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Abstract

Abstract1

In this project c++ code supporting intermediate view synthesis was developed . The 

idea  was  to  create  classes  and  functions  which  can  be  later  easily  used  to  create 

intermediate views. Main part of the code is responsible for rectification. Images from two 

cameras may be rectified and then further operations with the images can be done. In this 

case the next operation on the rectified images is intermediate view synthesis. Special 

function computes from two rectified images the virtual view. The virtual image can be 

computed for any place set between two cameras taking the real image.
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Introduction

1 Introduction3

The  point  of  doing  the  intermediate  view  synthesis  was  to  use  it  in  three 

dimensional television (3D-TV).  3D–TV becomes last time more popular, and there are 

many researches and projects about it. Also many new devices for 3D vision becomes 

available.

For three-dimensional television (3D-TV) to become  feasible and acceptable on a 

wide scale, the added realism must outweigh any required increases in processing and 

system complexity, and the stereoscopic information must be comfortable to view. Both of 

these goals can be achieved if intermediate views of the scene are available. 

While  binocular  systems  provide  depth  information  through  the  sensation  of 

stereopsis, a system consisting of only two views of a scene lacks the important depth cue 

of motion parallax, which provides the distinction between binocular and three-dimensional 

systems. Motion parallax can be synthesized from multiple intermediate views of the scene 

by presenting the correct stereo-pair according to the observer’s position. Discomfort is 

often experienced when viewing stereoscopic images on two-dimensional displays. As with 

any subjective assessment,  this discomfort  is viewer-dependent. Viewers prefer varying 

degrees  of  depth  perception  from binocular  imagery  based  on  individual  stereoscopic 

viewing ability and the range of depth present in the scene. A greater sense of depth is 

provided by a relatively large inter-camera separation, but the larger the separation the 

more difficulty marginal viewers have in fusing the images. If intermediate views of a scene 

are available, a viewer can dynamically select the inter-camera separation for comfort and 

preferred sense of depth.

An intermediate view is defined as the image that would be obtained from a camera 

located  between  and  on  a  straight  line  connecting  the  given  stereo-pair’s  cameras. 

Computing the intermediate view from views from the real cameras, is much easier if the 

images are rectified. So first,  before computing intermediate view, the images from the 

cameras have to be rectified.
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Rectification is a process used to facilitate the analysis of a stereo pair of images by 

making it simple to enforce the two view geometric constraint. For a pair of related views 

the epipolar geometry provides a complete description of relative camera geometry. Once 

the epipolar geometry has been determined it is possible to constrain the match for a point 

in one image to lie on a line (the  epipolar line) in the other image and vice versa. The 

process  of  rectification  makes  it  very  simple  to  impose  this  constraint  by  making  all 

matching epipolar lines coincident and parallel with an image axis. Many stereo algorithms 

assume  this  simplified  form because  subsequent  processing  becomes  much  easier  if 

differences between matched points will be in one direction only. 

In  the past,  stereo images were primarily  rectified  using  optical  techniques,  but 

more  recently  these  have  been  replaced  by  software  techniques.  These  model  the 

geometry of optical projection by applying a single linear transformation to each image, 

effectively rotating both cameras until the image planes are the same. Such techniques are 

often referred to as planar rectification. The advantages of this linear approach are that it is 

mathematically simple, fast and preserves image features such as straight lines.4

Having rectified images and corresponding them disparity maps computing of the 

intermediate view may be done. After this, to restore the right image geometry the de-

rectification should be done. This operation is the inversion of rectification.

So after all the way of synthesis the intermediate view can be presented by such 

diagram:

1.1 Intermediate view synthesis
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The figure below shows views at successive steps of the intermediate view synthesis.

a)

b)

c)

d)

1.2 a) pictures from left and right cameras b) the same pictures but rectified c) synthesized 

intermediate image d) de-rectified intermediate image5
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6State of the art

There are few techniques for intermediate view synthesis. Some of them reconstruct 

whole 3D structure of the scene with all  geometry information. For example, Seitz  and 

Dyer proposed a method with affine model for computing 3D scene structure from point 

and line features in monocular image sequences. Another technique presented by Zhang 

is  to  recover  Euclidean  structure  for  facial  images  synthesis  using  some  domain 

knowledge like distances and angles. Contrasting with the first method, the second one is 

discrete and generally more difficult to implement because the whole process does not 

require any 3D-scene information. These techniques may not be always the best choice, 

especially when the structure of the scene is very complicated.

The other solutions are for example centric mosaics and light field. They does not 

require any information about the 3D structure but analyse a certain number of views of a 

scene. These approaches yield very photo realistic results but typically require a very large 

number of reference images.

 Method used in this project is something between those two described above. It is 

technique for image  synthesis in perspective space. This means that  with two reference 

images snapped by a calibrated camera a third view in-between two original ones can be 

generated. Pixels are transferred from real, rectificated input images to virtual image using 

a pre-computed disparity map. During the process, there are some information about the 

scene geometry needed (like the disparity) but not the whole 3D geometry information of 

the scene.  These approaches assume the advantages of the first two categories: photo 

realistic results, low space requirements and time complexity independent from the scene 

complexity. Unfortunately, the disparity map is required to be dense and very accurate, 

otherwise no reasonable result can be obtained.

Rectification  is  a  classical  problem of  stereo  vision,  however,  few methods  are 

available in the computer vision literature. Ayache and Lstman introduced a rectification 
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algorithm,  in  which  a  matrix  satisfying  a  number  of  constraints  is  hand  crafted.  The 

distinction between necessary and arbitrary constraints is unclear. Some authors report 

rectification under restrictive assumptions, for instance assume a very restrictive geometry 

(parallel vertical axes of the camera references frames). Other works introduce algorithms 

which perform rectification given a weakly calibrated stereo rig, i.e. a rig for which only 

points correspondences between images are given. Some of works also concentrates on 

the issue of minimizing the rectified image distortion.

In  this  work  it  is  assumed  that  stereo  rig  is  calibrated,  the  cameras  internal 

parameters, mutual position and orientation are known. Algorithm presented in this work 

rectify a calibrated stereo rig of unconstrained geometry and mounting general cameras.
7
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3 Background

3.1 Camera model

Briefly description of camera model. Camera parameters and the way how 3D 
point is projected into 2D point will be described.

The camera is modelled by its optical centre c and its retinal plane (or image 

plane) R. In each camera, a 3D point w = (x, y, z)T in world coordinates (where the world 

coordinate frame is fixed arbitrarily) is projected into an image point m = (u,v)T in camera 

coordinates, where m is the intersection of R with the line containing w and c. In projective 

(or homogeneous) coordinates, the transformation from w to m is modelled by the linear 

transformation P

(3.1) m= P w

where
8

(3.2)

(3.3)

The points w for which S = 0 define the focal plane and are projected to infinity.
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3.1 Pinhole camera model

Each pinhole camera is therefore modelled by its perspective projection matrix 9

(PPM) P , which can be decomposed into the product

(3.4)

The matrix A gathers the intrinsic parameters of the camera, and has the following form:

(3.5)

where αu αv are the focal lengths in vertical and horizontal pixels, respectively, and (u0, v0) 

are the coordinates of the principal point. The matrix G is composed by a 3 x 3 rotation 

matrix and a vector t, encoding the camera position and orientation (extrinsic parameters) 

in the world reference frame, respectively:

(3.6)

Let us write the PPM as

9
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(3.7)

The plane q3
T w  + q34 = 0 (S = 0) is the focal plane, and the two planes  q1

T w  + q14 = 0

and  q2
T w  + q24 = 0 intersect the retinal plane in the vertical (U = 0) and horizontal (V = 0) 

axis of the retinal coordinates, respectively.

The optical centre c is the intersection of the three planes introduced in the previous 

paragraph, therefore

(3.8)

and

(3.9)

The optical ray associated to an image point m is the line cm, i.e. The set of points {w : 

m  = P w }. The equation of this ray can be written in parametric form as

(3.10)

with λ an arbitrary real number.[1]10
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3.2 Epipolar geometry

This  chapter  gives  a  overview  of  epipolar  geometry.  Knowledge  of  the  

epipolar geometry is needed to understand the rectification.

Epipolar geometry refers to the geometry of stereo vision. Each camera captures a 

2D image of the 3D world. When two cameras view a 3D scene from two distinct positions, 

there are a number of geometric relations between the 3D points and their projections onto 

the 2D images that lead to constraints between the image points. This conversion from 3D 

to 2D is referred to as a perspective projection and is described by11 the pinhole camera 

model.

The  figure  below  shows  two  cameras  taking  picture  of  the  same  scene  from 

different points of view. The epipolar geometry then describes the relation between the two 

resulting views.[2]

3.2 Two cameras taking picture of the same scene from different points of view.
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The  epipolar  geometry  between  two  views  is  essentially  the  geometry  of  the 

intersection of the image planes with the pencil of planes having the baseline as axis (the

baseline is the line joining the camera centres). This geometry is usually motivated by 

considering the search for corresponding points in stereo matching. Suppose a point X in 

3-space is imaged in two views, at x in the first, and x' in the second. As shown in figure 

3.3a the image points x and x', space point X, and camera centres are coplanar. Denote 

this plane as π. Clearly, the rays back-projected from x and x' intersect at X, and the rays 

are coplanar, lying in π. It is this latter property that is of most significance in searching for 

a correspondence.12

3.3 Point correspondence geometry.

Supposing now that x is known, the question is: how the corresponding point x' is 

constrained. The plane   is determined by the baseline and the ray defined by  x. From 

above we know that the ray corresponding to the (unknown) point x' lies in π , hence the 

point x' lies on the line of intersection l' of π with the second image plane (pic. 3.3b). This 

line l' is the image in the second view of the ray back-projected from x. In terms of a stereo 

correspondence algorithm the benefit is that the search for the point corresponding to  x 

need not cover the entire image plane but can be restricted to the line l'.
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3.4 Epipolar geometry. a) The camera baseline intersects each image plane at the

epipoles e and e'. Any plane  containing the baseline is an epipolar plane, and intersects

the image planes in corresponding epipolar lines l and l'. b) As the position of the 3D point 

X varies, the epipolar planes „rotate” about the baseline. This family of planes is known as  

an epipolar pencil. All epipolar lines intersect at the epipole.

13

The geometric entities involved in epipolar geometry are illustrated in figure 3.4. The 

terminology is:

• The epipole is the point  of intersection of the line joining the camera centres (the 

baseline) with the image plane. Equivalently, the epipole is the image in one view of 

the camera centre of the other view. It is also the vanishing point of the baseline 

(translation) direction.

• An  epipolar plane  is a plane containing the baseline. There is a one-parameter 

family (a pencil) of epipolar planes.

• An epipolar line  is the intersection of an epipolar plane with the image plane. All 

epipolar lines intersect at the epipole. An epipolar plane intersects the left and right 

image  planes  in  epipolar  lines,  and  defines  the  correspondence  between  the 

lines.[5]

Example of epipolar geometry is given in figure 3.5.
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3.5 Example of epipolar geometry.

14
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3.3 Rectification

Between two cameras there is a problem of finding a corresponding point viewed by 

one camera in the image of the other camera (this is called the correspondence problem.) 

In most camera configurations, finding correspondences requires a search in two 

dimensions. However, if the two cameras are aligned to have a common image plane, the 

search is simplified to one dimension - a line that is parallel to the line between the 

cameras (the baseline). Image rectification is an equivalent (and more often used) 

alternative to this precise camera alignment. It transforms the images to make the epipolar 

lines (epipolar geometry) align horizontally.
15

If the images to be rectified are taken from camera pairs without geometric 

distortion, this calculation can easily be made with a linear transformation. X & Y rotation 

puts the images on the same plane, scaling makes the image frames be the same size 

and Z rotation and skew adjustments make the image pixel rows directly line up. The rigid 

alignment of the cameras needs to be known (by calibration) and the calibration 

coefficients are used by the transform.[2]

3.6 The search space: 1) before rectification 2) after rectification
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3.4 Intermediate view synthesis

Despite significant advances in 3D computer graphics, the realism of rendered 

images is limited by hand coded graphical models. Existing techniques for creating 3D 

models are time intensive and put high demands on the artistry of the model. In light of 

these limitations, there has been growing interest in the use of 2D image warping 

techniques for image synthesis and animation. The advantage of working in 2D is that 

photographs of real scenes can be used as a basis to create very realistic effects.

In this technique the intermediate view is computed from images taken by cameras 

from two different positions. The images have to be rectified, and their disparity maps need 

to be known.16 

3.7 I1 - the left imageI2 - the right imageI1.5 – generated intermediate view image
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4 Detailed description of algorithms

4.1 Rectification

In this chapter will be described algorithm used for image rectification. Mostly 

this are matrix operations, and it is closely connected with the epipolar 

geometry.

Image  rectification  can  be  view  as  the  process  of  transforming  the  epipolar 

geometry of a pair of images into a canonical form. This is accomplished by applying a 

homography to each image that maps the epipole to a predetermined point.

4.1 The lines v and v', and w and w' must be corresponding epipolar lines that lie on 
common epipolar planes.17

We assume that the stereo rig is calibrated, i.e., the perspective projection matrices 

P o1  and  P o2 are known. This assumption is not strictly necessary, but leads to a 

simpler technique. The idea behind rectification is to define two new perspective projection 

matrices P n1 and  P n2 which  preserve  the  optical  centres  but  with  image planes 

parallel to the baseline. In addition we want the epipolar line of the point m1 = (u1,v1)T in the 

right image to be the horizontal line v2= v1 in the left image.
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Consider figure 4.2, where the old retinal plane Ro and the new one Rn are depicted: 

image rectification is the operation of transforming from Ro to Rn.

4.2 Rectification
18

Constraining the rectifying perspective projection matrices

The new perspective projection matrices P n1 and P n2 will be computed as the 

solution of a system of equations, which express the constraints arising from rectification 

requirements plus others constraints necessary to ensure a unique solution.

In  the  following,  I  will  denote  with P o1  P o2 the  old  perspective  projection 

matrices. Let

(4.1)

be the sought rectifying perspective projection matrices.

18
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Common focal plane19

If cameras share the same focal plane the common retinal plane is constrained to 

be parallel to the baseline and epipolar lines are parallel. The two rectifying perspective 

projection matrices have the same focal plane if

(4.2) a3= b3 a34= b34

Position of the optical centres

The optical centres of the rectifying perspective projections must be the same as 

those of the original projections:

(4.3)

where optical centres c1  c2 are given:

(4.4)

Equation (4.3) gives six linear constraints:

(4.5)

Alignment of conjugate epipolar lines

The vertical  coordinate of the projection of a 3D point onto the rectifying retinal 

plane must be the same in both image, i.e.:

(4.6)

19
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Using equation (2) the constraints can be obtained:20

(4.7) a2= b2 a24= b24

The equations written to this point are sufficient to guarantee rectification: to prove this, let 

verify that epipolar lines are parallel and horizontal.

When   (the epipole is at infinity) the epipolar lines are parallel to the vector 

. 

As we know, each epipole is the projection of the conjugate optical centre, i.e.

(4.8)

Hence epipolar lines are horizontal when

(4.9)

The four equations are satisfied as long as equations (4.2) (4.3) and (4.7) hold, as one can 

easily verify.

Although rectification is guaranteed, the orientation of the retinal plane has still one 

degree of freedom. Moreover, the constraints written up to now are not enough to obtain a 

unique  perspective  projection  matrix.  We shall  therefore  choose  explicitly  the  intrinsic 

parameters to obtain enough equations.

20
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Orientation of the rectifying retinal plane

Rectifying  focal  planes  are  chosen  to  be  parallel  to  the  intersection  of  the  two 

original focal planes, i.e.

(4.10)

where  f1 and  f2 are  the  third  rows  of P o1  P o2   respectively. The  corresponding 

equation, , is redundant thanks to equation (2).

Orthogonality of the rectifying reference frames21

The intersection of the retinal plane with the planes a1
Tw + a14 = 0 and a2

Tw + a24 = 0 

correspond to the v and u axes, respectively, of the retinal reference frame. In order for this 

reference frame to be orthogonal, the planes must be perpendicular to each other, hence, 

taking into account equation (7)

(4.11)

Principal points

The principal point (u0,v0) is given by

(4.12)

The two principal points are set to (0,0) and using equations (2) and (7) constraints are 

obtained

(4.13)

Focal lengths in pixels

The horizontal and vertical focal lengths in pixels, respectively, are given by

(4.14)

21
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By setting arbitrary the values of αu and αv  we obtain the constraints

(4.15)

which, by virtue of the equivalence

(4.16)

and equation (13), can be rewritten as

(4.17)

Set the scale factor22

Perspective projection matrices are defined up to a scale factor, and a common 

choice to block the latter is to set

(4.18)

Solving for the rectifying perspective projection matrix

Let organise the constraints introduced in the previous section in the following four 

systems:

(4.19)

(4.20)

22
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(4.21)

(4.22)

Plus

(4.23)

The  first  four  systems  have  all  the  same  structure,  each  one  being  a  3  x  4  linear 

homogeneous system subject to a quadratic constraint, that is
23

(4.24)

where x' is a vector composed by the first three components of x, and k is a real number. 

The four  systems above are solved in  sequence,  top to  bottom. The solution of  each 

system is obtained by first computing (for example by SVD factorisation) a one parameter 

family of solutions to Ax = 0 of the form x = αx0, where x0 is a non trivial solution and λ is 

an arbitrary real number, and the letting α = k/||x0'||.

The rectifying transformation

Now that – for each camera – the perspective projection matrix is known, we want to 

compute the linear transformation (in projective coordinates) that maps the retinal plane of 

the old perspective projection matrix

23
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24

onto the retinal plane of 

This transformation is the 3 x 3 matrix T = PnPo
-1.

For any 3D point w

(4.25)

From equation (3.10) is known that the equation of the optical ray associated to mo is

(4.26)

hence

(4.27)

Assuming that rectification does not alter optical centre (cn = co ):

(4.28)

The transformation T is then applied to the original image to produce a rectified image. The 

pixels (integer – coordinate positions) of the rectified image correspond, in general, to non 

– integer positions on the original image plane. Therefore, the grey levels of the rectified 

image are computed by bilinear interpolation.[1]
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a)

b)

4.3 Rectification:  a)  pictures  with  epipolar  lines  from  left  and  right  camera  before  

rectification, b) pictures with epipolar lines from left and right camera after rectification.25
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4.2 Intermediate view synthesis

26

The parallel, rectified stereo view VrectiL and VrectiR are known. Assume that the two 

disparity maps  DLR  (based on the left view, the disparity value at p is noted as dp
LR) and 

DRL (based on the right view, the disparity value at p is noted as dp
RL) are also known. The 

x and y coordinates of  prectiL in the view VrectiL   are xp
rectiL and yp

rectiL respectively, and the 

same holds for prectiR in VrectiR :

Cx  (virtual camera), CrectiL  ,(left camera with rectified image on the output) and CrectiR  (right 

camera with rectified image on the output) are parallel to each other. The projections of  w 

have the same y - coordinate but are only different in x – coordinate:

(4.29)

(4.30)

(4.31)

Subtracting (4.29) from (4.30), gives:

(4.32)

Subtracting (4.30) from (4.31), gives:

26
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(4.33)

Taking (4.32) into (4.33) generates:

(4.34)

This means:

(4.35)

(4.36)

From equation (4.35) and (4.36), it seems that we need only one disparity map plus one 

view to construct the x - interpolated view perfectly. However, in practice, we always suffer 

from occlusions (see figure 4.4).27

4.4 Views from the three parallel cameras. Bold curves indicate scene surface from the 

point view of the three cameras.

27
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In general, four cases can be distinguished:

1) Complete 3D info: The info that can be viewed in  CrectiL , CrectiR and CX

2) Left Occlusion: The parts of the view that are visible in the left camera but not in the 

right camera.

3) Right Occlusion: The parts of the view that are visible in the right camera but not in the 

left camera.

4) Middle Occlusion: The parts of the view that are only visible in the x - interpolated view.

Assuming that the estimated disparity maps contain the correct (pseudo) disparity in 

occluded regions, we can then generate the x - interpolated view VX by:

1) For Complete 3D parts: Either equation (4.35) or (4.36) is applicable.

2) For Left Occlusion parts: Equation (4.35) can be used.28

3) For Right Occlusion parts: Equation (4.36) can be employed.

4) For Middle Occlusion parts: No info is available in either VrectiL or VrectiR . We have to 

approximate it e.g. by nearest-neighbour (zero order) or linear interpolation (first order).

Assuming that the light condition between the left and the right view does not 

change too much, for most parts of the x – interpolated view, we just fetch them from the 

left view. Only for right occlusion parts, we take them from the right view. To investigate the 

possibility of handling sparse disparity maps without upsampling, the following steps are 

adopted:

1. From equation (4.35), is constructed a disparity map DXL which is based on the view VX. 

The relations are:

and

2. From equation (4.36), can be constructed a disparity map DXR which is based on the 

view VX. The relations are

28
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 dp
XRa = xp

rectiR – xp
M = dp

RL/2

and

xp
X = xp

rectiR – dp
XR + dp

XR/2 
2xcD

M

b

3. DXL and DXR are compared to generate DX:

for each pixel in DX,

if there is assigned a value at the same position in DXL,

then copy that value to the current position in DX, and at the same time mark the 

current position as left available (in fact, this marking indicates both left 

occlusion and complete 3D info),29

else if there is assigned a value at the same position in DXR,

then copy that value to the current position in DX, and at the same time mark the 

current position as right available

else mark the current position as middle occlusion

endif

endfor

4. In DX, for each middle occlusion part, if two ends are both left available or right available, 

then filling in by linear interpolation, otherwise by nearest neighbour.

5. Generate the view VX, by backward mapping based on DX, VrectiL, and VrectiR. [3]

A example of left, right and generated intermediate views is shown in figure 4.5

29
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a)

b)

c)

4.5 a) view from left camera b)generated view c) view from right camera30
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5 Algorithm implementation

5.1 Working platform

I was working on linux operating system, and the program, all functions, classes 

were tested on this 31system. However there is big probability that it works without (or after 

some small changes) also under windows operating system.

Point of this work was to implement the rectification algorithm in the c++ language.

C++ is very efficient, and autonomous what's makes it very mobile, that's why I suppose 

that this rectification may be very easy used on other operating systems.

Since big part of the algorithm (actually all of it) base on matrix operations, and the 

standard c++ libraries doesn't support them, I used the ImagePlus library. ImagePlus is the 

new development platform in C++ language for the Video and Image Processing Group at 

UPC. The Imageplus contain big part of the functions, mathematics operations that were 

indispensable for the algorithm. 

Short characteristic of ImagePlus:

Basic classes

● The basic class for vectors, matrices, 3D arrays is class MultiArray 

• This means there are no Vector or Matrix class, use MultiArray<T,1> for vectors, 

MultiArray<T,2> for matrices, etc. 

● A unique  class  named ImaVol  provides the  basic  structure  for  both  image  and 

volume classes. This way, common functions can be defined to the ImaVol class and 

they will work for all other subclasses (through polymorphism) 

• All images and volumes are derived from the ImaVol class

31
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• A MultiArray class is used to represent each colour channel on an ImaVol 

• The ImaVol class is generic in terms of the data type so different image and 

volume types can be created 

• The ImaVol class is generic in terms of the number of colour channels of the 

image/volume so that subclasses for different colour spaces can be derived 

• The ImaVol  class is  generic  in terms of  the number of  dimensions of  these 

channels so it that subclasses for images or volumes can be derived

Common classes
32

● Filter class:

Filter class provides a standard framework to implement all kind of filters that work 

over any MultiArray or ImaVol objects. The concept can be extended to other data 

types. Each different filter  is  defined as a new class derived from Filter. These  

derived classes inherit two public member functions from Filter: filter() and name() 

(see filter.hpp). The filtering process returns an object of the same type as the input.

● Room class:

Room class  is  the  basic  container  for  voxelized  volumes  resulting  from a  3D  

reconstruction  in  multi-camera  scenarios.  It  contains  a  volume  object  and  the  

parameters needed to relate the discretized volume with the real scenario. These 

parameters are the voxel size in cm. and the offset. The offset is a point in the  

scenario coordinate system, and is the coordinate origin of the reconstructed zone. 

The scenario coordinate system is set by the camera parameters. The voxelized  

zone may not start at the scenario origin, i.e a case where we reconstruct a small 

zone in the room. Then the offset is used to relate the volume coordinates with the 

scenario coordinates.

ImagePlus modules

● The ImagePlus library is divided into several modules based on functionality 

● Each module is implemented in an unique namespace with the same name as the 

module and in a unique directory (see folder structure) 

● The list of modules implemented can be checked under the namespaces list tab.[4]
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5.1 Useful implementations

This chapter takes view at some classes and functions, which implementation 

was needed and which can be used in future. 

However the ImagePlus gave me some portion of needed functions I still have to 

implement some by myself. The most expanded operations on matrices I implemented into 

the Imageplus as classes or functions for future use. Here they are:

● Singular value decomposition class33

● Interpolation function

● Class for computing intrinsic and extrinsic parameters from perspective projection 

matrices

In next part I will shortly describe this implementations.

5.2.1 SVD class

This class do the singular value decomposition.

In  linear  algebra,  the  singular  value  decomposition  (SVD)  is  an  important 

factorization of a rectangular real or complex matrix.

Suppose M is an m-by-n matrix whose entries come from the field K, which is either 

the field of real numbers or the field of complex numbers. Then there exists a factorization 

of the form

where U is an m-by-m unitary matrix over K, the matrix  Σ is m-by-n with non-negative 

numbers on the diagonal (as defined for a rectangular matrix) and zeros off the diagonal, 

and V* denotes the conjugate transpose of V, an n-by-n unitary matrix over K. Such a 

factorization is called a singular-value decomposition of M.
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● The matrix V thus contains a set of orthonormal "input" or "analysing" basis vector 

directions for M

● The matrix U contains a set of orthonormal "output" basis vector directions for M

● The matrix Σ contains the singular values, which can be thought of as scalar "gain 

controls" by which each corresponding input is multiplied to give a corresponding 

output.

Constructor:

SVD(const MultiArray<float64,2> &Arg) 

where:

Arg – is an m by n matrix with m >= n

Private attributes of the class:

– MultiArray<float64,2>  _u –  matrix  containing  orthonormal  "output"  basis  vector 

directions for Arg

– MultiArray<float64,2> _v  - matrix containing orthonormal "input" or "analysing" basis 

vector directions for Arg

– MultiArray<float64,1> _s – diagonal matrix with singular values.

– int64 _m – number of columns in Arg

– int64 _n – number of rows in Arg

Methods of the class:

– void SVD::getU(MultiArray<float64,2>  &A) –  return  matrix  U  containing 

orthonormal "output" basis vector directions 

– void SVD::getV(MultiArray<float64,2> &A) – Return the right singular vectors

– void  SVD::getSingularValues(MultiArray<float64,1>  &x) –  Return  the  one-

dimensional array of singular values

– void SVD::getS(MultiArray<float64,2> &A) -  Return the diagonal matrix of singular 

values

– float64 SVD::norm2()  - returns two norm i.e. the maximum value from singular values

– float64 SVD::cond()  - returns two norm of condition number (max(S)/min(S))34
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– int64 SVD::rank() - returns effective numerical matrix rank

5.2.2 Interpolation function

This function is  used for warping a image. It  takes values from one matrix  and 

relocates them to other indicated positions. If  the indicated positions are not the exact 

values of matrix coordinates the functions use interpolation to count the correct values.

template<typename T>

MultiArray<T,2> interpolation (const MultiArray<T,2>& ma_Img, 

const MultiArray<float64,2>& ma_X, const MultiArray<float64,2>& ma_Y, 

const std::string& method)

where:

– ma_Img is the input matrix which values will be relocated.

– ma_X is matrix containing the new x coordinates (columns)

– ma_Y  is matrix containing the new y coordinates (rows)

– method determine what kind of method will  be used to interpolate the coordinates. 

Now only one method is available:

• “nn” - nearest neighbour method.

Function returns matrix.

5.2.3 Art class

This  class  lets  compute  camera  intrinsic  and  extrinsic  parameters  from  the 

perspective projection matrix. The computed extrinsic parameters are: rotation matrix R, 

translation vector t, and intrinsic that is matrix A (see chapter 3.1).

Constructor:35
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Art (const MultiArray<float64,2>& ppm, int64 s = 1)36

where:

ppm – perspective projection matrix

s – sign for focal length, by default 1

Private attributes of the class:

– MultiArray<float64,2> _ma_A – calibration matrix A,

– MultiArray<float64,2> _ma_R – rotation matrix R,

– MultiArray<float64,1> _ma_t – translation vector t,

– float64 _fsign – sign of focal length.

Methods of the class:

– MultiArray<float64,2> reta() - returns calibration matrix A,

– MultiArray<float64,2> retr() - returns rotation matrix R,

– MultiArray<float64,1> rett() - returns translation vector.
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5.3 Rectification implementation

37

“Rectify” class is responsible for doing rectification. It  do all  the calculations, all 

needed operations indispensable to rectify the image.

Constructor

Rectify(const std::string& paramFileL,const std::string& paramFileR)

where:

– paramFileL – path to file with data about left camera calibration parameters

– paramFileR – path to file with data about right camera calibration parameters

The file format should be as follows:

  [Image size:]

    768  //width

    576  //height

  [Rotation matrix:]

    0.0135   0.9616    -0.2741

   0.9851   0.0342   0.1686

    0.1715    -0.2723   -0.9468

  [Translation vector:]

    -187.7996    -131.4920    477.1830

  [Calibration matrix:]

    536.9826    0.0000    326.4721

    0.0000    536.5694    249.3326

    0.0000    0.0000    1.0000

  [Projection matrix:]
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    6.1148e+002   -1.9271e+002   -1.9952e+002    4.4551e+004

   -2.5597e+001   -4.9420e+001   -6.2306e+002    1.4522e+005

    6.1393e-001    5.5082e-001   -5.6540e-001    1.1527e+002

  [Distortion parameters:]

   -3.7158430763281464e-001  //kappa1

    1.5427446086242583e-001  //kappa2

   -9.2183481277601561e-004  //tau1

   -1.5875244995451997e-004  //tau2

For rectification only rotation matrix, translation vector and calibration matrix are required, 

the other won't be used.

Private attributes of the class:

– MultiArray<float64,2> _T1 – transformation matrix for left image,

– MultiArray<float64,2> _T2 – transformation matrix for right image,

– MultiArray<float64,2>  _Pn1 –  new  perspective  projection  matrix  for  left  camera, 

containing the baseline,

– MultiArray<float64,2>  _Pn2 –  new perspective  projection  matrix  for  right  camera, 

containing the baseline.

Methods of the class:

– MultiArray<float64,2> ret_T1() - returns the transformation matrix for the left camera,

– MultiArray<float64,2>  ret_T2() -  returns  the  transformation  matrix  for  the  right 

camera,

– template<typename T, int N>

     Image<T,N> do_rec (const Image<T,N>& orilmgL) – returns rectified image oriImgL38
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5.4 Intermediate view synthesis implementation39

For  intermediate  view  synthesis  is  responsible  function  inView.   This  function 

compute the virtual view, but it does not do the rectification. So before using this function 

you need to use the “rectify” class to have the images rectified and the output image need 

to be de-rectified.

ImageRGB< uint8 > inView (const std::string& imgL,const std::string& imgR,const 

std::string&  disparityL,const  std::string&  disparityR,  float64  position,const 

std::string& outImage)

where:

– imgL – path to real rectified left image ,

– imgR – path to real rectified right image,

– disparityL – path to disparity map for left image,

– disparityR – path to disparity map for right image,

– position – describes x coordinate of the virtual camera, values can be between 0 and 1, 

where 0 is close to left image and 1- close to right image. So for example 0.5 is in the 

middle.

– outImage – path for new intermediate view image.

39



Tests

6 Tests40

For test with rectification I used images delivered with matlab calibration toolbox.

I also used the matlab code to compute the camera calibration parameters for this images.

At the images below you can see the results. Unfortunately I did not put the epipolar lines 

on the images, but you can easily see the result of the rectification on the right top corner 

of the monitor, or on the left bottom corner of the chess box.

The original images and the rectified one are shown below.

a) b)

c) d)

6.1 a) left image b) right image c) left rectified image d) right rectified image
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For  intermediate  view  synthesis  I  used  images  from 

http://vision.middlebury.edu/.  Below  are  the  results  for  quite  simple  view. 

There are no big differences between right and left camera, so the computed intermediate 

view is perfect.

a) b)

c) d)

6.2  a)  real  image from left  camera  b)  virtual  image from position 0.5  (  in  the  middle 

between left  and right  real  images) c) virtual  image from position 0.75 (closer to right  

image) d) real image from right camera41

41
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a) b)

c) d)

6.3  a) real image from left camera b) virtual image from position 0.25 (closer to the left  

camera)  c)  virtual  image  from position  0.5  (in  the  middle  between  left  and  right  real 

images) d) real image from right camera
42

Using  views  more  complicated  with  many  small  details,  and  with  quite  big 

differences between position of left and right camera brings some artifacts. This is because 

there are many areas visible in one camera but not in the other.

Below are results of tests with such images. Images 6.4 b) and c) shows that the artifacts 

are smaller if the virtual view is closer to one of the cameras. In the middle the defects will 

be the biggest. 
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a) b)

c) d)

6.4  a) real image from left camera b) virtual image from position 0.25 (closer to the left  

camera)  c)  virtual  image  from position  0.5  (in  the  middle  between  left  and  right  real 

images) d) real image from right camera
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7 Conclusions

The idea of this work was to develop decent basics for intermediate view synthesis. 

I  think this  was accomplished.  However  its  not  complete intermediate  view synthesis 

instrument, because there is no tool for obtaining disparity maps, but the foundation are 

implemented. There is tool for rectification and tool to compute the intermediate view from 

rectified images and disparity maps.

Tool  for  the  rectification  take  me  most  of  the  time.  This  algorithm  is  quite 

complicated, and c++ is rather not mathematics friendly environment. The rectify class has 

235 lines of code, and the SVD, interpolation and Art class has together 745 lines of code. 

The intermediate view part was simple to implement. Code of it has 153 lines.

This work also shows how many information we can obtain from two stereo images. 

It shows the power of stereo vision and its possibilities. 44
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8 Future Work45

There are quite some options to improve this tool. I will concentrate on obtaining 

disparity maps. As I mentioned before this part is needed to have complete intermediate 

view synthesis.

Other opportunity is to implement rectification methods for uncalibrated cameras. 

This would let this tool to be used with all possible input images.

If  I  will  complete  the  disparity  map  tool,  I  rather  concentrate  on  using  this 

informations  in  mobile  robots  system  that  continue  work  with  the  intermediate  view 

synthesis. Disparity map can be modified into depth map. Informations from depth map can 

be used to  avoid  obstacles. Robot  then may use stereo camera  in  the  same way as 

humans use eyes, to identify the environment around.
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