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Abstract 

Current web search engines generally do not enable searches into audio files. Informative 

metadata would allow searches into audio files, but producing such metadata is a tedious 

manual task. Tools for automatic production of metadata are therefore needed. This project 

describes the work done on the development of an automatic audio classification system 

which can be used for this metadata extraction. In order to design this system I used adapting 

it to our case of study, the matlab code of the MPEG-7 Experimental Model [15].  

At the beginning of this work I presented the MPEG-7 Low Level Descriptor and their 

possible application for the classification of piece of radio newscast. Then in order to find a 

balanced tradeoff between reducing dimensionality and retaining maximum information 

content I performed the feature transformation algorithm presenting in the MPEG-7 Standard 

on the Normalize Audio Spectrum Envelope (NASE) descriptor. 

This de-correlated dimension-reduced log-spectral feature is used to train a classifier based on 

continuous hidden Markov models. Various audio classification experiments are presented, in 

which audio sounds are classified into selected sound classes. 

On the base of the results of these experiments I designed a hierarchical classification system. 

In order to apply this classification system to an entire radio newscast track I used the 

segmentation system developed by Vincenzo Dimattia in the same laboratory in his thesis 

[37].The segments obtained by this automatic audio segmentation and classification system 

were then described in an MPEG-7 compliant XML document. 
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CHAPTER 1 

INTRODUCTION 

 

The amount of audio available in different databases on the Internet today is immense. 

Successful access to such large amounts of data requires efficient search engines. Traditional 

web search engines, such as Google, are often limited to text and image indexing, thus many 

multimedia documents, video and audio, are excluded from these classical retrieval systems. 

Even systems that do allow searches for multimedia content, like AltaVista and Lycos, only 

allow queries based on the multimedia filename, nearby text on the web page containing the 

file, and metadata embedded in the file such as title and author. This might yield some useful 

results if the metadata provided by the distributor is extensive. Producing this data is a tedious 

manual task, and therefore automatic means for creating this information is needed. 

Today many radio stations provide entire news or talk shows in form of podcasts or streaming 

services, with general headlines of the content. In general no detailed index of the file is 

provided, which makes it time consuming to look for the part of interest. 

The optimal division of radio shows, such as broadcast news, debate programs, and music 

programs, should be based on the topics covered in each part. Such a division requires that it 

is possible extract topics and the parts related to this topic. Topic detection requires 

transcription of the speech parts of the audio, but adding audio cues would aid in retrieving 

coherent segments. 

Adding audio cues is done by segmenting the audio based on the characteristics of the audio 

stream. The segments generated can then be summarized on basis of the type of audio. 

 Music clips would be described by genre and artist. 

 Speech summaries naturally and would consist of identities of speakers and a 

transcription of what is said. 

 

1.1 Audio Retrieval Systems 

Research in audio retrieval has mainly been focused on music and speech. Music retrieval has 

focused on quantifying different characteristics of the music such as mood, beat, and other 

characteristics to classify genre or find similarities between songs. This area is not the focus 

of this thesis and will not be covered further. 
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Approaches to spoken document retrieval have included automatic broadcast news 

transcription and other speech retrieval systems. 

 

1.1.1 Automatic Broadcast News Transcription 

Broadcast news transcription system has been heavily researched and is considered to be the 

most demanding assignment in speech recognition, as the speakers and conditions vary much 

in the course of a news show. The speakers range from anchor speaking in an ideal 

environment to reporters speaking from noisy environments on a non-ideal telephone line. 

Non-native English speakers make the problem even more challenging. The shows often use 

music between different parts of the show and in the background of speakers. 

These systems therefore often include segmentation preprocessor that removes the non-speech 

parts and finds segments with homogenous acoustical characteristics. In this way the speech 

recognizers can be adjusted to the differing acoustical environments. Solving the task has 

required advances in both preprocessing and speech decoding. 

The performances of these systems are evaluated in annual Rich Transcription workshops 

arranged by [1]. The participants include commercial groups such as IBM and 

BBN and academical groups such as LIMSI and CU-HTK, whose systems are described in 

[2] and [3], respectively. 

 

1.2 Segmentation Approaches 

The segmentation approaches used in the systems mentioned above and in other retrieval 

systems covers a wide range of methods. In general the methods can be divided into two 

groups: audio classification and change detection. These approaches have different attributes 

that qualify them for different uses as presented below. 

 

1.2.1 Audio Classification 

As mentioned above the typical first part of a speech retrieval system concerns identifying 

different audio classes. The four main classes considered are speech, music, noise, and silence 

but depending on the application more specific classes such as noisy speech, speech over 

music, and different classes of noise, have been considered. 

The task of segmenting or classifying audio into different classes has been implemented using 

a number of different schemes. Following the paper by [4] a multitude of approaches have 
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been proposed. Two aspects that must be considered are feature and classification model 

selection. 

Different features have been proposed, based on different observations on the characteristics 

that separate speech, music and other possible classes of audio. The features are generally 

divided on basis of the time horizon they are extracted. 

The simplest features proposed include time domain and spectral features. Time domain 

features typically represent a measure of the energy or zero crossing counts. 

Cepstral coefficients have been used with great success in speech recognition systems, and 

subsequently have shown to be quite successful in audio classification tasks as well [2]. Other 

features have also been proposed based on psychoacoustic observations, see e.g., [5]. 

The other aspect to be considered is the classification scheme to use. A number of 

classification approaches have been proposed that can be divided into rule-based and model-

based schemes. The rule-based approaches use some simple rules deducted from the 

properties of the features. As these methods depend on thresholds, they are not very robust to 

changing conditions, but may be feasible for real-time implementations. 

Model-based approaches have included Maximum A Posteriori (MAP) classifiers, Gaussian 

Mixture Model (GMM), K-nearest-neighbor (K-NN), and linear perceptrons. Another 

approach in this context is to model the time sequence of features, or the probability of 

switching between different classes. Hidden Markov Models (HMM) take this into account. 

 

1.2.2 Speaker Change Detection 

Another approach to identify homogenous audio segments could be done by performing event 

detection. Approaches to speaker change detection can be divided into supervised and 

unsupervised methods. If the number of speakers and identities are known in advance, 

supervised models for each speaker can be trained, and the audio stream can be classified 

accordingly. If the identities of the speakers are not known in advance unsupervised methods 

must be employed. 

 

1.3 Audio Feature Extraction 

Feature extraction is the process of converting an audio signal into a sequence of feature 

vectors carrying characteristic information about the signal. These vectors are used as basis 

for various types of audio analysis algorithms. It is typical for audio analysis algorithms to be 
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based on features computed on a window basis. These window based features can be 

considered as short time description of the signal for that particular moment in time. 

Feature extraction is a very important issue to get optimal results in this application. 

Extracting the right information from the audio increases the performance of the system and 

decrease the complexity of subsequent algorithms. 

Generally applications require different features enhancing the characteristics of the problem. 

A wide range of audio features exist for classification tasks. These features can be divided 

into two categories: time domain and frequency domain features. 

In the frequency domain, spectral descriptors are often computed from the Short Time Fourier 

Transform (STFT). By combining this measurement with perceptually relevant information, 

such as accounting for frequency and temporal masking, one can produce an auditory 

spectrogram which can then be used to determine the loudness, timbre, onset, beat and tempo, 

and pitch and harmony [6]. In addition to spectral descriptors, there also exist temporal 

descriptors, which are composed of the audio waveform and its amplitude envelope, energy 

descriptors, harmonic descriptors, derived from the sinusoidal harmonic modeling of the 

signal, and perceptual descriptors, computed using a model of the human hearing process.  

 

1.4 MPEG-7 

In September 2001, Moving Picture Experts Group (MPEG) specified an international 

standard called Multimedia Content Description Interface, or MPEG-7. 

MPEG-7 is the first complete work for description of multimedia data. MPEG-7 is a work to 

define a standard set of descriptors for various types of multimedia data and methods to define 

other descriptors as well as structures of descriptors and their relationships. Although MPEG-

7 is not aimed at any particular application area, one of its main applications areas will be 

searching and retrieving multimedia content. 

This standard, also known as "Multimedia Content Description Interface," provides a 

standardized set of technologies for describing multimedia content. The standard addresses a 

broad spectrum of multimedia applications and requirements by providing a metadata system 

for describing the features of multimedia content [8].  

The following are specified in this standard: 



Chapter 1 - Introduction  

5 
 

 Description Schemes (DS) describe entities or relationships pertaining to multimedia 

content. Description Schemes specify the structure and semantics of their components, 

which may be Description Schemes, Descriptors, or datatypes. 

 Descriptors (D) describe features, attributes, or groups of attributes of multimedia 

content.   

 Datatypes are the basic reusable datatypes employed by Description Schemes and 

Descriptors 

 Description Definition Language (DDL) defines Description Schemes, Descriptors, 

and Datatypes by specifying their syntax, and allows their extension. 

 Systems tools support delivery of descriptions, multiplexing of descriptions with 

multimedia content, synchronization, file format, and so forth. 

 

1.4.1 Description Schemes (DSs) 

Description Schemes (DSs) specify the structure and semantics of the relationships between 

their components, which may be both Descriptors and Description Schemes. The DSs provide 

a standardized way of describing in XML the important concepts related to AV content 

description and content management in order to facilitate searching, indexing, filtering, and 

access. 

The DSs are defined using the MPEG-7 Description Definition Language (DDL), which is 

based on the XML Schema Language, and are instantiated as documents or streams. The 

resulting descriptions can be expressed in a textual form (i.e., human readable XML for 

editing, searching, filtering) or compressed binary form (i.e., for storage or transmission). 

The MPEG-7 DSs are designed primarily to describe regions, segments, objects, events which 

are high-level AV features and also some constant metadata like title, author, and creation 

date. By combining Ds, DSs and presenting relationships between them complex descriptions 

can be defined. In MPEG-7, the DSs are categorized according to their related media such as 

audio, visual domain or multimedia. Typically, the multimedia DSs describe content 

consisting of a combination of audio, visual data, and possibly textual data, whereas, the 

audio or visual DSs refer specifically to features unique to the audio or visual domain, 

respectively. [7] The DSs can be grouped into 5 different classes according to their 

functionality: 

 Content description: Representation of perceivable information 
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 Content management: Information about the media features, the creation and the 

usage of the AV content; 

 Content organization: Representation the analysis and classification of several AV 

contents; 

 Navigation and access: Specification of summaries and variations of the AV content; 

 User interaction: Description of user preferences and usage history pertaining to the 

consumption of the multimedia material. 

 

 
Figure 1.1: Overview of the MPEG-7 Multimedia DSs 

 

1.4.2 MPEG-7 Description Definition Language (DDL) 

For MPEG-7, one of the main works was to define a language (Description Definition 

Language) to describe the Ds and DSs. During the design process of Description Definition 

Language (DDL), the designers concerned to achieve following points by DDL: 

 Prevention of being sophisticated in other words satisfying the main features and also 

ability to be extended; 

 Coverage of MPEG-7 requirements and usage of MPEG-7 Ds, DSs; 

 Usage of XML structure and interoperability with XML Schema. 

The DDL is the language which allows the creation of MPEG-7 DSs and Ds. A DDL schema 

(a DDL file) specifies the constraints that a valid MPEG-7 description should respect. It is 



Chapter 1 - Introduction  

7 
 

encoded in XML. The DDL uses XML Schema for interoperability reasons. However because 

multimedia content descriptions require specific features that are not defined in XML Schema 

(such as array and matrix data types), the DDL adds those features to the language. Hence the 

MPEG-7 DDL adopts most the of the XML Schema specification and adds MPEG-7-specific 

mechanisms on top of it. Some of the important issues, which are supported by DDL, are 

extended XML Schema, structural and datatype constraints over Ds and DSs, usage of Ds, 

DSs in other DSs, and group definitions like Attribute Group for simple DSs definitions. 

With the DDL one can express structural constraints and data type constraints. Structural 

constraints specify the rules that a valid description should respect in terms of inclusion of 

elements. Data type constraints specify the type and the possible values for data within the 

description. The DDL allows defining complexTypes and simpleTypes. The complexTypes 

specify the structural constraints while simpleTypes express datatype constraints. Moreover 

the DDL allows reusing the existing complexTypes or simpleTypes in a way similar to 

inheritance in object-oriented programming [14].  

 

1.4.3 MPEG-7 System Tools 

Some applications of MPEG-7's system tools are support binary coded representation for 

efficient storage and transmission, transmission mechanisms (both for textual and binary 

formats), error resilience, multiplexing of descriptions, synchronization of descriptions with 

content, management and protection of intellectual property in MPEG-7 descriptions. These 

issues result in the ability to search, browse, and filter MPEG-7 descriptions. 

 

1.5 XML 
XML [10] is a text based format to represent hierarchical data. XML uses named tags 

enclosed between angle brackets to mark the begin and the end of the hierarchical organizers, 

the XML elements. Elements contain other elements, attributes and plain content. 

The power of XML is that you can adapt your own tags (elements) and tag attributes 

(attributes) in order to describe your own data. Another important advantage of the XML 

format is that it is structured and human-readable. For these reasons XML is starting to spread 

rapidly as a multimedia description language (see MPEG7 language [11], for instance). On 

the downsides, its main inconvenience is that, because it is a textual format, it is very 

inefficient both in size and in loading/storing speed. The XML specification defines the 

concepts of well-formedness and validity. 
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An XML document is well-formed if it has a correct nesting of tags. In order for a document 

to be valid, it must conform to some constraints expressed in its document type definition 

(DTD) or its associated XML Schema. 

On the other hand XML-Schema [12] is a definition language for describing the structure of 

an XML document using the same XML syntax and it is bound to replace the existing DTD 

language. The purpose of a schema is to define a class of XML documents by using particular 

constructs to constrain their structure: data types, elements and their content, attributes and 

their values. Schemas are written in regular XML and this allows users to employ standard 

XML tools instead of specialized applications. 

 

1.6 MPEG-7 Standard parts 

This standard is subdivided into eight parts:  

 Part 1 – Systems: specifies the tools for preparing descriptions for efficient transport 

and storage, compressing descriptions, and allowing synchronization between content 

and descriptions. 

 Part 2 – Description Definition Language: specifies the language for defining the 

standard set of description tools (DSs, Ds, and data types) and for defining new 

description tools. 

 Part 3 – Visual: specifies the description tools pertaining to visual content. 

 Part 4 – Audio: specifies the description tools pertaining to audio content [9]. 

 Part 5 – Multimedia Description Schemes: specifies the generic description tools 

pertaining to multimedia including audio and visual content [13]. 

 Part 6 – Reference Software: provides a software implementation of the standard. 

 Part 7 – Conformance: specifies the guidelines and procedures for testing 

conformance of implementations of the standard. 

 Part 8 – Extraction and Use: provides guidelines and examples of the extraction and 

use of descriptions.  

In this work the parts of the MPEG-7 Standard which I have used as references are only the 

part 4 ,5 and 6. 
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1.6.1 Part 4: MPEG-7Audio  

MPEG-7 Audio provides structures—in conjunction with the Multimedia Description 

Schemes part of the standard (Part 5)—for describing audio content. Utilizing those structures 

are a set of low-level Descriptors, for audio features that cut across many applications (e.g., 

spectral, parametric, and temporal features of a signal), and high-level Description Tools that 

are more specific to a set of applications. Those high-level tools include general sound 

recognition and indexing Description Tools, instrumental timbre Description Tools, spoken 

content Description Tools, an audio signature Description Scheme, and melodic Description 

Tools to facilitate query-by-humming [14].  

 

1.6.2 Part 5: MPEG-7 Multimedia Description Schemes  

MPEG-7 Multimedia Description Schemes (also called MDS) comprises the set of 

Description Tools (Descriptors and Description Schemes) dealing with generic as well as 

multimedia entities.  

Generic entities are features, which are used in audio and visual descriptions, and therefore 

"generic" to all media. These are, for instance, "vector", "time", textual description tools, 

controlled vocabularies, etc.  

The MDSs are metadata structures for describing and annotating multimedia content, and 

provide a way to describe in XML the important concepts related to multimedia content. The 

objective is to allow interoperable searching, indexing, filtering and access by enabling 

interoperability among devices that deal with multimedia content description. 

 

1.6.3 Part 6: MPEG-7 Reference Software: the eXperimentation Model  

The eXperimentation Model (XM) software is the simulation platform for the MPEG-7 

Descriptors (Ds), Description Schemes (DSs), Coding Schemes (CSs), and Description 

Definition Language (DDL). Besides the normative components, the simulation platform 

needs also some non-normative components, essentially to execute some procedural code to 

be executed on the data structures. The data structures and the procedural code together form 

the applications [14].  
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1.7 Project Overview 

The remainder of this thesis is organized into the following chapters: 

 Chapter 2 presents the MPEG-7 Low Level Descriptor and shows some example of 

this descriptor extract from audio segments of radio newscasts.  

 Chapter 3 presents some algorithms applied to the feature vector in order to reduce 

their dimensions. 

 Chapter 4 presents the classifier used in the classification system based on continuous 

hidden Markov models (HMM). 

 Chapter 5 describes the audio database which I have create in order to train and test 

the classifier and besides various audio classification experiments are presented, in 

which audio sounds are classified into selected sound classes. 

 Chapter 6 describes how can connect the classification system to a segmentation 

system and presents more in detail the MDS tools in order to create automatically an 

MPEG-7 Compliant XML document for the description of the radio newscast 

segments. 
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CHAPTER 2 

MPEG-7 LOW LEVEL DESCRIPTORS 

The MPEG-7 low-level audio descriptors are of general importance in describing audio. There 

are 17 temporal and spectral descriptors that may be used in a variety of applications. These 

descriptors can be extracted from audio automatically and depict the variation of properties of 

audio over time or frequency. Based on these descriptors it is often feasible to analyze the 

similarity between different audio files. Thus it is possible to identify identical, similar or 

dissimilar audio content. This also provides the basis for classification of audio content [16]. 

The low level audio descriptors can be roughly divided into the following groups: 

 Basic Spectral Descriptors: These are time domain descriptions of the audio content. 

 Basic Spectral Descriptors: The four basic spectral audio descriptors are all derived from 

a single time–frequency analysis of an audio signal. They describe the audio spectrum in 

terms of its envelope, centroid, spread and flatness. 

 Signal Parameters Descriptors: The two signal parameter descriptors apply only to 

periodic or quasi-periodic signals. They describe the fundamental frequency of an audio 

signal as well as the harmonicity of a signal. 

 Temporal Timbral Descriptors: Timbral temporal descriptors can be used to describe 

temporal characteristics of segments of sounds. They are especially useful for the 

description of musical timbre (characteristic tone quality independent of pitch and 

loudness); 

 Spectral Timbral Descriptors Timbral spectral descriptors are spectral features in a linear 

frequency space, especially applicable to the perception of musical timbre;  

The Timbral Descriptors are not adapted to describe audio segments extract from radio 

newscasts so will not be covered further. 

 Spectral basis representations: The two spectral basis descriptors represent low-

dimensional projections of a high-dimensional spectral space to aid compactness and 

recognition. These descriptors are used primarily with the sound classification and 

indexing description tools, but may be of use with other types of applications as well. 

Those descriptors are covered separately in chapter 3. 
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2.1 Basic parameters and notations 

There are two ways of describing low-level audio features in the MPEG-7 standard: 

 An LLD feature can be extracted from sound segments of variable lengths to mark 

regions with distinct acoustic properties. In this case, the summary descriptor extracted 

from a segment is stored as an MPEG-7 Audio Segment description. An audio segment 

represents a temporal interval of audio material, which may range from arbitrarily short 

intervals to the entire audio portion of a media document. 

 An LLD feature can be extracted at regular intervals from sound frames. In this case, the 

resulting sampled values are stored as an MPEG-7 ScalableSeries description. 

This section provides the basic parameters and notations that will be used to describe the 

extraction of the frame-based descriptors. 

 

2.1.1 Time Domain 

In the time domain, the following notations will be used for the input audio signal: 

 𝑙 is the index of time frames. 

 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 is the time interval between two successive time frames. 

 𝑁𝑕𝑜𝑝 denotes the integer number of time samples corresponding to 𝑕𝑜𝑝𝑆𝑖𝑧𝑒. 

 𝐿𝑤 is the length of a time frame (with 𝐿𝑤 ≥ 𝑕𝑜𝑝𝑆𝑖𝑧𝑒). 

 𝑁𝑤 denotes the integer number of time samples corresponding to 𝐿𝑤. 

 𝐿 is the total number of time frames in 𝑠(𝑛). 

 

 

Figure 2.1: Notations for frame-based descriptors 
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The choice of 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 and 𝐿𝑤 depends on the kind of descriptor to extract. 

However, the standard constrains 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 to be an integer multiple or divider of 10 ms (its 

default value), in order to make descriptors that were extracted at different 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 intervals 

compatible with each others. 

 

2.1.2 Frequency Domain 

The extraction of some MPEG-7 LLDs is based on the estimation of short-term power spectra 

within overlapping time frames. In the frequency domain, the following notations will be used: 

 𝑘 is the frequency bin index. 

 𝑆𝑙(𝑘) is the spectrum extracted from the 𝑙th frame of s(n). 

 𝑃𝑙(𝑘) is the power spectrum extracted from the 𝑙th frame of s(n). 

MPEG-7 does not standardize the technique for spectrum estimation, a number of 

implementation features are recommended (e.g. an 𝐿𝑤 of 30 ms for a default 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 of 10 ms). 

 

2.2 Scalable Series 

An LLD may be instantiated either as a single value for a segment or a sampled series. Both of 

these possibilities are embodied in two LLD types. 𝐴𝑢𝑑𝑖𝑜𝐿𝐿𝐷𝑆𝑐𝑎𝑙𝑎𝑟𝑇𝑦𝑝𝑒 is inherited for scalar 

values, such as power or fundamental frequency, and 𝐴𝑢𝑑𝑖𝑜𝐿𝐿𝐷𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑦𝑝𝑒 is inherited for 

vector types, such as spectra. Any descriptor inheriting from these types can be instantiated, 

describing a segment with a single summary value or a series of sampled values, as the 

application requires. 

The sampled values themselves may be further manipulated through another unified interface: 

they can form a scalable series. The scalable series allows one to progressively down-sample the 

data contained in a series, as the application, bandwidth or storage require. In fact a series can be 

described at full resolution or after a scaling operation. In the latter case, the series of original 

samples is decomposed into consecutive sub-sequences of samples. Each sub-sequence is then 

summarized by a single scaled sample. 

An illustration of the scaling process and the resulting scalable series description is shown in 

figure 2.2 [9], where ‘𝑘’ is an index in the scaled series. In this figure, the 31 samples of the 

original series (filled circles) are summarized by 13 samples of the scaled series (open circles). 



Chapter 2 – MPEG-7 Low Level Descriptors 

 

14 
 

The first three scaled samples each summarizes two original samples, the next two six, the next 

two one, etc. 

 

 original series 

scaled series 

ratio 

numOfElements

Nsusm 

2 

 

 

6 

 

1 

 

 3 

 

2 

 

2 

 

k (index) 1 

 
2 

 
3 

 
4 

 
5 

 

6 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

totalNumOfSamples

esNum 

31 

 

6 

 

2 

 

 

7 

 

 

Figure 2.2: Structure of a scalable series description 

 

The attributes of a 𝑆𝑐𝑎𝑙𝑎𝑏𝑙𝑒𝑆𝑒𝑟𝑖𝑒𝑠 are the following: 

 𝑆𝑐𝑎𝑙𝑖𝑛𝑔: is a flag that specifies how the original samples are scaled. If absent, the original 

samples are described without scaling. 

 𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑂𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠: indicates the total number of samples of the original series before 

any scaling operation. 

 𝑟𝑎𝑡𝑖𝑜: is an integer value that indicates the scale ratio of a scaled sample, i.e. the number 

of original samples represented by that scaled sample. This parameter is common to all 

the elements in a sequence of scaled samples. The value to be used when Scaling is absent 

is 1. 

 𝑛𝑢𝑚𝑂𝑓𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠: is an integer value indicating the number of consecutive elements in a 

sequence of scaled samples that share the same scale ratio. If Scaling is absent, it is equal 

to the value of 𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑂𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠. 

Two distinct types of scalable series are defined for representing series of scalars and series of 

vectors in the MPEG-7 LLD framework. Both types inherit from the scalable series description. 

The following sections present them in detail. 
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2.2.1 Series of Scalars 

The MPEG-7 standard contains a 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟  descriptor to represent a series of scalar 

values, at full resolution or scaled. This can be used with any temporal series of scalar LLDs.  

The attributes of a 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 description are: 

 Raw: may contain the original series of scalars when no scaling operation is applied. It is 

only used if the Scaling flag is absent to store the entire series at full resolution. 

 Weight: is an optional series of weights. If this attribute is present, each weight 

corresponds to a sample in the original series. These parameters can be used to control 

scaling. 

 Min, Max and Mean: are three real-valued vectors in which each dimension characterizes 

a sample in the scaled series. For a given scaled sample, a Min, Max and Mean coefficient 

is extracted from the corresponding group of samples in the original series. The 

coefficient in Min is the minimum original sample value, the coefficient in Max is the 

maximum original sample value and the coefficient in Mean is the mean sample value. 

The original samples are averaged by arithmetic mean, taking the sample weights into 

account if the Weight attribute is present (see formulae below). These attributes are absent 

if the Raw element is present. 

 Variance: is a real-valued vector. Each element corresponds to a scaled sample. It is the 

variance computed within the corresponding group of original samples. This computation 

may take the sample weights into account if the Weight attribute is present (see formulae 

below). This attribute is absent if the Raw element is present. 

 Random: is a vector resulting from the selection of one sample at random within each 

group of original samples used for scaling. This attribute is absent if the Raw element is 

present. 

 First: is a vector resulting from the selection of the first sample in each group of original 

samples used for scaling. This attribute is absent if the Raw element is present. 

 Last: is a vector resulting from the selection of the last sample in each group of original 

samples used for scaling. This attribute is absent if the Raw element is present. 

These different attributes allow us to summarize any series of scalar features [9]. 
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Such a description allows scalability, in the sense that a scaled series can be derived indifferently 

from an original series (scaling operation) or from a previously scaled 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 

(rescaling operation). 

Initially, a series of scalar LLD features is stored in the 𝑅𝑎𝑤  vector. Each element 𝑅𝑎𝑤(𝑙) 

(0 ≤ 𝑙 ≤ 𝐿 − 1) contains the value of the scalar feature extracted from the 𝑙 th frame of the 

signal. Optionally, the Weight series may contain the weights 𝑊 𝑙  associated to each 𝑅𝑎𝑤(𝑙) 

feature. 

When a scaling operation is performed, a new 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 is generated by grouping the 

original samples and calculating the abovementioned attributes. The Raw attribute is absent in the 

scaled series descriptor. 

Let us assume that the 𝑖th scaled sample stands for the samples 𝑅𝑎𝑤(𝑙) contained between 

 𝑙 = 𝑙𝐿𝑜(𝑖) and 𝑙 = 𝑙𝐻𝑖(𝑖)with: 

 

𝑙𝐻𝑖(𝑖) = 𝑙𝐿𝑜(𝑖) + 𝑟𝑎𝑡𝑖𝑜 − 1                                                                                                      (2.1) 

 

where ratio is the scale ratio of the 𝑖th scaled sample (i.e. the number of original samples it stands 

for). The corresponding Min and Max values are then defined as: 

 

𝑀𝑖𝑛 𝑖 = 𝑚𝑖𝑛𝑙=𝑙𝐿0 𝑖 
𝑙𝐻𝑖 𝑖 𝑅𝑎𝑤 𝑙                                                                                                      (2.2) 

𝑀𝑎𝑥 𝑖 = 𝑚𝑎𝑥𝑙=𝑙𝐿0 𝑖 
𝑙𝐻𝑖 𝑖 𝑅𝑎𝑤 𝑙                                                                                                     (2.3) 

 

The Mean value is given by (2.4) : 

 

𝑀𝑒𝑎𝑛 𝑖 =
1

𝑟𝑎𝑡𝑖𝑜
  𝑅𝑎𝑤 𝑙 

𝑙𝐻𝑖 𝑖 

𝑙=𝑙𝐿0 𝑖 
                                                                                             (2.4) 

 

if no sample weights 𝑊(𝑙) are specified in Weight. If weights are present, the 

Mean value is computed as (2.5): 
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𝑀𝑒𝑎𝑛 𝑖 =
 𝑊 𝑙 
𝑙𝐻𝑖 𝑖 

𝑙=𝑙𝐿0 𝑖 
𝑅𝑎𝑤 (𝑙)

 𝑊(𝑙)
𝑙𝐻𝑖 𝑖 

𝑙=𝑙𝐿0(𝑖)

                                                                                                     (2.5) 

 

In the same way, there are two computational methods for the Variance depending on whether 

the original sample weights are absent: 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖 =
1

𝑟𝑎𝑡𝑖𝑜
  𝑅𝑎𝑤 𝑙 −  𝑀𝑒𝑎𝑛(𝑖) 2𝑙𝐻𝑖 𝑖 

𝑙=𝑙𝐿0(𝑖)                                                                (2.6) 

 

or present: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖 =
 𝑊(𝑙) 𝑅𝑎𝑤  𝑙 − 𝑀𝑒𝑎𝑛 (𝑖) 2𝑙𝐻𝑖 𝑖 

𝑙=𝑙𝐿0(𝑖)

 𝑊(𝑙)
𝑙𝐻𝑖 𝑖 

𝑙=𝑙𝐿0(𝑖)

                                                                              (2.7) 

 

Finally, the weights 𝑊 (𝑖) of the new scaled samples are computed, if necessary, as (2.8): 

 

𝑊 𝑖 =
1

𝑟𝑎𝑡𝑖𝑜
 𝑊 𝑙 

𝑙𝐻𝑖 𝑖 

𝑙=𝑙𝐿0 𝑖 
                                                                                                        (2.8) 

 

2.2.2 Series of Vectors 

Some LLDs do not consist of single scalar values, but of multi-dimensional vectors. To store 

these LLDs as scalable series, the MPEG-7 standard contains a 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑉𝑒𝑐𝑡𝑜𝑟 descriptor to 

represent temporal series of feature vectors. As before, a series can be stored at the full original 

resolution or scaled.  

The 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑉𝑒𝑐𝑡𝑜𝑟 in order to summarize a series of vectors through scaling and/or rescaling 

operations has the same attributes of the 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 adapted to the vectorial case and adds 

to them other attributes 

Initially, a series of vector LLD features is stored in the 𝑅𝑎𝑤  attribute. Each element 

𝑅𝑎𝑤(𝑙) (0 ≤ 𝑙 ≤ 𝐿 − 1)  contains the vector extracted from the 𝑙 th frame of the signal. 

Optionally, the Weight series may contain the weights 𝑊(𝑙) associated to each vector. 

When a scaling operation is performed, a new 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑉𝑒𝑐𝑡𝑜𝑟 is generated. 
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2.2.3 Binary Series 

The standard defines a binary form of the aforementioned 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟  and 

𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑉𝑒𝑐𝑡𝑜𝑟  descriptors: namely, the 𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟𝐵𝑖𝑛𝑎𝑟𝑦  and 

𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑉𝑒𝑐𝑡𝑜𝑟𝐵𝑖𝑛𝑎𝑟𝑦 descriptors. These descriptors are used to instantiate series of scalars or 

vectors with a uniform power-of-2 ratio. The goal is to ease the comparison of series with 

different scaling ratios, as the decimation required for the comparison between two binary series 

is also a power of 2. 

 

2.3 Audio Waveform Descriptor 

A simple way to get a compact description of the shape of an audio signal 𝑠(𝑛) is to consider its 

minimum and maximum samples within successive non-overlapping frames (i.e. 𝐿𝑤 =

𝑕𝑜𝑝𝑆𝑖𝑧𝑒). 

For each frame, two values are stored: 

 𝑚𝑖𝑛𝑅𝑎𝑛𝑔𝑒: Lower limit of audio signal amplitude; 

 𝑚𝑎𝑥𝑅𝑎𝑛𝑔𝑒: Upper limit of audio signal amplitude. 

The audio waveform (AWF) descriptor consists of the resulting temporal series of these 

(𝑚𝑖𝑛𝑅𝑎𝑛𝑔𝑒, maxRange) pairs. The temporal resolution of the AWF is given by the 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 

parameter. If desired, the raw signal can be stored in an AWF descriptor by setting 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 to 

the sampling period 1/𝐹𝑠 of 𝑠(𝑛). 

The AWF provides an estimate of the signal envelope in the time domain. It also allows 

economical and straightforward storage, display or comparison techniques of waveforms. For 

example, the waveform may be displayed using a small set of values that represent extreme (min 

and max) of frames of samples. They may also be used for fast comparison between 

waveforms[9]. 

In order to compute this descriptor I have written a matlab code that reads the wav file and set the 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑖𝑜, that is the number of samples in the non-overlapping frames, so as to have a 

frame duration of 10 ms (that is the default value of the temporal resolution) and then with these 

parameters, the code calls the matlab function of the MPEG-7 Experimental Model [15] 



Chapter 2 – MPEG-7 Low Level Descriptors 

 

19 
 

𝐴𝑢𝑑𝑖𝑜𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚𝐷  that uses the functions 𝑕_𝑀𝑎𝑥_𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 and 

𝑕_𝑀𝑖𝑛_𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 which I have already described in the paragraph 2.2.1. 

Figure 2.4 gives graphical representations of the AWF descriptor extracted from 7 seconds 

anchorman speech and 7 seconds of theme music. We can see that the MPEG-7 AWF provides a 

good approximation of the shape of the original waveform. 

 

 

Figure 2.3:(a) Anchorman speech signal of 7 s; (b) AWF of the Anchorman speech; (c) Theme music signal of 7 s; 

(d) AWF of the Theme music. 

 

2.4 Audio Power 

The audio power (AP) LLD describes the temporally smoothed instantaneous power of the audio 

signal. The AP coefficients are the average square of waveform values 𝑠(𝑛)  within successive 

non-overlapping frames (𝐿𝑤 = 𝑕𝑜𝑝𝑆𝑖𝑧𝑒) [9]. The AP coefficient of the 𝑙th frame of the signal is 

thus: 
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𝐴𝑃 𝑙 =
1

𝑁𝑕𝑜𝑝
  𝑠 𝑛 + 𝑙𝑁𝑕𝑜𝑝   

2𝑁𝑕𝑜𝑝 −1

𝑛=0  (0 ≤ 𝑙 ≤ 𝐿 − 1)                                                                               (2.9) 

 

where 𝐿 is the total number of time frames. The AP allows us to measure the evolution of the 

amplitude of the signal as a function of time. In conjunction with other basic spectral descriptors 

(described below), it provides a quick representation of the spectrogram of a signal. 

 

2.4.1 Extraction 

In order to extract this descriptor I have used the matlab code 𝐴𝑢𝑑𝑖𝑜𝑃𝑜𝑤𝑒𝑟𝐷 which is in the 

Experimental Model [15]. This code doesn’t work good because it at first segments the input 

signal in frame of 1024 samples, and then for each frame makes the square of each element and 

pass it to the function 𝑕_𝑀𝑒𝑎𝑛_𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 which groups the samples corresponding to 10 

ms and for each group compute the mean value as described in paragraph. The problem is that it 

doesn’t store it and for each frame overwrite the content of the result. In order to solve this 

problem and to have a temporal resolution of 10 ms I have modified the code in this way: At first 

the code makes the square of each element of the entire signal and then pass it to the function 

𝑕_𝑀𝑒𝑎𝑛_𝑆𝑒𝑟𝑖𝑒𝑠𝑂𝑓𝑆𝑐𝑎𝑙𝑎𝑟 which groups the samples corresponding to 10 ms and for each group 

compute the mean value. 

This descriptor can be used to discriminate speech and music segments in fact as we can see from 

the figure 2.4 the speech signal is composed of altering voiced and unvoiced sounds and silence 

periods. These unvoiced and silence periods carry less energy than the voiced sounds. Thus, the 

Energy values for speech will have a large variation. On the contrary the energy of music due to 

the pitched nature of music is more constant and larger than speech.  
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Figure 2.4: (a) Anchorman speech signal of 7 s; (b) AP of the Anchorman speech; (c) Thememusic signal of 7 s; (d) 

AP of the Thememusic. 

 

2.5 Basic spectral descriptors 

The four basic spectral LLDs provide time series of logarithmic frequency descriptions of the 

short term audio power spectrum. The use of logarithmic frequency scales is supposed to 

approximate the response of the human ear. All these descriptors are based on the estimation of 

short-term power spectra within overlapping time frames. 

 

2.5.1 Audio Spectrum Envelope 

The audio spectrum envelope (ASE) is a log-frequency power spectrum that can be used to 

generate a reduced spectrogram of the original audio signal. It is obtained by summing the energy 

of the original power spectrum within a series of frequency bands. The bands are logarithmically 

distributed (base 2 logarithms) between two frequency edges 𝑙𝑜𝐸𝑑𝑔𝑒 (lower edge) and 𝑕𝑖𝐸𝑑𝑔𝑒 

(higher edge) [16]. The spectral resolution 𝑟  of the frequency bands within the [𝑙𝑜𝐸𝑑𝑔𝑒,
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𝑕𝑖𝐸𝑑𝑔𝑒] interval can be chosen from eight possible values, ranging from 1/16 of an octave to 8 

octaves: 

 

r = 2j  octaves,    − 4 ≤ j ≤ +3                                                                                               (2.10) 

 

Both 𝑙𝑜𝐸𝑑𝑔𝑒 and 𝑕𝑖𝐸𝑑𝑔𝑒 must be related to 1 kHz in the following way: 

 

𝐸𝑑𝑔𝑒 = 2𝑟𝑛 × 1 𝑘𝐻𝑧                                                                                                               (2.11) 

 

where  𝑟 is the resolution in octaves and 𝑛 is an integer value. The default value of 𝑕𝑖𝐸𝑑𝑔𝑒 is 16 

kHz, which corresponds to the upper limit of hearing. The default value of 𝑙𝑜𝐸𝑑𝑔𝑒 is 62.5 Hz so 

that the default  [𝑙𝑜𝐸𝑑𝑔𝑒, 𝑕𝑖𝐸𝑑𝑔𝑒] range corresponds to an 8-octave interval, logarithmically 

centered at a frequency of 1 kHz.  

Within the default [𝑙𝑜𝐸𝑑𝑔𝑒, 𝑕𝑖𝐸𝑑𝑔𝑒] range, the number of logarithmic bands that corresponds 

to 𝑟 is 𝐵𝑖𝑛 =  8/𝑟. The low (𝑙𝑜𝐹𝑏) and high (𝑕𝑖𝐹𝑏) frequency edges of each band are given by: 

 

𝑙𝑜𝐹𝑏 = 𝑙𝑜𝐸𝑑𝑔𝑒 × 2(𝑏−1)𝑟                                                                                                          (2.12) 

𝑕𝑖𝐹𝑏 = 𝑙𝑜𝐸𝑑𝑔𝑒 × 2𝑏𝑟                                                                                                                (2.13) 

 

where 1 ≤ 𝑏 ≤ 𝐵𝑖𝑛  

 

The sum of power coefficients in band  𝑏  [𝑙𝑜𝐹𝑏, 𝑕𝑖𝐹𝑏]  gives the ASE coefficient for this 

frequency range. The coefficient for the band 𝑏 is: 

 

𝐴𝑆𝐸 =  𝑃 𝑘      (1 ≤ 𝑏 ≤ 𝐵𝑖𝑛 )
𝑕𝑖𝐾𝑏
𝑘=𝑙𝑜𝐾𝑏

                                                                                    (2.14) 

 

where 𝑃(𝑘) are the power spectrum coefficients and 𝑙𝑜𝐾𝑏  (resp. 𝑕𝑖𝐾𝑏 ) is the integer frequency 

bin corresponding to the lower edge of the band 𝑙𝑜𝐹𝑏  (the higher edge of the band 𝑕𝑖𝐹𝑏) obtained 

considering that in the FFT spectrum, the discrete frequencies corresponding to bin indexes 𝑘 are: 
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𝑓 𝑘 = 𝑘Δ𝐹  (0 ≤ 𝑘 ≤ 𝑁𝐹𝑇 2 )                                                                                               (2.15) 

 

Where ΔF = Fs NFT   is the frequency interval between two successive FFT bins. Inverting the 

preceding equation, we can map any frequency in the range [0, 𝐹𝑠/2] to a discrete bin in 

  0, 1, … ,𝑁𝐹𝑇  /2 : 

 

𝑘 = 𝑟𝑜𝑢𝑛𝑑 𝑓 Δ𝐹    (0 ≤ 𝑓 ≤ 𝐹𝑠 2 )                                                                                       (2.16) 

 

2.5.1.1 Extraction 

To extract the Audio Spectrum Envelope I have used the 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒𝐷 matlab 

code that is in the Experimental Model [15]. This code involves a sliding window FFT analysis, 

with a re-sampling to logarithmic spaced bands. 

At first the code determines the required hop length 𝑕, corresponding to the hopsize. If the 

sampling rate is 𝑓𝑠, then  

 

𝑕 =  𝑓𝑠 × 𝑕𝑜𝑝𝑆𝑖𝑧𝑒                                                                                                                    (2.17) 

 

If  𝑓𝑠 × 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 is not a whole number of samples then generates a vector 𝑕  such that  

 

𝑚𝑒𝑎𝑛(𝑕)  =  𝑓𝑠 × 𝑕𝑜𝑝𝑆𝑖𝑧𝑒                                                                                                      (2.18) 

 

and interleaves minor 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 with major (e.g if 10 10 10 10 10 10 11 11 are the hops then the 

pattern should be 10 10 10 11 10 10 11). By cycling through the vector of hop lengths the 

analysis will not stray over time, but will give minor jitter from the defined 𝑕𝑜𝑝𝑆𝑖𝑧𝑒 . This 

enables reasonable comparison of data sampled at differing rates.  

The analysis window length 𝑙𝑤 . has been chosen to have a default value of 3 𝑕𝑜𝑝𝑆𝑖𝑧𝑒𝑠, 30ms. 

After computes 𝑙𝑤  the code determines the FFT size, 𝑁𝐹𝑇 . 𝑁𝐹𝑇  is the next-larger power-of-two 

number of samples from 𝑙𝑤 . 

Then performs a STFT using a Hamming window of length 𝑙𝑤 , with the shifts which are in the 

vector 𝑕 and computing the FFT with 𝑁𝐹𝑇  point, setting the out-of-window samples to 0.  
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After that, the code, to obtain the power spectrum coefficients 𝑃(𝑘) , computes the square 

magnitude of the FFT coefficients  𝑆𝑙(𝑘) 2. 

Since the signal spectrum is symmetric around the Nyquist frequency 𝐹𝑠/2, it considers only the 

first half of the power spectrum (0 ≤ 𝑘 ≤ 𝑁𝐹𝑇  /2) without losing any information and normalize 

it to respect the Parseval’s Theorem in the following way 

 

𝑃𝑙 𝑘 =
1

𝑁𝐹𝑇 𝐸𝑤
 𝑆𝑙(𝑘) 2         𝑓𝑜𝑟 𝑘 = 0 𝑎𝑛𝑑 𝑘 =

𝑁𝐹𝑇

2
                                                               (2.19) 

𝑃𝑙 𝑘 = 2
1

𝑁𝐹𝑇 𝐸𝑤
 𝑆𝑙(𝑘) 2         𝑓𝑜𝑟 0 < 𝑘 <

𝑁𝐹𝑇

2
                                                                       (2.20) 

 

In the end the code resamples the power spectrum coefficients to a logarithmic scale. 

The repartition of the power spectrum coefficients 𝑃(𝑘) among the different frequency bands can 

be a problem, particularly for the narrower low frequency bands when the resolution 𝑟 is high. It 

is reasonable to assume that a power spectrum coefficient whose distance to a band edge is less 

than half the FFT resolution (i.e. less than Δ𝐹/2) contributes to the ASE coefficients of both 

neighboring bands. How such a coefficient should be shared by the two bands is not specified by 

the standard. The method which is used in the code which I have used is depicted in the figure 2.5 

[16]. 

The 𝐵𝑖𝑛  within-band band power coefficients are completed by two additional values: the powers 

of the spectrum between 0 Hz and 𝑙𝑜𝐸𝑑𝑔𝑒 and between 𝑕𝑖𝐸𝑑𝑔𝑒 and the Nyquist frequency  

𝐹𝑠/2.These two values represent the out-of-band energy. 
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Figure 2.5 Method for weighting the contribution of a power coefficient shared by two bands 

 

In the following, 𝐵 = 𝐵𝑖𝑛 + 2 will describe the total number of coefficients forming the ASE 

descriptor. With 𝑙𝑜𝐸𝑑𝑔𝑒 and 𝑕𝑖𝐸𝑑𝑔𝑒 default values, the dimension of an ASE can be chosen 

between 𝐵 = 3 (𝐵𝑖𝑛 = 1) with the minimal resolution of 8 octaves and 𝐵 = 130 (𝐵𝑖𝑛  = 128) 

with the maximal resolution of 1/16 octave. 

The extraction of an 𝐴𝑆𝐸 vector from a power spectrum descript above is depicted in figure 2.6 

with, as an example, the 𝑙𝑜𝐸𝑑𝑔𝑒 and 𝑕𝑖𝐸𝑑𝑔𝑒 default values and a 1-octave resolution. The ASE 

vectors comprise 10 coefficients: 8 within-band coefficients plus 2 out-of-band coefficients. 

 

 

Figure 2.6: Extraction of ASE from a power spectrum with a single-octave resolution 
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This descriptor has useful scaling properties: the power spectrum over an interval is equal to the 

sum of power spectra over subintervals. 

 

 

Figure 2.7: (a) ASE of 10 s of anchorman speech; (b) ASE of 10 s of anchorwoman speech 

 

In figure 2.7 we can compare the ASE of 10 s anchorman speech with the ASE of 10 s 

anchorwoman speech. Each ASE vector is extracted from 34 frequency bands and consists of 32 

within-band coefficients between 𝑙𝑜𝐸𝑑𝑔𝑒 = 62.5𝐻𝑧  and 𝑕𝑖𝐸𝑑𝑔𝑒 = 16 𝑘𝐻𝑧  (i.e. a 1/4-octave 

resolution) and two out-of-band coefficients. 𝐴𝑆𝐸 vectors are extracted every 10 ms from 30 ms 

frames and represented vertically at the corresponding frame indexes. And we can recognize the 

gender of the speaker only by view the plot in fact compared with the anchorwoman the 

anchorman produces more energy at the lower frequencies and less at the higher frequencies. 
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Figure 2.8: (a) ASE of 10 s of speech on the telephone; (b) ASE of 7 s Thememusic. 

 

Instead in figure 2.8 I have reported at first the ASE of 10 s of speech on telephone in which the 

effects of the non ideal telephone line are evident, and the ASE of 10 s of the thememusic of the 

GR where we can see that concentrates more energy at lower frequency than the speech signal. 

 

2.5.2 Audio Spectrum Centroid 

To be coherent with other descriptors, in particular ASE the spectrum centroid is defined as the 

center-of-gravity of a log-frequency power spectrum. This definition is adjusted in the extraction 

to take into account the fact that a non-zero DC component creates a singularity, and eventual 

very-low frequency components (possibly spurious) have a disproportionate weight [9].  
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2.5.2.1 Extraction 

In order to extract the  Audio Spectrum Centroid I have used the 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷 

matlab code that is in the MPEG-7 Experimental Model [15]. This code calculate the power 

spectrum coefficients 𝑃𝑙(𝑘) , as described in the previous paragraph. Then power spectrum 

coefficients below 62.5 Hz are replaced by a single coefficient, with power equal to their sum and 

a nominal frequency of 31.25 Hz that in the discrete frequency bin scale corresponds to the index: 

 

𝐾𝑙𝑜𝑤  = 𝑓𝑙𝑜𝑜𝑟  
62.5

Δ𝐹
                                                                                                                  (2.21) 

 

This results in a new power spectrum 𝑃’(𝑘’) whose relation to the original spectrum 𝑃(𝑘) is 

given by: 

 

𝑃′ 𝑘′ =  
 𝑃 𝑘 

𝐾𝑙𝑜𝑤
𝑘=0  ,                       𝑘′ = 0

𝑃 𝑘′ + 𝐾𝑙𝑜𝑤  ,            1 ≤ 𝑘′ ≤
𝑁𝐹𝑇

2
− 𝐾𝑙𝑜𝑤

                                                               (2.22) 

 

The frequencies 𝑓’(𝑘’) corresponding to the new bins 𝑘’ are given by: 

 

𝑓 ′ 𝑘′ =  
31.25 ,                              𝑘′ = 0

𝑓 𝑘′ + 𝐾𝑙𝑜𝑤  ,         1 ≤ 𝑘′ ≤
𝑁𝐹𝑇

2
− 𝐾𝑙𝑜𝑤

                                                                 (2.23) 

 

where 𝑓(𝑘) is defined as in equation 2.7. The nominal frequency of the low-frequency coefficient 

is chosen at the middle of the low-frequency band: 𝑓’ 0 = 31.5 𝐻𝑧. 

Finally, for a given frame, the ASC is defined from the modified power coefficients 𝑃’(𝑘’) and 

their corresponding frequencies 𝑓’(𝑘’) as: 

 

𝐴𝑆𝐶 =
 log 2 

𝑓′  𝑘′  

1000
 𝑃′ (𝑘′)

 𝑁𝐹𝑇 2  −𝑘𝑙𝑜𝑤
𝑘′ =0

 𝑃′ (𝑘′)
 𝑁𝐹𝑇 2  −𝑘𝑙𝑜𝑤
𝑘′ =0

                                                                                          (2.24) 
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Each frequency 𝑓’(𝑘’)of the modified power spectrum is weighted by the corresponding power 

coefficient 𝑃’(𝑘’). 

The 𝐴𝑆𝐶 measure gives information on the shape of the power spectrum. It indicates whether a 

power spectrum is dominated by low or high frequencies and can be regarded as an 

approximation of the perceptual sharpness of the signal. In fact the log-frequency scaling 

approximates the perception of frequencies in the human hearing system [15]. 

Figure 2.9 depicts the temporal series of ASC values of 7 s of anchorman speech, 7 s of speech 

on telephone and of 7 s of theme music. In this example, the spectrum is dominated by lower 

frequencies. 

 

 

Figure 2.9: (a) ASC of 7 s of anchorman speech; (b) ASC of 7 of speech on the telephone; (c) ASC of 7 s of theme 

music 

 

We can note that the observations that we have made when we have analyzed the ASE of the 

same segments are still valid. In fact the ASC values of the speech on the telephone, due to the 

telephonic line effects remain around 0 which means, according to equation 2.24, that the 

corresponding frequency centroids remain around 1 kHz. And the ASC values of the theme music 

remain below 0 and so the corresponding frequency centroids remain below 1 kHz, according to 
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the fact that the spectrum of the music segments is more predominant by lower frequency than 

the speech segments. 

 

2.5.3 Audio Spectrum Spread 

The audio spectrum spread (ASS) is another simple measure of the spectral shape. The spectral 

spread, also called instantaneous bandwidth, can be defined in several different ways. In MPEG-

7, it is defined as the second central moment of the log-frequency spectrum [9]. For a given 

signal frame, the ASS feature is extracted by taking the root-mean-square (RMS) deviation of the 

spectrum from its centroid ASC: 

 

𝐴𝑆𝑆 =  
  log 2 

𝑓′  𝑘′  

1000
 −𝐴𝑆𝐶 

2

𝑃′ (𝑘′)
 𝑁𝐹𝑇 2  −𝑘𝑙𝑜𝑤
𝑘′ =0

 𝑃′ (𝑘′)
 𝑁𝐹𝑇 2  −𝑘𝑙𝑜𝑤
𝑘′ =0

                                                                             (2.25) 

 

where the modified power spectrum coefficients 𝑃’(𝑘’) and the corresponding frequencies 𝑓’(𝑘’) 

are calculated in the same way as for the ASC descriptor. 

The ASS gives indications about how the spectrum is distributed around its centroid. A low ASS 

value means that the spectrum may be concentrated around the centroid, whereas a high value 

reflects a distribution of power across a wider range of frequencies. It is designed to help 

differentiate noise-like and tonal sounds [16]. 
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Figure 2.10: (a) ASS of 10 s of anchorman speech; (b) AP of the same segment. 

 

In figure 2.10 (a) I have reported the temporal series of ASS values of 10 s of anchorman speech 

and below in the figure 2.10 (b) the AP of the same audio segments. Comparing the two graphs, 

we can note that only when we have piece of silence or noise-like the ASS assumes high values 

otherwise the spread remains rather low. 

 

 

Figure 2.11: ASS of 7 s of thememusic 

 

Figure 2.11 instead depicts the temporal series of ASS values of 7 s of thememusic and we can 

observe that respects to the ASS of speech signal this ASS has minus variations, because it 

doesn’t have piece of silence or noise-like as the speech segments. 
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2.5.4 Audio Spectrum Flatness 

The audio spectrum flatness (ASF) reflects the flatness properties of the power spectrum. More 

precisely, for a given signal frame, it consists of a series of values, each one expressing the 

deviation of the signal’s power spectrum from a flat shape inside a predefined frequency band 

[9]. As such, it is a measure of how similar an audio signal is to white noise, or, vice versa, how 

correlated a signal is. 

 

2.5.4.1 Extraction 

In order to extract the  Audio Spectrum Flatness I have used the 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠𝐷 

matlab code that is in the MPEG-7 Experimental Model [15]. 

At first, in the code, is performed a spectral analysis (windowing, DFT) of the input signal using 

the same procedure and parameters specified for the extraction of the 

𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒𝑇𝑦𝑝𝑒, but with the window length, 𝑙𝑤 , corresponding to hop size (i.e. 

no overlap between subsequent calculations), which is recommended to be 30 ms in this case. 

Within a [𝑙𝑜𝐸𝑑𝑔𝑒, 𝑕𝑖𝐸𝑑𝑔𝑒]  range, the spectrum is then divided into 1/4-octave-spaced log-

frequency bands. These parameters must be distinguished from the 𝑙𝑜𝐸𝑑𝑔𝑒 and 𝑕𝑖𝐸𝑑𝑔𝑒 edges 

used in the definition of the 𝐴𝑆𝐸 descriptor. Here, the values of 𝑙𝑜𝐸𝑑𝑔𝑒 and 𝑕𝑖𝐸𝑑𝑔𝑒 must be 

chosen so that the intervals separating them from 1 kHz are integer multipliers of a 1/4 octave. 

We thus have: 

 

𝑙𝑜𝐸𝑑𝑔𝑒 = 2
1
4
𝑛 × 1𝑘𝐻𝑧                                                                                                             (2.26) 

𝑕𝑖𝐸𝑑𝑔𝑒 = 2
1
4
𝐵 × 𝑙𝑜𝐸𝑑𝑔𝑒                                                                                                         (2.27) 

 

where 𝑛 and 𝐵 are integer parameters with the following meanings: 

 The value of 𝑛  determines the lower band edge. The minimum value for 𝑙𝑜𝐸𝑑𝑔𝑒  is 

recommended to be 250 Hz (i.e. 𝑛 = −8). 

 𝐵 is the desired number of frequency bands. After 𝑙𝑜𝐸𝑑𝑔𝑒 has been set, the value of 𝐵 

determines the higher band edge. The value of 𝑕𝑖𝐸𝑑𝑔𝑒 should not exceed a frequency 

limit beyond which no flatness features can be properly extracted. The most obvious 
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limitation to 𝑕𝑖𝐸𝑑𝑔𝑒 is the Nyquist frequency. Another limitation could be the bandwidth 

of the original signal. The choice of parameter B must be made accordingly within these 

limitations. For these reason in the code there is a control on the value of the 𝑕𝑖𝐸𝑑𝑔𝑒, if 

upper than the Nyquist frequency , then this value is set to the Niquist frequency. 

The resulting frequency bands are proportional to those used in the definition of the ASE, thus 

ensuring compatibility among the different basic spectral descriptors. However, defining 

frequency bands with no overlap could make the calculation of ASF features too sensitive to 

slight variations in sampling frequency. Therefore, the nominal edge frequencies of equation 2.27 

are modified so that the 𝐵 frequency bands slightly overlap each other. Each band is thus made 

10% larger in the following manner: 

 

𝑙𝑜𝐹𝑏 = 0.95 × 𝑙𝑜𝐸𝑑𝑔𝑒 × 2
1
4

(𝑏−1)  

𝑕𝑖𝐹𝑏 = 1.05 × 𝑙𝑜𝐸𝑑𝑔𝑒 × 2
1
4
𝑏                   (1 ≤ 𝑏 ≤ 𝐵)                                                             (2.28) 

 

with l𝑜𝐹𝑏  and 𝑕𝑖𝐹𝑏  being the lower and upper limits of band b. We denote as 𝑙𝑜𝐾𝑏  and 𝑕𝑖𝐾𝑏  the 

corresponding bins in the power spectrum, obtained from equation (2.8). 

Furthermore, in order to reduce computational costs and to adjust the frequency resolution of the 

spectrum to the log-frequency bands, the MPEG-7 standard specifies a method for grouping the 

power spectrum coefficients 𝑃(𝑘) in bands above the edge frequency of 1 kHz. The grouping is 

defined as follows: 

 For all bands between 1 kHz and 2 kHz power spectrum coefficients 𝑃(𝑘) are grouped by 

pairs. Two successive coefficients 𝑃(𝑘) and 𝑃(𝑘 +  1)  are replaced by a single average 

coefficient (𝑃(𝑘) + 𝑃(𝑘 + 1))/2. 

 This grouping procedure is generalized to the following intervals of 1 octave as follows. 

Within all bands between 2𝑛  𝑘𝐻𝑧  and 2𝑛+1𝑘𝐻𝑧  (where 𝑛  is an integer and 𝑛 ≥ 1), each 

group of 2𝑛  successive power coefficients is replaced by a single coefficient equal to their 

arithmetic mean. Figure 2.10 illustrates the coefficient grouping procedure within two 

consecutive bands 𝑏  (between 𝑓 = 2
3
4  𝑘𝐻𝑧 ≈ 1681.8𝐻𝑧 and 𝑓 = 2 𝑘𝐻𝑧) and 𝑏 + 1 (between 

𝑓 = 2 𝑘𝐻𝑧 and  𝑓 = 2
5
4  𝑘𝐻𝑧 ≈ 2378_4 𝐻𝑧). As specified in equation 2.21 these nominal 
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edge frequencies are actually modified to introduce a 10% overlap represented on the 

schema[16]. 

 

 

Figure 2.12: Power coefficient grouping within two consecutive bands around 2 kHz 

 

 At the end of each band, the last group of coefficients may not contain the required number of 

values. If at least 50% of the required coefficients are available (i.e. 2𝑛  coefficients for bands 

between 2𝑛  kHz and 2𝑛+1 kHz), the group is completed by using the appropriate number of 

coefficients at the beginning of the next band. Otherwise, no average coefficient is yielded; 

the power coefficients contained in the last group are simply ignored. In the example of figure 

2.10, the last group of band 𝑏 + 1  only contain one coefficient, which is ignored in the 

calculation of the three grouped power coefficients finally associated to 𝑏 + 1. 

This grouping procedure results in a new set of power coefficients 𝑃𝑔(𝑘’). We call 𝑙𝑜𝐾’𝑏  and 

𝑕𝑖𝐾’𝑏  the new band edge indexes of frequency bands 𝑏 in the modified power spectrum (see 

figure 2.10). 

For each band b, a spectral flatness coefficient is then estimated as the ratio between the 

geometric mean and the arithmetic mean of the spectral power coefficients within this band: 
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𝐴𝑆𝐹 =

  𝑃𝑔(𝑘 ′ )
𝑕𝑖𝐾𝑏

′

𝑘′ =𝑙𝑜𝐾𝑏
′

𝑕𝑖𝐾𝑏
′ −𝑙𝑜𝐾𝑏

′ +1

1

𝑕𝑖𝐾𝑏
′ −𝑙𝑜𝐾𝑏

′ +1
  𝑃𝑔(𝑘 ′ )

𝑕𝑖𝐾𝑏
′

𝑘′ =𝑙𝑜𝐾𝑏
′

        (1 ≤ 𝑏 ≤ 𝐵)                                                                  (2.29) 

 

If no audio signal is present (i.e. the mean power is zero), a flatness measure value of 1 is 

returned. 

For all bands under the edge of 1 kHz, the power coefficients are averaged in the normal way. In 

that case, for each band 𝑏, we have 𝑃𝑔(𝑘’) = 𝑃(𝑘’) between 𝑘’ = 𝑙𝑜𝐾’𝑏 = 𝑙𝑜𝐾𝑏  and 𝑘’ = 𝑕𝑖𝐾’𝑏 =

𝑕𝑖𝐾𝑏 . For all bands above 1 kHz, for which a power coefficient grouping was required, only the 

reduced number of grouped coefficients is taken into account in the calculation of the geometric 

and arithmetic means. 

A flat spectrum shape corresponds to a noise or an impulse signal. Hence, high ASF coefficients 

are expected to reflect noisiness. On the contrary, low values may indicate a harmonic structure 

of the spectrum. From a psycho-acoustical point of view, a large deviation from a flat shape (i.e. 

a low spectral flatness measure) generally characterizes the tonal sounds. 

In figure 2.13 I have reported the temporal series of the ASE and ASF vectors of 10 seconds of 

anchorman speech and 7 seconds of theme music. Each ASF vector is extracted from 24 

frequency bands within a 6-octave frequency interval, between 𝑙𝑜𝐸𝑑𝑔𝑒 = 250𝐻𝑧 and 𝑕𝑖𝐸𝑑𝑔𝑒 =

16 𝑘𝐻𝑧 (chosen to be smaller than the 22.05 kHz Nyquist frequency). A lighter shade indicates a 

higher spectral flatness value, meaning that the tonal component is less present in the 

corresponding bands. 

Comparing the two descriptors we can note that where the ASE has high values the ASF has low 

value in fact in these point the spectrum is far to be flat.  

The spectral flatness coefficients may be used as a feature vector for robust matching between 

pairs of audio signals. It is also possible to reduce the spectral flatness features to a single scalar 

by computing the mean value across the frequency band coefficients ASF(b) for each frame. The 

resulting feature measures the overall flatness of a frame and can be used by an audio classifier 

[17]. 
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Figure 2.13: (a-b) ASE and ASF of 10 s of anchorwoman speech; (b-c)ASE and ASF of 7 s of thememusic 

 

2.6 Basic signal parameters 

The above-mentioned basic spectral LLDs give a smoothed representation of power spectra. They 

cannot reflect the detailed harmonic structure of periodic sounds because of a lack of frequency 

resolution. The following descriptors provide some complementary information, by describing 

the degree of harmonicity of audio signals. 

 

2.6.1 Audio Harmonicity 

The audio harmonicity (AH) descriptor provides two measures of the harmonic properties of a 

spectrum: 

 the 𝑕𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑟𝑎𝑡𝑖𝑜: the ratio of harmonic power to total power. 
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  the 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑕𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑖𝑡𝑦:  the frequency beyond which the spectrum cannot be 

considered harmonic. 

They both rely on a standardized fundamental frequency estimation method, based on the local 

normalized autocorrelation function of the signal. This approach, widely used for local pitch 

estimation, is independent of the extraction of the audio fundamental frequency descriptor 

presented below [9]. 

 

2.6.1.1 Harmonic Ratio 

The harmonic ratio (HR) is a measure of the proportion of harmonic components in the power 

spectrum. An HR coefficient is computed for each 𝑁𝑤  sample frame of the original signal 𝑠(𝑛), 

with a hop of 𝑁𝑕𝑜𝑝  samples between successive frames. The extraction of an HR frame feature is 

standardized as follows. For a given frame index 𝑙, the normalized autocorrelation function of the 

signal is first estimated as: 

 

Γl m =
 sl n sl (n−m)

N w −1
n =0

  sl (n)2N w −1
n =0  sl (n−m)2N w −1

n =0

           (𝑙 ≤ 𝑚 ≤ 𝑀; 0 ≤ 𝑙 ≤ 𝐿 − 1)                                (2.30) 

 

where 𝑠𝑙(𝑛) is defined as 𝑠(𝑙𝑁𝑕𝑜𝑝 + 𝑛), 𝑚 is the lag index of the autocorrelation and 𝐿 is the 

total number of frames in 𝑠(𝑛). In the definition of equation 2.30 autocorrelation values are 

computed at lags ranging from 𝑚 = 1 to 𝑚 = 𝑀. 

The maximum lag 𝑀 corresponds to the maximum fundamental period 𝑇0(or equivalently the 

minimum fundamental frequency) that can be estimated: 

 

𝑀 = 𝑇0
𝑚𝑎𝑥 𝐹𝑠 =

𝐹𝑠

𝑓0
𝑚𝑖𝑛                                                                                                                   (2.31) 

 

The default expected maximum period 𝑇0
𝑚𝑎𝑥  is 40 ms, which corresponds to a minimum 

fundamental frequency of 25 Hz. 

If the signal is purely periodic, the maximum values of Γl(m) will be at lags 𝑚 corresponding to 

multiples of 𝑇0. At lags near 𝑚 = 0 a high peak will appear which will very likely reach values 
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near to 1 for almost any type of audio signal, independently of its degree of periodicity. To obtain 

the HR, the autocorrelation is searched for the maximum, after having ignored the zero-lag peak: 

 

𝐻𝑅 = max𝑀0≤𝑚≤𝑀 Γ𝑙(𝑚)                                                                                                        (2.32) 

 

where 𝑀0  denotes a lag immediately to the right of the zero-lag peak. One straightforward 

possibility is to define 𝑀0  as the lag corresponding to the first zero crossing of the 

autocorrelation. 

It should be noted that, in the MPEG-7 standard, the above equation is written as: 

 

𝐻𝑅 = max𝑙≤𝑚≤𝑁𝑕𝑜𝑝
 Γ𝑙(𝑚)                                                                                                      (2.33) 

 

It can be seen that, on the one side, the zero-lag peak is not ignored, which would result in HR 

values virtually always close to 1. On the other side, the rightmost limit corresponds only to a 

frame length, and not to the maximum lag 𝑀 corresponding to the maximum fundamental period 

expected [16]. 

The lag that maximizes Γ𝑙(𝑚) corresponds to the estimated local fundamental period.  

The HR values will be close to 0 for white noise and to 1 for purely periodic signals. 

 

2.6.1.2 Upper Limit of Harmonicity 

The upper limit of harmonicity (ULH) is an estimation of the frequency beyond which the 

spectrum no longer has any harmonic structure. It is based on the output/input power ratio of a 

time domain comb filter [18] tuned to the fundamental period of the signal estimated in the 

previous paragraph. The algorithm is performed as follows: 

1. The comb-filtered signal is calculated as: 

 

𝑠 𝑙 𝑛 = 𝑠𝑙 𝑛 − 𝐺𝑙𝑠𝑙 𝑛 − 𝑚     (0 ≤ 𝑛 ≤ 𝑁𝑤 − 1)                                                      (2.34) 
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where 𝑚  is the lag maximizing the autocorrelation function Γ𝑙(𝑚) in equation 2.32, which 

corresponds to the estimated fundamental period of frame 𝑙. The 𝐺𝑙  factor is the optimal 

gain of the comb filter: 

 

𝐺𝑙 =
 𝑠𝑙 𝑗  𝑠𝑙(𝑗−𝑚 )
𝑁𝑤−1
𝑗=0

 𝑠𝑙(𝑗−𝑚 )2𝑁𝑤−1
𝑗=0

                                                                                                   (2.35) 

 

2. The power spectra of the original and comb-filtered signals (𝑃’(𝑘)  and 𝑃𝑐
′(𝑘), 

respectively) are computed for each frame 𝑙 as described in equation 2.22. 

3. For each of the spectra 𝑃’(𝑘) and 𝑃𝑐
′(𝑘), all the power samples falling beyond a given 

frequency bin 𝑘𝑙𝑖𝑚  are summed. The ratio of the two sums is then taken as follows: 

 

𝑅 𝑘𝑙𝑖𝑚  =
 𝑃𝑐

′ 𝑁𝐹𝑇 2  −𝑘𝑙𝑜𝑤
𝑘=𝑘𝑙𝑖𝑚

(𝑘)

 𝑃′ 𝑁𝐹𝑇 2  −𝑘𝑙𝑜𝑤
𝑘=𝑘𝑙𝑖𝑚

(𝑘)
                                                                                         (2.36) 

 

The maximum frequency bin of the spectra 𝑘𝑚𝑎𝑥 =  𝑁𝐹𝑇 2  − 𝑘𝑙𝑜𝑤  has been explained 

in equation (2.22). 

4. The ratios 𝑅(𝑘𝑙𝑖𝑚 )  are computed sequentially, decrementing 𝑘𝑙𝑖𝑚  from 𝑘𝑚𝑖𝑛 = 𝑘𝑚𝑎𝑥  

down to the first frequency bin 𝑘𝑢𝑙𝑕  for which 𝑅(𝑘𝑙𝑖𝑚 ) is smaller than a threshold of 0.5.  

5. The corresponding frequency 𝑓𝑢𝑙𝑕  is given by f(𝑘𝑢𝑙𝑕 + 𝐾𝑙𝑜𝑤 ) as defined in equation 2.13, 

except if 𝑘𝑢𝑙𝑕 = 0. In the later case, 𝑓𝑢𝑙𝑕  is set to 31.25 Hz, conforming to the definition 

of the ASC in equation 2.24. 

6. Finally, a ULH feature is computed for each signal frame as: 

 

𝑈𝐿𝐻 = log2  
𝑓𝑢𝑙 𝑕

1000
                                                                                                        (2.37) 

 

The conversion of the frequency limit 𝑓𝑢𝑙𝑕  into an octave scale centred on1 kHz makes 

the ULH coherent with the definitions of the ASC and ASS descriptors in equations 2.24 

and 2.25 [9]. 
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The two AH features HR and ULH are designed to provide a compact description of the 

harmonic properties of sounds. They can be used for distinguishing between harmonic sounds 

(i.e. sounds whose spectra have a harmonic structure, like musical sounds and voiced speech 

segments) and non-harmonic sounds (i.e. sounds with non-harmonic spectra, like noisy sounds 

and unvoiced speech segments). 

 

2.6.1.2.1 Extraction 

In order to extract this descriptor I have used the 𝐴𝑢𝑑𝑖𝑜𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑖𝑡𝑦𝐷 matlab code which is in 

the MPEG-7 Experimental Model [15], but before running it I have made same changes because 

in the code in some expression the matrix dimension are not agree.  

This code considers frame with duration of 40 ms, and for each frame calculate: 

 

𝑟𝑘 𝑗 =
 [𝑠 𝑖+𝑗  −𝑠(𝑖)𝑛
𝑖=1 ]2

 𝑠(𝑖)2𝑛
𝑖=1 + 𝑠(𝑖+𝑗 )2𝑛

𝑖=1

                                                                                                      (2.38) 

 

The lag 𝑗 varies from 𝑗 = 1 till the end of the frame. After that the code chooses the minimum 

and subtracts it from 1: 

 

𝐻𝑘 = 1 − min⁡(𝑟(𝑗))                                                                                                                (2.39) 

 

In this way the meaning of the 𝐻𝑘  is the same of the HR which I have defined above. In fact this 

value is 1 for purely periodic signal, and it should be close to 0 for white noise. 

The minimum is found using a parabolic approximation, in this way the first values close to zero 

are not considerate. 

The duration of the frame is set to 40 ms because in this way the maximum lag 𝑇0
𝑚𝑎𝑥  is 40 ms, 

which corresponds to a minimum fundamental frequency of 25 Hz. 

This code doesn’t consider 𝐻𝑘  as the HR, but calls HR the ratio between the power spectra of the 

original and comb-filtered signals (𝑃’(𝑘) and 𝑃𝑐
′(𝑘), respectively). For this reason I have changed 

the code saving 𝐻𝑘  as the HR. 

 



Chapter 2 – MPEG-7 Low Level Descriptors 

 

41 
 

Figure 2.14: (a) 10 s of anchorwoman speech; (b) HR of the same segments 

 

Figure 2.14 gives the temporal series of HR values extracted from 10 s of anchorwoman speech. 

If we compare the HR with its temporal waveform, we can note that the HR is near 1 when we 

have piece of speech and is lower when we have piece of silence or noise-like. 

The algorithm used in the experimental model matlab code to compute the ULH feature is the 

same to the one which I have descripted above. 

 

2.6.2 Audio Fundamental Frequency 

The audio fundamental frequency (AFF) descriptor provides estimations of the fundamental 

frequency 𝑓0 in segments where the signal is assumed to be periodic [9]. 

It is particularly useful to get an approximation of the pitch of any music or speech signals. 

Numerous 𝑓0  estimation algorithms are available in the literature. One of the most common 

approaches is the temporal autocorrelation (TA) method already described in the AH section, in 

equations 2.30 and 2.32. 

 

Figure 2.15: AFF of 7 s of anchorwoman speech 
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The standard does not specify any normative extraction method in order to promote choice of 

strategy. However in all cases shall be present that the limits of the search range shall be 

specified using 𝑙𝑜𝐿𝑖𝑚𝑖𝑡  and 𝑕𝑖𝐿𝑖𝑚𝑖𝑡 . The extraction method shall report a fundamental 

frequency for any signal that is periodic over the analysis interval with a fundamental within the 

search range. 

In order to extract the audio fundamental frequency I have used the matlab code of the MPEG-7 

experimental model 𝐴𝑢𝑑𝑖𝑜𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐷 which uses the equation 2.30 and 2.32 

and set the search range setting the 𝑙𝑜𝑓𝑟𝑒𝑞  to 62.5 Hz and the 𝑕𝑖𝑓𝑟𝑒𝑞 to 1500 Hz. 

In figure 2.15 I have reported the AFF of 7 s of anchorwoman speech and we can note that the 

fundamental frequency ranges from 62.5 Hz and 1500 Hz as I have said before. 
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CHAPTER 3 

FEATURE TRASFORMATION 

 

The purpose of sound classification is to understand whether a particular sound belongs to a 

certain class. 

Many classification systems can be partitioned into components such as the ones shown in the 

figure 3.1 

 

   

 

 

 

 

 

 

 

 

 

Figure 3 .1: General Sound Classification System 

The first step is the segmentation in which the entire signal is divided into relevant sound segments. 

Then a feature extraction stage extracts properties of the sound that are useful for classification. It is 

vital that the feature vectors used are rich enough to describe the content of the sound sufficiently.  

Spectrum-based features are often considered canonical for audio applications but the direct spectrum 

features are generally incompatible with classification applications due to their high dimensionality 

and their inconsistency. Each spectrum slice is an n-dimensional vector, with n being the number of 

spectral channels, therefore typical values of a linearly spaced spectrum are between 64 and 1024 

dimensions. Probability classifiers require relatively low-dimensional data representations, preferably 

fewer than 10 dimensions. A logarithmically-spaced frequency spectrum, such as the one octave 

bandwidth power spectrum, reduces the dimensionality of the representation significantly, but 
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necessarily disregards much information due to the low frequency resolution. What is required is a 

representation that makes a compromise between dimensionality reduction and information loss. A 

well-known technique for reducing the dimensionality of data whilst retaining maximum information 

is to use data-derived basis functions, such as computed by principal component analysis (PCA) [19], 

singular value decomposition (SVD) [20] or independent component analysis (ICA) [21]. A 

spectrogram may be reconstructed using a set of de-correlated frequency basis functions derived using 

one of these methods. Fewer functions are required to reconstruct a given spectrogram than the total 

number of frequency channels, hence the possibility for dimensionality reduction. 

Then the reduced dimension feature vector are uses by the classifier to assign the sound to a category. 

The sound classifiers are often based on statistical models. Examples of such classifiers include 

Gaussian mixture models (GMMs) [22], hidden Markov models (HMMs) [24], neural networks (NNs) 

[23] and support vector machines (SVMs) [25]. 

The classification problem can be seen as a batch process employing various stages 

independently. In practice many systems employ feedback from and to various stages of the 

process; for instance, when segmenting speech parts in an audio track it is often useful to 

perform classification at the same time [16]. The choice of the feature vector and the choice of 

the classifier are critical in the design of sound classification systems. Often prior knowledge 

plays a major role when selecting such features. In practice many of the feature vectors 

described in Chapter 2 may be combined to arrive at a “large” compound feature vector for 

similarity measure or classification. It is usually necessary to train the classifier based on 

sound data. The data collection can amount to a surprisingly large part of the costs and time 

when developing a sound classification system. The process of using a collection of sound 

data to determine the classifier is referred to as training the classifiers and choosing the 

model. 

 

3.1 MPEG-7 Sound Classification 

The MPEG-7 standard [9] has adopted a generalized sound recognition framework, in which 

dimension-reduced, de-correlated log-spectral features, called the audio spectrum projection 

(ASP), are used to train HMM for classification of various sounds. The feature extraction of 

the MPEG-7 sound recognition framework is based on the projection of a spectrum onto a 

low-dimensional subspace via reduced rank spectral basis functions called the audio spectrum 

basis 
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(ASB). To attain a good performance in this framework, a balanced trade-off between 

reducing the dimensionality of data and retaining maximum information content must be 

performed, as too many dimensions cause problems with classification while dimensionality 

reduction invariably introduces information loss.  

The MPEG-7 sound recognition classifier is performed using three steps: audio feature 

extraction, training of sound models, and decoding. Figure 3.2 depicts the procedure of the 

MPEG-7 sound recognition classifier.  

 

 

Figure 3.2:  MPEG-7 sound recognition classifier 

 

3.2 MPEG-7 Audio Spectrum Projection (ASP) Feature Extraction 

The purpose of MPEG-7 feature extraction is to obtain from the audio source a low-

complexity description of its content. The starting point is the calculation of the audio 

spectrum envelope (ASE) descriptor outlined in Chapter 2. Figure 3.2 shows the four steps of 

the feature extraction in the dimensionality reduction process [26]: 

 ASE via short-time Fourier transform (STFT); 

 normalized audio spectrum envelope (NASE); 
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 basis decomposition algorithm – such as SVD or ICA; 

 basis projection, obtained by multiplying the NASE with a set of extracted basis 

functions. 

First, the observed audio signal 𝑠(𝑛) is divided into overlapping frames. The ASE is then 

extracted from each frame. The resulting log-frequency power spectrum is converted to the 

decibel scale: 

 

𝐴𝑆𝐸𝑑𝐵 𝑙, 𝑓 = 10𝑙𝑜𝑔10(𝐴𝑆𝐸(𝑙, 𝑓))                                                                                      (3.1) 

 

where 𝑓 is the index of an ASE logarithmic frequency range, l is the frame index. 

Each decibel-scale spectral vector is normalized with the RMS energy envelope, thus yielding 

a normalized log-power version of the ASE called NASE. The full-rank features for each 

frame 𝑙 consist of both the RMS-norm gain value 𝑅𝑙  and the NASE vector 𝑋(𝑙, 𝑓): 

 

𝑅𝑙 =   (𝐴𝑆𝐸𝑑𝐵(𝑙, 𝑓))2𝐹
𝑓=1  ,      1 ≤ 𝑓 ≤ 𝐹                                                                         (3.2) 

and : 

 

𝑋 𝑙, 𝑓 =
𝐴𝑆𝐸𝑑𝐵  𝑙,𝑓 

𝑅𝑙
  ,    1 ≤ 𝑙 ≤ 𝐿                                                                                          (3.3) 

 

where 𝐹 is the number of ASE spectral coefficients and 𝐿 is the total number of frames. 

Much of the information is disregarded due to the lower frequency resolution when reducing 

the spectrum dimensionality from the size of the STFT to the F frequency bins of NASE. 

To visualize the kind of information that the NASE vectors 𝑋(𝑙, 𝑓) convey, three dimensional 

(3D) plots of the NASE of 10 seconds of Anchorman and Anchorwoman speech signal 

respectively shown in Figures 3.3(a),3.3(c).In the example the frequency channels are spaced 

1/4-octave bands. 

We can note that recognizing the gender of the speaker by visual inspection of the plots is 

easy. Compared with the female speaker, the male speaker produces more energy at the lower 

frequencies and less at the higher frequencies. 

The figure 3.3 (b), shows the NASE of 7 seconds of a GR theme music, we can note the 

harmonic nature of the music, observing the almost time-independent spectral peaks of the 
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NASE. In figure 3.3 (c), instead I have reported the NASE of 10 seconds of a male voice on 

the telephone in which we can easy note the effects of the a non ideal telephone line 

 

 

Figure 3.3:  3D NASE with 1/4-octave bands: (a) 10 seconds of anchorwoman voice; (b) 7 seconds of 

ThemeMusic;(c) 10 seconds of anchorman voice; (d) 10 seconds of a man on the telephone. 

 

3.3 Dimensionality Reduction Using Basis Decomposition 

In order to achieve a trade-off between further dimensionality reduction and information loss, 

the ASB and ASP of MPEG-7 low-level audio descriptors are used. To obtain the ASB, SVD 

or ICA may be employed. We have the NASE matrix X, in the form of an 𝐿 × 𝐹 time–

frequency matrix, where the vertical dimension represents time (i.e. each row corresponds to a 

time frame index 𝑙 ( 1 ≤ 𝑙 ≤ 𝐿 )) and the horizontal dimension represents the spectral 

coefficients (i.e. each column corresponds to a logarithmic frequency range index 𝑓(1 ≤ 𝑓 ≤

𝐹)). 

SVD is performed on the feature matrix in the following way: 

 

𝑋 = 𝑈𝐷𝑉𝑇                                                                                                                             (3.4) 
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where X is factored into the matrix product of three matrices: the 𝐿 × 𝐿  row basis 𝑈 matrix, 

the 𝐿 ×  𝐹  diagonal singular value matrix 𝐷  and the 𝐹 ×  𝐹  transposed column basis 

functions 𝑉. 

In order to perform dimensionality reduction, the size of the matrix V is reduced by 

discarding  𝐹 − 𝐸  of the columns of 𝑉. The resulting matrix 𝑉𝐸 has the dimensions 𝐹 × 𝐸. 

To calculate the proportion of information retained for E basis functions we use the singular 

values contained in matrix 𝐷: 

 

𝐼 𝐸 =
 𝐷(𝑖,𝑖)𝐸
𝑖=1

 𝐷(𝑗 ,𝑗 )𝐹
𝑗=1

                                                                                                                    (3.5) 

 

where 𝐼(𝐸) is the proportion of information retained for 𝐸 basis functions and 𝐹 is the total 

number of basis functions, which is also equal to the number of spectral bins. The SVD 

transformation produces de-correlated, dimension-reduced bases for the data, and the right 

singular basis functions are cropped to yield fewer basis. 

 

3.4 Statistically Independent Basis 

After extracting the reduced SVD basis 𝑉𝐸 , ICA is employed for applications that require 

maximum de-correlation of features, such as the separation of the source components of a 

spectrogram. 

ICA assumed the data to be linear mixtures of some unknown latent variables, and the mixing 

system is also unknown. The latent variables are assumed to be non-Gaussian and mutually 

independent. They are called the independent components of the observed data. These 

independent components, also called sources or factors, can be found by ICA.  

ICA is a statistical method which not only de-correlates the second-order statistics but also 

reduces higher-order statistical dependencies. Thus, ICA produces mutually uncorrelated 

bases. The independent components of matrix 𝑋  can be thought of as a collection of 

statistically independent bases for the rows (or columns) of 𝑋 . The 𝐿 × 𝐹  matrix 𝑋  is 

decomposed as: 

 

𝑋 = 𝑊𝑆 + 𝑁                                                                                                                        (3.6) 
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where 𝑆  is the 𝑃 × 𝐹  source signal matrix, 𝑊  is the 𝐿 × 𝑃  mixing matrix (also called the 

matrix of spectral basis functions) and 𝑁 is the 𝐿 × 𝐹 matrix of noise signals. Here, 𝑃 is the 

number of independent sources [16]. 

We are interested to found a matrix which transforms our data X in its independent 

component, so from the above expression this matrix is the pseudo inverse of W. 

The above decomposition can be performed for any number of independent components and 

the sizes of W and S vary accordingly. To find a statistically independent basis using the basis 

functions, the well known ICA algorithms, such as INFOMAX, JADE [27] or FastICA [3], 

can be used. 

The ICA basis is the same size as the SVD basis. The retained information ratio, I(K), is 

equivalent to the SVD when using the given extraction method.[26] 

The ICA basis are then stored in the columns of a matrix within the 

𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐵𝑎𝑠𝑖𝑠𝑇𝑦𝑝𝑒  descriptor. The following code example in the listing 3.1 shows 

an instance of the 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐵𝑎𝑠𝑖𝑠 descriptor for a 32-dimensional spectrum using a 

subset of 4 basis functions: 

 

 

Listing 3.1: Example code of an instance of the 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐵𝑎𝑠𝑖𝑠𝑇𝑦𝑝𝑒 descriptor. 

 

The ASP 𝑌 is obtained by multiplying the NASE matrix with the basis vectors obtained after 

the SVD decomposition and the ICA transformation. 

 

𝑌 = 𝑋𝑉𝐸𝑊                                                                                                                             (3.7) 



Chapter 3-Feature Trasformation 

 

50 
 

 

The spectrum projection features and RMS-norm gain values are used as input to the classifier 

and are stored in the 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 descriptor. 

The elements of each 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 vector shall represent, in order, the L2-

norm value, 𝑅𝑙 , of the ASE. This shall be followed by the inner product of the normalized 

spectral frame, 𝑋(𝑙, 𝑓)  and each of the basis vectors, 𝐵𝑘 . The resulting vector has 𝐸 + 1 

elements, where  𝐸 is the number of basis components, and it is defined by: 

 

𝑌 =  𝑅𝑙   𝑋 𝑙, 𝑓 𝐵1  𝑋 𝑙, 𝑓 𝐵2  …  𝑋 𝑙, 𝑓 𝐵𝐸                                                                          (3.8) 

 

The next code example in the listing 3.2 shows an instance of the AudioSpectrumProjection 

descriptor representing features derived from the basis vectors in the previous example. 

 

Listing 3.2: Example code of an instance of the AudioSpectrumProjection descriptor 

 

3.5 Plots of MPEG-7 Audio Spectrum Projection 

To compute the ASP I have used the matlab codes 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐵𝑎𝑠𝑖𝐷  and 

𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐷 that are in the MPEG-7 Experimental Model [15], instead to 

compute the ICA transformation I have download the Cardoso matlab code [28] which 

implements the jade algorithm. 

To visualize the kind of information that the MPEG-7 ASP features convey, results of NASE 

and ASP descriptors of a male voice and of a male voice on the telephone are depicted in 

Figures 3.4–3.18.In the figure 3.4(a) is clear evident that the power at the higher and lower 

frequency are cut by the telephonic channel.  
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Figure 3.4: 3D NASE with 1/4-octave bands; (a)10 seconds of anchorman voice;  

(b) 10 seconds of a man on the telephone. 

So distinguishing between speech and speech on the telephone line .is easy by visual 

inspection of the NASE. While this visual interpretation of the NASE is rather easy, visual 

interpretation of the bases 𝐶𝐸  in Figure 3.5 is not so straightforward. Each of these bases is a 

matrix, which can be thought as a linear transformation between a spectral domain containing 

correlated information (NASE) and ICA basis vectors, in which the correlations in the 

information are reduced. Since we do not know exactly how the correlations are being 

reduced in each case, the bases are difficult to interpret. However, we can note that the basis 

have peaks on average due to larger variances this is justified by the fact that the ICA 

algorithm uses a non-linear technique to de-correlate the NASE. 

 

 

Figure 3.5: ICA basis of the: (a)10 seconds of anchorman voice;  

(b) 10 seconds of a man on the telephone. 
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In Figure 3.6 I have reported the projections 𝑌 = 𝑋𝐶𝐸𝑊, which we can view as a versions of 

the NASE where the frequency information is scrambled by the basis. As can be verified is 

still possible distinguish the two signals. In fact in Figure 3.6 (b) the peaks of the ASP are 

concentrate in correspondence of the telephonic band. 

 

Figure 3.6: ASP with frequency dimension 25 of the: (a)10 seconds of anchorman voice;  

(b) 10 seconds of a man on the telephone. 

 

 

Figure 3.7 ASP with frequency dimensions 10 of the: (a)10 seconds of anchorman voice;  

(b) 10 seconds of a man on the telephone. 
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If we compare the ASP depicted in Figure 3.6, which have a frequency dimension of 25,with 

the ASP in Figure 3.7, which have a frequency dimension of 10, we can note that in Figure 

3.7 the features of the two signals are more evident, in fact as we will view also in the next 

chapters the increase of the feature vector dimension doesn’t assure the improvement of the 

performances this means that the optimum feature vector dimension must be choose after 

several simulation. 

 

3.6 Reconstruction of an independent spectrogram frame 

The reconstruction of an independent spectrogram frame, 𝑋(𝑗), is calculated by taking the 

outer product of the jth vector in 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐵𝑎𝑠𝑖𝑠 and the j+1th vector in 

𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 : 

 

𝑋 𝑗 = 𝑌 𝑗 + 1 𝑝𝑖𝑛𝑣(𝐵𝑗 )                                                                                                                    (3.9) 

 

These frames are concatenated to form a new spectrogram. Any combination of spectrogram 

subspaces can be summed to obtain either individual source spectrograms or an 

approximation of the original spectrogram [9]. 

The salient features of a spectrogram may be efficiently represented with much less data than 

a full spectrogram using independent component basis functions. In The following figure I 

report the original full-bandwidth NASE of the speech on telephone segment analyzed above 

and Errore. L'origine riferimento non è stata trovata. shows a 6-component reconstruction of the 

same descriptor. The data ratio, R, between the reduced-dimension spectrum and the full-

bandwidth spectrum is 

 

𝑅 = 𝐾  
1

𝑀
+

1

𝑁
                                                                                                                     (3.10) 

 

where K is the number of basis components, M is the number of frames in the spectrogram 

and N is the number of frequency bins. For example, a 5-component summary of 500 frames 

of a 64-bin spectrogram leads to a data reduction of 11:1. 
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Figure 3.8: 3D NASE with 1/4-octave bands of 10 seconds of a man on the telephone: (a) full dimension 

(b) Reconstruct with only 6 basis function 
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CHAPTER 4 

THE CLASSIFIER  

 
Once feature vectors are generated from audio clips, and if required reduced in dimension, 

these are fed into classifiers. The model-based classifiers that have been most often used for 

audio classification include Gaussian mixture model (GMM) classifiers, neural network (NN) 

classifiers, hidden Markov model (HMM) classifiers, and support vector machines (SVMs). 

The classifier proposed in the MPEG-7 standard is the Hidden Markov Models, so in the 

following paragraphs I will analyze this model in detail. 

 

4.1 The Hidden Markov Model 

An HMM is a statistical method, widely used in the pattern classification field. 

Very successful applications based on HMM include speech recognition, speaker verification 

and handwriting recognition. HMMs are used to model processes with time varying 

characteristics.  

An HMM can be described as: 

 A set of 𝑁𝑆 states  𝑆𝑖  

 A set of state transition probabilities  𝑎𝑖𝑗  , where 𝑎𝑖𝑗  is the probability of transition 

from state 𝑆 𝑖  to state 𝑆 𝑗 . 

 A set of d-dimensional probability density functions 𝑏𝑗  𝑥 , where 𝑏𝑗  is the density 

function of state 𝑆𝑗  . 

 A set of initial state probabilities  𝜋𝑖 , where 𝜋𝑖  is the probability that 𝑆𝑖  is the initial 

state. 

The system starts at time 0 in a state 𝑆𝑖  with a probability 𝜋𝑖 . When in a state 𝑆𝑖  at time 𝑙 the 

system moves at time 𝑙 + 1 to state 𝑆𝑗  with a probability 𝑎𝑖𝑗  and so on, generating a sequence 

of 𝐿 observation vectors 𝑥𝑙 . An HMM is completely specified by the three sets  𝑎𝑖𝑗    𝑏𝑗   and 

 𝜋𝑖 . Continuous HMMs generally set 𝑏𝑗 (𝑥) to a multivariate Gaussian distribution with mean 

𝜇𝑗  and covariance matrix Σj , giving 𝑏𝑗 =  𝜇𝑗 , Σj  for each state. 

In the following paragraphs I will use the following notation: 

N = number of states in the model 

M= total number of distinct observation symbol 
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T = length of observation sequence i.e. the number of symbols observed 

𝑖𝑡  denotes the state in which we are at time t 

𝑉 =  𝑉1, … , 𝑉𝑀  the discrete set of possible observation symbols 

𝜋 =  𝜋𝑖 , 𝜋𝑖 = 𝑃(𝑖1 = 𝑖) , the probability of being in state 𝑖  at the beginning of the 

experiment i.e. at 𝑡 = 1 

𝐴 =  𝑎𝑖𝑗   where 𝑎𝑖𝑗 = 𝑃(𝑖𝑡+1 = 𝑗|𝑖𝑡 = 𝑖) the probability of being in state 𝑗 at time t+1 given 

that 

we were in state 𝑖 at time 𝑡. We assume that 𝑎𝑖𝑗  are independent of time. 

𝐵 =  𝑏𝑗 (𝑘) , 𝑏𝑗  𝑘 = 𝑃(𝑖𝑡+1 = 𝑗|𝑖𝑡 = 𝑖), the probability of observing the symbol 𝑣𝑘  given 

that we are in state 𝑗. 

𝑂𝑡  will denote the observation symbol observed at instant t 

𝜆 =  𝐴, 𝐵, 𝜋𝑖  will be used as a compact notation to denote an HMM. 

 

4.2 The Three Problems for HMMs 

Most applications of HMMs are finally reduced to solving three main problems. These are: 

Problem 1: Given the model 𝜆 = (𝐴, 𝐵, 𝜋) how do we compute 𝑃(𝑂|𝜆) the probability of 

occurrence of the observation sequence 𝑂 = 𝑂1, 𝑂2, … , 𝑂𝑇 . 

Problem 2: Given the model 𝜆 = (𝐴, 𝐵, 𝜋)  how do we choose a state sequence 𝐼 =

𝑖1, 𝑖2, … , 𝑖𝑇  so that 𝑃(𝑂, 𝐼|𝜆) , the joint probability of the observation sequence  𝑂 =

𝑂1, 𝑂2, … , 𝑂𝑇 and the state sequence given the model is maximized. 

Problem 3: How do we adjust the HMM model parameters 𝜆 = (𝐴, 𝐵, 𝜋 ) so that 𝑃(𝑂|𝜆) or 

𝑃(𝑂, 𝐼|𝜆 ) is maximized. 

Problems 1 and 2 can be viewed as analysis problems while Problem 3 is a typical synthesis 

(or model identification or training) problem. 

 

4.3 Solutions to the Problem 1 

A most straightforward way to determine 𝑃(𝑂|𝜆)  is to find 𝑃(𝑂|𝐼, 𝜆)  for a fixed state 

sequence 

𝐼 = 𝑖1, 𝑖2, … , 𝑖𝑇  then multiply it by 𝑃(𝐼|𝜆) and then sum up over all possible 𝐼’s. We have  

 

𝑃 𝑂 𝐼, 𝜆 = 𝑏𝑖1
 𝑂1 𝑏𝑖2

 𝑂2 … 𝑏𝑖𝑇
 𝑂𝑇                                                                                 (4.1) 
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𝑃 𝐼 𝜆 = 𝜋𝑖1
𝑎𝑖1𝑖2

𝑎𝑖2𝑖3
…𝑎𝑖𝑇−1𝑖𝑇                                                                                             (4.2) 

 

Hence we have: 

 

𝑃 𝑂 𝜆 =  𝑃 𝑂 𝐼, 𝜆 𝐼 𝑃(𝐼|𝜆)                                                                                              (4.3) 

             =  𝜋𝑖1
𝑏𝑖1

 𝑂1 𝑎𝑖1𝑖2
𝑏𝑖2

 𝑂2 …𝑎𝑖𝑇−1𝑖𝑇  𝑏𝑖𝑇
 𝑂𝑇 𝐼                                                        (4.4) 

where 𝐼 = 𝑖1, 𝑖2, … , 𝑖𝑇  

From (4.4) we see that the summand of this equation involves 2𝑇 − 1  multiplications and 

there exists 𝑁𝑇  distinct possible state sequences I. Hence a direct computation from (4.4) will 

involve of the order of 2𝑇𝑁𝑇  multiplications. Even for small values, 𝑁 = 5 and 𝑇 = 100 this 

means approximately 1072  multiplications.  

Hence we see that a more efficient procedure is required to solve Problem 1; such a procedure 

exists and is called the forward-backward procedure. 

 

4.3.1 Forward-Backward Procedure 

Consider the forward variable 𝛼 𝑡𝑖  defined as: 

 

𝛼𝑡 𝑖 = 𝑃(𝑂1, 𝑂2, … , 𝑂𝑡 , 𝑖𝑡 = 𝑖|𝜆)                                                                                        (4.5) 

 

i.e. the probability of the partial observation sequence up to time t and the state 𝑖 at time 𝑡 

given the model 𝜆, 𝛼𝑡 𝑖  can be computed inductively as follows: 

 

1. 𝛼1 𝑖 = 𝜋𝑖𝑏𝑖 𝑂1  ,                   1 ≤ 𝑖 ≤ 𝑁                                                                   (4.6) 

2. for 𝑡 = 1,2, … , 𝑇 − 1, 1 ≤ 𝑗 ≤ 𝑁 

       𝛼𝑡+1 𝑗 =   𝛼𝑡 𝑖 𝑎𝑖𝑗
𝑁
𝑖=1  𝑏𝑗 (𝑂𝑡+1)                                                                          (4.7) 

3. then we have: 

𝑃 𝑂 𝜆 =  𝛼𝑇(𝑖)𝑁
𝑖=1                                                                                                 (4.8) 

 

In Step 2 we want to compute the probability of partial observation sequence up to time t +1 

and state 𝑗 at time 𝑡 + 1, state 𝑗 can be be reached (with probability 𝑎𝑖𝑗 ) independently from 

any of the N states at time t; The summation in Eq. 4.7 refers to this fact. Also the summand 
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gives observation sequence up to time 𝑡; hence the 𝑏𝑗 (𝑂𝑡+1) outside the brackets. In Step 3 we 

just sum up all possible (independent) ways of realizing the given observation sequence. 

Now let us examine the number of computations involved in this algorithm. Step 1 involves 𝑁 

multiplications. In Step 2 the summation involves 𝑁 multiplications plus one for the out of 

bracket 𝑏𝑗 (𝑂𝑡+1) term-this has to be done for 𝑗 = 1 to 𝑁 and 𝑡 = 1 to 𝑇 − 1 making the total 

number of multiplications in Step 2 as (𝑁 + 1)𝑁(𝑇 − 1). Step 3 involves no multiplications. 

Hence total number of multiplications is 𝑁 + 𝑁(𝑁 + 1)(𝑇 − 1) i.e. of the order of 𝑁2𝑇 as 

compared to 2𝑇 ∙ 𝑁𝑇  required for the direct method. For N=5 and T=100 we need about 3000 

computations for the forward method as compared to 1072  required by the direct method-a 

saving of about 69 orders of magnitude. 

 

4.3.2 Backward Procedure 

In a similar manner we may define a backward variable 𝛽𝑡(𝑖) as: 

 

𝛽𝑡 𝑖 = 𝑃(𝑂𝑡+1, 𝑂𝑡+2, … , 𝑂𝑇|𝑖𝑡 = 𝑖, 𝜆)                                                                               (4.10) 

 

i.e. the probability of the observation sequence from 𝑡 + 1 to 𝑇 given the state 𝑖 at time 𝑡 and 

the model 𝜆 Note that here 𝑖𝑡 = 𝑖 has already been given (it wasn’t in the case of the forward 

variable). This distinction has been made to be able to combine the forward and the backward 

variables to produce useful results  as we shall see soon. We can easily solve for 𝛽𝑡(𝑖) as 

done for 𝛼𝑡(𝑖): 

 

1. 𝛽𝑇 𝑖 = 1,   1 ≤ 𝑖 ≤ 𝑁                                                                                            (4.11) 

 

2. for 𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1,    1 ≤ 𝑖 ≤ 𝑁 

𝛽𝑡 𝑖 =  𝑎𝑖𝑗 𝑏𝑗  𝑂𝑡+1 𝛽𝑡+1(𝑗)𝑁
𝑗=1                                                                            (4.12) 

 

3. 𝑃 𝑂 𝜆 =  𝜋𝑖𝑏𝑖 𝑂1 𝛽1(𝑖)𝑁
𝑖=1                                                                                 (4.13) 
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The computation of 𝑃(𝑂|𝜆) using 𝛽𝑡(𝑖) also involves of the order of 𝑁2𝑇 calculations. Hence 

both the forward as well as the backward method is equally efficient for the computation of 

𝑃(𝑂|𝜆). This solves Problem 1. 

 

4.4 Solutions to the Problem 2 

Here we have to find a state sequence 𝐼 = 𝑖1, 𝑖2, … , 𝑖𝑇   such that probability of occurrence of 

the observation sequence 𝑂 = 𝑂1, 𝑂2, …𝑂𝑇  from this state sequence is greater than that from 

any other state sequence. In other words, our problem is to find 𝐼  that will maximize 

𝑃(𝑂, 𝐼|𝜆). There is a famous algorithm to do this called the Viterbi Algorithm [30]. It is an 

inductive algorithm in which at each instant you keep the best (i.e. the one giving maximum 

probability) possible state sequence for each of the 𝑁 states as the intermediate state for the 

desired observation sequence 𝑂 = 𝑂1, 𝑂2, … , 𝑂𝑇 . In this way you finally have the best path for 

each of the 𝑁 states as the last state for the desired observation sequence. Out of these we 

select the one which has highest probability. In order to get an idea of the Viterbi algorithm as 

applied to the optimum state estimation problem a simple reformulation of the problem will 

be useful 

Consider the expression for 𝑃(𝑂, 𝐼|𝜆); from (4.1)-(4.2)we have: 

 

𝑃 𝑂, 𝐼 𝜆 = 𝑃 𝑂 𝐼, 𝜆 𝑃(𝐼|𝜆)  

                = 𝜋𝑖1
𝑏𝑖1

 𝑂1 𝑎𝑖1𝑖2
𝑏𝑖2

 𝑂2 …𝑎𝑖𝑇−1𝑖𝑇𝑏𝑖𝑇 (𝑂𝑇)                                                        (4.13) 

 

Now we define 

 

𝑈 𝑖1, 𝑖2, … , 𝑖𝑇 = −  ln  𝜋𝑖1
𝑏𝑖1

 𝑂1  +  ln(𝑎𝑖𝑡−1𝑖𝑡𝑏𝑖𝑡 (𝑂𝑡))𝑇
𝑡=2                                         (4.14) 

 

then it is easily seen that 

 

𝑃 𝑂, 𝐼 𝜆 = 𝑒−𝑈(𝑖1 ,𝑖2 ,…,𝑖𝑇)                                                                                                    (4.15) 

 

consequently the problem of optimal state estimation, namely, 
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max 𝑖𝑡 𝑡=1
𝑇 𝑃(𝑂, 𝑖1, … 𝑖𝑇|𝜆)                                                                                                   (4.16) 

 

becomes equivalent to 

 

min 𝑖𝑡 𝑡=1
𝑇 𝑈(𝑖1, 𝑖2, … , 𝑖𝑇)                                                                                                     (4.17) 

 

This reformulation now enables us to view terms like − ln(𝑎𝑖𝑗 𝑖𝑘
𝑏𝑖𝑘 (𝑂𝑡)) as the cost associated 

in going from state 𝑖𝑗  to state 𝑖𝑘  at time t. The Viterbi algorithm to find the optimum state 

sequence can now be described as follows: Suppose we are currently in state 𝑖 and we are 

considering visiting state 𝑗 next. We shall say that the weight on the path from state 𝑖 to state 

𝑗 is −ln(𝑎𝑖𝑗𝑏𝑗 (𝑂𝑡)) (i.e. the negative of logarithm of probability of going from state 𝑖 to state 

 𝑗  and selecting the observation symbol 𝑂𝑡  in state j) where 𝑂𝑡  is the observation symbol 

selected after visiting state 𝑗. 

When the initial state is selected as state 𝑖 the corresponding weight is −ln(𝜋𝑖𝑏𝑖(𝑂1)) we 

shall call this the initial weight. 

We define the weight of a sequence of states as the sum of the weights on the adjacent states. 

Note that this actually corresponds to multiplying the corresponding probabilities. Now 

finding the optimum sequence is merely a matter of finding the path (i.e. a sequence of states) 

of minimum weight through which the given observation sequence occurs [29]. 

Note that the Viterbi Algorithm is essentially a dynamic programming approach for 

minimizing 𝑈(𝑖1, 𝑖2, … 𝑖𝑇). 

We shall illustrate with an example on how the minimization is done. Consider a three state 

HMM. Figure 4.1 shows the weights assigned to various paths as described above. The 

numbers in circles show the initial weights assigned to the corresponding states. To simplify 

understanding of the algorithm we assume that the weights are symmetrical (i.e. the weight 

from state  𝑖  to state  𝑗  is same as the weight from state  𝑗  to state 𝑖 ). Also we assume the 

weights do not change with time which in general will not be true but then once this 

simplified case is understood the extension to practical case is straight forward. 
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Figure 4.1: The state machine. 

 

In Figure 4.2 I reported an example of how the Viterbi Algorithm works if we have an 

observation sequence 𝑂1, … , 𝑂4 of length four. At time 𝑡 = 2  state 1 can be visited from any 

of the three states that we had at time 𝑡 = 1. We find out the weights on each of these paths 

and add corresponding weights to the initial weights (we shall call this cumulative weight at 

state 1 as the cost at state 1 at time 𝑡 = 2). Thus going from state 1 to state 1 the cost at state 1 

is 3+6=9. Similarly the cost at state 1 in going from state 2 to state 1 is 3 + 4 = 7 and the cost 

in going from state 3 to state 1 is 2 + 3 = 5. Of these the cost 5 is minimum. Hence we retain 

this cost at state 1 for further calculations. The minimum cumulative weight paths are shown 

in the figure by arrowed lines. The cumulative weights have been shown in bold alongside the 

respective states at each time instant.  We repeat the above procedure again for 𝑡 = 3 but now 

using the costs calculated above for each state rather than the initial weights. And the same 

procedure is repeated for 𝑡 = 4. Now select out the state which has minimum cost of all the 

states. We see that state 1 is the required state with a cost of 11. Back tracing the sequence of 

states through which we got at state 1 at time t=4 gives the required sequence of states 

through which the given observation sequence has highest probability of occurrence. As can 

be seen from the figure this state sequence is state 3, state 1, state 3, state 1. This sequence has 

been shown in bold in the figure. 

 

 

Figure 4.2 How a path of minimum cost is traced out using the Viterbi algorithm. 
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Now that we know how the Viterbi Algorithm works here is how it can be implemented [30]: 

𝛿𝑡 𝑖  denotes the weight accumulated when we are in state 𝑖  at time 𝑡  as the algorithm 

proceeds and 𝜓𝑡 𝑗  represents the state at time 𝑡 − 1 which has the lowest cost corresponding 

to the state transition to state 𝑗 at time t. For example in Figure 4.2: 

𝛿3 1 = 9, 𝛿3 2 = 9, 𝛿3 3 = 8                                                                                     (4.18) 

and 

𝜓4 1 = 3, 𝜓4 2 = 3, 𝜓4 3 = 1                                                                                   (4.19) 

1. Initialization 

For 1 ≤ 𝑖 ≤ 𝑁 

𝛿1 𝑖 = − ln(𝜋𝑖) − ln(𝑏𝑖 (𝑂1))                                                                              (4.20) 

𝜓1 𝑖 = 0                                                                                                                (4.21) 

2. Recursive computation 

For 2 ≤ 𝑡 ≤ 𝑇  for 1 ≤ 𝑗 ≤ 𝑁 

𝛿𝑡 𝑗 = min1≤𝑖≤𝑁 𝛿𝑡−1 𝑖 − ln(𝑎𝑖𝑗 ) − ln 𝑏𝑗 (𝑂𝑡))                                                (4.22) 

𝜓𝑡 𝑗 = 𝑎𝑟𝑔 min1≤𝑖≤𝑁 𝛿𝑡−1 𝑖 − ln(𝑎𝑖𝑗 )                                                              (4.23) 

3. Termination 

𝑃∗ = min1≤𝑖≤𝑁 𝛿𝑇 𝑖                                                                                              (4.24) 

𝑞𝑇
∗ = arg min1≤𝑖≤𝑁[𝛿𝑇(𝑖)]                                                                                      (4.25) 

4. Tracing back the optimal state sequence 

For 𝑡 = 𝑇 − 1, 𝑇 − 2, … , 1  

𝑞𝑡
∗ = 𝜓𝑡+1(𝑞𝑡+1

∗ )                                                                                                     (4.26) 

 

Hence  

𝑒−𝑃∗
  

gives the required state-optimized probability, and 

 

𝑄∗ =  𝑞1
∗, 𝑞2

∗, … , 𝑞𝑇
∗                                                                                                              (4.27) 

 

is the optimal state sequence. 
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A little reflection over the above steps will show that computationally the Viterbi Algorithm is 

similar to the forward (-backward)  procedure except for the comparisons involved for finding 

the maximum value. Hence its complexity is also of the order of 𝑁2𝑇 this solves Problem 2. 

 

4.5 Solutions to the Problem 3 

The third, and by far the most difficult, problem of HMMs is to determine a method to adjust 

the model parameters (𝐴, 𝐵, 𝜋) to maximize the probability of the observation sequence given 

the model. There is no known way to analytically solve for the model which maximizes the 

probability of the observation sequence. In fact, given any finite observation sequence as 

training data, there is no optimal way of estimating the model parameters. We can, however, 

choose 𝜆 =   𝐴, 𝐵, 𝜋  such that 𝑃(0|𝜆) is locally maximized using an iterative procedure such 

as the Baum-Welch method. (or equivalently the EM (expectation-modification) method [31]), 

or using gradient techniques [32]. In the following paragraph I will describe the Baum Welch 

Algorithm [29]. 

 

4.5.1 The Baum-Welch re-estimation Formulas 

This method assumes an initial HMM model which is improved upon by using the formulas 

which maximize 𝑃(𝑂|𝜆). An initial HMM can be constructed in any way. This algorithm 

maximizes 𝑃 𝑂 𝜆  by adjusting the parameters of 𝜆. This optimization criterion is called the 

maximum likelihood criterion. The function 𝑃(𝑂|𝜆) is called the likelihood function. 

Before we get down to the actual formulas we shall introduce some concepts and notations 

that shall be required in the final formulas. 

Consider 𝛾𝑡(𝑖) defined as follows: 

𝛾𝑡 𝑖 = 𝑃(𝑖𝑡 = 𝑖|𝑂, 𝜆)                                                                                                         (4.28) 

i.e. the probability of being in state 𝑖  at time t given the observation sequence 𝑂 =

𝑂1, 𝑂2, … , 𝑂𝑇 and the model 𝜆 = (𝐴, 𝐵, 𝜋). By Bayes law we have: 

 

𝛾𝑡 𝑖 =
𝑃(𝑖𝑡=𝑖,𝑂|𝜆)

𝑃(𝑂|𝜆)
  

         =
𝛼𝑡 𝑖 𝛽𝑡(𝑖)

𝑃(𝑂|𝜆)
                                                                                                                   (4.29) 
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where 𝛼𝑡(𝑖)  and 𝛽𝑡(𝑖)  are defined by (4.5)and (4.10) respectively 𝛼𝑡(𝑖)  accounts for 

𝑂1, 𝑂2, …𝑂𝑡  and state 𝑖 at time 𝑡 and 𝛽𝑡(𝑖) accounts for 𝑂𝑡+1, 𝑂𝑡+2, …𝑂𝑇  given state 𝑖 at time 

𝑡. 

We also define 𝜉𝑡 𝑖, 𝑗  as: 

 

𝜉𝑡 𝑖, 𝑗 = 𝑃(𝑖𝑡 = 𝑖, 𝑖𝑡+1 = 𝑗|𝑂, 𝜆)                                                                                       (4.30) 

 

i.e. the probability of being in state 𝑖 at time 𝑡 and making a transition to state 𝑗 at time 𝑡 + 1 

given the observation sequence 𝑂 = 𝑂1, 𝑂2, … , 𝑂𝑇 and the model 𝜆 = (𝐴, 𝐵, 𝜋). Using Bayes 

law 

it is seen that 

 

𝜉𝑖 𝑖, 𝑗 =
𝑃(𝑖𝑡=𝑖,𝑖𝑡+1=𝑗 ,𝑂|𝜆)

𝑃(𝑂|𝜆)
                                                                                                     (4.31) 

 

But 𝑂 = 𝑂1, 𝑂2, … , 𝑂𝑇. Hence 

 

𝑇𝑕𝑒 𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑃(𝑖𝑡 = 𝑖, 𝑂1, … , 𝑂𝑡  , 𝑂𝑡+1, … , 𝑂𝑇  , 𝑖𝑡+1 = 𝑗 |𝜆) 

                                           = 𝑃 𝑖𝑡 = 𝑖, 𝑂1, … , 𝑂𝑡 𝜆 𝑃(𝑂𝑡+1, … , 𝑂𝑇  , 𝑖𝑡+1 = 𝑗 |𝜆)              (4.32) 

(since the Markov chain is causal) 

 

Consider the second term. The observation symbol at time 𝑡 + 1 is 𝑂𝑡+1 at which time we are 

required to be in state j; this means that the observation symbol 𝑂𝑡+1 has to be picked up from 

state 𝑗. Hence we have 

 

𝑃 𝑂𝑡+1, … , 𝑂𝑇  , 𝑖𝑡+1 = 𝑗  𝜆 = 𝑃( 𝑖𝑡+1 = 𝑗, 𝑂𝑡+1|𝜆)𝑃(𝑂𝑡+1, … , 𝑂𝑇  |𝑖𝑡+1 = 𝑗 , 𝜆)  

                                              = 𝑎𝑖𝑗 𝑏𝑗  𝑂𝑡+1 𝛽𝑡+1(𝑗)                                                            (4.33) 

(since 𝑖𝑡 = 𝑖 is known from (4.32)) 

 

Hence combining (4.5), (4.31), (4.32) and (4.33) we get 

 

𝜉𝑡 𝑖, 𝑗 =
𝛼𝑡 𝑖 𝛼𝑖𝑗 𝑏𝑗 (𝑂𝑡+1)𝛽𝑡+1(𝑗 )

𝑃(𝑂|𝜆)
                                                                                             (4.29) 



Chapter 4-The Classifier 

 

65 
 

Here 𝛼𝑡(𝑖) accounts for 𝑂1 …𝑂𝑡 , 𝑎𝑖𝑗  accounts for the transition to state 𝑗, 𝑏𝑗 (𝑂𝑡+1) picks up 

the symbol 𝑂𝑡+1  from state 𝑗 and 𝛽𝑡+1(𝑗) accounts for the remaining observation sequence 

𝑂𝑡+2, … , 𝑂𝑇 . 

If we sum up 𝛾𝑡(𝑖)from 𝑡 + 1 to 𝑇 we get a quantity which can be viewed as the expected 

number of times state 𝑖 is visited or if we sum up only up to 𝑇 − 1 then we shall get the 

expected number of transitions out of state 𝑖 (as no transition is made at 𝑡 = 𝑇). Similarly if 

𝜉𝑡(𝑖, 𝑗) be summed up from t=1 to 𝑇 − 1, we shall get the expected number of transitions 

from state 𝑖 to state 𝑗. Hence 

 

 𝛾𝑡 𝑖 =𝑇−1
𝑡=1 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖                                      (4.30) 

 𝜉𝑡 𝑖, 𝑗 =𝑇−1
𝑡=1 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗                  (4.31) 

 

Now we are prepared to present the Baum-Welch re-estimation formulas: 

 

𝜋 𝑖 = 𝛾𝑡 𝑖 ,   1 ≤ 𝑖 ≤ 𝑁                                                                                                       (4.32) 

𝑎 𝑖𝑗 =
 𝜉𝑡(𝑖,𝑗 )𝑇−1

𝑡=1

 𝛾𝑡(𝑖)𝑇−1
𝑡=1

                                                                                                                   (4.33) 

𝑏 𝑗  𝑘 =
 𝛾𝑡(𝑗 )𝑇

𝑡=1𝑂𝑡=𝑘

 𝛾𝑡(𝑗 )𝑇
𝑡=1

                                                                                                           (4.34) 

 

The re-estimation formula for 𝜋𝑖  is simply the probability of being in state i at time 𝑡. The 

formula for 𝑎𝑖𝑗 (𝑖) is the ratio of expected number of time of making a transition from state 𝑖 

to state 𝑗 to the expected number of times of making a transition out of state 𝑖. The formula 

for 𝑏𝑘 𝑖  is the ratio of the expected number of times of being in state 𝑗 and observing symbol 

𝑂𝑘  to the expected number of times of being in state 𝑗. Note that the summation in the last 

formula goes up to 𝑡 = 𝑇  [29]. If we denote the initial model by 𝜆 and the re-estimation 

model by𝜆  consisting of the parameters estimated above then it can be shown that either: 

1. The initial model 𝜆 is a critical point of the likelihood function in which case 𝜆 = 𝜆, or 

2. 𝑃 𝑂 𝜆  > 𝑃 𝑂 𝜆 , i.e. we have found a better model from which the observation 

sequence 𝑂 = 𝑂1, 𝑂2, …𝑂𝑇  is more likely to be produced. 

Hence we can go on iteratively computing until 𝑃(𝑂|𝜆) is maximized. This solves Problem 3. 
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4.6 Types of HMMs 

Until now we have only considered the special case of ergodic or fully connected HMMs in 

which every state of the model could be reached (in a single step) from every other state of 

the model. (Strictly speaking, an ergodic model has the property that every state can be 

reached from every other state in a finite number of steps.)  

 

 

Figure 4.3: Hergodig HMM 

 

As shown in figure 4.3 for an 𝑁 = 4 state model, this type of model has the property that 

every 𝑎𝑖𝑗  coefficient is positive. Hence for the example of figure 4.3 we have: 

 

  

𝑎11 𝑎12 𝑎13    𝑎14

𝑎21 𝑎22 𝑎23   𝑎24

𝑎31 𝑎32 𝑎33    𝑎34
𝑎41      𝑎42       𝑎43   𝑎44

  

 

For some applications other types of HMMs have been found to account for observed 

properties of the signal being modeled better than the standard ergodic model. One such 

model is shown in figure 4.4 This model is called a left-right model or a Bakis model [29] 

 

 

Figure 4.4: Left-right HMM 

 

because the underlying state sequence associated with the model has the property that as time 

increases the state index increases (or stays the same), i.e., the states proceed from left to 
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right. Clearly the left-right type of HMM has the desirable property that it can readily model 

signals whose properties change over time e.g., speech. The fundamental property of all left-

right HMMs is that the state transition coefficients have the property 

𝑎𝑖𝑗 = 0   𝑗 < 𝑖                                                                                                                      (4.35) 

i.e., no transitions are allowed to states whose indices are lower than the current state. 

Furthermore, the initial state probabilities have the property  

𝜋𝑖 =  
0, 𝑖 ≠ 1
1, 𝑖 = 1

                                                                                                                      (4.36) 

since the state sequence must begin in state 1 (and end in state N). 

Often, with left-right models, additional constraints are placed on the state transition 

coefficients to make sure that large changes in state indices do not occur; 

hence a constraint of the form 

𝑎𝑖𝑗 = 0, 𝑗 > 𝑖 + Δ                                                                                                               (4.37) 

is often used. In particular, for the example of figure 4.4, the value of Δ is 1, i.e., no jumps of 

more than 1 states are allowed [29]. The form of the state transition matrix for the example of 

is thus: 

 

 

𝑎11 𝑎12 0      0
0 𝑎22 𝑎23   0
0 0     𝑎33    𝑎34

  0         0          0        𝑎44

                                                                                                     (4.38) 

 

Although we have dichotomized HMMs into ergodic and left-right models, there are many 

possible variations and combinations possible. By way of example, figure 4.5 shows the 

forward and backward HMM. 

 

Figure 4.5: forward and backward HMM 

 

4.7 Continuous Observation Densities in HMMs  
All of our discussion, to this point, has considered only the case when the observations were 

characterized as discrete symbols chosen from a finite alphabet, and therefore we could use a 
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discrete probability density within each state of this model. The problem with this approach, 

at least for some applications, is that the observations are continuous signals (or vectors). 

Although it is possible to quantize such continuous signals via codebooks, etc., there might be 

serious degradation associated with such quantization. Hence it would be advantageous to be 

able to use HMMs with continuous observation densities. 

In order to use a continuous observation density, some restrictions have to be placed on the 

form of the model probability density function (pdf) to insure that the parameters of the pdf 

can be re-estimated in a consistent way. The most general representation of the pdf, for which 

a re-estimation procedure has been formulated [33] [34], is a finite mixture of the form 

 

𝑏𝑗  𝑂 =  𝑐𝑗𝑚 ℳ 𝑂, 𝜇𝑗𝑚 , Σjm  ,    1 ≤ 𝑗 ≤ 𝑁𝑀
𝑚=1                                                                 (4.39) 

 

Where 𝑂 is the vector being modeled, 𝑐 𝑗𝑚  is the mixture coefficient for the 𝑚th mixture in 

state 𝑗 and ℳ is any log-concave or elliptically symmetric density [29] (e.g., Gaussian), with 

mean vector 𝜇𝑗𝑚  and covariance matrix Σjm  for the 𝑚th mixture component in state j. Usually 

a Gaussian density is used for ℳ. 

In the case of a single Gaussian the re-estimation formulas are more closed to those obtained 

in the discrete case. In fact we have that the re-estimation formula for 𝑎𝑖𝑗  is identical to the 

one used for the discrete observation densities while the re-estimation formulas for the 

coefficient of the density i.e. 𝜇𝑗 , Σj are of the form: 

 

𝜇𝑗 =
 𝛾𝑡(𝑗 )∙𝑂𝑡

𝑇
𝑡=1

 𝛾𝑡(𝑗 )𝑇
𝑡=1

                                                                                                                  (4.40) 

Σj =
 𝛾𝑡 𝑗  ∙(𝑂𝑡−𝜇𝑗 )(𝑂𝑡−𝜇 𝑗 )′𝑇

𝑡=1

 𝛾𝑡(𝑗 )𝑇
𝑡=1

                                                                                               (4.41) 

 

4.8 Sound probability Models 

Spectral features of a sound vary in time and it is this variation that gives a characteristic 

fingerprint for classification. Sound recognition models divide the sound feature space into a 

number of states and each state is defined by a continuous probability distribution [11]. 

The states are labeled 1 to k, and sound is indexed by the most probable sequence of states for 

a given sound model. Figure 4.6 shows the model of the Anchorwoman speech that I have 
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obtained using an HMM with 4 states and in order to plot it I have used a basis of only one 

dimension. The sound trajectory in the space corresponds to a sequence of spectral frames 

projected into an 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 descriptor. 

 

 

Figure 4.6: Four probability model states in a two-dimensional vector space of the class Anchorwoman. 

 

 

4.9 Train the HMM using the Experimental Model 

In order to train a statistical model on the basis projection features for each audio class I have 

used and adapted to our case the matlab code that are in the MPEG-7 Experimental Model 

[15]. 

The code for training the HMM is 𝑆𝑜𝑢𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙𝐷𝑆 it requires as input the 

root directory for training data that contains sub-directory of individual class data, the number 

of initial model states for each HMM, and the number of basis functions to extract. 

During training, the parameters for each state of an audio model are estimated by analyzing 

the feature vectors of the training set. Each state represents a similarly behaving portion of an 

observable symbol sequence process. At each instant in time, the observable symbol in each 

sequence either stays at the same state or moves to another state depending on a set of state 

transition probabilities. Different state transitions may be more important for modeling 

different kinds of data.  
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Figure 4.7: The classification system based on the Experimental Model 

 

The 𝑆𝑜𝑢𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙𝐷𝑆 code at beginning verifies if in the folder of each class 

with the wav segments there are the text-files with the list of the files respectively to train the 

model and to test it. If there aren’t it create the two file text splitting randomly the available 

data in 70% for training and 30% for testing the model. The train list with the number of 

states, the dimension of the feature vector and other optional parameters are then passed to the 

code 𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙𝐷𝑆 as we can see in the schema in figure 4.7. 

This code for each file in the list computes the ASE as describe in Chapter 2 and concatenates 

all these matrices in a unique matrix which is then pass to codes that computes the basis and 

the projection of the feature vector in the lower dimensional subspace. This projection is then 

used to train the HMM. 

 

Figure 4.8: HMM training for a given sound class i 
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Figure 4.8 illustrates the training process of an HMM for a given sound class 𝑖 [11]. The 

HMM parameters are then obtained using the Baum–Welch algorithm. As described in the 

above paragraphs the procedure starts with random initial values for all of the parameters and 

optimizes the parameters by iterative re-estimation. Each iteration runs through the entire set 

of training data in a process that is repeated until the model converges to satisfactory values. 

Often parameters converge after three or four training iterations. With the Baum–Welch re-

estimation training patterns, one HMM is computed for each class of sound that captures the 

statistically most regular features of the sound feature space [26]. 

For defining state densities is used the multidimensional Gaussian distribution. Gaussian 

distributions are parameterized by a 1 × n vector of means 𝝁 and an n × n covariance matrix 

𝚺 , where n is the number of features (columns) in the observation vectors. The 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐷𝑆 stores the inverse covariance matrix and the determinant of the 

covariance matrix along with the vector of means for each state [11]. Therefore, the 

expression for calculating probabilities for a random vector 𝒙 , given a mean vector 𝝁 , 

covariance matrix inverse and the covariance matrix determinant is: 

 

𝑓𝑥 𝒙 =
1

  2𝜋
2

   𝚺 
2 𝑒−

1

2
 𝒙−𝝁 𝑇𝚺−1(𝒙−𝝁)

                                                                                   (4.42) 

 

In the end the 𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙𝐷𝑆  returns to the 𝑆𝑜𝑢𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙  the following 

parameters for each model: 

 𝑇=State transition matrix; 

 𝑆=Initial State probability vector; 

 𝑀=Stacked means matrix (1 vector per row) 

 𝐶=Stacked inverse covariances 

 𝑉=𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐵𝑎𝑠𝑖𝑠 vectors 

 𝑚𝑎𝑥𝐸𝑛𝑣= scaling parameter for model decoding 

 𝑃=Training cycle likelihoods 

After that the 𝑆𝑜𝑢𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 stores them in a struct variable and then saves 

this variable in a mat file which in figure 4.7 is called SoundClassificationModelDS_train. 

The training procedure ends when the Markov model parameters and the 

𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝐵𝑎𝑠𝑖𝑠 functions are written in the 𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 description 
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scheme. The 𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  description scheme is derived from the 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝐻𝑖𝑑𝑑𝑒𝑛𝑀𝑎𝑟𝑘𝑜𝑣𝑀𝑜𝑑𝑒𝑙 DS defined in MDS (Model.mp7 in figure 4.7). 

 

4.10 Automatic Audio Classification using Experimental Model 

Automatic audio classification finds the best-match class for an input sound by presenting it 

to a number of HMMs and selecting the model with the highest likelihood score. A 

combination of HMMs used in this way is called a classifier. To build a classifier, a set of 

individual 𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙 𝐷𝑆𝑠 are trained, one for each class in a classification scheme, and 

combined into a 𝑆𝑜𝑢𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 as I have described in the previous paragraph. 

Given a query sound, the spectrum envelope is extracted and the result is presented to each 

sound model.  

The spectrum is projected against the model’s basis functions producing a low-dimensional 

feature representation represented by the 𝐴𝑢𝑑𝑖𝑜𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 descriptor. The Viterbi 

algorithm is then used to compute the 𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒𝑃𝑎𝑡𝑕 and likelihood score and the 

HMM with the maximum likelihood score is selected as the representative class for the sound.  

The 𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒𝑃𝑎𝑡𝑕 descriptor contains the dynamic state path of a sound through a 

HMM model.  

Figure 4.9 shows a spectrogram of an anchorwoman speech with the state path through the an 

Anchorwoman HMM of four states. 

The state path is an important method of description since it describes the evolution of a 

sound with respect to physical states.  

The state path shown in the figure indicates physical states for the Anchorwoman speech; 

there are clearly delimited the state of unvoiced and voiced. This is true of most sound 

classes; the individual states within the class can be inspected via the state path representation 

and a useful semantic interpretation can often be inferred. 
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Figure 4.9 Anchorwoman speech spectrogram and the state path through Anchorwoman  

continuous hidden Markov model  
 

Figure 4.10 illustrates the method for automatic audio classification descript above [11]. 

 

 

Figure 4.10: Automatic audio classification method 

4.11 Testing the Model 

In order to test the Model I have written a matlab code 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 which has 

as input the folder that contains the wav segments of the class that we want test (the same 

folder used to create the model as we can see in figure 4.7). 

At first the code load the .mat file that contains, all the HMM and the basis functions, for each 

class. Then it reads the text file with the list of the wav segments for testing the model, and 
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presents each segment in the list to every sounds model using the matlab code 

𝑆𝑜𝑢𝑛𝑑𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒𝑃𝑎𝑡𝑕𝐷 that is in the MPEG-7 Experimemetal Model [15]. At the 

beginning this code computes the ASE and then projects it in the lower dimension feature 

space using the basis function of the model stored in the mat file. This projection is passed 

with the HMM parameters to the function 𝑣𝑖𝑡𝑒𝑟𝑏𝑖 which computes the Viterbi Algorithm as 

described in the paragraph 4.4 and returns the path and the log likelihood score of the 

sequence. 

I my code I store this score for each model and I choose the model that produces the 

maximum score. 

In the end I store the results of every wav segments in the list in a text file, and I use it to 

build the confusion matrix.  

 

4.12 Confusion Matrix 
A confusion matrix contains information about actual and predicted classifications done by a 

classification system. Performance of such systems is commonly evaluated using the data in 

the matrix. The following table shows the confusion matrix for a two class classifier. 

The entries in the confusion matrix have the following meaning in the context of our study: 

 a is the percentage of correct predictions that an instance is negative, 

 b is the percentage of incorrect predictions that an instance is positive, 

 c is the percentage of incorrect of predictions that an instance negative, and 

 d is the percentage of correct predictions that an instance is positive. 

 

  Predicted 

  Negative Positive 

Actual Negative a b 

Positive c d 

Table 4.1: Confusion Matrix 
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CHAPTER 5 

SIMULATIONS RESULTS AND DISCUSSION 

 
In order to train and test sounds model a data base of speech and music was collected. The 

speech contains a wide range of different radio newscast. The samples are chosen to reflect 

many different kinds of typical speech, ranging from anchor speakers in almost perfect 

conditions to conversations between multiple speakers. Also, narrow-band telephone 

interviews are present. 

. 

Number GR Date Time Duration 

(min) 

Anchor 

1 RAI 

GR1 

10/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi  

2 RAI 

GR1 

11/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

3 RAI 

GR1 

17/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

4 RAI 

GR1 

26/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

5 RAI 

GR1 

02/12/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

6 RAI 

GR2 

05/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: V.Montanari 

7 RAI 

GR2 

08/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

8 RAI 

GR2 

12/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

9 RAI 

GR2 

14/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

10 RAI 

GR2 

21/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

11 RAI 

GR3 

06/11/2007 8.45 20 Anchorwoman: A. Pizzato  

12 RAI 

GR3 

07/11/2007 8.45 20 Anchorwoman: A. Pizzato 

13 RAI 

GR3 

08/11/2007 8.45 20 Anchorwoman: A. Pizzato 

14 RAI 

GR3 

09/11/2007 8.45 20 Anchorwoman: A. Pizzato 

15 RAI 

GR3 

10/11/2007 8.45 20 Anchorwoman: A. Pizzato 

Table 5.1: List of the GR wav files present in the data base 

 

Some of the speech clips contain speech from reporters speaking from noisy environments. 

15 Giornali Radio RAI (GRR) was recorded from the RAI web page 

http://www.radio.rai.it/grr/ with Freecoder, a software tools for recording internet audio. 

http://www.radio.rai.it/grr/
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The sources of the clips are listed in table 4.1. The clips were collected in November and 

December 2007. The GRR are chosen in order to have the same anchor for the same GRR 

The GRRs are then segmented manually, using WaveSurfer [35], into different classes. 

 

5.1 WaveSurfer Tool for the Manual Segmentation 

WaveSurfer is an Open Source tool for sound visualization and manipulation [35]. 

WaveSurfer has a simple and logical user interface that provides functionality in an intuitive 

way and which can be adapted to different tasks. It can be used as a stand-alone tool for a 

wide range of tasks in speech research and education. Typical applications are speech/sound 

analysis and sound annotation/transcription. WaveSurfer can also serve as a platform for more 

advanced/specialized applications. This is accomplished either through extending the 

WaveSurfer application with new custom plug-ins or by embedding WaveSurfer visualization 

components in other applications. 

As shown in Figure 4.1 when WaveSurfer is first started, it contains an empty sound. You can 

load a sound file from disk. 

 

 

Figure 5.1: WaveSurfer Interface 

To allow for different sophisticated tasks WaveSurfer gives the possibility of adding panes. A 

pane is a window stacked on top of the WaveBar that can contain for example a waveform, a 

spectrogram, a pitch-curve, a time axis or a transcription or something else. Unlike the 

WaveBar, a pane will not necessarily display the whole sound. Rather it will display a portion 

of the sound that is specified in the WaveBar. Think of the WaveBar as an overview and the 

pane as a variable magnifying glass. 

WaveSurfer can read a number of sound file formats including WAV, AU, AIFF, MP3, CSL, 

and SD. It can also save files in several formats, including WAV, AU, and AIFF. There are 

separate plug-ins to handle Ogg/Vorbis and NIST/Sphere files. WaveSurfer can be used to 
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visualize and analyze sound in several ways. The standard analysis plug-in can display 

Waveform, Spectrogram, Pitch, Power or Formant panes. 

WaveSurfer has many facilities for transcribing sound files. Transcription is handled by a 

dedicated plug-in and it's associated pane type. In the Figure 4.2 is shown WaveSurfer 

interface when the the configuration Transcription is chosen. 

 

Figure 5.2: WaveSurfer interface when the transcription configuration is chosen. 

 

The properties-dialog can be used to specify which label file that should be displayed in a 

transcription pane. Unicode characters are supported in order to keep the binary versions 

small. The transcription plug-in is used in combination with format handler plug-ins which 

handles the conversion between file formats and the internal format used by the transcription 

plug-in. The standard popup menu has additional entries for transcription panes. Popup | Load 

Transcription and Popup | Save Transcription are used to load and save transcription files. 

In the Listing 4.1 is shown an example of a lab file that WaveSurfer has as output. 

WaveSurfer allows splitting sound on labels, but every label should have a different name so 

we wrote a matlab code that modify the lab file, produced with WaveSurfer, adding an 

increasing number to each name label. 
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Listing 5.1: Piece of a lab file  

 

5.2 Data Base Description 

In order to have an idea of the amount of the seconds of each class I wrote a matlab code that 

reads the file lab of WaveSurfer and analysing it returns for each class the total seconds. 

In the following tables are reported the amount of seconds for each class.  

 

 

CLASSES DURATION (h:m:s:ms) 

Speech 4:48:27:231 

Music 0:16:12:139 

Silence 0:11:23:472 

Other 1:17:9:121 

Total 6:33:11:963 
Table 5.2: Duration of the classes: Speech, Music, Silence, Other 

 

 

CLASSES DURATION (h:m:s:ms) 

Male 3:4:22:348 

Female 1:44:4:883 

Total 4:48:27:231 
Table 5.3: Duration of the subclasses Male and Female of the class Speech 

 

 

 

 



Chapter 5 – Simulation Results and Discussion 

79 
 

CLASSES DURATION (h:m:s:ms) 

Anchorman 0:20:15:627 

Male 1:37:7:879 

MaleSpot 0:5:20:382 

MaleTel 1:1:38:459 

Total 3:4:22:348 
Table 5.4: Duration of the subclasses: Anchorman, Male, MaleSpot, MaleTel  of the class Male 

 

 

 

CLASSES DURATION (h:m:s:ms) 

Anchorwoman 0:40:21:574 

Female 0:56:51:503 

FemaleSpot 0:3:41:117 

FemaleTel 0:3:10:688 

Total 1:44:4:883 
Table 5.5 Total duration of the wav files of the subclasses: Anchorwoman, Female, FemaleSpot, FemaleTel of 

the class Female 

 

 

 

CLASSES DURATION (h:m:s:ms) 

Anchorman1 0:10:8:774 

Anchorman2 0:10:6:853 

Total 0:20:15:627 
Table 5.6 Total duration of the wav files of the subclasses: Anchorman1, Anchorman2 of the class Anchorman. 

 

 

 

CLASSES DURATION (h:m:s:ms) 

Anchorwoman1 0:13:36:137 

Anchorwoman2 0:8:54:940 

Anchorwoman3 0:1:38:625 

Anchorwoman 0:16:11:873 

Total 0:40:21:574 
Table 5.7 Total duration of the wav files of the subclasses: Anchoworman1, Anchoworman2, Anchorwoman3, 

and Anchorwoman of the class Anchorwoman. 
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CLASSES DURATIONS (h:m:s:ms) 

OtherMusic 0:3:29:218 

ThemeMusic 0.12:42:921 

Total 0:16:12:139 
Table 5.8: Total duration of the wav files of the subclasses: OtherMusic, ThemeMusic of the class Music. 

 

 

CLASSES DURATIONS (h:m:s:ms) 

Speech+Music 0:56:37:544 

Speech+Music 0:18:20:299 

Environmental 0:2:11:278 

Total 1:17:9:121 
Table 5.9: Total duration of the wav file of the subclasses: Speech+Music, Speech+Noise, Environmental of the 

class Other. 

 

In order to obtain a compact view of the available audio materials for each class the matlab 

code also returns the pie diagrams, reported in figure 5.3 and 5.4, that represent statistical 

information of the data base created. 

 

 

Figure 5.3: a) Pie diagram of the classes: Speech, Music, Other, Silence; b) Pie diagram of the subclasses Male, 

Female of the class Speech; c) Pie diagram of the subclasses OtherMusic, ThemeMusic of the class Music; d) Pie 

diagram of the subclasses Speech+Noise ,Speech+Music, Enviromental of the class Other. 
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Figure 5.4: a) Pie diagram of the subclasses: Anchorwoman, Female, FemaleSpot, FemaleTel of the class 

Female; b) Pie diagram of the subclasses Anchorwoman1, Anchorwoman2, Anchorwoman3, Anchorwoman of 

the class Anchorwoman; c) Pie diagram of the subclasses Anchorman, Male ,MaleSpot, MaleTel of the class 

Male; d) Pie diagram of the subclasses Anchorman1,  Anchorman2, of the class Anchorman. 

 

Analyzing the segments obtained using Wavesurfer I noted that they present a large variation 

in duration from few ms to half minute so I have written a matlab code which analyzes the lab 

file and when it meets a segments which have a duration major than 15 s it discards the first 5 

s and stores as good segment for training only the next 10 seconds. 

After that I have create for each radio newscast a folder for each class which contain the audio 

segments compute as described earlier. 

In order to test the classification system I trained some experiments that I will report in the 

following. In all these experiments I have trained for each class an HMM with 10 states and a 

feature dimension of 23 as made in [36] those values are good but aren’t optimized for the 

specific case. I performed an optimization step only for the final classification model. 

 

5.3 Experiment 1: Gender identification 

The target of this first experiment is the gender identification, so in order to realize it I created 

2 sound classes Male and Female using the audio segments respectively of the class 
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Anchorman and of the class anchorwoman. The numbers of the training testing sound clips 

for the two classes are reported in the table 5.10. 

 

 
Training Test 

Male 92 38 

Female 100 43 
Table 5.10: Number of the wav files used for train and test the model 

 

In the table 5.11 is reported the confusion matrix of this experiment which indicates that every 

segments that belongs to the class Female are classified as female and the same for the 

segments that belong to the class male. 

 

 
Female Male 

Female 100 0 

Male 0 100 
Table 5.11: Confusion Matrix 

 

5.4 Experiment 2: Discrimination between Speech and Music Sound 

Automatic discrimination of speech and music sound is important in many multimedia 

applications, i.e. (1) radio receivers for the automatic monitoring of the audio content of FM 

radio channels, (2) disabling the speech recognizer during the non-speech portion of the audio 

stream in automatic speech recognition of broadcast news, (3) distinguishing speech from 

music for low-bit-rate audio coding. 

Before to reach good results I have made some experiment and I have noted that the speech 

model is well formed only if I use for train the HMM only one kind the speech for example 

the results reported below are obtained using the speech of the Anchor. 

During those experiments I have also noted that if we use for the testing of the model very 

short audio clip ranging from few ms to 1.5 s the test fails. So in this experiment instead of 

using the automatic generation of the text files with the lists of the audio segments for training 

and testing the model (see paragraph 4.9) I create manually those 2 lists putting the shorter 

segments in the train list and the other in the test list. 

The numbers of the training testing sound clips for the two classes are reported in the table 

5.12, 
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Train Test 

Music 65 20 

Speech 60 40 
Table 5.12: Number of the wav files used for train and test the model 

 

and in the table 5.13 there is the confusion matrix of this experiment which shows that only 

the 15% of 20 music segments are wrongly assigned to the class speech. 

 

 
Music Speech 

Music 85 15 

Speech 0 100 
Table 5.13: Confusion Matrix 

 

To verify that the two models are robust I test them with wav files that belong to the classes 

reported in following table:  

 

 
Test 

FemaleSpot 33 

MaleSpot 52 

Speech+Music 39 

SpeechMale 68 

SpeechFemale 58 
Table 5.14: Number of the wav files used for test the models 

 

and in the following table I report the results of this test: 

 

 
Music Speech 

FemaleSpot 6 94 

MaleSpot 0 100 

Speech+Music 10 90 

SpeechMale 0 100 

SpeechFemale 0 100 
Table 5.15: Results of the tests 

 

We can note that the two models are well formed, because every kind of speech are classified 

as Speech. I have test the two models also with segments that belong to the class 

Speech+Music and we can note that this segments are classified as Speech, perhaps because 

in a radio newscast the piece of sound, where we have speech over music the speech 

component is prevalent. This observation is most important for the design of the final 

classification model. 
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5.5 Experiment 3: Speech-Telephone Speech 

The target of this experiment is distinguishing speakers speaking in an ideal environment 

from speakers that speak on a non ideal telephone line. 

In the table 5.16 I report the number of segments used in this experiment in order to train and 

to test the model. 

 

 
Train Test 

Speech 37 30 

Telephone Speech 60 40 
Table 5.16: Number of the wav files used for train and test the model 

 

In the table 5.17 is reported the confusion matrix of this experiment which indicates that every 

of the 70 segments using for testing the two models are correctly assigned to the respective 

classes. 

 

 
Speech Telephone Speech 

Speech 100 0 

Telephone Speech 0 100 
Table 5.17: Confusion Matrix 

 

5.6 Experiment 4: Speaker Identification 

Speaker recognition attempts to recognize a person from a spoken phrase, useful for radio and 

TV broadcast indexing. 

In order to perform this experiment I created two models for the two anchormans of the GR1 

and other two models for the anchorwoman of the GR2 and of the GR3.  

In the following table are reported the numbers of the wav files used for train and test the 

model. 

 

 

Training Test 

AnchormanGR1_1 53 30 

AnchormanGR1_2 35 20 

AnchorwomanGR3 31 15 

AnchorwomanGR2 56 20 

Table 5.18: Number of the wav files used for train and test the model 
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In the table 5.19 is reported the confusion matrix of this experiment. We can note that the 

results are satisfactory because also the gender identification is completely reaches. However 

we have to consider that we are in an ideal case in which we have a model for each speaker, 

and this hypothesis are not verify in general when we have to analyze a generic piece of a 

radio newscast. In fact in this case how we will see later the results are worst. 

 

 
AnchormanGR1_1 AnchormanGR1_2 AnchorwomanGR2 AnchorwomanGR3 

AnchormanGR1_1 90 10 0 0 

AnchormanGR1_2 5 95 0 0 

AnchorwomanGR3 0 0 100 0 

AnchorwomanGR2 0 0 5 95 
Table 5.19: Confusion Matrix 

 

5.7 Experiment 5: Hierarchical classification model  

The purpose of this experiment is the design of a hierarchical classification model that can be 

used to classifier the segments extract from an entire radio newscast. In the following I report 

the analysis of the four models that belongs to the final classification model. For the creation 

of the following three levels I have made some experiments to investigate the correlation 

between different classes. In those experiment if two classes are confused each other then I 

joint this classes and I move their classification in the layer below.  

 

5.7.1 Parameters Selections 

The other advantage of using a hierarchical approach is that in this way is possible design 

each layer in an independent way, in fact in the experiments that I have made to individuate 

the class of each layer I used HMMs with 10 states and a feature dimension of 23, and then 

separately for each layer I performed an optimization step in which I chosen the optimal 

feature dimension and the optimal number of states.  

The parameter with the most drastic impact turned out to be the feature vector dimension, in 

fact if this is too small, the basis vectors reduce the data too much, and the HMM do not 

receive enough information. However, if the feature vector dimension is too large, then the 

extra information extracted is not very important and is better ignored. The optimal value of 

this parameter is different for different experiments [36]. One needs to be careful about 

choosing this and to test empirically to find the optimal value. As said before the other 
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important parameter is the number of states, so after the setting of the dimension of the feature 

vector should be chosen the number of the states, always in an empirical way. 

5.7.2 First Layer: Sound 

In this layer in addition to the class Speech and the class Music, I considerate also the class 

Telephone Speech, because when I consider a system with only the classes Speech and Music, 

as in the Experiment 2, and I test it with wav files that belong to the class Telephone Speech 

these are classified as Music and isn’t reasonable joint the two classes. 

In the following table are reported the numbers of the wav files used for train and test the 

models. 

 

 
Train Test 

Music 65 20 

Speech 60 40 

Telephone Speech 37 30 
Table 5.20: Number of the wav files used for train and test the model 

 

The results of this experiment are reported in the confusion matrix in the table 5.21 in which 

we have a recognition rate of 95%. 

 

 
Music Speech Telephone Speech 

Music 85 15 0 

Speech 0 100 0 

Telephone Speech 0 0 100 
Table 5.21: Confusion Matrix 

 

Then I have verified that all kind of speech segments are classified as speech testing the 

models with wav files that belongs to the classes reported in the follow table: 

 

 
Test 

FemaleSpot 33 

MaleSpot 52 

Speech+Music 39 

Speech Male 68 

Speech Female 58 

Telephone Female 10 
Table 5.22: Number of the wav files used for test the models 

 

As we can see in the table 5.21 in this test I considerate also the class Telephone Speech. The 

reason of this choice is that in our database we have very few segments which belong to this 
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class, so I have verify, and the results in the table 5.22 confirms this, that the class Telephone 

Speech obtained using the segments of the class Telephone Male is well formed also for the 

segments in which a female speaker speaks on an non ideal telephonic line. 

 

 
Music Speech Telephone Speech 

FemaleSpot 6 94 0 

MaleSpot 0 100 0 

Speech+Music 10 90 0 

SpeechMale 0 100 0 

SpeechFemale 0 100 0 

Telephone Female 0 10 90 
Table 5.23: Results of the tests 

 

The results reported in the table 5.23 confirm that the three models are well formed and so I 

performed the optimization step choosing the optimal value for the feature dimension 

maintaining fix the number of states to 10. In figure are reported the values obtained. 

 

 

Figure 5.5 Recognition rate vs feature dimension 

 

From figure 5.5 we can see that the optimal feature vector dimension is 14 to which 

corresponds a recognition rate of 98%. Hence with this value I tuned on the number of states 

and I have obtained the results reported in figure 5.6 
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Figure 5.6 Recognition rate vs Number of states 

 

Observing the graph in figure 5.6 we can see that varying the number of states we cannot 

improve the recognition rate but we can reduce the number of states from 10 to 5, maintaining 

the same performance.  

 

5.7.3 Second Layer: Speech 

In this layer I have individuated five classes: the classes FemaleSpot and MaleSpot that are 

composed by segments in which a female or a male voice speaks in a spot, the class 

Speech+Music in which I have put segments with speech over music, and in the end the two 

classes Anchorman and Anchorwoman that are composed by the voices of the anchors. I am 

not able to obtain a model whit the classes Other Male and Other Female perhaps because to 

this model belong a lot of kind of speech. 

 

 
Train Test 

FemaleSpot 23 10 

MaleSpot 32 20 

Speech+Music 29 20 

SpeechFemale 55 30 

SpeechMale 60 30 
Table 5.24: Number of the wav files used for train and test the model 

 

In the table 5.25 are reported the results obtained and analyzing it we can see that in this 

experiment we have reached a recognition rate of 86%. 
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FemaleSpot MaleSpot Speech+Music Anchorwoman Anchorman 

FemaleSpot 80 0 10 10 0 

MaleSpot 5 90 5 0 0 

Speech+Music 15 10 70 5 0 

Anchorwoman 0 0 0 100 0 

Anchorman 0 10 0 0 90 
Table 5.25: Confusion Matrix 

 

The results are satisfactory, but in this way we don’t classify the segments that belong to the 

classes Other Male and Other Female, so I tested this model with segments that belong to 

these classes. 

 

 
Test 

Other Female 83 

Other Male 75 
Table 5.26: Number of the wav files used for test the models 

 

 
FemaleSpot MaleSpot Speech+Music Anchorwoman Anchorman 

Other Female 17 7 3 72 0 

Other Male 9 75 0 6 10 
Table 5.27: Results of the tests 

 

The results reported in the table 5.27 show that the 72% of 83 wav files that belong to the 

class OtherFemale are classified as Anchorwoman so we can consider a unique class 

SpeechFemale. The 75% of the 75 segments that belong to the class OtherMale are instead 

classify as MaleSpot, so I have made an experiment with only the two classes OtherMale and 

MaleSpot, but I was not able to generate a well formed model with the segments that 

composed our data base. For this reason in the final classification I haven’t made a distinction 

between the two classes. 

From the table 5.27 we can also note that only 10% of the segments of the class OtherMale 

are classify as Anchorman perhaps because we have over trained this classes. This can be seen 

as an advantage because in this way in the third level we can easily distinguish the two 

anchormans. After having individuate the classes I searched to improve the performance with 

the optimization of the parameters starting from the feature dimension remaining fix to 10 the 

number of states and I obtain the graph reported in figure 5.7 
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Figure 5.7 Recognition rate vs. feature dimension 

 

Observing the graph we can see that the best recognition rate 88% is reached with a feature 

dimension of 24. Hence fixing the feature dimension to 88% and varying the number of states 

I have obtained the following graph: 

 

 

Figure 5.8 Recognition rate vs. number of states 

 

Also in this case we couldn’t improve the recognition rate varying the number of states, so the 

optimal value to this parameter remains 10. 

 

60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

1 2 4 6 8 10 12 14 16 18 20 21 22 23 24 25 26 28 30

R
e

co
gn

it
io

n
 R

at
e

Features dimension

76

78

80

82

84

86

88

90

5 6 7 8 9 10 11 12

R
e

co
gn

it
io

n
 R

at
e

Number of states



Chapter 5 – Simulation Results and Discussion 

91 
 

5.7.4 Third Layer: Anchorman Identification 

In the previous layer we are able to distinguish piece of GR in which speaks generic male 

voice, from piece of GR in which speaks an anchorman, so in this layer I performed the 

anchorman identification 

 

 

Training Test 

Anchorman_1GR1 46 30 

Anchorman_2GR1 30 25 

Table 5.28:  Number of the wav files used for train and test the model 

 

This experiment is very similar to the experiment 4, and also the results, which are in the table 

5.29, are quite the same with a recognition rate of 93%. 

 

 
Anchorman_1GR1 Anchorman_2GR1 

Anchorman_1GR1 90 10 

Anchorman_2GR1 4 96 
Table 5.29: Confusion Matrix 

 

Also for this simple case with only two classes I searched the optimal parameters for the 

model and in the following graph I reported the results obtained in the case of the feature 

dimension: 

 

 
Figure 5.9: Recognition rate vs. feature dimension 
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The best recognition rate is 94% which is reached when we have a feature dimension of 12. 

And observing the graph in figure 5.10 we can see that also varying the number of the states 

94% remains the highest value.  

 

 
Figure 5.10: Recognition rate vs. number of states 

 

5.7.5 Third Layer: Anchorwoman GR3 Identification 

Differently to the anchorman identification in this case we have to consider also the class 

Other Female and so we haven’t a model for each speaker in the experiment, this problem 

makes worst the performance. In this experiment I didn’t consider the anchorwoman of the 

GR2 because is correlated with the class Other Female, in fact in some experiment which I 

trained the segments belong to this class are classify as Other Female. 

 

 
Training Test 

AnchorwomanGR3 31 15 

Other Female 83 20 

Table 5.30: Number of the wav files used for train and test the model 

 

Analyzing the confusion matrix reported in figure 5.31 we can compute the recognition rate 

which in this case is of 90% 

 

 
AnchorwomanGR3 Other Female 

AnchorwomanGR3 100 0 

Other Female 20 80 
Table 5.31: Confusion Matrix 
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In this case, as we can see in figure 5.11, to improve the performance we have to use a feature 

dimension of 30, which is a very high value, in fact the research of the optimal number of 

states that I made fixing the feature dimension to this value has request more time respect to 

the previous layer. 

 

 
Figure 5.11: Recognition rate vs. feature dimension 

 

However also in this last case the tuning on the number of states can’t increase the recognition 

rate that remains to the 97% confirming that the feature dimension has the major impact on 

the performance of the classification system. 

 

 
Figure 5.11: Recognition rate vs. number of states 
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5.7.6 Final hierarchical classification System 

From the analysis of the experiments presented above I designed the classification system 

reported in figure 5.12. 

 

 

Figure 5.12: Final hierarchical classification system 

 

Then in order to test this system with all the 9 classes individuated I wrote a matlab code, 

which require as input the name of the folder which contains the audio segments for testing 

the system, and projects each segment first again the models of the first layer and then 

according to the result if necessary project it to the models of the next layer and the code ends 

writing the final results in a text file. 

 

 
Test 

Anchorman_1GR1 30 

Anchorman_2GR1 25 

AnchorwomanGR3 15 

Other Female 65 

FemaleSpot 10 

Other Male 68 

MaleSpot 20 

Music 20 

Speech+Music 20 

Telephone Speech 30 
Table 5.32: Number of the wav files used for test the hierarchical model 

 

As we can see in the table 5.32 I have also tested the model with the classes Other Male and 

MaleSpot to show that the model Other Male is well formed for both. 
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Anch_1GR1 Anch_2GR1 Anch GR3 

Other 
Female 

Female 
Spot 

Other 
Male Music 

Speech+ 
Music 

Telephone 
Speech 

Anch_1GR1 67 7 0 0 0 27 0 0 0 

Anch_2GR1 0 80 0 0 0 20 0 0 0 

Anch GR3 0 0 100 0 0 0 0 0 0 

Other 
Female 0 0 12 60 15 6 0 3 0 

FemaleSpot 0 0 0 0 90 0 0 10 0 

 Other Male 0 0 0 0 8 79 0 10 0 

MaleSpot 0 0 0 0 5 75 15 5 0 

Music 0 0 0 0 0 0 95 5 0 

Speech 
+Music 0 0 5 0 15 10 20 50 0 

Telephone 
Speech 0 0 0 0 0 0 0 0 100 

Table 5.33: Confusion Matrix 

 

The results are a little worse respect to the results obtained in the experiment above because in 

those experiment we needed of a priori knowledge here instead no, in fact here we have to 

add the penalty of the above layer. 

The worst results are reached for the class Speech+Music here the percentage of segments 

classified as Music are more high respect to the experiment made to analyze the second layer 

(paragraph 5.7.3) this is because in that experiment I have used more segments for the testing 

while now I can use only the segments that wasn’t used for the training of the second layer. 

The part of segments classified as FemaleSpot and OtherMale (MaleSpot ) are justified 

because more of the segments with speech over music are piece of spot. 

 

5.8 Conclusion 

A hierarchical approach has permitted me to classify in different layers classes which are 

correlated each other and to design each layer in an independently way. 

Only in this way I could be able to classify 9 different sound classes with a recognition rate of 

80%. 
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CHAPTER 6 

SEGMENTATION AND CLASSIFICATION 

 
In order to be able to create for an entire piece of GR an XML document MPEG-7 compliant 

for describing some audio events (i.e. a reporter speaks on a telephonic line) that occurs in the 

GR, in this last part of my thesis I join the classification system described in the previous 

chapter to the automatic segmentation system for radio newscast developed by Vincenzo 

Dimattia in his thesis [37].  

A schema of the final system obtained is reported in figure 6.1. 

 

 

Figure 6.1: The final segmentation and classification system 

 

The GR coming from the web site of the RAI are first segmented by the GR Segmentation 

matlab code into overlapping segments with duration of 10 minutes and an overlap of 1 

minute, because segment too large cannot be processed by the next steps. 

This macro segments are then passed to the CLAM which create an XML document with 

some audio descriptors. This document together with his wav file is stored in a folder. 

If ones would segment a GR, which is already stored in the database, can use the matlab code 

of the segmentation system which require as input only the name of the piece of GR which he 

would analyze. 

The output of the segmentation system, based on MFCC (Mel Frequency Cepstral 

Coefficient), is a lab file, which contains for each segment the initial and the last sample. This 
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lab file is used to generate a file wav for each segment, which are then stored in a folder. After 

that the lab file is modified changing the initial and last sample of each segment in the initial 

and last second. 

The classification system analyzes the segments in the folder, as described in the previous 

chapter projecting each segment against the models of the hierarchy, and modifies file lab 

coming from the segmentation system adding to each segments the label assigned by the 

classification procedure. 

Then I implemented a matlab code that converts the file lab in an XML document MPEG-7 

compliant. In the following sections I describe more in detail the MPEG-7 Multimedia 

Descriptor Schemes (MDSs) introduced in the Chapter 1. 

 

6.1 MPEG-7 Multimedia Description Schemes  

MPEG-7 Multimedia Description Scheme (MDS) comprises the set of Description Tools (Ds 

and DSs) dealing with multimedia entities. MDS contains, among others, which we can see in 

figure 6.2, the following areas; Basic Elements, Content Management and Content 

Description [38]. 

 Basic Elements: address specific needs of audiovisual content description, such as the 

description of time, persons, places and other textual annotation. 

 Content Management: describes different aspects of creation and production of the 

process such as: title, creators, locations, dates and media information of the 

audiovisual content (storage media, coding format and compression) to adjust to 

different network environments. 

 Content Description: describes the structure, segmentation of the content and 

semantics (entities, events, relationships) of the audiovisual content. Thus, it allows 

attaching audio, video, annotation and content management to the multimedia 

segments, to depict them in detail. 

As the target of this section of my thesis is obtain an XML MPEG-7 document, which 

describes for each GR all the segments automatically compute, and their temporal location 

in the wav file, I’m interested only in Content Description and Basic Elements. 
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Figure 6.2: Overview of the MPEG-7 Multimedia DSs 

 

6.1.1 Content Description 

The description schemes for content description, describe the Structure (region, video frames 

and audio segments) and Semantics (objects, events and abstract notions). The functionality 

of each of these classes of description schemes is given as follows: 

 Structural aspects: description schemes describe the multimedia content from the 

viewpoint of its structure. The description is built around the notion of Segment 

description scheme that represents a spatial, temporal or spatial temporal portion of the 

multimedia content. The Segment description scheme can be organized into a 

hierarchical structure to produce a Table of Content for accessing or an Index for 

searching the multimedia content. The Segments can be further described on the basis 

of perceptual features using MPEG-7 Descriptors for color, texture, shape, motion, 

audio features and so forth, as well as semantic information using Textual 

Annotations. 

 Conceptual aspects: description schemes describe the multimedia content from the 

viewpoint of real-world semantics and conceptual notions. The Semantic description 

schemes involve entities such as objects, events, abstract concepts and relationship. 

The Segment description schemes and Semantic description schemes are related by a 
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set of links that allows the multimedia content to be described on the basis of both 

content structure and semantics together [38]. 

In this project I am interesting only to give a structural description of the segments and so I 

used the Segment description schemes as we can see in the listing 6.1. 

 

 

Listing 6.1: AudioSegmentType 

 

6.1.2 Basic Elements 

As we can see from figure 6.2 the set of description tools called the MPEG-7 Basic Elements 

is subdivided into four groups: 

 Basic data types, which represent mathematical constructs useful for multimedia 

description, such as matrices and vectors.  

 Linking and localization tools, which are used to specify references within description, 

to link MPEG-7 description to media, to identify and locate media and to describe 

time. 

 Basic tools that address common aspects of multimedia content description. This 

includes graphs for structuring complex multimedia content descriptions, text 

annotations, descriptions of people and places, specifications of effective response and 

description ordering. 

 Schema tools compared with other basic elements, Schema tools have a different 

functionality because they not target the description of the content but are used to 

create valid descriptions and to manage them [13]. 

In the following table I report the four groups with their description tool 
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Schema tools Basic datatypes Link & localization tools Basic tools 

Base types Integer, Real References Graphs & relations 

Root element Matrices, Vectors Media Locators Textual annotation 

Top-level tools Region, Country Time Classification schemes 

Multimedia content entity tools Currency  Terms 

Package tool   Agents 

Description metadata tool   Places 

   Affective description 

   Ordering key 

Table 6.1: Overview of the MPEG-7 Basic Elements 

 

6.2 Automatic generation of an XML Document for the description of the 

Segments 

To create MPEG-7 descriptions of any multimedia content, the first requirement is to build a 

wrapper for the description using the Schema Tools, which should include the header 

information reported in the listing 6.2. 

 

 

Listing 6.2: Root element 

 

The root type provides metadata about the description as well as information that is common 

to the description, such as the language of the text and the convention for specifying time. The 

root element provides a choice of elements for creating either a complete description or a 

description unit, which are defined as follows: 

 Complete Description: describes multimedia content using the top-level types. For 

example, the description of an image is a complete description. 

 Description Unit: describes an instance of a D, DS, or header. A description unit can 

be used to represent partial information from a complete description. For example, the 

description of a shape or color is a description unit [13]. 

In this thesis as we are interested to the description of an entire GR I choose the complete 

description that describes multimedia content using the top-level types of the Schema Tools. 

The top-level types are used in complete descriptions to describe multimedia content and 

metadata related to content management. Each top-level type contains the description tools 
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that are relevant for a particular description task. For describing multimedia content entities 

such as audio, we have to use the top-level type ContentEntityType, as shows in the listing 

6.3. 

 

Listing 6.3: ContentEntityType 

 

In order to give an identifier to each segment and to describe its temporal location we have to 

use the References tool of the linking and localization tools. 

The Reference data type provides three basic reference mechanisms: 

 Idref: References a description element within the same description document. The 

target is identified by its ID attribute, which is unique within the description 

document. 

 Xpath: References a description element using a subset of XML Path Language 

(XPath). An XPath expression identifies a reference target by its position within the 

description tree. 

 href: References a description or description element using a Uniform Resource 

Identifier (URI). Unlike the idref and xpath mechanism, href references can refer to an 

element in another description document [11]. 

In this work I have use the first mechanism as show in the listing 6.4 

 

 

Listing 6.4: Idref 

 

MPEG-7 can represent two different kinds of time: (1) media time, which is time measured or 

stored within the media and (2) generic time, which is time measured in the world. Both and 

world time use the same representation, except that the data types for world time also contain 

time zone (TZ) information [11]. Here I describe only the media time data types. 

The MPEG-7 media time data types are compatible with time specification used in common 

multimedia formats such as MPEG-4 and are based on the ISO 8601 standard. The media 

time data types represent time periods using a start time point (mediaTimePoint data type) and 
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a duration (mediaDuration data type). The mediaTimePoint data type uses the following 

syntax: 

-YYY-MM-DThh:mm:ss:nFN 

which includes the year (Y), month(M), days(D), a separator T, hours(h), minutes(m) and 

seconds (s), 1/N is a fraction of one second and n the number of those fractions. 

For example the MediaTimePoint in the listing 6.5 indicates 19 minutes 59 seconds and 957 

milliseconds. 

 

 

Listing 6.5: MediaTimePoint 

 

The mediaDuration data type uses the following format: 

(-) PnDTnHnMnSnNnF 

In this format, each part of the duration contains a count followed by a letter indicating the 

unit being counted: P is the separator indicating the start of a duration, days are indicated by 

D, T separates time from days, H indicates hours, M minutes, S seconds and the sub second 

part uses the same representation as mediaTimePoint, with N indicating the counted fractions 

and F the fractions of one second [11].  

For example the MediaDuration in the listing 6.6 indicates 2 seconds and 267 milliseconds. 

 

 

Listing 6.6: MediaDuration 

 

 

Figure 6.3: Kinds of media time representation 
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On the top of the mediaDuration and mediaTimePoint data types, MPEG-7 builds three kinds 

of media time representation: 

 Simple Time: The basic representation of an absolute time point (figure 6.2a). 

 Relative time: Specifies a media time point relative to a time base. Useful if a media 

segment, such as a story in a news sequence, is placed dynamically. To update the 

story’s description, only the time base (𝑡0) needs to be changed (figure 6.2b). 

 Incremental time: Specifies a time period by counting predefined time units (figure 

6.2c)  

In order to indicate to each segment its label I used the text annotation tool of the basic tool 

(see table 6.1), as show in the listing 6.7. 

 

 

Listing 6.7: TextAnnotation 

 

6.3 Example of a XML Document for the Description of the Segments 

As I said earlier we implemented a matlab code that converts the lab files into a XML 

document MPEG-7 compliant.  

In the code we employed an XML utility in order to create the node of the XML document. In 

the listing 6.8 I reported the XML document created from the lab file of a GR3. 

The code is composed by four functions: the main function reads the lab file and controls if 

already exists an xml document for this lab file, if yes then calls the function CreateXML 

passing it the entire duration of the GR, the starting point of the first segment and its duration. 

The function CreateXML, starting from the root element, creates all the nodes of the XML 

three as instances of the class docNode using the method createElement, and sets the 

attributes of each node using the method setAttribute. After that the code puts all the nodes in 

the correct position in the three using the method appendChild. This function ends with the 

writing in an XML document, the wrapper and the description of the first segment  

For the second segment the XML document already exists and so instead to call the function 

CreateXML calls the function addXMLAudioSegment, with the same parameters, which 

creates all the nodes necessary for the description of a segment in the same way of the 
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function CreateXML and append this node in the XML three of the document created early. 

This function ends rewriting the XML document with the new XML three.  

The code works in the same way for the other segments till the end of the lab file.  

 

 

Listing 6.8: Example of an XML Document MPEG-7 compliant created from a lab file of a GR3 

 

In order to test our XML document we validated it using the NIST MPEG-7 Validation 

Service [65]. In the listing 6.9 I report the output of the validation. 

 

 

Listing 6.9: NIST MPEG-7 Validation Result 
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6.4 Graphical Representation 

In order to quickly evaluate the performance of the segmentation and calassification system 

and to obtain a graphical representation of the output this system I wrote a Matlab code that 

require as input the two lab files of the manual and the automatic segmentation, and the wave 

file of the GRR. In the figure is reported the mesh of the two vectors created downsampling 

the wave track and substituting the value of each sample with an integer number according to 

the specific class to whom the sample belongs. 

 

 

Figure 6.4: Output of the segmentation and classification system for the first 10 minutes of a GR3 

 

In figure 6.4 we can note that the performance of the system is satisfactory. The segmentation 

is quite perfect only at the beginning of the track very short segments aren’t detected. The 

classifier works also well in fact all the telephone speech are classified correctly and it only 

confuses the anchorwoman speech with the female speech.  

As in the manual segmentation we have classes that aren’t considered in the classifier we 

labelled these segments as Other. So in correspondence of the yellow segment in the figure 

6.4 the classifier doesn’t make an error.  
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