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1. INTRODUCTION 

With the progressive increase of data flow to travel through communication networks all 

around the world, high-capacity low-loss physical media are an urgent and important need. In 

this purpose, optical fiber appears as an outstanding choice due to its large bandwidth and low 

attenuation features.  

In the path towards next-generation optical networks with increased bit rates and complexity, 

compensation of fiber optic transmission impairments turns into a critical issue. Small 

variations due to temperature, stress, aging or dynamic path reconfiguration, may have a 

tremendous impact in performance and therefore adaptive compensation based on high-

precision real-time on-line monitoring is essential [1]. 

Chromatic dispersion (CD) stands out as one of the most limiting impairments. Great research 

efforts have been devoted to find cost-effective and accurate techniques for its real-time on-

line monitoring. In this regard, the use of radiofrequency (RF) pilot tones added at the emitter 

is advantageous because it offers good sensitivity, high dynamic range and reconfigurability, it 

also simplifies the receiver and allows monitoring at any given point in the network without 

the need to recover the data, and finally because the tones are useful for other network 

management issues such as channel identification. [1]. 

 

1.1. Objectives 

This PFC main goal is to introduce new approaches on the chromatic dispersion measurement 

field, based on the big range of possibilities the setup of a general standard RF-tone 

modulation chromatic modulation method provides, and to show its good performance 

pointing towards a real-time on-line monitoring system for optical communication networks. 

The project’s objectives are defined considering two well-delimited stages. 

First, we will study some standard RF-tone-addition techniques for measuring chromatic 

dispersion, specifically the Modulation Phase Shift Method (MPSM) [2] and the Peucheret`s 

Method [3]. We will analyze their operating principles, recognize all the variables involved in 

their basic configurations and evaluate their performances under different measurement 

conditions.  

We will also study the implications of real-time on-line monitoring of chromatic dispersion in 

optical networks. We have to consider that the test signal has to travel together with the data; 

therefore, it is a priority to keep the optical carrier unaltered in the transmission and reception 

procedures.  

This background will help us to identify the main drawbacks of both methods which motivate 

the proposal of a new improved technique based on a similar mathematical basis but with 

better performance in terms of accuracy and cost trade-off.  

The general features of this new approach will be exposed on a basic setup designed for a 

laboratory environment, so that we can contrast it with the conventional techniques. This 

method dubbed Asymmetric Modulation Bias-Controlled Method (ABCM) will focus on RF 
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modulated signal amplitude and will take advantage of its direct relation with chromatic 

dispersion.  

One of the basic building blocks of these standard methods is the device that imposes the RF 

pure-tone modulation to the optical signal, namely the Mach-Zehnder interferometric 

modulator usually in the conventional push-pull configuration and biased at the quadrature 

point. In the context of the new improved CD measurement methods, we will observe how the 

Mach-Zehnder modulator Bias Voltage concept gains relevance; becoming the main variable to 

be handled by the use of a dual drive Mach-Zehnder modulator in asymmetric configuration.  

Finally, we will analyze this ABCM method performance while some fixed parameters (RF 

Frequency, Nominal Dispersion, 
� resolution) take different values in order to find out the 

optimum operating conditions.  

The problem when trying to apply the ABCM to the real-time on-line monitoring of optical 

networks is that it relies in the eventual cancellation of the optical carrier which in a network 

monitoring application is shared with the data and it is essential for a proper data recovery. 

We must find an alternative where this optical carrier cancellation is not essential for the 

monitoring function and that would be the ABCM-SC (SC for suppressed carrier) 

Therefore, on a second stage, we will focus on giving this new perspective about dispersion 

measurement a direct application in optical communications field. We will restructure the 

ABCM into a practical dispersion monitoring system for optical communication networks. This 

improved monitoring technique will be based on a proof-of-concept study (no real data 

transmission considered) to evaluate the method’s performance in terms of accuracy, 

robustness and adaptability, building the basis for data transmission experiments in future 

projects.  

An important aspect to take into account will be the way we carry out the RF tone addition 

procedure without altering the optical carrier (transmitted data). To accomplish this 

requirement we will use a Bessel function analysis to achieve a carrier-suppressed modulation 

of the RF tone, which introduces another important handling parameter: the RF Tone 

Amplitude.  

We will also be concerned about isolating the emitter part (where data is transmitted) from 

the monitoring point (where dispersion is measured), but at the same time complementing 

each other to operate in a real-time situation. 

Finally, we will study the requirement of including the second RF harmonic detection together 

with the first harmonic as it adjusts better to a real-time monitoring system and increases the 

accuracy level in chromatic dispersion measurement. 
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1.2. Project Organization 

This PFC is divided in five chapters which follow a general-to-particular subject matter where 

each chapter makes reference to the previous one.  

Chapter 2 Basic Concepts: provides a complete explanation of the theoretical knowledge that 

supports this PFC’s proposals and makes a general description of the main devices and tools 

used.  

Chapter 3 ABC Technique: presents the structured study of this new method for measuring 

chromatic dispersion including mathematical analysis, VPI simulations, and experimental 

verification; and it also proposes different operating situations. 

Chapter 4 ABC – SC Technique: aims at redefine the technique exposed in the previous 

chapter to develop a new system capable to satisfy real –time dispersion monitoring 

requirements. It follows the same method of study used in the previous chapter. 

Chapter 5 Conclusions: evaluates the performance of the two techniques proposed in this PFC 

by making use of the results obtained in charts and graphics, and verifies the achievement of 

the objectives. 
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2. BASIC CONCEPTS 

2.1 Dispersion Theory 

Dispersion is a typical phenomenon in optical media which yields the time spread of a 

transmitted pulse. It is caused by the different delays suffered by each of the optical signal’s 

components, so that at the detector, these components are recovered at different arrival 

times, generating a distorted signal with respect to the transmitted one. 

There are two well-defined types of dispersion: 

2.1.1 Intermodal dispersion 

Intermodal dispersion is characteristic of multimode fibers where the optical signal propagates 

in many “modes”, each one following a different trajectory inside the fiber’s core in the rays 

theory analogy. Therefore, all the modes from a determined pulse experience different delays, 

generating the pulse spread explained above. 

2.1.2 Chromatic Dispersion 

Chromatic dispersion is present in all types of fibers but in the multimode fiber the more 

relevant effect comes from intermodal dispersion. In this work, we will be mainly concerned 

with single-mode fiber where no intermodal dispersion occurs, and therefore we will only 

study chromatic dispersion. The physical phenomenon behind chromatic dispersion is 

explained below: 

 

Figure 2.1 Chromatic dispersion basic schema 

 

A generic optical pulse with carrier frequency �
 transmitted through a single-mode fiber 

under ideal conditions (non-lossy transmission line with no deformation of the fundamental 

mode), can be represented like this: 

                                           ���,�� � ����������������                               (1) 

where the A�t� is a slowly varying function of time as compared to the second term �����, 
and the last term ���-���.  reflects phase constant dependence with frequency (minus sign 

indicates the signal propagates on the ‘z’ axis positive direction).  
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Expression (1) illustrates very well the dispersion effect as a relation between β and ω. If this 

relation is linear, such as on an ideal transmission line: 1���= �
23453

, where V7897 is the wave 

propagation velocity, the resulting wave form will not change but it will suffer an overall time 

delay proportional to z distance. Thus, at the detector we will have: 

                                  ���,�� � � :� ;  <=>?=@ ������� AB=>?=�
                       (2) 

In a real case, where the dispersion relation is not linear an exact solution for the detected 

signal could be difficult to treat analytically. Nevertheless, if we consider that the phase 

constant changes slowly while the operating frequency gets further from �
, we can use a 

Taylor Polynomial to express 1��� in a valid way, as follows: 

1��� � 1��
� C �� ; �
� D∂β∂ωF�� C 12 �� ; �
�I D ∂Iβ∂ωIJ��
C  … . � 

                   1��� � 1
 C �� ; �
�1M C MI �� ; �
�I1I                  (3) 

Now, we will explain the relations between the three 1 parameters defined above: 1
 , 1M and 1I, and the physical concepts they refer to. 

The first term, 1
, causes no effect over the envelope; however, it yields a certain phase shift 

on the optical carrier. It can be stated that the carrier travels with a determined velocity 

established by 1
 called “phase velocity”, while the envelope does not move. 

1
 is formally expressed as: 

1
��� � D2NO F�� � D2NPQR J��
� D�QRJ��

� �
QR  

                                            QR � SS��� � ����                                           (4) 

where the phase velocity QR represents the propagation velocity of the optical carrier at 

frequency �
, in other words, it is the velocity needed for an external agent to see the wave’s 

phase as a constant. 

1M term generates a time delay on the envelope but without modifying the wave form, so that 

the information transmitted will be kept unaltered. 

In this case, there is not a unique phase velocity for all spectral components; each component 

along the optical signal spectral width has a different phase velocity. Thus, while the optical 

carrier propagates with a velocity established by 1
, the envelope propagates with the 

resulting velocity of all spectral components, which is called “group velocity” QT and depends 

on 1M. 
In the same way, there is a time delay suffered by the transmitted signal, called group delay UT, which can be defined as the time spent by the signal’s envelope  to cover a 'z distance' over 

a single mode fiber. It is related to 1M by UT � 1MV. 
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1M =  DW1���W� F�� �  DW��QR�W� X
��

 

Replacing equation (4): 

�  DW��Y���Z �W� [
��

� DY��� C � WY���W�Z [
��

 

                                                  � M\ :Y��
� C �
 D]S���]� ^��@ � _ ̀ � Ma`                      (5) 

    QT � \S����b�� Dcd�e�ce ^e�
� \f����                               (6) 

The group velocity QT concept only makes sense when the referred optical signals present 

different frequencies and phases in a dispersive transmission channel. In any other case, the 

group velocity will be equal to the phase velocity, as it happens in the vacuum. 

In expression (6), we define N as the group refraction index of the channel, in direct analogy 

with phase velocity. 

The last parameter, 1I, causes both amplitude reduction and spread of the envelope, unlike 

previous parameters which do not modify the pulse form; however, the signal’s energy is kept 

constant. 

1I is also responsible for altering the carrier’s phase shift  causing a chirp effect on it, that is, a 

kind of acceleration and deceleration in frequency.  

The most common parameter to characterize the chromatic dispersion is the chromatic 

dispersion coefficient g, defined as  1M variation with respect to the wave length, as it is shown 

below: 

             1I � ]h��]�h � ]�i]� � ]j]� k]�i]j l � ]j]� g � ; Im\�h g            (7) 

The dispersion coefficient can also be defined starting from the relation between the 

spreading suffered by the transmitted pulse ΔUT, and the spectral width Δ�: 

ΔUT � WUTW� Δ� 

Replacing expression (5) we have: 

WW� o VQTp Δ� � V W�WO W1MW� WOW� Δ� � VgΔO 

                                                                           q g �  r_` sj                                           (8) 
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This final expression for the chromatic dispersion coefficient (8) clarifies the relation between 

pulse spreading and the fiber’s dispersion. In addition, it helps us to define the typical units to 

express the chromatic dispersion: tu/Yw x yw (pulse delay in picoseconds, wave length 

spectral width in nanometers and fiber’s length in kilometers).  

 

2.2 RF tone-based chromatic dispersion measurement techniques 

This PFC focuses on chromatic dispersion measurement methods which use as a test signal to 

inject on the DUT a pure RF tone modulated signal. A generic setup is sketched on Figure 2.2. 

 

 

Figure 2.2 Block composed by MZM, DUT and Detector 

 

In Figure 2.2 there is first an optical source, usually a laser which could be tunable. After that, 

we find an external modulator that modulates the carrier with the RF pure tone modulation. 

This test signal is input to the DUT and it is recovered at its output by an optical detector that 

follows a square law characteristic. 

We will now review the models and parameters used to describe each of the elements on the 

basic setup. 

2.2.1 Mach-Zehnder Modulator 

The Mach-Zehnder Modulator is an interferometric modulator which plays a fundamental role 

in the setups of most techniques referred above. It provides a large range of potential handling 

variables and configurations.  

Its operation principle is based on the linear electro-optical effect (Pockels effect) where the 

media’s optical refraction index is modified according to the applied electrical field, resulting in 

a phase modulation of the optical signal. Therefore, at both Mach-Zehnder’s branches, the 

propagated light gets phase-modulated by the electric field applied on the electrodes. By 

combining again these two signals, we obtain an amplitude modulation at the output. 

 



 

 

 

 

 

 

 

Figure 

 

The signals featured in Figure 2.3

 

 is the electric field of the coherent light beam emitted by the laser at 

the result of combining both branches’ optical signals. 

generated at each Mach-Zehnder's branch

voltage, i.e. a continuous  voltage required to set the modulator at any of its possible operating 

points.  is a reference voltage related to 

index which relates the phase shift with the voltage applied on each branch.

Another important parameter for a MZM is the Extinction Ratio (ER) defined as the relation 

between the maximum and minimum power levels according to the device’s t

It is used to express the efficiency with which the transmitted optical power is modulated

the optical fiber transport. According to this definition, if we have a minimum power equal to 

“0”, represents that we have an infinite extinc

devices. 

2.2.1.1 Configurations 

We will consider here two basic

and asymmetric. 

• Push-Pull: 

Figure 2.3 Schematic of Mach-Zehnder Modulator 

The signals featured in Figure 2.3 are defined by the following expressions: 

 

 

                                        (9)                      

 

is the electric field of the coherent light beam emitted by the laser at  frequency. 

the result of combining both branches’ optical signals.  and  are the phase shifts 

Zehnder's branch through the electro-optic effect

voltage required to set the modulator at any of its possible operating 

is a reference voltage related to the electrodes’ sensitivity.  is

index which relates the phase shift with the voltage applied on each branch. 

Another important parameter for a MZM is the Extinction Ratio (ER) defined as the relation 

between the maximum and minimum power levels according to the device’s t

It is used to express the efficiency with which the transmitted optical power is modulated

the optical fiber transport. According to this definition, if we have a minimum power equal to 

“0”, represents that we have an infinite extinction ratio, which is impossible to achieve in real 

We will consider here two basic configurations for the Mach-Zehnder Modulator: push pull 
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(9)                       

frequency.  is 

are the phase shifts 

optic effect.  is the bias 

voltage required to set the modulator at any of its possible operating 

is the modulation 

 

Another important parameter for a MZM is the Extinction Ratio (ER) defined as the relation 

between the maximum and minimum power levels according to the device’s transfer function. 

It is used to express the efficiency with which the transmitted optical power is modulated over 

the optical fiber transport. According to this definition, if we have a minimum power equal to 

tion ratio, which is impossible to achieve in real 

Zehnder Modulator: push pull 
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This configuration lets us achieve an amplitude modulation with no chirp effect, because the 

phase shifts into each of the interferometric have exactly the same magnitude. 

�z{� = |�
I }cos��
 C ~
 D C ~���� C cos��
 C ~
 ; D~����� � �
}cos��
 C ~
� cos�~�����   (10) 

• Asymmetric:    ~M��� � ~I ��� 

Here we have no restriction on choosing each branch’s parameters, it just depends on what we 

want to obtain. It is also possible to use one branch or the other separately. 

This PFC’s proposal requires the bias voltage to become the fundamental handling parameter 

within the RF tone based dispersion monitoring technique and this condition is only 

accomplished by using a single – branch configuration in the setup (this property will be deeply 

explained in section 2.2.3). By single-branch configuration it is meant that both the RF signal 

and the polarization bias are applied to only one of the interferometric branches, either the 

same or to each one of the branches. 

Thus, the output expression would be: 

�z{� � �

2 }cos��
 C ~
 D C ~���� C cos��
 C ~
 D�� 

           � |�
I �cos��
 C ~
� C cos��
 C ~
� cos�~���� ; sin��
 C ~
� sin�~�����                  (11) 

2.2.1.2 Transfer Function 

To recover the RF modulating signal after applying an amplitude or phase modulation we use 

the principle of square law detection, which states that the electrical power at the detector’s 

output is proportional to the received optical power.  

In absence of RF modulation (MZM just driven by bias voltage), the generic expression of the 

signal detected by the square-law detector results as follows: 

                                                              ������ � |�h
� cosI���i���h

I �                                                     (12) 

 

Figure 2.4 Mach-Zehnder's Transfer Function 
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• Quadrature Point (QP): located at the center of the linear zone, makes possible to 

obtain the modulator’s maximum linearity. A 
<�
I  voltage is required between the 

branches. 

• Minimum Transmission Point (mTP): There is no power at the output (in an ideal 

situation). There will be a voltage difference between branches equal to 
m (half-wave 

voltage). In practice the carrier at the modulator’s output is not completely cancelled 

out, because the power split over the two branches will never be exactly the same (see 

ER definition in section 2.2.1). 

• Maximum Transmission Point (MTP): The power at the output is maximum. There is no 

phase shift between branches (voltage difference equal to 0). 

Now we will explain the relation between the 
� required to obtain 
m and the corresponding 

electrode’s sensitivity 
\ for each configuration: 

a) Push-Pull:  

 

Replacing push-pull condition in expression (12) we have: 

����
�� = �


I

4 cosI�~� ; �;~��
2 � 

������ � �
I

4 cosI�~�� � 0 � ~� � N
2 

 Therefore, the relation between electrode’s sensitivity 
\ and 
m is: 

                                                         ~� � <�
<�

N � m
I � 
� � <�

I � 
m                                             (13) 

b) Single-branch asymmetric: 

 

Replacing Single-branch asymmetric condition in expression (12) we have: 

������ � �
I

4 cosI�~� ; �0�
2 � 

������ � �
I

4 cosI�~�
2 � � 0 � ~� � N 

Therefore, the relation between electrode’s sensitivity 
\ and 
m is: 

                                                        ~� � <�
<�

N � N � 
� � 
\ � 
m                                            (14) 

We must emphasize that the electrodes’ sensitivity is defined as the voltage needed to 

generate a 180º phase shift on the optical signal into that particular electrode. Each branch 

can have a different 
\ value, however, we will consider they are the same, in order to simplify 

the calculations. 

Unlike 
\, the half-wave voltage 
m does depend on the Mach-Zehnder`s configuration, and it is 

obtained as follows: 
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m � w�� ; ���                                                         (15) 

It is also important to mention that, experimentally, we verified how the operating point can 

take a different value from one measurement to other. This phenomenon is known as bias 

drift [5] and is caused by the Mach-Zehnder dependence with temperature, and also due to 

environmental conditions, vibrations, etc.  

2.2.2 Mach-Zehnder (push pull) + DUT + Detector Mathematical Analysis without considering 

amplitude distortions 

Within a basic setup of a dispersion measurement technique based on RF tone modulation, the 

study of the block composed by the Mach-Zehnder, the DUT and the detector becomes an 

essential issue, as it establishes all the possible expressions for the detected signal, including 

amplitude and phase terms from which the different techniques calculate the dispersion 

coefficient g.  

As it is shown in Figure 2.2, the optical source’s output is amplitude modulated by the Mach 

Zehnder Modulator. In the usual configuration it is a single-drive push pull modulator biased at 

the quadrature point. After that the modulated signal passes through the DUT. Finally, the 

optical detector recovers the envelope following a square-law characteristic.  

We will analyze both the push-pull and the asymmetrical MZ configurations as they set the 

basis of the chromatic dispersion measurement methods described in section 2.2. 

The mathematical analysis will be developed under some particular conditions which are 

characteristic of RF tone based dispersion monitoring techniques: 

• We will work under a small signal condition, that is, ��� <<< 1. Thus, we can use the 

approximation: ���� = 1 ;  �� 

• The development will be done using “low-pass equivalent” expressions to simplify 

operations, which means working with a carrier frequency equal to 0.  

First, at the modulator’s output, in a push-pull configuration typical of standard method MPSM 

we get: 

   
 

    

    

 

Passing ��� through the DUT, the optical signal suffers different phase shifts at the carrier and 

the sidebands, as it is shown below: 

• Phase shift at the carrier: �
 

• Phase shifts at the sidebands: �b and  �� 
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The optical detector takes charge of recovering RF envelope. It consists on a square-law 

detector and a low-pass filter. So the detected power results: 

 If we consider , the detected power results: 

   

 

 
                (16)

 

In the expression obtained, the first term represents the DC component which has no 

relevance on the dispersion calculation. The second term is RF fundamental harmonic. We can 

notice how the sidebands’ phase shifts, which are directly related to the chromatic dispersion 

value, appear in both amplitude and phase expressions, as the semi sum and semi difference 

respectively. Also we observe the bias voltage presence in the amplitude term but contained in 

two independent sinusoidal factors.  

2.2.3 Mach-Zehnder (asymmetric) + DUT + Detector Mathematical Analysis without 

considering amplitude distortions 

This setup can also be implemented using a Mach-Zehnder in an asymmetric configuration, 

developing the mathematical analysis in a similar way. Therefore, if we use again the low-pass 

equivalent expressions we will have: 

    

    

    

 

Passing ��� through the DUT: 
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Finally, following the same conditions at the optical detector, the detected power results: 

 

 

 
          (17)

 

If we compare the detected power obtained in this case with that of the push-pull 

configuration some different features emerge, i.e.  the appearance of the bias voltage together 

with the semi sum of the sidebands’ phase shifts inside the sine function argument. The new 

dispersion measurement approach exposed in this PFC takes advantage of this fact to establish 

the operating principle.  

2.2.4 Mach-Zehnder (push pull) + DUT + Detector Mathematical Analysis considering 

amplitude distortions 

In all previous analysis, we considered a DUT which only alters the optical signal phase with 

respect to frequency; however, some other devices used in optical communication systems, 

yield also a certain magnitude attenuation at each frequency component. 

Thus, in this context, the mathematical analysis requires the use of additional trigonometric 

identities to obtain a compact expression for detected power.  

First, for a push-pull configuration, the procedure is as follows: 

At DUT’s input, we receive the same optical signal from the modulator as in previous case: 

    

But now after it passes through the DUT we have: 
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At the optical detector’s output, after applying the square-law and the low-pass filtering, we 

obtain: 

    

 

 

Finally, if we use the following trigonometric identity: 

 

The detected power results: 

                                                                                                                                                                  (18) 

2.2.5 Mach-Zehnder (asymmetric) + DUT + Detector Mathematical Analysis considering 

amplitude distortions 

Once again, if we repeat this analysis for a Mach Zehnder modulator in asymmetric 

configuration instead, the procedure is as shown below: 
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Therefore, at the Optical Detector's output the detected power results: 

 

 

 

Finally, by applying an analogous trigonometric identity: 

 

 

The detected power here results: 

 

                  

(19) 

From the expression above, it is observed how the RF modulating signal phase recovered is not 

equal to the semi difference between the two major sidebands phase shifts but a much more 

complex term, unlike the previous case. This fact represents a huge inconvenience for phase-

based measuring techniques like MPSM, because, even though the phase shifts at both 

sidebands are still contained in the phase term, we cannot consider this term as a good 

approximation of the optical phase shift inserted by the DUT, and therefore there is no 

guarantee to obtain a correct chromatic dispersion characterization from it. 



 

Unfortunately, this situation 

expression (19), the bias voltage and the sum of phases in the am

within the same sinusoidal (basis of ABCM)

join both parameters in a well

Now, we will describe two of the most popular techniques for dispersion measurement: 

Modulation Phase-Shift Method (MPSM) and Peucheret`s Method, whose operating principles 

served as inspiration and conceptual basis for the new methods featured in this PFC.

2.2.6 Modulation Phase Shift Method

MPSM obtains the group delay response of a device under test (DUT) by measuring the change 

in phase of a sinusoidal radio frequency (RF) modulation envelope as the wavelength is 

changed.  

Figure 2.5 shows the basic setup for

Modulation is impressed using an external modulator, usually a Mach 

push – pull configuration, and recovered by an optical receiver. Phase data are recovered by 

ratio detection with respect to a reference RF path. 

 

As MPSM is included within the

modulation on the optical signal to generate two major sidebands on the carrier (considering 

small signal condition), where each of them is affected by a phase shift while passing through 

the DUT, so that, in reception, the network analyzer takes charge of recovering the signal at 

. The mathematical expression for this signal is obtained from 

 

              

−= cos(
2

2

θAA
P B

mo
d

 is also a pending task for ABCM, because as we observe from 

expression (19), the bias voltage and the sum of phases in the amplitude recovered are not 

(basis of ABCM) and it would be a very complex procedure trying to 

join both parameters in a well-known expression. 

Now, we will describe two of the most popular techniques for dispersion measurement: 

Shift Method (MPSM) and Peucheret`s Method, whose operating principles 

served as inspiration and conceptual basis for the new methods featured in this PFC.

Modulation Phase Shift Method (MPSM) 

obtains the group delay response of a device under test (DUT) by measuring the change 

in phase of a sinusoidal radio frequency (RF) modulation envelope as the wavelength is 

shows the basic setup for MPSM [7]. The optical source is a tun

Modulation is impressed using an external modulator, usually a Mach – Zehnder Modulator in 

pull configuration, and recovered by an optical receiver. Phase data are recovered by 

respect to a reference RF path.  

Figure 2.5 MPSM basic setup 

 

the techniques which use RF modulation, it applies an amplitude 

modulation on the optical signal to generate two major sidebands on the carrier (considering 

small signal condition), where each of them is affected by a phase shift while passing through 

, so that, in reception, the network analyzer takes charge of recovering the signal at 

. The mathematical expression for this signal is obtained from the RF component in 



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is also a pending task for ABCM, because as we observe from 

plitude recovered are not 

would be a very complex procedure trying to 

Now, we will describe two of the most popular techniques for dispersion measurement: 

Shift Method (MPSM) and Peucheret`s Method, whose operating principles 

served as inspiration and conceptual basis for the new methods featured in this PFC. 

obtains the group delay response of a device under test (DUT) by measuring the change 

in phase of a sinusoidal radio frequency (RF) modulation envelope as the wavelength is 

. The optical source is a tuneable laser. 

Zehnder Modulator in 

pull configuration, and recovered by an optical receiver. Phase data are recovered by 

 

techniques which use RF modulation, it applies an amplitude 

modulation on the optical signal to generate two major sidebands on the carrier (considering 

small signal condition), where each of them is affected by a phase shift while passing through 

, so that, in reception, the network analyzer takes charge of recovering the signal at 

the RF component in (16)  




−

                  (20)
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Figure 2.

From the signal above, the 

difference between the optical phase shifts acquired by the two major sidebands. 

                                                                      

After that, we approximate the group delay at the operating wavelength from this electrical 

phase, as it is explained below:

                                                               

where the first factor is defined as the fractional cycle of RF phase shift (expressed in degrees) 

and the second factor represents the period of the RF sine wave. 

Now, by sweeping the optical wavelength with the

complete delay curve for the required bandwidth, and then, chromatic dispersion at the 

nominal wavelength is calculated by dividing the change of group delay by the wavelength 

change which stimulates it: 

In order to achieve accurate measures it is important to have a stable wavelength step size, 

which completely depends on the tuneable laser stability.

In expression (22) we can notice how the group delay and the measured electrical phase 

present opposite slopes.  

The phase of a sinusoidal signal can be interpreted as the argument of this signal when the 

time variable is equal to cero. For example, if we 

θ+ . The time delay presented in a sinusoidal signal can be defined as the time value which 

cancels the argument. For example, the time delay of 

these concepts, it is of extreme importance to highlight that when the group delay is estimated 
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2.6. Optical phase shifts inserted by the DUT 

 

 network analyzer will recover the electrical phase as the semi 

difference between the optical phase shifts acquired by the two major sidebands. 

                            2

−+ −=∆ φφφ
                                                         

, we approximate the group delay at the operating wavelength from this electrical 

phase, as it is explained below: 

                                                               m
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where the first factor is defined as the fractional cycle of RF phase shift (expressed in degrees) 

actor represents the period of the RF sine wave.  

Now, by sweeping the optical wavelength with the aid of a tuneable laser, we obtain the 

complete delay curve for the required bandwidth, and then, chromatic dispersion at the 

nominal wavelength is calculated by dividing the change of group delay by the wavelength 

   
λ
τ

λ
τ

∆
∆

≈= gg

d

d
D                                    

           

In order to achieve accurate measures it is important to have a stable wavelength step size, 

which completely depends on the tuneable laser stability. 

In expression (22) we can notice how the group delay and the measured electrical phase 

The phase of a sinusoidal signal can be interpreted as the argument of this signal when the 

time variable is equal to cero. For example, if we have ( )θω +tcos , the phase of this signal is 

The time delay presented in a sinusoidal signal can be defined as the time value which 

cancels the argument. For example, the time delay of ( )θω +tcos  is w/θ−
these concepts, it is of extreme importance to highlight that when the group delay is estimated 
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network analyzer will recover the electrical phase as the semi 

difference between the optical phase shifts acquired by the two major sidebands.  

                                                         (21)
 

, we approximate the group delay at the operating wavelength from this electrical 

                                                   (22)

 

where the first factor is defined as the fractional cycle of RF phase shift (expressed in degrees) 

tuneable laser, we obtain the 

complete delay curve for the required bandwidth, and then, chromatic dispersion at the 

nominal wavelength is calculated by dividing the change of group delay by the wavelength 

                                 (23) 

In order to achieve accurate measures it is important to have a stable wavelength step size, 

In expression (22) we can notice how the group delay and the measured electrical phase 

The phase of a sinusoidal signal can be interpreted as the argument of this signal when the 

, the phase of this signal is 

The time delay presented in a sinusoidal signal can be defined as the time value which 

w . Having in mind 

these concepts, it is of extreme importance to highlight that when the group delay is estimated 
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based in phase measurements, is necessary to invert the sign of the phase before computing 

it. 

2.2.7 Peucheret`s Method 

Peucheret`s method uses the same setup as MPSM, so, the detected power at RF frequency is 

also the one of expression (20); however, instead of measuring the signal’s phase, it focuses on 

the amplitude term. As it was explained before, chromatic dispersion is strongly related with 

the phase shifts at the sidebands, and in this case, we will attempt to calculate it from the semi 

sum of these phase shifts which is contained into the RF amplitude term.  

Nevertheless, due to the channel noise, insertion loss and other signal attenuation factors, it 

would be necessary to have extremely accurate equipment and a very reliable calibration 

procedure if we want to measure the exact amplitude value. This is why Peucheret’s method 

operates on the envelope’s dips. In order to obtain these dips, Peucheret proposes to carry out 

a RF Frequency sweep on the setup. The mathematical analysis will be first conducted for the 

case where no amplitude distortion coming from the DUT is relevant, and then it will be 

extended to consider a relevant amplitude distortion coming from the DUT.  

Once again we start the analysis from expression (20): 
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To obtain a “zero” in the amplitude term, we have: 

 

 

                                                                                              (25) 

As we know from, dispersion theory: 

 

                                                                                               (26)
 

Therefore, replacing expression (25) in (26) results: 

 

                                                                                                                             (27) 

Now, we consider characterizing a DUT that inserts different amplitude attenuation levels at 

each frequency component. The mathematical analysis for this situation was also made in 

section 2.2.2. Here, we get the RF modulating signal from expression (19): 
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(28)
 

It is inferred that we reach an amplitude dip when the cosine function takes its minimum value 

(-1), so we have: 

 

 

We notice we are under the same condition than for the non-amplitude degradation DUT and 

therefore, expression (27) is still valid to calculate chromatic dispersion coefficient. Thus, this 

analysis confirms Peucheret’s method robustness for characterizing this kind of devices, in 

contrast to MPSM.  

Nevertheless, there is an important problem in Peucheret’s method, which is the fact that 

depending on the amount of dispersion introduced by a determined DUT, the RF frequency 

needed to reach a dip could be too high; therefore, a very large sweep will be required to find 

it. Moreover, the use of high frequencies on the setup presents two main inconveniences: it 

may occur that equipment available cannot operate at those frequencies; and also, it is known 

that increasing the RF Frequency level implies moving the sidebands even further from the 

carrier losing resolution and accuracy in calculations. 

Peucheret tries to solve this problem by including a constant dispersion offset before the DUT 

in the setup, so the amount of total dispersion to measure increases so that the dip can be 

reached by using a lower RF frequency, and the level of dispersion desired is now the change 

in the total dispersion (DUT and offset). However, this procedure relies too much on dispersion 

offset’s stability during the entire process, which is hard to reach in highly dispersive channels. 

2.3 Dispersion Compensating Elements 

2.3. 1 Dispersion Compensating Fiber 

The Dispersion Compensating Fiber or DCF is simply a spool of a special type of fiber that has a 

very large negative dispersion, that is, a group delay spectrum with a negative slope. This 

amount of dispersion is several times the one of a conventional fiber. Thus, if we place a 

determined length of DCF after an optical fiber link, we can compensate the dispersion 

accumulated along the link.  

DCF presents some inconveniences. First, 1 Km of DCF with a typical nominal dispersion of -200 

ps/nm·km just compensates 10-12 Km of standard SMF (G.652). Also, the attenuation caused 

by this compensating element at 1550 nm is as large as: three times that in standard fiber. 

Third, because of its reduced modal diameter, the optical intensity inside the fiber is so high 

that there is an accentuation of nonlinear effects.  
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Additionally, although DCFs seem to have a wide wavelength band suitable for WDM 

applications, their nearly constant dispersion – slope across a large operational optical 

wavelength band pass does not exactly balance the group delay spectrum of SMFs. Thus, while 

DCFs neutralize the effect of chromatic dispersion at a single wavelength, a group of 

wavelengths away from that wavelength will be either under- or overcompensated for 

dispersion. This effect is known as the “Dispersion-slope mismatch”. 

Nowadays, there is work in improving the performance of DCFs. There are new DFCs based in 

structure of bimodal fiber, reaching a nominal dispersion of approximately -770 tu/Yw x
�w with the same loss as a standard SMF. 

2.3.2 Chirped Fiber Bragg Grating 

 Chirped Fiber Bragg Gratings (CFBG) are considered the best option to cope with chromatic 

dispersion effects, due to their low-insertion loss and simplicity to be integrated and 

fabricated. 

A FBG consists on a short fiber section which reflects certain wavelengths and transmits the 

others. This is achieved by changing periodically the media’s refraction index, because, 

according to Fresnel equations (from which Bragg wavelength O� is deduced), the light 

traveling through a determined media with different refraction indexes could be reflected or 

refracted. So, the grating period behavior must be such that the wavelength reflected fulfills 

the relation: O�=2Y�Δ. 

It is important to mention that FBGs also experience the Dispersion-slope mismatch explained 

for DCFs. 

 

   Figure 2.7 Fiber Bragg Grating operating principle 

 

In CFBG (Chirped FBG), unlike UFBG (Unchirped FBG), the induced refraction index does not 

have a sinusoidal variation with constant period, but the period becomes progressively shorter 

along the grating length.  

Due to the fact that the fiber`s dispersion coefficient in the third window is positive, when the 

wavelength increases the delay suffered increases too. To compensate this effect, it is 

necessary to make the larger wavelength travel shorter distances and the opposite way. This 

procedure makes possible to recover the original wave form at the system’s output. 
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2.4 VPI Simulation Tool 

VPI is a powerful tool which not only lets us verify designs and to evaluate new components 

but also to investigate and optimize new technologies. 

Here we will explain some of the basic concepts and operating principles of this software, in 

order to clarify some terms used in the development of the present project, and also to 

understand how the software is structured and how to define certain basic parameters to 

achieve successful simulations. 

2.4.1 Signal Representation 

In VPI, data exchange can be organized in two different ways: in blocks or by transmitting 

individual samples. 

The Block Mode is the most efficient form of simulation, as modules are only fired when data 

passes through them, and it is more suitable for system simulation where components are 

widely – spaced compared with the modeled time, or where the signals flow unidirectionally, 

from transmitter to receiver. Through this mode, each module generates samples which are 

packed into a block which, once completed, will be passed to the following module for its 

respective processing. 

The Sample Mode is the modality requiring more simulation time; nevertheless, it is also the 

one allowing more flexibility when designing systems. In this case, each module passes the 

data to the following one in a sample – by – sample scheme, meaning that different modules 

may be executing at the same time. This mode is necessary when the delay between the 

modules is much shorter than a block length, making necessary a fast communication between 

them in order to fully simulate their joint behavior.  

In this project the Block Mode was used since signals flow unidirectionally from transmitter to 

receiver. Additionally, Block Mode enables the use of the duality between representations in 

the time and frequency domains which is a very useful tool allowing us to fully understand 

simulations results. 2.4.2 Global Parameters  

Global parameters are common to all modules within a simulation. These values have a big 

importance for the correct and efficient operation of the simulator. In this section, we will 

describe the two global parameters with direct influence on simulation performance while 

working on the Block Mode: 

• TimeWindow: this value sets the period of real time that is represented as a block of 

data. Additionally, this time will inevitably fix the spectral resolution of the simulated 

signals setting, i. e., the resolution of spectral displays.  

• SampleRateDefault: it specifies the sampling frequency when working in block mode. 

It is defined as the number of samples taken by second and determines the maximum 

frequency that can be simulated. 

These parameters define the frequency and time resolution respectively; therefore, they will 

depend on the desired simulation frequencies which will vary depending on the experiment.  
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2.4.3 Restrictions on Global Parameters 

Since VPI works with the FFT algorithm, when working with periodic signals a series of 

restrictions, which are consequence of making use of this algorithm, have to be considered. 

First, the number of samples by Time Window has to be a power of two. This condition sets a 

limitation when selecting the Time Window and the Sample Rate, since the product of these 

two variables results in the number of samples, as it appears in expression (29). 

                                         
no SampleRateTimeWindowsamplesn 2=⋅=                               (29) 

Additionally, it has to be considered that the time resolution, given by (30), will determine the 

maximum allowed simulation frequency which is given by (31). 

          
DefaultSampleRate

dt
1=                                             (30) 
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DefaultSampleRate

dt
f =<                                     (31) 

Finally, the frequency resolution will be given by expression (32). A proper selection of the 

Time Window is required in order to obtain a correct signal frequency spectrum. At the same 

time, the Time Window determines the minimum allowed simulation frequency given by 

expression (33), since the period of the simulated signal always has to be smaller than the 

Time Window ( TimeWindowT < ). 

 

 

                                                             TimeWindow
f

1
min >

                                             (33)
 

2.4.4 Module Parameters 

When a module is placed on a schematic, an instance of the module is created. Each instance 

can carry unique values for the module’s parameters.  

The values of the parameters can be edited using the Parameter Editor. 

The parameters are grouped in categories and every parameter belongs to a single category. 

Categories are displayed as folders within the parameter editing panel. In this PFC we have 

only worked and modified Physical parameters which describe the structure of a device. 

For modifying a parameter, it is only necessary to change its value in the corresponding cell 

and to click the Apply button to make it valid. A Parameter Editor can be kept opened while 

TimeWindow
df

1= (32) 
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running a simulation, but parameter values are only updated at the start of each simulation 

run.  

2.4.5 Sweep Configuration 

To detect the influence of specified parameters on the techniques' behavior, VPI offers the 

possibility of performing parameter sweeps; so we can monitor the system's performance for 

different parameter settings.  

VPI allows the creation of explicit parameter sweeps form the Parameter Editor of the module 

containing the parameter to be swept. To create this type of sweep it is necessary to just open 

the Parameter Editor of the module containing the parameter to be swept, to right – click on 

the desired parameter and to select “Create Sweep Control”. 

This will bring about a “Define Control” window where it is possible to define the type and 

range of the sweep. There are four different control modes: continuous, list, random and 

expression, but only one of them is used during this project, which is Continuous Mode. In this 

mode it is necessary to specify the control variable’s name, the upper and lower limits of the 

sweep as well as the division type (Number of Steps, Step Width, or Percentage of the upper 

limit minus the lower limit) and the division value (steps that a sweep will increment in). 

 

Figure 2.8 Sweep Control Panel 

2.4.6 Simulation example 

Now, in order to put all the concepts explained above into practice, we will simulate the 

transfer function of an Asymmetric MZ modulator, which is a fundamental element in this PFC. 

• Setup 

Since we want to obtain the transfer function, we do not insert RF signal into the MZ 

modulator; meaning that the amplitude of the RF source is set to “zero”. Additionally, it will be 

necessary to perform a bias sweep. We create a sweep control for the amplitude of the DC 

source. 

Control Mode

Sweep definition

Nome of the
control variable

Control Mode

Sweep definition

Nome of the
control variable
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The modulator’s output is entered into an optic – electric (OE) converter, which, is acting just 

as a square – law power meter. After that, the OE converter output gets into an “Electrical 

Power Meter”, which measures the mean power of the DC component.  

Additionally, we will use the 
 XY module to plot the mean DC power versus the bias voltage, 

which is obtained through an “Electrical Power Meter” connected to the output of the DC 

source. 

The setup is shown in Figure 2.9. 

 

Figure 2.9 VPI simulation setup for measuring the transfer function of a MZM in Asymmetric 

Configuration 

 

• Configured Parameters 

For performing this simulation, we need to configure the following parameters: 

- Global parameters: 

  

TimeWindow: it is set to 1280 nsec to allow a frequency resolution of 6.25MHz, and a 

minimum simulation frequency of 6.25 MHz. 

SampleRateDefault: it is set to 256e8 Hz allowing RF frequencies until 12.8 GHz.  

 

Selecting these values of time window and sample rate, we are working with 4096 samples by 

time window. 
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Figure 2.10 Configured Global Parameters 

- General parameters: we have placed as general parameters the emission frequency of 

the laser (Optical_Freq_Start), which has been set to 192.4 THz (1559.25 nm), and the 

RF frequency (RF_Frequency), which has been set to 2 GHz (see Figure 2.11).  

 

Figure 2.11 General Parameters 

- Laser: the physical parameters of the laser are shown in  

- Figure . The emission frequency was set to the Optical_Freq_Start (192.4 THz), the 

sample rate was set to the SampleRateDefault (256e8 Hz), and the average power was 

set to 1 mW. 

 

Figure 2.12 Physical parameters of the Laser 

 

- RF Source: as explained before, the amplitude of the RF signal was set to zero. Even 

though other parameters as the SampleRate and the Frequency have no physical 

effect because the amplitude of the signal is zero, it was necessary to specify their 

values, which have been set to the SampleRateDefault and the RF_Frequency (see   

- Figure ). 
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Figure 2.13 Physical parameters of the RF Source 

- Modulator: in this module we modified the values of DCV _π  and RFV _π  which are the 

DC and RF voltages respectively, required into each particular electrode, to yield a 

phase change of π  in the optical signal. Therefore, these values correspond with the 

electrode sensitivity ( cV ). Consequently, to mimic the modulator used in the 

laboratory, we set both sensitivities to 3.5 volts.  

It is important to clarify that, VPI defines both sensitivities (lower and upper) equal, 

even though, experimentally, each branch of the modulator could have different cV .  

In this case the “LowerArmPhaseSense” parameter does not have any effect, since the 

lower arm of the interferometer is disabled. 

 

Figure 2.14 Modulator physical parameters 

Then, for obtaining the modulator transfer function, we performed a bias sweep from 0 to 7 

volts with a step width of 0.1 volts. 
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Figure 2.15 Bias sweep configuration 

 

• Results 

 

 

Figure 2.16. Transfer Function of an Asymmetric MZ Modulator 

 

Figure 2.16 shows the MZ modulator transfer shows the MZ modulator transfer shows the MZ 

modulator transfer function in an asymmetric configuration. It corresponds with the DC 

component of (47), where the half – wave voltage is equal to the sensitivity of the electrodes 

(3.5 volts), as it has been demonstrated in section 2.2.1.2.
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3. ASYMMETRIC-MODULATION BIAS CONTROLLED METHOD (ABCM) 

3.1 Description and Mathematical Analysis 

This first technique is devoted to verify that we can accomplish a high degree of accuracy when 

we calculate chromatic dispersion using a RF modulated signal’s amplitude term instead of the 

phase term. 

 In the same way as in Peucheret’s method, the idea consists on finding the envelope dips 

(where the sinusoidal argument takes a well-known value); and then, through a direct 

mathematical development, the total amount of dispersion can be calculated. However, in this 

case no RF Frequency sweep is required. We will choose a fixed frequency appropriately and 

we will make a bias voltage sweep instead.  

 

 

Figure 3.1 ABCM basic setup 

 

The setup used in this method consists on a laser source operating at a fixed wave length (third 

window) whose output gets into a Dual drive Mach-Zenhder Modulator in asymmetric 

configuration. The optical signal is not altered at the modulator’s upper branch, while at the 

lower branch, it is phase modulated by a RF tone inserted together with a bias voltage. The 

sum of both branches’ signals results in an amplitude-modulated signal. 

The modulator’s output passes through the DUT, where it acquires the phase shifts, and then 

through the detector, obtaining expression (17) as we already verified in section 2.2.2: 
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The first term is the DC component and the second one is the RF first harmonic. Analyzing this 

second term we notice that in the amplitude factor the cosine function depends exclusively on 

the bias voltage value; so that it yields “zeros” in fixed locations: 
¤ = �2nC1�
¥; however, the 
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sine function depends on the semi sum of the phase shifts at both sidebands as well. 

Dispersion information is contained in this last term, so we need to determine the location of 

the zeros yielded by the sine function, defined as “moving zeros”, to calculate g value. 

In absence of dispersion (no phase shifts in the sine’s argument), the moving zeros will be 

located at 
¤  = 2Y
m, therefore, under dispersion effects, these zeros will be shifted a certain 

distance from these reference locations positively or negatively, according to the dispersion’s 

magnitude and sign. 

To explain the complete procedure to calculate the chromatic dispersion, we start looking for 

an expression that relates the sum of phase shifts term with g value.  

The phase shifts inserted at both sidebands can be expressed using the Taylor Expansion 

defined in 

                                                  £b � £
 ; UT�Δ�� C MI k]_`]� l �Δ��I                                        (34) 

                                              £� � £
 ; UT�;Δ�� C MI k]_`]� l �;Δ��I                                     (35) 

                                                      
]_`]� � ; Im\��h g � ; j�hIm\ g                                              (36) 

Note that in contrast to section X where all quantities were given as distributed quantities 

along the fiber length, here we consider the total dispersion (after multiplying by total length). 

Applying expression (7) we have: 

Then, replacing (36) in expressions (34) and (35) and forming the sum of phase shifts term, we 

obtain: 

                                                    £b C £� ; 2£
 �  ∑ £ � Im�j�hR̈ h\                                       (37) 

where O
 is the operating wave length, P¢ is the RF tone frequency and c the velocity of light in 

vacuum. 

Now, in order to get an amplitude dip (zero), the sine’s argument must be equal to nN, so we 

have: 

£b C £�2 ; £
 C ~�2 � nN 

                                                            £b C £� ; 2£
 C ~� � 2nN                                            (38) 

where ~� � m
<�


� . Thus, if we replace expression (37) in expression (38), we obtain the exact 

locations of moving zeros and the final expression to calculate g: 

2NgO
IP¢I

Z C N

m


� � 2nN 

                                                        
� � �2Y ; Ij�hR̈ h
\ g� 
m                                             (39) 
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                                                               � g = k2Y ; <�<�l \Ij�hR̈ h                                             (40) 

where 
� is the voltage neccessary to get the Y�ª moving zero,  P¢ is the RF frequency, and Z 

and O
 are the velocity of light and the operating wavelength respectively. 

In this analysis, according to the setup, we considered that the RF modulating signal and the 

Bias voltage are inserted into the same electrode, however if we decide to use a different 

electrode for each one, the final expression obtained will be the same as in (40), but with a 

plus sign instead of the minus one. 

We notice how the level of accuracy in g calculation depends on the Bias voltage step width 

(
�sweep resolution) and the RF frequency chosen. In numerical terms, a 0.01 V error in 
� 

measurement represents approximately a 180/P¢I ps/nm error in g calculation (with P¢ in 

GHz, Z � 3¬10­w/u and O
 = 1559 nm). Therefore, once we have fixed a proper Bias voltage 

resolution (conditioned by equipment available), we can minimize the error yielded in 

measurements by choosing a high enough RF frequency, but then the taylor approximation for 

the dispersion may fail because we would get too much far from the optical carrier (See 

expression (34) and (35)). 

The explanation above tries to establish the lower edges for both bias voltage resolution and 

RF frequency; however, there are also some restrictions which do not allow increasing these 

parameters too much.  

In the case of the bias voltage resolution, after a determined level, if we keep reducing the 

step width, there will be almost no improvement in g resolution, but there will be an 

unnecessary extra processing charge.  

In terms of RF frequency, if we look back to expression (40), we observe that for big dispersion 

values, the frequency must be low enough to avoid the bias voltage corresponding to the Y�ª 

dip gets too much close to ®Y
m (depending on dispersion sign), because if so, it will be 

difficult to distinguish the “moving zeros” from the “fixed zeros”. 

 

3.2 VPI simulations 

This section is devoted to illustrate and verify the mathematical analysis’ results obtained for 

the ABCM, working in an ideal simulation schematic (noise-free transmission channel, no 

equipment limitations, etc), and it also gives us the chance to analyze the method’s behavior 

while we change its different parameters, so that we can identify the operation edges for each 

case.  In this purpose, we will expose the complete process to carry out ABCM using this 

powerful simulation tool.  

On a first stage, after making a Bias sweep, VPI will return Amplitude-vs-Bias graphics where 

we can easily locate the amplitude dips, obtain the respective bias voltages; and finally by 

applying expression (40), calculate D value.  
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On a second stage, in order to observe

parameter, VPI provides us multidimensional sweeping options

modules, which allow the processing and storage of large amounts of data samples.

It is also important to highlight that

modulator in asymmetric configuration

2.2.1 and whose transfer function was already obtained

 

3.2.1 Analysis of the dispersion 

Figure 3.2 VPI setup for ABCM

section   5- DC source 6- Photodetector 7

 

In this first part, we will use t

bias graphic for three specific situations:

positive and negative dispersion,

By this analysis, we want to

distance from each other, and 

We will make a bias sweep from 

We fill the setup’s parameters

changes: 

• RF amplitude is set to 0.03 V and 

• The fiber section, when 

value equal to 17 

• The Phase Detector’s 

New methods for measuring and monitoring chromatic dispersion in optical communication systems

On a second stage, in order to observe the method’s behavior when we vary

us multidimensional sweeping options and Text Visualization

modules, which allow the processing and storage of large amounts of data samples.

is also important to highlight that along this section all setups will use a Mach 

modulator in asymmetric configuration, whose operation method was described in section

transfer function was already obtained using VPI.  

the dispersion inserted by the DUT 

ABCM: 1- Optical source 2- Sine function generator 3

Photodetector 7- Phase and Magnitude detector 8

st part, we will use the setup featured in Figure 3.2. We will display an 

three specific situations: when the setup includes a DUT (fiber

positive and negative dispersion, and without the DUT.  

to identify the “moving zeros”, verify they are separated a

, and observe the shift caused by the dispersion effect. 

e will make a bias sweep from -1 to 8 V with a step width of 0.01 V and a fixed RF fr

setup’s parameters with the same values as in section 2.2.6.6, except

amplitude is set to 0.03 V and RF frequency will be 2GHz. 

, when required, will have 80Km of length and a dispersion

, which makes a total dispersion of  

s frequency must be set to the RF frequency (2GHz
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the method’s behavior when we vary a determined 

and Text Visualization 

modules, which allow the processing and storage of large amounts of data samples. 

will use a Mach – Zehnder 

, whose operation method was described in section 

 

generator 3- MZM 4- Fiber 

Phase and Magnitude detector 8- 2D Analyzer  

. We will display an amplitude-vs-

fiber section) with 

identify the “moving zeros”, verify they are separated a  

effect.  

a fixed RF frequency. 

, except for a few 

and a dispersion-per-meter 

 

frequency must be set to the RF frequency (2GHz). 
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Results 

 

After running these three simulations (DUT with null, positive and negative dispersion, and 

2GHz RF frequency), the graphics obtained are shown in figure Y. On the top, we have the 

result for a non-dispersive DUT simulation. The graphic is a rectified sine function ( )Bθsin , 

where the amplitude dips (both fixed and moving zeros) are located at 
� = 0, ® 
m,  ®2
m,  ® 3
m,... This behavior is verified in section 3.1, where we concluded that in absence of 

dispersion (no phase shifts at the sidebands nor at the carrier), the amplitude term will be only 

composed by the product of two bias-dependent sinusoidal functions: 

 

 � cos :~�
2 @ sin :~�

2 @ ¯ �
2 sin�~�� 

 

 

Otherwise, the graphic on the center, which corresponds to the DUT with positive dispersion, 

lets us distinguish the fixed and moving zeros. The first ones, as in the previous simulation, are 

located at 
� � ® 
m,  ® 3
m,  ® 5
m  … (odd positions). However, the moving zeros have 

suffered a certain shift to the left from their reference positions 
� � 0, ®2
m,  ® 4
m, ... (even 

positions). This shift is due the phases sum term within the sine function argument, as 

explained in section 3.1. Therefore, the amplitude term results: 

 

 

Acos �~�
2 �sin �£b C £�

2 ; £
 C ~�
2 � 
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Figure 3.3 Amplitude-vs-Bias graphics for:  a. null dispersion (top)   b. Positive dispersion 

(center)   c. Negative dispersion (bottom). Fixed zeros in blue, moving zeros in red 
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Finally, the graphic on the bottom was obtained using a DUT with negative dispersion. Its 

behavior is similar to the previous case except for the fact that the moving zeros have 

displaced to the right this time. Therefore, it verifies that expression (40), used for g 

calculation, contemplates the sign of dispersion. 

 

In general, the moving zeros play an essential part in ABCM, as we only need to identify their 

locations in the Bias voltage axis and directly replace these values in expression (40) to 

obtain g. 

 

If we look at the zoomed-in image in Figure 3.3.b, we notice that the shift suffered by the 

moving zeros is equal to -310 mV. Thus, if we replace this value in expression (40) for  Y �  0, 

we have: 

 

g � :0.313.5 @ 3¬10­2¬1559.25I4I 

 

g �1366 ps/nm 

 

We observe that the dispersion calculated has an error equal to 6 ps/nm (0,44%) with respect 

to the nominal value, which can be included within the acceptable error range. 

We also observe from setup in Figure 3.2 that in all these simulations both the bias voltage and 

the RF tone are input through the same electrode. Nevertheless, in the mathematical 

development we verified that it is also possible to apply both signals through different 

branches, and we will then use expression (40) with the opposite sign. 

Figure 3.4 features the Amplitude-vs-Bias graphic obtained for a DUT with positive dispersion 

using only one electrode. We notice how the moving zeros have suffered a shift of the same 

magnitude as in the previous case but to the opposite direction. This fact explains the sign 

change in expression (40). 
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Figure 3.4 Amplitude-vs-Bias graphic for Positive Dispersion inputting Bias and RF tone through 

different branches. Fixed zeros in blue, moving zeros in red 

 

We ran the same schematic but considering a 6 GHz RF Frequency this time. Figure 3.5 

provides the resulting amplitude-vs-bias graphic (we kept the DUT’s nominal dispersion equal 

to 1360 ps/nm). 

 

 

Figure 3.5 Amplitude-vs-Bias graphic for a 1360 ps/nm nominal dispersion with a 6GHz RF 

frequency. Fixed zeros in blue, moving zeros in red 

 

 

 



 

As it is shown in Figure 3.5, t

replace this value in expression

  

Dispersion value obtained in this case a

(1360 ps/nm) as compared to

section 3.1, where we stated that

closer to the nominal value as we increase 

 

3.2.2 Analysis of the effect caused by 

 

Figure 3.6 VPI setup for ABCM

 

In this section, we will run the 

3.6, to evaluate its performance in

conditions. For this purpose, we will make use of

VPI’s Sweep Control.  

The innermost loop will always be the

width, to obtain the “n = 0” 

Asymmetric-modulation bias controlled

, the moving zeros’ shift in this case is equal to -2.78 

expression (40) considering the new RF frequency, it results:

 

1361 ps/nm 

ispersion value obtained in this case approximates better to the nominal dispersion

(1360 ps/nm) as compared to the 2 GHz simulation. This behavior matches with the analysis in 

, where we stated that if we keep the same Bias voltage resolution,

minal value as we increase RF frequency. 

sis of the effect caused by the setup’s main parameters 

ABCM (Second stage). Highlighted with discontinuous line: 

module 

In this section, we will run the ABCM while varying some key parameters of the setup in F

to evaluate its performance in different contexts and identify the best operating 

conditions. For this purpose, we will make use of the bidimensional sweep option

innermost loop will always be the bias voltage sweep from -3.5 to 0 V with a 0.01 V step 

 dip on each run; while the outermost loop will be the studying
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2.78 V.  Thus, if we 

, it results: 

nominal dispersion value 

s with the analysis in 

if we keep the same Bias voltage resolution,  value gets 

Highlighted with discontinuous line:  Text 

ers of the setup in Figure 

and identify the best operating 

the bidimensional sweep option provided in 

3.5 to 0 V with a 0.01 V step 

outermost loop will be the studying 
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parameter sweep, where the start point, stop point and step width will be properly chosen to 

illustrate the system’s behavior in the best way.  

A Vi-Text module will save the resulting data using, generating a .txt file output with the bias 

voltage and amplitude samples. Finally, a MATLAB program will take charge of processing this 

file to obtain and plot a vector with the chromatic dispersion values for each sample of the 

analyzed parameter. 

 

3.2.2.1 RF Frequency Sweep 

RF frequency is a key parameter in what respects to ABCM accuracy level. We observe in 

expression (40) that this parameter together with the bias voltage resolution is directly related 

to the dispersion resolution. Thus, in this analysis, we will prove that the dispersion value 

calculated will be closer to its nominal value as we increase the RF frequency, considering that 

bias step width is fixed at 0.01V. We must consider that as we are working with an ideal 

characterization of dispersion, the Taylor approximation is valid no matter how far we get from 

the carrier frequency (RF Frequency can be as high as we want). 

Therefore, we will need to obtain the zero-amplitude bias for each RF frequency sample, from 

200MHz up to 6.2 GHz with a step width equal to 200MHz. This sweep configuration allows us 

to characterize the method’s behavior with good resolution but without increasing too much 

the processing time. 

Results  

The results obtained are featured through figures plotted in Matlab. Figure 3.7 shows the 

relation between the zero-amplitude bias (for n = 0) and the RF frequency.  We notice how as 

we expected from the theoretical analysis, expression (39), the curve decreases with frequency 

following a parabolic behavior (bigger variation for higher frequencies). This fact demonstrates 

why at the highest frequencies we are able to measure smaller chromatic dispersion values 

and still achieve a good accuracy levels with moderate bias resolution.  

We also observe that for this particular dispersion value, a 6.2GHz RF frequency implies a null-

amplitude bias equal to -2.96 V. Thus, since the bias voltage must be kept under 3.5 V to avoid 

a cross with the fixed zero, the maximum frequency allowed will be just a little further from 

this value. 
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Figure 3.7 Zero-Amplitude Bias-vs-RF Frequency Curve 

 

 

 

Figure 3.8. Chromatic Dispersion-vs-RF Frequency Curve 
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Figure 3.8 shows the relation between the RF frequency and the chromatic dispersion for a 

fixed bias resolution according to expression (40).  The graphic starts with a ‘0’ dispersion value 

for 200MHz, that is, 0 V represents the closest voltage to the zero-amplitude bias, for a step 

width of 0.01V.  

For the next frequency samples, dispersion values obtained differ a lot from the nominal 

dispersion value (1.36 ps/nm). Thus, if we want this technique to operate at these low 

frequencies, the bias resolution must be considerably increased.  

However, the curve acquires certain stability since approximately 1.4GHz, where the error 

from the nominal value is kept under 0.02 ps /nm. Although this error is already within the 

tolerable range, dispersion values keep getting even closer to the nominal value as frequency 

continues increasing.  Thus, we point out another “landmark” at 4.2GHz, where the error 

observed is kept under 0.003 ps /nm, demarking an almost optimum operating condition. 

 

3.2.2.2 RF Amplitude sweep 

The mathematical analysis for RF tone-based chromatic dispersion measurement techniques, 

states that the optical carrier modulation must be done under small signal condition, that is, 

the RF tone’s amplitude must be small enough to satisfy the approximation in expression (16). 

Nevertheless, the amplitude level must be kept high enough to face channel noise and devices’ 

insertion loss. In this section we aim at define an upper edge for the tone’s amplitude, and 

determine the effect of over passing it. 

In this case the outermost loop will be a RF amplitude sweep from 0.08 V to 2.08 V. The step 

width will be 0.08V, which means we will have a total of 25 amplitude samples (similar 

processing load than in previous simulation). Although this number of samples could not be big 

enough to carry out a good characterization, it is perfectly valid to identify the amplitude 

tolerable range and measure the error yielded by each sample. 

Results 

Figure 3.9 shows the null amplitude bias-vs-RF amplitude graphic obtained in this simulation. 

The curve has a decreasing behavior, experiencing several hops as we increase the amplitude 

level. We see how the first null-amplitude bias is located at -0.31 V, which matches with the 

value obtained in previous simulations as well as in the mathematical analysis (considering g = 

1.36 ps/nm, RF frequency = 2GHz). This bias value represents the longest step in RF amplitude 

domain, going from 0.08 V to 0.72 V. Therefore, we have just found a valid operation range for 

this parameter.  
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Figure 3.9. Zero-Amplitude Bias-vs-RF Amplitude Curve 

 

 

The main effect of the hops in Figure 3.9 can be analyzed in Figure 3.10. If we look at the 

curve’s shape we realize of the linear relation between the null amplitude bias and chromatic 

dispersion coefficient.  The dispersion value which corresponds to -0.31 V (first step) is equal 

to 1.366 ps/nm; that is, a 0.006 ps /nm error (0.44%). Thus, as we expected, this step is within 

the tolerable range.   

The second step, which at 0.8 with a -0.32 V null bias, yields a dispersion of 1.410 ps/nm, that 

is, a 0.5 ps/NM error (3,67%). This value is a little far away from the nominal dispersion, and 

for most chromatic dispersion compensating systems it is considered out of the acceptable 

range. The other steps are completely out of range with values that reach an error near 25% 

and must be dismissed. 
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Figure 3.10. Chromatic Dispersion-vs-RF Amplitude Curve 

 

3.2.2.3 Nominal Dispersion Sweep 

The final parameter to be studied is the nominal dispersion set on the DUT (a fiber section in 

this setup). We want to verify that ABCM keeps a good performance, no matter of the amount 

of dispersion to measure.  

Analyzing expression (40), since the RF frequency has a fixed value, the maximum and 

minimum dispersion values we can measure depend on the maximum (modulator’s 
m) and 

minimum (bias step width) values the null amplitude bias can take. However, we observe that 

if we choose a frequency within the range obtained in section 3.2.2.1 (1.5GHz- 6GHz), even if 

we set an extremely low or high dispersion value, the bias voltage required will be totally 

reachable. Therefore, this analysis will not focus on finding edges for the amount of dispersion, 

but on studying the nominal dispersion’s relation with bias resolution. 

In this case the outermost loop of the bidimensional sweep should be the DUT’s total 

dispersion. Nevertheless, unlike previous simulations, here we cannot handle directly the 

chromatic dispersion as an independent parameter. The dispersion parameter is defined by 

the product of the fiber’s length and the dispersion slope value. We have to choose one of 

these two parameters to be swept and the other one must be kept fixed. Thus, in order to 

simulate a real optical environment we decided to sweep the fiber’s length from 0 to 160 000 

meters with a step width of 5000 meters.  
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Results 

The curve in figure 3.11 features the expected linear relation between dispersion value and 

null-amplitude bias along the whole range. This behavior is also exposed in Figure 3.12 relating 

dispersion calculated with its nominal value. However, we realize that the curve has a slope 

scarcely over 1, and we can identify two “drop points” located at 0.68 and 1.87 approximately.  

 

 

Figure 3.11 Zero-Amplitude Bias-vs-Nominal Dispersion Curve 

 

 

Figure 3.12 Chromatic Dispersion-vs-Nominal Dispersion Curve 
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To give an explanation to the special features highlighted above, we must focus on the bias 

voltage resolution and evaluate its effect on the dispersion calculation replacing it in 

expression (40).  

If we consider that the bias samples are separated 0.01V, we know that the maximum error 

contemplated in the bias measurement will be of 0.005 V, which means a 0.022 ps/nm error. 

This value is exactly the highest difference observed in the graphic between the dispersion 

calculated and its nominal value, that is, the dispersion value calculated is rounded up until it 

overpasses this limit (at the drop points) where it is rounded down and so on. 

Therefore, this analysis verifies the fact that there is no other issue with the nominal 

dispersion additional to the error related with the bias resolution. Moreover, this error itself is 

not a big inconvenience for calculations, as it is kept within a tolerable range (+- 0.022 ps/nm ).          

      

3.3 Experiments 

3.3.1 Laboratory Equipment 

Next we will describe the devices used in ABCM’s setup  

3.3.1.1 Optical and Electrical Sources  

3.3.1.1.1 Laser New Focus 6427 

This device (Figure 3.13) will be the light source to carry out chromatic dispersion 

measurement in ABCM. It is a tunable laser and it also features control of the output power up 

to 7 dBm. It can be connected to a PC through a GPIB port, so that its parameters can be 

controlled remotely, which will not be necessary in this experiment as we work on a fixed 

optical frequency.  

 

 

Figure 3.13 Laser New Focus 6427 
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The most relevant technical features of New Focus 6427 are shown in Table 3.1. 

 

Laser NEW FOCUS 6427 

Optical BW  1520 - 1570 nm 

Optical Power -3 - 7 dBm 

Connetor Type FC/APC 

 

Table 3.1. NEW FOCUS 6427 Features. 

 

3.3.1.1.2 Programmable DC Source PROMAX FA-851 

This instrument (Figure 3.14) will provide the DC voltage to be inserted in the modulator as the 

bias voltage. It will be connected to the PC through its RS-232 port, so that a Matlab program 

will automatically set the bias voltage to be inserted into the modulator along the whole bias 

sweep. This procedure will be required for both the Transfer function and ABCM. 

In addition, since it has 3 power supply outputs available, it will also feed up the O/E detector. 

 

 

 

Figure 3.14 FA-851 
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3.3.1.2 Optical devices 

3.3.1.2.1 Modulator FUJITSU FTM7921ER/052 H74M-5208-062 

Fujitsu FTM7921ER/052 H74M-5208-062 (Figure 3.15) is a dual drive modulator which has an 

input for each of its two interferometric branches. In this experiment we will work on the 

modulator’s asymmetric configuration, that is, we will apply the bias voltage and the RF signal 

through the same input while the other one stays in open circuit. 

This modulator disposes of two arms with SMA adapters which are bind to the electrodes 

through a GPO connector. We will only use one of them, so the bias voltage and the RF signal 

will be inserted together through a bias-tee.  Since the electro-optical effect by which the light 

gets modulated in the MZ modulator is polarization dependent, the input fiber to the Fujitsu 

modulator is polarization maintaining (PM), meaning it only allows the propagation of one 

specific light polarization, so that we will require a polarization controller in order to minimize 

the insertion loss. 

Since standard fiber presents a cylindrical symmetry, the light beam can be polarized on any 

direction perpendicular to its axis. Thus, some devices include a polarization preserver fiber 

with cylindrical section at the input, so that light’s polarization follows a determined fixed 

direction. In fact, this preserver fiber will reduce or suppress the light component with 

polarization in the perpendicular direction. This fact implies a power loss if the input 

polarization doesn’t match with preserver fiber polarization.  

 

 

 

Figure 3.15 FUJITSU FTM7921ER/052 H74M-5208-062 
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The most relevant technical features of this modulator can be observed in table 3.2. 

 

FUJITSU FTM7921ER/052 H74M-5208-062 Modulator 

Optical BW  1530 - 1608 nm 

Electrical BW 8.5 GHz 

Electrode Impedance 50 Ω 

Insertion Loss (IL) 6 - 7 dB (según banda) 

VΠ (Vmax - Vmín) 4 V 

Optical connectors type FC/UPC 

 

Table 3.2. FUJITSU FTM7921ER/052 H74M-5208-062 features. 

 

3.3.1.2.2 Polarization Controller 

In Fujitsu Modulator description we explained why a polarization controller is required to 

make the light at the input acquire a polarization very similar to the one of the PM fiber. 

In this setup our polarization control will be based on applying mechanic deformations to the 

standard fiber, as it is shown on Figure 3.16. As seen, the optical fiber coils up around each of 

three mobile parts with 180º rotation capability. As obtained in …, we will have to twirl the 

fiber twice at the mobile parts on the extremes and four times at the one on the center. 

 

 

Figure 3.16. Polarization Controller 
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3.3.1.3 Passive Devices 

3.3.1.3.1 Bias-tee 

This device (Figure 3.17) is required to insert both RF signal and bias voltage through the same 

modulator’s arm. It is just a kind of multiplexor which has 3 ports organized in a T distribution, 

so that the RF signal (which can go from 45 MHz to 26.5 GHz) an the bias voltage are entered 

through two different SMA connectors and get out together through an only one output 

connected to the modulator. 

In conclusion, the bias tee lets us multiplex two electrical signals in the same cable, one in 

Radiofrequency and the other in DC.   

 

 

Figure 3.17. Bias tee 

 

 

3.3.1.3.2 Optical detector Agère 

This device (Figure 3.18) takes charge of transforming optical power received into an electrical 

current. In this process the carrier wave of the signal at the output of MZ modulator will be 

cancelled out and we will just keep the modulating wave. The detector’s output is connected 

to the Network Analyzer to measure the amplitude required for ABCM.  
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Figure 3.18. AGERE Systems 2860E 

 

The most relevant features of AGERE Systems 2860E are shown in table 3.3. 

 

Optical Detector OC-192/STM-64 

Optical BW  1280 - 1580 nm 

Optical BW 30 KHz-9 GHz 

Vcc (Power supply) 8 V 

 

Table 3.3.  AGERE Systems 2860E features 

 

3.3.1.4 Devices under test (DUTs)  

3.3.1.4.1 Fiber Brag Grating PIRELLI CDC-04074 

Fiber Brag Grating Pirelli (Figure 3.19) is designed to compensate for the amount of dispersion 

that 80 km of fiber would yield. These 80 Km are verified considering the device presents a 

1252.35 ps/nm total dispersion and under third window we estimate a 16ps/nm·km dispersion 

slope. 

KmlFIBER 8027,78
ps/(nm·km) 16

 ps/nm 1252.35 ≈==  

Since this is a dispersion compensating device, the sign of dispersion will be opposite to that in 

the fiber. 

This is a narrow band device as we can observe in the specifications (table 3.9). Nevertheless, 

since the laser New Focus 6427 has a tunable frequency set containing the FBG’s operating 

band, we will just have to adjust the laser output wavelength to the FBG band. 
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Figure 3.19. PIRELLI CDC-04074 

 

The most relevant features of the device are shown in table 3.4. 

 

Pirelli CDC-04074 

Optical BW  1557.27 - 1561.19 nm 

Nominal Dispersion 1252.35 ps/nm 

Insertion Loss 6.18 dB 

Connector Type FC/UPC 

 

Table 3.4. CDC-04074 features 

 

3.3.1.4.2 Chromatic Dispersion Compensating Fiber 

This is a very special type of fiber with much more dispersion than standard fiber and with the 

opposite sign. 

Unlike Pirelli FBG, the own fiber acts as the source of dispersion, thus, it has no restriction 

about optical bandwidth. It has FC/APC connector at both extremes; this is why we will need 

adapter fiber sections in between to connect it to the modulator in one extreme and to the 

optical detector in the other, since they both have UPC connectors. 
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Figure 3.20 Chromatic Dispersion Compensating Fiber 

 

The most relevant features of this device are shown in table 3.5. 

           

Dispersion Compensating Fiber 

Nominal Dispersion 671 ps/nm 

Insertion Loss (1575 nm) 5.15 dB 

Connector Type FC/APC 

Table 3.5. Dispersion Compensating Fiber features 

 

3.3.1.5 Measurement Devices 

3.3.1.5.1 Network Analyzer HP 8753D 

For the setup in this experiment we need a Network Analyzer. We will use a HP 8753D model 

(Figure 3.21). This device will let us carry out dispersion measurements required for ABCM.  

Besides taking charge of measurements, HP 8753D will be useful as a RF signal supplier 

through its port 2, and will be able to adjust its power and frequency. Therefore, binding in 

mind that the RF signal is obtained from port 1 and the output signal of the setup is inserted 

through port 2, we will work with parameter S21 in amplitude mode. 
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Figure 3.21 HP 8753D 

 

The most relevant features of the Network Analyzer as both measurer and signal generator are 

shown in tables 3.6 and 3.7 respectively. 

Network Analyzer HP 8753D (measurer) 

BW 30 KHz - 6 GHz 

Maximum input power  10 dBm 

Connectors type N 

 

Table 3.6. HP 8753D measurer features 

 

 

Network Analyzer HP 8753D (Signal Generator) 

BW 30 KHz - 6 GHz 

Maximum output power 10 dBm 

Mínimum output power - 15dBm 

Connectors type N 

Table 3.7. HP 8753D signal generator features 
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3.3.1.5.2 Optical Multimeter HP 8153A 

This device (Figure 3.22) is used specifically to make power measurements. This procedure is 

very important for instance to obtain Transfer Functions and to detect bad connections or dirty 

or damaged fibers in our setups.  

It has a GPIB port, so it can be connected to a PC and be controlled automatically through a 

Matlab program.  

This device, if configured in RMT (remote) mode, can be used together with another 

instrument to carry out Transfer Functions in an automatic way, all controlled by a very simple 

Matlab code.  

 

 

Figure 3.22 HP 8153A 

This device has an analog output through a BNC connector. This output is used by the 

multimeter to provide an output signal between 0 and 2 volts in relation to the received 

optical signal.  

The most relevant technical features of HP 8153A for our own application are shown in table 

3.8. 

Multimeter HP 8153A 

Optical BW  450 - 1700 nm 

Supported Error ±2.2% 

Power margin -110 - 27 dBm 

Connector type SC/UPC 

 

Table 3.8. HP 8153A features. 
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3.3.2 Experimental Transfer Function 

3.3.2.1 Setup 

To obtain the transfer function of the Mach-Zehnder Modulator used in this experiment we 

need to deploy the setup shown in Figure 3.23. 

 

 

 

Figure 3.23 Experimental Transfer Function setup 

 

As we can see in Figure 3.23, first we must connect the modulator’s optical input to the laser 

source, its output to the optical multimeter, and finally its electrical input to the DC source.  

We must take into account that the modulator’s output connector is a FC/UPC, while the 

measurer’s input is a SC/UPC. Thus, we will need a fiber section in between with a FC/UPC 

connector in one extreme and a SC/UPC in the other.  

To carry out the transfer function, we will execute a matlab program, through which will ask 

the user for the start bias voltage, the end bias voltage and the step width. 

This program will automatically activate the DC source (since it is connected to the PC through 

its RS-232 port) and it will vary its voltage periodically. At the same time, the optical 

multimeter will be capturing the measures.  

Laser 

Polarization 
controller DC Source 

MZ 

Modulator 

Optical Multimeter 

PC 

RS-232 

   Electrical signal                Optical signal 
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If we want this procedure to be reliable, the code must be programmed in a way such that the 

multimeter carries out several (in our case we set it to 3) measurements for each bias voltage 

sample and then obtains the mean of them. 

The power measures obtained will be sent to the PC through GPIB port to make all the 

necessary calculations. 

Finally, the matlab program will feature the results obtained on a power-vs-bias graphic, and it 

will save the data in a .txt file. 

Next section is an example of a transfer function following this procedure. 

3.3.2.2 Transfer Function for FUJITSU Modulator 

It is important to bind in mind that this is a dual drive modulator, that is, it has two electrical 

input connectors. Since in this case we will use the modulator is its asymmetric configuration 

and the signal phase will not be varied at one branch, we will keep one connector in short 

circuit, and on the other we will insert the DC voltage to carry out the bias sweep. 

Here we show the final Transfer Function obtained (including the polarization controller) (see 

Figure 3.24). 

 

 

 

Figure 3.24  FUJITSU FTM7921ER/052 H74M-5208-062 
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FUJITSU Experimental Features 

Vπ (Vmax - Vmin) 7,6 - 4,23 = 3,37 V 

QP (Vmax - Vmín)/2 1,685 V 

ER 19 dB 

Table 3.9 FUJITSU Experimental features. 

 

3.3.3 ABCM Experiment 

3.3.3.1 General description 

To carry out the laboratory experiment for ABCM - SC we will design a setup based on the one 

in Figure 3.2, adapting it to a real environment with the equipment available. The setup is 

shown in Figure 3.25. 

 

 

Figure 3.25 ABCM Experimental Setup 

 

   Electrical signal                Optical signal 
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We observe from Figure 3.25 that the automatic sweeps and measurements required are 

controlled by a PC via GPIB and RS 232 connections with the Network Analyzer and DC Source 

respectively. The software responsible of directing the process is a Matlab program which asks 

the user for the bias start and end voltages, and the step width.  

Once the sweep is correctly set, the DC Source starts supplying the modulator with the 

corresponding voltage. After a few seconds the Analyzer is ordered to capture the amplitude 

measures (dB). There will be three measures for each voltage sample, so that the Matlab 

program will obtain the mean of the three values.  This process will be repeated until the DC 

source arrives to the end voltage indicated.  

As we already mentioned, the DUTs used in these experiments will be a Fiber Bragg Grating 

(FBG) and a Dispersion Compensating Fiber (DCF). 

Before we start with the measurements, we must obtain the modulator’s Transfer Function. As 

we know from ABCM mathematical analysis (expression 39), in absence of dispersion the 

moving zeros are located at Vpi odd factors (0, 2Vpi, 4Vpi, …). Thus, the bias sweep must go at 

least from 0 to 3Vpi in order to visualize two fixed zeros and one moving zero; this last one will 

help us to calculate dispersion. 

Since we want to perceive the moving zeros displacement, first we must carry out a 

measurement without the DUT, that is, calibrate the system to obtain the positional reference 

for the moving zeros (Figure 3.26).      

     

 

Figure 3.26 Moving Zeros Displacement. Blue: without the DUT. Red: with the DUT. 
 

Once we obtain the displacement, in order to calculate the chromatic dispersion we will have 

to equal the sine argument to N multiples (where the zeros take place). Since our reference is 

the case where no dispersion is present, we will carry out the following calculations to obtain 

the dispersion value: 
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- Sine argument without the DUT:  πθ
nb =

2
1  

 

- Sine argument with the DUT:  πθπλ
n

c

fD bm =+
2

2
22

0  

 

The difference in bias phase is:  

c

fD m
b

22
02πλθ −=∆  

From where dispersion is:  
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where V2 – V1 is the moving zeros’ displacement. 

An alternative way to calculate dispersion would be just focusing on the case with DUT and 

obtain the displacement of a moving zero with respect to a fixed zero. Since this distance is 

equal to Vpi in absence of dispersion, we can make the following calculation: 

ππ VVVVVVVV fixedmovingbbfixedmoving −−=∆→∆+=−  

Once the moving zero displacement value is obtained we just need to replace it on expression 

(40) as in the previous case: 

22
02 m

b

fV

Vc
D

λπ

∆⋅−=
 

 

3.3.3.2 Setup characterization 

As it was explained in VPI simulation section, there is a strong trade off RF signal power 

(amplitude) and frequency election. 

RF frequency choice: We already highlighted the zeros displacement dependence with the 

modulating frequency (RF), as if this frequency is too low the displacements yielded would be 

insignificant. Moreover, we must take into account that the measurement equipment has a 

certain resolution and error margin, which can generate small errors in measurements. In this 

specific case, these errors are expressed in small displacements of the zeros, thus, if RF 

frequency is too low, the small displacements yielded could be confused with those 

measurement imperfections mentioned. 
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On the other hand, we know that if the RF frequency is too high the moving zeros 

displacement could so big that they could overlap or overpass the fixed zeros locations. 

Another restriction for the upper edge of the frequency is the fact that Taylor approximation 

used in the mathematical analysis loses validity as the bands get further from the carrier.  

Therefore, if we use as reference the RF frequency interval obtained for the simulation analysis 

and we test it on our laboratory setup, we determined that the best possible value to carry out 

the measurements is 3 GHz. 

RF power choice: As it was also explained in the mathematical and simulation analysis, the RF 

power (amplitude) must be low enough to respect the small signal condition. That amplitude 

level is power terms is around -5 dBm, which is the value we will use in the experiments. 

Now, for the choice of the frequency and power of the optical source (laser) we must just 

focus on restrictions imposed by the devices to be measured (DUTs). In the case of the laser 

frequency must set it to 1559 nm, as that is the central frequency of the FBG’s narrow 

bandwidth. 

For the optical source, as we can see in table 3.10, the power value used depends on the DUT 

we want to work with. 

 

Optical Signal Power values 

FBG 3 dBm 

Compensating Fiber 5 dBm 

    Table 3.10 Optical Power values 

 

These different power values are due to the different connectors on the DUTs. In the case of 

FBG, the input is directly connected to the modulator’s output as both devices have FC/UPC 

connectors, and the same thing happens at the output, which can be directly connected to the 

detector. 

Otherwise, if we use the DCF as our DUT, we must put two fiber sections in between, one at 

the input and the other at the output. Both fibers must have one FC/APC extreme and the 

other FC/UPC, so that we can connect the modulator’s output (FC/UPC) with the DCF’s input 

(FC/APC), and in the same way, DCF’s output (FC/APC) with detector’s input (FC/UPC). These 

fiber sections yield an increment in power loss due to its connectors. Therefore, we have 2 

additional connectors with respect to the FBG case, so, if we estimate 0.6 dB for each 

connector, it results on a 1.2 dB total loss increment, despite of the 0.5 extra insertion loss of 

the DCF with respect to the FBG.. This is why for DCF use 2 dB extra power in the optical 

source. 

Another important parameter to be determined to carry out measurements with ABCM is the 

maximum allowed Bias step width. This value is conditioned by the minimum dispersion value 
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we expect to measure, in this case it is 671ps/nm corresponding to the Fiber section; and also 

it depends on RF frequency set (3GHz). Thus, the maximum step width allowed for the bias 

sweep is obtained as follows: 
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22

0

12

2 m

bb

fV

VVc
D

λπ

−⋅
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−
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( ) mVVV bb 75,32912 =−
 

 

Once we found the maximum bias step width we can use, we proceed to choose a proper 

value for this parameter considering a certain security margin; therefore we choose a step 

width of 200mV.This value is five times bigger than the step width set for the simulations, 

however, it still provides good accuracy in measurements.  

One final consideration about the equipment is related to the Dual drive Mach-Zehnder 

Modulator available. This Modulator has one positive input and also a negative one, so that if 

we insert both the RF signal and the bias voltage through the positive input, we will obtain a 

positive phase shift, otherwise, if we use the negative input we will have a negative phase 

shift.  

In this particular method, this above feature implies that in Figure 42 the moving zeros will 

suffer a displacement to the x axis positive or negative direction if we use the positive or 

negative input respectively. 
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3.3.3.3 Results  

3.3.3.3.1 Results obtained with the FBG 

 

Figure 3.27 ABCM measures obtained for FBG 

 

As we can see in Figure 3.27, there is a significant displacement of the moving zeros but also a 

small displacement of the fixed zeros about 0.01 from its natural location. This can be 

attributed to some bias drift of the modulator, so we will consider this value as a calibration 

reference to calculate the moving zero exact displacement.  

( ) ( ) VVV bb 62,01,046,618,712 =−−=−  

Once we have the real displacement of the moving zeros we just need to apply expression (40) 

to calculate chromatic dispersion. Thus, considering 
m value obtained in FUJITSU modulator 

Transfer function of section 3.3.2.2, we have:   

( )
( ) ( ) nmpsnmns

fV

VVc
D

m

bb /59,1261/26159,1
10310155937,32

62,0103

2 2929

8

22
0
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××⋅

×=−⋅−=
−λπ

 

Measured Dispersion vs Nominal Dispersion 

Measured value - 1261,59 ps/nm 

Nominal value - 1252,35 ps/nm 

 

Table 3.11 Measured Dispersion vs Nominal Dispersion for FBG 
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3.3.3.3.2 Results obtained with the DCF 

 

Figure 3.28 ABCM measures obtained for DCF 

 

In this case, as we notice in Figure 3.28, there is no displacement for the fixed zeros, that is, no 

calibration is required this time. Therefore, the calculation corresponding to chromatic 

dispersion final expression is as follows: 

( ) ( )
( ) ( ) nmpsnmns

fV

VVc
D

m

bb /84,691/69184,0
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2 2929
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Measured Dispersion vs Nominal Dispersion 

Measured value - 691,84 ps/nm 

Nominal value - 671ps/nm 

 

Table 3.12 Measured Dispersion vs Nominal Dispersion for DCF 

 

As we can observe in tables 3.11 and 3.12, the dispersion values obtained are very close to 

their nominal values; that is, both measurements were carried out with the expected accuracy.  
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4. ASYMMETRIC MODULATION BIAS-CONTROLLED METHOD - 

SUPPRESSED CARRIER (PROOF OF CONCEPT) 

4.1 Description and Mathematical Analysis 

Even though the ABCM exposes the general concept of this PFC, its usage is devoted to 

laboratory tests, due to the unavoidable carrier alteration (altering data detection) yielded 

when we carry out the bias voltage sweep. Thus, if we want to implement a high-accuracy 

dispersion monitoring system and apply it in an optical communication network without 

altering the data recovery, the setup must be redesigned.  

Therefore, in this chapter we present a new approach for on-line chromatic dispersion 

monitoring but still based on RF tone addition. The tone’s amplitude must be such that in the 

resulting modulated signal the carrier gets cancelled (carrier suppression), so that it does not 

interfere with the intensity modulated optical carrier (data stream) when both signals are 

combined.  

Once again the bias voltage sweep applied together with the RF tone takes charge of changing 

the optical phase shift between the RF bands and the carrier, so that at the monitoring point 

the voltage difference between the zero-amplitude bias corresponding to the RF frequency 

and to its second harmonic can be used to calculate dispersion coefficient. 

Operating principle 

The basic scheme of ABCM - SC is shown in Figure 4.1. At the emitter side the output from a 

laser source is split into two branches. At the upper branch the optical carrier is intensity 

modulated by the data, while at the other branch the optical signal passes through a phase 

modulator controlled by the RF tone and the DC voltage signal 
( )tVB  going at a constant slow 

time rate from ;
m to 
m (at least), where 
m is the modulator’s half wave voltage. 

 

  Figure 4.1 General schematic for Dispersion Monitoring System  
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We mentioned that in this PFC we will strictly focus on verifying the method’s mathematical 

basis and evaluating its performance in terms of accuracy and stability. Therefore, to simplify 

the study, no intensity-modulated data will be considered at the upper branch (optical signal 

passes unaltered).  

The phase modulated optical signal at the lower branch is expressed as follows: 

 

                                         �z{� = � S�������²³                                         (41) 

where ~� = m<�
<�

 and  ~�� = m<²³
<�

. 

 

Since we want to cancel out the carrier component at the lower branch, in this case we will not 

work under a small signal condition, but we will use the Bessel functions expansion to find out 

the proper RF tone amplitude. 

Using again low-pass equivalent expressions we have: 

 

                                    �z{� � |�I ´���������²³�                                     (42) 

                               �z{� � |�I ´��������¢ µ9¶��¨���                             (43) 

 

where w is the modulation index. So if we make use of the Jacobi-Anger identity: 

                               �� \z·¸ � ∑ �S¹Sº�¹ »S�V���S¸                              (44) 

 

and we express the RF-dependent exponential term considering it up to 2º order, we obtain: 

 

�z{� � �
2 ´�������»
�w� C �»M�w����¨� C �»M�w�����¨� ; �»I�w���I�¨� ; �»I�w����I�¨��� 

                                                                                                                                                        (45) 
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Figure 4.2 Bessel Functions: order 0 (red), order 1 (green) and order 2 (blue) 

 

Now, looking at Figure 4.2, we realize that »
�w� acquires a null value for w = 2.405.  Then, the 

three Bessel terms’ values will be:  

»
�2.405� ¼ 0 

»M�2.405� ¼ 0.52 

»I�2.405� ¼ 0.43 

 

Replacing these values in expression (45), it results: 

                       �z{� � |�I ´��������0.52����¨� C ����¨�� ; 0.43���I�¨� C ���I�¨����       (46) 

 

Expression (46) represents the output of the phase modulator, where as we can see, the 

carrier’s component has been suppressed. Thus, the data at the upper branch will be kept 

unaltered when combining the two signals. 

We must emphasize the fact that as we are not considering a small signal condition for the RF 

tone, we need to ensure a proper splitting ratio between the branches to keep the effective 

optical modulation index within moderate values. Here is where the role of the couplers within 

the setup acquires importance. 

If we define a coupling factor “�", the signal at the DUT’s input will be: 

��¾¿_ S � |�I ´�}1 ; � C ���~Á��0.52����w� C �;��w�� ; 0.43���2�w� C �;�2�w����     (47) 

 

 



New methods for measuring and monitoring chromatic dispersion in optical communication systems 

 

70 

 

Then, passing it through the DUT, we have: 

��¾¿?ÂÃ = 

�
2 ´���1 ; �����0 C ���~Á��0.52����w����1C C �;��w����1;� ; 0.43���2�w����2C C �;�2�w����2;��� 

� �
2 ´� Ä�1 ; �����0

C ���~Á o�0.52���1CC�1;2 ����w����1C;�1;2 C �;��w��;��1C;�1;2 �
; 0.43���2CC�2;2 ���2�w����2C;�2;2 C �;�2�w��;��2C;�2;2 �lÅ 

� |�I �1 ; �� cos��
� C �0� ; �
�0.52 sin��
� C �1
CC�1

;

2 C ~Á� cos k�¢� C �1
C;�1

;

2 l ;�
�0.43 cos��
� C �2CC�2;

2 C ~Á� cos k2�¢� C �2C;�2;

2 l                   (49) 

 

Expression (49) illustrates how the carrier and the first and second harmonics’ sidebands have 

acquired a certain phase shift coming from the dispersive system (DUT), so that, like in the 

previous method, an accurate detection and measurement of the phase shift are essential for 

chromatic dispersion calculation. 

Therefore, at the monitoring point, after applying a square-law detection, neglecting terms 

affected by �I, the detected power will be: 

�� � Æ��¾¿?ÂÃÆI

2  

�� � �M���h|�h
MÇ ; 
.ÈI�|�h

� sin��1
CC�1

;

2 ; �0 C ~Á� cos k�¢� C �1
C;�1

;

2 l ; 
.ÈÉ�|�h� cos��2CC�2;

2 ;
                              �0 C ~Á� cos k2�¢� C �2C;�2;

2 l                                     (50) 

 

From the expression obtained above, we must highlight that the really important terms are the 

sine and the cosine functions, which represent the detected envelopes for the first and the 

second harmonic respectively. Then, expressing these envelopes in terms of Bias voltage and 

chromatic dispersion coefficient, we obtain: 

                

( ) ( ) 2 2sinD RF B o RFi f V t D f
V cπ

π π λ
 

= + 
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                                (51) 
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π π λ
 

= + 
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                    (52) 
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where c is the velocity of light in vacuum and oλ  is the carrier’s wavelength. Both envelopes 

present a relative electrical phase shift which depends on the D value.   

Now, we have to carry out the mathematical development for the case when we get an 

amplitude zero at both harmonics, as it is explained below: 

 

1
st

 harmonic: 

                                                  
m
<�


�M C m�j�
hR̈ h

\ = nN                                                (53) 

2
nd

 harmonic: 

                                          
m
<�


�I C m�j�h�IR̈ �h
\ � �2n C 1� m

I                                     (54) 

 

From expressions (53) and (54) we finally obtain a direct expression to calculate g: 

                                               g = �M
I ; <�h�<�i

<�
� \

Éj�
hR̈ h                                             (55) 

In absence of dispersion both envelopes are 2/π  out of phase and then 5.0/ =∆ πVV , so, in 

the same way we infer that 5.0/ <∆ πVV  for 0>D  and 5.0/ >∆ πVV  for 0<D . 

Therefore, both magnitude and sign of the dispersion coefficient can be obtained with this 

technique, subject to the periodic nature of the two detected envelopes which limits, on a first 

look, the maximum dispersion magnitude that can be unambiguously determined (in section 

4.2.2.1 we will discuss how this is actually not a limitation). Dispersion monitoring window and 

dispersion resolution are in fact key parameters of any chromatic dispersion monitoring 

system based on pilot tones which set a trade-off in the RF frequency choice. 

4.2 VPI simulations 

As it was done for the ABCM, now we are going to demonstrate the validity of ABCM – SC 

through a theoretical and numerical analysis, using the VPI simulation tool. The procedure will 

be the same except for the fact that we first need to determine the appropriate RF Tone 

amplitude to accomplish the “w  = 2.405” condition (necessary to cancel the carrier).  

It must be emphasized that for the RF modulation we consider phase instead of intensity 

modulation, and therefore we must find a proper way of simulating it with VPI. We found that 

the better way to do it is by using a generic MZ modulator block in which the sign of the phase 

shift acquired by each of the two interferometric branches is the same (set 

“LowerArmPhaseSense” to positive) and then we enter the same RF tone in both electrodes. 

See Figure 4.3. 

We will set the modulator’s 
m at 3.5 V, so that, we can now obtain the ��� value required 

from the expression below: 
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w = N���

m

 

Thus, we have: 

��� = N2.4053.5  

Therefore, 

��� � 2.68 
 

 

As we are working in a simulation environment (ideal conditions) this value can be directly set 

as the RF tone amplitude.  

Figure 4.3 features a basic Phase modulation schema, representing the lower branch on ABCM 

- SC setup. Through this simulation we will make sure that the carrier cancellation is done 

correctly. To carry out the simulation, in addition to the 2.68V RF amplitude, the optical 

source, MZM and RF Frequency must be configured with the same parameters we will use in 

the main simulation. The bias voltage into the phase modulator in the final setup (Figure 4.3) 

will be the parameter that sets the phase difference between sidebands and carrier to yield 

detected RF amplitude nulls, but for now, in order to get the RF amplitude value required for 

carrier cancellation into the PM branch of Figure 4.3 it does not have any relevant effect but 

adding a constant phase shift that does not affect the optical spectrum, and therefore we just 

set it to zero. 

 

Figure 4.3 VPI schematic for phase modulation with carrier suppression 

 

The graphic displayed by the Spectrum Analyzer in figure 32 is indeed the one we expected. It 

presents several pairs of sidebands, whose amplitudes decrease as they get further from 
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harmonic 0 (carrier frequency), and the most important aspect is that the optical carrier has 

been reduced to an almost imperceptible power level.  

   

 

 

 

 

 

 

 

 

 

  Figure 4.4 Spectrum of the phase modulated optical signal 

 

Figure 4.5 shows a zoomed-in image of the optical spectrum which only exposes the most 

important features of ABCM - SC: the two main pairs of sidebands (for the first and the second 

harmonics) with similar power levels and the suppressed carrier (- 63 ÌÍw).  

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Zoom on Figure 4.4 highlighting main sidebands and suppressed carrier 
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Now, once we have all the parameters settings, we

which includes the emitter part

section.  

Most modules in this setup wer

presence of some new devices: 

whose main task is to generate

the lower branches for the low modulation index condition to hold.

We also notice we have two 

recover the amplitudes of the two

respective XY visualizer (2D Analyzer)

signal applied on the modulator.

 

  

Figure 4.6 VPI schematic for 

4- DC source  5- MZM  6- Output coupler  7

10- 1st harmonic amplitude and phase detector  11

detector  12- 1st harmonic XY visualizer  13

 

Another important issue about 

we can observe in the setup in figure 31

using a dual-drive MZM. We

electrodes and set the POSITIVE polarit
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the parameters settings, we deploy the setup shown in F

the emitter part and the monitoring point described in the operating principle 

were already used in the ABCM simulation; however we noti

presence of some new devices: the couplers located before and after the modulator

main task is to generate a considerable magnitude difference betwe

for the low modulation index condition to hold.  

lso notice we have two phase and magnitude detectors, this is because we need

of the two harmonics. These amplitudes will be displayed through their 

(2D Analyzer). The ‘x axis’ for both harmonics will be the bias voltage 

signal applied on the modulator. 

VPI schematic for ABCM - SC:  1- Optical source  2- Sine generator  3

Output coupler  7- Fiber section  8-Power meter  9-

1st harmonic amplitude and phase detector  11- 2nd harmonic amplitude and phase 

1st harmonic XY visualizer  13- 2nd harmonic XY visualizer

issue about this setup is related with the Mach-Zenhder configuration.

setup in figure 31, we want to emulate a phase modulator behavior 

e input the same RF tone and the same bias voltage in

POSITIVE polarity in the modulator. 
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ploy the setup shown in Figure 4.6, 

operating principle 

simulation; however we notice the 

the couplers located before and after the modulator, and 

difference between the upper and 

because we need to 

will be displayed through their 

harmonics will be the bias voltage 

 

Sine generator  3- Input coupler  

- Photo detector  

2nd harmonic amplitude and phase 

2nd harmonic XY visualizer 

Zenhder configuration. As 

to emulate a phase modulator behavior 

one and the same bias voltage into both 
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This section will be also divided into two main stages. The first one focuses on the analysis of 

dispersion inserted by the DUT. The complete procedure to calculate chromatic dispersion 

with this simulation environment will be the following: 

• We obtain one amplitude-vs-bias graphic for each harmonic in order to identify the 

amplitude dips. 

• We choose any pair of dips (the “Y = 0” ones for this experiment) and obtain their 

respective bias voltages. 

• Finally, we calculate the chromatic dispersion coefficient manually, replacing these 

values in expression (55). 

On the second stage, we will study ABCM - SC behavior while sweeping some key parameters 

such as the RF frequency, the nominal dispersion,  the RF Amplitude and coupling factor (�). 

 

4.2.1 Analysis of the dispersion inserted by the DUT 

In this section, we will run the setup shown in figure 34. After the electrical signal is recovered 

by the photo detector, it is split into two signals to obtain the amplitude value for the first and 

second harmonics. Thus, in the XY visualizers, we will display an amplitude-vs-bias graphic for 

each harmonic.  

The bias voltage sweep will go from -1 to 8 V, because this range will give us the chance to 

observe at least two amplitude dips for each harmonic; and the bias step width will be 0.01 V. 

Now, just to summarize the configuration parameters which differ from the ones of previous 

cases, we have: 

• The RF tone’s amplitude is set to 2.68 V according with carrier-suppression analysis 

• There is a 0.5/0.5 coupler located before the modulator and a 0.15/0.85 coupler after 

the modulator. For this last device, the 0.15 input corresponds with the modulator’s 

output and the 0.85 input to the non-modulated optical signal. 

• The amplitude/phase detector on the top will be set to 2 GHZ (RF frequency) and the 

one on the bottom to 4 GHz (2xRF frequency).   

 

 

 

 

 

 

 



New methods for measuring and monitoring chromatic dispersion in optical communication systems

 

 

Results 

Figure 4.7 features the amplitude

simulation.  

 

 

Figure 4.7 Amplitude-vs-
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features the amplitude-vs-bias graphics obtained for both harmonics

-Bias graphics for: 1st harmonic (top)  2nd harmonic (bottom)
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for both harmonics from this 

 

1st harmonic (top)  2nd harmonic (bottom) 
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From Figure 4.7 we obtain the null bias voltages corresponding to the first and second 

harmonic (
�M and 
�I) which are -0.14 and 1.15 respectively. We just need to replace these 

values in expression (55) to directly calculate the g value, as follows: 

       

g = �12 ; 
�I ; 
�M
m � Z3O
IP¢I 

 

We know that c = 3¬10­  m/s, O
 º1559.25 Yw,  P¢ � 2ÎÏV and 
m �  3.5 
, so we finally 

have: 

 

g � �12 ; 1.15 ; �;0.14�3.5 � 3¬10­3¬1559.25I¬2I 

 

g = 1351 ps/nm 

 

According with the results obtained above, the total chromatic dispersion calculated with 

ABCM - SC has a 9ps/nm error (0.66%) with respect to its nominal value, which is reasonable. 

It is also important to remark that we could have chosen any pair of dips (Y= 1, 2, 3 …) as all of 

them keep a 3.5 V (
m) difference between each other, so that the difference between the two 

harmonics’ amplitude dips (key factor in this method) is kept constant. 

4.2.2 Analysis of the effect caused by the setup’s parameters 

In this section we will analyze the impact of varying some key parameters within ABCM - SC 

schema. These parameters will be the RF frequency, the RF amplitude, Nominal dispersion and 

the Coupling factor of the coupler located immediately after MZM in the setup. 

For this simulation the setup featured in Figure 4.6 will suffer some modifications as it is 

shown in Figure 4.8. We will replace the XY analyzers by the 
 Text Modules, because we need 

to save the data sample in .txt files to be later processed by a Matlab program. Two .txt files 

will be generated for each parameter instead of a single file, one file for the first harmonic and 

the other for the second harmonic. 
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Figure 4.8 VPI setup for ABCM

With respect to the sweeping process

inserted into the MZM, but as

limits must be properly chosen so

Therefore, looking at expressions (53) and (54)

harmonics will be located between 

respectively. If we join these two ranges

must go from -3.5 V to 1.75 V. 

The outermost loop will be composed 

study.  

            

4.2.2.1 RF Frequency Sweep 

The RF frequency is one of the most important parameters within 

its direct presence in the final expression to calculate

interdependence with bias resolution.

Our goal in this analysis will 

degree of accuracy and efficiency when

We already verified the good performance of 

This fact gives us a good reference point t

analysis that the lower edge is 

simulations in this PFC).  
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ABCM - SC (Second stage). Highlighted with discontinuous

module 

 

t to the sweeping process, the innermost loop parameter will be the bias voltage 

the MZM, but as this value is the same for both harmonics, the

limits must be properly chosen so that it contains the zero amplitude bias of both

refore, looking at expressions (53) and (54), the “ =0” dips for the first and the second 

s will be located between -  (-3.5 V) and 0 V, and between 

f we join these two ranges together we conclude that the bias voltage sweep 

3.5 V to 1.75 V.  

will be composed by the sweep control of the parameters we want to 

 

one of the most important parameters within ABCM – SC

its direct presence in the final expression to calculate chromatic dispersion

interdependence with bias resolution. 

 be to identify the RF frequency level edges to guarantee

nd efficiency when applying the technique. 

e already verified the good performance of ABCM – SC for a RF frequency equal to

d reference point to configure the sweep. We also know from 

that the lower edge is determined by the bias voltage step width (0.01 V for all 
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discontinuous line:  Text 

be the bias voltage 

this value is the same for both harmonics, the upper and lower 

ias of both harmonics.  

=0” dips for the first and the second 

and between – /2 and 2 

bias voltage sweep 

the sweep control of the parameters we want to 

SC setup because of 

hromatic dispersion, (55), and its 

to guarantee a high 

frequency equal to 2GHz. 

know from ABCM 

the bias voltage step width (0.01 V for all 
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With respect to the upper edge, the only limitation is related with the dips location since we 

need to associate each dip with its respective order (n =… -2, -1, 0, 1, 2, 3 ...). Thus, in order to 

avoid any mistake while assigning the “n” value to a dip, we must restrict the possible dips 

locations to determined ranges.  

Looking at expression (53) and (54) we infer that for a positive dispersion value the zero-

amplitude bias corresponding with the first and the second harmonics must be located within 

[(Y ; 1) 
m, Y
m] and [
�IS�M�<�I , 

�ISbM�<�I ] respectively. In this particular case (Y = 0), the valid 

ranges would be [-
m, 0] for the first harmonic and [-
m/2, 
m/2] for the second harmonic. 

The RF frequency sweep chosen will go from 200 MHz to 2 GHz with a 200 MHz step width.  

 

Results  

After running the simulation, we obtained the two .txt files and we processed them by a 

modified version of the Matlab program used in ABCM. This Matlab code is new due to the 

fact that it processes both .txt files in a single run and looks for the dips within the 

corresponding range for the first and the second harmonics, and obviously it uses expression 

(55) instead of expression (40) to calculate chromatic dispersion. 

We finally obtained the graphics featured in Figure 4.9 and 4.10.  Figure 4.9 describes the 

relation between Null Bias delta (
�I  ;  
�M) and RF frequency. We can notice the curve’s 

parabolic shape since the bias is proportional to the RF frequency square power according to 

expression (55).  

 

Figure 4.9 Zero-Amplitude Bias Delta-vs-RF frequency Curve 
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Figure 4.10 Chromatic Dispersion-vs-RF frequency Curve 

 

We observe, just as in ABCM simulation, how the Null-amplitude bias delta decreases as 

frequency increases; however, it doesn’t keep the same behaviour till the end, yielding a level 

hop around 4.8 GHz. This feature reflects that we have arrived to the upper edge for the RF 

frequency, which indicates that at this frequency value the zero amplitude bias from one of 

the two harmonics has over passed the allowed range, so the rest of the graphic should be 

dismissed. 

However, unlike ABCM, if we look at expression (55), it does not depend on “Y”; thus, it is not 

necessary to know the dips’ order as long as we make sure both dips correspond to the same 

order. Nevertheless, for this particular analysis we decided to restrict the possible dips location 

to finite ranges to simplify the dips obtaining algorithm.   

This level hop at 4.8 GHz is also featured in figure 38, which shows dispersion-vs-RF Frequency 

relation. Here we can see how the dispersion level approximates to the nominal value (1.36 

ps/nm) and gets even closer to it for 1 GHz. If we want to make a comparison with ABCM, we 

can state that in this case the graphic reaches a good stability sooner, however, the maximum 

frequency allowed is around 4.8GHz.          

      

4.2.2.2 RF Amplitude Sweep 

In ABCM - SC, the RF Amplitude acquires an even more important role than in ABCM. It is the 

main parameter to handle during the carrier suppression process, which is a particular 

consequence of the phase modulation of the optical carrier.  
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We know from the introduction section that the main purpose of cancelling the optical carrier 

in the RF tone phase modulated signal is to avoid altering the recovery of data when both 

signals are combined. This is in fact the reason why this technique can be applied to a real-time 

optical network monitoring system, unlike ABCM.  

However, the accuracy of the dispersion measurement is not related with the data alteration 

along transmission, but with keeping the signals’ amplitude level within the acceptable range 

to support the approximations of the mathematical analysis. Thus, we need to yield a 

considerable difference level between the carrier and the two first harmonics’ sidebands, and 

between these ones and the rest of the harmonics. 

The considerations exposed above establish an important restriction to the RF amplitude value 

in terms of data preservation and accuracy in measurements.  

First, we will focus on the carrier cancellation issue. We will carry out a certain number of 

simulations with the schematic featured in Figure 4.3, while we sweep manually the RF 

amplitude around values close to the ideal one obtained in the math analysis (2.68 V). The 

exact values will be: 2.60, 2.65, 2.70, 2.75, 2.80 and 2.85 V.  

After running these simulations, the Optical Spectrum Analyzer Module yielded a different 

spectral representation for each run as it is shown in Figure 4.11. We observe that the first 

harmonic has an amplitude level around -20 dBm along all simulations; however, the carrier 

suffers a considerable level variation on each RF amplitude step.  

The carrier level increases as we get further from 2.68, so that we have almost 20 dB of 

difference from the extreme values to the center. This behavior demonstrates how susceptible 

the carrier level is to RF amplitude variations. Therefore, we must keep this parameter as close 

as possible to the reference value if we want to achieve a good carrier cancellation. 
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Figure 4.11 Spectrums of the phase modulated optical signal obtained with RF amplitude equal 

to:  a) 2.60 V  b) 2.65 V  c) 2.70 V  d) 2.75 V  e) 2.80 V  f) 2.85 V
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the phase modulated optical signal obtained with RF amplitude equal 

to:  a) 2.60 V  b) 2.65 V  c) 2.70 V  d) 2.75 V  e) 2.80 V  f) 2.85 V
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the phase modulated optical signal obtained with RF amplitude equal 

to:  a) 2.60 V  b) 2.65 V  c) 2.70 V  d) 2.75 V  e) 2.80 V  f) 2.85 V 
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On the other hand, we need to evaluate the technique’s behavior in terms of accuracy, just as 

we have been doing in the previous analysis. We will make a large RF amplitude sweep so that 

we can easily identify the lower and upper edges of the acceptable range. The RF amplitude 

(outermost loop) will go from 0.12 V to 4.12 V as these values are far enough from the 

reference level to perceive measurement errors. The step width will be of 0.16 V, which makes 

a total of 26 samples. 

 

Results 

The results corresponding to this simulation are featured in the Harmonics Null-Amplitude Bias 

Difference-vs-RF amplitude curve and in the Dispersion-vs-RF amplitude curve in Figure 4.12 

and 4.13 respectively.  

We observe in figure 41 how the curve starts with 2 ps/nm dispersion at 0.12 V and then it 

approximates very quickly to the nominal dispersion (1.36 ps/nm), reaching the closest value 

(1.351 ps/nm) at 0.8 V and keeping this until 2.9 V. The range we have just delimited is where 

the RF amplitude must be allocated in order to preserve ABCM -SC accuracy.  

 

 

Figure 4.12 Zero-amplitude Bias Delta-vs-RF amplitude curve 
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Figure 4.13 Chromatic Dispersion-vs-RF amplitude curve 

 

Going deeper into the analysis, we realize that the upper and lower edges of the range 

obtained are not equidistant from 2.68 V; this means, the carrier suppression is not the main 

property involved while evaluating results. Thus, it is more important to keep the RF amplitude 

small enough with respect to the signal traveling in upper branch. 

In conclusion, we can state that the most important issue within ABCM - SC is related with the 

accuracy in the dispersion measurement. We have to determine a range of RF amplitude 

possible values; however, since this method is supposed to be applied on a real time optical 

network, we must set this value as close as possible to the reference value obtained in carrier 

suppression analysis. It is also important to conduct BER measures for the modulation format 

to avoid affecting transmitted data. 

 

4.2.2.3 Nominal Dispersion Sweep 

The analysis of Nominal Dispersion parameter has nothing new with respect to the one carried 

out for ABCM. We observe from expression (55) that the relation between the dispersion and 

the RF frequency is very similar to the one we had for ABCM in expression (40). Thus, we 

assume that if we work within the range obtained in the RF frequency sweep section, we will 

not have any problems while measuring very high or very low dispersion values. 

Therefore, this analysis will once again focus on describing how the variation of nominal 

dispersion (set in the fiber section) affects the method’s accuracy, and we will also study its 

relation with the bias resolution. 
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As we are using the same fiber module as DUT, the outermost loop for the bidimensional 

sweep will be the fiber’s length, which will go from 0 to 160 km with a step width of 5 km. 

Results 

Figure 4.14 represents Null amplitude Bias Delta voltage-vs-Nominal Dispersion Curve, which 

has a linear behavior from the beginning to the end. This linearity is also observed in figure 

4.15, containing the relation between the measured dispersion and the nominal dispersion. 

 

 

Figure 4.14 Zero-amplitude Bias Delta-vs-Nominal Dispersion Curve 

 

 

Figure 4.15 Chromatic Dispersion-vs-Nominal Dispersion Curve 
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The most salient point in Figure 4.15 is that once again the nominal dispersion value has an 

almost imperceptible effect on the dispersion calculated, so that the ABCM - SC is able to keep 

a good performance no matter the level of dispersion the optical system has, subject to the 

limit of maximum measureable dispersion which depends on the RF frequency.        

 

4.2.2.4 Coupling factor Sweep 

The presence of couplers within the setup is one of the new features introduced by ABCM - SC.  

We will carry out a bidimensional sweep with the coupling factor (�) as the outermost loop 

parameter, going from 0.51 to 0.99 (the number indicates the factor applied to the upper 

branch).  

Results 

We obtained the Null amplitude Bias Delta-vs-Alpha and Dispersion-vs-Alpha curves featured 

in Figure 4.16 and Figure 4.17 respectively.  

 

Figure 4.16 Zero-amplitude Bias Delta-vs-Alpha Curve 
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Figure 4.17 Chromatic Dispersion-vs-Alpha Curve 

 

We notice the graphics obtained have a quite similar behavior to the ones obtained in the RF 

amplitude analysis. This fact shows how both parameters are, in different levels, involved on 

yielding the magnitude difference between the optical carrier and the first and second 

harmonics. Now, observing Dispersion-vs-Alpha curve on itself, we realize it starts with a 

dispersion value around 1 ps/nm at 0.51 alpha sample, and then dispersion increases following 

a “steps” shape, and getting the closest to nominal dispersion, with a 1.351 ps/nm value at 

around 0.75 �. Therefore, this last alpha value represents the minimum point or lower edge to 

maximum accuracy in chromatic dispersion calculation. 

We can see how the dispersion calculated keeps unaltered almost until the end of �’s range; 

however from 0.97 � the curve starts growing again. Anyway, it is totally inefficient to use 

couplers with those alpha values in real environments.  

 

4.3 Experiments 

4.3.1 Laboratory Equipment 

Next we will describe the devices need to carry out ABCM – SC which were not used in ABCM. 

4.3.1.1 Optical Coupler 

This is a passive device used in optical systems for multiplexing (branching or joining) the 

optical signal from one or more light sources to one or more light receiving devices. The power 

distribution into the outputs depends on the wavelength and the polarization. The couplers 
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available in the laboratory were fabricated by thermally fusing

into intimate contact. The coupling factor (

connect inputs and outputs. 

In this experiment we will use two couplers within the setup: a 50/50 coupler immediately 

after the laser source to split the optical signal into the two branches (the upper branches 

simulating the data flow and the lower one to be phase modulated by the RF tone);

80/20 coupler between the emitter side and the monitoring point in order to achieve the 

amplitude level difference between signals of both branches.

 

4.3.1.2 Laser HP 83424A 

 This instrument (Figure 4.19

require wavelength tuning and where its frequencies margin is contained within the laser’s 

supportable bandwidth. This is why it can

of the modulator. This laser does not have a power regulator at the output, so that the power 

provided has a constant value (see table 4.1

In this experiment, the HP 83424

suppression setup in order to heter

carrier and the sidebands are displaced to a frequency range supportable by the

spectrum analyzer. 

 

 

The most relevant technical features of 
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available in the laboratory were fabricated by thermally fusing the fibers so that their cores get 

into intimate contact. The coupling factor ( ) is reached by using different fiber lengths to 

 

experiment we will use two couplers within the setup: a 50/50 coupler immediately 

after the laser source to split the optical signal into the two branches (the upper branches 

simulating the data flow and the lower one to be phase modulated by the RF tone);

between the emitter side and the monitoring point in order to achieve the 

amplitude level difference between signals of both branches. 

 

Figure 4.18 Optical Coupler 

4.19) can be used as a light source in measurements which do not 

and where its frequencies margin is contained within the laser’s 

This is why it can be used for instance to obtain the Transfer Functions 

This laser does not have a power regulator at the output, so that the power 

as a constant value (see table 4.1). 

In this experiment, the HP 83424A will be used as a secondary light source in

suppression setup in order to heterodyne the RF tone phase modulated signal, so that the 

carrier and the sidebands are displaced to a frequency range supportable by the

 

Figure 4.19 HP 83424A 

The most relevant technical features of HP 83424A are shown in table 4.1. 
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fibers so that their cores get 

) is reached by using different fiber lengths to 

experiment we will use two couplers within the setup: a 50/50 coupler immediately 

after the laser source to split the optical signal into the two branches (the upper branches 

simulating the data flow and the lower one to be phase modulated by the RF tone); and a 

between the emitter side and the monitoring point in order to achieve the 

can be used as a light source in measurements which do not 

and where its frequencies margin is contained within the laser’s 

Transfer Functions 

This laser does not have a power regulator at the output, so that the power 

will be used as a secondary light source in the carrier 

odyne the RF tone phase modulated signal, so that the 

carrier and the sidebands are displaced to a frequency range supportable by the electrical 
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Table 4.1 HP 83424A Laser features 

4.3.1.3 Agilent Spectrum Analyzer 

In this experiment all measurements will be obtained by using an Agilent super heterodyne 

Spectrum Analyzer. This device will display the spectrum components of the modulated signal 

(sidebands and carrier), so that we can manually cancel out any of these components by just 

adjusting the bias voltage (in the dispersion measurement experiment) or RF signal (in the 

carrier suppression experiment). 

Since this device is an electrical Spectrum Analyzer, we will have to optically heterodyne the 

phase modulated optical signal with the carrier from an additional laser such that the spectral 

difference between both lasers is contained within the SA frequency range. Thus, we will be 

recover the downconverted signal with a detector and display it on the SA to carry out 

measurements. 

It also provides an electrical output with enough power to be used as a RF source in the phase 

modulation process.   

 

Figure 4.20 HP Agilent Spectrum Analyzer 

 

HP 83424A Laser 

Optical BW  1553 nm 

Optical Power 3 dBm 

Type of connector FC/UPC 
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4.3.2 General description of the experiment 

This section will be divided into two well-defined experiments. First we will focus on the 

emitter side of the setup. We will regulate the RF power level and the position of the 

polarization controller’s arms to achieve a robust cancellation of the optical carrier.  

In the second part, we will implement the monitoring point of the setup, adding the DUT to be 

characterized and a DC signal (bias voltage) together with the RF tone with the specific 

amplitude required to carry out the carrier suppression in the phase modulation. The goal will 

be to determine manually the bias voltage values which cancel the first and the second 

harmonics respectively. Finally, these voltages will be replaced in ABCM -SC final expression, 

(55), to calculate the total amount of dispersion inserted by the DUT.   

4.3.3 Setup characterization 

Now we will explain the choice of the main parameters (RF power and frequency, Optical 

power and frequency, etc).  

RF frequency choice: Looking at expression (55) we notice that relation between RF frequency 

and dispersion resolution is the same as in the ABCM. This means that as the frequency 

increases, the dispersion resolution increases too (bias step width is kept constant). 

There is an upper limit for the RF frequency since we want to avoid overlaps between the 

zeros ranges. Otherwise, the lower limit is determined, as mentioned in section 4.2.2.1, by the 

bias step width (minimum value the bias voltage can take). 

Considering all the above and the range obtained in the simulation of section 4.2.2.1 (from 0.8 

GHz to 6 GHz), we conclude that the ideal range for the RF frequency is very similar to the one 

of ABCM. However, since we want to verify that in a real environment when the RF frequency 

is reduced we get closer to Taylor expansion and compensate the loss of resolution, this time 

we will work in the resolution limit, so we will place the frequency at the beginning of the 

tolerable range: 1 GHz.   

RF power choice: This parameter is essential in the first part of the experiment; where we 

want to achieve the optical carrier cancellation. This value under ideal conditions could be 

calculated starting from the 
m of the modulator as explained in section 4.2. However, in this 

case we cannot rely on this theoretical value because there are many potential causes of 

power loss within the experimental setup; therefore, the correct procedure is to adjust 

manually the RF power while we see the carrier power level on the SA display and verify it gets 

cancelled. 

 With respect to the optical source, we know that the optical frequency and optical power are 

related to the DUT and the setup’s total loss estimation respectively. Thus, as DUTs to be used 

are the same than for ABCM, we will use the same fixed wavelength for the main laser source 

(1559 nm). And, as a matter of fact, the secondary laser’ wavelength must be such that the 

frequency difference between them is supportable by the optical detector and the Spectrum 

Analyzer. After some tests we determined that the best wavelength is 1568 nm (heterodyned 

carrier is located around 11 GHz on the SA). 
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In the case of the optical power, we observe that the setup is almost the same as for ABCM, 

except for the inclusion of the couplers. Thus, we decided to add 2 dB to the values fixed for 

ABCM experiments, so we have: 5 dBm using FBG and 7 dBm using DCF.    

Finally, we determine the maximum allowed Bias step width in this case. Here we start from 

expression (53) (first harmonic) and expression (54) (second harmonic), considering the DUT to 

be characterized is the FBG (D = 1252 ps/nm), so we have: 

For the 1
st

 harmonic (n = 0) 
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∆
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For the 2
nd

 harmonic (n=0) 
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Therefore, the maximum Bias step width is limited by first harmonic expression (the smallest 

value) and it is 313.82 mV. 

We notice that the value obtained is very close to the one for the ABCM experiment, it means, 

we can also use a 200 mV step width between bias samples. 

4.3.4 Carrier Suppression Experiment  

In this first part the goal was to obtain a carrier-suppressed optical phase modulation 

with state of the art equipment.  

Therefore, in order to verify that we can indeed cancel the carrier within the RF tone 

addition process, we used an AVANEX phase modulator with 
m = 6.12 driven by a 22 

dBm, 1GHz RF tone to modulate the optical carrier. 
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This optical phase modulated signal was heterodyned with the second laser in order to 

obtain a replica of the optical spectrum in an electrical spectrum analyzer range as it is 

shown in Figure 4.22.  

We observe we got a carrier suppression of 25 dB, and the first and second harmonic 

optical modulation bands feature similar levels so that significant amplitude detection 

at the monitoring point is expected at both frequencies when mixed with a powerful 

carrier (containing data) in the detector. 

 

 

Figure 4.21. Setup for the Carrier cancellation Procedure 

 

 

   Electrical signal                Optical signal 
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Figure 4.22 Spectrum analyzer capture corresponding to the heterodyning of the phase 

modulated signal with 20 dBm RF amplitude. 

 

4.3.5 Dispersion Measurement Experiment 

In this second stage is where the dispersion measurement takes real place. We set up 

an emitter following the scheme in Figure 4.23 using FUJITSU MZM with 
m =3.44 V. 

The upper branch, which in a real application should be intensity modulated by the 

data to be sent, in this validity test is left unmodulated so that only the carrier passes 

through.  

The lower branch is driven by a 18 dBm, 1 GHz tone and a continuous DC voltage 

through the bias tee.  The DC voltage applied to the bias tee acts as the low frequency 

signal controlling the phase offset between bands and carrier in Fig. 4.24 and, once 

again for validity test purposes it was varied manually.  

The output of the modulator is applied to the corresponding DUT (FBG), and after 

detection, captured in a spectrum analyzer. The RF amplitude tone used should give a 

spectrum outcome as in Figure for the phase modulated signal.  

Since we do not have independent access to the phase modulated branch, we confirm 

the carrier suppression achievement by checking that the 1 GHz and 2 GHz detected 

levels at the modulator output with zero DC voltage have very close values (see Bessel 

Functions theory in section 4.1).  

Thus, we need to vary the DC voltage until at the DUT output we get a cancellation of 

detected power at 1 GHz. We will continue to increase the DC voltage until the 2 GHz 

tone disappears. Therefore, applying expression (55) we obtain the total amount of 

dispersion.  
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Figure 4.23 Setup for ABCM –SC Experiment 

 

 

Figure 4.24 Spectrum analyzer capture of the output of the dual-drive modulator with zero 

phase modulator DC voltage 
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Figure 4.25 a) Spectrum analyzer capture of the output of the dual-drive modulator with zero 

phase modulator DC voltage  b) Spectrum analyzer capture of the output of the DCF with a 2.2 

V. phase modulator DC voltage  c) same as b) but for a 4.05 V. DC voltage. 

Results 

Therefore, applying expression (55) we finally obtain: 

g = �12 ; 4.03 ; 2.23.44 � 3¬10­3¬�1559¬10�Ñ�I�1¬10Ñ�I 

g � -1.3157 

Measured Dispersion vs Nominal Dispersion 

Measured value -1315,70 ps/nm 

Nominal value -1252,35 ps/nm 

Table 4.2 Measured Dispersion vs Nominal Dispersion for FBG 

 

a) 

b) 
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We can see from the dispersion value obtained that even when we have approximated fairly 

well to the nominal value (which is the best reference we have about FBG real dispersion 

value),it is not as good as in the ABCM experiment. This fact may be because we are not 

working under a small signal condition, that is, there is not enough difference level between 

the sidebands and the carrier with data. 

Thus, to solve this issue we should use a phase modulator with the output connected to a 

80/20 coupler to yield a significant amplitude difference between the phase modulated signal 

and the upper optical carrier. Therefore, the optimum setup for this experiment should be the 

one shown in Figure 4.26.   

 

 

 

Figure 4.26 Optimun ABCM –SC Setup (not implemented) 

   Electrical signal                Optical signal 
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5. CONCLUSIONS AND FUTURE LINES 

We can state that all the objectives specified in chapter 1 have been accomplished along the 

chapters of this PFC, and, as happens with all new and innovative proposals, some new 

studying topics and possible applications emerged from this study. The main purpose of the 

project was to introduce two new methods for measuring chromatic dispersion: ABCM and 

ABCM – SC, therefore, the conclusions will be organized according to the chapters which 

contemplate each method. 

Chapter 3.  Asymmetric Modulation Bias Controlled Method (ABCM) 

ABCM was introduced as a solid alternative for conventional RF tone based dispersion 

measurement techniques. We specifically analyzed the method’s close relation with 

Peucheret’s (calculates dispersion from the amplitude term), highlighting the improved 

features of ABCM, specially the fact of replacing the RF sweep by a bias voltage sweep, 

allowing free choice of the RF frequency which is a fundamental parameter in the dispersion 

measurement.  

Bias voltage was identified as a key handling parameter in dispersion measurement, taking 

advantage of the fundamental role acquired in RF tone modulation by using a Mach-Zehnder 

in asymmetric configuration. 

We were able to obtain a direct expression to calculate chromatic dispersion, (40). We verified 

that through this expression both the magnitude and sign of dispersion can be determined. 

Within the zero-amplitude Bias obtaining process, we realized how the combined performance 

of “moving zeros” (contain dispersion information) together with “fixed zeros” (serve as 

reference) yield a self-referenced measurement system. 

In terms of accuracy in the measurements, the VPI simulator helped us to determine the best 

operation conditions for the most relevant parameters involved. The following table 

summarizes the study of all these parameters: 

Parameter Features 

RF Frequency • Establishes an interdependence with Bias resolution. 

• As it increases, the system is able to measure smaller 

dispersion values (better resolution) but smaller 

maximum dispersion value  

• The acceptable range starts from 1.5 GHz (ideal 

conditions) 

• From a practical viewpoint, if too high a poorer 

approximation of the local D is obtained 

RF Amplitude • Must be kept under a small signal condition 

• The acceptable range ends at 0.8 V (ideal conditions). 

• From a practical viewpoint, If too low we do not get a 

enough dip’s definition 

Nominal Dispersion • There is no restriction for the total amount of dispersion 

to be measured. 

• Accuracy just depends on Bias Resolution 
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In the experimental section we verified that the accuracy reached by ABCM under real 

laboratory conditions is acceptable; however, we notice that the calibration of the system is 

extremely important, since small variations of the 
m or the zero-amplitude bias represent 

important variations in the D value obtained. 

Chapter 4. Asymmetric Modulation Bias Controlled Method with Suppressed Carrier (ABCM - 

SC) 

We redefined successfully the setup of ABCM to adapt it to a real time dispersion monitoring 

environment, and in this purpose we had to challenge some of RF tone based measuring 

methods conventional properties: 

• The RF tone amplitude was out of the small signal condition range, as we needed to 

reach a value near the 20 dBm to cancel out the optical carrier according to Bessel 

Functions theory.  

• The tone addition modulation was a phase modulation instead of an intensity 

modulation. 

• The system required the determination of the bias required to cancel the detected 

first and second harmonics to calculate chromatic dispersion. The difference in the 

bias required to cancel each one of the harmonics gives the ABCM –SC the self-

reference feature. 

The small signal requirement to yield significant a level difference between the carrier with 

modulated data and the phase modulated signal was achieved by including optical 

couplers within the setup. 

One of the advantages of ABCM – SC is the fact of isolating the carrier suppression and the 

dispersion measurement procedures in the emitter side and the monitoring point 

respectively, simplifying the support and failures detection tasks. 

The main features of the parameters studied in the simulation section for ABCM - SC are 

exposed in the following table: 

Parameter Features 

RF Frequency • Establishes interdependence with Bias resolution. 

• As it increases, the system is able to measure smaller 

dispersion values(better resolution) but smaller maximum 

dispersion value 

• The acceptable range starts from 0.8 GHz (ideal conditions) 

• From a practical viewpoint, if too high a poorer 

approximation of D is obtained 

RF Amplitude • Must be set according to the Modulator’s 
m value 

• Establishes a trade-off between alteration of data (carrier 

suppression) and accuracy.  

Nominal  Dispersion • There is no restriction for the total amount of dispersion to 

be measured. 

• Accuracy just depends on Bias Resolution 

Coupling factor • Lower edge located around 0.8 (for the data signal) 

• Upper values (bigger than 0.9) are dismissed due to inefficiency issues. 
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 Finally, the experimental section has verified the feasibility of the ABCM-SC. 

Future Lines 

The ABCM has been proposed as a low-cost chromatic dispersion measurement system. 

Here we have experimentally proven its validity in a setup which has included a costly 

vectorial network analyzer. As a future line it is proposed to setup a simplified low-cost 

system using mixers and low-cost detectors and to explore the possibility of building an 

integrated low-cost ABCM measurement system. 

To study ABCM – SC considering the transmission of real intensity modulated data and to 

analyze some key parameters related like BER, SNR, etc.  

To automate both methods exposed by a software application with a graphical interface, 

to make it more suitable to final users. 
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6. ANNEX 

• Matlab Program used in section 3.3.2.1 to obtain the Transfer Function of a 

Modulator  

function varargout = fun_trasf(varargin) 
2 % FUN_TRASF M-file for fun_trasf.fig 
3 % FUN_TRASF, by itself, creates a new FUN_TRASF or raises the existing 
4 % singleton*. 
5 % 
6 % H = FUN_TRASF returns the handle to a new FUN_TRASF or the handle to 
7 % the existing singleton*. 
8 % 
9 % FUN_TRASF('CALLBACK',hObject,eventData,handles,...) calls the local 
10 % function named CALLBACK in FUN_TRASF.M with the given input arguments. 
11 % 
12 % FUN_TRASF('Property','Value',...) creates a new FUN_TRASF or raises the 
13 % existing singleton*. Starting from the left, property value pairs are 
14 % applied to the GUI before fun_trasf_OpeningFcn gets called. An 
15 % unrecognized property name or invalid value makes property application 
16 % stop. All inputs are passed to fun_trasf_OpeningFcn via varargin. 
17 % 
18 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one 
19 % instance to run (singleton)". 
20 % 
21 % See also: GUIDE, GUIDATA, GUIHANDLES 
22 
23 % Edit the above text to modify the response to help fun_trasf 
24 
25 % Last Modified by GUIDE v2.5 12-Jan-2010 17:06:47 
26 
27 % Begin initialization code - DO NOT EDIT 
28 gui_Singleton = 1; 
29 gui_State = struct('gui_Name', mfilename, ... 
30 'gui_Singleton', gui_Singleton, ... 
31 'gui_OpeningFcn', @fun_trasf_OpeningFcn, ... 
32 'gui_OutputFcn', @fun_trasf_OutputFcn, ... 
33 'gui_LayoutFcn', [] , ... 
34 'gui_Callback', []); 
35 if nargin && ischar(varargin{1}) 
36 gui_State.gui_Callback = str2func(varargin{1}); 
37 end 
38 
39 if nargout 
40 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
41 else 
42 gui_mainfcn(gui_State, varargin{:}); 
43 end 
44 % End initialization code - DO NOT EDIT 
45 
46 
47 % --- Executes just before fun_trasf is made visible. 
48 function fun_trasf_OpeningFcn(hObject, eventdata, handles, varargin) 
49 % This function has no output args, see OutputFcn. 
50 % hObject handle to figure 
51 % eventdata reserved - to be defined in a future version of MATLAB 
52 % handles structure with handles and user data (see GUIDATA) 
53 % varargin command line arguments to fun_trasf (see VARARGIN) 
54 
55 % Choose default command line output for fun_trasf 
56 handles.output = hObject; 
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12/02/10 18:35 C:\Users\cristhian86\Downloads\Fiber-Test\fun_trasf.m 2 of 8 
57 
58 % Update handles structure 
59 guidata(hObject, handles); 
60 
61 imagen = imread( 'optic_fiber.jpg' ); 
62 axes( handles.axes3 ); 
63 image( imagen ); 
64 axis off; 
65 
66 % UIWAIT makes fun_trasf wait for user response (see UIRESUME) 
67 % uiwait(handles.figure1); 
68 
69 
70 % --- Outputs from this function are returned to the command line. 
71 function varargout = fun_trasf_OutputFcn(hObject, eventdata, handles) 
72 % varargout cell array for returning output args (see VARARGOUT); 
73 % hObject handle to figure 
74 % eventdata reserved - to be defined in a future version of MATLAB 
75 % handles structure with handles and user data (see GUIDATA) 
76 
77 % Get default command line output from handles structure 
78 varargout{1} = handles.output; 
79 
80 
81 % --- Executes on button press in unidaddBm. 
82 function unidaddBm_Callback(hObject, eventdata, handles) 
83 % hObject handle to unidaddBm (see GCBO) 
84 % eventdata reserved - to be defined in a future version of MATLAB 
85 % handles structure with handles and user data (see GUIDATA) 
86 
87 % Hint: get(hObject,'Value') returns toggle state of unidaddBm 
88 
89 
90 % --- Executes on button press in unidaduW. 
91 function unidaduW_Callback(hObject, eventdata, handles) 
92 % hObject handle to unidaduW (see GCBO) 
93 % eventdata reserved - to be defined in a future version of MATLAB 
94 % handles structure with handles and user data (see GUIDATA) 
95 
96 % Hint: get(hObject,'Value') returns toggle state of unidaduW 
97 
98 
99 % --- Executes on button press in Ayuda. 
100 function Ayuda_Callback(hObject, eventdata, handles) 
101 % hObject handle to Ayuda (see GCBO) 
102 % eventdata reserved - to be defined in a future version of MATLAB 
103 % handles structure with handles and user data (see GUIDATA) 
104 
105 %Cargamos la imagen desde LA CARPETA WORK DEL MATLAB!! 
106 %uiopen('C:\Documents and Settings\Administrador\Escritorio\TFC 
ARNAU_PATRI\GUI_Arnau_Patri\ayuda_fun_transf.fig') 
107 h=figure(ayuda_fun_transf); 
108 
109 
110 %imagen = imread( 'ayuda_fun_transf.jpg' ); 
111 %axes( handles.axes2 ); 
12/02/10 18:35 C:\Users\cristhian86\Downloads\Fiber-Test\fun_trasf.m 3 of 8 
112 %image( imagen ); 
113 %axis off; 
114 
115 %open ayuda_fun_transf.fig 
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116 
117 function VbiasIn_Callback(hObject, eventdata, handles) 
118 % hObject handle to VbiasIn (see GCBO) 
119 % eventdata reserved - to be defined in a future version of MATLAB 
120 % handles structure with handles and user data (see GUIDATA) 
121 
122 % Hints: get(hObject,'String') returns contents of VbiasIn as text 
123 % str2double(get(hObject,'String')) returns contents of VbiasIn as a double 
124 % global VSTART; 
125 % global vstart; 
126 %VSTART = str2double(get(handles.VbiasIn,'String')); 
127 %vstart = str2double(VSTART); 
128 %handles.VbiasIn = vstart; 
129 %guidata(hObject,handles); 
130 
131 
132 % --- Executes during object creation, after setting all properties. 
133 function VbiasIn_CreateFcn(hObject, eventdata, handles) 
134 % hObject handle to VbiasIn (see GCBO) 
135 % eventdata reserved - to be defined in a future version of MATLAB 
136 % handles empty - handles not created until after all CreateFcns called 
137 
138 % Hint: edit controls usually have a white background on Windows. 
139 % See ISPC and COMPUTER. 
140 if ispc && isequal(get(hObject,'BackgroundColor'), get 
(0,'defaultUicontrolBackgroundColor')) 
141 set(hObject,'BackgroundColor','white'); 
142 end 
143 
144 
145 
146 function VbiasFi_Callback(hObject, eventdata, handles) 
147 % hObject handle to VbiasFi (see GCBO) 
148 % eventdata reserved - to be defined in a future version of MATLAB 
149 % handles structure with handles and user data (see GUIDATA) 
150 
151 % Hints: get(hObject,'String') returns contents of VbiasFi as text 
152 % str2double(get(hObject,'String')) returns contents of VbiasFi as a double 
153 % global VSTOP; 
154 % global vstop; 
155 % VSTOP = get(hObject,'String'); 
156 % vstop = str2double(VSTOP); 
157 % handles.VbiasFi = vstop; 
158 % guidata(hObject,handles); 
159 
160 
161 % --- Executes during object creation, after setting all properties. 
162 function VbiasFi_CreateFcn(hObject, eventdata, handles) 
163 % hObject handle to VbiasFi (see GCBO) 
164 % eventdata reserved - to be defined in a future version of MATLAB 
165 % handles empty - handles not created until after all CreateFcns called 
166 
12/02/10 18:35 C:\Users\cristhian86\Downloads\Fiber-Test\fun_trasf.m 4 of 8 
167 % Hint: edit controls usually have a white background on Windows. 
168 % See ISPC and COMPUTER. 
169 if ispc && isequal(get(hObject,'BackgroundColor'), get 
(0,'defaultUicontrolBackgroundColor')) 
170 set(hObject,'BackgroundColor','white'); 
171 end 
172 
173 
174 
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175 function Resolucion_Callback(hObject, eventdata, handles) 
176 % hObject handle to Resolucion (see GCBO) 
177 % eventdata reserved - to be defined in a future version of MATLAB 
178 % handles structure with handles and user data (see GUIDATA) 
179 
180 % Hints: get(hObject,'String') returns contents of Resolucion as text 
181 % str2double(get(hObject,'String')) returns contents of Resolucion as a 
double 
182 % global VPASO; 
183 % global vpaso; 
184 % VPASO = get(hObject,'String'); 
185 % vpaso = str2double(VPASO); 
186 % handles.Resolucion = vpaso; 
187 % guidata(hObject,handles); 
188 
189 
190 % --- Executes during object creation, after setting all properties. 
191 function Resolucion_CreateFcn(hObject, eventdata, handles) 
192 % hObject handle to Resolucion (see GCBO) 
193 % eventdata reserved - to be defined in a future version of MATLAB 
194 % handles empty - handles not created until after all CreateFcns called 
195 
196 % Hint: edit controls usually have a white background on Windows. 
197 % See ISPC and COMPUTER. 
198 if ispc && isequal(get(hObject,'BackgroundColor'), get 
(0,'defaultUicontrolBackgroundColor')) 
199 set(hObject,'BackgroundColor','white'); 
200 end 
201 
202 
203 function[Potencia]=HP8153A_pow1() 
204 
205 %global HP8153A_pow1; 
206 
207 % Esta funcion entrega la potencia del multimetro HP8153A en Watts 
208 
209 % Se crea un objeto gpib 
210 multimeter=gpib('ni' , 0, 22); 
211 
212 % Se abre el objeto 
213 fopen(multimeter); 
214 
215 % Se pide la identicacion del instrumento 
216 fprintf(multimeter, '*idn?'); 
217 instrument=fscanf(multimeter); 
218 
219 % Se configura el instrumento para que realize las mediciones en Watts 
12/02/10 18:35 C:\Users\cristhian86\Downloads\Fiber-Test\fun_trasf.m 5 of 8 
220 %fprintf(multimeter,'SENS2:POW:UNIT W') 
221 
222 %Se toman tres mediciones de potencia y se promedian 
223 fprintf(multimeter, 'READ:pow?') 
224 Potencia1=fscanf(multimeter,'%g'); 
225 %Pasamos la medida de dBm a mW: 
226 PmW1=10^(Potencia1/10); 
227 
228 fprintf(multimeter, 'READ:pow?') 
229 Potencia2=fscanf(multimeter,'%g'); 
230 %Pasamos la medida de dBm a mW: 
231 PmW2=10^(Potencia2/10); 
232 
233 fprintf(multimeter, 'READ:pow?') 
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234 Potencia3=fscanf(multimeter,'%g'); 
235 %Pasamos la medida de dBm a mW: 
236 PmW3=10^(Potencia3/10); 
237 
238 %************************************************************************** 
239 %************************************************************************** 
240 
241 %AMB EL RADIOBUTTON HEM DACONSEGUIR COMENTAR O DESCOMENTAR AQUESTES LÍNIES, 
242 %NECESITEM AJUDA DE LA CONCHI/OLGA YA! 
243 
244 Potencia=(PmW1+PmW2+PmW3)/3; %Aqui tenemos la potencia en uW. 
245 
246 %Pasamos la Potencia de mW a dBm: 
247 %Potencia=10*log10(Potencia); 
248 
249 
250 fclose(multimeter) 
251 delete(multimeter) 
252 clear multimeter 
253 
254 % --- Executes on button press in Ejecutar. 
255 function Ejecutar_Callback(hObject, eventdata, handles) 
256 % hObject handle to Ejecutar (see GCBO) 
257 % eventdata reserved - to be defined in a future version of MATLAB 
258 % handles structure with handles and user data (see GUIDATA) 
259 
260 %function[]=ftrans_mod_lineal() 
261 % Esta funcion grafica la funcion de transferencia de un modulador óptico. 
262 % Se sirve del HP8153A como medidor de potencia y del AG34970A como fuente 
263 % de tensión de bias. 
264 
265 clc 
266 clear all 
267 
268 data=guidata(gcbo); 
269 vstart = str2double(get(data.VbiasIn, 'String')); 
270 vstop=str2double(get(data.VbiasFi, 'String')); 
271 vpaso=str2double(get(data.Resolucion, 'String')); 
272 
273 
274 %Creamos un fichero para guardar los datos 
275 [fitxer,path]=uiputfile('*.dat','Guardar'); 
12/02/10 18:35 C:\Users\cristhian86\Downloads\Fiber-Test\fun_trasf.m 6 of 8 
276 fitxer=sprintf('%s%s',path,fitxer); 
277 fi=fopen(fitxer,'wt' ); 
278 
279 %Se piden los datos del rango de tensiones y el paso para el voltaje de bias 
280 %VSTART = get(hObject,'String'); 
281 
282 %vstart=str2num(VSTART); 
283 %vstart=VSTART; 
284 fprintf(fi, 'Vbias inicial (V):\t'); 
285 fprintf(fi, '%g\n',vstart); 
286 
287 
288 %vstop=str2num(VSTOP); 
289 %vstop=VSTOP; 
290 fprintf(fi, 'Vbias final (V):\t'); 
291 fprintf(fi, '%g\n',vstop); 
292 
293 
294 %vpaso=str2num(VPASO); 
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295 %vpaso=VPASO; 
296 vpaso=vpaso*1e-3; 
297 fprintf(fi, 'resolucion (V):\t'); 
298 fprintf(fi, '%g\n\n',vpaso); 
299 
300 %Creamos un contador para el vector de datos adquiridos 
301 j=1; 
302 fprintf(fi, 'Vbias (V)\tPout (μW)\n'); 
303 
304 %Bucle de adquisición de datos 
305 for i=vstart:vpaso:vstop 
306 
307 %********************************************* 
308 %DC(i); 
309 s1=serial('COM1' ); 
310 
311 fopen(s1); 
312 
313 % fprintf(s1, '*IDN?'); 
314 % nombre = fscanf(s1) 
315 v=i; 
316 
317 fprintf(s1, 'CHAN1:VOLT %g ;CURR 1.0',v); 
318 pause(2) 
319 fprintf(s1, '*VOLT?'); 
320 voltage = fscanf(s1) 
321 
322 fclose(s1); 
323 delete(s1); 
324 clear s1; 
325 
326 %********************************************AJUDA OLGA!!!!! 
327 %Aqui pasem de mW a uW, amb els dBm també multipliquem igual????? 
328 
329 pause(5) 
330 potencia = HP8153A_pow1; % Medicion de potencia en Watts (W) 
331 %potencia = potencia*1e6; % Medicion de potencia en Micro Watts (μW) 
12/02/10 18:35 C:\Users\cristhian86\Downloads\Fiber-Test\fun_trasf.m 7 of 8 
332 potencia = potencia*1e3; % Medicion de potencia en Micro Watts (μW) 
333 pot(j) = potencia; 
334 j=j+1; 
335 fprintf(fi,'%g\t',i); 
336 fprintf(fi,'%g\n',potencia); 
337 end 
338 
339 st=fclose(fi); 
340 
341 %En el vector "pot" tenemos las medidas 
342 %Se grafica las funcion de transferencia del Modulador 
343 vbias=[vstart:vpaso:vstop]; 
344 %close all 
345 figure 
346 plot(vbias,pot) 
347 title('Función de transferencia del modulador'); 
348 zoom on 
349 ylabel('Pout (μW)'); 
350 xlabel('Vbias (V)'); 
351 
352 
353 % --- Executes on button press in Limpiar_Variables. 
354 function Limpiar_Variables_Callback(hObject, eventdata, handles) 
355 % hObject handle to Limpiar_Variables (see GCBO) 
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356 % eventdata reserved - to be defined in a future version of MATLAB 
357 % handles structure with handles and user data (see GUIDATA) 
358 
359 
360 % --- Executes on button press in Salir. 
361 function Salir_Callback(hObject, eventdata, handles) 
362 % hObject handle to Salir (see GCBO) 
363 % eventdata reserved - to be defined in a future version of MATLAB 
364 % handles structure with handles and user data (see GUIDATA) 
365 close(gcbf) 
366 
367 
368 % --- Executes during object creation, after setting all properties. 
369 function axes2_CreateFcn(hObject, eventdata, handles) 
370 % hObject handle to axes2 (see GCBO) 
371 % eventdata reserved - to be defined in a future version of MATLAB 
372 % handles empty - handles not created until after all CreateFcns called 
373 
374 % Hint: place code in OpeningFcn to populate axes2 
375 
376 
377 % --- Executes during object creation, after setting all properties. 
378 function uipanel1_CreateFcn(hObject, eventdata, handles) 
379 % hObject handle to uipanel1 (see GCBO) 
380 % eventdata reserved - to be defined in a future version of MATLAB 
381 % handles empty - handles not created until after all CreateFcns called 
382 
383 
384 % --- Executes on button press in pushbutton5. 
385 function pushbutton5_Callback(hObject, eventdata, handles) 
386 % hObject handle to pushbutton5 (see GCBO) 
387 % eventdata reserved - to be defined in a future version of MATLAB 
12/02/10 18:35 C:\Users\cristhian86\Downloads\Fiber-Test\fun_trasf.m 8 of 8 
388 % handles structure with handles and user data (see GUIDATA) 
389 o=figure(montaje_fun_transf); 
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• Matlab Program to obtain the Null Amplitude Bias vs RF frequency and Dispersion vs 

RF frequency graphics in section 3.2.2.1 

1 clc 
2 clear all 
3 
4 
5 %--------------------------------------- The files are loaded 
------------------------------------- 
6 load lcRFsweep.txt 
7 
8 %------------------------------------------ Simulation data 
--------------------------------------- 
9 Freq_Laser=192.4e12; 
10 Bias_Resolution=0.01; 
11 Volt_I=-3.5; 
12 Volt_F=0; 
13 Vpi=3.5; 
14 
15 
16 %--------------------------------------- Frequency Resolution 
---------------------------------- 
17 Freq=(200e6:200e6:6.2e9); 
18 Delta_Freq=200e6; 
19 
20 
21 %----------------------------------------- Amplitude minimums 
-------------------------------- 
22 AMP=lcRFsweep(:,2); 
23 a=4; 
24 aux=(Volt_F-Volt_I)/Bias_Resolution; 
25 b=aux+1; % Number of steps of the bias sweep 
26 
27 bias=lcRFsweep(1:b,1); 
28 
29 null_bias=zeros([(Freq(length(Freq))-Freq(1))/(Delta_Freq),1]); 
30 
31 for i=1:(((Freq(length(Freq))-Freq(1))/(Delta_Freq))+1) 
32 [minimum,index]= min(AMP(a:b)); 
33 null_bias(i)=bias(index+3); 
34 a=b+4; 
35 b=a+aux-3; 
36 end 
37 
38 null_bias 
39 
40 
41 
42 %-------------------------------------- Dispersion in ps/nm 
-------------------------------------- 
43 
44 n=0; 
45 c=3e8; 
46 Wlength = c/Freq_Laser; 
47 
48 dispersion=zeros([(Freq(length(Freq))-Freq(1))/(Delta_Freq),1]); 
49 
50 for i=1:(((Freq(length(Freq))-Freq(1))/(Delta_Freq))+1) 
51 dispersion(i)=(2*n-null_bias(i)/Vpi)*(c/(2*Wlength*Wlength*Freq(i)*Freq(i))); 
14/02/10 11:20 C:\MATLAB7\work\lc_RFsweep.m 2 of 2 
52 
53 end 
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54 
55 dispersion 
56 
57 figure 
58 
59 plot(Freq,null_bias) 
60 title('Null Bias (n=0) vs RF Frequency'); 
61 figure 
62 
63 plot(Freq,dispersion) 
64 title('Dispersion vs RF Frequency'); 
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• Matlab Program to obtain the Null Amplitude Bias vs RF amplitude and Dispersion vs 

RF amplitude graphics in section 3.2.2.2 

1 clc 
2 clear all 
3 close all 
4 
5 %--------------------------------------- The files are loaded 
------------------------------------- 
6 load lcAmpSweep.txt 
7 
8 %------------------------------------------ Simulation data 
--------------------------------------- 
9 Freq_Laser=192.4e12; 
10 Bias_Resolution=0.01; 
11 Volt_I=-3.5; 
12 Volt_F=0; 
13 Vpi=3.5; 
14 
15 
16 %--------------------------------------- Frequency Resolution 
---------------------------------- 
17 Amp=(0.08:0.08:2.08); 
18 Delta_Amp=0.08; 
19 
20 
21 %----------------------------------------- Amplitude minimums 
-------------------------------- 
22 AMP=lcAmpSweep(:,2); 
23 a=10; 
24 aux=(Volt_F-Volt_I)/Bias_Resolution; 
25 b=aux+1; % Number of steps of the bias sweep 
26 
27 bias=lcAmpSweep(1:b,1); 
28 
29 null_bias=zeros([(Amp(length(Amp))-Amp(1))/(Delta_Amp),1]); 
30 
31 for i=1:(((Amp(length(Amp))-Amp(1))/(Delta_Amp))+1) 
32 [minimum,index]= min(AMP(a:b)); 
33 null_bias(i)=bias(index+9); 
34 a=b+10; 
35 b=a+aux-9; 
36 end 
37 
38 null_bias 
39 
40 
41 
42 %-------------------------------------- Dispersion in ps/nm 
-------------------------------------- 
43 
44 n=0; 
45 c=3e8; 
46 Wlength = c/Freq_Laser; 
47 RFfreq = 2e9; 
48 
49 dispersion=zeros([(Amp(length(Amp))-Amp(1))/(Delta_Amp),1]); 
50 
51 for i=1:(((Amp(length(Amp))-Amp(1))/(Delta_Amp))+1) 
14/02/10 11:04 C:\MATLAB7\work\lc_AMsweep.m 2 of 2 
52 dispersion(i)=(2*n-null_bias(i)/Vpi)*(c/(2*Wlength*Wlength*RFfreq*RFfreq)); 
53 



New methods for measuring and monitoring chromatic dispersion in optical communication systems 

 

110 

 

54 end 
55 
56 dispersion 
57 
58 figure(1) 
59 
60 plot(Amp,null_bias) 
61 title('Null Bias (n=0) vs RF Amplitude'); 
62 figure(2) 
63 
64 plot(Amp,dispersion) 
65 title('Dispersion vs RF Amplitude');  
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• Matlab Program to obtain the Null Amplitude Bias vs Nominal Dispersion and 

Dispersion vs Nominal Dispersion graphics in section 3.2.2.3 

clc 
2 clear all 
3 close all 
4 
5 %--------------------------------------- The files are loaded 
------------------------------------- 
6 load lcDsweep.txt 
7 
8 %------------------------------------------ Simulation data 
--------------------------------------- 
9 Freq_Laser=192.4e12; 
10 Bias_Resolution=0.01; 
11 Volt_I=-3.5; 
12 Volt_F=0; 
13 Vpi=3.5; 
14 
15 
16 %--------------------------------------- Frequency Resolution 
---------------------------------- 
17 L=(0:5000:160000); 
18 Delta_L=5000; 
19 Dnom=L*17e-6; 
20 Delta_D=Delta_L*17e-6; 
21 %----------------------------------------- Amplitude minimums 
-------------------------------- 
22 AMP=lcDsweep(:,2); 
23 a=3; 
24 aux=(Volt_F-Volt_I)/Bias_Resolution; 
25 b=aux+1; % Number of steps of the bias sweep 
26 
27 bias=lcDsweep(1:b,1); 
28 
29 null_bias=zeros([(Dnom(length(Dnom))-Dnom(1))/(Delta_D),1]); 
30 
31 for i=1:(((Dnom(length(Dnom))-Dnom(1))/(Delta_D))+1) 
32 [minimum,index]= min(AMP(a:b)); 
33 null_bias(i)=bias(index+2); 
34 a=b+3; 
35 b=a+aux-2; 
36 end 
37 
38 null_bias 
39 
40 
41 
42 %-------------------------------------- Dispersion in ps/nm 
-------------------------------------- 
43 
44 n=0; 
45 c=3e8; 
46 Wlength = c/Freq_Laser; 
47 RFfreq = 2e9; 
48 
49 dispersion=zeros([(Dnom(length(Dnom))-Dnom(1))/(Delta_D),1]); 
50 
51 for i=1:(((Dnom(length(Dnom))-Dnom(1))/(Delta_D))+1) 
14/02/10 11:21 C:\MATLAB7\work\lc_Dsweep.m 2 of 2 
52 dispersion(i)=(2*n-null_bias(i)/Vpi)*(c/(2*Wlength*Wlength*RFfreq*RFfreq)); 
53 
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54 end 
55 
56 dispersion 
57 
58 figure(1) 
59 
60 plot(Dnom,null_bias) 
61 title('Null Bias (n=0) vs Nominal Dispersion' ); 
62 figure(2) 
63 
64 plot(Dnom,dispersion) 
65 title('Dispersion vs Nominal Dispersion');  
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• Matlab Program to obtain the Null Amplitude Bias Difference vs RF frequency and 

Dispersion vs RF frequency graphics in section 4.2.2.1 

clc 
2 clear all 
3 close all 
4 
5 %--------------------------------------- The files are loaded 
------------------------------------- 
6 load monRFsweepv1.txt 
7 load monRFsweepv2.txt 
8 
9 %------------------------------------------ Simulation data 
--------------------------------------- 
10 Freq_Laser=192.4e12; 
11 Bias_Resolution=0.01; 
12 Volth1_I=-3.5; 
13 Volth1_F=0; 
14 Volth2_I=-1.75; 
15 Volth2_F=1.75; 
16 Vpi=3.5; 
17 
18 
19 %--------------------------------------- Frequency Resolution 
---------------------------------- 
20 Freq=(200e6:200e6:6.2e9); 
21 Delta_Freq=200e6; 
22 
23 
24 %----------------------------------------- Amplitude minimums 
-------------------------------- 
25 AMP1=monRFsweepv1(:,2); 
26 a1=4; 
27 aux1=(Volth1_F-Volth1_I)/Bias_Resolution; 
28 total1 = (Volth2_F-Volth1_I)/Bias_Resolution; 
29 b1=aux1+1; % Number of steps of the bias sweep 
30 
31 bias1=monRFsweepv1(1:b1,1); 
32 bias1 
33 null_bias1=zeros([(Freq(length(Freq))-Freq(1))/(Delta_Freq),1]); 
34 
35 for i=1:(((Freq(length(Freq))-Freq(1))/(Delta_Freq))+1) 
36 [minimum,index]= min(AMP1(a1:b1)); 
37 null_bias1(i)=bias1(index+3); 
38 a1=b1+total1-aux1+4; 
39 b1=a1+aux1-3; 
40 end 
41 
42 null_bias1 
43 
44 %----------------------------------------- Amplitude minimums 
-------------------------------- 
45 AMP2=monRFsweepv2(:,2); 
46 
47 aux2=(Volth2_F-Volth2_I)/Bias_Resolution; 
48 total2 = (Volth2_F-Volth1_I)/Bias_Resolution; 
49 a2=total2-aux2+4; 
50 b2=total2+1; % Number of steps of the bias sweep 
51 
14/02/10 11:24 C:\MATLAB7\work\mon_RFsweep.m 2 of 2 
52 bias2=monRFsweepv2(total2-aux2+1:b2,1); 
53 bias2 
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54 null_bias2=zeros([(Freq(length(Freq))-Freq(1))/(Delta_Freq),1]); 
55 
56 for i=1:(((Freq(length(Freq))-Freq(1))/(Delta_Freq))+1) 
57 [minimum,index]= min(AMP2(a2:b2)); 
58 null_bias2(i)=bias2(index+3); 
59 a2=b2+total2-aux2+4; 
60 b2=a2+aux2-3; 
61 end 
62 
63 null_bias2 
64 
65 
66 
67 %-------------------------------------- Dispersion in ps/nm 
-------------------------------------- 
68 
69 c=3e8; 
70 Wlength = c/Freq_Laser; 
71 
72 dispersion=zeros([(Freq(length(Freq))-Freq(1))/(Delta_Freq),1]); 
73 
74 for i=1:(((Freq(length(Freq))-Freq(1))/(Delta_Freq))+1) 
75 dispersion(i)=(1/2-(null_bias2(i)-null_bias1(i))/Vpi)*(c/(3*Wlength*Wlength*Freq 
(i)*Freq(i))); 
76 
77 end 
78 
79 dispersion 
80 
81 figure 
82 
83 plot(Freq,null_bias2-null_bias1) 
84 title('Delta Null Bias vs RF Frequency'); 
85 figure 
86 
87 plot(Freq,dispersion) 
88 title('Dispersion vs RF Frequency');  
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• Matlab Program to obtain the Null Amplitude Bias Difference vs RF amplitude and 

Dispersion vs RF amplitude graphics in section 4.2.2.2 

1 clc 
2 clear all 
3 close all 
4 
5 %--------------------------------------- The files are loaded 
------------------------------------- 
6 load ampv1.txt 
7 load ampv2.txt 
8 
9 %------------------------------------------ Simulation data 
--------------------------------------- 
10 Freq_Laser=192.4e12; 
11 Bias_Resolution=0.01; 
12 Volth1_I=-3.5; 
13 Volth1_F=0; 
14 Volth2_I=-1.75; 
15 Volth2_F=1.75; 
16 Vpi=3.5; 
17 
18 
19 %--------------------------------------- Frequency Resolution 
---------------------------------- 
20 Amp=(0.12:0.16:4.12); 
21 Delta_Amp=0.16; 
22 
23 
24 %----------------------------------------- Amplitude minimums 
-------------------------------- 
25 AMP1=ampv1(:,1); 
26 a1=4; 
27 aux1=(Volth1_F-Volth1_I)/Bias_Resolution; 
28 total1 = (Volth2_F-Volth1_I)/Bias_Resolution; 
29 b1=aux1+1; % Number of steps of the bias sweep 
30 
31 bias1=ampv1(1:b1,2); 
32 bias1 
33 null_bias1=zeros([(Amp(length(Amp))-Amp(1))/(Delta_Amp),1]); 
34 
35 for i=1:(((Amp(length(Amp))-Amp(1))/(Delta_Amp))+1) 
36 [minimum,index]= min(AMP1(a1:b1)); 
37 null_bias1(i)=bias1(index+3); 
38 a1=b1+total1-aux1+4; 
39 b1=a1+aux1-3; 
40 end 
41 
42 null_bias1 
43 
44 %----------------------------------------- Amplitude minimums 
-------------------------------- 
45 AMP2=ampv2(:,1); 
46 
47 aux2=(Volth2_F-Volth2_I)/Bias_Resolution; 
48 total2 = (Volth2_F-Volth1_I)/Bias_Resolution; 
49 a2=total2-aux2+4; 
50 b2=total2+1; % Number of steps of the bias sweep 
51 
14/02/10 11:22 C:\MATLAB7\work\mon_Ampsweep.m 2 of 2 
52 bias2=ampv2(total2-aux2+1:b2,2); 
53 bias2 
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54 null_bias2=zeros([(Amp(length(Amp))-Amp(1))/(Delta_Amp),1]); 
55 
56 for i=1:(((Amp(length(Amp))-Amp(1))/(Delta_Amp))+1) 
57 [minimum,index]= min(AMP2(a2:b2)); 
58 null_bias2(i)=bias2(index+3); 
59 a2=b2+total2-aux2+4; 
60 b2=a2+aux2-3; 
61 end 
62 
63 null_bias2 
64 
65 
66 
67 %-------------------------------------- Dispersion in ps/nm 
-------------------------------------- 
68 
69 c=3e8; 
70 Wlength = c/Freq_Laser; 
71 RFfreq = 2e9; 
72 
73 dispersion=zeros([(Amp(length(Amp))-Amp(1))/(Delta_Amp),1]); 
74 
75 for i=1:(((Amp(length(Amp))-Amp(1))/(Delta_Amp))+1) 
76 dispersion(i)=(1/2-(null_bias2(i)-null_bias1(i))/Vpi)*(c/ 
(3*Wlength*Wlength*RFfreq*RFfreq)); 
77 
78 end 
79 
80 dispersion 
81 
82 figure 
83 
84 plot(Amp,null_bias2-null_bias1) 
85 title('Delta Null Bias vs RF Amplitude'); 
86 figure 
87 
88 plot(Amp,dispersion) 
89 title('Dispersion vs RF Amplitude'); 
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• Matlab Program to obtain the Null Amplitude Bias Difference vs Nominal dispersion 

and Dispersion vs Nominal Dispersion graphics in section 4.2.2.3 

1 clc 
2 clear all 
3 close all 
4 
5 %--------------------------------------- The files are loaded 
------------------------------------- 
6 load monDsweepv1.txt 
7 load monDsweepv2.txt 
8 
9 %------------------------------------------ Simulation data 
--------------------------------------- 
10 Freq_Laser=192.4e12; 
11 Bias_Resolution=0.01; 
12 Volth1_I=-3.5; 
13 Volth1_F=0; 
14 Volth2_I=-1.75; 
15 Volth2_F=1.75; 
16 Vpi=3.5; 
17 
18 
19 %--------------------------------------- Frequency Resolution 
---------------------------------- 
20 L=(0:5000:160000); 
21 Delta_L=5000; 
22 Dnom=L*17e-6; 
23 Delta_D=Delta_L*17e-6; 
24 
25 
26 %----------------------------------------- Amplitude minimums 
-------------------------------- 
27 AMP1=monDsweepv1(:,2); 
28 a1=4; 
29 aux1=(Volth1_F-Volth1_I)/Bias_Resolution; 
30 total1 = (Volth2_F-Volth1_I)/Bias_Resolution; 
31 b1=aux1+1; % Number of steps of the bias sweep 
32 
33 bias1=monDsweepv1(1:b1,1); 
34 bias1 
35 null_bias1=zeros([(Dnom(length(Dnom))-Dnom(1))/(Delta_D),1]); 
36 
37 for i=1:(((Dnom(length(Dnom))-Dnom(1))/(Delta_D))+1) 
38 [minimum,index]= min(AMP1(a1:b1)); 
39 null_bias1(i)=bias1(index+3); 
40 a1=b1+total1-aux1+4; 
41 b1=a1+aux1-3; 
42 end 
43 
44 null_bias1 
45 
46 %----------------------------------------- Amplitude minimums 
-------------------------------- 
47 AMP2=monDsweepv2(:,2); 
48 
49 aux2=(Volth2_F-Volth2_I)/Bias_Resolution; 
50 total2 = (Volth2_F-Volth1_I)/Bias_Resolution; 
51 a2=total2-aux2+4; 
14/02/10 11:23 C:\MATLAB7\work\mon_Dsweep.m 2 of 2 
52 b2=total2+1; % Number of steps of the bias sweep 
53 



New methods for measuring and monitoring chromatic dispersion in optical communication systems 

 

118 

 

54 bias2=monDsweepv2(total2-aux2+1:b2,1); 
55 bias2 
56 null_bias2=zeros([(Dnom(length(Dnom))-Dnom(1))/(Delta_D),1]); 
57 
58 for i=1:(((Dnom(length(Dnom))-Dnom(1))/(Delta_D))+1) 
59 [minimum,index]= min(AMP2(a2:b2)); 
60 null_bias2(i)=bias2(index+3); 
61 a2=b2+total2-aux2+4; 
62 b2=a2+aux2-3; 
63 end 
64 
65 null_bias2 
66 
67 
68 
69 %-------------------------------------- Dispersion in ps/nm 
-------------------------------------- 
70 
71 c=3e8; 
72 Wlength = c/Freq_Laser; 
73 RFfreq = 2e9; 
74 
75 dispersion=zeros([(Dnom(length(Dnom))-Dnom(1))/(Delta_D),1]); 
76 
77 for i=1:(((Dnom(length(Dnom))-Dnom(1))/(Delta_D))+1) 
78 dispersion(i)=(1/2-(null_bias2(i)-null_bias1(i))/Vpi)*(c/ 
(3*Wlength*Wlength*RFfreq*RFfreq)); 
79 
80 end 
81 
82 dispersion 
83 
84 figure 
85 
86 plot(Dnom,null_bias2-null_bias1) 
87 title('Delta Null Bias vs Nominal D' ); 
88 figure 
89 
90 plot(Dnom,dispersion) 
91 title('Dispersion vs Nominal D');  
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• Matlab Program to obtain the Null Amplitude Bias Difference vs Coupling factor and 

Dispersion vs Coupling Factor graphics in section 4.2.2.4 

 

1 clc 
2 clear all 
3 close all 
4 
5 %--------------------------------------- The files are loaded 
------------------------------------- 
6 load monAlphasweepv1.txt 
7 load monAlphasweepv2.txt 
8 
9 %------------------------------------------ Simulation data 
--------------------------------------- 
10 Freq_Laser=192.4e12; 
11 Bias_Resolution=0.01; 
12 Volth1_I=-3.5; 
13 Volth1_F=0; 
14 Volth2_I=-1.75; 
15 Volth2_F=1.75; 
16 Vpi=3.5; 
17 
18 
19 %--------------------------------------- Frequency Resolution 
---------------------------------- 
20 Alpha=(0.51:0.02:0.99); 
21 Delta_Alpha=0.02; 
22 
23 
24 %----------------------------------------- Amplitude minimums 
-------------------------------- 
25 AMP1=monAlphasweepv1(:,2); 
26 a1=4; 
27 aux1=(Volth1_F-Volth1_I)/Bias_Resolution; 
28 total1 = (Volth2_F-Volth1_I)/Bias_Resolution; 
29 b1=aux1+1; % Number of steps of the bias sweep 
30 
31 bias1=monAlphasweepv1(1:b1,1); 
32 bias1 
33 null_bias1=zeros([(Alpha(length(Alpha))-Alpha(1))/(Delta_Alpha),1]); 
34 
35 for i=1:(((Alpha(length(Alpha))-Alpha(1))/(Delta_Alpha))+1) 
36 [minimum,index]= min(AMP1(a1:b1)); 
37 null_bias1(i)=bias1(index+3); 
38 a1=b1+total1-aux1+4; 
39 b1=a1+aux1-3; 
40 end 
41 
42 null_bias1 
43 
44 %----------------------------------------- Amplitude minimums 
-------------------------------- 
45 AMP2=monAlphasweepv2(:,2); 
46 
47 aux2=(Volth2_F-Volth2_I)/Bias_Resolution; 
48 total2 = (Volth2_F-Volth1_I)/Bias_Resolution; 
49 a2=total2-aux2+4; 
50 b2=total2+1; % Number of steps of the bias sweep 
51 
14/02/10 11:22 C:\MATLAB7\work\mon_Alphasweep.m 2 of 2 
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52 bias2=monAlphasweepv2(total2-aux2+1:b2,1); 
53 bias2 
54 null_bias2=zeros([(Alpha(length(Alpha))-Alpha(1))/(Delta_Alpha),1]); 
55 
56 for i=1:(((Alpha(length(Alpha))-Alpha(1))/(Delta_Alpha))+1) 
57 [minimum,index]= min(AMP2(a2:b2)); 
58 null_bias2(i)=bias2(index+3); 
59 a2=b2+total2-aux2+4; 
60 b2=a2+aux2-3; 
61 end 
62 
63 null_bias2 
64 
65 
66 
67 %-------------------------------------- Dispersion in ps/nm 
-------------------------------------- 
68 
69 c=3e8; 
70 Wlength = c/Freq_Laser; 
71 RFfreq = 2e9; 
72 
73 dispersion=zeros([(Alpha(length(Alpha))-Alpha(1))/(Delta_Alpha),1]); 
74 
75 for i=1:(((Alpha(length(Alpha))-Alpha(1))/(Delta_Alpha))+1) 
76 dispersion(i)=(1/2-(null_bias2(i)-null_bias1(i))/Vpi)*(c/ 
(3*Wlength*Wlength*RFfreq*RFfreq)); 
77 
78 end 
79 
80 dispersion 
81 
82 figure 
83 
84 plot(Alpha,null_bias2-null_bias1) 
85 title('Delta Null Bias vs Alpha'); 
86 figure 
87 
88 plot(Alpha,dispersion) 
89 title('Dispersion vs Alpha' ); 

Matlab Program to obtain the Transfer Function of a Modulator: 
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