006) presented the passive-aggressive perceptron family, a

set of improved perceptron-inspired algorithms. The Margin Infused Relaxed

Algorithm (MIRA) (Crammer and Singer, 2003) can be regarded as a passive-

aggressive perceptron, described below.

The main difference from the perceptron algorithm is that we are now

trying to perform the correct prediction with a minimum margin. Note that

this is not the maximum-margin setting, furthermore the algorithm is an on-line

approximate algorithm.

Passive-aggressive perceptron brings new update rules for the weight vector

of perceptron algorithm. The new rule is based on the following equation.

wt+1 = argmin
w

1

2
‖w −wt‖

2 s.t. l(w, (x, y)) = 0 (3.9)
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where wt and wt+1 are the weight vectors for epoch t and t + 1

l(w, (x, y)) is a loss function with a minimum classification margin of 1.

l(w, (x, y)) =

{

0 if |y − w · x | ≤ 1

1− y(w · x) otherwise
(3.10)

Thus we are interested in the minimum update to the weight vector (i.e,

argminw
1
2‖w −wt‖

2 such that the new weight vector correctly performs the

classification with a margin 1. This rule will force significative updates to

achieve a 0 loss and no updates when the loss is still 0, therefore the name of

passive-aggressive perceptron.

Applying Lagrangian multipliers it can be proved (Crammer et al., 2006)

that the equation 3.9 is translated to the following perceptron update rule

wt+1 = wt + τtyx (3.11)

where (x, y) is the training sample for epoch t,

τt is defined as:

τt =
l(w, (x, y))

‖x‖2
(3.12)

Thus the difference with respect the perceptron is that we compute τt
instead of a fixed learning rate for the perceptron update rule.

Note that the of zero loss constraint is too hard for noisy or non-separable

data. Few variants are intended to deal with this problem. The first simply

set a parameter C to limit the maximum update rate τt :

τt = min

{

C,
l(w, (x, y))

‖x‖2

}

(3.13)

The update rule in equation 3.13 is namedPA-I.

The second option is a little bit more sophisticated:

τt =
l(w, (x, y))

‖x‖2 + 1
2C

(3.14)

The update rule in equation 3.14 is namedPA-II.

The two equations 3.13 and 3.14 can be justified again by the solution of

an optimization problem using Lagrange multiplies, the proof can be found in

Crammer et al. (2006).

The PA-I associated optimization problem to derive the update rule is:

wt+1 = argmin
w

1

2
‖w −wt‖

2 + Cξ s.t. l(w, (x, y)) ≤ ξ, ξ ≥ 0 (3.15)

In this case we introduced the parameter C and slack variables ξ. The slack

variables contains the value of the errors made. In this case we jointly minimize
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the weight update and the errors, the lasts determined by a the parameter

C. No strict zero loss constraint appears, the loss is introduced as the slack

variables.

The PA-II associated optimization problem to derive the update rule is:

wt+1 = argmin
w

1

2
‖w −wt‖

2 + Cξ2 s.t. l(w, (x, y)) ≤ ξ (3.16)

It is an alternative to the previous equation with quadratic slack variables.

The application of passive-aggressive perceptron to structured output clas-

sification is performed in the same way as for the perceptron algorithm.

A proof of the convergence properties is detailed in Crammer et al. (2006).

The simple update rules for all variants are fast to compute leading only to a

slight increase in computation time with respect to the perceptron algorithm.

This makes the algorithm suitable for large-data tasks. Note the algorithm

solves one optimization problem for each one of the training samples. The

optimization only regards the current instance and weight vector.

3.5.4 SVM

The SVM is a linear classifier (Boser et al., 1992),

y = 〈w, x〉+ b (3.17)

The training algorithm computes the parameters w and b that minimizes:

min
1

2
||w||2 + C

∑

i

ξi subject to y({w, x}+ b) ≥ 1− ξi (3.18)

where ξ = max(0, 1− γi)

γi is the value of the margin for instance i

C is a parameter that penalizes incorrectly classified instances. Note that to

maintain a consistent notation the instances x and classes y are not indexed

by i .

This optimization problem leads to the maximum margin separation of the two

classes.

The previous formulation is the soft-margin formulation of SVMs that

allows us to deal with non-separable classes. All dot products 〈x, y〉 can be

efficiently computed by a kernel function k(x, y) = 〈x, y〉 that can represent a

dot product in a projected space. Kernel functions are widely used to transform

the linear classifier into a much complex classifier. The most used kernel

functions are:

• linear kernel k(x, y) = x · y

• polynomial d-degree kernel k(x, y) = (x · y + c)d
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• radial kernel k(x, y) = ‖x−y‖2

2σ2

In our case, the problem to optimize in SVM training could be impractical

to be solved due to the large amount of training data.

3.5.5 Integer Linear Programming

In Integer Linear Programming (ILP) we want to maximize (or minimize) a

linear function (Schrijver, 1998):

maximize f (x1, . . . , xn)

subject to xi + . . .+ xj < bk
(3.19)

ILP problems can be solved by the simplex algorithm (Schrijver, 1998). ILP

solving is a NP-hard problem (Karp, 1972). Long executions must be cut but

most times the result can be computed in polynomial time, implemented ILP

solvers use many optimization tricks to alleviate this problem. The application

of this technique to SRL can be found in section 5.9.

3.6 Feature extraction and selection

A large amount of features is used for syntactic and semantic parsing. Features

are commonly counted in millions and represented by binary vectors.

Typically the training examples are the dependencies d = 〈h,m, l〉 of each
input sentence. The features are not just extracted from dependencies d

but also from the rest of the input sentence x . Thus the feature extraction

function φ can be noted as φ(〈h,m, l〉 , x) = v , where v ∈ {0, 1}n is the

feature representation of the dependency d .

The feature extraction process is usually implemented as follows. Strings

representing features are extracted from (〈h,m, l〉 , x), each string can be a

concatenation of extracted properties (e.g POS(h)·POS(m)·POS(h+1)·POS(h+

2)). The the strings are indexed and φ sets the corresponding component of

the binary feature vector v to true.

The feature sets widely used (Màrquez et al., 2006) for syntactic parsing

and semantic role labelling are defined in McDonal (2005b), Carreras et al.

(2006), Xue and Palmer (Xue and Palmer, 2004) and Surdeanu (Surdeanu et

al., 2007). A detailed coverage of these features and few new features is to

be found in section 5.10.

As millions of features are typically extracted a feature selection method

is required. Two techniques, frequency threshold filtering and backward selec-

tion, are the choice of state-of-the-art systems (Carreras and Màrquez, 2005;

Nivre et al., 2007a). Despite of the simplicity of these two methods consistent

high results are obtained.
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The well known backward selection method is typically applied to groups

of features. In each step not a feature is removed but a whole group of them.

The group to remove is selected by training the system with all feature groups

except one and selecting the removed group that mostly degrade the system

performance.

As we are concerned on the feasibility of our complex system, backward

selection is not a suitable approach. The huge amount of extracted features

(millions) difficult the application of any other feature selection method but

clearly this topic should receive more attention. We limited the scope of this

work to feature selection methods applied in the context of the state-of-the-art

SRL and dependency parsing systems.
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Chapter 4

State of the art
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This chapter outlines the state of the art of dependency parsing and shal-

low semantic parsing, the two main task to be performed by the CoNLL-2008

shared task participating teams. The following sections contains the main

aspects of the concerned state of the art and briefly reviews remarkable com-

plete systems. For important details and a discussion of referenced algorithms,

methods and techniques please refer to the background section.

4.1 Syntactic dependency parsing

The CoNLL-2006 and CoNLL-2007 shared tasks (Buchholz et al., 2006; Nivre

et al., 2007a) were devoted to syntactic dependency parsing. These tasks

boosted the research on dependency parsing. Several presented system con-

tributed with novel and competitive methods.

Team English LAS score (%)

Carreras 89.61

Sagae 89.01

Nakagawa 88.41

Titov 88.39

Nilsson 88.11

Table 4.1: Best CoNLL-2007 systems for the English language

45
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Table 4.1 shows1 the top 5 among the 23 presented systems at the CoNLL-

2007 shared task closed challenge. Note the shared task evaluated 10 lan-

guages and we are only focusing on the English language. We briefly review

the top performing systems.

Team prep model inference learning comb

Carreras no Eisner-

Carreras

Eisner-Carreras perceptron —

Sagae yes Shift-reduce LR greedy best-

first, left-right

SVM —

Nakagawa no probabilistic

model +

classification

MST + classifica-

tion

Gibbs

sampling

+ SVM

—

Titov yes shift-reduce probabilistic,

beam of se-

quences

ISBN —

Nilsson yes shift-reduce arc-eager SVM CLE

Table 4.2: Summary of top performing CoNLL-2007 shared task

systems

Table 4.2 summarizes the architecture of these 5 systems. Combination

and projectivization tricks are widely employed. The systems marked with a

preprocessing step use the Nivre and Nilsson pseudo-projective algorithm, see

section 3.2.5. Most systems uses algorithms that build the annotated syntac-

tic tree in one step. An exception is the Nakagawa two-step process. The first

step is the dependency graph generation and the second the annotation of

each dependency with a syntactic label. We represented by “+” the concate-

nation of the two processes. ISBN (Titov and Henderson, 2007) are Bayesian

probabilistic graphical models and Gibbs sampling (Geman and Geman, 1984)

is a method for estimating probabilities.

Unfortunately most participants did not reported the consumed resourced

for training but it is suspected that top performing teams invested huge amounts

of computational resources. We can see that shift-reduce and Eisner-based

models are the mainstream approaches. Some top performing system em-

ployed ISBN networks and probabilistic models but these techniques are not

widely used by other participants (Nivre et al., 2007a). Eisner-based models

and shift reduce parsers offers simplicity, reduced training times and a com-

petitive performance as advantages with respect to these other approaches.

Classification tasks, if tractable, are usually performed by SVM classifiers.

In Eisner-based models it is only practical to employ the perceptron algorithm,

or at a higher cost, MIRA, see the algorithms descriptions in section 3.5.

As we just seen, state-of-the-art syntactic dependency parsing is based

1See http://depparse.uvt.nl/depparse-wiki/AllScores for detailed scores
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mainly on shift-reduce parsers and Eisner-based algorithms. The features de-

fined by McDonald et al. (2005b) and Carreras et al. (Carreras et al., 2006)

are widely used with almost no modifications.

A central concept in Eisner-based parsers is the edge factorization. Shift-

reduce parsers are a more complex approach. In fact the scoring of an depen-

dency can also be viewed as and edge-factored scoring using history features

but taking into account that previous to the dependency scoring a chain of

decisions based also on the parser history features were made.

The edge-factorization implies that the score (probability) of a dependency

is not related (conditionally independent) with respect to other dependencies.

This is an unrealistic simplification and one of the major drawbacks of this

factorization. A well known problem in dependency parsing is the ambiguity on

the attachment of prepositional phrases. In this case the head, the preposition

and the son form a chain of 2 edges. It is believed that the main information

is carried by the son of the preposition. Thus edge-factored models will be

unable to exploit this information.

Despite this factorization, we have to note that context information, not

at syntactic level but a surface level (i.e., the surrounding words of a depen-

dency ) is widely used as a feature. Higher order extensions are intended to

capture more context information at a expense of higher computational cost,

see section 3.2.2. But this methods can only consider a limited set of second

order dependencies (i.e., just an immediately adjacent dependency not crossing

the position of the head). Another strategy to widen the limited scope of the

edge factorization is to use reranking or systems combination, see section 3.9.

Global properties of the output can be used as features. All this strategies

contributes with significant performance improvements. And recall that the

edge factorization is intended to render parsing tractable.

Just few weeks before the completion of this work a remarkable research

work inspired in the TAG formalism was presented (Carreras et al., 2008).

The main advantage of this method is its the ability to use features from

dependency trigrams.

Out of domain parsing, multi-lingual parsing and the adequacy of a given

parsing strategy to a language are not well understood topics and presented

little or non-significant progress in the last years.

4.2 Semantic role labeling

The CoNLL-2005 and CoNLL-2004 shared tasks were devoted to semantic

role labeling (SRL). The shared tasks evaluated SRL under the framework of

all predicates identified and the syntactic constituent parse trees as a basis.

One of the interesting points of the CoNLL-2005 shared task is the addition

of chunk parse output to the syntactic available information.
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Team Precision (%) Recall (%) F1

punyakanok 81.18 74.92 77.92

pradhan 81.87 73.21 77.30

haghighi 78.34 75.78 77.04

màrquez 78.44 74.83 76.59

surdeanu 79.35 71.17 75.04

Table 4.3: Best CoNLL-2005 systems

Table 4.32 shows the top 5 systems on the CoNLL-2005 shared task (19

submitted results).

Team ML synt pre arch glob post comb

punyakanok SNoW n-best prun i+c yes no yes

haghighi ME n-best ? i+c yes no yes

màrquez AB 2 parses no BIO no no yes

pradhan SVM 3 parses ? BIO no no yes

surdeanu AB 1 prun c no yes no

Table 4.4: Summary of top performing CoNLL-2005 shared

task systems

Table 4.434 contains a summary of the architecture of participating teams.

The column ML contains the machine learning methods. The synt column in-

dicates if multiple syntactic trees were used to perform SRL. Next column

indicates if prepropcessing was performed. Arch column contains if the ar-

chitecture performs identification and classification, only classification or it is

a BIO tagging. Glob column notes if global information is used through the

annotation process. Postprocessing contains if the system applied a simple

postprocessing, usually a set of rules. The final column comb indicates if

system combination was performed.

Maximum entropy models(8 of 19 teams) and SVM(6 of 19) were the

most used classifiers in the CoNLL-2005 (Carreras and Màrquez, 2005). We

can observe in SRL the use of much more complex machine learning methods

(e.g., SVM, AdaBoost) with respect to the syntactic dependency parsing.

The reason is that SRL is considered a classification task and does not suffer

from the overhead caused by inference methods in syntactic parsing. Two

2See http://www.lsi.upc.edu/˜srlconll/st05/st05.html for detailed scores
3Extracted from Carreras and Màrquez (2005)
4ME: maximum entrophy, AB: AdaBoost, prun: pruning, i+c: identification and classifi-

cation
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main approaches are applied to SRL, BIO tagging and i+c classification, see

section 3.3 for further details.

The introduction of the ILP postprocessing overcome other types of simple

postprocessing. System combination was a widely used technique to improve

results. The intensive use of syntactic structures and the subsequent pipeline

approaches pointed out the importance and the propagated errors due to syn-

tax.

As previously noted SRL is widely approached by the 4 step process of

filtering/pruning, local scoring, argument identification and classification and

global scoring. Again we refer the reader to the background description on

section 3.3.

The final global scoring step step is an interesting point to exploit. In

this step we can consider global features and dependencies and constraints

between the classified arguments. A classifier or reranking method can be

trained to improve the final performance by combining a set of previously

generated candidates. The global step can capture interactions between the

set of arguments for a predicate or even between arguments from different

predicates. The possibilities of this phase are limited by the previous candidate

generation.

The filtering or pruning task is widely performed as a simple set of rules that

discards most of the improbable candidates to argument. ILP postprocessing

is also an easy to implement technique that a greater number of SRL system

are including.

An interesting alternative approach is the CRF on trees applied by Cohn

and Blunsom (2005), in this case the syntactic structure of the tree is used

as the CRF graphical model. One of the main advantages of this approach

is the exact computation of the optimal output, in this case the optimal se-

mantic annotation. Note also that the training algorithm for this CRF can

only be approximate. Unfortunately the training costs of this model are nearly

prohibitive and it had little impact in the SRL community.

PropBank was extensively exploited in SRL research. Regarding nominal

SRL there is less published work, one of the reasons is the relatively new release

of NomBank. A point take into account is that this corpus are tagged with

neutral labels that are not completely consistent across different predicates.

The learning is usually performed using the set of features defined in Xue

and Palmer (2004) and Surdeanu (2007).

SRL systems strongly relies on the input syntax. This pipeline approach

accuses the errors generated by the previous syntactic parser. This problem is

alleviated by using a combination of different syntactic-parser inputs.

A joint system could overcome these limitations allowing to interact the

syntactic and semantic layers.

SRL is still not regarded as a structured prediction problem, with the no-

table exception of Cohn and Blunsom (2005). Out of domain adaption is



50 CHAPTER 4. STATE OF THE ART

again a far from being solved task.

4.3 Joint syntactic and semantic dependency parsing

The only known open domain work in joint parsing is by Musillo and Merlo

(2006).

In this case, the prediction and learning of syntactic and semantic an-

notations is done by considering them just as one single annotation. The

system concatenates the syntactic and semantic labels in one label. (e.g., a

constituent “SUBJ’´ that also is “A0” for some predicate will be labelled as

“SBJA0” ) With this new set of tags a classifier is trained and then the sen-

tences are annotated. A postprocess is required to recover the separate labels

and link the semantic label to the corresponding predicate. The training of

this model carries the serious problem of requiring examples to cover all label

combinations. In addition a large number of classifier must be trained for each

label combination.

The joint parsing of syntactic and semantic dependencies is at the date of

this master’s thesis start an undeveloped field. Plenty of research directions

can be taken.

As a result of the CoNLL-2008 shared task few joint models (Surdeanu

et al., 2008), including the developed during this work, presented novel ap-

proaches to the joint parsing of syntactic and semantic dependencies, see

section 6.2.1.
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5.1 Introduction

The main goal of this work is to build a joint learning architecture for syntactic

and semantic parsing and to test whether the syntactic and semantic layers

can benefit each other from the global training and inference.

All the components of our system are build from scratch. Due to strong

time constraints, our design decisions are biased towards constructing a simple

and feasible system.

As we seen in chapter 4, the semantic parsing is mainly a classification

task and the syntactic dependency parsing is widely performed using two main

approaches: shift-reduce parsing and Eisner-based parsing. We decided to

extend one of this two approaches to jointly annotated syntactic and semantic

dependencies. In any extension the cost of the base algorithm will probably be

increased. Thus the flexibility to extend the models and the cost are the main

criteria considered.

Shift-reduce parsers are asymptotically more efficient(O(n)) but at each

step they carry an expensive learning part. Usually these parsers are much

more slower than Eisner O(n3) parsers. The Eisner bottom-up parsing is

implemented by dynamic programming and it is a flexible framework to be

extended.

Furthermore, systems based on Eisner algorithm (Carreras et al., 2006;

Carreras, 2007) showed a competitive performance in the syntactic parsing

of the English language in past CoNLL shared tasks (Buchholz et al., 2006;

Nivre et al., 2007a). We believe that extending the Eisner algorithm to jointly

parse syntactic and semantic dependencies it is a natural step to follow. The

Eisner algorithm was previously successfully extended to consider higher order

dependencies (McDonald and Pereira, 2006; Carreras, 2007).

Given these reasons we decided in favour of an Eisner-based system. As

we are increasing the computational cost of the inference algorithm we require

a critically efficient learning method, the perceptron and its variants are the

choice for this task, see chapter 4 for further discussion.

Our proposal is to define a first order linear model to jointly parse syntactic

and semantic dependencies, that relies on an on-line averaged structured per-

ceptron for learning (Collins, 2002) and an extended Eisner algorithm (Eisner,

1996) for joint parsing inference.

5.2 Baseline

As we are building a system from scratch we need some reference systems

and results to evaluate the performance of our system during the development

process.

The last CoNLL-2006 and CoNLL-2007 (Buchholz et al., 2006; Nivre et

al., 2007a) were devoted to syntactic dependency parsing. Unfortunately the
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evaluation of this task was done on different corpus built different conversion

algorithms.

For this current shared task organizers provided the output of Maltparser

therefore we used this output as a reference for the syntactic parsing task.

The identification of verb predicates can be easily accomplished by a set

of few rules. The task of predicate sense disambiguation can be adorded with

the simple baseline of assigning the most frequent sense.

The previous CoNLL-2004 and CoNLL-2005 (Carreras and Màrquez, 2004;

Carreras and Màrquez, 2005) made available the output of a baseline system

consisting on few simple rules, as to tag the first noun phrase of the predi-

cate as A0 and the next noun phrase as A1. These rules apply only to verb

predicates and do not gives an enough competitive baseline. No comparable

system for the semantic part can be found as our setting brings a new enriched

dependency structure to perform SRL also it includes noun and verb predicates

and a simultaneous identification of them. We will regard as reference the

previous work on SRL system. We expect to achieve ∼80F1 in A0 and A1
classification and to found poor performance for AM-LOC and AM-TMP as

are often easily confused (Carreras and Màrquez, 2004).

5.3 Difficulties

The two tasks to be jointly performed are the syntactic and semantic parsing

These tasks are related but not identical. Syntactic and semantic dependencies

represents different relations. A semantic relation between two tokens does

not imply a syntactic relation of the same two. Semantic dependencies can

take place between words loosely related by the syntax. In addition a semantic

dependency can occur between the same word in noun predicates (Meyers et

al., 2004), see predicate maker of figure 5.1.

Figure 5.1: Self semantic dependencies.

Next figure 5.2 shows another sample sentence with annotated syntactic

and semantic dependencies. Note that the semantic dependencies (dotted

and dashed lines) do not always overlaps with syntactic dependencies (solid

lines). Note also that some semantic dependencies are in fact reversed with
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respect to the syntax, i.e., relating the same tokens but pointing towards

different heads (e.g., the A1 relation of announced-acquisition is NMOD for

acquisition-announced). We assume that all predicates are already identified

(i.e, the joint model tasks are restricted to syntactic and semantic parsing).

Figure 5.2: Syntactic and semantic dependencies.

The Eisner chosen parsing algorithm is a bottom-up parser that follows a

tree structure. That structure is the syntactic structure. Note that the se-

mantic structure is not complete (i.e., the semantic dependencies do not form

a tree). The exactly overlapping dependencies are easy to be simultaneously

predicted when we are parsing a syntactic dependency, see dotted lines of fig-

ure 5.3. In this case we can annotate a semantic dependency at the same time

than we are scoring a syntactic dependency.

Figure 5.3: Semantic overlapping dependencies.

To deal with the non-overlapping semantic dependencies (bold dashed lines

of figure 5.2) our solution is to assign a semantic label whenever we encounter

just the token that receives the semantic dependency. For example, in figure

5.4 the two semantic A0 dependencies will be predicted at the encounter of the

receiving token it. The semantic dependencies will be predicted at the same

time than we are parsing the syntactic dependency labeled SBJ. The result

is that we can consider that the syntactic dependency SBJ is extended with

semantic labels (SBJ,A0, ,A1), one for each predicate, as seen in figure 5.5.

In this case the first A0 corresponds to the first predicate, the “ ” is a null

label indicating that the second predicate has no semantic relation with the
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token it and the last A0 tags the semantic dependency to the third predicate.

Figure 5.4: Semantic non-overlapping dependencies.

Thus, even if the head (i.e., predicate) of a semantic dependency is not

the same token as the syntactic head we will be able to classify the semantic

dependency. The result of applying this procedure to the whole sentence is

show in figure 5.6.

Figure 5.5: Extended syntactic and semantic dependencies.

Another difficulty is that state of the art SRL systems (Surdeanu et al.,

2007) strongly rely on features extracted from the complete syntactic tree.

The joint model grows syntactic and semantic structures at the same time,

so features extracted from the syntactic tree (e.g., a syntactic path between

a modifier and a distant predicate) are not available or expensive to compute

within the joint Eisner parsing. Looking back to the figure 5.5 it could be

possible that we are in fact assigning a semantic dependency between a token

that is parsed and a token that it is not already parsed. Therefore the exact

syntactic relation between these two token will remain unknown at that time.

We overcome this problem again with a very simple (though not elegant)

solution, consisting of introducing a previous syntactic parsing step. In this

previous parsing we will precompute just the minimum syntactic path features

that will unavailable at joint parsing time. Note that most of the features will

be extracted from the joint tree. Other features (e.g., paths) although fixed

by the previous parse could be partially adapted at joint time. For example, a

path between a modifier and a predicate could be formed by the path from the
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modifier to its syntactic head know at joint time plus the precomputed path

from the head to the distant predicate.

SBJ, A0, _, A0

OBJ, _, _, Su

NMOD, _, _, _ AMOD, _, AM−TMP, _ NMOD, _, _, _

OBJ, A1, A1, _

Figure 5.6: Syntactic and semantic dependencies.

The final syntactic and semantic trees will be completely and solely built at

the joint parsing step. The formalization of this intuitive solutions is described

in the following sections.

5.4 Architecture

The previous discussion on the difficulties of the join model concluded with

the solution of a syntactic pre-parser to the unavailable features problem.

Therefore in our architecture a predicate identification and syntactic parse

phases must be included before to the joint parsing phase.

The predicate sense disambiguation is a also to be performed. We will

implement this task on the latter postprocessing step. At this stage the joint

parser had already assigned arguments for each identified predicate. This

information will be useful to disambiguate the predicate sense.

This section outlines the main components of our system:

1. Preprocessing.

In preprocessing, the training corpus is traversed and feature extraction

performed. Main features are borrowed from pre-existing well-known

systems (see next subsection).

2. Syntactic parsing.

The initial syntactic parsing is based on an Eisner parser trained with

perceptron and it is merely intended to allow the extraction of syntactic-

based features for all the following phases (which share exactly the same

feature set extracted from these parse trees).

3. Predicate identification.

Predicate identification recognizes predicates by applying SVM classi-

fiers1 and a set of simple heuristic rules.

4. Joint syntactic-semantic parsing.

The joint syntactic-semantic parsing phase is the core module of this

1We used SVM-light (see www.joachims.org for details).
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work. It simultaneously derives the syntactic and semantic dependencies

by using a first order Eisner model, extended with semantic labels and

trained with an averaged perceptron.

5. Postprocessing.

Finally, postprocessing selects the most frequent sense for each predicate

and applies ILP to enforce domain constraints in the output.

5.5 Preprocessing

All features in our system are computed in the preprocessing phase. We use the

features described in McDonald et al. (2005a) and Carreras et al. (2006) as

input for the syntactic parsing phase. The joint syntactic-semantic parser uses

all the previous features and also specific features for semantic parsing from

Xue and Palmer (2004) and Surdeanu et al. (2007). The features originally

designed for a constituent syntactic representation have been straightforwardly

adapted to the dependency structure used in this shared task, by substitut-

ing any reference to a syntactic constituent by the head of that constituent.

About 5M features were extracted from the training corpus. The number of

features was reduced to ∼222K using a frequency threshold filter. A detailed

description of the feature set can be found at the next section 5.10

5.6 Syntactic parsing

We use the Eisner algorithm combined with an on-line averaged Pereceptron.

The Eisner algorithm has a O(n3) cost. In practice, there is also a relevant

multiplying constant, i.e., the number of dependency labels. To improve the

efficiency and performance, the labels that are considered for a candidate

dependency are filtered according to the POS of the head and modifier words.

The filters discard all labels not previously seen in the training corpus between

words with the same POS. This strategy allowed us to significantly improve

efficiency without any loss in accuracy, see the 5.11

5.6.1 Basic model

The basic model used for parsing which is also the starting point for the joint

model outlined in 5.6.1. We now give a detailed description. Let L be the set

of syntactic labels, x = x1, . . . , xn a sentence with n words, and Y(x) the set
of all possible projective dependency trees for x .

A dependency tree y ∈ Y(x) is a labeled tree with arcs of the form 〈h,m, l〉
that is rooted on an artificial node, 0, added for this purpose. The head, h,

and modifier, m, for a dependency index words in the sentence and can take

values in 0 ≤ h ≤ n and 1 ≤ m ≤ n. l ∈ L is the label of the dependency.
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The dependency parser (dp) finds the best scored tree for a given sentence

x :

dp(x,w) = argmax
y∈Y(x)

score tree(y , x,w) (5.1)

Using an arc-based first order factorization, the function score tree(y , x,w) is

defined as the summation of scores of the dependencies in y :

score tree(y , x,w) =
∑

〈h,m,l〉∈y

score(〈h,m, l〉 , x ,w) , (5.2)

where w is the weight vector of the parser, computed using an on-line percep-

tron. The weight vector w can be seen as a concatenation of |L| weight vectors

of d components, one for each of the labels: w = (w(1), . . . ,w(l), . . . ,w(|L|)).

A function φ is assumed to extract features from a dependency 〈h,m, l〉 and
from the whole sentence x . This function represents the extracted features as

a d-dimensional vector.

With all these elements, the score of a dependency 〈h,m, l〉 is computed

as a linear function:

score(〈h,m, l〉 , x ,w) = φ (〈h,m, l〉 , x) · w(l) (5.3)

5.7 Predicate identification

We identified as verb predicates all verbs excluding the auxiliaries and the verb

to be. These simple rules based on the POS and lemma of the tokens are

enough to correctly identify almost all verb predicates.

With regard to noun predicates, we directly identified as predicates the

lemmas which appeared always as predicates with a minimum frequency of 5

times in the training corpus. The remaining noun predicates were identified by

a 2-degree polynomial SVM. This classifier was trained with the same features

used in subsequent phases, but excluding those requiring identified predicates.

5.8 Joint parsing

The joint parser extends the Eisner algorithm to jointly assign syntactic and

semantic labels. An important concern in this stage is the feasibility of the

system.

Again, the joint parser as the syntactic parser relies on filters to improve

its performance. In addition to the filter by the POS-POS combination, a new

filter built using information from the frames files is used. For a discussion

about these filters see section 5.11.

We train different classifier for noun and verb arguments. Usually features

to train verb argument classifiers are combination of other features intended
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to reproduce the benefits of kernelization (Xue and Palmer, 2004). In the

same direction we considered the nominal and verbal predicate identification

tasks not enough similar and we trained separate classifiers.

The joint parser outputs the best joint tree but also the second best is

generated. This data is intended to be exploited and combined at the post-

processing phase.

5.8.1 Joint Model

The previously described basic parsing model will be extended to jointly assign

semantic dependency labels. Let S be the set of semantic labels. Note that at

this point, a sentence x has a set of q words already identified as predicates.

We will refer to them as p1, . . . , pq, where pi ∈ {1, . . . , n}. We consider that
each dependency has a set of semantic tags lsem p1 , . . . , lsem pq one for each

sentence predicate pi . Also, we consider an extra no-argument label in the set

of semantic labels S. Thus, an extended dependency ds is defined as:

ds =
〈

h,m, lsyn, lsem p1 , . . . , lsem pq
〉

, (5.4)

where lsyn denotes the syntactic label for the dependency.

Again, the best parse tree is that maximizing the score of a first order

factorization:

dp(x,w, y ′) = argmax
y∈Y(x)

score tree(y , x,w, y ′) (5.5)

score tree(y , x,w, y ′) =

=
∑

〈h,m,l〉∈y

score(〈h,m, l〉 , x ,w, y ′) , (5.6)

where the dependency label is now extended to l = 〈lsyn, lsem p1 , . . . , lsem pq 〉
and y ′ denotes the precomputed syntax tree. The score of a syntactic-

semantic dependency is:

score
(

〈h,m, l〉 , x ,w, y ′
)

= (5.7)

syntactic score (h,m, lsyn, x ,w)+ (5.8)

sem score
(

h,m, lsem p1 , . . . , lsem pq , x ,w, y
′
)

(5.9)

The syntactic score is computed as described in the basic model. Finally, the

semantic scoring function computes the semantic score as the sum of the

semantic scores for each predicate semantic label:

sem score
(

h,m, lsem p1 , . . . , lsem pq , x ,w, y
′
)

=

∑

lsem pi

φsem
(〈

h,m, lsem pi
〉

, x , pi , y
′
)

· w(lsem pi )

q

(5.10)
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Note that each sentence x has a different number of predicates q. To avoid

an excessive weight of the semantic component in the global score and a bias

towards sentences with many predicates, the score is normalized by the number

of predicates in the sentence. If a sentence has no predicates the joint model

will behave identically as the syntactic model.

SBJ, A0, _, A0

OBJ, _, _, Su

NMOD, _, _, _ AMOD, _, AM−TMP, _ NMOD, _, _, _

OBJ, A1, A1, _

Figure 5.7: Syntactic and semantic dependencies.

Figure 5.7 recalls the previous example of a sentence fragment with syn-

tactic and semantic dependencies. The three predicates of the sentence are

already identified: {p1 = completed, p2 = announced, p3 = acquisition}. All

dependencies are of the form d = 〈h,m, lsyn, lsem p1 , lsem p2 , lsem p3〉. The new
semantic labels express semantic relations between a modifier and a predicate

that can be anywhere in the sentence. In this example, the correct output

for the dependency previously-announced is h = announced, m = previously,

lsyn = AMOD, lsem p1 = null, lsem p2 = AM-TMP, lsem p3 = null.

The above described factorization allows the parser to simultaneously as-

sign syntactic and semantic labels and also to maximize a joint syntactic-

semantic score of the tree. Note that the semantic scoring function φsem
extracts features from the modifier, the head and the predicate of the parsed

dependencies. The proposed model allows to capture interactions between

syntax and semantics not only because the syntactic and semantic scores are

combined but also because the semantic scoring function relies on features ex-

tracted from the head-modifier-predicate relations. Thus, the semantic scoring

function depends on the syntactic dependency being built, and, in reverse, the

semantic score can modify the dependency chosen.

Regarding implementation issues, note that we compute |L|+ |S| ·q scores

to assign q+1 labels to a given dependency. The scores are computed indepen-

dently for each label. Otherwise, interactions among these labels, would raise

the number of possible combined labels to an exponential number, |L| · |S|q,

making the exhaustive evaluation infeasible in practice.
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5.9 Postprocessing

This phase has the purpose of disambiguate the predicate sense. We postponed

this task until postprocess to be able to extract information from the assigned

arguments by the joint parser. Two different strategies were implemented.

• Most frequent sense.

This is a simple postprocess that assigns the most frequent sense to each

identified predicate. The frequencies were extracted from the training

corpus. corpus.

• Integer linear programming.
ILP (see section 3.5.5) can be applied to perform inference and enforce

domain constraints on the output.

The combination of different system outputs and constraint enforcement

was successfully previously done using ILP (Punyakanok et al., 2004; Surdeanu

et al., 2007).

We will combine the best and second best output of our system by ILP.

Several domain constraint can be enforce, although Surdeanu et al. (2007)

showed that only two constraints are really useful:

1. There are no repeating core arguments

2. There are no embedding arguments

Note that the overlapping is not possible in the same tree structure. Only and

embedding could occur.

The ILP variables represent candidate arguments weighted by the score of

the parser output. Therefore, the objective function F maximizes the sum of

arguments weights under some domain constraints.

Let ak be a binary variable (i.e., it can take values 0 or 1). We have one

ak for each one of the arguments generated by the parser, from the best and

second best outputs. We will consider that the following functions are available

(i.e., the binary variable ak contains more information that its value).

• isCore(ak) wether or not the argument associated to ak is a core argu-

ment.

• modifier(ak) the token labeled with ak .

• score(ak) is the score output of the parser for the argument represented
by ak .

We want to compute:

argmax
{ak}

F ({ak}) =
∑

score(ak)ak (5.11)

We add the following constraints:
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1. Only one core argument,

ai + aj ≤ 1 if isCore(ai) and isCore(aj)

and argument(ai) = argument(aj)
(5.12)

2. Non embedding,

ai + aj ≤ 1 if embedding
(

modifier(ai),modifier(aj)
)

(5.13)

Note that best output scores are always higher than the second best score.

The second best output will only be selected in cases of some constraint is

violated. For example if there are two A0 arguments for a predictate we will

discard one of them and select instead the second best output.

An important drawback when we use the ILP approach is its tendency to

include as much arguments as possible. As we are maximizing a function, all

non-zero scored arguments will be added to the final result unless they violate

some constraint. To overcome this undesirable consequence Koomen et al.

(2005) introduced a penalty factor to the objective function. The parameter

simply sets a threshold for the coefficients (e.g., probabilities, scores or number

predictions from combined system) of the argument variables. Note that our

system output will not significantly suffer from this problem because when the

first (best) output is a null argument for a given token, the second best output

will not assign any argument for the same token, thus the second output does

not adds arguments for different tokens. Also the tagging of the tree structure

avoids assigning overlapping arguments, only embedding arguments could be

assigned. Finally, the Kommen et al. proposal was not implemented.

In addition to the enforcing of the domain constraints the information con-

tained in the frames of the noun and verb predicates is exploited to assist the

predicate sense disambiguation. The frames contains the allowed arguments

for each predicate sense.

We jointly compute the best predicate sense at this phase. For this reason,

we add new variables to the objective function. The new variables represents

each predicate sense weighted by its training corpus frequency. The maximiza-

tion process will select the most frequent sense if no constraints were violated.

The following new constraints were added:

1. We can only select one sense per predicate.

2. If a core argument is not valid for a sense, the sense and the argument

cannot be simultaneously selected.

The second constraint contains the information extracted from the training

frames files provided with the corpus. The predicates identified that are not

present in the training corpus are assigned to a default sense “01”. The output

of the ILP postprocess selects the arguments and the sense for each predicate.
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We will define a new set of variables. pi is a binary variable representing

the selected sense for a given predicate p. i can take values from 1 to the

number of senses.

freq(pi) is the frequency of the sense represented by pi , the frequency is

computed by counting from the training corpus.

argmax
{ak},{pi}

F ({ak}, {pi}) =
[

∑

score(ak)ak

]

+ β
[

∑

freq(pi)pi

]

(5.14)

The parameter β sets the trade-off between selecting the most frequent

sense or selecting all arguments. A high value of β will force to select the most

frequent sense and delete all forbidden arguments for that sense if any. A low

value of β will force to select a sense that accepts all predicted arguments.

The constraints are translated to

1. Only one sense per predicate,

p1 + . . .+ pz ≤ 1 (5.15)

where z is the last sense

2. If a core argument is not valid for a sense, the sense and the argument

cannot be simultaneously selected,

ai + pj ≤ 1 if isInvalid
(

argument(ai), roleset(pj)
)

(5.16)

As we seen in the section A.2 some predicate lemmas are incorrectly pre-

dicted. Therefore we could discard correct arguments for a predicate because

we are regarding an incorrect frame file. To overcome this problem we col-

lected a list of all the lemmas that were incorrectly assigned for each true

predicate lemma. When we found one of these lemmas the constraints will be

softened to allow all the arguments allowed by each one of the similar lemmas

of the list.

See the 3.5.5 for further about the ILP framework. There are other possi-

bilities to combine systems output. Machine learning can be used (Surdeanu

et al., 2007) to exploit a richer set of features, although in this case it is harder

to enforce domain constrains.

5.10 Features

In this section we describe the features used by our system. McDonald et al.

(2005a) and Carreras et al. (2006) defined a rich set of syntactic features

widely used for syntactic dependency parsing. Xue and Palmer (2004) and

Surdeanu et al. (2007) published widely used features for SRL, but applied to
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a constituent syntax tree. The features that refers constituents were adapted

to consider the head of the constituent.

Most of the features are detailed in these works but minor implementation

details are often left. In the following section we will describe in detail each

implemented feature.

All features are prefixed by a string indicating their feature type to pre-

vent the generation of identical features from different groups of features.

The operator “·” represents a concatenation of the strings representing the
features.

Recall that we assume that we are always extracting features from a de-

pendency d :

d = 〈h,m, l〉 (5.17)

with head h, modifier m and syntactic label l . The feature extraction function

φ(d, x) = v can extract features not just from the dependency but also from

the rest of the sentence. The feature representation is the binary vector

v ∈ {0, 1}n. In the case of the dynamic features, the partially computed

output ŷ of the parser is also visible for φ(d, x, ŷ) = v , thus some features are

extracted on-line while parsing the sentence.

The semantic feature extraction function φsem for an extended dependency

ds :

ds = 〈head,modifier, lsyn, lsem p1 , . . . , lsem pq 〉 (5.18)

Will take the form:

φsem
(〈

h,m, lsem pi
〉

, x , pi , y
′
)

(5.19)

where pi is the predicate and y
′ the pre-parsed syntactic tree. Note that we

extract features for each possible combination of head-modifier-predicate.

Figure 5.8: A sample feature extraction

Figure 5.8 shows a sample sentence. In this case, if we are interested in the

features of the semantic A0 dependency it-acquisition we will extract features
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from the the modifier and predicate but also from the head. For instance,

some extracted features will be PRP·VBD, PRP·NN and VBD·NN.

We assume that we can retrieve from each token its POS, lemma, split-

Form and other fields by functions as splitLemma, splitForm, etc. The coarse

part of speech was computed extracting the first two characters that identi-

fies a fine POS. We consider fine POS the set of POS defined for the penn

treebank. See the section 2.1.3 for a description of the data fields available.

5.10.1 Syntactic Features

McDonald et al. (2005a; 2005b) extracted features from corpus and filtered

the number of features by a frequency threshold. and proposed back-off of

features consisting in taking the first n-grams of the combination features

and the first characters of the tokens to reduce the low frequency of some

features. We also substituted the token back-off by the the token lemma.

Also McDonald et al. (2006) used morphological features that are not directly

available in our training corpus. Thus this features are discarded.

We designed few new features described in the subsection New Features

and in the Grandson Dynamic Features.

Token Features

In this case we assume that the token t represents any input token. This

feature extraction function will be called passing as t the head and themodifier.

Also this feature extraction function can be called for other tokens if required

by any other of the feature extraction functions.

The features extracted are:

• splitLemma(t)

• splitForm(t)

• coarsePOS(t)

• finePOS(t)

• splitForm(t) · finePOS(t)

• splitLemma(t) · finePOS(t)

Context Features

As context features we call the previous Token Features extraction function

for the tokens −2,−1,+1,+2 with respect to the given token of the sentence.

In addition we consider Context Features:

• finePOS(t) · finePOS(t − 1)
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• finePOS(t) · finePOS(t − 1) · finePOS(t − 2)

• finePOS(t) · finePOS(t + 1)

• finePOS(t) · finePOS(t + 1) · finePOS(t + 2)

When the tokens at positions −2,−1,+1,+2 are not available (e.g. at the
beginning or end of the sentence) a special feature was extracted indicating

this condition.

Dependency Features

• splitForm(head) · finePOS(head) · splitForm(mod) · finePOS(mod)

• finePOS(head) · splitForm(mod) · finePOS(mod)

• splitForm(head) · splitForm(mod) · finePOS(mod)

• splitForm(head) · finePOS(head) · splitForm(mod)

• splitForm(head) · finePOS(head) · finePOS(mod)

• splitForm(head) · splitForm(mod)

• finePOS(head) · finePOS(mod)

The same features were extracted but substituting the form where present

by the lemma of the token.

• splitLemma(head) · finePOS(head) · splitLemma(mod) · finePOS(mod)

• finePOS(head) · splitLemma(mod) · finePOS(mod)

• splitLemma(head) · splitLemma(mod) · finePOS(mod)

• splitLemma(head) · finePOS(head) · splitLemma(mod)

• splitLemma(head) · finePOS(head) · finePOS(mod)

• splitLemma(head) · splitLemma(mod)

Dependency Context Features

• finePOS(head) · finePOS(head+1) · finePOS(mod−1) · finePOS(mod)

• finePOS(head) · finePOS(head+1) · finePOS(mod) · finePOS(mod+
1)

• finePOS(head−1) · finePOS(head) · finePOS(mod) · finePOS(mod+
1)

• finePOS(head) · finePOS(head−1) · finePOS(mod−1) · finePOS(mod)
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Distance Features

• finePOS(head) · distance(head,mod) · finePOS(mod)

• finePOS(head) · finePOS(k) · finePOS(mod) for each token k placed
between the head and the modifier.

• distance(head,mod) as the number of token between the head and the

modifier in the sentence word order.

• numVerbs(head,mod) the number of tokens with a coarse POS indi-

cating a verb between head and modifier.

• numCoords(head,mod) the number of tokens with a coarse POS in-

dicating that is a coordination word (e.g., and, or) between head and

modifier.

• numPunc(head,mod) the number of tokens with a coarse POS indicat-

ing that is a punctuation word (e.g., “;”) between head and modifier.

• whether head < mod or not with respect to the sentence word order.

Note that we are always working with binary features. When we deal with

numeric attributes (e.g., distances) we will have to add a new feature for each

possible value. In addition large values Thus the distance number is binned

into a set of intervals.

New Features

We added the following small feature variations, not present in the previous

cited works:

• sentence size the binned size of the whole sentence.

• relative position the binned relative position of head and modifier inside
the sentence.

We pretended to include this information as it is possible that the previous

measures that computes the distance between head and modifier will benefit

from taking into account the whole sentence size.

Dynamic Features

This features are newly introduced in Carreras et al. (2006) intended to over-

come the limitations of the First Order Projective parsing model, see 3.2.2.

This features can exploit the span or subtree being build. The features are

based on the previous syntactic labels assigned by the bottom-up parser.
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• finePOS(head) · finePOS(mod) · synLabel(k) we add a feature for
each possible value of k, where k are the sons of the head.

• finePOS(head) · finePOS(mod) · concatenatedSynLabel(sons(head))

we add a feature for each son k of head. Each features has for each

son of head the syntactic label of the son and also concatenated all the

previous syntactic labels.

• finePOS(head) · finePOS(mod) · numberOfSons(head)) the num-

berOfSons function can take values only from {no sons, 1 to 4 sons,
¿4 sons }

Grandson Dynamic Features

Following the same concept of the Dynamic Features we defined a new set of

features capturing grandson attributes, see 3.2.2.

• finePOS(head) · finePOS(mod) · synLabel(k) we add a feature for

each possible value of k, where k are all the sons of the sons of head

(i.e., the grandsons).

• finePOS(head) · finePOS(mod) · concatenatedSynLabel (grandsons(head))

we add a feature for each grandson k of head. Each features has for

each grandson of head its syntactic label and also concatenated all the

previous syntactic labels for the rest of the grandsons.

• numberOfGrandSons(head)) the numberOfGrandSons function can only

take values from the set {no grandsons, 1 to 4 grandsons, >4 grandsons

}

• numberOfSons(mod) the numberOfSons(mod) function extracts the

number of sons of the current modifier. These are the subset of head

grandson corresponding to the modifier.

5.10.2 Semantic Features

We tried to adapt the features originally designed for a constituent depen-

dency representation. For example we substituted the first and last word of a

constituent by the first and last child.

We also include 2,3,4,5-grams of the features that contains sequences

(e.g., the sequence of POS of sons of a given modifier).

We refer to sons of a given token regarding the syntactic structure.

Animacy Features (Joanis, 2002) are features used for verb sense disam-

biguation. We included them to allow the use of the same set of features for

a predicate disambiguation classifier.
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In addition a set of words that are tagged as temporal modifiers (i.e, to-

morrow, later) in the training corpus is extracted and also a set of bag of

words. The precomputed set of bag words limits the maximum number of

words that will be extracted as features as this feature can generate a huge

set of feature vector entries.

Constituent Features

• constituent Type and head in our case the constituent features are

adapted to consider the head of the modifier.

– coarsePOS(modifier)

– synLabel(modifier)

– finePOS(modifier)

– splitForm(modifier)

– splitLemma(modifier)

– coarsePOS(modifier) · coarsePOS(head)

– finePOS(modifier) · finePOS(head)

• firstAndLastChild

– finePOS(firstSon(modifier)) firstSon(mod) is the first son of the

modifier with respect to the word sentence order.

– finePOS(firstSon(modifier)) · finePOS(lastSon(modifier)) lastSon(mod)
is the last son of the modifier with respect to the word sentence

order.

– finePOS(firstSon(modifier)) · before(firstSon(modifier),modifier)

before(firstSon(modifier),modifier) indicates if the position that

occupies the first son of the modifier is before the modifier itself.

– numSons = 0 this is a binary feature indicating that the modifier

has no sons.

– numSons = 1

• posSequenceChild

– posSequence(sons(modifier)) the sequence of POS of each son

of modifier.

– posSequenceAndNum(sons(modifier)) the sequence of POS of

each son of modifier and the number of sons (i.e., grandsons of

the modifier) for each one.

• bag of words The bag of words of each sentence constrained to the

words that are adjectives, nouns or verbs.
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• topSequenceChild The POS of the direct sons of the modifier.

• governingCategory the phrase of the modifier, in our case adapted to

the POS of the head of the modifier.

– finePOS(head(modifier))

– coarsePOS(head(mod))

• named entity Our named entity recognizer is very simple, it considers
as named entities all words with the first letter in upper case.

• temporal keyword We add this feature if the modifier appears in a list

of temporal keywords, see 5.5.

• animacy Features whether or not the modifier is a personal pronoun.

Context Constituent Features

As Context Constituent Features we call the previous Constituent Features

extraction function for the tokens −2,−1,+1,+2 with respect to the modifier

token.

In addition we compute the

• coarsePOS(modifier) · coarsePOS(modifier − 1)

• coarsePOS(modifier) · coarsePOS(modifier − 2)

• coarsePOS(modifier) · coarsePOS(modifier + 1)

• coarsePOS(modifier) · coarsePOS(modifier + 2)

• whether or not modif ier is the first/last word

Predicate Features

• predicateSyntacticFeatures

– coarsePOS(predicate)

– finePOS(predicate)

– coarsePOS(predicate) · coarsePOS(mod)

– finePOS(predicate) · finePOS(mod)

– splitForm(predicate)

– splitLemma(predicate)

• cardinalityFeatures This features tries to capture if the predicate is a

multi-word verb.
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– isVerb(predicate) and isVerb(predicate − 1) e.g., stopped/VBD
trading/VBG

– isVerb(predicate) and isVerb(predicate − 2) e.g., has/VBZ al-

ready/RB begun/VBN

– isVerb(predicate) and isModal(predicate−1) e.g., could/MD watch/VB

– isVerb(predicate) and isModal(predicate−2) e.g., could/MD not/RB

handle/VB

– coarsePOS(head(predicate))

• voice Features indicating if the predicate is a passive voice verbal form.

– isVerb(predicate) and isVerbToBe(predicate − 1)

– isVerb(predicate) and isAdverb(predicate−1) and isVerbToBe(predicate−

2)

– isVerb(predicate) and isVerbToBe(predicate−1) · isBefore(mod, predicate)

This is a very useful feature for correctly tagging A0 and A1 argu-

ments. For predicates in active voice A0 almost always precedes

the predicate and A1 is the fist argument following the verb. For

passive voice predicates the situation is reversed.

– isVerb(predicate) and isAdverb(predicate − 1) and
isVerbToBe(predicate − 2) · isBefore(mod, predicate)

• subcategorizationRule

– are all the predicate sons at his left/right

– synLabels(sons(predicate))

– synLabels(sons(head(modifier))) This is a new feature to allow to

capture the sense of the subcategorization rule feature for argu-

ments that have not the predicate as their direct head.

• extraSemantic Initially were not considered the concatenation features

where added

– splitLemma(predicate)

– splitLemma(head)

– distance(predicate,modifier)

– splitLemma(predicate) · distance(predicate,modifier)

– splitLemma(predicate) · splitLemma(modifier)

– isPredicate(modifier)

– isPredicate(head)

– is predicate = modifier?

– is predicate = head?



72 CHAPTER 5. SYSTEM DESIGN

Predicate-Constituent Features

• relativePosition

– position(predicate,modifier) whether the predicate is before, same

word or after the modifier

– embeddingLevel(predicate,modifier) captures if the predicate is a

descendant, ancestor or has another syntactic relation.

• constituentPath

– syntacticPath(modifier, predicate) the concatenated syntactic la-

bels from modifier to predicate

– syntacticDistance(modifier, predicate) the distance from modifier

to predicate with respect to the syntactic structure

– syntacticPathArrowed(modifier, predicate) the concatenated syn-

tactic labels from modifier to predicate, indicating when we travers-

ing the nodes if we are going by an upward or downward syntactic

edge (i.e., following the parent or the son direction ).

• syntacticFrame

– synFrame(predicate,modifier) the coarse POS of each of predicate

sons tagging the position occupied by the modifier or the corre-

sponding ascendant if the modifier is inside the subtree spanned by

predicate.

– synFrame(head(modifier),modifier) tagging the position occupied

by the modifier and the predicate or the corresponding ascendant

if the predicate is inside the subtree spanned by the head.

5.10.3 Dynamic semantic features

This features could capture analogous features as the Dynamic Syntactic Fea-

tures. As it is reasonable to think that the previous sons of a given head will

contribute with significant information, the previously assigned arguments for

a given predicate could also do. As we are building the joint tree based on the

syntactic structure it is possible that some previously assigned arguments are

not visible (i.e., outside the actual sentence span), see 7.1 for further details.

The use Dynamic Syntactic Features produced discouraging results, see

6.1. Thus finally we decided to do not implement the Dynamic Semantic

Features.

5.10.4 Semantic features for predicates

All the previous semantic features, except the ones that requires or assumes

identified predicates are used by the predicate identification classifier.
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5.10.5 Feature selection

The whole training corpus is processed and each one of the previously described

features is extracted. As the number of combinations lemma, form and POS

could be huge we extracted the first 5M features and then computed their

frequency.

From this 5M features we discarded using a threshold filter all the fea-

tures bellow a frequency of 5000 for the syntactic features and 25000 for the

semantic features. We lowered this threshold by a factor of 1/3 for certain

semantic features, the ones which are concatenated with the lemma of the

predicate and the relative position syntactic features.

5.11 Efficiency

The efficiency is a critical point in our system design. Some techniques could

make the difference between a feasible and unfeasible systems. For example

a naive implementation of the dot product without taking into account that

we are working with sparse vectors could multiply the time consumed by score

function by several orders of magnitude.

To achieve we written the software in the C++ language. Important effi-

ciency included the use of filters and the preallocation of memory and reuse of

objects, and to work with structures and algorithms adapted to sparse vector.

We will review only the filters used.

5.11.1 Filters

The Eisner algorithm has an O(n3) cost. But there is a hidden constant,

the number of labels to assign multiplies the asymptotic bound. Thus the

number of syntactic and semantic labels plays a critical role in the algorithm

performance. Various filters were implemented to reduce the number of labels

to be scored.

For a review of the data files managed by our system and other implemen-

tation issues related to efficiency, please see section B.

Filters by frequency

Labels that rarely appears in the training corpus, say labels with a frequency ¡ 5

will be near impossible to be learned in out setting, see section A.1. Probably

will be never predicted at test time. We discarded the syntactic and semantic

labels with very low frequency. These filters shown an improvement in the

parsing efficiency. Also the length of the weight vector was diminished, as

there are no weights for these labels. This improved the performance of the

vector averaging computation due to the shorter vector length.
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Filters by POS-POS

A powerful method for filtering is to restrict the labels to assign between two

token by their Part of Speech (POS). Conceptually if we are parsing a possible

dependency between to tokens t1 and t2, the syntactic POS-POS filter is a

map:

syn filter(POS(t1),POS(t2)) = l1, . . . , ln (5.20)

where l1, . . . , ln are the admissible labels between t1 and t2.

The syntactic filter by POS-POS reduced the computation time by a factor

of 5 without any loss in accuracy, see the 6.1.2 section.

The filter is intended to be used at each O(n2) Eisner loop. Thus accessing

must be very fast, otherwise the advantages of the filter use will be surpassed

by the filter cost.

Each POS of each token is converted to an integer in the preprocessing

phase. The POS of the head and the POS of the modifier are directly trans-

lated to a vector access of O(1) cost by combining the two integers. The list

of labels returned by the filter is a single linked list that it is directly used to

iterate over the set of assignable labels.

Filter by Lemma

The frames files contains exploitable information as the arguments that each

predicate can take. In this filter we regard only the POS of the modifier

token and the lemma of the predicate. Note that an argument annotation

is a relation between the predicate and the modifier and the predicate not

necessarily is the same token as the head.

This filter is queried by the POS of the modifier and the lemma of the

predicate. In this case the building process of the filter is different from the

previous ones. The corpus is traversed to collect all admissible argument

for each POS. We collect independent lists for arguments referring to noun

predicates and verb predicates.

These lists are copied as admissible for each predicate lemma, but each

one of these lists are filtered with the information found in the frames files

(i.e., the admissible arguments). We removed the arguments that are not in

any roleset of the predicate.

5.12 Design of the equivalent pipeline system

To evaluate the ability of our joint system to overcome a pipeline approach

we built an equivalent pipeline system. The pipeline system is as similar as

possible to our joint system.
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5.12.1 Syntactic component

The syntactic equivalent system was easily and simply built just by disconnect-

ing the semantic components of our final joint system. We simply have to not

score any semantic label when we are parsing a sentence.

As we previously seen the joint model behaves identically than the syntactic

model in sentences with no predicates.

5.12.2 Semantic component

In this case it not possible to just disconnect the syntactic component as

the parse algorithm cannot produce a tree structure from the unconnected

semantic dependencies.

The semantic pipeline system is implemented to perform a classification

token by token and for each predicate. For each sentence head-modifier pair

is called the same scoring function than in our joint model. Also the learning

algorithm remains unchanged.
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6.1 Experimentation and results

A large number experiments were performed through the development process.

As we stated at the start of this work, our main point of interest is to compare

the pipeline and joint approaches and see if the last can overcome the former.

Another important point regards the feasibility of the system. See section

5.11 for a detailed explanation about the efficiency improvements. In addition

frequent design decision were made during the project development, and when

possible the decision were supported by the included experiments.

We reran some experiments with the latest system configuration to facili-

tate a comparison across experiments. Some experiments are really expensive

and were done using a reduced corpus or they are just performed once on the

corpus versions available at the time of the run, in this case it will be noted.

Each comparison is set for a system with exact parameter configurations

except for the variable that is being experimented. The results, unless other-

wise noted, are for 1 epoch training on the whole training corpus with a learn
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rate of 0.01 and using the 176k most frequent features for syntactic parsing

and the same 176k plus 46k new features for semantic parsing. All scores are

referring to the development corpus, recall that the test corpus must only be

used for the final scoring.

Until the release of the training corpus, the small trial dataset provided

by the shared task organizers was used to perform experiments and test the

system. We do not report results from this corpus.

Below each experiment data there is brief discussion about the obtained

results.

6.1.1 Preprocess

Number and groups of features

The first step of our system extracts and sets the features used by the subse-

quent phases.

Feature group extracted features selected features

Token features 41240 3812

Context features 186492 18996

Dependency features 3522869 3254

Dependency context features 148495 1760

Distance features 57392 6902

Extra features 90 85

Dynamic features 43422 824

Total features 4M 35633

Table 6.1: Extracted and selected features

Table 6.1 shows the number of extracted features and selected features.

Note a lower number of selected features (35k) with respect to the final con-

figuration (176k). We are concerned about an overgeneration of frequent

features of some group that will prevent a fair selection of features among

different groups. Table 6.1 shows that we are not discarding any group of

features by using this simple method.

The feature group with the largest number of features is the context de-

pendency features group. It contains concatenations of words and POS from

the previous and following tokens. Thus a lot of combinations are generated

but also as each combination is relatively infrequent and most of these features

are discarded.

The optimal number of features was selected trough some empirical results

using the 10% of the corpus. The threshold selection method forces us to

firstly fix a threshold and then expect a reasonable number of filtered features.
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The alternative method of sorting the frequency of the extracted features (4M

or 5M) and selecting the top scoring ones is almost unfeasible due to cost of

the sorting algorithm. The precomputation of syntactic features produced and

acceptable file of 1.2GB.

The extraction of semantic features carried some space problems. The

semantic threshold was set to 25000, we selected 46k features and filled a

space of 71GB, (9GB compressed). In this case a major contributing factor

in the selection of the semantic number of extracted features was the disc

space and not just the final performance. Recall that syntactic features are

extracted for each modifier-head combination but semantic features requires

combinations of modifier-head-predicate.

The selection by threshold is a very efficient method that achieved good re-

sults, see the following sections. Anyway, more sophisticated features selection

methods could improve the final performance. Some shared task participants,

see section 6.2.1, employed the backward selection method, most of them

not reporting the consumed time in this process. As we are designing a joint

system we expect an increased computational cost of the core of the system,

a wrapper feature selection is not a proper method for our case.

All the subsequent experiments are performed using 188k syntactic features

and 46k semantic features.

6.1.2 Syntax

Use of syntactic tags vs. one tags

McDonald and Pereira (2006) reported better results when the Eisner parser

not just assigns dependencies between words but also assigns the corresponding

syntactic label. We compare these two approaches.

Scoring metric w/o syn tags (%) with syn tags (%)

Labeled attachment score: 7.18053 83.5171

Unlabeled attachment score: 51.0609 87.1434

Labeled accuracy score: 11.8467 89.5499

Table 6.2: Use of syntactic tags

The relevant score in table 6.2 is the Unlabeled attachment score, labeled

scores are not applicable for a parser that does not produce annotations. Our

results strongly confirm our expectations. One may think that predicting just

the structure should be an easier task. But for a perceptron it remains as a

difficult task. Recall that it is a linear classifier, and in our case infeasible to be

kernelized. The use of a set of perceptrons, one specialized for each syntactic

label, in fact renders the problem less difficult.
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Use of a generic dependency label vs. all labels

The usual setting for a dependency parsing is the following: As we receive

each pair of tokens we score all syntactic labels and chose the best. In fact

we are performing two task simultaneously: linking the tokens and labelling

that link. We considered that it could make sense to change the scoring of a

dependency and not just compute the syntactic label score but also a generic

likeliness of the unlabeled dependency.

Scoring metric with tag (%) w/o tag (%)

Labeled attachment score: 82.3603 83.5171

Unlabeled attachment score: 87.0355 87.1434

Label accuracy score: 88.3032 89.5499

Table 6.3: Use of a generic dependency tag

The addition of a generic dependency score failed to outperform the usual

setting. Recalling the discussion of the previous experiment it is apparently

difficult to learn a good scorer for all kinds of dependencies. The addition of

this low performing classifier probably degraded the final results.

Averaged perceptron

Several works (Collins, 2002) reported a significant increase in final perfor-

mance due to the perceptron averaging.

Scoring metric non-averaged (%) averaged (%)

Labeled attachment score: 77.8141 83.5171

Unlabeled attachment score: 81.9558 87.1434

Label accuracy score: 86.2413 89.5499

Epoch time (s) 1396 3389

Time per instance (s) 0.0355415 0.0862824

Table 6.4: Averaged Perceptron

Although we tried to implement an efficient averaged perceptron the com-

putation times are still high. In fact it is possible to compute the averaged

perceptron recording only the number of modifications to each feature with a

minimum overhead.

Note that there is a difference in the latter reported time for the syntactic

system and this reported times. The reported times on this table 6.4 are for

the joint system with some semantic components disconnected. As we did not

disconnected all semantic components we can appreciate some overhead.
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The results of table 6.4 supports the use of the averaged perceptron even

at the expense of the higher computing time.

Dynamic Features

Carreras et al. (2006) defined a new set of features computed on-line during

the parsing process and obtained a significant and positive impact on the

system results, for a detailed discussion see 3.2.2.

Scoring metric dyn feats (%) standard features (%)

Labeled attachment score: 83.5531 83.5171

Unlabeled attachment score: 87.1164 87.1434

Label accuracy score: 89.6278 89.5499

Epoch time (s) 16954 3389

Time per instance (s) 0.431641 0.0862824

Table 6.5: Dynamic features

The dynamic features are extracted inside the parser steps. At that time

a large quantity of dynamic features is generated. It is possible to select the

admissible features on-line or have them precomputed.

Our first implementation precomputed all dynamic features, a second one,

ran the Eisner algorithm a couple of iterations to extract and precompute the

features.

Table 6.5 shows the result of the second implemented strategy that runs

the Eisner algorithm to preselect the dynamic features. Note that the increase

in computational time is substantial and the performance gain (0.036) is not

significative.

The results obtained with different selection algorithms pointed out the

selection strategy plays an important role. We believe that dynamic features

shouldn’t be preselected to reproduce the Carreras et al. (2006) results.

Our next planned experiment was to also include features about grandsons

and not just sons of the processed head. Due to this discouraging results and

also the associated expensive computational cost we do not present further

experimentation regarding this topic.

Projectivization techniques

The Eisner algorithm is unable to parse crossing or non-projective links. As

some sentences (7.6%) contains one or more non-projective links a strategy

to deal with this links should be used. Otherwise each one of this sentence will

force a error correction by the learning algorithm. The correction is unneces-

sary and will modify weight vectors associated to labels that in fact could have
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been correctly adjusted. McDonald and Pereira (2006) used a simple trick to

deal with non-projective links, see section 3.2.5.

Scoring metric result (%)

baseline

Labeled attachment score: 83.5171

Unlabeled attachment score: 87.1434

Label accuracy score: 89.5499

No threshold, limited to 1 change

Labeled attachment score: 81.9108

Unlabeled attachment score: 85.4561

Labeled accuracy score: 89.4630

1.05 threshold, limited to 1 change

Labeled attachment score: 83.5141

Unlabeled attachment score: 87.1434

Labeled accuracy score: 89.5499

Table 6.6: McDonald’s projectivization trick

Table 6.6 shows some of the extensive experimentation that was done

producing discouraging and similar. Several configurations were tried, all failing

to improve the non-projective baseline. The tested configurations include:

• Limiting the number of non-projective created links to 1,2,3 or no limit.

• Setting a threshold of 2%, 5%, 10% of the total tree score

• Setting a fixed threshold

• Including the non-projectivization inside the training and not just on the
testing

• Some combinations of the above

The McDonald projectivization algorithm is, as far as we know, only applied

to unlabeled trees. As we are applying this technique to labeled trees we could

not expect similar results.

We believe that the algorithm could work well in unlabeled trees due to

the fact that the score of a dependency is only related to the dependency

probabilities of being selected. As in our case there are several labels competing

for a dependency choosing it is possible that we couldn’t use the label score

only to change the dependencies selected.

The final system is completely non-projective, see sections 3.1 and 3.2.5

for further discussion.
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Maltparser (reference parser) vs our parser

The organizers provided the output of Maltparser (Nivre et al., 2007b) to be

used for the participants in the shared task open challenge. In fact, some

participants at the CoNLL-2008 shared task, see section 6.2.1, used the Malt-

parser as their only dependency parser.

Scoring metric result (%)

MaltParser reference

Labeled attachment score: 84.1285

Unlabeled attachment score: 87.4461

Labeled accuracy score: 89.2412

Our parser, 1 epoch

Labeled attachment score: 84.0176

Unlabeled attachment score: 87.6648

Labeled accuracy score: 89.7896

Our parser, 2 epoch

Labeled attachment score: 84.5900

Unlabeled attachment score: 88.0934

Labeled accuracy score: 90.2451

Table 6.7: Maltparser performance

The Maltparser output had been useful to asses the system performance

while we were in the development process. The experiment in table 6.7 was

early done, it uses a different version of the corpus1 and less features (85k

instead of 176k). We are confident that the small changes that the corpus

suffered will not significantly affect these results. This experiment confirms us

that the parser is well implemented and the features and the learning algorithm

are producing the expected results.

Syntactic filter

The Eisner algorithm cost contains a hidden constant depending on the size

of the syntactic labels set. The use of a filter does not only improves the cost

but also it could benefit the performance preventing the use of unlikely labels

for a given dependency.

Recall that the number of syntactic labels is 70. The filter allows us to

deal with a mean of 8.4 labels instead. In addition the computational cost was

reduced by a factor of 5. The number of discarded correct labels (0.2%) is

1During the development, few releases of the corpus with minor corrections were provided.
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negligible, therefore the upper bound of the syntactic parser (99.8%) remains

almost unchanged.

Syntactic filter performance (development corpus)

Number of incorrectly discarded labels 0.203788 %

Mean syntactic labels returned per query 8.36858

Table 6.8: Performance and upper bounds of the syntactic filter
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Figure 6.1: Histogram of syntactic filter size

The histogram in figure 6.1 shows that most combinations of POS-POS

gives a filtered number of label much lower than 70. Most of the filter entries

are just filled with one label. Note that if the POS-POS combination is not

seen in the training corpus we always add a null label, as in every dependency

and combination we must produce a score and a tag.

Passive-aggressive perceptron

The passive-aggressive perceptron algorithm modifies the update rule of the

regular perceptron, see section 3.5.3. We expected to observe and improved

performance.
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Scoring metric result (%)

baseline perceptron

Labeled attachment score: 73.07

Unlabeled attachment score: 78.1707

Labeled accuracy score: 82.684

PA-I

Labeled attachment score: 72.4526

Unlabeled attachment score: 77.6942

Labeled accuracy score: 81.9917

PA-II

Labeled attachment score: 71.4217

Unlabeled attachment score: 76.8221

Labeled accuracy score: 81.2725

Table 6.9: Performance of the passive-aggressive perceptron

In this case the experiments were performed using a reduced set of 24k

features and just 10% of the corpus. In addition the perceptron was not

averaged.

We expected to see clearer improvements from the passive aggressive algo-

rithm when the corpus size is small as the perceptron and the passive-aggressive

perceptron algorithms could converge to close solutions after a large set of ex-

amples. We believe that the averaging could smooth the differences between

the two algorithms.

We consider that the poor results are due to the processing of non-projective

sentences. As non-projective sentences always generate errors in parsing, an

aggressive update is forced, these updates will not allow the parser to cor-

rectly analyze a non-projective sense but they could change previous good

weight vectors.

Final syntactic score

As we designed a joint system we will evaluate the final syntactic performance

in the next Joint parsing section.

6.1.3 Predicate identification

To review statistics from the predicate distribution in the corpus see A.2. As

we previously discussed we can correctly identify most of the verbal predicates

by simply using few rules, see table 6.10.
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Precision (%) Recall (%) F1

verb pred id 99.87 94.43 97.08

Table 6.10: Performance of verbal predicate identification

Although high results the rules made few errors. We will see in detail some

of these errors.

Example 6.1.3.1 Incorrect rule classification
A non-predicate token tailed/VBN incorrectly identified as predicate

18 pony-tailed pony-tailed JJ JJ pony pony NN 20 HMOD ˙ ˙ ˙

19 ˙ ˙ ˙ ˙ --HYPH 18 HYPH ˙ ˙ ˙

20 ˙ ˙ ˙ ˙ tailed tail VBN 17 OBJ ˙ ˙ A1

Recall that corpus tokens as made-for-TV are split by hyphens. Our classifi-

cation rules always tags a VBN token that is not in an auxiliary verb form as

predicate.

The rules does not capture a very few multi-word verb constructions. In

addition very few tokens inside a split word are labeled as verbs and therefore

incorrectly tagged as predicates. As the performance of the rules is 97.08%

F1 there is a small room for improvement at at risk of causing overfitting. We

invested our resources in the improvement of other components.

An SVM classifier with a list of nouns is used to identify nominal predicates.

Table 6.11 shows some results for different SVM configurations.

Precision (%) Recall (%) F1

linear kernel, C=1 77.9731 94.0106 85.2441

linear kernel, C=2 77.2204 93.9035 84.7487

2-deg poly, C=1 82.2143 95.0744 88.1779

2-deg poly, C=2 82.2143 95.0744 88.1779

2-deg poly, C=1, all corpus 83.41 95.8689 89.2065

Table 6.11: Performance of the SVM for nominal predicate

identification

Note that each one of the trainings consumes a few hours and was per-

formed using the 10% of the training corpus. The final selected configuration

was a 2-degree polynomial kernel with a parameter C = 1.

Finally and for this configuration we detailed results in table 6.12. Note

that this table includes nominal and verbal predicates.
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PPOSS gold correct system recall (%) precision (%) F1

CD 1 0 0 0.00 NaN NaN

JJ 16 0 0 0.00 NaN NaN

NN 2181 1721 2024 78.91 85.03 81.86

NNP 5 0 0 0.00 NaN NaN

NNS 1021 848 1038 83.06 81.70 82.37

PRF 1 0 0 0.00 NaN NaN

RB 1 0 0 0.00 NaN NaN

RP 3 1 1 33.33 100.00 50.00

VB 796 793 804 99.62 98.63 99.12

VBD 710 710 738 100.00 96.21 98.07

VBG 445 445 492 100.00 90.45 94.99

VBN 689 688 718 99.85 95.82 97.79

VBP 203 203 245 100.00 82.86 90.63

VBZ 317 317 354 100.00 89.55 94.49

WP 1 0 0 0.00 NaN NaN

overall 6390 5726 6414 89.61 89.27 89.44

Table 6.12: Precision and recall for predicate identification

6.1.4 Joint Parsing

We will firstly review the semantic results. Most of the experiments are focused

in the semantic component of the system but as we are working with a joint

system there are interactions reflected on the syntactic scores. The most

relevant scores for the shared task evaluation are marked in tables in italics.

Note that all experiments, except the presented at the end of this subsection,

are performed using the default predicate disambiguation. This disambiguation

does not interacts with the rest of the system performance as it is the last

postprocessing step. Final results are significantly higher due to the use of the

most frequent sense tagging at postprocessing.

Hard updates vs. soft updates

Our joint parser produces a syntactic and a semantic structure simultaneously.

Therefore the output can contain both kind of errors. A token correctly se-

mantically annotated could in fact be linked to a syntactically incorrect head.

We investigated if its is convenient to do not consider these errors also as

semantic errors.

Table 6.13 shows that to consider syntactic errors (hard policy) as requir-

ing also a semantic correction degrades the performance. We believe that a

semantic annotation is a link between the predicate and the modifier. A strict



88 CHAPTER 6. RESULTS

update policy will penalize semantic dependencies that do not require a correct

head to be identified.

Scoring metric hard update (%) soft update (%)

SYNTACTIC SCORE

Labeled attachment score: 83.34 84.07

Unlabeled attachment score: 86.90 87.65

Label accuracy score: 89.63 89.59

Exact syntactic match: 14.53 16.03

SEMANTIC SCORE

Labeled precision: 65.07 69.99

Labeled recall: 64.49 68.71

Labeled F1: 64.78 69.35

Unlabeled precision: 77.18 82.71

Unlabeled recall: 76.49 81.20

Unlabeled F1: 76.83 81.95

Proposition precision: 24.04 33

Proposition recall: 24.13 33.51

Proposition F1: 24.09 33.44

Exact semantic match: 5.32 6.14

OVERALL MACRO SCORES (Wsem = 0.50)

Labeled macro precision: 74.20 77.03

Labeled macro recall: 73.91 76.39

Labeled macro F1: 74.06 76.71

Unlabeled macro precision: 82.04 85.18

Unlabeled macro recall: 81.70 84.42

Unlabeled macro F1: 81.87 84.80

Exact overall match: 3.07 3.52

Table 6.13: Perceptron update policies

Semantic filters

The semantic filters are analogously implemented and used as the syntactic

filters. We are interested in the resulting upper bounds of applying this filters.
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Histogram of semantic POS−POS filter size
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Figure 6.2: Histogram of semantic POS-POS filter size

Histogram of semantic lemma filter size

num of sem labels

F
re

qu
en

cy

0 10 20 30 40

0
20

00
0

60
00

0
10

00
00

Figure 6.3: Histogram of semantic lemma filter size
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Figure 6.2 shows the number of semantic labels returned by each filter

entry. Most entries, or POS-POS combinations contains no semantic labels.

Table 6.14 complements this information. Most of the POS-POS combina-

tions will rarely accept any semantic label, but it could be possible that more

plausible POS-POS combinations could be labeled with a large set of semantic

labels.

The histogram in figure 6.3 shows the distribution of the size of the filter

entries. In this case, the number of entries is larger but as we expected the are

less filtered labels. The use of the POS-POS filter is a simpler and effective

method, see table 6.14.

In our final implementation, we combined the to filters. The lemma filter

contributes discarding 0.18% (25.0052-24.8203%) of the dependencies in ad-

dition to the 24.8203% discarded by the POS-POS filter. Although it is only a

slight contribution we continued the use of the filter as the filter queries have

a negligible computational cost.

Semantic POSPOS filter performance

Entries 2304

Number of incorrectly discarded labels 0.44%

Mean semantic labels returned per query 11.2005

Directly discarded arguments 24.8203 %

Query returned just 1 label 7.41502 %

Semantic lemma filter performance

Entries 364992

Number of incorrectly discarded labels 0%

Mean semantic labels returned per query 17.4408

Directly discarded arguments 4.3521 %

Query returned just 1 label 1.33266 %

Combined filter discarded args 25.0052 %

Table 6.14: Performance and upper bounds of the semantic

filters

Both semantic filters significantly improved the system performance re-

ducing the number of semantic labels from 80 to a mean of 11.2, see table

6.14. In addition the filters allowed us to directly discard argument annota-

tion in 25% of the dependencies considered by the Eisner algorithm. In our

architecture the argument identification step is set before the filter queries. If

filters discard some tokens as arguments that tokens will not be considered to

train the argument identification classifier. This scheme reduces the number

of non-argument training examples passed to the argument identification step.

Recall that a more balanced class distribution improves the perceptron perfor-
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mance, see section 3.5.1 and the following experiments for further discussion

about this topic.

Joint argument identification

The argument identification is a widely employed step before the argument

classification (Màrquez et al., 2006). In this case we will perform the iden-

tification as a completely independent classification (i.e., outside the Eisner

inference algorithm).

Scoring metric no joint id (%) joint id (%)

SYNTACTIC SCORE

Labeled attachment score: 77.49 84.07

Unlabeled attachment score: 80.72 87.65

Label accuracy score: 85.84 89.59

Exact syntactic match: 5.77 16.03

SEMANTIC SCORE

Labeled precision: 71.41 69.99

Labeled recall: 61.64 68.71

Labeled F1: 66.16 69.35

Unlabeled precision: 84.36 82.71

Unlabeled recall: 72.82 81.20

Unlabeled F1: 78.16 81.95

Proposition precision: 25.85 33

Proposition recall: 25.95 33.51

Proposition F1: 25.90 33.44

Exact semantic match: 4.04 6.14

OVERALL MACRO SCORES (Wsem = 0.50)

Labeled macro precision: 74.45 77.03

Labeled macro recall: 69.57 76.39

Labeled macro F1: 71.93 76.71

Unlabeled macro precision: 82.54 85.18

Unlabeled macro recall: 76.77 84.42

Unlabeled macro F1: 79.55 84.80

Exact overall match: 1.87 3.52

Table 6.15: Joint argument identification

The system performed better when the argument identification is not a

previous independent step, see table 6.15.

As in all experiments we provide the same setting to fairly compare the two

strategies. Note that less elegant solutions for argument identification can be
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used. A separated argument identification gives us a lot more design flexibility.

We can train a wide variety of classifiers. More complex classifiers can be

employed without the implementation issues that represents the inclusion of a

learning component inside the Eisner inference algorithm.

The argument identification step is merely intended to improve the learning

algorithm performance. There is a tendency on perceptron classifiers to over-

predict the most frequent class. As the number of examples from the most

frequent class is higher, more corrections are applied for this class examples.

Thus, the corrections will ensure a higher absolute number of correct predic-

tion for the majority class. The consequence in our case is a higher precision

and lower recall of the argument identification. The low recall is associated

with an overprediction of a non-argument class, the most frequent class.

An alternative solution is to change the learning algorithm. For example,

SVM classifiers (see section 3.5.4) are much less affected by an uneven class

distribution. But an SVM classifier for this task will be impractical to apply

due to the large amount of data. Another alternative is to use a BIO tagging

(see section 3.3.2) but this labelling is incompatible with our setting. BIO

tagging requires a sequential processing of the arguments, in our setting the

arguments are independently annotated and combined by the Eisner algorithm.

Predicate normalization

The scoring function of a dependency is a newly designed function for this work.

Several parameters can be tuned. We expect improved results normalizing the

semantic score by the number of sentence predicates. Note that if a predicate

produced a null semantic label for the given dependency, the score of this

null label will be zero. Thus the number of null labels are not counted in the

normalization, i.e., we normalize by the number of predicates with arguments.

Table 6.16 reports a slight improvement by using the normalization strat-

egy in the important scores for the task evaluation, as the Labeled macro F1
score. The variable number of predicates in each sentence will probably pro-

duce an uneven semantic weight across the corpus sentences. This increased

semantic weight slightly benefits semantic scores but it degrades the syntactic

performance. Thus the best strategy for our joint system is to normalize by

the number of predicates.

Final joint system results: syntax

The final system configuration is now evaluated in more detail. The previous

experiments pointed out the chosen final configuration. We use 188k syntactic

features plus 46k semantic, no dynamic features, soft semantic update policy,

joint argument identification, predicate normalization, all filters, the obtained

parameters for the SVM classifier.
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Scoring metric No-normalize (%) normalize (%)

SYNTACTIC SCORE

Labeled attachment score: 83.82 84.07

Unlabeled attachment score: 87.50 87.65

Label accuracy score: 89.78 89.59

Exact syntactic match: 15.36 16.03

SEMANTIC SCORE

Labeled precision: 70.18 69.99

Labeled recall: 68.68 68.71

Labeled F1: 69.42 69.35

Unlabeled precision: 82.83 82.71

Unlabeled recall: 81.06 81.20

Unlabeled F1: 81.94 81.95

Proposition precision: 33.38 33

Proposition recall: 33.51 33.51

Proposition F1: 33.44 33.44

Exact semantic match: 6.22 6.14

OVERALL MACRO SCORES (Wsem = 0.50)

Labeled macro precision: 77.00 77.03

Labeled macro recall: 76.25 76.39

Labeled macro F1: 76.62 76.71

Unlabeled macro precision: 85.16 85.18

Unlabeled macro recall: 84.28 84.42

Unlabeled macro F1: 84.72 84.80

Exact overall match: 3.52 3.52

Table 6.16: Score normalization by number of predicates

Evaluation metric detail result

SYNTACTIC SCORES:

Labeled attachment score: 28203 / 33368 84.52 %

Unlabeled attachment score: 29371 / 33368 88.02 %

Label accuracy score: 30112 / 33368 90.24 %

Exact syntactic match: 223 / 1335 16.70 %

Table 6.17: Final syntactic scores

Table 6.17 shows the final syntactic scores, a detailed view of the results

for each syntactic label is found in table 6.18.
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Syn label gold correct system recall (%) precision (%)

ADV 1256 879 1338 69.98 65.70

AMOD 536 334 452 62.31 73.89

APPO 444 299 439 67.34 68.11

BNF 1 0 1 0.00 0.00

CONJ 706 612 730 86.69 83.84

COORD 915 597 842 65.25 70.90

DEP 772 591 724 76.55 81.63

DEP-GAP 2 0 0 0.00 NaN

DIR 119 68 97 57.14 70.10

DIR-GAP 1 0 0 0.00 NaN

DIR-PRD 1 0 0 0.00 NaN

DTV 14 12 13 85.71 92.31

EXT 52 40 47 76.92 85.11

EXTR 15 9 15 60.00 60.00

GAP-LOC 2 0 0 0.00 NaN

GAP-LOC-PRD 1 0 0 0.00 NaN

GAP-OBJ 2 0 1 0.00 0.00

GAP-SBJ 5 0 1 0.00 0.00

GAP-TMP 4 0 1 0.00 0.00

GAP-VC 2 0 2 0.00 0.00

HMOD 423 403 433 95.27 93.07

HYPH 421 421 437 100.00 96.34

IM 512 507 510 99.02 99.41

LGS 93 80 95 86.02 84.21

LOC 556 327 549 58.81 59.56

LOC-OPRD 4 0 0 0.00 NaN

LOC-PRD 26 15 30 57.69 50.00

MNR 109 54 110 49.54 49.09

NAME 1138 837 1024 73.55 81.74

NMOD 8922 8077 9048 90.53 89.27

OBJ 1728 1550 1774 89.70 87.37

OPRD 373 307 359 82.31 85.52

P 3760 2892 3771 76.91 76.69

PMOD 3263 3016 3334 92.43 90.46

POSTHON 125 109 127 87.20 85.83

PRD 509 416 487 81.73 85.42

PRD-TMP 1 0 1 0.00 0.00

PRN 52 9 42 17.31 21.43

PRP 105 65 108 61.90 60.19

PRT 97 80 99 82.47 80.81

PUT 11 8 10 72.73 80.00
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ROOT 1334 1244 1334 93.25 93.25

SBJ 2407 2207 2471 91.69 89.32

SUB 371 328 376 88.41 87.23

SUFFIX 295 289 301 97.97 96.01

TITLE 173 138 140 79.77 98.57

TMP 755 460 707 60.93 65.06

VC 953 923 988 96.85 93.42

VOC 2 0 0 0.00 NaN

Table 6.18: Precision and recall for syntactic dependencies

Table 6.18 shows detailed scores. Infrequent labels are hard to predict

due to the low number of training examples but their misclassifications have a

small impact on the final score. Some infrequent labels are in fact combinations

(e.g., LOC-PRD) of more frequent ones. The learned classifiers for the single

labels could improve the prediction of combined labels but at the expense of a

increased design complexity. LOC,TMP andMNR are frequently mispredicted

due to the similarities they present . The syntactic results are comparable to

other well known state of the art syntactic parsing system, see experiment in

section 3.2.4. A detailed analysis of individual prediction errors and the fine

tuning of the system is outside the scope of this work as our main propose is

to evaluate the whole joint learning architecture.
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Figure 6.4: Learning curves for the syntactic-only and joint parsers.

Figure 6.4 shows the learning curves from epoch 1 to 17 for the joint

and the equivalent pipeline systems. More specifically, it includes the LAS

performance on syntactic parsing. We can observe that the syntactic LAS

scores for the syntactic and joint parsers are very similar, showing that there

is no loss in syntactic performance when using the joint syntactic-semantic
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strategy.

Final joint system results (semantics)

Setting the system with the final configuration we extract detailed semantic

results.

Table 6.19: Final semantic scores

Evaluation metric detail result

SEMANTIC SCORES:

Labeled precision: (8585 + 5099) / (11994 + 6414) 74.34 %

Labeled recall: (8585 + 5099) / (13865 + 6390) 67.56 %

Labeled F1: 70.79

Unlabeled precision: (9922 + 5726) / (11994 + 6414) 85.01 %

Unlabeled recall: (9922 + 5726) / (13865 + 6390) 77.25 %

Unlabeled F1: 80.95

Proposition precision: 2132 / 6414 33.24 %

Proposition recall: 2132 / 6390 33.36 %

Proposition F1: 33.30

Exact semantic match: 77 / 1335 5.77 %
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Figure 6.5: Learning curves for the semantic-only and joint parsers.

The learning curves of figure 6.5 represents the F1 labeled semantic scores

for both the joint and the only-semantic parser. In this case a clear improve-

ment between 3 and 5 points is observed.

PPOSS+ARG gold correct system recall (%) precision (%) F1
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CD* + A1 1 0 0 0.00 NaN NaN

JJ* + A0 5 0 0 0.00 NaN NaN

JJ* + A1 15 0 0 0.00 NaN NaN

JJ* + A2 1 0 0 0.00 NaN NaN

JJ* + AM-EXT 1 0 0 0.00 NaN NaN

JJ* + AM-MNR 1 0 0 0.00 NaN NaN

JJ* + AM-MOD 1 0 0 0.00 NaN NaN

JJ* + AM-TMP 2 0 0 0.00 NaN NaN

NN* + A0 1419 542 785 38.20 69.04 49.19

NN* + A1 2278 1282 1961 56.28 65.37 60.49

NN* + A2 934 347 537 37.15 64.62 47.18

NN* + A3 192 87 135 45.31 64.44 53.21

NN* + A4 19 3 6 15.79 50.00 24.00

NN* + A5 1 0 0 0.00 NaN NaN

NN* + AM-ADV 17 0 5 0.00 0.00 NaN

NN* + AM-CAU 3 0 0 0.00 NaN NaN

NN* + AM-DIR 3 0 0 0.00 NaN NaN

NN* + AM-DIS 5 0 0 0.00 NaN NaN

NN* + AM-EXT 18 6 13 33.33 46.15 38.71

NN* + AM-LOC 154 64 139 41.56 46.04 43.69

NN* + AM-MNR 198 75 146 37.88 51.37 43.61

NN* + AM-MOD 4 0 0 0.00 NaN NaN

NN* + AM-NEG 19 6 6 31.58 100.00 48.00

NN* + AM-TMP 290 162 228 55.86 71.05 62.55

NN* + R-A0 2 0 0 0.00 NaN NaN

NN* + R-A1 2 0 0 0.00 NaN NaN

NN* + R-AM-TMP 2 0 0 0.00 NaN NaN

PR* + A0 1 0 0 0.00 NaN NaN

PR* + A1 1 0 0 0.00 NaN NaN

RB* + A0 1 0 0 0.00 NaN NaN

RB* + A1 1 0 0 0.00 NaN NaN

RB* + AM-DIS 1 0 0 0.00 NaN NaN

RP* + A1 2 1 1 50.00 100.00 66.67

RP* + AM-TMP 1 0 0 0.00 NaN NaN

VB* + A0 2019 1498 1941 74.20 77.18 75.66

VB* + A1 2924 2459 3043 84.10 80.81 82.42

VB* + A2 660 397 607 60.15 65.40 62.67

VB* + A3 110 54 95 49.09 56.84 52.68

VB* + A4 65 45 60 69.23 75.00 72.00

VB* + A5 2 0 0 0.00 NaN NaN

VB* + AA 1 0 0 0.00 NaN NaN

VB* + AM-ADV 270 125 256 46.30 48.83 47.53

VB* + AM-CAU 43 30 36 69.77 83.33 75.95

VB* + AM-DIR 31 10 22 32.26 45.45 37.74

VB* + AM-DIS 196 118 171 60.20 69.01 64.30

VB* + AM-EXT 28 11 20 39.29 55.00 45.84

VB* + AM-LOC 187 119 225 63.64 52.89 57.77

VB* + AM-MNR 230 100 195 43.48 51.28 47.06

VB* + AM-MOD 309 271 283 87.70 95.76 91.55

VB* + AM-NEG 104 89 125 85.58 71.20 77.73

VB* + AM-PNC 80 36 59 45.00 61.02 51.80

VB* + AM-PRD 3 0 1 0.00 0.00 NaN

VB* + AM-TMP 585 383 541 65.47 70.79 68.03

VB* + C-A1 139 87 128 62.59 67.97 65.17

VB* + C-A2 3 0 0 0.00 NaN NaN

VB* + C-AM-CAU 1 0 0 0.00 NaN NaN

VB* + C-AM-DIR 1 0 0 0.00 NaN NaN

VB* + C-AM-DIS 0 0 2 NaN 0.00 NaN
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VB* + C-AM-EXT 0 0 1 NaN 0.00 NaN

VB* + C-AM-MNR 2 0 1 0.00 0.00 NaN

VB* + R-A0 142 118 133 83.10 88.72 85.82

VB* + R-A1 79 47 62 59.49 75.81 66.67

VB* + R-A2 5 2 2 40.00 100.00 57.14

VB* + R-AM-CAU 3 0 1 0.00 0.00 NaN

VB* + R-AM-EXT 1 0 1 0.00 0.00 NaN

VB* + R-AM-LOC 9 1 2 11.11 50.00 18.18

VB* + R-AM-MNR 6 0 1 0.00 0.00 NaN

VB* + R-AM-TMP 29 10 18 34.48 55.56 42.55

WP* + A0 1 0 0 0.00 NaN NaN

WP* + AM-MOD 1 0 0 0.00 NaN NaN

WP* + R-A1 1 0 0 0.00 NaN NaN

Table 6.20: Final semantic performance of the joint system

The detailed results for the joint system are shown in table 6.20. Most

of the arguments are the core arguments A0 and A1, usually representing the

agent and the patient of a predicate. Reasonable high results are achieved

in the classification of A0 and A1 for verb predicates. AM-NEG argument

classification performed surprisingly poor, usually the AM-NEG argument can

be easily identified by a negation word (e.g, no, never ). We did not found

for this problem a clear error pattern. As we can see the final performance

of the system is severely hurt by the nominal predicate classification (i.e., the

arguments associated to NN and JJ part of speech). To point out the causes

of this low performance further research is required in the uncommonly studied

problem of nominal argument classification.
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Figure 6.6: Learning curves for the joint parser.

Overall results are quite stable from epoch 4 (syntax slightly decreases but

semantics slightly increases). This results points that the semantic prediction

could hurt the syntactic tree. Another possibility is that the learning of se-

mantic dependencies requeries a larger number of epochs or a higher learning
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rate, note that there are less semantic dependencies that syntactic ones. It

could be possible that the syntactic part requires less epochs and overfitting

occurs while the semantic part is not yet suffering it. This hypothesis is par-

tially contradicted by the fact that the equivalent pipeline system does not

improves as the number of epochs increases, recall figure 6.5. This is not

a strong statement as the pipeline and joint system could differently behave,

new experiments should be performed. For further discussion about the syn-

tactic and semantic interactions see the chapter 7. Given the learning curve

results the presented system at the CoNLL-2008 shared task was trained for

4 epochs.

6.1.5 Predicate disambiguation

The last postprocessing step is to disambiguate the predicate sense. There are

6930 predicates, as disambiguation is scored as a semantic dependency task,

the predicates represent the 31.54% of the semantic score.

The baseline strategy to perform the task is to assign a default sense

.01 to each identified predicate. Table 6.21 shows the results of this simple

postprocess.

PPOSS gold correct system recall (%) precision (%) F1

CD 1 0 0 0.00 NaN NaN

JJ 16 0 0 0.00 NaN NaN

NN 2181 1515 2024 69.46 74.85 72.05

NNP 5 0 0 0.00 NaN NaN

NNS 1021 774 1038 75.81 74.57 75.18

PRF 1 0 0 0.00 NaN NaN

RB 1 0 0 0.00 NaN NaN

RP 3 1 1 33.33 100.00 50.00

VB 796 621 804 78.02 77.24 77.63

VBD 710 603 738 84.93 81.71 83.29

VBG 445 370 492 83.15 75.20 78.98

VBN 689 591 718 85.78 82.31 84.01

VBP 203 166 245 81.77 67.76 74.11

VBZ 317 268 354 84.54 75.71 79.88

WP 1 0 0 0.00 NaN NaN

overall 6390 4909 6414 76.82 76.54 76.68

Table 6.21: Precision and recall for predicate disambiguation

(default sense .01)

Also a simple strategy is to assign the most frequent sense to each iden-

tified predicate.
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Scoring metric result (%)

default .01 sense

Labeled precision: 76.54

Labeled recall: 76.82

Labeled F1 76.68

most frequent sense

Labeled precision: 79.50

Labeled recall: 79.80

Labeled F1: 79.65

Table 6.22: Performance of the most frequent sense postpro-

cess

As expected table 6.22 shows that this simple postprocess is enough to

achieve a significative performance gain. We also include detailed results in

table 6.23.

PPOSS gold correct system recall (%) precision (%) F1

CD 1 0 0 0.00 NaN NaN

JJ 16 0 0 0.00 NaN NaN

NN 2181 1549 2024 71.02 76.53 73.67

NNP 5 0 0 0.00 NaN NaN

NNS 1021 783 1038 76.69 75.43 76.05

PRF 1 0 0 0.00 NaN NaN

RB 1 0 0 0.00 NaN NaN

RP 3 1 1 33.33 100.00 50.00

VB 796 675 804 84.80 83.96 84.38

VBD 710 629 738 88.59 85.23 86.88

VBG 445 382 492 85.84 77.64 81.53

VBN 689 611 718 88.68 85.10 86.85

VBP 203 182 245 89.66 74.29 81.25

VBZ 317 287 354 90.54 81.07 85.54

WP 1 0 0 0.00 NaN NaN

Table 6.23: Precision and recall for predicate disambiguation

(most frequent sense)

An alternative to this two previous strategies would be to train classifier.

But the low number of examples per verb sense could severely hurt the clas-

sifier performance. To overcome the problems caused by the low number

of examples a remarkable algorithm applied to word sense disambiguation by
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Ando (2007) exploits a common subset of selected features across different

classifiers.

In addition, some more work is published in predicate sense disambiguation,

and substantial more about word sense disambiguation (Agirre and Soroa,

2007). A detailed discussion about these topics is outside the scope of this

master’s thesis.

The semantic arguments that the predicate takes could provide information

to improve the predicate sense disambiguation. This is the reason behind

applying as the last step the sense disambiguation. Note on the contrary that

the previous argument classification could benefit form knowing which is the

predicate sense. The predicate sense disambiguation is an interesting task to

include in a joint architecture in the future.

Integer Linear Programming

ILP offers an alternative to classifier training for predicate sense disambigua-

tion. In addition domain constraints and information from the predicate role-

sets could be exploited.

Score metric results (%)

best output

labeled precision 81.4733

labeled recall 66.2892

labeled F1 73.1011

second best output

labeled precision 3.57238

labeled recall 2.9066

labeled F1 3.20528

combined oracle

labeled precision 84.6554

labeled recall 69.1958

labeled F1 76.1489

Table 6.24: Performance of the best and second best output

Recall that the second best output of the joint parser is available. Table

6.24 shows the performance of the best and second best output. In this case

we use gold syntax, gold predicates and predicted arguments to perform the

experiment. The combined oracle entry in the table accounts for the perfor-

mance of a system that selects always the correct argument from the available

best and second best outputs.
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baseline

selected best (1) 100

selected second best (2) 0

selected none (0) 0

selected 1 and correct 97.3801

selected 2 and correct nan

selected 0 and correct nan

selected 1 and better to select 2 0.20008

selected 2 and better to select 1 nan

selected 0 and better to select 1 nan

selected 0 and better to select 2 nan

Labeled semantic precision 84.44

Labeled semantic recall 73.67

F1 78.68

Table 6.25: Baseline performance for the ILP system

one core constraint

selected best (1) 99.8421

selected second best (2) 0.14795

selected none (0) 0.00992955

selected 1 and correct 97.4848

selected 2 and correct 34.5638

selected 0 and correct 25

selected 1 and better to select 2 0.189954

selected 2 and better to select 1 31.2081

selected 0 and better to select 1 30

selected 0 and better to select 2 0

Labeled semantic precision 85.15

Labeled semantic recall 73.28

F1 78.77

Table 6.26: Performance for the ILP system with the one core

constraint
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one core and forbidden argument constraints

selected best (1) 99.8377

selected second best (2) 0.150929

selected none (0) 0.011419

selected 1 and correct 97.4872

selected 2 and correct 35.1974

selected 0 and correct 21.7391

selected 1 and better to select 2 0.187974

selected 2 and better to select 1 31.5789

selected 0 and better to select 1 30.4348

selected 0 and better to select 2 0

Labeled semantic precision 85.14

Labeled semantic recall 73.26

F1 78.75

Table 6.27: Performance for the ILP system with the one core

constraint and sense disambiguation

Tables 6.25, 6.26 and 6.27 show the system performance for different

combinations of constraints by the ILP system. The percentages appearing

in tables denote global accuracy for argument classification (e.g., 97.4872%

of accuracy includes the non argument labels that represents most of the

semantic labels but are not accounted in the usual precision-recall measures).

The second best output is clearly a very bad output, see table 6.24. The

few arguments that the ILP system selects from the second output are mostly

incorrect. Thus we cannot expect improved results by the output combination.

The sense selection using the predicate frames files performed poorly. The

sense selection is based on the forbidden arguments for each predicate. Usually

most predicate senses accept A0,. . .,A3 arguments. Thus the selection of

sense finally relies on the infrequent arguments A4,A5. As this arguments

are rare is not possible to disambiguate most predicates using the roleset

information.

6.1.6 Efficiency

During the development phase, the time per sentence evolved from the first

prototype of about 2min and to 0.2s for the syntactic only final system. The

extraction of dynamic features accounted for about 23 seconds per sentence
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at the first implementation and was reduced to 0.2 seconds on the last system,

although finally not included.

system time(s) memory(GB)

Syntactic pipeline only system 0.2 0.7

Semantic pipeline only system 0.2 0.4

Joint parser 0.3 1.5

Table 6.28: Summary of system performance

Table 6.28 summarizes the system performance. The syntactic parser can

be trained at 0.2 s/sentence, and the joint parser at 0.3 s/sentence. Efficiency

at test time is only slightly better. These times are for a single processor of

an amd64 Athlon x2 5000+.

Regarding efficiency, the proposed architecture is really feasible. About

0.7GB of memory is required for the syntactic parser and 1.5GB for the joint

parser. Most of these memory needs are due to the filters used. The semantic

extension of the Eisner algorithm requires only a new table with back-pointers

for each predicate.

The filters reduced the computational cost by a factor of 5 with no loss in

accuracy. These filters have almost no effect on the theoretical upper bound

discarding the correct labels for only 0.2% of the syntactic dependencies and

0.44% of the semantic arguments in the development corpus, see the previous

sections for details.

Function Function calls Time (%)

Averaged perceptron 9547 66.5

Compute Syntactic and Semantic scores 7,501,544 20.0

Dot product computation 217,507,753 18.0

Read and decompress files 20,000 2.9

Protected vector access 3,466,886,628 1.3

Assign Labels and sum subtree scores 447,000,004 0.6

Table 6.29: Profiling of a system run

We did not included results for all functions. Note that the scoring function

(20% of time) includes all the dot product computations (18% of time). Pro-

tected vector access checks that we are retrieving a valid position. The results

are extracted for a run with a reduced corpus of 10K sentences. These results

confirms that the system is efficiently implemented, except for the averaged

perceptron computation. The inner loop tagging of labels is fast (0.6%) as the

scores are previously computed by the corresponding function called a lesser

number of times.



6.2. THE CONLL-2008 SHARED TASK EVALUATION 105

6.2 The CoNLL-2008 shared task evaluation

The CoNLL-2008 shared task was the task with the largest number of regis-

tered teams ever, more than 50 teams registered for participation. But only

23 of the participants finally presented a system. Our system was one of the

very few systems that contributed with a joint paring architecture.

6.2.1 Shared task results

Our system was presented in the CoNLL-2008 shared task.

Group Name WSJ + Brown WSJ Brown

Lund (*) Johansson (*) 85.49 86.61 76.34

Yahoo! (*) Ciaramita (*) 82.69 83.83 73.51

HIT-IR Che 82.66 83.78 73.57

Hong Kong (*) Zhao (*) 82.24 83.41 72.70

Geneva (*) Henderson (*) 80.48 81.53 71.93

Koc Yuret 79.84 80.97 70.55

GSLT ML2 Samuelsson 79.79 80.92 70.49

DFKI 2 Zhang 79.32 80.41 70.48

NAIST Watanabe 79.1 80.3 69.29

Antwerp Morante 78.43 79.52 69.55

HIT-ICR Li 78.35 79.38 70.01

UPC (*) Llúıs (*) 78.11 79.16 69.84

UT Austin Baldridge 77.49 78.57 68.53

Koc Yatbaz 77.45 78.43 69.61

USTC Chen 77 77.95 69.23

Korea Lee 76.9 77.96 68.34

Peking Sun 76.28 77.1 69.58

Colorado Choi 71.23 72.22 63.44

UAIC Trandabat 63.45 64.21 57.41

DFKI 1 Neumann 19.93 20.13 18.14

Table 6.30: Published results from the CoNLL-2008 shared

task web site

The highlighted results in table 6.30 corresponds to the results published in

our CoNLL-2008 description paper (Llúıs and Màrquez, 2008) and the shared

task web site. The overall results on the test set (78.11 global F1, 85.84 LAS,

70.35 semantic F1) were computed by using 5 epochs of training, the optimal

on the development set, see the learning curve on the previous section 6.1.4

The global F1 result on the WSJ test corpus is 79.16, but these results

drop 9.32 F1 points on the out-of-domain Brown corpus. Also, a significant
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performance drop is observed when moving from verb argument classification

(74.58 F1, WSJ test) to noun argument classification (56.65 F1, WSJ test).

Note that the same features were used for training noun and verb argument

classifiers. These results point out that there is room for improvement on

noun argument classification. We regard these results as encouraging given

that the system is built from scratch under the hard time constraints imposed

by the shared task.

Few teams contributed with a joint parsing system. We consider the only

comparable presented system, as it performed syntactic and semantic parsing

completely simultaneous the Henderson et al. (2008) system. A detailed

discussion about each recently presented system is outside the scope of this

work and the reader is referred to the CoNLL-2008 shared task proceedings,

see appendix E.
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7.1 Discussion

We presented a novel model for syntactic and semantic parsing by extending

Eisner’s first order model. Syntactic and semantic interactions are captured by

globally optimizing a combined score. The computational cost of the associ-

ated new algorithm is admissible in practice, leading to fairly efficient parsers,

both in time and memory requirements.

The system was trained on a substantially large corpus (∼1M tokens). For

the first time a corpus with syntactic dependencies and nominal and verbal

predicate arguments was made available due to the effort of the organizers

and corpus annotators. This corpus is fundamental to perform research on

this topic. As in any other corpus there are still few inconsistencies and errors.

Results obtained with the presented joint approach are promising though

not outstanding in the context of the CoNLL-2008 shared task. We believe

that there is room for substantial improvement since many of the current sys-

tem components are fairly simple. In addition, higher order extensions to the

Eisner algorithm and well-known techniques for dealing with non-projective

structures can be incorporated in our model. Also, we are planing to incorpo-

rate other subtasks such as predicate identification and the syntactic pre-parse.

One of the potential drawbacks of our current approach is the need for a

syntactic parsing preceding the joint model. This previous parse is simply in-

tended to allow the extraction of syntax-based features for the semantic classi-

fication. The alternatives to avoid this pre-parse are complex. The bottom-up

107
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nature of the parser restricts the available information to the current parsed

subtree. Thus all syntactic features could be dynamically computed only in

the cases where the predicate coincides with the head of the current modifier.

These cases account for the 63.6% of the training corpus arguments.

On the other hand, if a predicate is located outside the subtree (i.e., in a

sibling subtree), the syntactic relation required will be completely unknown to

the parser at that time. Furthermore, another possibility is that the predicate

can be located at a lower level within the current subtree. These two previ-

ous cases would require to recompute again the score of the current subtree

when all features are available (i.e., when the required syntactic path is finally

formed).

The resulting cost of this approach would be prohibitive and approximate

search needed. Our previous parsing phase is just an efficient and simple

solution to the feature extraction problem in the joint model.

Regarding the last postporcessing step we can realize that information con-

tained in frames files remains unexploited for our system. The postprocessing

step achieved poor results. In part due to the mostly incorrect second best

parser output. But also due to the high degree of overlapping between the

allowed arguments of each predicate sense, preventing the ILP postprocessing

to improve the sense selection. It is not clear whether or not we can exploit

with simple methods the frames files. The next option to consider is to train

a classifier to disambiguate predicate senses.

Most of the experiments were intended to support implementation deci-

sions with a significant impact on the final system performance. Some these

experiments failed to produce the expected results. One of the remarkable

failures concerns the passive-aggressive perceptron as it did not outperform

the regular perceptron algorithm. We believe that other configurations of this

algorithm and the use of projectivization techniques will allow us to fully exploit

this simple but powerful learning algorithm. A detailed discussion about each

experiment can be found in the previous chapter 6.

7.2 Conclusions

The emphasis of this work is not on machine learning methods but in the

design and implementation of a joint model.

An important factor in practical system design is the simplicity of the

design. The objective of constructing a joint system moved us away from

this simplicity principle. But recall that our goal was exploit syntactic and

semantic interactions in a joint architecture.

The result of this work is a novel joint system that also is one of the most

efficient presented systems with reasonably high and promising results. The

produced results gave us some light to begin to answer the questions that

we stated at the beginning of this work. Regarding the comparison of the
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joint and pipeline approaches, as previously seen, the joint model showed a

similar syntactic performance and a clearly better semantic performance than

the equivalent pipeline system. Thus showing that some degree of syntactic-

semantic interaction is exploitable.

The effects of the syntactic and semantic overlapping remain as an open

question. There is only a moderate degree (63.6%) of direct overlapping be-

tween the syntactic head-modifier and semantic predicate-modifier relations.

We believe that the overlapping problem could affect the dependency scores.

If the semantic score is highly dependent on a correct head the resulting in-

creased score could benefit the choosing of a correct dependency. Otherwise,

joint scores can introduce a significant amount of noise to the final scoring

function.

In addition this overlapping problem points to the serious question of where

is the upper bound of the model. Another novel joint approach presented on

CoNLL-2008 by Henderson et al. (2008) showed similar findings concerning

the pipeline vs. joint approaches. Henderson et al. reported an improvement

of the syntactic component by 0.3 points and the semantic component by 3.5

points with respect to the pipeline system.

Unfortunately, no other completely joint system have been presented in

the CoNLL-2008. But the broad range of parsing algorithms remains far from

being fully exploited and extended, see section 3.1.

All of this master’s thesis goals, including the design, implementation and

evaluation of the joint syntactic and semantic model have been successfully

accomplished. Furthermore, this research work resulted in a publication in the

proceeding of the CoNLL-2008 (Llúıs and Màrquez, 2008). The published

article was one of the five selected for an oral presentation in the CoNLL-2008

due to its originality.

All the possible extensions and a complete analysis of our joint model

proposal are still far from being completed. All in all, further research is required

in this direction.

7.3 Future work

In this section we sketch the main tasks that we are intended to develop as a

continuation of this research work.

1. Higher degree of joint processing.

The predicate identification and the syntactic pre-parse are two previous

phases that could be exploited inside the joint model framework. The

inclusion of these phases in the joint model seems a fairly complex task,

see section 7.1, but we are already working in promising approximate

solutions to address these problems.
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2. Extension to higher order dependencies.

Higher order extensions allows us to overcome some of the arc-factored

approach limitations. Higher order models by McDonald and Pereira

(2006) and Carreras (2007) described also in section 3.2.2, showed a

significant performance improvement, at a expense of higher cost.

3. Improvement of the semantic classifier component.

The semantic classifier component did not achieved top performance.

It is a fairly simple component as simple features are shared across dif-

ferent semantic tasks: argument identification, argument classification

and predicate identification. Improved performance can be achieved by

using different set of features for each task.

4. Identification of the upper bounds of the model.

A complete exploitation of syntactic and semantic interactions may not

be possible due to model limitations. A comparison to an improved

semantic baseline system is one the first steps towards a more detailed

evaluation of our joint model.

5. Projectivization techniques.

The model is unable to parse non-projective dependency links. These

links always generate classification errors and force learning updates.

Nivre and Nilsson (2005) algorithm is regarded as a simple and effec-

tive solution. In this case a rerun of the passive-aggressive perceptron

experiment with the new configuration could improve its results.

6. Feature engineering and system tuning.

Some top performing system employed very simple feature selection

techniques that can be improved. Feature engineering, including the

definition of new features, is a task that should receive more attention.

Also a lot system parameters are to be fine-tuned to increase the system

final performance.

7. Extended assessment of alternative joint models.

There is a large number of parsing algorithms and models that are not

exploited and remain available to be extended. Plenty of research direc-

tions can be taken.
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dency parsing using spanning tree algorith. In Human Language Technolo-

gies and Empirical Methods in Natural Language Processing HLT-EMNLP

2005.

Meyers, Adam, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronica

Zielinska, Brian Young, and Ralph Grishman. 2004. The NomBank

project: An interim report. In HLT-NAACL 2004 Workshop: Frontiers

in Corpus Annotation.

Musillo, Gabriele and Merlo Paola. 2006. The CoNLL-2008 shared task

on joint parsing of syntactic and semantic dependencies. In Proceedings

of the Europen Chapter of the Association for Computational Lingustics

Workshop: Robust Methods in Analysis of Natural Language Data (EACL-

2006).



114 References

Nivre, Joakim and Jens Nilsson. 2005. Pseudo-projective dependency pars-

ing. In Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics.

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson,

Sebastian Riedel, and Deniz Yuret. 2007a. The CoNLL 2007 shared

task on dependency parsing. In Proceedings of the 11th Conference on

Computational Natural Language Learning (CoNLL-2007).

Nivre, Joakim, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, San-
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Appendix A

Descriptive data analysis

In this section we describe the data through some statistics. We will focus on

relevant aspects for a joint processing point of view, as syntactic and semantic

relations. This step will allow us to better understand the problem that we are

intended to address. Only the train corpus and the development corpus are

analyzed. The test corpus must only be used for a final evaluation, note that

any information exploited from the test corpus will dismiss a fair evaluation

and could biase our decisions towards an artificially higher score. The devel-

opment corpus is intended for the tasks of system tuning and testing during

the development phase. When applicable, statistics are drawn for both corpus

to asses an even distribution across both of them.

Corpus size

An overview of the corpus is outilned in table A.1. The corpus is extracted

from the WSJ and contains mainly financial information.

measure train development

sentences 39279 1334

num tokens 997446 34702

unique tokens 39782 6085

unique lemmas 28258 4611

forms not in train (%) — 2.32263

lemmas not in train (%) — 1.70884

Table A.1: Overview of the corpus

The syntactic parsing algorithm costs depends on the sentence size. Most

parsers have a cost of O(n3) or O(n), being n the size of the parsed sentence.

Thus we analyze in detail the sentence lengths.

117
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statistic train development

Min. : 2.00 3.00

1st Qu.: 17.00 17.00

Median : 24.00 25.00

Mean : 25.39 26.01

3rd Qu.: 32.00 33.00

Max. : 144.00 119.0

Table A.2: Sentence length

Table A.2 shows that most sentences are around 25 words. Some outliers

could pose a cost problem to O(n3) parsers, but these extremely long sentences

could be discarded as they represent a small fraction of the corpus.

Histogram of sentence length (train)
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Figure A.1: Histogram of sentence length (train)

Figures A.1 and A.2 allows us to better understand the sentence size dis-

tribution and confirm that lengthy outliers can be safely discarded.

POS

The part of speech (POS) is the role that a word or phrase plays in a sentence.

It represents an information intensively used as a feature for a wide variety of

linguistic processing tasks. POS tags are predicted by state-of-the-art POS

taggers (Surdeanu et al., 2008).
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Histogram of sentence length (devel)
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Figure A.2: Histogram of sentence length (devel)

POS tag gold (counts) predicted(counts)

NN 130595 143693

IN 96755 98988

NNP 89941 88044

DT 80449 82138

JJ 60084 52526

NNS 58718 62316

, 47931 47927

root 39279 39279

. 38918 38924

CD 36200 36974

RB 30499 28800

VBD 29438 29588

VB 25949 25514

CC 23515 23634

TO 21932 22022

VBZ 21360 21099

VBN 19677 22508

PRP 17181 17196

VBG 14554 15409

VBP 12270 12180

MD 9635 9651
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POS 8487 8569

PRP$ 8237 8263

$ 7306 7306

“ 6985 6985

’ 6803 6804

: 4673 4734

WDT 4209 4321

JJR 3173 2248

NNPS 2636 404

RP 2609 2790

WP 2329 2456

WRB 2107 2217

JJS 1907 1421

RBR 1744 2874

) 1353 1352

( 1344 1344

EX 853 867

RBS 440 839

PDT 366 597

FW 232 0

WP$ 159 159

# 142 142

UH 97 61

SYM 58 22

LS 36 17

PRF 0 233

HYPH 0 12011

Table A.3: POS of train corpus

Graphicaly the most frequent tags are plotted in figure A.3 and A.4.

Table A.3 shows a high number of predicted HYPH not appearing in the

gold corpus. The reason is a finner tokenziation introduced in the data not

present when gold tags were assigned. For example, hand-crafted is considered

1 token in the original annotation but 3 tokens ‘hand’,‘-’ and ‘crafted’ in the

new annotation. Note that new hyphens are now tokens.

POS tag gold predicted

NN 4484 4984

IN 3560 3554

NNP 3170 3094

DT 2818 2875

NNS 2029 2183
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JJ 2011 1843

, 1653 1653

. 1325 1325

CD 1039 1066

RB 1030 1047

VBD 1007 997

VB 1003 980

CC 863 861

TO 796 800

VBN 753 818

VBZ 695 682

PRP 535 538

VBG 521 518

VBP 418 422

MD 337 335

POS 298 303

PRP$ 267 267

“ 251 251

’ 246 246

217 215

$ 210 210

NNPS 127 11

WDT 121 125

JJR 93 65

WP 89 94

RP 85 107

WRB 83 85

( 54 54

) 53 53

JJS 53 41

RBR 52 89

EX 37 37

PDT 22 24

RBS 20 36

SYM 10 0

FW 8 0

WP$ 7 7

LS 5 5

UH 4 1

# 3 3

PRF 0 12

HYPH 0 452
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Table A.4: POS of deve corpus

Table A.5 summarizes the accuracy of the POS taggers. Recall that gold

POS is not available a test time.

train (%) devel (%)

All POS 93.6595 93.7122

Predicates 96.5237 96.6041

Noun preds 98.9675 99.2673

Verb preds 94.1331 94.0326

Table A.5: Accuracy of POS tagger

Table A.5 also accounts for the correct POS prediction restricted to noun

and verb predicates. The POS tagging of this tokens is an important factor to

correctly identify them as predicates. Not only nouns and verbs are adjectives.

Figures A.5 and A.6 graphically show the distribution of the most frequent

POS for predicates.

Verbs, nouns and adjectives can be predicates, the other POS tags of

predicate tokens will probably be incorrect. This data points that we can

directly discard some tokens by their POS in the predicate identification task.
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Figure A.5: Pie chart of POS distribution for predicates (train)
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A.1 Syntactic dependencies

The next data to analyze are the syntactic labels. Table A.6 and shows the

distribution of the rich set of syntactic labels.

syntactic label train (counts)

NMOD 257549

P 107278

PMOD 92413

SBJ 71254

OBJ 53219

ROOT 39279

ADV 37890

NAME 32415

VC 28134

COORD 24897

DEP 23811

TMP 20769

CONJ 19684

LOC 14682

AMOD 14159

PRD 12991

APPO 12847

IM 12756

HYPH 11084

HMOD 10982

SUB 10237

OPRD 9313

SUFFIX 8417

TITLE 5267

DIR 4982

POSTHON 4042

MNR 3884

PRP 3167

PRT 2593

LGS 2471

EXT 1951

PRN 1215

LOC-PRD 625

EXTR 547

DTV 403

PUT 218

GAP-SBJ 93
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GAP-OBJ 90

DEP-GAP 75

GAP-PRD 58

GAP-TMP 52

PRD-TMP 44

GAP-LGS 40

PRD-PRP 39

BNF 34

GAP-LOC 32

DIR-GAP 30

LOC-OPRD 25

VOC 19

GAP-PMOD 18

ADV-GAP 14

EXT-GAP 14

GAP-VC 14

GAP-NMOD 12

DTV-GAP 6

AMOD-GAP 5

GAP-LOC-PRD 5

GAP-PRP 4

DIR-PRD 3

GAP-MNR 3

EXTR-GAP 3

MNR-PRD 2

LOC-TMP 2

GAP-OPRD 1

DIR-OPRD 1

LOC-MNR 1

GAP-SUB 1

GAP-PUT 1

MNR-TMP 1

EXT 1951

Table A.6: Syntactic labels (train)

Next table A.7 contains the distribution for the development set.

syntactic label development (counts)

NMOD 8922

P 3760

PMOD 3263

SBJ 2407
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OBJ 1728

ROOT 1334

ADV 1256

NAME 1138

VC 953

COORD 915

DEP 772

TMP 755

CONJ 706

LOC 556

AMOD 536

IM 512

PRD 509

APPO 444

HMOD 423

HYPH 421

OPRD 373

SUB 371

SUFFIX 295

TITLE 173

POSTHON 125

DIR 119

MNR 109

PRP 105

PRT 97

LGS 93

EXT 52

PRN 52

LOC-PRD 26

EXTR 15

DTV 14

PUT 11

GAP-SBJ 5

LOC-OPRD 4

GAP-TMP 4

VOC 2

GAP-VC 2

GAP-OBJ 2

GAP-LOC 2

DEP-GAP 2

GAP-LOC-PRD 1

DIR-PRD 1

PRD-TMP 1
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BNF 1

DIR-GAP 1

Table A.7: Syntactic labels (devel)

Again a graphical distribution of the most frequent syntactic labels is plot-

ted in figures A.7 and A.8.
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Figure A.7: Pie chart of syntactic labels (train)

Tables A.6 and A.7 pointed out that some really infrequent labels occurs

in corpus. Therefore most classifiers will not be able to predict them due to

the low number of associated examples. The removal of these labels should

be considered

An important factor to predict syntactic labels is the distance, i.e., the

number of tokens between the head and the modifier of the syntactic depen-

dency (McDonald and Nivre, 2007).

Histograms in figure A.9 and A.10 shows very long, although rare, syntactic

dependencies. Few syntactic dependencies are non-projective, the 0.4% of

the training corpus dependencies. But these few dependencies are distributed

among the 7.6% of the corpus sentences. See the definition of projectivity in

section 3.1.
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Figure A.8: Pie chart of syntactic labels (devel)
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Figure A.9: Histogram of syntactic distance (train)
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Figure A.10: Histogram of syntactic distance (devel)
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A.2 Predicates

The identification of predicates is the second of the tree main task of the

CoNLL-2008 shared task.

Table A.8 summarizes important statistics about the number of predicates

per sentence.

statistic train devel

Min. 0.000 0.00

1st Qu. 3.000 3.00

Median 4.000 4.50

Mean 4.557 4.79

3rd Qu. 6.000 6.00

Max. 26.000 19.00

Table A.8: Predicates per sentence

In addition the distribution is plotted by histograms in figures A.11 and

A.12.
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Figure A.11: Histogram of predicates per sentence (train)

A high number of predicates is found in this corpus, the reason is the tag-

ging of nominal predicates for this shared task. Also the number of predicates

is a factor that strongly determines the cost of the identification algorithms,

see 5.8. We expect a relation between the number of predicates and sentence
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Histogram of num of predicates (devel)
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Figure A.12: Histogram of predicates per sentence (train)

length.

Figure A.13 and A.14 show a relation between the sentence length and the

number of predicates. We can observe that as the sentence grows a minimum

number of predicates is identified.

The next task is the predicate disambiguation, i.e., to assign a sense tag

to each identified predicate.

sense train devel

global nouns verbs global nouns verbs

1 86.58 90.45 82.69 85.92 88.96 82.92

2 8.12 6.26 10 9.36 7.73 10.96

3 3.27 1.99 4.55 2.68 1.8 3.54

4 0.85 0.66 1.05 0.97 0.69 1.24

5 0.4 0.31 0.48 0.27 0.19 0.34

6 0.25 0.21 0.28 0.39 0.44 0.34

7 0.09 0.04 0.14 0.06 0.06 0.06

8 0.08 0.02 0.13 0.11 0.03 0.19

9 0.05 0.02 0.08 0.02 0 0.03

10 0.06 0.01 0.12 0.02 0 0.03

11 0.09 0.03 0.14 0.11 0.06 0.16

12 0.06 0 0.12 0 0 0

13 0.03 0 0.05 0.03 0.03 0.03

14 0.03 0 0.05 0.02 0 0.03
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15 0.03 0 0.05 0.02 0 0.03

16 0.02 0 0.03 0.02 0 0.03

17 0.01 0 0.01 0 0 0

18 0 0 0 0 0 0

19 0 0 0.01 0 0 0

20 0 0 0 0 0 0

21 0 0 0 0.03 0 0.06

Table A.9: Syntactic labels (devel)

Table A.9 shows that the most frequent sense is the ‘.01’ sense. But the

rule to assign the tag ‘.01’ to the most frequency sense of each predicate is

not always followed.

Another important feature to identify and disambiguate the predicate is

the lemma. Recall that predicted lemmas are provided in the corpus.

Even for a simple strategy as the disambiguation using the most frequent

sense, lemmas are important features. In this case, an incorrect lemma will

cause the labeling of the most frequent sense of another predicate. For, the

predicate fall is always incorrectly lemmatized as fell.

train (%) devel (%)

accuracy 95.9288 95.9311

no roleset 3.64608 5.05477

Table A.10: Lemmatizer accuracy on predicates

Table A.10 shows the high lemmatizer accuracy only for predicates. The

lemmatizer extracts the lemma from the most common sense of token in

WordNet. The no roleset entry measures the number of predicate lemmas

without associate roleset in frames files due to an incorrect tagging.
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Figure A.13: Scatter plot of number of predicates vs. sentence length (train)
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Figure A.14: Scatter plot of number of predicates vs. sentence length (devel)
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A.3 Semantic dependencies

Finally we explore the data concerning semantic arguments.

measure train (%) devel (%)

verb predicates/noun predicates 49.8894 50.3912

verbs args / total args 60.7101 60.6996

noun args / total args 39.2899 39.3004

Table A.11: Semantic labels (train)

Table A.11 shows an even distribution of noun and verb predicates and a

reasonably balanced argument distribution for nous and verbs.

We considered separate prediction tasks the classification of arguments for

noun and verbs (i.e., an A0 for noun predicates and an A0 for verb predicates

are classified by different classifiers), see section 5.4 for further discussion.

We appended ‘v’ or ‘n’ to represent the arguments corresponding to noun and

verb predicates.

semantic label train (counts) train (%)

A1v 83569 26.920

A1n 62981 20.288

A0n 38969 12.553

A2n 27148 8.745

A2v 19595 6.312

AM-TMPv 16089 5.183

AM-ADVv 8072 2.600

AM-MNRv 6243 2.011

A3n 6073 1.956

AM-LOCv 5833 1.879

AM-MNRn 5596 1.803

AM-DISv 4825 1.554

R-A0v 4039 1.301

A3v 3360 1.082

AM-NEGv 3173 1.022

C-A1v 2755 0.887

A4v 2688 0.866

R-A1v 2306 0.743

AM-PNCv 2232 0.719

AM-CAUv 1179 0.380

AM-DIRv 1125 0.362

R-AM-TMPv 705 0.227

AM-EXTv 622 0.200
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A4n 378 0.122

R-A2v 287 0.092

A5v 68 0.022

AM-PRDv 67 0.022

C-A0v 65 0.021

C-A2v 62 0.020

AM-CAUn 43 0.014

R-AM-CAUv 42 0.014

C-A3v 36 0.012

R-A3v 29 0.009

C-AM-ADVv 21 0.007

C-AM-MNRv 21 0.007

A5n 16 0.005

AAv 14 0.005

R-AM-PNCv 13 0.004

C-AM-EXTv 12 0.004

C-A4v 12 0.004

C-AM-TMPv 11 0.004

C-AM-LOCv 10 0.003

R-A4v 8 0.003

AMv 8 0.003

C-AM-CAUv 7 0.002

R-AM-EXTv 5 0.002

R-AAv 3 0.001

AM-PRTv 3 0.001

AM-TMv 3 0.001

AM-MODn 3 0.001

C-R-AM-TMPv 2 0.001

C-AM-NEGv 2 0.001

R-AM-DIRv 2 0.001

Table A.12: Semantic labels (train)

Table A.13 regards to semantic labels on the development set.

semantic label devel (counts) devel (%)

A1v 2972 21.366

A1n 2252 16.190

A0v 2061 14.817

A0n 1387 9.971

A2n 928 6.671

A2v 669 4.809

AM-TMPv 595 4.277
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AM-MODv 316 2.272

AM-TMPn 285 2.049

AM-ADVv 278 1.999

AM-MNRv 238 1.711

AM-DISv 203 1.459

AM-MNRn 193 1.387

AM-LOCv 192 1.380

A3n 191 1.373

AM-LOCn 151 1.086

R-A0v 145 1.042

C-A1v 140 1.006

A3v 113 0.812

AM-NEGv 105 0.755

R-A1v 83 0.597

AM-PNCv 81 0.582

A4v 66 0.474

AM-CAUv 46 0.331

AM-DIRv 35 0.252

R-AM-TMPv 32 0.230

AM-EXTv 29 0.208

A4n 20 0.144

AM-EXTn 20 0.144

AM-NEGn 20 0.144

AM-ADVn 11 0.079

R-AM-LOCv 10 0.072

R-AM-MNRv 7 0.050

R-A2v 6 0.043

R-AM-CAUv 4 0.029

C-A2v 4 0.029

AM-PRDv 4 0.029

C-AM-MNRv 3 0.022

A5v 3 0.022

AM-CAUn 2 0.014

C-AM-DIRv 2 0.014

A5n 2 0.014

C-AM-CAUv 2 0.014

AAv 2 0.014

R-AM-EXTv 2 0.014

Table A.13: Semantic labels (devel)

Tables A.12 and A.13 clearly points the core arguments (A0-A5) as the

most frequent argument excluding A3-A5. A large number of argument labels
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are really infrequent thus hard to classify by most machine learning methods.

Some of these rare labels are in fact continuations, references or combination

of other labels. A research direction to explore is to exploit this information.

Now we review the semantic dependency distance between arguments and

their predicates.
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Figure A.15: Histogram of semantic distance (devel)

In figure A.15 the solid black line represents the histogram of the distance

between the semantic arguments and their predicates. The histogram for

noun arguments is plotted in dashed-doted lines. Verb argument distance in

dashed lines. We can appreciate that the noun arguments can receive semantic

dependencies to themselves, see the counts in figure for a 0 distance.

Figure A.16: A self semantic dependency link

Example A.3.0.1 Self reference

Figure A.16 contains a semantic dependency between maker and itself. Note

that this situation only occurs for nominal predicates.
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Syntactic and semantic overlap

The relations between syntax and semantics are of special interest for us as

our joint system should exploit them. A high degree of overlap, i.e., syntactic

and semantic dependencies relating the same tokens, will facilitate a joint

processing of this two kinds of dependencies.

pred is train devel

global (%) verb (%) noun (%) global (%) verb (%) noun (%)

head 63.629 66.211 59.640 62.610 64.365 59.900

self 6.659 0.00209 16.945 6.830 0 17.379

ancestor 8.656 11.029 4.990 9.231 11.680 5.450

descendant 1.120 0.7556 1.683 1.190 0.9624 1.541

direct son 5.333 7.734 1.623 5.769 0.7604 1.890

grandfather 0.9248 0.6351 1.372 0.95203 0 1.247

other 19.934 22.002 16.739 20.137 22.9919 15.727

Table A.14: Syntactic-semantic overlapping

One may think that the predicate of an argument is always the syntactic

head. Table A.14 shows the wide variety of syntactic relations in semantic

links. Note that some semantic dependencies relates a token with its direct

son, thus this semantic dependencies will overlap with syntax but will appear

as reversed.

In a bottom-up parsing processing of the sentence, only relations inside the

current substree are accessible. The relations considered in the table as other

and ancestor, excluding head are not visible during a bottom up parsing.

As we previously commented, verb arguments never have semantic self-

dependencies, but table A.14 accounts for a small degree (0.002) of self de-

pendencies in verb arguments. The table was computed in a realistic manner

from the predicted POS. This implies that if a nominal predicate is incorrectly

tagged with a verbal POS is considered as a verbal predicate.

train devel

global (%) verb (%) noun (%) global (%) verb (%) noun (%)

is core 77.5349 70.9976 87.6361 76.8265 69.8432 87.6124

core

no

head

29.5401 23.2768 39.218 30.3498 24.6554 39.1448

Table A.15: Syntactic-semantic overlapping

Table A.15 shows the core arguments vs. the core arguments that occu-

pies an non-overlapping relation with syntax core no head. We can see that
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most(63.6%), but not all, core arguments occurs in overlapping positions. We

cannot restrict the labelling of core arguments to overlapping dependencies.

In previous sections we have seen histograms of the surface distance about

syntactic and semantic dependencies. We now review the semantic distance

but measured in the syntactic graph.
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Figure A.17: Histogram of semantic distance (devel)

Figures A.17 and A.18 proves that the simultaneous prediction of syntactic

and semantic dependencies between two tokens is not possible for a significant

amount of dependencies. This point will significantly increase the difficulty

in the design and development of a joint model. With these statistics we

conclude the initial data exploration.



A.3. SEMANTIC DEPENDENCIES 141

2 4 6 8 10 12 14

0
20

00
40

00
60

00
80

00

Histogram of semantic syntactic distance (devel)

distance

co
un

ts

Figure A.18: Histogram of semantic distance (devel)
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Appendix B

Data structures and files

In this appendix we explore the data managed by our implemented model. It

complements the previous efficiency section 5.11.

The appropriate structures for data are selected given the performance re-

quirements. For example, filters were implemented as vectors. The syntactic

tree structure originally implemented as a vector was implemented in a adja-

cency list. This new implementation allowed a reduction from O(n) to a near

constant time for operations related to feature extraction.

The table B.1 contains a description of the datafiles used.

File Name description type format size

inputCorpus The training corpus text CoNLL 52MB

inputTest The development corpus text CoNLL 1.8MB

goldTest The development corpus

with gold arguments and

predicates

text CoNLL 1.8MB

outputSyntax The development corpus

with predicted syntax

text CoNLL 1.4MB

outputPreds The development corpus

with syntax and predicates

identified

text CoNLL 1.4MB

output The final output text CoNLL 1.4MB

secondBestFileSemanticThe best final output and

the second best

text CoNLL

ex-

tended

3MB

preprocessedCorpus.gzThe extracted features for

syntactic parsing from the

Training corpus

binary preproc 1.2BG

preprocessedCorpus-

Predicates.gz

The extracted features

for predicate identification

from the corpus

binary preproc 1GB
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preprocessedCorpus-

Semantics

The extracted features for

semantic parsing from the

Training corpus

binary preproc 71.3GB

preprocessedCorpus-

Semantics.gz1-10

Same previous file splitted

in 10 files

binary preproc 10×0.9GB

preprocessedTest.gz The extracted features for

syntactic parsing from the

test corpus

binary preproc 44.3MB

preprocessedTest-

Predicates.gz

The extracted features

for predicate identification

from the test corpus

binary preproc 7.3MB

preprocessedTest-

Semantics.gz

The extracted features for

semantic parsing from the

test corpus

binary preproc 342MB

synLabels The set of syntactic labels

with their assigned id

binary dictionary

string-

int

<1KB

semLabels The set of syntactic labels

with their assigned id

binary dictionary

string-

int

1.1KB

semLabelsNouns The set of syntactic labels

with their assigned id for

nominal predicates

binary dictionary

string-

int

3.8KB

semLabelsVerbs The set of syntactic labels

with their assigned id for

verbal predicates

binary dictionary

string-

int

3.8KB

synTagSelected The set of syntactic labels

filtered by frequency

binary dictionary

string-

bool

<1KB

semTagSelected The set of semantic labels

filtered by frequency

binary dictionary

string-

bool

<1KB

synFilter The set of syntactic labels

for each POS-POS combi-

nation

binary filter

by

POS-

POS

160KB

semFilter The set of semantic labels

for each POS-POS combi-

nation

binary filter

by

POS-

POS

180KB

semFilterByLemma-

Splitted

The set of syntactic la-

bels with their assigned id

extracted from semLabels-

Nouns/verbs

binary filter

by

lem-

maid

10MB

posIntMap The dictionary to trans-

form POS into integers

binary dictionary

string-

int

1KB
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lemmaIntMap The dictionary to trans-

form predicate lemmas into

integers

binary dictionary

string-

int

120KB

similarLemma The list of lemmas that can

be confused or erroneously

lemmatized

binary dictionary

string-

list of

int

120KB

predFreq The frequency for each

predicate sense

binary list of

senses

157KB

ambiguousLemmas The lemmas present in cor-

pus that could be predi-

cates with a certain degree

of certainty

binary list of

strings

73KB

notAmbiguousLemmasThe lemmas present in cor-

pus that could be predi-

cates with a certain degree

of certainty

binary list of

strings

4.5KB

featureMap The list of selected fea-

tures for syntactic parsing

binary dictionary

string-

int

3.5MB

dynamicFeatureMap The list of selected dy-

namic features for syntac-

tic parsing

binary dictionary

string-

int

8.2KB

featureMapSemantic The list of selected fea-

tures for semantic parsing

binary dictionary

string-

int

1.1MB

modelSyntactic The averaged perceptron

weight vector for syntactic

parsing

binary int

vector

95 MB

modelPredicates The averaged perceptron

weight vector for predicate

identification

binary int

vector

55 MB

modelSemantic The averaged perceptron

weight vector for joint

parsing

binary int

vector

232 MB

backup The averaged weight vec-

tor and the weight vector

file for resume the training

if it is stopped

binary backup 460 MB

tmpKeywords List of keywords related to

AM-TMP arguments

binary list of

string

10KB

bow List of the most frequent

words extracted from cor-

pus (only nouns, verbs and

adjectives)

list of

string

5KB
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errorFile The trace of the errors

made at each training sen-

tence

Text list of

dou-

bles

200MB

predList The list of predicates ex-

tracted from the XML

frame files

binary list of

int

74KB

Table B.1: List of data saved in files

File formats:

CoNLL Previous CoNLL shared task formats inspired the present year format

but are not compatible.

CoNLL extended This file contains extra columns with the second best out-

put and scores for each argument.

Dictionary Pairs of strings and integers sequentially recorded.

The preprocessed files are the largest files employed. They cointain all

features for all combinations of head and modifier tokens. Note that a lot of

features for a given head-modifier dependency will be shared with other de-

pendencies with the same head or modifier. The redundancy is even greater in

the semantic corpus file. As this file contains features for each head-modifier-

predicate. We used a compressor library to deal with this files. Unfortunately

the library was unable to deal with the huge files we had and we splitted the

files into a set of chunks.

Although different files can share the same format it does not means that

the data structure read is the same. In addition the same information contained

in a given data file can be used differently depending on the actual processing

phase. E.g., the list of syntactic labels is loaded as a dictionary(hash-table)

when we need to index the labels and it is loaded as a vector we we need to

generate an output.



Appendix C

Detailed Scores of CoNLL-2008
participants

This are the results of the systems for the closed challenge1. For a detailed

explanation of each scoring metric see 2.2.

C.1 Labeled Macro F1 score

Group Name WSJ + Brown WSJ Brown

Lund (*) Johansson (*) 85.49 86.61 76.34

Yahoo! (*) Ciaramita (*) 82.69 83.83 73.51

HIT-IR Che 82.66 83.78 73.57

Hong Kong (*) Zhao (*) 82.24 83.41 72.70

Geneva (*) Henderson (*) 80.48 81.53 71.93

Koc Yuret 79.84 80.97 70.55

GSLT ML2 Samuelsson 79.79 80.92 70.49

DFKI 2 Zhang 79.32 80.41 70.48

NAIST Watanabe 79.1 80.3 69.29

Antwerp Morante 78.43 79.52 69.55

HIT-ICR Li 78.35 79.38 70.01

UPC (*) Llúıs (*) 78.11 79.16 69.84

UT Austin Baldridge 77.49 78.57 68.53

Koc Yatbaz 77.45 78.43 69.61

USTC Chen 77 77.95 69.23

Korea Lee 76.9 77.96 68.34

Peking Sun 76.28 77.1 69.58

Colorado Choi 71.23 72.22 63.44

1This data was retrieved from the CoNLL-2008 Shared Task web site, see http://www.

yr-bcn.es/conll2008
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UAIC Trandabat 63.45 64.21 57.41

DFKI 1 Neumann 19.93 20.13 18.14

Table C.1: Labeled Macro F1 score

C.2 Exact match for syntax and semantics

Group Name WSJ + Brown WSJ Brown

Lund (*) Johansson (*) 13.10 13.12 13.15

HIT-IR Che 10.37 10.21 11.5

Hong Kong (*) Zhao (*) 9.98 9.92 10.56

Yahoo! (*) Ciaramita (*) 9.88 9.62 11.50

Geneva (*) Henderson (*) 9.52 9.38 10.56

NAIST Watanabe 7.79 7.54 9.39

Koc Yuret 7.65 7.33 9.62

DFKI 2 Zhang 7.4 7.46 7.28

HIT-ICR Li 7.12 6.71 9.62

GSLT ML2 Samuelsson 6.94 6.62 8.92

USTC Chen 6.83 6.46 9.15

Korea Lee 6.69 6.29 9.15

Antwerp Morante 6.44 6.04 8.92

UPC (*) Llúıs (*) 6.23 5.79 8.92

Koc Yatbaz 5.91 5.29 9.62

Peking Sun 5.38 4.96 7.98

UT Austin Baldridge 5.24 4.92 7.28

Colorado Choi 3.33 3.5 2.58

UAIC Trandabat 3.26 3.08 4.46

DFKI 1 Neumann 0.11 0.12 0.23

Table C.2: Exact match for syntax and semantics

C.3 Labeled attachment score of syntactic depeden-

cies

Group Name WSJ + Brown WSJ Brown

Lund (*) Johansson (*) 89.32 90.13 82.84

Hong Kong (*) Zhao (*) 87.68 88.51 80.99

Geneva (*) Henderson (*) 87.64 88.46 81.05

Yahoo! (*) Ciaramita (*) 87.37 88.21 80.60

DFKI 2 Zhang 87.32 88.14 80.8



C.4. LABELED F1 SEMANTIC SCORE 149

NAIST Watanabe 87.18 88.06 80.17

HIT-IR Che 86.75 87.51 80.73

HIT-ICR Li 86.69 87.42 80.8

UT Austin Baldridge 86.67 87.42 80.64

GSLT ML2 Samuelsson 86.63 87.36 80.77

Koc Yatbaz 86.62 87.39 80.46

Koc Yuret 86.62 87.39 80.46

Antwerp Morante 86.07 86.88 79.58

UPC (*) Llúıs (*) 85.84 86.54 80.24

Peking Sun 85.75 86.37 80.75

UAIC Trandabat 85.21 85.96 79.24

Korea Lee 84.82 85.69 77.83

USTC Chen 84.47 85.2 78.58

Colorado Choi 77.56 78.58 69.46

DFKI 1 Neumann 16.25 16.22 16.47

Table C.3: Labeled attachment score of syntactic depedencies

C.4 Labeled F1 semantic score

Group Name WSJ + Brown WSJ Brown

Lund (*) Johansson (*) 81.65 83.09 69.85

HIT-IR Che 78.52 80 66.37

Yahoo! (*) Ciaramita (*) 78 79.43 66.41

Hong Kong (*) Zhao (*) 76.75 78.25 64.35

Geneva (*) Henderson (*) 73.09 74.36 62.56

Koc Yuret 73.06 74.54 60.62

GSLT ML2 Samuelsson 72.94 74.47 60.18

DFKI 2 Zhang 71.31 72.67 60.16

NAIST Watanabe 70.84 72.37 58.21

Antwerp Morante 70.51 71.88 59.23

UPC (*) Llúıs (*) 70.35 71.74 59.42

HIT-ICR Li 69.95 71.27 59.17

USTC Chen 69.45 70.62 59.81

Korea Lee 68.71 69.95 58.63

Koc Yatbaz 68.26 69.44 58.76

UT Austin Baldridge 67.92 69.35 55.95

Peking Sun 66.61 67.62 58.26

Colorado Choi 64.78 65.72 57.4

UAIC Trandabat 40.63 41.36 34.75

DFKI 1 Neumann 22.36 22.86 17.94
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Table C.4: Labeled F1 semantic score

C.5 Semantic perfect propositions

Group Name WSJ + Brown WSJ Brown

Lund (*) Johansson (*) 55.15 57.34 37.11

HIT-IR Che 48.05 50.15 30.9

Yahoo! (*) Ciaramita (*) 47.36 49.25 31.93

Hong Kong (*) Zhao (*) 44.05 45.98 27.88

Geneva (*) Henderson (*) 41.47 42.97 28.87

NAIST Watanabe 36.44 38.09 22.72

GSLT ML2 Samuelsson 35.2 36.96 20.22

DFKI 2 Zhang 34.96 36.25 24.22

Koc Yuret 34.61 36.13 21.78

UPC (*) Llúıs (*) 32.90 34.32 21.75

HIT-ICR Li 32.08 33.45 20.62

Korea Lee 31.4 32.52 22.18

USTC Chen 31.02 32.08 22.14

Peking Sun 30.43 31.51 21.4

Antwerp Morante 30.41 31.97 17.49

Koc Yatbaz 26.14 27.01 18.81

UT Austin Baldridge 25.35 26.57 15.26

Colorado Choi 24.77 25.71 17.37

UAIC Trandabat 6.59 6.81 4.76

DFKI 1 Neumann 0.3 0.31 0.2

Table C.5: Semantic perfect propositions
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Detailed System Results
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D.1 Development

Evaluation metric detail result

SYNTACTIC SCORES:

Labeled attachment score: 28203 / 33368 84.52 %

Unlabeled attachment score: 29371 / 33368 88.02 %

Label accuracy score: 30112 / 33368 90.24 %

Exact syntactic match: 223 / 1335 16.70 %

SEMANTIC SCORES:

Labeled precision: (8585 + 5099) / (11994

+ 6414)

74.34 %

Labeled recall: (8585 + 5099) / (13865

+ 6390)

67.56 %

Labeled F1: 70.79

Unlabeled precision: (9922 + 5726) / (11994

+ 6414)

85.01 %

Unlabeled recall: (9922 + 5726) / (13865

+ 6390)

77.25 %

Unlabeled F1: 80.95

Proposition precision: 2132 / 6414 33.24 %
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Proposition recall: 2132 / 6390 33.36 %

Proposition F1: 33.30

Exact semantic match: 77 / 1335 5.77 %

OVERALL MACRO SCORES (Wsem = 0.50):

Labeled macro precision: 79.43 %

Labeled macro recall: 76.04 %

Labeled macro F1: 77.70 %

Unlabeled macro precision: 86.51 %

Unlabeled macro recall: 82.64 %

Unlabeled macro F1: 84.53 %

Exact overall match: 40 / 1335 3.00 %

OVERALL MICRO SCORES:

Labeled micro precision: (28203 + 8585 + 5099)

/ (33368 + 11994 +

6414)

80.90 %

Labeled micro recall: (28203 + 8585 + 5099)

/ (33368 + 13865 +

6390)

78.11 %

Labeled micro F1: 79.48

Unlabeled micro precision: (29371 + 9922 + 5726)

/ (33368 + 11994 +

6414)

86.95 %

Unlabeled micro recall: (29371 + 9922 + 5726)

/ (33368 + 13865 +

6390)

83.95 %

Unlabeled micro F1: 85.43

Table D.1: Global development score

D.1.1 Syntactic depedencies

Syn label gold correct system recall (%) precision (%)

ADV 1256 879 1338 69.98 65.70

AMOD 536 334 452 62.31 73.89

APPO 444 299 439 67.34 68.11

BNF 1 0 1 0.00 0.00

CONJ 706 612 730 86.69 83.84

COORD 915 597 842 65.25 70.90

DEP 772 591 724 76.55 81.63

DEP-GAP 2 0 0 0.00 NaN

DIR 119 68 97 57.14 70.10

DIR-GAP 1 0 0 0.00 NaN

DIR-PRD 1 0 0 0.00 NaN

DTV 14 12 13 85.71 92.31
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EXT 52 40 47 76.92 85.11

EXTR 15 9 15 60.00 60.00

GAP-LOC 2 0 0 0.00 NaN

GAP-LOC-PRD 1 0 0 0.00 NaN

GAP-OBJ 2 0 1 0.00 0.00

GAP-SBJ 5 0 1 0.00 0.00

GAP-TMP 4 0 1 0.00 0.00

GAP-VC 2 0 2 0.00 0.00

HMOD 423 403 433 95.27 93.07

HYPH 421 421 437 100.00 96.34

IM 512 507 510 99.02 99.41

LGS 93 80 95 86.02 84.21

LOC 556 327 549 58.81 59.56

LOC-OPRD 4 0 0 0.00 NaN

LOC-PRD 26 15 30 57.69 50.00

MNR 109 54 110 49.54 49.09

NAME 1138 837 1024 73.55 81.74

NMOD 8922 8077 9048 90.53 89.27

OBJ 1728 1550 1774 89.70 87.37

OPRD 373 307 359 82.31 85.52

P 3760 2892 3771 76.91 76.69

PMOD 3263 3016 3334 92.43 90.46

POSTHON 125 109 127 87.20 85.83

PRD 509 416 487 81.73 85.42

PRD-TMP 1 0 1 0.00 0.00

PRN 52 9 42 17.31 21.43

PRP 105 65 108 61.90 60.19

PRT 97 80 99 82.47 80.81

PUT 11 8 10 72.73 80.00

ROOT 1334 1244 1334 93.25 93.25

SBJ 2407 2207 2471 91.69 89.32

SUB 371 328 376 88.41 87.23

SUFFIX 295 289 301 97.97 96.01

TITLE 173 138 140 79.77 98.57

TMP 755 460 707 60.93 65.06

VC 953 923 988 96.85 93.42

VOC 2 0 0 0.00 NaN

Table D.2: Precision and recall for syntactic depedencies

D.1.2 Predicate identification

PPOSS gold correct system recall (%) precision (%) F1
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CD 1 0 0 0.00 NaN NaN

JJ 16 0 0 0.00 NaN NaN

NN 2181 1721 2024 78.91 85.03 81.86

NNP 5 0 0 0.00 NaN NaN

NNS 1021 848 1038 83.06 81.70 82.37

PRF 1 0 0 0.00 NaN NaN

RB 1 0 0 0.00 NaN NaN

RP 3 1 1 33.33 100.00 50.00

VB 796 793 804 99.62 98.63 99.12

VBD 710 710 738 100.00 96.21 98.07

VBG 445 445 492 100.00 90.45 94.99

VBN 689 688 718 99.85 95.82 97.79

VBP 203 203 245 100.00 82.86 90.63

VBZ 317 317 354 100.00 89.55 94.49

WP 1 0 0 0.00 NaN NaN

Table D.3: Precision and recall for predicate identification

D.1.3 Predicate classification

PPOSS gold correct system recall (%) precision (%) F1

CD 1 0 0 0.00 NaN NaN

JJ 16 0 0 0.00 NaN NaN

NN 2181 1549 2024 71.02 76.53 73.67

NNP 5 0 0 0.00 NaN NaN

NNS 1021 783 1038 76.69 75.43 76.05

PRF 1 0 0 0.00 NaN NaN

RB 1 0 0 0.00 NaN NaN

RP 3 1 1 33.33 100.00 50.00

VB 796 675 804 84.80 83.96 84.38

VBD 710 629 738 88.59 85.23 86.88

VBG 445 382 492 85.84 77.64 81.53

VBN 689 611 718 88.68 85.10 86.85

VBP 203 182 245 89.66 74.29 81.25

VBZ 317 287 354 90.54 81.07 85.54

WP 1 0 0 0.00 NaN NaN

Table D.4: Precision and recall for predicate classification

D.1.4 Precision and recall for semantic dependencies
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PPOSS + ARG gold correct system recall (%) precision (%) F1

CD* + A1 1 0 0 0.00 NaN NaN

JJ* + A0 5 0 0 0.00 NaN NaN

JJ* + A1 15 0 0 0.00 NaN NaN

JJ* + A2 1 0 0 0.00 NaN NaN

JJ* + AM-EXT 1 0 0 0.00 NaN NaN

JJ* + AM-MNR 1 0 0 0.00 NaN NaN

JJ* + AM-MOD 1 0 0 0.00 NaN NaN

JJ* + AM-TMP 2 0 0 0.00 NaN NaN

NN* + A0 1419 542 785 38.20 69.04 49.19

NN* + A1 2278 1282 1961 56.28 65.37 60.49

NN* + A2 934 347 537 37.15 64.62 47.18

NN* + A3 192 87 135 45.31 64.44 53.21

NN* + A4 19 3 6 15.79 50.00 24.00

NN* + A5 1 0 0 0.00 NaN NaN

NN* + AM-ADV 17 0 5 0.00 0.00 NaN

NN* + AM-CAU 3 0 0 0.00 NaN NaN

NN* + AM-DIR 3 0 0 0.00 NaN NaN

NN* + AM-DIS 5 0 0 0.00 NaN NaN

NN* + AM-EXT 18 6 13 33.33 46.15 38.71

NN* + AM-LOC 154 64 139 41.56 46.04 43.69

NN* + AM-MNR 198 75 146 37.88 51.37 43.61

NN* + AM-MOD 4 0 0 0.00 NaN NaN

NN* + AM-NEG 19 6 6 31.58 100.00 48.00

NN* + AM-TMP 290 162 228 55.86 71.05 62.55

NN* + R-A0 2 0 0 0.00 NaN NaN

NN* + R-A1 2 0 0 0.00 NaN NaN

NN* + R-AM-TMP 2 0 0 0.00 NaN NaN

PR* + A0 1 0 0 0.00 NaN NaN

PR* + A1 1 0 0 0.00 NaN NaN

RB* + A0 1 0 0 0.00 NaN NaN

RB* + A1 1 0 0 0.00 NaN NaN

RB* + AM-DIS 1 0 0 0.00 NaN NaN

RP* + A1 2 1 1 50.00 100.00 66.67

RP* + AM-TMP 1 0 0 0.00 NaN NaN

VB* + A0 2019 1498 1941 74.20 77.18 75.66

VB* + A1 2924 2459 3043 84.10 80.81 82.42

VB* + A2 660 397 607 60.15 65.40 62.67

VB* + A3 110 54 95 49.09 56.84 52.68

VB* + A4 65 45 60 69.23 75.00 72.00

VB* + A5 2 0 0 0.00 NaN NaN

VB* + AA 1 0 0 0.00 NaN NaN

VB* + AM-ADV 270 125 256 46.30 48.83 47.53

VB* + AM-CAU 43 30 36 69.77 83.33 75.95

VB* + AM-DIR 31 10 22 32.26 45.45 37.74

VB* + AM-DIS 196 118 171 60.20 69.01 64.30

VB* + AM-EXT 28 11 20 39.29 55.00 45.84

VB* + AM-LOC 187 119 225 63.64 52.89 57.77

VB* + AM-MNR 230 100 195 43.48 51.28 47.06

VB* + AM-MOD 309 271 283 87.70 95.76 91.55

VB* + AM-NEG 104 89 125 85.58 71.20 77.73

VB* + AM-PNC 80 36 59 45.00 61.02 51.80

VB* + AM-PRD 3 0 1 0.00 0.00 NaN

VB* + AM-TMP 585 383 541 65.47 70.79 68.03

VB* + C-A1 139 87 128 62.59 67.97 65.17

VB* + C-A2 3 0 0 0.00 NaN NaN

VB* + C-AM-CAU 1 0 0 0.00 NaN NaN
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VB* + C-AM-DIR 1 0 0 0.00 NaN NaN

VB* + C-AM-DIS 0 0 2 NaN 0.00 NaN

VB* + C-AM-EXT 0 0 1 NaN 0.00 NaN

VB* + C-AM-MNR 2 0 1 0.00 0.00 NaN

VB* + R-A0 142 118 133 83.10 88.72 85.82

VB* + R-A1 79 47 62 59.49 75.81 66.67

VB* + R-A2 5 2 2 40.00 100.00 57.14

VB* + R-AM-CAU 3 0 1 0.00 0.00 NaN

VB* + R-AM-EXT 1 0 1 0.00 0.00 NaN

VB* + R-AM-LOC 9 1 2 11.11 50.00 18.18

VB* + R-AM-MNR 6 0 1 0.00 0.00 NaN

VB* + R-AM-TMP 29 10 18 34.48 55.56 42.55

WP* + A0 1 0 0 0.00 NaN NaN

WP* + AM-MOD 1 0 0 0.00 NaN NaN

WP* + R-A1 1 0 0 0.00 NaN NaN

Table D.5: Precision and recall for semantic dependencies, excluding predicate

classification

D.2 Test

This section contains the scorer output for the test dataset. Note that this

are the official scoring results using for the test dataset. To improve, evaluate

and analize the errors of our system the development dataset must be used.

See the 6 and the previous section for detailed results using the development

corpus.

Evaluation metric detail result

SYNTACTIC SCORES:

Labeled attachment score: 49911 / 57676 86.54 %

Unlabeled attachment score: 51458 / 57676 89.22 %

Label accuracy score: 52931 / 57676 91.77 %

Exact syntactic match: 528 / 2400 22.00 %

SEMANTIC SCORES:

Labeled precision: (14960 + 8501) /

(20673 + 10948)

74.19 %

Labeled recall: (14960 + 8501) /

(23286 + 10498)

69.44 %

Labeled F1: 71.74

Unlabeled precision: (16933 + 9486) /

(20673 + 10948)

83.55 %

Unlabeled recall: (16933 + 9486) /

(23286 + 10498)

78.20 %

Unlabeled F1: 80.79

Proposition precision: 3680 / 10948 33.61 %

Proposition recall: 3680 / 10498 35.05 %

Proposition F1: 34.32

Exact semantic match: 217 / 2400 9.04 %

OVERALL MACRO SCORES (Wsem = 0.50):
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Labeled macro precision: 80.37 %

Labeled macro recall: 77.99 %

Labeled macro F1: 79.16 %

Unlabeled macro precision: 86.38 %

Unlabeled macro recall: 83.71 %

Unlabeled macro F1: 85.03 %

Exact overall match: 139 / 2400 5.79 %

OVERALL MICRO SCORES:

Labeled micro precision: (49911 + 14960 +

8501) / (57676 +

20673 + 10948)

82.17 %

Labeled micro recall: (49911 + 14960 +

8501) / (57676 +

23286 + 10498)

80.22 %

Labeled micro F1: 81.18

Unlabeled micro precision: (51458 + 16933 +

9486) / (57676 +

20673 + 10948)

87.21 %

Unlabeled micro recall: (51458 + 16933 +

9486) / (57676 +

23286 + 10498)

85.15 %

Unlabeled micro F1: 86.17

Table D.6: Test development score

D.2.1 Syntactic depedencies

Deprel gold correct system recall (%) precision (%)

ADV 2091 1541 2323 73.70 66.34

ADV-GAP 0 0 1 NaN 0.00

AMOD 913 598 761 65.50 78.58

APPO 727 541 796 74.42 67.96

BNF 1 0 0 0.00 NaN

CONJ 1103 954 1149 86.49 83.03

COORD 1374 980 1330 71.32 73.68

DEP 1302 1045 1266 80.26 82.54

DEP-GAP 3 0 2 0.00 0.00

DIR 292 139 183 47.60 75.96

DIR-GAP 0 0 1 NaN 0.00

DTV 19 13 17 68.42 76.47

EXT 105 79 93 75.24 84.95

EXT-GAP 1 0 0 0.00 NaN

EXTR 29 15 23 51.72 65.22
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GAP-LGS 3 2 3 66.67 66.67

GAP-LOC 4 1 3 25.00 33.33

GAP-OBJ 2 0 1 0.00 0.00

GAP-PMOD 1 0 2 0.00 0.00

GAP-PRD 4 1 3 25.00 33.33

GAP-SBJ 4 0 3 0.00 0.00

GAP-TMP 6 0 1 0.00 0.00

HMOD 702 676 723 96.30 93.50

HYPH 707 705 723 99.72 97.51

IM 782 770 777 98.47 99.10

LGS 159 154 171 96.86 90.06

LOC 955 633 949 66.28 66.70

LOC-OPRD 1 0 0 0.00 NaN

LOC-PRD 71 30 35 42.25 85.71

MNR 179 105 180 58.66 58.33

NAME 2002 1547 1823 77.27 84.86

NMOD 15286 13908 15439 90.99 90.08

OBJ 3073 2819 3193 91.73 88.29

OPRD 568 482 554 84.86 87.00

P 6831 5514 6851 80.72 80.48

PMOD 5469 5143 5566 94.04 92.40

POSTHON 327 311 336 95.11 92.56

PRD 835 702 862 84.07 81.44

PRD-PRP 3 1 2 33.33 50.00

PRD-TMP 1 0 0 0.00 NaN

PRN 67 12 36 17.91 33.33

PRP 205 82 144 40.00 56.94

PRT 157 122 156 77.71 78.21

PUT 9 6 10 66.67 60.00

ROOT 2399 2288 2399 95.37 95.37

SBJ 4332 4016 4277 92.71 93.90

SUB 655 601 684 91.76 87.87

SUFFIX 533 527 538 98.87 97.96

TITLE 238 187 191 78.57 97.91

TMP 1341 901 1273 67.19 70.78

VC 1804 1760 1823 97.56 96.54

VOC 1 0 0 0.00 NaN

Table D.7: Precision and recall for syntactic depedencies (test)

D.2.2 Predicate classification

PPOSS gold correct system recall (%) precision (%) F1
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CC 3 0 0 0.00 NaN NaN

CD 1 0 0 0.00 NaN NaN

IN 3 1 1 33.33 100.00 50.00

JJ 16 0 0 0.00 NaN NaN

NN 3635 2710 3464 74.55 78.23 76.35

NNP 10 0 0 0.00 NaN NaN

NNS 1648 1274 1737 77.31 73.34 75.27

PDT 2 0 0 0.00 NaN NaN

RP 4 2 2 50.00 100.00 66.67

VB 1278 1098 1299 85.92 84.53 85.22

VBD 1320 1197 1371 90.68 87.31 88.96

VBG 742 623 842 83.96 73.99 78.66

VBN 985 831 1195 84.37 69.54 76.24

VBP 343 306 452 89.21 67.70 76.98

VBZ 504 459 585 91.07 78.46 84.30

WP 2 0 0 0.00 NaN NaN

WRB 2 0 0 0.00 NaN NaN

Table D.8: Precision and recall for predicate classification

(test)

D.2.3 Precision and recall for semantic dependencies

PPOSS(pred) + ARG gold correct system recall (%) precision (%) F1

CC* + A1 3 0 0 0.00 NaN NaN

CC* + A2 2 0 0 0.00 NaN NaN

CD* + A1 1 0 0 0.00 NaN NaN

IN* + A1 2 1 1 50.00 100.00 66.67

IN* + A2 1 0 0 0.00 NaN NaN

IN* + AM-LOC 2 0 0 0.00 NaN NaN

IN* + AM-MNR 1 0 1 0.00 0.00 NaN

JJ* + A0 5 0 0 0.00 NaN NaN

JJ* + A1 15 0 0 0.00 NaN NaN

JJ* + A2 7 0 0 0.00 NaN NaN

JJ* + AM-ADV 2 0 0 0.00 NaN NaN

JJ* + AM-DIS 1 0 0 0.00 NaN NaN

JJ* + AM-LOC 1 0 0 0.00 NaN NaN

JJ* + AM-MNR 2 0 0 0.00 NaN NaN

JJ* + AM-MOD 1 0 0 0.00 NaN NaN

JJ* + AM-PNC 1 0 0 0.00 NaN NaN

JJ* + AM-TMP 3 0 0 0.00 NaN NaN

JJ* + C-A1 1 0 0 0.00 NaN NaN

NN* + A0 2339 956 1356 40.87 70.50 51.74

NN* + A1 3757 2232 3221 59.41 69.30 63.98

NN* + A2 1537 607 1000 39.49 60.70 47.85

NN* + A3 349 180 249 51.58 72.29 60.20

NN* + A4 18 2 8 11.11 25.00 15.38

NN* + A5 1 0 0 0.00 NaN NaN
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NN* + AM-ADV 32 2 7 6.25 28.57 10.26

NN* + AM-CAU 2 0 0 0.00 NaN NaN

NN* + AM-DIR 4 0 0 0.00 NaN NaN

NN* + AM-DIS 4 0 0 0.00 NaN NaN

NN* + AM-EXT 33 10 23 30.30 43.48 35.71

NN* + AM-LOC 232 94 215 40.52 43.72 42.06

NN* + AM-MNR 344 160 275 46.51 58.18 51.69

NN* + AM-MOD 7 0 0 0.00 NaN NaN

NN* + AM-NEG 35 6 8 17.14 75.00 27.90

NN* + AM-PNC 1 0 0 0.00 NaN NaN

NN* + AM-TMP 492 274 363 55.69 75.48 64.09

NN* + C-A1 2 0 0 0.00 NaN NaN

NN* + R-A0 2 0 0 0.00 NaN NaN

PD* + A1 2 0 0 0.00 NaN NaN

PD* + A2 1 0 0 0.00 NaN NaN

PD* + AM-LOC 1 0 0 0.00 NaN NaN

RP* + A0 1 0 0 0.00 NaN NaN

RP* + A1 2 1 1 50.00 100.00 66.67

RP* + AM-LOC 2 1 2 50.00 50.00 50.00

RP* + AM-TMP 2 1 1 50.00 100.00 66.67

VB* + A0 3509 2756 3448 78.54 79.93 79.23

VB* + A1 4844 4053 5163 83.67 78.50 81.00

VB* + A2 1085 644 1042 59.35 61.80 60.55

VB* + A3 169 78 123 46.15 63.41 53.42

VB* + A4 99 71 101 71.72 70.30 71.00

VB* + A5 5 1 3 20.00 33.33 25.00

VB* + AM-ADV 488 247 504 50.61 49.01 49.80

VB* + AM-CAU 70 45 66 64.29 68.18 66.18

VB* + AM-DIR 81 23 44 28.40 52.27 36.80

VB* + AM-DIS 315 195 281 61.90 69.40 65.44

VB* + AM-EXT 32 17 32 53.12 53.12 53.12

VB* + AM-LOC 355 212 356 59.72 59.55 59.63

VB* + AM-MNR 335 173 338 51.64 51.18 51.41

VB* + AM-MOD 539 493 505 91.47 97.62 94.44

VB* + AM-NEG 227 217 300 95.59 72.33 82.35

VB* + AM-PNC 113 31 70 27.43 44.29 33.88

VB* + AM-PRD 5 0 0 0.00 NaN NaN

VB* + AM-REC 2 0 0 0.00 NaN NaN

VB* + AM-TMP 1068 756 1001 70.79 75.52 73.08

VB* + C-A0 5 0 0 0.00 NaN NaN

VB* + C-A1 192 132 185 68.75 71.35 70.03

VB* + C-A2 0 0 1 NaN 0.00 NaN

VB* + C-A3 2 0 0 0.00 NaN NaN

VB* + C-AM-DIR 1 0 1 0.00 0.00 NaN

VB* + C-AM-MNR 1 0 0 0.00 NaN NaN

VB* + C-AM-TMP 1 0 0 0.00 NaN NaN

VB* + R-A0 222 179 216 80.63 82.87 81.73

VB* + R-A1 155 94 132 60.65 71.21 65.51

VB* + R-A2 16 4 4 25.00 100.00 40.00

VB* + R-A3 1 0 0 0.00 NaN NaN

VB* + R-A4 1 0 0 0.00 NaN NaN

VB* + R-AM-ADV 2 0 0 0.00 NaN NaN

VB* + R-AM-CAU 4 0 0 0.00 NaN NaN

VB* + R-AM-EXT 1 0 0 0.00 NaN NaN

VB* + R-AM-LOC 21 2 4 9.52 50.00 15.99

VB* + R-AM-MNR 6 0 1 0.00 0.00 NaN

VB* + R-AM-TMP 52 10 21 19.23 47.62 27.40

WP* + A0 1 0 0 0.00 NaN NaN

WP* + A1 1 0 0 0.00 NaN NaN
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WP* + A2 1 0 0 0.00 NaN NaN

WP* + AM-LOC 1 0 0 0.00 NaN NaN

WP* + AM-TMP 1 0 0 0.00 NaN NaN

WR* + A0 1 0 0 0.00 NaN NaN

WR* + A1 2 0 0 0.00 NaN NaN

WR* + AM-EXT 1 0 0 0.00 NaN NaN

Table D.9: Precision and recall for semantic dependencies, excluding predicate

classification (test)
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Appendix E

Bookmarks

This section collects only the most rellevant bookmarks for the subject of this

thesis. Note that this collection does not comprise the vast amount of sources

that are available on dependency parsing, natural language processing toolkits

and machine learning.

CoNLL

The CoNLL-2008 Shared task web site and results http://www.yr-bcn.

es/conll2008

The CoNLL-2008 Proceedings (including description papers) http://www.

cnts.ua.ac.be/conll2008/proceedings.html

Dependency parsing

MaltParser http://w3.msi.vxu.se/˜nivre/research/MaltParser.html

MST McDonald’s framework http://ryanmcd.googlepages.com/MSTParser.

html

Nivre and McDonald dependency parsing course slides http://dp.esslli07.

googlepages.com/
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Glossary

arc-factored model a model that defines the score or probability of

a graph assuming that all arcs are conditionally

independent, 23

Brown corpus a compiled corpus of current American English

extracted from a wide variety of sources 1 , 9

chunk parser a parser that segments a sentence in contigu-

ous units , no tree structure or constituent

structure is generated., 47

CoNLL is a yearly meeting of the SIGNLL, the ACL’s

Special Interest Group on Natural Language

Learning., 5

corpus a collection of documents. , 9

dependency parsing is the task of deriving a graph representing the

syntactic structure of the sentence., 1

dependency structure a directed graph expressing syntactic relations

between tokens with labeled arcs, 18

dynamic features features that are extracted on-line during pars-

ing from the partially constructed tree., 67

frameNet a collection of semantic frames. , 9

joint parsing a combined processing of the syntactic and se-

mantic structure, 2

Named Entity atomic element in text that can comprise more

than one word and designates specified things

e.g., names of persons, organizations, loca-

tions)., 70

1http://khnt.aksis.uib.no/icame/manuals/brown/
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Natural Language Understanding (NLU) is the set of tasks that deals with the exploita-

tion of semantic knowledge present in natural

language text, 1

Penn treebank a Treebank for the English language. , 9

POS the linguistic category of the words. , 9

projective link a link (i , j) such that i →
j, then ∀i ′ such that i ← i ′, i < i ′ < j or j <

i ′ < i ., 19

projective sentence a sentence with one or more projective link., 19

propBank a corpus annotated with verbal propositions

and their arguments. , 9

semantic frame a predicate and its receiving or admissible ar-

guments., 14

semantic shallow parsing is the annotation semantic arguments for each

sentence predicate., 2

span a dependency structure for a substring with the

properties of no outgoing nor incoming edges

from the rest of the input sentence., 23

split lemma/form the lemma or form of a token but considering a

finer tokenization. For instance the split forms

of Atlanta-based are Atlanta, “-” and based. ,

65

treebank a text corpus with annotated syntactic struc-

ture. , 9
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arc-factored model, 23, 47

architecture, 56

argument classification and identifica-

tion, 34

baseline system, 52

BIO tagging, 35

CoNLL-2004 shared task, 47

CoNLL-2005 shared task, 47

CoNLL-2006 shared task, 45

CoNLL-2007 shared task, 45

CoNLL-2008 shared task, 5

data format, 9

results, 105

constituent parsing, 18

corpus

Brown, 9

Wall Street Journal, 9

CRF for trees, 49

dependency parsing, 18

Eisner algorithm, 24

second order Carreras, 27

second order McDonald, 26

eisner-based models, 23

equivalent pipeline system, 74

experimentation, 77

F1, 13

features, 63

dynamic, 67

semantic, 68

syntactic, 65

filter, 73

by frequency, 73

by POS-lemma, 74

by POS-POS, 74

first order model, 23, 57

global scoring, 34

graph-based model, 23

head, 18

head and modifier, 19

integer linear programming, 42

applications, 61

joint model, 59

labeled macro F1, 15

labeled semantic F1, 14

labelled attachment score, 13

LAS, see labelled attachment score

local scoring, 34

machine learning framework, 36

maltparser, 28, 30

arc-eager, 29

master’s thesis goals, 2

maximum spanning tree, 21

maximum spanning tree framework, 23

MIRA, 39

modifier, 18

Natural Language Processing, 1

Natural Language Understanding, 1

NLU applications, 1

NomBank, 9

perceptron

averaged, 80

passive-aggressive, 39
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PA-I, 40

PA-II, 40

reranking, 38

structured, 38

PP attachment problem, 20

precision, 13

preprocessing, 57

projectivity, 19

corpus statistics, 128

McDonald technique, 31

Nivre and Nilsson algorithm, 32

PropBank, 9

pruning, 34

recall, 13

results

detailed, 151

participating systems, 147

second order model, 27

semantic frame, 14

semantic parsing, 33

architecture, 34

shift-reduce parsing, 27

structured learning, 36

SVM, 41

syntactic and semantic overlapping, 54

syntactic parser, 57

transition, 29

transition-based parsing, 28

UAS, see unlabelled attachment score

unlabelled attachment score, 13

word sense disambiguation, 101


