
Rectification
and

Intermediate View synthesis

Universitat Politecnica
de Catalunya
EUETIT
Author: Dominik Tadeusz Piórkowski
Tutor: Josep Ramon Morros i Rubió
June 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41801847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Abstract1

In this project c++ code supporting intermediate view synthesis was developed . The

idea was to create classes and functions which can be later easily used to create

intermediate views. Main part of the code is responsible for rectification. Images from two

cameras may be rectified and then further operations with the images can be done. In this

case the next operation on the rectified images is intermediate view synthesis. Special

function computes from two rectified images the virtual view. The virtual image can be

computed for any place set between two cameras taking the real image.

1

Table of contents

2

Abstract

1. Introduction

2. State of the art

3. Background

3.1 Camera model

3.2 Epipolar geometry

3.3 Rectification

3.4 Intermediate view synthesis

4. Background

4.1 Rectification

4.2 Intermediate view synthesis

5. Algorithm implementation

5.1 Working platform

5.2 Useful implementations

5.3 Rectification implementation

5.4 Intermediate view implementation

6. Test

7. Conclusions

8. Future Work

9. Bibliography

2

Introduction

1 Introduction3

The point of doing the intermediate view synthesis was to use it in three

dimensional television (3D-TV). 3D–TV becomes last time more popular, and there are

many researches and projects about it. Also many new devices for 3D vision becomes

available.

For three-dimensional television (3D-TV) to become feasible and acceptable on a

wide scale, the added realism must outweigh any required increases in processing and

system complexity, and the stereoscopic information must be comfortable to view. Both of

these goals can be achieved if intermediate views of the scene are available.

While binocular systems provide depth information through the sensation of

stereopsis, a system consisting of only two views of a scene lacks the important depth cue

of motion parallax, which provides the distinction between binocular and three-dimensional

systems. Motion parallax can be synthesized from multiple intermediate views of the scene

by presenting the correct stereo-pair according to the observer’s position. Discomfort is

often experienced when viewing stereoscopic images on two-dimensional displays. As with

any subjective assessment, this discomfort is viewer-dependent. Viewers prefer varying

degrees of depth perception from binocular imagery based on individual stereoscopic

viewing ability and the range of depth present in the scene. A greater sense of depth is

provided by a relatively large inter-camera separation, but the larger the separation the

more difficulty marginal viewers have in fusing the images. If intermediate views of a scene

are available, a viewer can dynamically select the inter-camera separation for comfort and

preferred sense of depth.

An intermediate view is defined as the image that would be obtained from a camera

located between and on a straight line connecting the given stereo-pair’s cameras.

Computing the intermediate view from views from the real cameras, is much easier if the

images are rectified. So first, before computing intermediate view, the images from the

cameras have to be rectified.

3

Introduction

Rectification is a process used to facilitate the analysis of a stereo pair of images by

making it simple to enforce the two view geometric constraint. For a pair of related views

the epipolar geometry provides a complete description of relative camera geometry. Once

the epipolar geometry has been determined it is possible to constrain the match for a point

in one image to lie on a line (the epipolar line) in the other image and vice versa. The

process of rectification makes it very simple to impose this constraint by making all

matching epipolar lines coincident and parallel with an image axis. Many stereo algorithms

assume this simplified form because subsequent processing becomes much easier if

differences between matched points will be in one direction only.

In the past, stereo images were primarily rectified using optical techniques, but

more recently these have been replaced by software techniques. These model the

geometry of optical projection by applying a single linear transformation to each image,

effectively rotating both cameras until the image planes are the same. Such techniques are

often referred to as planar rectification. The advantages of this linear approach are that it is

mathematically simple, fast and preserves image features such as straight lines.4

Having rectified images and corresponding them disparity maps computing of the

intermediate view may be done. After this, to restore the right image geometry the de-

rectification should be done. This operation is the inversion of rectification.

So after all the way of synthesis the intermediate view can be presented by such

diagram:

1.1 Intermediate view synthesis

4

Introduction

The figure below shows views at successive steps of the intermediate view synthesis.

a)

b)

c)

d)

1.2 a) pictures from left and right cameras b) the same pictures but rectified c) synthesized

intermediate image d) de-rectified intermediate image5

5

State of the art

6State of the art

There are few techniques for intermediate view synthesis. Some of them reconstruct

whole 3D structure of the scene with all geometry information. For example, Seitz and

Dyer proposed a method with affine model for computing 3D scene structure from point

and line features in monocular image sequences. Another technique presented by Zhang

is to recover Euclidean structure for facial images synthesis using some domain

knowledge like distances and angles. Contrasting with the first method, the second one is

discrete and generally more difficult to implement because the whole process does not

require any 3D-scene information. These techniques may not be always the best choice,

especially when the structure of the scene is very complicated.

The other solutions are for example centric mosaics and light field. They does not

require any information about the 3D structure but analyse a certain number of views of a

scene. These approaches yield very photo realistic results but typically require a very large

number of reference images.

 Method used in this project is something between those two described above. It is

technique for image synthesis in perspective space. This means that with two reference

images snapped by a calibrated camera a third view in-between two original ones can be

generated. Pixels are transferred from real, rectificated input images to virtual image using

a pre-computed disparity map. During the process, there are some information about the

scene geometry needed (like the disparity) but not the whole 3D geometry information of

the scene. These approaches assume the advantages of the first two categories: photo

realistic results, low space requirements and time complexity independent from the scene

complexity. Unfortunately, the disparity map is required to be dense and very accurate,

otherwise no reasonable result can be obtained.

Rectification is a classical problem of stereo vision, however, few methods are

available in the computer vision literature. Ayache and Lstman introduced a rectification

6

State of the art

algorithm, in which a matrix satisfying a number of constraints is hand crafted. The

distinction between necessary and arbitrary constraints is unclear. Some authors report

rectification under restrictive assumptions, for instance assume a very restrictive geometry

(parallel vertical axes of the camera references frames). Other works introduce algorithms

which perform rectification given a weakly calibrated stereo rig, i.e. a rig for which only

points correspondences between images are given. Some of works also concentrates on

the issue of minimizing the rectified image distortion.

In this work it is assumed that stereo rig is calibrated, the cameras internal

parameters, mutual position and orientation are known. Algorithm presented in this work

rectify a calibrated stereo rig of unconstrained geometry and mounting general cameras.
7

7

Background

3 Background

3.1 Camera model

Briefly description of camera model. Camera parameters and the way how 3D
point is projected into 2D point will be described.

The camera is modelled by its optical centre c and its retinal plane (or image

plane) R. In each camera, a 3D point w = (x, y, z)T in world coordinates (where the world

coordinate frame is fixed arbitrarily) is projected into an image point m = (u,v)T in camera

coordinates, where m is the intersection of R with the line containing w and c. In projective

(or homogeneous) coordinates, the transformation from w to m is modelled by the linear

transformation P

(3.1) m= P w

where
8

(3.2)

(3.3)

The points w for which S = 0 define the focal plane and are projected to infinity.

8

Background

3.1 Pinhole camera model

Each pinhole camera is therefore modelled by its perspective projection matrix 9

(PPM) P , which can be decomposed into the product

(3.4)

The matrix A gathers the intrinsic parameters of the camera, and has the following form:

(3.5)

where αu αv are the focal lengths in vertical and horizontal pixels, respectively, and (u0, v0)

are the coordinates of the principal point. The matrix G is composed by a 3 x 3 rotation

matrix and a vector t, encoding the camera position and orientation (extrinsic parameters)

in the world reference frame, respectively:

(3.6)

Let us write the PPM as

9

Background

(3.7)

The plane q3
T w + q34 = 0 (S = 0) is the focal plane, and the two planes q1

T w + q14 = 0

and q2
T w + q24 = 0 intersect the retinal plane in the vertical (U = 0) and horizontal (V = 0)

axis of the retinal coordinates, respectively.

The optical centre c is the intersection of the three planes introduced in the previous

paragraph, therefore

(3.8)

and

(3.9)

The optical ray associated to an image point m is the line cm, i.e. The set of points {w :

m = P w }. The equation of this ray can be written in parametric form as

(3.10)

with λ an arbitrary real number.[1]10

10

Background

3.2 Epipolar geometry

This chapter gives a overview of epipolar geometry. Knowledge of the

epipolar geometry is needed to understand the rectification.

Epipolar geometry refers to the geometry of stereo vision. Each camera captures a

2D image of the 3D world. When two cameras view a 3D scene from two distinct positions,

there are a number of geometric relations between the 3D points and their projections onto

the 2D images that lead to constraints between the image points. This conversion from 3D

to 2D is referred to as a perspective projection and is described by11 the pinhole camera

model.

The figure below shows two cameras taking picture of the same scene from

different points of view. The epipolar geometry then describes the relation between the two

resulting views.[2]

3.2 Two cameras taking picture of the same scene from different points of view.

11

Background

The epipolar geometry between two views is essentially the geometry of the

intersection of the image planes with the pencil of planes having the baseline as axis (the

baseline is the line joining the camera centres). This geometry is usually motivated by

considering the search for corresponding points in stereo matching. Suppose a point X in

3-space is imaged in two views, at x in the first, and x' in the second. As shown in figure

3.3a the image points x and x', space point X, and camera centres are coplanar. Denote

this plane as π. Clearly, the rays back-projected from x and x' intersect at X, and the rays

are coplanar, lying in π. It is this latter property that is of most significance in searching for

a correspondence.12

3.3 Point correspondence geometry.

Supposing now that x is known, the question is: how the corresponding point x' is

constrained. The plane is determined by the baseline and the ray defined by x. From

above we know that the ray corresponding to the (unknown) point x' lies in π , hence the

point x' lies on the line of intersection l' of π with the second image plane (pic. 3.3b). This

line l' is the image in the second view of the ray back-projected from x. In terms of a stereo

correspondence algorithm the benefit is that the search for the point corresponding to x

need not cover the entire image plane but can be restricted to the line l'.

12

Background

3.4 Epipolar geometry. a) The camera baseline intersects each image plane at the

epipoles e and e'. Any plane containing the baseline is an epipolar plane, and intersects

the image planes in corresponding epipolar lines l and l'. b) As the position of the 3D point

X varies, the epipolar planes „rotate” about the baseline. This family of planes is known as

an epipolar pencil. All epipolar lines intersect at the epipole.

13

The geometric entities involved in epipolar geometry are illustrated in figure 3.4. The

terminology is:

• The epipole is the point of intersection of the line joining the camera centres (the

baseline) with the image plane. Equivalently, the epipole is the image in one view of

the camera centre of the other view. It is also the vanishing point of the baseline

(translation) direction.

• An epipolar plane is a plane containing the baseline. There is a one-parameter

family (a pencil) of epipolar planes.

• An epipolar line is the intersection of an epipolar plane with the image plane. All

epipolar lines intersect at the epipole. An epipolar plane intersects the left and right

image planes in epipolar lines, and defines the correspondence between the

lines.[5]

Example of epipolar geometry is given in figure 3.5.

13

Background

3.5 Example of epipolar geometry.

14

14

Background

3.3 Rectification

Between two cameras there is a problem of finding a corresponding point viewed by

one camera in the image of the other camera (this is called the correspondence problem.)

In most camera configurations, finding correspondences requires a search in two

dimensions. However, if the two cameras are aligned to have a common image plane, the

search is simplified to one dimension - a line that is parallel to the line between the

cameras (the baseline). Image rectification is an equivalent (and more often used)

alternative to this precise camera alignment. It transforms the images to make the epipolar

lines (epipolar geometry) align horizontally.
15

If the images to be rectified are taken from camera pairs without geometric

distortion, this calculation can easily be made with a linear transformation. X & Y rotation

puts the images on the same plane, scaling makes the image frames be the same size

and Z rotation and skew adjustments make the image pixel rows directly line up. The rigid

alignment of the cameras needs to be known (by calibration) and the calibration

coefficients are used by the transform.[2]

3.6 The search space: 1) before rectification 2) after rectification

15

Background

3.4 Intermediate view synthesis

Despite significant advances in 3D computer graphics, the realism of rendered

images is limited by hand coded graphical models. Existing techniques for creating 3D

models are time intensive and put high demands on the artistry of the model. In light of

these limitations, there has been growing interest in the use of 2D image warping

techniques for image synthesis and animation. The advantage of working in 2D is that

photographs of real scenes can be used as a basis to create very realistic effects.

In this technique the intermediate view is computed from images taken by cameras

from two different positions. The images have to be rectified, and their disparity maps need

to be known.16

3.7 I1 - the left imageI2 - the right imageI1.5 – generated intermediate view image

16

Detailed description of algorithms

4 Detailed description of algorithms

4.1 Rectification

In this chapter will be described algorithm used for image rectification. Mostly

this are matrix operations, and it is closely connected with the epipolar

geometry.

Image rectification can be view as the process of transforming the epipolar

geometry of a pair of images into a canonical form. This is accomplished by applying a

homography to each image that maps the epipole to a predetermined point.

4.1 The lines v and v', and w and w' must be corresponding epipolar lines that lie on
common epipolar planes.17

We assume that the stereo rig is calibrated, i.e., the perspective projection matrices

P o1 and P o2 are known. This assumption is not strictly necessary, but leads to a

simpler technique. The idea behind rectification is to define two new perspective projection

matrices P n1 and P n2 which preserve the optical centres but with image planes

parallel to the baseline. In addition we want the epipolar line of the point m1 = (u1,v1)T in the

right image to be the horizontal line v2= v1 in the left image.

17

Detailed description of algorithms

Consider figure 4.2, where the old retinal plane Ro and the new one Rn are depicted:

image rectification is the operation of transforming from Ro to Rn.

4.2 Rectification
18

Constraining the rectifying perspective projection matrices

The new perspective projection matrices P n1 and P n2 will be computed as the

solution of a system of equations, which express the constraints arising from rectification

requirements plus others constraints necessary to ensure a unique solution.

In the following, I will denote with P o1 P o2 the old perspective projection

matrices. Let

(4.1)

be the sought rectifying perspective projection matrices.

18

Detailed description of algorithms

Common focal plane19

If cameras share the same focal plane the common retinal plane is constrained to

be parallel to the baseline and epipolar lines are parallel. The two rectifying perspective

projection matrices have the same focal plane if

(4.2) a3= b3 a34= b34

Position of the optical centres

The optical centres of the rectifying perspective projections must be the same as

those of the original projections:

(4.3)

where optical centres c1 c2 are given:

(4.4)

Equation (4.3) gives six linear constraints:

(4.5)

Alignment of conjugate epipolar lines

The vertical coordinate of the projection of a 3D point onto the rectifying retinal

plane must be the same in both image, i.e.:

(4.6)

19

Detailed description of algorithms

Using equation (2) the constraints can be obtained:20

(4.7) a2= b2 a24= b24

The equations written to this point are sufficient to guarantee rectification: to prove this, let

verify that epipolar lines are parallel and horizontal.

When (the epipole is at infinity) the epipolar lines are parallel to the vector

.

As we know, each epipole is the projection of the conjugate optical centre, i.e.

(4.8)

Hence epipolar lines are horizontal when

(4.9)

The four equations are satisfied as long as equations (4.2) (4.3) and (4.7) hold, as one can

easily verify.

Although rectification is guaranteed, the orientation of the retinal plane has still one

degree of freedom. Moreover, the constraints written up to now are not enough to obtain a

unique perspective projection matrix. We shall therefore choose explicitly the intrinsic

parameters to obtain enough equations.

20

Detailed description of algorithms

Orientation of the rectifying retinal plane

Rectifying focal planes are chosen to be parallel to the intersection of the two

original focal planes, i.e.

(4.10)

where f1 and f2 are the third rows of P o1 P o2 respectively. The corresponding

equation, , is redundant thanks to equation (2).

Orthogonality of the rectifying reference frames21

The intersection of the retinal plane with the planes a1
Tw + a14 = 0 and a2

Tw + a24 = 0

correspond to the v and u axes, respectively, of the retinal reference frame. In order for this

reference frame to be orthogonal, the planes must be perpendicular to each other, hence,

taking into account equation (7)

(4.11)

Principal points

The principal point (u0,v0) is given by

(4.12)

The two principal points are set to (0,0) and using equations (2) and (7) constraints are

obtained

(4.13)

Focal lengths in pixels

The horizontal and vertical focal lengths in pixels, respectively, are given by

(4.14)

21

Detailed description of algorithms

By setting arbitrary the values of αu and αv we obtain the constraints

(4.15)

which, by virtue of the equivalence

(4.16)

and equation (13), can be rewritten as

(4.17)

Set the scale factor22

Perspective projection matrices are defined up to a scale factor, and a common

choice to block the latter is to set

(4.18)

Solving for the rectifying perspective projection matrix

Let organise the constraints introduced in the previous section in the following four

systems:

(4.19)

(4.20)

22

Detailed description of algorithms

(4.21)

(4.22)

Plus

(4.23)

The first four systems have all the same structure, each one being a 3 x 4 linear

homogeneous system subject to a quadratic constraint, that is
23

(4.24)

where x' is a vector composed by the first three components of x, and k is a real number.

The four systems above are solved in sequence, top to bottom. The solution of each

system is obtained by first computing (for example by SVD factorisation) a one parameter

family of solutions to Ax = 0 of the form x = αx0, where x0 is a non trivial solution and λ is

an arbitrary real number, and the letting α = k/||x0'||.

The rectifying transformation

Now that – for each camera – the perspective projection matrix is known, we want to

compute the linear transformation (in projective coordinates) that maps the retinal plane of

the old perspective projection matrix

23

Detailed description of algorithms

24

onto the retinal plane of

This transformation is the 3 x 3 matrix T = PnPo
-1.

For any 3D point w

(4.25)

From equation (3.10) is known that the equation of the optical ray associated to mo is

(4.26)

hence

(4.27)

Assuming that rectification does not alter optical centre (cn = co):

(4.28)

The transformation T is then applied to the original image to produce a rectified image. The

pixels (integer – coordinate positions) of the rectified image correspond, in general, to non

– integer positions on the original image plane. Therefore, the grey levels of the rectified

image are computed by bilinear interpolation.[1]

24

Detailed description of algorithms

a)

b)

4.3 Rectification: a) pictures with epipolar lines from left and right camera before

rectification, b) pictures with epipolar lines from left and right camera after rectification.25

25

Detailed description of algorithms

4.2 Intermediate view synthesis

26

The parallel, rectified stereo view VrectiL and VrectiR are known. Assume that the two

disparity maps DLR (based on the left view, the disparity value at p is noted as dp
LR) and

DRL (based on the right view, the disparity value at p is noted as dp
RL) are also known. The

x and y coordinates of prectiL in the view VrectiL are xp
rectiL and yp

rectiL respectively, and the

same holds for prectiR in VrectiR :

Cx (virtual camera), CrectiL ,(left camera with rectified image on the output) and CrectiR (right

camera with rectified image on the output) are parallel to each other. The projections of w

have the same y - coordinate but are only different in x – coordinate:

(4.29)

(4.30)

(4.31)

Subtracting (4.29) from (4.30), gives:

(4.32)

Subtracting (4.30) from (4.31), gives:

26

Detailed description of algorithms

(4.33)

Taking (4.32) into (4.33) generates:

(4.34)

This means:

(4.35)

(4.36)

From equation (4.35) and (4.36), it seems that we need only one disparity map plus one

view to construct the x - interpolated view perfectly. However, in practice, we always suffer

from occlusions (see figure 4.4).27

4.4 Views from the three parallel cameras. Bold curves indicate scene surface from the

point view of the three cameras.

27

Detailed description of algorithms

In general, four cases can be distinguished:

1) Complete 3D info: The info that can be viewed in CrectiL , CrectiR and CX

2) Left Occlusion: The parts of the view that are visible in the left camera but not in the

right camera.

3) Right Occlusion: The parts of the view that are visible in the right camera but not in the

left camera.

4) Middle Occlusion: The parts of the view that are only visible in the x - interpolated view.

Assuming that the estimated disparity maps contain the correct (pseudo) disparity in

occluded regions, we can then generate the x - interpolated view VX by:

1) For Complete 3D parts: Either equation (4.35) or (4.36) is applicable.

2) For Left Occlusion parts: Equation (4.35) can be used.28

3) For Right Occlusion parts: Equation (4.36) can be employed.

4) For Middle Occlusion parts: No info is available in either VrectiL or VrectiR . We have to

approximate it e.g. by nearest-neighbour (zero order) or linear interpolation (first order).

Assuming that the light condition between the left and the right view does not

change too much, for most parts of the x – interpolated view, we just fetch them from the

left view. Only for right occlusion parts, we take them from the right view. To investigate the

possibility of handling sparse disparity maps without upsampling, the following steps are

adopted:

1. From equation (4.35), is constructed a disparity map DXL which is based on the view VX.

The relations are:

and

2. From equation (4.36), can be constructed a disparity map DXR which is based on the

view VX. The relations are

28

Detailed description of algorithms

 dp
XRa = xp

rectiR – xp
M = dp

RL/2

and

xp
X = xp

rectiR – dp
XR + dp

XR/2
2xcD

M

b

3. DXL and DXR are compared to generate DX:

for each pixel in DX,

if there is assigned a value at the same position in DXL,

then copy that value to the current position in DX, and at the same time mark the

current position as left available (in fact, this marking indicates both left

occlusion and complete 3D info),29

else if there is assigned a value at the same position in DXR,

then copy that value to the current position in DX, and at the same time mark the

current position as right available

else mark the current position as middle occlusion

endif

endfor

4. In DX, for each middle occlusion part, if two ends are both left available or right available,

then filling in by linear interpolation, otherwise by nearest neighbour.

5. Generate the view VX, by backward mapping based on DX, VrectiL, and VrectiR. [3]

A example of left, right and generated intermediate views is shown in figure 4.5

29

Detailed description of algorithms

a)

b)

c)

4.5 a) view from left camera b)generated view c) view from right camera30

30

Algorithm implementation

5 Algorithm implementation

5.1 Working platform

I was working on linux operating system, and the program, all functions, classes

were tested on this 31system. However there is big probability that it works without (or after

some small changes) also under windows operating system.

Point of this work was to implement the rectification algorithm in the c++ language.

C++ is very efficient, and autonomous what's makes it very mobile, that's why I suppose

that this rectification may be very easy used on other operating systems.

Since big part of the algorithm (actually all of it) base on matrix operations, and the

standard c++ libraries doesn't support them, I used the ImagePlus library. ImagePlus is the

new development platform in C++ language for the Video and Image Processing Group at

UPC. The Imageplus contain big part of the functions, mathematics operations that were

indispensable for the algorithm.

Short characteristic of ImagePlus:

Basic classes

● The basic class for vectors, matrices, 3D arrays is class MultiArray

• This means there are no Vector or Matrix class, use MultiArray<T,1> for vectors,

MultiArray<T,2> for matrices, etc.

● A unique class named ImaVol provides the basic structure for both image and

volume classes. This way, common functions can be defined to the ImaVol class and

they will work for all other subclasses (through polymorphism)

• All images and volumes are derived from the ImaVol class

31

Algorithm implementation

• A MultiArray class is used to represent each colour channel on an ImaVol

• The ImaVol class is generic in terms of the data type so different image and

volume types can be created

• The ImaVol class is generic in terms of the number of colour channels of the

image/volume so that subclasses for different colour spaces can be derived

• The ImaVol class is generic in terms of the number of dimensions of these

channels so it that subclasses for images or volumes can be derived

Common classes
32

● Filter class:

Filter class provides a standard framework to implement all kind of filters that work

over any MultiArray or ImaVol objects. The concept can be extended to other data

types. Each different filter is defined as a new class derived from Filter. These

derived classes inherit two public member functions from Filter: filter() and name()

(see filter.hpp). The filtering process returns an object of the same type as the input.

● Room class:

Room class is the basic container for voxelized volumes resulting from a 3D

reconstruction in multi-camera scenarios. It contains a volume object and the

parameters needed to relate the discretized volume with the real scenario. These

parameters are the voxel size in cm. and the offset. The offset is a point in the

scenario coordinate system, and is the coordinate origin of the reconstructed zone.

The scenario coordinate system is set by the camera parameters. The voxelized

zone may not start at the scenario origin, i.e a case where we reconstruct a small

zone in the room. Then the offset is used to relate the volume coordinates with the

scenario coordinates.

ImagePlus modules

● The ImagePlus library is divided into several modules based on functionality

● Each module is implemented in an unique namespace with the same name as the

module and in a unique directory (see folder structure)

● The list of modules implemented can be checked under the namespaces list tab.[4]

32

Algorithm implementation

5.1 Useful implementations

This chapter takes view at some classes and functions, which implementation

was needed and which can be used in future.

However the ImagePlus gave me some portion of needed functions I still have to

implement some by myself. The most expanded operations on matrices I implemented into

the Imageplus as classes or functions for future use. Here they are:

● Singular value decomposition class33

● Interpolation function

● Class for computing intrinsic and extrinsic parameters from perspective projection

matrices

In next part I will shortly describe this implementations.

5.2.1 SVD class

This class do the singular value decomposition.

In linear algebra, the singular value decomposition (SVD) is an important

factorization of a rectangular real or complex matrix.

Suppose M is an m-by-n matrix whose entries come from the field K, which is either

the field of real numbers or the field of complex numbers. Then there exists a factorization

of the form

where U is an m-by-m unitary matrix over K, the matrix Σ is m-by-n with non-negative

numbers on the diagonal (as defined for a rectangular matrix) and zeros off the diagonal,

and V* denotes the conjugate transpose of V, an n-by-n unitary matrix over K. Such a

factorization is called a singular-value decomposition of M.

33

Algorithm implementation

● The matrix V thus contains a set of orthonormal "input" or "analysing" basis vector

directions for M

● The matrix U contains a set of orthonormal "output" basis vector directions for M

● The matrix Σ contains the singular values, which can be thought of as scalar "gain

controls" by which each corresponding input is multiplied to give a corresponding

output.

Constructor:

SVD(const MultiArray<float64,2> &Arg)

where:

Arg – is an m by n matrix with m >= n

Private attributes of the class:

– MultiArray<float64,2> _u – matrix containing orthonormal "output" basis vector

directions for Arg

– MultiArray<float64,2> _v - matrix containing orthonormal "input" or "analysing" basis

vector directions for Arg

– MultiArray<float64,1> _s – diagonal matrix with singular values.

– int64 _m – number of columns in Arg

– int64 _n – number of rows in Arg

Methods of the class:

– void SVD::getU(MultiArray<float64,2> &A) – return matrix U containing

orthonormal "output" basis vector directions

– void SVD::getV(MultiArray<float64,2> &A) – Return the right singular vectors

– void SVD::getSingularValues(MultiArray<float64,1> &x) – Return the one-

dimensional array of singular values

– void SVD::getS(MultiArray<float64,2> &A) - Return the diagonal matrix of singular

values

– float64 SVD::norm2() - returns two norm i.e. the maximum value from singular values

– float64 SVD::cond() - returns two norm of condition number (max(S)/min(S))34

34

Algorithm implementation

– int64 SVD::rank() - returns effective numerical matrix rank

5.2.2 Interpolation function

This function is used for warping a image. It takes values from one matrix and

relocates them to other indicated positions. If the indicated positions are not the exact

values of matrix coordinates the functions use interpolation to count the correct values.

template<typename T>

MultiArray<T,2> interpolation (const MultiArray<T,2>& ma_Img,

const MultiArray<float64,2>& ma_X, const MultiArray<float64,2>& ma_Y,

const std::string& method)

where:

– ma_Img is the input matrix which values will be relocated.

– ma_X is matrix containing the new x coordinates (columns)

– ma_Y is matrix containing the new y coordinates (rows)

– method determine what kind of method will be used to interpolate the coordinates.

Now only one method is available:

• “nn” - nearest neighbour method.

Function returns matrix.

5.2.3 Art class

This class lets compute camera intrinsic and extrinsic parameters from the

perspective projection matrix. The computed extrinsic parameters are: rotation matrix R,

translation vector t, and intrinsic that is matrix A (see chapter 3.1).

Constructor:35

35

Algorithm implementation

Art (const MultiArray<float64,2>& ppm, int64 s = 1)36

where:

ppm – perspective projection matrix

s – sign for focal length, by default 1

Private attributes of the class:

– MultiArray<float64,2> _ma_A – calibration matrix A,

– MultiArray<float64,2> _ma_R – rotation matrix R,

– MultiArray<float64,1> _ma_t – translation vector t,

– float64 _fsign – sign of focal length.

Methods of the class:

– MultiArray<float64,2> reta() - returns calibration matrix A,

– MultiArray<float64,2> retr() - returns rotation matrix R,

– MultiArray<float64,1> rett() - returns translation vector.

36

Algorithm implementation

5.3 Rectification implementation

37

“Rectify” class is responsible for doing rectification. It do all the calculations, all

needed operations indispensable to rectify the image.

Constructor

Rectify(const std::string& paramFileL,const std::string& paramFileR)

where:

– paramFileL – path to file with data about left camera calibration parameters

– paramFileR – path to file with data about right camera calibration parameters

The file format should be as follows:

 [Image size:]

 768 //width

 576 //height

 [Rotation matrix:]

 0.0135 0.9616 -0.2741

 0.9851 0.0342 0.1686

 0.1715 -0.2723 -0.9468

 [Translation vector:]

 -187.7996 -131.4920 477.1830

 [Calibration matrix:]

 536.9826 0.0000 326.4721

 0.0000 536.5694 249.3326

 0.0000 0.0000 1.0000

 [Projection matrix:]

37

Algorithm implementation

 6.1148e+002 -1.9271e+002 -1.9952e+002 4.4551e+004

 -2.5597e+001 -4.9420e+001 -6.2306e+002 1.4522e+005

 6.1393e-001 5.5082e-001 -5.6540e-001 1.1527e+002

 [Distortion parameters:]

 -3.7158430763281464e-001 //kappa1

 1.5427446086242583e-001 //kappa2

 -9.2183481277601561e-004 //tau1

 -1.5875244995451997e-004 //tau2

For rectification only rotation matrix, translation vector and calibration matrix are required,

the other won't be used.

Private attributes of the class:

– MultiArray<float64,2> _T1 – transformation matrix for left image,

– MultiArray<float64,2> _T2 – transformation matrix for right image,

– MultiArray<float64,2> _Pn1 – new perspective projection matrix for left camera,

containing the baseline,

– MultiArray<float64,2> _Pn2 – new perspective projection matrix for right camera,

containing the baseline.

Methods of the class:

– MultiArray<float64,2> ret_T1() - returns the transformation matrix for the left camera,

– MultiArray<float64,2> ret_T2() - returns the transformation matrix for the right

camera,

– template<typename T, int N>

 Image<T,N> do_rec (const Image<T,N>& orilmgL) – returns rectified image oriImgL38

38

Algorithm implementation

5.4 Intermediate view synthesis implementation39

For intermediate view synthesis is responsible function inView. This function

compute the virtual view, but it does not do the rectification. So before using this function

you need to use the “rectify” class to have the images rectified and the output image need

to be de-rectified.

ImageRGB< uint8 > inView (const std::string& imgL,const std::string& imgR,const

std::string& disparityL,const std::string& disparityR, float64 position,const

std::string& outImage)

where:

– imgL – path to real rectified left image ,

– imgR – path to real rectified right image,

– disparityL – path to disparity map for left image,

– disparityR – path to disparity map for right image,

– position – describes x coordinate of the virtual camera, values can be between 0 and 1,

where 0 is close to left image and 1- close to right image. So for example 0.5 is in the

middle.

– outImage – path for new intermediate view image.

39

Tests

6 Tests40

For test with rectification I used images delivered with matlab calibration toolbox.

I also used the matlab code to compute the camera calibration parameters for this images.

At the images below you can see the results. Unfortunately I did not put the epipolar lines

on the images, but you can easily see the result of the rectification on the right top corner

of the monitor, or on the left bottom corner of the chess box.

The original images and the rectified one are shown below.

a) b)

c) d)

6.1 a) left image b) right image c) left rectified image d) right rectified image

40

Tests

For intermediate view synthesis I used images from

http://vision.middlebury.edu/. Below are the results for quite simple view.

There are no big differences between right and left camera, so the computed intermediate

view is perfect.

a) b)

c) d)

6.2 a) real image from left camera b) virtual image from position 0.5 (in the middle

between left and right real images) c) virtual image from position 0.75 (closer to right

image) d) real image from right camera41

41

http://vision.middlebury.edu/
http://vision.middlebury.edu/
http://vision.middlebury.edu/

Tests

a) b)

c) d)

6.3 a) real image from left camera b) virtual image from position 0.25 (closer to the left

camera) c) virtual image from position 0.5 (in the middle between left and right real

images) d) real image from right camera
42

Using views more complicated with many small details, and with quite big

differences between position of left and right camera brings some artifacts. This is because

there are many areas visible in one camera but not in the other.

Below are results of tests with such images. Images 6.4 b) and c) shows that the artifacts

are smaller if the virtual view is closer to one of the cameras. In the middle the defects will

be the biggest.

42

Tests

 43

a) b)

c) d)

6.4 a) real image from left camera b) virtual image from position 0.25 (closer to the left

camera) c) virtual image from position 0.5 (in the middle between left and right real

images) d) real image from right camera

43

Conclusions

7 Conclusions

The idea of this work was to develop decent basics for intermediate view synthesis.

I think this was accomplished. However its not complete intermediate view synthesis

instrument, because there is no tool for obtaining disparity maps, but the foundation are

implemented. There is tool for rectification and tool to compute the intermediate view from

rectified images and disparity maps.

Tool for the rectification take me most of the time. This algorithm is quite

complicated, and c++ is rather not mathematics friendly environment. The rectify class has

235 lines of code, and the SVD, interpolation and Art class has together 745 lines of code.

The intermediate view part was simple to implement. Code of it has 153 lines.

This work also shows how many information we can obtain from two stereo images.

It shows the power of stereo vision and its possibilities. 44

44

Future work

8 Future Work45

There are quite some options to improve this tool. I will concentrate on obtaining

disparity maps. As I mentioned before this part is needed to have complete intermediate

view synthesis.

Other opportunity is to implement rectification methods for uncalibrated cameras.

This would let this tool to be used with all possible input images.

If I will complete the disparity map tool, I rather concentrate on using this

informations in mobile robots system that continue work with the intermediate view

synthesis. Disparity map can be modified into depth map. Informations from depth map can

be used to avoid obstacles. Robot then may use stereo camera in the same way as

humans use eyes, to identify the environment around.

45

Bibliography

8 Bibliography

[1] Fusiello, Emanuele Trucco, Alessandro Verri - „Compact algorithm for rectification of

stereo pairs” Machine Vision and Applications 2000

[2] http://en.wikipedia.org

[3] B. J. Lei E. A. Hendriks - „Multi-step View Synthesis with occlusion handling” Stuttgart,

Germany 2001

[4] https://147.83.50.70/imageplus/

[5] Przemys aw Kowalski Krzysztof Skabek - „Przetwarzanie informacji wizyjnej wł

komputerowym systemie z mobiln ą g owicł ą stereowizyjn ”ą 46 Studia Informatica 2001 n.3

[6] Jeffrey S. McVeigh, M.W. Siegel, A. G. Jordan - „Intermediate view synthesis

considering occluded and ambiguously referenced image regions” Signal processing

image communication 1996 n. 9

[7] author unknown - „View synthesis”

[8] Richard I. Hartley - „ Theory and Practice of Projective Rectification”

46

https://147.83.50.70/imageplus/
https://147.83.50.70/imageplus/
https://147.83.50.70/imageplus/
http://en.wikipedia.org/
http://en.wikipedia.org/
http://en.wikipedia.org/

