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Abstract 

Current web search engines generally do not enable searches into audio files. Informative 

metadata would allow searches into audio files, but producing such metadata is a tedious 

manual task. Tools for automatic production of metadata are therefore needed. This project 

describes the work done on the development of an automatic audio segmentation system 

which can be used for this metadata extraction. In this work the radio newscast are divided 

into segments in which there is only one speaker. Audio features used in this project include 

Mel Frequency Cepstral Coefficients. This feature was extracted from audio files that were 

stored in a WAV format, using CLAM. Model-Selection-Based segmentation is used to 

segment audio signals using this feature.  

In order to evaluate and improve the performance of the segmentation system a manual 

segmentation is performed and two different evaluation metrics was computed implementing 

a matlab code. 

The segments obtained by the manual segmentation were then described in an MPEG-7 

compliant XML document. While the segments of the automatic segmentation could be put in 

input to the classification system implemented by Giuseppe Dimattia in the same laboratory 

in his thesis [71]. 
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CHAPTER 1 

INTRODUCTION 

 

The amount of audio available in different databases on the Internet today is immense. 

Successful access to such large amounts of data requires efficient search engines. Traditional 

web search engines, such as Google, are often limited to text and image indexing, thus many 

multimedia documents, video and audio, are excluded from these classical retrieval systems. 

Even systems that do allow searches for multimedia content, like AltaVista and Lycos, only 

allow queries based on the multimedia filename, nearby text on the web page containing the 

file, and metadata embedded in the file such as title and author. This might yield some useful 

results if the metadata provided by the distributor is extensive. Producing this data is a tedious 

manual task, and therefore automatic means for creating this information is needed. 

Today many radio stations provide entire news or talk shows in form of podcasts or streaming 

services, with general headlines of the content. In general no detailed index of the file is 

provided, which makes it time consuming to look for the part of interest. 

The optimal division of radio shows, such as broadcast news, debate programs, and music 

programs, should be based on the topics covered in each part. Such a division requires that it 

is possible extract topics and the parts related to this topic. Topic detection requires 

transcription of the speech parts of the audio, but adding audio cues would aid in retrieving 

coherent segments. 

Adding audio cues is done by segmenting the audio based on the characteristics of the audio 

stream. The segments generated can then be summarized on basis of the type of audio. 

 Music clips would be described by genre and artist. 

 Speech summaries naturally and would consist of identities of speakers and a 

transcription of what is said. 

 

1.1 Audio Retrieval Systems 

Research in audio retrieval has mainly been focused on music and speech. Music retrieval has 

focused on quantifying different characteristics of the music such as mood, beat, and other 

characteristics to classify genre or find similarities between songs. This area is not the focus 

of this thesis and will not be covered further. 
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Approaches to spoken document retrieval have included automatic broadcast news 

transcription and other speech retrieval systems. 

 

1.1.1 Automatic Broadcast News Transcription 

Broadcast news transcription system has been heavily researched and is considered to be the 

most demanding assignment in speech recognition, as the speakers and conditions vary much 

in the course of a news show. The speakers range from anchor speaking in an ideal 

environment to reporters speaking from noisy environments on a non-ideal telephone line. 

Non-native English speakers make the problem even more challenging. The shows often use 

music between different parts of the show and in the background of speakers. 

These systems therefore often include segmentation preprocessor that removes the non-speech 

parts and finds segments with homogenous acoustical characteristics. In this way the speech 

recognizers can be adjusted to the differing acoustical environments. Solving the task has 

required advances in both preprocessing and speech decoding. 

The performances of these systems are evaluated in annual Rich Transcription workshops 

arranged by [1]. The participants include commercial groups such as IBM and 

BBN and academical groups such as LIMSI and CU-HTK, whose systems are described in 

[2] and [3], respectively. 

 

1.2 Segmentation Approaches 

The segmentation approaches used in the systems mentioned above and in other retrieval 

systems covers a wide range of methods. In general the methods can be divided into two 

groups: audio classification and change detection. These approaches have different attributes 

that qualify them for different uses as presented below. 

 

1.2.1 Audio Classification 

As mentioned above the typical first part of a speech retrieval system concerns identifying 

different audio classes. The four main classes considered are speech, music, noise, and silence 

but depending on the application more specific classes such as noisy speech, speech over 

music, and different classes of noise, have been considered. 

The task of segmenting or classifying audio into different classes has been implemented using 

a number of different schemes. Following the paper by [4] a multitude of approaches have 
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been proposed. Two aspects that must be considered are feature and classification model 

selection. 

Different features have been proposed, based on different observations on the characteristics 

that separate speech, music and other possible classes of audio. The features are generally 

divided on basis of the time horizon they are extracted. 

The simplest features proposed include time domain and spectral features. Time domain 

features typically represent a measure of the energy or zero crossing counts. 

Cepstral coefficients have been used with great success in speech recognition systems, and 

subsequently have shown to be quite successful in audio classification tasks as well [2]. Other 

features have also been proposed based on psychoacoustic observations, see e.g., [5]. 

The other aspect to be considered is the classification scheme to use. A number of 

classification approaches have been proposed, that can be divided into rule-based and model-

based schemes. The rule-based approaches use some simple rules deducted from the 

properties of the features. As these methods depend on thresholds, they are not very robust to 

changing conditions, but may be feasible for real-time implementations. 

Model-based approaches have included Maximum A Posteriori (MAP) classifiers, Gaussian 

Mixture Model (GMM), K-nearest-neighbor (K-NN), and linear perceptrons. Another 

approach in this context is to model the time sequence of features, or the probability of 

switching between different classes. Hidden Markov Models (HMM) take this into account. 

 

1.2.2 Speaker Change Detection 

Another approach to identify homogenous audio segments could be done by performing event 

detection. Approaches to speaker change detection can be divided into supervised and 

unsupervised methods. If the number of speakers and identities are known in advance, 

supervised models for each speaker can be trained, and the audio stream can be classified 

accordingly. If the identities of the speakers are not known in advance unsupervised methods 

must be employed. 

I speak about the speaker change detection in detail in the 5
th

 chapter. 

 

1.3 Audio Feature Extraction 

Feature extraction is the process of converting an audio signal into a sequence of feature 

vectors carrying characteristic information about the signal. These vectors are used as basis 
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for various types of audio analysis algorithms. It is typical for audio analysis algorithms to be 

based on features computed on a window basis. These window based features can be 

considered as short time description of the signal for that particular moment in time. 

Feature extraction is a very important issue to get optimal results in this application. 

Extracting the right information from the audio increases the performance of the system and 

decrease the complexity of subsequent algorithms. 

Generally applications require different features enhancing the characteristics of the problem. 

A wide range of audio features exist for classification tasks. These features can be divided 

into two categories: time domain and frequency domain features. 

In the frequency domain, spectral descriptors are often computed from the Short Time Fourier 

Transform (STFT). By combining this measurement with perceptually relevant information, 

such as accounting for frequency and temporal masking, one can produce an auditory 

spectrogram which can then be used to determine the loudness, timbre, onset, beat and tempo, 

and pitch and harmony [6]. In addition to spectral descriptors, there also exist temporal 

descriptors, which are composed of the audio waveform and its amplitude envelope, energy 

descriptors, harmonic descriptors, derived from the sinusoidal harmonic modeling of the 

signal, and perceptual descriptors, computed using a model of the human hearing process. The 

items listed here are examples of low-level audio descriptors (LLD), which are used to depict 

the characteristics of a sound. Examples of spectral descriptors include the spectral centroid, 

spread, skewness, kurtosis, slope, decrease, rolloff point, and variation. Harmonic descriptors 

include the fundamental frequency, noisiness, and odd-to-even harmonic ratio. Finally, 

perceptual descriptors include Mel-Frequency Cepstral Coefficients (MFCC), loudness, 

sharpness, spread, and roughness [7]. From these LLD’s a higher-level representation of the 

signal can be formed. 

 

1.4 Mpeg-7 Audio Descriptors 

The Moving Picture Experts Group (MPEG) is a working group of ISO/IEC in charge of the 

development of standards for digitally coded representation of audio and video [8]. Until now, 

the group has produced several standards: 

The MPEG-1 standard is used e.g. for Video CDs and also defines several layers for audio 

compression, one of which (layer 3) is the very popular MP3 format. The MPEG-2 standard is 

another standard for video and audio compression and is used e.g. in DVDs and digital TV 

broadcasting. 
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MPEG-4 is a standard for multimedia for the fixed and mobile web. MPEG-7 defines the 

Multimedia Content Description Interface and is the standard for description and search of 

audio and visual content. MPEG-21 defines the Multimedia Framework. The MPEG-7 

standard, part 4 [9], describes a number of low level audio descriptors as well as some high-

level description tools. The five defined sets for high-level audio description are partly based 

on the low-level descriptors and are intended for specific applications (description of audio 

signature, instrument timbre, melody, spoken content as well as for general sound recognition 

and indexing) and will not be further considered here. 

The low-level audio descriptors comprise 17 temporal and spectral descriptors, divided into 

seven classes. Some of them are based on basic waveform or spectral information while 

others use harmonic or timbral information. 

In the next section I speak about CLAM, a full-fledged software framework for research and 

application development in the Audio and Music Domain, it extracts most of the Mpeg7 low 

level descriptors but most of them has been review against the standard and some of them are 

not what they are intended (notably Spectral Kurtosis and Skew). 

 

1.5 CLAM 

CLAM stands for C++ Library for Audio and Music. It offers a conceptual model as well as 

tools for the analysis, synthesis and processing of audio signals. CLAM should include all 

utilities needed in a Sound Processing Project  it is Easy to use and adapt to any kind of need 

and Platform Independent in fact you can compile it under GNU/Linux, Windows and Mac 

platforms. The framework is publicly distributed and licensed under the GPL [13]. 

The CLAM framework is cross-platform. All the code is ANSI C++ and it is regularly 

compiled under GNU/Linux, Windows and Mac OSX using the GNU C++ compiler but also 

the Microsoft compiler. 

CLAM offers a processing kernel that includes an infrastructure and processing and data 

repositories. 

In that sense, CLAM is both a black-box and a white-box framework [14]. It is black-box 

because already built-in components included in the repositories can be connected with 

minimum programmer effort in order to build new applications. And it is white-box because 

the abstract classes that make up the infrastructure can be easily derived to extend the 

framework components with new processes or data classes. 
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Finally, it also includes a number of tools that allow the user to transparently use system-level 

services such as audio and MIDI input/output or even GUI components in any operating 

system. 

Apart from the infrastructure and the repositories, which together make up the CLAM 

processing kernel CLAM also includes a number of tools that can be necessary to build an 

audio application [15]. 

Any CLAM Component can be stored to XML. Furthermore, Processing Data and Processing 

Configurations make use of a macro-derived mechanism that provides automatic XML 

support without having to add a single line of code [12]. 

 

1.6 XML 
XML [10] is a text based format to represent hierarchical data. XML uses named tags 

enclosed between angle brackets to mark the begin and the end of the hierarchical organizers, 

the XML elements. Elements contain other elements, attributes and plain content. 

The power of XML is that you can adapt your own tags (elements) and tag attributes 

(attributes) in order to describe your own data. Another important advantage of the XML 

format is that it is structured and human-readable. For these reasons XML is starting to spread 

rapidly as a multimedia description language (see MPEG7 language [11], for instance). On 

the downsides, its main inconvenience is that, because it is a textual format, it is very 

inefficient both in size and in loading/storing speed. The XML specification defines the 

concepts of well-formedness and validity. 

An XML document is well-formed if it has a correct nesting of tags. In order for a document 

to be valid, it must conform to some constraints expressed in its document type definition 

(DTD) or its associated XML Schema. 

On the other hand XML-Schema [12] is a definition language for describing the structure of 

an XML document using the same XML syntax and it is bound to replace the existing DTD 

language. The purpose of a schema is to define a class of XML documents by using particular 

constructs to constrain their structure: datatypes, elements and their content, attributes and 

their values. Schemas are written in regular XML and this allows users to employ standard 

XML tools instead of specialized applications. 
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1.7 Project Objective 

The main goal of this project is to design a segmentation system that is able to detect audio 

events in radio newscasts and that produces audio segments that could be put as input of a 

classification system Mpeg-7 compliant. 

In the first part of this project we are interested in making experiments on the low feature 

extraction using CLAM from some audio sample of radio newscasts in order to investigate 

their possible applications in the audio event detection. While the last part is dedicated to the 

segmentation system, which will segment a radio newscast audio stream into homogeneous 

regions using one of the feature analysed. 

 

1.8 Project Overview 

The remainder of this thesis is organized into the following chapters: 

 Chapter 2 presents the CLAM framework and the CLAM Music Annotator. 

 Chapter3 present same examples of the spectral descriptors extract with CLAM Music 

Annotator.   

 Chapter 4 describes the audio database, the tool for manual segmentation and how 

create automatically an MPEG-7 Compliant XML document for the description of the 

Segments. 

 Chapter 5 describes the automatic audio segmentation. 

 Chapter 6 shows the experiments that I made on the GRR database, the result and the 

final system evaluation. 

 Chapter 7 describes the final system evaluation. 
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CHAPTER 2 

AUDIO FEATURE EXTRACTION USING CLAM 

 

A useful implementation of the CLAM framework is the CLAM Music Annotator [18]. This 

tool allows one to analyze and visualize a piece of music. The annotator extracts LLD’s, as 

well as high-level features like the roots and modes of chords, note segmentation, and song 

structure. CLAM’s Annotator can be customized to extract any set of features based on an 

XML description schema definition. For example, one could create a general schema that 

extracts a wide range of LLD’s, or a specific schema could be designed for chord extraction. 

In terms of visualization, the annotator includes a Tonnetz visualization for tone correlation 

display and a key space, courtesy of Jordi Bonada and Emilia Gomez at the University of 

Pompeu Fabre, for major and minor chord correlation. 

The CLAM Music Annotator makes use of different XML files in order to relate with the 

outside world. All previously generated information is input to the program through XML 

files and the result of the editing process is also dumped into those files. 

The Project File contains a pointer to a Schema File and another one to a Song List File. The 

Song List File contains a list of Audio Files and Descriptors Pool Files. 

In the following sections we will detail the content of each of those files. 

 

2.1 The Project File 

The Project file is an XML file with the “\.pro” extension. It simply contains the name of the 

extractor and the path to the Schema File. It also contains a list of Sound file. A Sound file is 

simply the path to an existing sound file. This sound file can be in virtually any format, 

including PCM encoded files such as WAVs or AIFFs or compressed formats such as MP3 or 

OGG. On the other hand, the Descriptors File has a pointer to the descriptors related to that 

particular sound file. If omitted, the program will simply add the “\.pool" extension to the 

sound file name. 

 In the listing 2.1 is shown an example of the song list file. 
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Listing 2.1: Sample SongList file 

 

2.2 The Schema File 
The Schema File contains the list of all the different descriptors that later will be loaded from 

a Descriptors File. In some cases it also gives their type and range of expected values. 

Although this File is a regular XML 

File with the “\.sc" extension, in many senses it mimics the purpose and syntax of an XML 

Schema format [12]. 
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The Schema File is actually divided into two different sections. The first one defines the 

Schema for high-level descriptors while the second one defines the schema for low-level 

descriptors (see example in listing 2.2). 

A high-level descriptor is considered to be any descriptor that has a whole song scope and is 

unique within this scope. This kind of descriptor can be of any type. On the other hand a low-

level descriptor has a Frame scope and can only take floating point values. In this thesis I 

don’t care about high level descriptors. 

 
Listing 2.2: Sample Annotator Schema File 
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We will now see how the schema is defined both for high-level and low-level descriptors. 

 

2.3 High-level descriptors 

As already mentioned a high-level descriptor has a unique value for a whole song or sound 

source. It can be of any of the following types: floating point number (“\Float"); integer 

number (“\Int”); string (“\String”); or value set restricted strings (“\Enum”). 

A high-level descriptor is therefore defined by giving its “\Name” and its “\Type”. In case the 

type is a number, an optional range of valid values may be given (“\iRange” in case of integer 

values and “\fRange” in case of floating point values). See the HLD section in listing 2.2. 

 

2.4 Low-level Descriptors 

A low-level descriptor is in any case a vector of floating point values where each value refers 

a particular frame. In this case we only need to define the name of the descriptors. Therefore 

the low-level descriptors section of the schema is simply a list of low-level descriptors names 

(see again listing 2.2). 

 

2.5 Descriptors Pool File 
This is an XML file with the “\.pool” extension that contains all the values, both for the high-

level and low-levels descriptors. The content must observe the restrictions given in the related 

Schema or else it will not be validated. 

Every song on the project has its own descriptors file. Descriptions may be generated by any 

third-party application by providing a proper schema, though it is much easier to generate it 

from within the CLAM framework. In this case, the Descriptors file is directly the XML 

representation of a CLAM Descriptors Data Pool. Any extraction algorithm using them may 

dump its results in such format without having to worry about formatting issues. 

As in the Schema, a Descriptors file is divided into two sections: one for the high-level 

descriptors and another one for the low-level descriptors (see listing 2.3). Note that in the 

Descriptors file this difference is explicit by the existence of two different “\Scopes”, one with 

the name “\Song” and size=1 (there is only one song for each song) and the other one with the 

name \Frame" and size=432 (in this case there are 432 frames in the wav). 
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<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 

<DescriptorsPool> 

 

  <ScopePool name="Song" size="1"> 

    [...] 

  <ScopePool name="Frame" size="432"> 

    [...] 

  </ScopePool> 

 

</DescriptorsPool> 

Listing 2.3: Sample Descriptors file 

 

I will now explain how high and low-level descriptors are stored. 

 

2.6 High-level Descriptors 

In the Song scope we basically see a list of AttributePool elements. In any case each of those 

elements has an attribute with the name of the particular descriptor and its content is the 

content of the descriptor. Note that the type of the descriptor is implicitly resolved from the 

schema and must therefore not be given in the Descriptors File (see HLD description in listing 

2.4). Finally, segmentation information is also included in the high-level description. This 

descriptor must not be given in the schema as it is always supposed to be available. When 

including segmentation marks in the description you must give their size (i.e. how many 

segmentation marks are available) and the list of positions in number of samples. Those song 

level values are just dummy values generated to demonstrate Annotator capabilities to adapt 

different kinds of data. 

 

 
 

Listing 2.4: Sample High-level Description 

 

2.7 Low-Level descriptors 
The low-level descriptors section of the Descriptors file is also a list of AttributePool 

elements where for each element we must define its name and a list of values. Note that in this 
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case we must not give the size of each attribute because this is already defined by the size of 

the “\Frame” scope. Therefore these vectors must all have as many elements as defined in the 

scope (432 in the example given in listing 2.5). 

 

 
 

Listing 2.5: Sample Low-level Description 

 

2.8 Showcase 

The application has been developed within the CLAM framework, using qt [19] for the 

graphical user interface. Figure 2.1 is a capture of the whole interface running on UBUNTU, 

although its look is virtually the same in any of the major platforms and graphical 

environments (Windows, Mac OSX, GNOME...). 
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Figure 2.1: The CLAM Music Annotator GUI 
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2.9 Loading a Project 
Once the program is started, the first thing that we must do is to load a project file. This 

project file will have a pointer to the Song List and the Schema files. Once loaded, the GUI is 

reconfigured and the list of songs and related descriptions is available (see Figure 2.2). 

 

Figure 2.2: The CLAM Music Annotator GUI song list 

 

2.10 The Schema and the dynamic GUI 

One of the most important features in the CLAM Annotator is its ability to dynamically adapt 

the GUI. The GUI shows the descriptors according to the Schema that is loaded with the 

Project. 

In the case of low-level descriptors, the amount and label of each of the tabs corresponds to 

the schema. And in the case of high-level descriptors, the schema defines the label and also 

the kind of editing widget that is shown. 
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Figure 2.3: The low-level descriptors 

 
2.11 Viewing Song Properties 

 
Once a song is selected from the Song List, the audio file and the descriptors are loaded. After 

this loading process finishes the waveform including segmentation marks is available on the 

lower-left, the low-level descriptors are shown on the upper-right, and the high-level 

descriptors are on the lower-right. The user can listen to the sound file and start the edition 

process. 

Low level descriptors view and segmentation view are synchronized in respect zoom, 

horizontal scroll and cursor position. That feature makes easy to take segmentation editing 

decisions taking into account low level features values. 

 

2.12 Editing Low-level Descriptors 
 

Low-level descriptors are represented by equidistant connected points that you can drag to 

change its Y value. Each point represents the value for the descriptor in a given frame. 
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Because point to point edition may be hard, some convenient edition modes such trim or draw 

are provided. 

 

2.13 Editing High-level Descriptors 

The edition of a high-level description adapts on the “\type” of the descriptor as defined in the 

project's schema. Figure 2.4 shows how integer and float descriptors may be edited by a slider 

that uses the range given in the schema, while enumerated value descriptors can be selected 

with a drop-down list widget with the allowed values. 

 

 

Figure 2.4: The high-level descriptors 

 

Regular strings use a simple text box widget were the user can enter free text. 
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2.14 Viewing Associated Schema 

The Schema file contains the list of all the different descriptors (see Figure 2.5). The Schema 

file is actually divided into two different sections. The first one defines the Schema for high-

level descriptors while the second one defines the schema for low-level descriptors. 

 

 

Figure 2.5: Visualization of the Description Schema 



Chapter 3 – Spectral Descriptor Extraction with ClamExtractorExample 

 

 

19 

 

CHAPTER 3 

SPECTRAL DESCRIPTOR EXTRACTION WITH 

ClamExtractorExample 

 

In this chapter the features will be described and illustrated through an example. The features 

are extracted with ClamExtractorExample from speech and music samples of the 

Giornale Radio RAI (GRR) data base that I will describe in the next chapter. 

The type of signals we are dealing with, namely speech and music, are so called quasi- 

stationary signals. This means that they are fairly stationary over a short period of time. 

This encourages the use of features extracted over a short time period. 

In this project the audio used is in 44,100 kHz, 16 bit, PCM wave format. The audio is 

partitioned into frames of 1023 samples. 

To obtain the graph of the descriptors I write a Matlab code and I used XMLTree an XML 

toolbox for Matlab [46] in order to allow Matlab to read the descriptors from the XML 

CLAM files.  

 

3.1 Mean 

 This descriptor is the spectral power mean value. It is calculated by CLAM computing [58]: 

 

𝑀𝑒𝑎𝑛 𝑋 =
 𝑥𝑖

𝑆𝑖𝑧𝑒 (𝑋)
                                 (3.1) 

 

In the listing 3.1 is reported its definition in Stats.hxx.  

 

 
Listing 3.1: Definition at line 216 of file Stats.hxx. 
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Figure 3.1(a) shows 7 seconds of male speech with the corresponding mean (Figure 3.1(b)) 

and 3.1(c) shows 7 seconds of Theme music speech with the mean (Figure 3.1 (d) ). In the 

figure 3.1 we can see that the mean follows the envelope of the corresponding signal. 

 

 
Figure 3.1: (a) Anchorman speech signal of 7 s; (b) Mean of the Anchorman speech; (c)Theme music signal of 7 

s; (d) Mean of  the Theme Music 

 

3.2 Geometric Mean 

This feature is the geometric mean of the spectral power values sequence [58]. The geometric 

mean of a sequence  𝑎𝑖 𝑖=1
𝑛  is defined by  

𝐺(𝑎1, … , 𝑎𝑛) ≡ ( 𝑎𝑖
𝑛
𝑖=1 )

1
𝑛              (3.2) 

Thus,  

𝐺 𝑎1,𝑎2 =   𝑎1𝑎2                               (3.3) 

𝐺 𝑎1,𝑎2, 𝑎3 =   𝑎1𝑎2𝑎3   ,                 (3.4) 

and so on.  

Computing this measurement over long sequences of small real numbers poses a numerical 

problem. To avoid this, computation of Geometric mean is restricted to Log scale Spectral 

Power Distributions since this allows changing the product for a summation. This measure is 

expressed in dBs.  
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The geometric mean gives the mean magnitude order. It converges with the mean when all the 

values 𝑥𝑖  are closer. 

 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛 𝑋 = ( 𝑥𝑖)
1

𝑆𝑖𝑧𝑒 (𝑋)    (3.5) 

 

In order to make the computation cheap, for easy computation, logarithms are used.  

 

log(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛(𝑋)) =  
 log 𝑒 𝑥𝑖

𝑆𝑖𝑧𝑒 (𝑋)
     (3.6) 

 

In the listing 3.2 is reported the definition in Stats.hxx of the function that computes the 

Geometric Mean. 

 

 

Listing 3.2: Definition at line 433 of file Stats.hxx 

 

Figure 3.2(a) shows 10 seconds of male speech with the corresponding geometric mean in 

Figure 3.2(b) and 3.2(c) shows 10 seconds of music signal with the geometric mean in Figure 

3.2(d). In the figure 3.2 we can see that the geometric mean follows the envelope of the 

corresponding signal. 
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Figure 3.2: (a) Anchorman speech signal of 10 s; (b) Geometric Mean of the Anchorman speech; (c) Music 

signal of 10 s; (d) Geometric Mean of the Music 

 

3.3 Energy 

This descriptor is another simple feature that has been used in various formats in audio 

applications. The energy is the squared sum of spectral power distribution values. It is defined 

as the total energy in a frame [58]: 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑋 =   𝑥𝑖
2       (3.7)     

 

In the listing 3.3 is reported the definition in Stats.hxx of the function that computes the 

Energy. 

 

 
Listing 3.3: Definition at line 411 of file Stats.hxx 

 

The speech signal is composed of altering voiced and unvoiced sounds and silence periods. 

These unvoiced and silence periods carry less energy than the voiced sounds. Thus, the 

Energy values for speech will have a large variation. This can also be seen in figure 3.3(a), 

where the same speech signal is shown and the corresponding Energy values are shown in 

Figure 3.3 (b). 
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In figure 3.3 (b) we can see that the voiced speech parts give larger energy values than the 

unvoiced and silence periods. 

Because of the pitched nature of music the Energy of music is more constant and larger than 

speech. This can be seen in figure 3.3(c), where the music signal is shown with the 

corresponding Energy values in figure 3.3(d). As shown in the same figure is clear that the 

pitched parts of the music give high Energy values. 

 

Figure 3.3: (a) Anchorman speech signal of 10 s; (b) Energy of the Anchorman speech signal; (c) Music signal 

of 10 s; (d) Energy of the Music signal 

 

3.4 Centroid 

The Centroid is the frequency where the center of mass of the spectral power distribution lies. 

This measure is expressed in Hz. The Centroid of a function returns the position around 

which higher values are concentrated [58]. 

 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑋 =  
 𝑖∙𝑥𝑖

𝑥𝑖
      (3.8) 

 

How we can see in the listing 3.4 whenever the Mean(X) is less than 1e-7, then it will return 

the mid position  

 
𝑆𝑖𝑧𝑒  𝑋 −1

2
           (3.9) 
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Listing 3.4: Definition at line 241of file Stats.hxx. 

 

Spectral Centroid is the "balancing point" of the spectral power distribution. It is an indicator 

as to whether the power spectrum is dominated by low or high frequencies and can be 

regarded as an approximation of the perceptual sharpness of the signal [48]. 

In the Figure 3.4(b) and in Figure 3.4(d) we can see that the telephone reporter has a lower 

centroid respect to the anchorman centroide because in the telephone speech signal the higher 

frequencies are cut by the communication channel. It is clear comparing Figure 3.4 (a) and 3.4 

(b). 

 

Figure 3.4: (a) Top 50dB of the Anchorman speech signal spectrogram of 10 s; (b) Spectral Centroid of the 

Anchorman speech signal; (c) Top 50dB of the Male Telephone signal spectrogram of 10 s; (d) Spectral Centroid 

of the Male Telephone signal 

 

Many kinds of music involve percussive sounds which, by including high-frequency noise, 

push the spectral mean higher. In addition, excitation energies can be higher for music than 
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for speech, where pitch stays in a fairly low range [47]. But from Figure 3.5 (a) it is clear that 

the theme music of the GRR of our example has a spectrum dominated by lower frequencies, 

in fact if we compare the Figure 3.5(b) and 3.4(b) we can notice that the theme music has a 

centroid lower than the anchorman centroid. Speech is usually limited in frequency to about 8 

kHz whereas music can extend through the upper limits of the ear’s response at 20 kHz. In 

general, most of the signal power in music waveforms is concentrated at lower frequencies 

[52]. 

 

Figure 3.5: (a) Top 50dB of the theme music signal spectrogram of 4 s; (b) Spectral centroid of the theme music 

signal; (c) Top 50dB of the noise signal spectrogram of 4 s; (d) Spectral centroid of the noise signal 

 

3.5 Flatness 
The spectrum flatness reflects the flatness properties of the power spectrum. The flatness is 

the relation among the geometric mean and the arithmetic mean [58]. 

 

𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 𝑋 =  
𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛 (𝑋)

𝑀𝑒𝑎𝑛 (𝑋)
    (3.10)      

 

How we can see in the listing 3.5 the function that computes this descriptor is the GetFlatness. 

When the mean is lower than 1e-20, it is set at 1e-20 and when the geometric mean is lower 

than 1e-20, it is set at 1e-20 
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Listing 3.5: Definition at line 552 of file Stats.hxx. 

 

The Spectral Flatness is used in order to determine the noiselike or tonelike nature of the 

signal. In practice the use of the Spectral Flatness is useful to estimate the tonality of the 

signal [49]. 

A flat spectrum shape corresponds to a noise or an impulse signal. Hence, high flatness values 

are expected to reflect noisiness. On the contrary, low values may indicate a harmonic 

structure of the spectrum. From a psycho-acoustical point of view, a large deviation from a 

flat shape (i.e. a low spectral flatness measure) generally characterizes the tonal sounds [10]. 

The Figure 3.6 shows that the Scream signal flatness is higher than the Song spectral flatness 

in fact the scream signal is more impulsive respect to the Song signal. 

 

 

Figure 3.6: (a) 44,100 kHz song signal of 1 s; (b) Spectral flatness of the song signal; (c) 16 khz scream signal 

of 1 s; (d) Spectral flatness of the scream signal. 
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3.6 Magnitude Kurtosis  

The Kurtosis of a distribution gives an idea of the degree of pickness of the distribution [58].  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑋 =  
 ((𝑥𝑖−𝑀𝑒𝑎𝑛  𝑋 4)

( (𝑥𝑖−𝑀𝑒𝑎𝑛 (𝑋))2)2   (3.11) 

Typical values: 

 A normal distribution of  𝑥𝑖  values has a kurtosis near to 3. 

 A constant distribution has a kurtosis of 
−6(𝑛2+1)

5(𝑛2−1)
+ 3 

Singularities and solutions: 

 Constant functions: Currently returns 3 although it is not clear that it should be the 

right one, and it can vary on future implementations.  

In the listing 3.6 is reported the definition in Stats.hxx of the function that computes the 

Magnitude Kurtosis. 

 

 

Listing 3.6: Definition at line 383 of file Stats.hxx  

 

Mixtures of speech signals have a kurtosis lower than the kurtosis values of the individual 

speech signals [50]. 

The Figure 3.7 confirm this, in fact male with female speech signal has a kurtosis values 

lower than the kurtosis values of the anchorwoman speech signal. 
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Figure 3.7: (a) Spectral Kurtosis Magnitude of Anchorwoman speech signal of 2 s; (b) Spectral Kurtosis 

Magnitude of Male with Female speech signal of 2 s 
 

3.7 LowFreqEnergyRelation 
This descriptor is the ratio between the energy over 0-100 Hz band and the whole spectrum 

energy. To avoid singularities while keeping descriptor continuity, when the whole spectrum 

energy drops bellow 10^ {-4}, such value is considered as whole  

spectrum energy. 0-100 Hz is a  very narrow band so this feature is used to spot bass sounds. 

Speech is in general composed of altering voiced and unvoiced sounds. In between words 

small silence periods occur. The voiced sounds in speech are the sounds where a pitch can be 

found. Unvoiced sounds on the other hand have a structure that resembles noise. Figure 3.8(a) 

shows 10 seconds of top 50dB of the anchorman speech signal spectrogram. The Figure 

3.8(b) shows low LowFreqEnergyRelation values where voiced sounds are present and high 

LowFreqEnergyRelation values where unvoiced sounds are present. The altering voiced and 

unvoiced sounds in speech give the LowFreqEnergyRelation values a relatively large 

variation. 
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Figure 3.8: (a) Top 50dB of the anchorman speech signal spectrogram of 10 s; (b) LowFreqEnergyRelation of 

the anchorman speech signal; (c) Top 50dB of the male telephone speech signal spectrogram of 10 s; (d) 

LowFreqEnergyRelation of the male telephone speech signal 

 

 

Figure 3.9: (a) Top 50dB of the theme music signal spectrogram of 4 s; (b) LowFreqEnergyRelation of the 

theme music signal; (c) Top 50dB of the noise signal spectrogram of 4 s; (d) LowFreqEnergyRelation of the 

noise signal 

In general music is more pitched than speech. This is caused by the clear tones made by the 

instruments. Figure 3.9 (a) shows 4 seconds of top 50dB of the theme music signal 

spectrogram. The figure 3.9 (b) shows the LowFreqEnergyRelation does not have as many 
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peaks as the speech-signal. This gives a smaller variation of LowFreqEnergyRelation. The 

Figure 3.9 (d) shows that the LowFreqEnergyRelation of the environmental noise has a large 

variation. 

 

3.8 MaxMagFreq 

This descriptor gives the frequency where there is the maximum of the spectral amplitude. 

The Figure 3.10(a) shows high MaxMagFreq values where voiced sounds are present and low 

Max values where unvoiced sounds are present. The altering voiced and unvoiced sounds in 

speech give the MaxMagFreq values a relatively large variation. We can make the same 

considerations for the figure 3.10(b) but in this case the maximum frequency is 3 kHz, which 

is the maximum frequency of the telephone channel. The figure 3.10 (c) shows the 

MaxMagFreq do not have as many peaks as the speech-signal. Comparing figure 3.10 (a) and 

3.10 (b) we can observe that the MaxMagFreq values of Music signal are lower than 

MaxMagFreq values of the speech signal, in fact speech is a higher frequency signal respect 

to music signal. 

Figure 3.10: (a) MaxMagFreq of Anchorman speech signal of 10 s; (b) MaxMagFrq of Male Telephone speech 

signal of 10 s; (c) MaxMagFReq of Music signal of 10 s. 

 

3.9 Spread 
The spectral spread is the variation of the spectrum around its mean value. The spectral spread 

is computed from the second order moment. 

The program computes and returns the Spread around the Centroid [58].  

𝑆𝑝𝑟𝑒𝑎𝑑 𝑌 =
 (𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑  𝑌 −𝑥𝑖)

2𝑦𝑖
𝑁−1
𝑖=0

 𝑦𝑖
𝑁−1
𝑖=0

    (3.12) 
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The spread gives an idea on how much the distribution is not concentrated over the 

distribution centroid. Taking the array as a distribution and the values being probabilities, the 

spread would be the variance of such distribution. 

Significant values are the following: 

 For a full concentration on a single bin: 0.0 

 For two balanced diracs on the extreme bins 

𝑆𝑝𝑟𝑒𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐷𝑖𝑟𝑎𝑐𝑠𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝑁2

4
 

 For a uniform distribution the spread it's:  

𝑆𝑝𝑟𝑒𝑎𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
 𝑁 − 1 (𝑁 + 1)

12
 

Singularities and solution: 

 How we can see in the listing 3.7 when  𝑦𝑖  is less than 1e-14 it returns the uniform 

distribution formula above. 

 Centroid NaN silence NaN is solved inside GetCentroid 

 When Centroid is less than 0.2, 0.2 is taken as the centroid value. 

 

 

Listing 3.7: Definition at line 298 of file Stats.hxx. 

The spectral spread describes whether the spectrum is widely spread out or concentrated 

around its centroid. Noise-like sounds should have a wider spectrum compared to voiced 
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sounds such as speech [51]. The Figure 3.11 shows that this descriptor potentially enables 

discriminating between pure-tone and noise-like sounds, in fact, in this figure we can see that 

the song spectral spread is lower than the spectral spread of the song signal. 

Figure 3.11: (a) 44,100 kHz Song signal of 1 s; (b) Spectral Spread of the Song signal; (c) 16 kHz Scream signal 

of 1 s; (d) Spectral Spread of the Scream signal 

 

3.10 Magnitude Skewness 

The Skewness of a distribution gives an idea of the asymmetry of the variance of the values 

[58].  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑋 =
 ((𝑥𝑖−𝑀𝑒𝑎𝑛 (𝑋))3)

( (𝑥𝑖−𝑀𝑒𝑎𝑛 (𝑋))2)
3
2

    (3.13) 

Typical values: 

 This function returns greater positive values when there are more extreme values 

above the median than below. 

 Returns negative values when there are more extreme values below the median than 

above. 

 Returns zero when the distribution of the values around the Median is equilibrated. 

Singularities and solutions: 

 Constant functions: Currently returns NaN but, in the future, it should return 0 because 

it can be considered an equilibrated function. 

In the listing 3.8 is reported the definition in Stats.hxx of the function that computes the 

Magnitude Skewness. 
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Listing 3.8: Definition at line 355 of file Stats.hxx 

 

As we can see in the Figure 3.12 this feature has a higher value for speech than for music in 

fact the speech signal has more energy above the median, whereas the music has a 

spectrogram more equilibrated around the median. 

Figure 3.12: (a) Spectral magnitude skewness of anchorwoman speech signal of 10 s; (b) Spectral magnitude 

skewness of music signal of 10 s 

 

3.11 Spectral Roll-Off 

The spectral roll-off point is the frequency value so that the 85% of the spectral energy is 

contained below it [58, 53]. 

For silences this is 0Hz. Measured in Hz. 

 

𝑅𝑜𝑙𝑙𝑜𝑓𝑓
 𝑎𝑓

2 = 0.85 ×   𝑎𝑓
2𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙  𝑅𝑎𝑛𝑔𝑒

𝑓=0
𝑅𝑜𝑙𝑙𝑂𝑓𝑓
𝑓=0

            (3.14) 

Other studies have used roll-off frequencies computed with other ratios, e.g. 92% in [54] or 

95% in [55]. 

The roll-off is a measure of spectral shape useful for distinguishing voiced from unvoiced 

speech. This is confirmed by the Figure 3.13 and 3.14. We can notice, comparing Figure 3.14 
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(d) and 3.14 (c), that we have the peaks in the roll-off in correspondence of the peaks of the 

spectrum at the same time frame. 

 

Figure 3.13: (a) Top 50dB of the anchorman speech signal spectrogram of 10 s; (b) Spectral Roll-Off of the 

anchorman speech signal; (c) Top 50dB of the male telephone speech signal spectrogram of 10 s; (d) Spectral 

Roll-Off of the male telephone speech signal. 

 

 

Figure 3.14: (a) Top 50dB of the theme music signal spectrogram of 4 s; (b) Spectral Roll-Off of the theme 

music signal; (c) Top 50dB of the noise signal spectrogram of 4 s; (d) Spectral Roll-Off of the noise signal 

 

3.12 Spectral Slope 
The spectral slope represents the amount of decreasing of the spectral magnitude [58]. 

The slope gives an idea of the mean pendent on the array: 
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 Less than zero means that is decreasing 

 More than zero means that is increasing 

 Zero means that any tendency is the dominant 

The Slope is defined as:  

 

1

 𝑥𝑖
 
𝑁  𝑖𝑥𝑖− 𝑖  𝑥𝑖

𝑁  𝑖2−( 𝑖)2               (3.15) 

 

The formula (3.15) can be transform into one depending on the Centroid which is already 

calculated in order to obtain other stats:  

 

6
2𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 −𝑁+1

𝑁 𝑁−1 (𝑁+1)
                (3.16) 

 

The slope is relative to the array position index. If you want to give to the array position a 

dimensional meaning, (p.e. frequency or time) then you should divide by the gap between 

array positions. For example GetSlope/BinFreq for a FFT or GetSlope*SampleRate for an 

audio.  

In the listing 3.9 is reported the definition in Stats.hxx of the function that computes the 

Spectral Roll-Off. 
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Listing 3.9: Definition at line 49r of file Stats.hxx 

 

3.13 High Frequency Content 

This descriptor is defined as the sum of the squared spectrum magnitude multiplied by the 

wave number of the bin. It is pretty similar to the derivative of the energy, or a high pass 

filter, which gives higher values for high frequency content. It is very useful in locating high 

frequencies. This can be confirmed comparing the Figure 3.15 (a) and (b). 

This feature can be utilized also to distinguish male and female, in fact as shows the Figure 3.16 the 

anchorman high frequency content is lower than high frequency content of anchorwoman. In fact 

anchorwoman speech signal, respect to the anchorman signal, has more energy at high frequency. 
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Figure 3.15: (a) High frequency content of the noise signal; (b) Top 50dB of the noise signal spectrogram of 4 s 

 

Figure 3.16: (a) High frequency content of anchorman speech signal of 10 s; (b) High frequency content of 

anchorwoman speech signal of 10 s. 

 

3.14 Cepstrum 
Initially cepstral analysis was introduced in conjunction with speech recognition, as a way to 

model the human articulatory system as described below. Later the features have shown 

useful in speaker recognition as well as other audio applications such as audio classification 

and music summarization. 
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As described in [56] the speech signal is composed of a quickly varying part e (n) (excitation 

sequence) convolved with a slowly varying part θ (n) (vocal system impulse response): 

 

𝑠(𝑛)  =  𝑒(𝑛)  ∗ 𝜃 (𝑛)                        (3.17) 

 

The convolution makes it difficult to separate the two parts, therefore the cepstrum is 

introduced. The cepstrum is defined as: 

 

𝑐𝑠 𝑛 =  𝐼𝐷𝐹𝑇 log 𝐷𝐹𝑇 𝑠(𝑛)          (3.18) 

 

Where DFT is the Discrete Fourier Transform and IDFT is the Inverse Discrete Fourier 

Transform. By moving the signal to the frequency-domain the convolution becomes a 

multiplication: 

 

                                            𝑆(𝑘)  =  𝐸(𝑘) Ө (𝑘)                        (3.19) 

 

Further, by taking the logarithm of the spectral magnitude the multiplication becomes an 

addition: 

log 𝑆 𝑘  =  log 𝐸 𝑘 Ө 𝑘   

                                = log 𝐸 𝑘  + log Ө 𝑘   

                                                                    = 𝐶𝑒 𝑘 +  𝐶𝜃(𝑘)                                  (3.20)  

 

IDFT is linear and therefore works individually on the two components: 

 

𝑐𝑠 𝑛 =  𝐼𝐷𝐹𝑇 𝐶𝑒 𝑘 + 𝐶𝜃(𝑘)  

                        = 𝐼𝐷𝐹𝑇 𝐶𝐸(𝑘) + 𝐼𝐷𝐹𝑇 𝐶𝜃(𝑘)  

                                                           = 𝑐𝑒 𝑛 + 𝑐𝜃(𝑛)                                               (3.21) 

 

The domain of the signal cs(n) is called the frequency-domain. Figure 3.17 shows the speech 

signal transformation process. 
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Figure 3.17: shows how the signal is composed of a slowly varying envelopePart convolved with quickly 

varying excitation part. Figure taken from [56]. 

 

3.14.1 Mel-frequency Cepstral Coefficients 

The MFCCs are the most popular cepstrum-based audio features, even though there exist 

other types of cepstral coefficients [57], like the linear prediction cepstrum coefficient 

(LPCC), extracted from the linear prediction coefficient (LPC). MFCC is a perceptually 

motivated representation defined as the cepstrum of a windowed short-time signal. A non-

linear mel-frequency scale is used, which approximates the behaviour of the auditory system. 

The mel is a unit of pitch (i.e. the subjective impression of frequency). 

The mel scale is a scale of pitches judged by listeners to be equal in distance one from 

another. The reference point between this scale and normal frequency measurement is defined 

by equating a 1000 Hz tone, 40 dB above the listener’s threshold, with a pitch of 1000 mels. 

Below about 500 Hz the mel and hertz scales coincide; above that, larger and larger intervals 
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are judged by listeners to produce equal pitch increments. The MFCCs are based on the 

extraction of the signal energy within critical frequency bands by means of a series of 

triangular filters whose centre frequencies are spaced according to the mel scale.  

The nonlinear mel scale accounts for the mechanisms of human frequency perception, which 

is more selective in the lower frequencies than in the higher ones. 

The extraction of MFCC vectors is depicted in Figure 3.18. 

 

 

Figure 3.18: MFCC Calculation 

 

The input signal s(n) is first divided into overlapping frames of 𝑁𝑤  samples. 

In order to minimize the signal discontinuities at the borders of each frame a windowing 

function is used, such as the Hamming function defined as: 

 

𝑤 𝑛 =  
1

2
 1 − cos  

2𝜋

𝑁𝑤
 𝑛 +

1

2
                  0 ≤ 𝑛 ≤ 𝑁𝑤 − 1              (3.22) 

 

An FFT is applied to each frame and the absolute value is taken to obtain the magnitude 

spectrum. The spectrum is then processed by a mel-filter bank; the log-energy of the spectrum 

is measured within the pass-band of each filter, resulting in a reduced representation of the 

spectrum. The cepstral coefficients are finally obtained through a Discrete Cosine Transform 

(DCT) of the reduced log-energy spectrum. 

In this project the ClamExtractorExample employs a filter bank of 20 filters and a high 

frequency cut-off of 11250Hz in order to compute a 20 MFCC for each frame. 
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Figure 3.20 (b) shows 20 MFCCs for 10 seconds of speech and figure 3.20(a) shows 20 

MFCCs for 10 seconds of music. The speech shows a large variation in the coefficients. This 

is due to the altering voiced/unvoiced/silence structure in speech. These different structures 

have different spectral characteristics, which are reflected in the MFCCs. The MFCCs for the 

music seems to be much more structured and do not show the same variation in the 

coefficients. 

 

 
Figure 3.20: (a) MFCC of 10 s of music signal; (b) MFCC of 10 s of anchorwoman speech signal. 

 

Figure 3.21 (b) shows 20 MFCCs for 10 seconds of anchorman speech signal and figure 3.21 

(a) shows 20 MFCCs for 10 seconds of male telephone signal. As we can see in the figure 

3.8(a) and 3.8(b) these speech signals have different spectral characteristics, which are 

reflected in the MFCCs. 
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Figure 3.21: (a) MFCC of 10 s of anchorman speech signal; (b) MFCC of 10 s of male telephone speech signal. 
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CHAPTER 4 

AUDIO DATABASE AND MANUAL SEGMENTATION 

For the audio segmentation a data base of speech and music was collected. The speech contains a 

wide range of different radio newscast. The samples are chosen to reflect many different kinds of 

typical speech, ranging from anchor speakers in almost perfect conditions to conversations between 

multiple speakers. Also, narrow-band telephone interviews are present. 

Some of the speech clips contain speech from reporters speaking from noisy environments. 

15 Giornali Radio RAI (GRR) was recorded from the RAI web page http://www.radio.rai.it/grr/ 

with Freecoder, a software tools for recording internet audio. 

The sources of the clips are listed in table 4.1. The clips were collected in November and December 

2007. The GRR are chosen in order to have the same anchor for the same GRR. 

 

Number GR Date Time Duration 

(min) 

Anchor 

1 RAI 

GR1 

10/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi  

2 RAI 

GR1 

11/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

3 RAI 

GR1 

17/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

4 RAI 

GR1 

26/11/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

5 RAI 

GR1 

02/12/2007 13.00 30 Anchorman1: G. Trevisi 

Anchorman2: A. Biciocchi 

6 RAI 

GR2 

05/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: V.Montanari 

7 RAI 

GR2 

08/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

8 RAI 

GR2 

12/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

9 RAI 

GR2 

14/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

10 RAI 

GR2 

21/11/2007 19.30 28 Anchorwoman1: L. Scardini 

Anchorwoman2: A. Fiori 

11 RAI 

GR3 

06/11/2007 8.45 20 Anchorwoman: A. Pizzato  

12 RAI 

GR3 

07/11/2007 8.45 20 Anchorwoman: A. Pizzato 

13 RAI 

GR3 

08/11/2007 8.45 20 Anchorwoman: A. Pizzato 

14 RAI 

GR3 

09/11/2007 8.45 20 Anchorwoman: A. Pizzato 

15 RAI 

GR3 

10/11/2007 8.45 20 Anchorwoman: A. Pizzato 

Table 4.1: List of the GR wav files present in the data base 

The GRRs are then segmented manually, using WaveSurfer [59], into different classes. 

 

http://www.radio.rai.it/grr/
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4.1 WaveSurfer Tool for the Manual Segmentation 

WaveSurfer is an Open Source tool for sound visualization and manipulation [59]. WaveSurfer has 

a simple and logical user interface that provides functionality in an intuitive way and which can be 

adapted to different tasks. It can be used as a stand-alone tool for a wide range of tasks in speech 

research and education. Typical applications are speech/sound analysis and sound 

annotation/transcription. WaveSurfer can also serve as a platform for more advanced/specialized 

applications. This is accomplished either through extending the WaveSurfer application with new 

custom plug-ins or by embedding WaveSurfer visualization components in other applications. 

As shown in Figure 4.1 when WaveSurfer is first started, it contains an empty sound. You can load 

a sound file from disk. 

 

 

Figure 4.1: WaveSurfer Interface 

To allow for different sophisticated tasks WaveSurfer gives the possibility of adding panes. A pane 

is a window stacked on top of the WaveBar that can contain for example a waveform, a 

spectrogram, a pitch-curve, a time axis or a transcription or something else. Unlike the WaveBar, a 

pane will not necessarily display the whole sound. Rather it will display a portion of the sound that 

is specified in the WaveBar. Think of the WaveBar as an overview and the pane as a variable 

magnifying glass. 

WaveSurfer can read a number of sound file formats including WAV, AU, AIFF, MP3, CSL, and 

SD. It can also save files in several formats, including WAV, AU, and AIFF. There are separate 

plug-ins to handle Ogg/Vorbis and NIST/Sphere files. WaveSurfer can be used to visualize and 

analyze sound in several ways. The standard analysis plug-in can display Waveform, Spectrogram, 

Pitch, Power or Formant panes. 

WaveSurfer has many facilities for transcribing sound files. Transcription is handled by a dedicated 

plug-in and it's associated pane type. In the Figure 4.2 is shown WaveSurfer interface when the the 

configuration Transcription is chosen. 
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Figure 4.2: WaveSurfer interface when the transcription configuration is chosen. 

 

The properties-dialog can be used to specify which label file that should be displayed in a 

transcription pane. Unicode characters are supported in order to keep the binary versions small. The 

transcription plug-in is used in combination with format handler plug-ins which handles the 

conversion between file formats and the internal format used by the transcription plug-in. The 

standard popup menu has additional entries for transcription panes. Popup | Load Transcription and 

Popup | Save Transcription are used to load and save transcription files. 

In the Listing 4.1 is shown an example of a lab file that WaveSurfer has as output. 

 

 

Listing 4.1: Piece of a lab file  

WaveSurfer allows splitting sound on labels, but every label should have a different name so we 

wrote a matlab code that modify the lab file, produced with WaveSurfer, adding an increasing 

number to each name label. 
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4.2 Data Base Description 

In order to have an idea of the amount of the seconds of each class I wrote a matlab code that reads 

the file lab of WaveSurfer and analysing it returns for each class the total seconds. 

In the following tables are reported the amount of seconds for each class.  

 

CLASSES DURATION (h:m:s:ms) 

Speech 4:48:27:231 

Music 0:16:12:139 

Silence 0:11:23:472 

Other 1:17:9:121 

Total 6:33:11:963 
Table 4.2: Duration of the classes: Speech, Music, Silence, Other 

 

 

CLASSES DURATION (h:m:s:ms) 

Male 3:4:22:348 

Female 1:44:4:883 

Total 4:48:27:231 
Table 4.3: Duration of the subclasses Male and Female of the class Speech 

 

 

CLASSES DURATION (h:m:s:ms) 

Anchorman 0:20:15:627 

Male 1:37:7:879 

MaleSpot 0:5:20:382 

MaleTel 1:1:38:459 

Total 3:4:22:348 
Table 4.4: Duration of the subclasses: Anchorman, Male, MaleSpot, MaleTel  of the class Male 

  

CLASSES DURATION (h:m:s:ms) 

Anchorwoman 0:40:21:574 

Female 0:56:51:503 

FemaleSpot 0:3:41:117 

FemaleTel 0:3:10:688 

Total 1:44:4:883 
Table 4.5 Total duration of the wav files of the subclasses: Anchorwoman, Female, FemaleSpot, FemaleTel of the class 

Female 
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CLASSES DURATION (h:m:s:ms) 

Anchorman1 0:10:8:774 

Anchorman2 0:10:6:853 

Total 0:20:15:627 
Table 4.6 Total duration of the wav files of the subclasses: Anchorman1, Anchorman2 of the class Anchorman. 

 

 

CLASSES DURATION (h:m:s:ms) 

Anchorwoman1 0:13:36:137 

Anchorwoman2 0:8:54:940 

Anchorwoman3 0:1:38:625 

Anchorwoman 0:16:11:873 

Total 0:40:21:574 
Table 4.7 Total duration of the wav files of the subclasses: Anchoworman1, Anchoworman2, Anchorwoman3, and 

Anchorwoman of the class Anchorwoman. 

 

 

CLASSES DURATIONS (h:m:s:ms) 

OtherMusic 0:3:29:218 

ThemeMusic 0.12:42:921 

Total 0:16:12:139 
Table 4.8: Total duration of the wav files of the subclasses: OtherMusic, ThemeMusic of the class Music. 

 

 

CLASSES DURATIONS (h:m:s:ms) 

Speech+Music 0:56:37:544 

Speech+Music 0:18:20:299 

Environmental 0:2:11:278 

Total 1:17:9:121 
Table 4.9: Total duration of the wav file of the subclasses: Speech+Music, Speech+Noise, Environmental of the class 

Other. 

 

In order to obtain a compact view of the available audio materials for each class the matlab code 

also returns the pie diagrams, reported in figure 4.4 and 4.11, that represent statistical information 

of the data base created. 
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Figure 4.3: a) Pie diagram of the classes: Speech, Music, Other, Silence; b) Pie diagram of the subclasses Male, Female 

of the class Speech; c) Pie diagram of the subclasses OtherMusic, ThemeMusic of the class Music; d) Pie diagram of 

the subclasses Speech+Noise ,Speech+Music, Enviromental of the class Other. 

 

 

Figure 4.4: a) Pie diagram of the subclasses: Anchorwoman, Female, FemaleSpot, FemaleTel of the class Female; b) 

Pie diagram of the subclasses Anchorwoman1, Anchorwoman2, Anchorwoman3, Anchorwoman of the class 

Anchorwoman; c) Pie diagram of the subclasses Anchorman, Male ,MaleSpot, MaleTel of the class Male; d) Pie 

diagram of the subclasses Anchorman1,  Anchorman2, of the class Anchorman. 
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After the manual segmentation with WaveSurfer I implemented a matlab code that converts the file 

lab in an XML document MPEG-7 compliant. In the following sections I describe the MPEG-7 

Multimedia Descriptor Schemes (MDSs), which are metadata structures for describing and 

annotating audio-visual (AV) content. The DSs provide a standardized way of describing in XML 

the important concepts related to AV content description and content management in order to 

facilitate searching, indexing, filtering, and access. 

 

4.3 MPEG-7 Multimedia Description Schemes  

MPEG-7 Multimedia Description Schemes are defined using the MPEG-7 Description Definition 

Language (DDL), which is based on the XML Schema Language, and are instantiated as documents 

or streams. The resulting descriptions can be expressed in a textual form (i.e., human readable XML 

for editing, searching, filtering) or compressed binary form (i.e., for storage or transmission). The 

goal of the MPEG-7 standard is to allow interoperable searching, indexing, filtering and access of 

audio-visual (AV) content by enabling interoperability among devices and applications that deal 

with AV content description. MPEG-7 describes specific features of AV content as well as 

information related to AV content management. Overall, the standard specifies four types of 

normative elements: Descriptors, Description Schemes (DSs), a Description Definition Language 

(DDL), and coding schemes. The MPEG-7 Descriptors are designed primarily to describe low-level 

audio or visual features. On the other hand, the MPEG-7 DSs are designed primarily to describe 

higher-level AV features. 

 

4.4 Organization of MDS tools  

MPEG-7 Multimedia Description Scheme (MDS) comprises the set of Description Tools (Ds and 

DSs) dealing with multimedia entities. MDS contains, among others, which we can see in figure 

4.5, the following areas; Basic Elements, Content Management and Content Description [60]. 

 

 Basic Elements: address specific needs of audiovisual content description, such as the 

description of time, persons, places and other textual annotation. 

 Content Management: describes different aspects of creation and production of the process 

such as: title, creators, locations, dates and media information of the audiovisual content 

(storage media, coding format and compression) to adjust to different network 

environments. 

 Content Description: describes the structure, segmentation of the content and semantics 

(entities, events, relationships) of the audiovisual content. Thus, it allows attaching audio, 
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video, annotation and content management to the multimedia segments, to depict them in 

detail. 

 

 

Figure 4.5: Overview of the MPEG-7 Multimedia DSs. Figure from [61] 

 

As the target of this section of my thesis is obtain an XML MPEG-7 document, which describes for 

each GR all the segments manually compute, and their temporal location in the wav file, I’m 

interested only in Content Description and Basic Elements. 

 

4.4.1 Content Description 

The description schemes for content description describe the Structure (region, video frames and 

audio segments) and Semantics (objects, events and abstract notions). The functionality of each of 

these classes of description schemes is given as follows: 

 Structural aspects: description schemes describe the multimedia content from the viewpoint 

of its structure. The description is built around the notion of Segment description scheme 

that represents a spatial, temporal or spatial temporal portion of the multimedia content. The 

Segment description scheme can be organized into a hierarchical structure to produce a 

Table of Content for accessing or an Index for searching the multimedia content. The 

Segments can be further described on the basis of perceptual features using MPEG-7 

Descriptors for color, texture, shape, motion, audio features and so forth, as well as semantic 

information using Textual Annotations. 



Chapter 4-Audio database and manual segmentation 

 

51 
 

 Conceptual aspects: description schemes describe the multimedia content from the 

viewpoint of real-world semantics and conceptual notions. The Semantic description 

schemes involve entities such as objects, events, abstract concepts and relationship. The 

Segment description schemes and Semantic description schemes are related by a set of links 

that allows the multimedia content to be described on the basis of both content structure and 

semantics together. 

In this project I am interesting only to give a structural description of the segments and so I used the 

Segment description schemes as we can see in the listing 4.2  

 

 

Listing 4.2: AudioSegmentType 

 

4.4.2 Basic Elements 

As we can see from figure 4.5 the set of description tools called the MPEG-7 Basic Elements is 

subdivided into three groups: Schema tools, Basic datatypes, Link and localization tools, and Basic 

tools. 

 Basic data types, which represent mathematical constructs useful for multimedia 

description, such as matrices and vectors.  

 Linking and localization tools, which are used to specify references within description, to 

link MPEG-7 description to media, to identify and locate media and to describe time. 

 Basic tools that address common aspects of multimedia content description. This includes 

graphs for structuring complex multimedia content descriptions, text annotations, 

descriptions of people and places, specifications of effective response and description 

ordering. 

 Schema tools compared with other basic elements, Schema tools have a different 

functionality because they not target the description of the content but are used to create 

valid descriptions and to manage them. 

In the table 4.10 I report the four groups with their description tool 
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Schema tools Basic datatypes Link & localization tools Basic tools 

Base types Integer, Real References Graphs & relations 

Root element Matrices, Vectors Media Locators Textual annotation 

Top-level tools Region, Country Time Classification schemes 

Multimedia content entity tools Currency  Terms 

Package tool   Agents 

Description metadata tool   Places 

   Affective description 

   Ordering key 

Table 4.10: Overview of the MPEG-7 Basic Elements 

 

4.5 Automatic generation of an XML Document for the description of the 

Segments 

To create MPEG-7 descriptions of any multimedia content, the first requirement is to build a 

wrapper for the description using the Schema Tools, which should have the header information 

reported in the listing 4.3. 

 

 

Listing 4.3: Root element 

 

The root type provides metadata about the description as well as information that is common to the 

description, such as the language of the text and the convention for specifying time. The root 

element provides a choice of elements for creating either a complete description or a description 

unit, which are defined as follows: 

 Complete Description: describes multimedia content using the top-level types. For example, 

the description of an image is a complete description. 

 Description Unit: describes an instance of a D, DS, or header. A description unit can be used 

to represent partial information from a complete description. For example, the description of 

a shape or color is a description unit. 

In this thesis as we are interested to the description of the entire GRR I choose the complete 

description that describes multimedia content using the top-level types of the Schema Tools. The 

top-level types are used in complete descriptions to describe multimedia content and metadata 

related to content management. Each top-level type contains the description tools that are relevant 
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for a particular description task. For describing multimedia content entities such as audio, we have 

to use the top-level type ContentEntityType, as shows in listing 4.4. 

 

 

Listing 4.4: ContentEntityType 

 

In order to give an identifier to each segment and to describe its temporal location we have to use 

the References tool of the linking and localization tools. 

The Reference data type provides three basic reference mechanisms: 

 Idref: References a description element within the same description document. The target is 

identified by its ID attribute, which is unique within the description document. 

 xpath : References a description element using a subset of XML Path Language(XPath). An 

XPath expression identifies a reference target by its position within the description tree. 

 href: References a description or description element using a Uniform Resource Identifier 

(URI). Unlike the idref and xpath mechanism, href references can refer to an element in 

another description diocument. 

In this work I have use the first mechanism as show in listing 4.5 

 

 

Listing 4.5: Idref 

 

MPEG-7 can represent two different kinds of time: (1) media time, which is time measured or 

stored within the media and (2) generic time, which is time measured in the world. Both and world 

time use the same representation, except that the data types for world time also contain time zone 

(TZ) information [63]. Here I describe only the media time data types. 

The MPEG-7 media time data types are compatible with time specification used in common 

multimedia formats such as MPEG-4 and are based on the ISO 8601 standard. The media time data 

types represent time periods using a start time point (mediaTimePoint data type) and a duration 

(mediaDuration data type). The mediaTimePoint data type uses the following syntax: 

-YYY-MM-DThh:mm:ss:nFN 

which includes the year (Y), month(M), days(D), a separator T, hours(h), minutes(m) and seconds 

(s), 1/N is a fraction of one second and n the number of those fractions. 
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For example the MediaTimePoint in the listing 4.6 indicates 19 minutes 59 seconds and 957 

milliseconds. 

 

 

Listing 4.6: MediaTimePoint 

 

The mediaDuration data types uses the following format: 

(-) PnDTnHnMnSnNnF 

In this format, each part of the duration contains a count followed by a letter indicating the unit 

being counted: P is the separator indicating the start of a duration, days are indicated by D, T 

separates time from days, H indicates hours, M minutes, S seconds and the subsecond part uses the 

same representation as mediaTimePoint, with N indicating the counted fractions and F the 

franctions of one second.  

For example the MediadDuration in the listing 4.7 indicates 2 seconds and 267 milliseconds. 

 

 

Listing 4.7: MediaDuration 

 

 

Figure 4.6: Kinds of media time representation 

 

On the top of the mediaDuration and mediaTimePoint data types, MPEG-7 builds three kinds of 

media time representation: 

 Simple Time: The basic representation of an absolute time point (figure 4.6a). 
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 Relative time: Specifies a media time point relative to a time base. Useful if a media 

segment, such as a story in a news sequence, is placed dynamically. To update the story’s 

description, only the time base (𝑡0) needs to be changed (figure 4.6b). 

 Incremental time: Specifies a time period by counting predefined time units (figure 4.6c)  

 

In order to indicate to each segment its label I used the text annotation tool of the basic tool (see 

table 4.10), as show in listing 4.8. 

 

 

Listing 4.8: TextAnnotation 
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4.6 Example of a XML Document for the Description of the Segments 

As I said earlier we implemented a matlab code that converts the lab files into a XML document 

MPEG-7 compliant.  

In the code we employed an XML utility in order to create the node of the XML document. In the 

listing 4.2 we reported the XML document created from the lab file of a GR3. 

 

 

           [...] 

 

Listing 4.9: Example of a XML Document MPEG-7 compliant created from a lab file of a GR3 
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The code is composed by four functions: the main function reads the lab file and controls if already 

exists an xml document for this lab file if yes then calls the function CreateXML passing it the 

entire duration of the GR, the starting point of the first segment and its duration. 

The function CreateXML starting from the root element create all the nodes of the XML three as 

istance of the class docNode using the method createElement and sets their attributes using the 

method setAttribute. After that puts all the nodes in the correct position in the three using the 

method appendChild. This function ends with the writing of the wrapper and the description of the 

first segment in the XML document. 

For the second segment the XML document already exists and so instead to call the function 

CreateXML calls the function addXMLAudioSegment, with the same parameters, which creates all 

the nodes necessary for the description of a segment in the same way of the function CreateXML 

and append this node in XML three of the document created early. This function ends rewriting the 

XML document with the new XML three. The code works in the same way for the other segments 

till the end of the lab file.  

In order to test our XML document we validated it using the NIST MPEG-7 Validation Service 

[65]. In the listing 4.10 I report the output of the validation. 

 

Listing 4.10: NIST MPEG-7 Validation Result 
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CHAPTER 5 

AUTOMATIC AUDIO SEGMENTATION 
 

Segmenting audio data into speaker-labeled segments is the process of determining where 

speakers are engaged in a conversation (start and end of their turn). This finds application in 

numerous speech processing tasks, such as speaker-adapted speech recognition, speaker 

detection and speaker identification. 

Example applications include speaker segmentation in TV broadcast discussions or radio 

broadcast discussion panels. 

In [20], distance-based segmentation approaches are investigated. Segments belonging to the 

same speaker are clustered using a distance measure that measures the similarity of two 

neighboring windows placed in evenly spaced segments of time intervals. The advantage of 

this method is that it does not require any a priori information. However, since the clustering 

is based on distances between individual segments, accuracy suffers when segments are too 

short to describe sufficiently the characteristics of a speaker. 

In [21], a model-based approach is investigated. For every speaker in the audio recording, a 

model is trained and then an HMM segmentation is performed to find the best time-aligned 

speaker sequence. This method places the segmentation within a global maximum likelihood 

framework. However, most model based approaches require a priori information to initialize 

the speaker models. 

Similarity measurement between two adjacent windows is based on a comparison of their 

parametric statistical models. The decision of a speaker change is performed using a model-

selection-based method [22, 23] called the Bayesian information criterion (BIC). This method 

is robust and does not require thresholding. In [24, 25] it is shown that a hybrid algorithm, 

which combines metric-based and model-based techniques, works significantly better than all 

other approaches. 

 

5.1 Feature extraction 
The performance of the segmentation depends on the feature representation of audio signals. 

Discriminative and robust features are required, especially when the speech signal is 

corrupted by channel distortion or additive noise. Various features have been proposed in the 

literature: 
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• Mel-frequency cepstrum coefficients (MFCCs): one of the most popular sets of features 

used to parameterize speech is MFCCs. As outlined in Chapter 3, these are based on the 

human auditive system model of critical frequency bands. Linearly spaced filters at low 

frequencies and logarithmically at high frequencies have been used to capture the phonetically 

important characteristics of speech. 

• Linear prediction coefficients (LPCs)[26]: the LPC-based approach performs spectral 

analysis with an all-pole modeling constraint. It is fast and provides extremely accurate 

estimates of speech parameters. 

• Linear spectral pairs (LSPs) [27]: LSPs are derived from LPCs. Previous research has shown 

that LSPs may exhibit explicit differences in different audio classes. LSPs are more robust in 

noisy environments. 

• Cepstral mean normalization (CMN) [28]: the CMS method is used in speaker recognition to 

compensate for the effect of environmental conditions and transmission channels. 

• Perceptual linear prediction (PLP) [29]: this technique uses three concepts from the 

psychophysics of hearing to derive an estimate of the auditory spectrum: 

 critical-band spectral resolution, 

 equal loudness curve  

 the intensity–loudness power law 

 The auditory spectrum is then approximated by an autoregressive all-pole model. A fifth-

order all-pole model is effective in suppressing speaker-dependent details of the auditory 

spectrum. In comparison with conventional linear predictive (LP) analysis, PLP analysis is 

more consistent with human hearing. 

• RASTA-PLP [30]: the word RASTA stands for RelAtive SpecTrAl technique. This technique 

is an improvement on the traditional PLP method and incorporates a special filtering of the 

different frequency channels of a PLP analyzer. The filtering is employed to make speech 

analysis less sensitive to the slowly changing or steady-state factors in speech. 

The RASTA method replaces the conventional critical-band short-term spectrum in PLP and 

introduces a less sensitive spectral estimation. 

• Principal component analysis (PCA): PCA transforms a number of correlated variables into 

a number of uncorrelated variables called principal components. The first principal 

component accounts for as much of the variability in the data as possible, and each 

succeeding component accounts for as much of the remaining variability as possible. 
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• MPEG-7 audio spectrum projection (ASP). 

 

5.2 Model-Based Segmentation 

In model-based segmentation, a set of models for different acoustic speaker classes from a 

training corpus is defined and trained prior to segmentation. The incoming speech stream is 

classified using the models. The segmentation system finds the best time-aligned speaker 

sequence by maximum likelihood selection over a sliding window. Segmentation can be made 

at the locations where there is a change in the acoustic class. Boundaries between the classes 

are used as segment boundaries. However, most model-based approaches require a priori 

information to initialize the speaker models. 

 

5.3 Metric-Based Segmentation 

The metric-based segmentation task is divided into two main parts: speaker change detection 

and segment clustering.  

First, the speech signal is split into smaller segments that are assumed to contain only one 

speaker. Prior to the speaker change detection step, acoustic feature vectors are extracted. 

Speaker change detection measures a dissimilarity value between feature vectors in two 

consecutive windows. Consecutive distance values are often low-pass filtered. Local maxima 

exceeding a heuristic threshold indicate segment boundaries. 

Various speaker change detection algorithms differ in the kind of distance function they 

employ, the size of the windows, the time increments for the shifting of the two windows, and 

the way the resulting similarity values are evaluated and thresholded. The feature vectors in 

each of the two adjacent windows are assumed to follow some probability density (usually 

Gaussian) and the distance is represented by the dissimilarity of these two densities. Various 

similarity measures have already been proposed in the literature for this purpose. 

The metric-based method is very useful and very flexible, since no or little information about 

the speech signal is needed a priori to decide the segmentation points. It is simple and applied 

without a large training data set. Therefore, metric-based methods have the advantage of low 

computation cost and are thus suitable for real-time applications. The main drawbacks are: 

 It is difficult to decide an appropriate threshold 

 Each acoustic change point is detected only by its neighbouring acoustic information. 
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 To deal with homogeneous segments of various lengths, the length of the windows is 

usually short (typically2 seconds). Feature vectors may not be discriminative enough 

to obtain robust distance statistics. 

 

5.4 Hybrid Segmentation 

Hybrid segmentation is a combination of metric-based and model-based approaches. A 

distance-based segmentation algorithm is used to create an initial set of speaker models. 

Starting with these, model-based segmentation performs more refined segmentation. 

The hybrid segmentation can be divided into seven modules: silence removal, feature 

extraction, speaker change detection, segment-level clustering, speaker model training, 

model-level clustering and model-based resegmentation using the retrained speaker models. 

 

5.5 Decoder-Guided Segmentation 

The input audio stream can be first decoded; then the desired segments can be produced by 

cutting the input at the silence locations generated from the decoder [31, 32]. Other 

information from the decoder, such as the gender information, could be utilized in the 

segmentation [32]. 

 

5.6 Model-Selection-Based Segmentation 

The segmentation methods earlier described, according to [22], are not very successful in 

detection the acoustic changes present in the data. The decoder-guided segmentation only 

places boundary at silence locations, which in general has no direct connection with the 

acoustic changes in the data. Both the model-based segmentation and the metric-based 

segmentation rely on thresholding of measurements which lack stability and robustness. 

Besides, the model-based segmentation does not generalize to unseen acoustic conditions. 

In this thesis, I’m interested in detecting change in speaker identity in the radio news casting. 

The input audio stream can be modelled as a Gaussian process in the cepstral space. I use the 

same maximum likelihood approach presented in [22] in order to detect turns of a Gaussian 

process; the decision of a turn is based on the Bayesian Information Criterion (BIC), a model 

selection criterion in the statistics literature. 

In this chapter I first describe the model selection criterions, the maximum likelihood 

approach for acoustic change detection explained in [22] and then I describe how I 
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implemented this algorithm and I present experiments on the data base that I have described 

in the fourth chapter. 

 

5.7 Model Selection Criteria 

The challenge of model identification is to choose one from among a set of candidate models 

to describe a given data set. Candidates of a series of models often have different numbers of 

parameters. It is evident that when the number of parameters in the model is increased, the 

likelihood of the training data is also increased. However, when the number of parameters is 

too large, this might cause the problem of overtraining. Further, model-based segmentation 

does not generalize to acoustic conditions not presented in the model. 

Several criteria for model selection have been introduced in the literature, ranging from non-

parametric methods such as cross-validation to parametric methods such as the BIC [34]. The 

BIC permits the selection of a model from a set of models for the same data: this model will 

match the data while keeping complexity low. Also, the BIC can be viewed as a general 

change detection algorithm since it does not just take into account prior knowledge of 

speakers. 

BIC is a likelihood criterion penalized by the model complexity: the number of parameters in 

the model. In detail, let 𝑋 =  {𝑥𝑖 : 𝑖 =  1, … , 𝑁} be the data set we are modelling; let 𝑀 =

 {𝑀𝑖 : 𝑖 =  1, … , 𝐾} be the candidates of desired parametric models. Assuming we maximize 

the likelihood function separately for each model M, obtaining, say 𝐿(𝑋, 𝑀). Denote #(M) as 

the number of parameters in the model M. The BIC criterion is defined as: 

 

𝐵𝐼𝐶 𝑀 = log 𝐿( 𝑋, 𝑀 ) − 𝜆
1

2
#(𝑀) × log(𝑁)          (5.1) 

 

Where the penalty weight Λ=1. The BIC procedure is to choose the model for which the BIC 

criterion is maximized. 

BIC is closely related to other penalized likelihood criterions such as AIC [35] and RIC [36]. 

One can vary the penalty weight Λ in (5.1), although only Λ = 1 corresponds to the definition 

of BIC. 
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5.8 Change Detection via BIC 

In this section, I describe the maximum likelihood approach for acoustic change detection 

based on the BIC criterion suggested by the authors of [22]. 

Denote 𝑋 =  {𝑥𝑖  Є 𝑅𝑑 , 𝑖 =  1, … , 𝑁} as the sequence of cepstral vectors extracted from the 

entire audio stream; assume x is drawn from an independent multivariate Gaussian process: 

 

𝑥𝑖~ 𝑁(µ𝑖 , ∑𝑖)                      (5.2) 

 

where µi is the mean vector and ∑i is the full covariance matrix. 

Instead of making a local decision based on the distance between two adjacent sliding 

windows of fixed size, [22] applied the BIC to detect the change point within a window. 

The maximum likelihood ratio between H0 (no speaker turn) and H1 (speaker turns at time i) 

applied to the GLR is then defined by: 

 

𝑅𝐵𝐼𝐶 𝑖 =
𝑁𝑋

2
log ∑𝑋 −

𝑁𝑋1

2
log ∑𝑋1

 −
𝑁𝑋2

2
log ∑𝑋2

            (5.3) 

 

where ∑𝑋 , ∑𝑋1
, ∑𝑋2  are the covariance matrices of the complete sequence, the subset        

𝑋1 =  𝑥1, … , 𝑥 𝑖  and the subset 𝑋2 = {𝑥𝑖+1, … , 𝑥𝑁𝑋
} respectively. 

𝑁𝑋 , 𝑁𝑋1
, 𝑁𝑋2

 are the number of acoustic vectors in the complete sequence, sub-set 

𝑋 1and sub-set 𝑋2. 

The speaker turn point is estimated via the maximum likelihood ratio criterion as: 

 

𝑡 = arg max𝑖 𝑅𝐵𝐼𝐶 (𝑖)                             (5.4) 

 

On the other hand, we can view the hypothesis testing as a problem of model selection. We 

are comparing two models: one models the data as two Gaussians; the other models the data 

as just one Gaussian. The difference between the BIC values of these two models can be 

expressed as 

𝐵𝐼𝐶 (𝑖)  =  𝑅 (𝑖) –  𝛬𝑃                             (5.5) 

 

Where the likelihood ratio R (i) is defined in (5.3), the penalty 
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𝑃 =  ½ (𝑑 +  ½ 𝑑 (𝑑 + 1)) 𝑙𝑜𝑔 𝑁       (5.6) 

And the penalty weight Λ = 1; d is the dimension of the space. Thus if (5.5) is positive, the 

model of two Gaussians is favoured. Thus we decide there is a change if 

 

 max𝑖 𝐵𝐼𝐶(𝑖) > 0                      (5.7) 

 

It is clear that the m.l.e. of the changing point also can be expressed as 

 

𝑡 = arg max𝑖 𝐵𝐼𝐶(𝑖)                      (5.8) 

 

 

Figure 5.1 Detecting one changing point 

 

Comparing with the metric-based segmentation described in the first sections of this chapter, 

the BIC procedure according to the author of [22] has the following advantages: 

 Robusteness [37, 38] proposed to measure the variation at location i as the distance 

between a window to the left and a window to the right; typically the window size is 
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short, e.g. two seconds; the distance can be chosen to be the log likelihood ratio 

distance [39] or the KL distance. According to [22], such measurements are often 

noisy and not robust, because it involves only the limited samples in two short 

windows. In contrast, the BIC criterion is rather robust, since it computes the variation 

at time i utilizing all the samples. Figure 5.2 [22] shows an example which indicates 

the robustness of the Chen and Gopalakrishnan’s BIC procedure. Panel (a) plots the 

first dimension of the cepstral vectors of a speech signal of 77 s which contains two 

speakers; the dotted line indicates the location of the change. One can clearly notice 

the changing behaviour around the changing point. Panel (b) shows the log likelihood 

distance: it attains local maximum at the location of a change; however, it has several 

maxima which do not correspond to any changing points; it also seems rather noisy. 

Similarly Panel (c) shows the KL2 distances [37] between two adjacent sliding 

windows of 100 frames: there is a sharp spike at the location of the change; however, 

there are several other spikes which do not correspond to any changing points. Panel 

(d) displays the BIC criterion; it clearly predicts the changing point. 

 Thresholding-free Chen and Gopalakrishnan’s BIC procedure is able to automatically 

performs model selection, whereas [37] is based on thresholding. As shown in Figure 

5.1 (b) and (c), it is difficult to set a thresholding level to pick the changing points. 

Figure 5.1(d) indicates there is a change since the BIC value at the detected changing 

point is positive. 

 Optimaticality Chen and Gopalakrishnan’s BIC procedure is derived from the theory 

of maximum likelihood and model selection. The (5.8) converges to the true changing 

point as the sample size increase. 

But because of the growing window, Chen and Gopalakrishnan’s BIC scheme suffers from 

high computation costs, especially for audio streams that have many long homogeneous 

segments [40]. 

How I have said earlier BIC is supposed to have the advantage of not having any thresholding 

but this is only true if Λ=1 or if there a systematic way to find the optimal value of Λ. In 

absence of this, Λ is an implicit threshold embedded into the penalty term. This fact has been 

mentioned in previous work and was also noticed during my experiments as discussed later. 

In [41], it was mentioned that the threshold found using BIC principle (with Λ=1) yielded 

significantly worse results compared to the best possible threshold selection. In [42], the value 
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of Λ used was different than 1. In [43] a development dataset was used to find the optimal 

value of this parameter. 

During my experiments we noticed that higher values of Λ result in a higher threshold, and 

thus ignore many genuine speaker changes. A lower value, on the other hand, results in many 

false alarms. 

 

5.9 Detecting Multiple Changing Points 

[22] propose the following algorithm to sequentially detect the changing points in the 

Gaussian process x: 

1. Initialize the interval [a, b]: a = 1; b = 2. 

2. Detect if there is one changing point in [a, b] via BIC. 

3. if (no change in [a, b]) 

a. let b = b+1; 

       else 

b. let t be the changing point detected; 

c. set  a = t+1; b = a +1 

        end 

4. go to 2. 

By expanding the window [a, b], the final decision of a change point is made based on as 

much data points as possible. This can be more robust than decisions based on distance 

between two adjacent sliding windows of fixed sizes [37], though the Chen and 

Gopalakrishnan’s approach is more costly. 

The algorithm that I used is very similar to the one presented in [33]. I implemented this 

algorithm in Matlab starting from the Alexander Haubold’s algorithm [45] and basically 

maintaining his approach. In his algorithm there are two BIC evaluation levels: on top of first 

level (coarse) BIC evaluation there is a second level (fine) BIC evaluation. 

In the next chapter I describe in detail the algorithm that I used in my experiments on the 

GRR database. 
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CHAPTER 6 

EXPERIMENTS AND RESULTS 

As I said in the previous chapter I implemented the algorithm, descript in the section 5.9, in 

Matlab. The program requires as input the audio wav file and the CLAM XML file. In order 

to interface Matlab with CLAM I needed an XML parser which was able to extract the values 

of the descriptors from the CLAM XML file. For this purpose I used XMLTree an XML 

toolbox for Matlab [46].   

The speaker change detection was performed using 20-dimensional Mel-cepstral vectors with 

a frame size of 1023. 

I made experiments with 5 GRRs (Giornale Radio Rai). As we can see in the Tab 6.1 the 

GRRs have duration of 20-30 minutes and my pc hasn’t enough memory to allow CLAM to 

extract the descriptors of these file. For this reason I created a matlab code, which splits each 

GRR into segments of 10 minutes with an overlap of 1 minute.  Then I put the paths of these 

segments in the Project file of CLAM music Annotator, as descript in 3.2.1, in this way I 

obtained the XML documents containing the low level descriptors descript in the chapter 4. 

As commented in [38], it is very hard to come up with a standard for analyzing the errors in 

segmentation since segmentation can be very subjective; even two people listening to the 

same speech may segment it differently. Nevertheless, I analyze the performance of my 

detection by comparing with the hand – segmentation precedent made with WaveSurfer. For 

the Evaluation I used the same lab files, which I used for database creation, but I had to 

segment it and to create a matlab code that deletes all the segments that has duration inferior 

to 1s. 

In order to compare the two lab files I used two different evaluation methods that I describe in 

the next section. 

 
 

 
Table 6.1: GRR 

 

 

1 GR3 06/11/2007 20 min 
2 GR3 07/11/2007 20 min 

3 GR1 17/11/2007 30 min 

4 GR2 08/11/2007 28 min 

5 GR2 12/11/2007 28 min 
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6.1 Evaluation Method 

In a change detection system there are two types of errors. The first type takes place when a 

true change is not spotted and is called recall (R) while the second type happens when the 

system detects a change that does not actually exists and is called precision (P). 

Following the approach used in [66] I implemented a matlab code that takes as input the two 

lab file and computes precision P; recall R and F-measure F. 

 Precision is defined as the proportion of detected transitions that are relevant. Recall is 

defined as the proportion of relevant transitions detected. 

Thus, if B = {relevant transitions}, C = {detected transitions} and A = B ∩ C, from the above 

definition, 

                                                              𝑃 =  𝐴/𝐶                                  (6.1) 

                                                       𝑅 =  𝐴/𝐵                                  (6.2) 

                                                       𝐹 =  2 𝑃 ∗ 𝑅/ (𝑃 + 𝑅)             (6.3) 

 

A parameter w determines how far two boundaries can be apart but still count as one 

boundary. A typical value is from 0.5 s to 3 s, i.e., all boundaries within the range of w 

seconds before to w seconds after a boundary b are seen as identical to b. Figure 6.1 shows 

the effect of w: black boundaries in the upper panel count as hits, red ones as false alarm. 

In the example in figure 6.1 precision is 3/6 and recall ¾. 

This metrics go from zero (bad performance) to 1 (good performance). 

 

 

Figure 6.1: Boundary evaluation; top: detected boundaries, bottom: true boundaries 

 

 

6.2 Alternative Measure 

In [67] is used another performance measure, so I also computed Pam, Ram and 

Fam. Pam and Ram correspond to [67]’s 1-f and 1-m, respectively, and are calculated as follows: 

Considering the measurement M [computed segmentation] as a sequence of segments S
i
M, 

and the ground truth G likewise as segments S
j
G, we compute a directional Hamming distance 
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dGM by finding for each S
i
M the segment S

j
G with the maximum overlap, and then summing 

the difference,  

𝑑𝐺𝑀 =     𝑆𝑀 
𝑖 ∩ 𝑆𝐺

𝑘  

𝑆𝐺
𝑘≠𝑆𝐺

𝑗𝑆𝑀
𝑖

       (6.4) 

 

where |∙| denotes the duration of a segment.  We normalize dGM by the track length dur to give 

a measure of the missed boundaries. Similarly, we compute dMG, the inverse directional 

Hamming distance, and a similar normalized measure dMG/L of the segment fragmentation. 

Then , 

 

 𝑃𝑎𝑚  =  1 –
𝑑𝑀𝐺

𝑑𝑢𝑟
                                                                                       (6.5)                                        

 𝑅𝑎𝑚 =  1 –
𝑑𝐺𝑀

𝑑𝑢𝑟
                                                                                       (6.6) 

 𝐹𝑎𝑚  =  1 –  2 ∗ 𝑅𝑎𝑚 ∗
𝑃𝑎𝑚

𝑅𝑎𝑚 + 𝑃𝑎𝑚
                                                       (6.6) 

 

The main advantage of the alternative measures is that they somehow reflect how much the 

two segmentations differ from each other: If a boundary b from computed segmentation is 

apart more than w from the corresponding one in the ground truth b0, it does not count for P 

or R, regardless of how far they are apart (since b doesn’t belongs to A). In contrast, Pam and 

Ram will rise depending on the distance between b and b0 since these measures are not based 

on the boundaries directly but rather on (overlapping) segments between them. 

Also this metrics go from zero (bad performance) to 1 (good performance). 

 

6.3 Segmentation System 

In the figure 6.2 is reported the segmentation system scheme that I used to make the 

experiment that I will describe in the next sections. 
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Figure 6.2: Segmentation system scheme. 

6.4 First Experiment 

In the first experiment I used the following algorithm: 

 

1.   Initialize the interval [a, b]:  
        a = 1   b = 2*BICEVALSTEP 

2.  Detect if there is one changing point in [a, b] evaluating a   coarse BIC every 16 frames. 
3.  Let be i

MAX
 the index of the maximum positive value in the BIC vector.  

    if (i
MAX 

exists && i
MAX 

< length(BIC) -   BICEVALTRAILBUFFER )  

a. Find the change point in [a, b] evaluating a fine BIC   every frame.  
b. Set a = b – BICEVALSTEP; b = b+BICEVALSTEP.  

  else  
        Set b = b + BICEVALSTEP. 
   end 

4.  Go to 2 
 

The values like BICEVALSTEP and BICEVALTRAILBUFFER are also optimized for good 

performance as well as keeping the computational complexity reasonable. In my experiments 

BICEVALSTEP was chosen to correspond to 3,68 s of speech. 

The [a, b] interval is the interval where we are assuming that there is at most one changing 

point. At the second point of the algorithm a BIC vector of fix(b-a/16) elements is created and  

a changing point is detected if there is a maximum positive value in the top of the BIC vector 

(i
MAX 

< length(BIC) -   BICEVALTRAILBUFFER) otherwise any changing point is detected and 

the interval [a, b] increase. If there is a maximum we compute a fine BIC every frame and 

then a is set to b-BICEVALSTEP. The figure 6.3 shows how became the [a, b] interval if the 

maximum value is in the red zone. 
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Figure 6.3: [a, b] Interval setting. 

 

 In this experiment BICEVALSTEP is set to 16 frames; BICEVALTRAILBUFFER is set to 

160 frames and λ is set to 1. 

In the following figures I report the evaluation parameters for each 10 minutes segment of 

GRR in order to evaluate the performance of this algorithm. 

 

 

Figure 6.4: Precision of the first experiment varying the range 
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Figure 6.5: Pam of the first experiment 

 

 

Figure 6.6: Recall of the first experiment varying the range  
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Figure 6.7: Ram of the first experiment 

 

In the figure 6.6 can be noted that the recall values have a large variation this is due to the 

different characteristics of the 3 segments of GRR, in fact we have the worst result in the third 

one segments in which there are commercials while we have a good recall in the seconds 

segments in which there are only news. 

Comparing figure 6.6 and 6.4 we can note that the precision values haven’t a large variation 

as the recall values this means that the number of false alarm are quite the same for all 

segments. 

 

Figure 6.8: F function of the first experiment varying the range  
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Figure 6.9: Fam of the first experiment  

 

Comparing the figure 6.8 and 6.9 we can see that mean Fam is higher than mean F this is due 

to the "binaryness" of P and R. 

In the Figure 6.9 it should be noted that the performance of the algorithm is rather stable. 

In the Table 6.1 I report for each segment of 10 minutes of GRR the number of segment 

calculated with a manual segmentation and the number of the segments that are calculated 

automatically. 
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GRR # Truth Segments # Predicted Segments Λ=1 

1-GR3-Seg1 47 43 

1-GR3-Seg2 38 37 

2-GR3-Seg1 40 44 

2-GR3-Seg2 39 44 

3-GR1-Seg1 57 48 

3-GR1-Seg2 53 43 

3-GR1-Seg3 92 41 

4-GR2-Seg1 49 41 

4-GR2-Seg2 31 33 

4-GR2-Seg3 54 38 

5-GR2-Seg1 56 43 

5-GR2-Seg2 25 31 

5-GR2-Seg3 63 41 

 

Table 6.2: Number of the segments for each GRR 

 

I calculated also manually the performance of the automatic audio segmentation of the 5-

GR2-Seg2 comparing the 2 file lab. In the Table 6.2 are reported the number of the false 

alarm and the number of the missed detection. 

 

GRR # False Alarm # Missed Detection 

5-GR2-Seg2 9 3 

 

Table 6.3: Number of the false alarm and missed detection for the 5-GR2-Seg3 

 

 

Can be noted that the number of the false alarm and the missed detection reflect the values of 

precision and recall. 

We can compute the number of false alarm and the missed detection in the Figure 6.9 where 

are reported the sequence of segments calculated manually and automatically. We can see that 
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the missed segments are very short. In fact as emphasized in [22] the accuracy of the BIC 

procedure depends on the detectabilities of the true changing points. 

 Let 𝑇 =  {𝑡𝑖} be the true changing points; the detectability can be defined as 

 

𝐷 𝑡𝑖 =  𝑚𝑖𝑛 𝑡𝑖  – 𝑡 𝑖−1 +  1, 𝑡𝑖+1 − 𝑡𝑖 + 1           (6.7) 

 

When the detectability is low, the current changing point is often missed. 

In this example the detectabilities of the missed segments is very low. 

 

 

 

Figure 6.9: Comparison between manual and automatic segmentation 

 

 

6.5 Second Experiment 

In the second experiment I used the same algorithm of the first experiment but I set 

BICEVALTRAILBUFFER to ten frames in order to have more segments detected in fact in 

this experiment a maximum could be in the upper half part of the BIC vector while in the first 

experiment the maximum should be in the first four positions in the BIC vector to be consider 

as a changing point. In this experiment I also made a tuning of λ. In fact in the literature BIC 

is supposed to have the advantage of not having any thresholding. However, this is only true 

if λ =1 or if there a systematic way to find the optimal value of λ. In absence of this, λ is an 

implicit threshold embedded into the penalty term. 
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This fact has been mentioned in previous work. In [68], it was mentioned that the threshold 

found using BIC principle (with λ=1) yielded significantly worse results compared to the best 

possible threshold selection. In [69], the value of λ used was different than 1.0. In [70] a 

development dataset was used to find the optimal value of this parameter. 

So I computed the number of the segments detected tuning λ and then I chose tree different 

values of λ according to the type of segment: if it was a news segment or a commercial 

segment. A systematic way to select the value of λ could be to split the GRR in input into 10 

m segments and then to select λ according to the GRR and to the number of segment. But in 

this way this system is thresholding-free only in the case of the GRRs. 

In the table 6.3 are reported the values of 𝜆 and the number of the detected segments. In this 

experiment I chose the value of λ corresponding to the number of the segments detected in the 

yellow area in the table 6.3. 

 

GRR # T 
Seg 

# P Seg 
Λ=0.9 

# P Seg 
Λ=1 

# P Seg 
Λ=1.1 

# P Seg 
Λ=1.2 

# P Seg 
Λ=1.3 

# P Seg 
Λ=1.4 

1-GR3-
Seg1 

47 74 68 55 45 42 40 

2-GR3-
Seg1 

40 75 63 52 42 35 34 

3-GR1-
Seg2 

53 74 68 59 52 44 41 

4-GR2-
Seg2 

31 62 48 40 33 26 25 

5-GR2-
Seg2 

25 71 48 37 29 26 25 

3-GR1-
Seg1 

57 80 72 61 51 51 51 

4-GR2-
Seg1 

49 74 62 51 44 43 40 

5-GR2-
Seg1 

56 77 70 57 54 54 51 

3-GR1-
Seg3 

92 74 71 66 62 58 53 

4-GR2-
Seg3 

54 72 64 48 43 39 39 

5-GR2-
Seg3 

63 86 78 58 50 45 40 

1-GR3-
Seg2 

38 71 62 50 41 39 36 

2-GR3-
Seg2 

39 83 78 58 46 42 41 

Table 6.4: Tuning of λ in the second experiment. 

 

 



Chapter 6 – Experiments and Results 

 

79 

 

This approach should give a minor variation to the performance metrics. In fact the figures 

6.10 and 6.11 show that the variation of the function F and Fam is decreased. 

 

 

Figure 6.10: F function of the second experiment varying the range. 

 

 

Figure 6.11: Fam of the second experiment 

 

6.6 Third Experiment 

In the third experiment I changed the third point of the algorithm that I used in the previous 

experiments. The algorithm in this experiment runs as follows: 
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1.   Initialize the interval [a, b]:  
        a = 1   b = 2BICEVALSTEP  
2.  Detect if there is one changing point in [a, b] evaluating a   coarse BIC every 16 frames.  
3.  Let be i

MAX
 the index of the maximum positive value in the BIC vector.  

    if (i
MAX 

exists && i
MAX 

< length(BIC) -   BICEVALTRAILBUFFER )  

a. Find the change point in [a, b] evaluating a fine BIC   every frame.  

b. Set    𝑎 =   𝑏 −  
𝑏−1

𝐵𝐼𝐶𝐸𝑉𝐴𝐿𝑆𝑇𝐸𝑃
 − (𝑓𝑖𝑥  

𝑖𝑀𝐴𝑋 +16

𝐵𝐼𝐶𝐸𝑉𝐴𝐿𝑆𝑇𝐸𝑃
 + 1) 𝐵𝐼𝐶𝐸𝑉𝐴𝐿𝑆𝑇𝐸𝑃 

           
                                   b = b + BICEVALSTEP  
  else  
        Set b = b + BICEVALSTEP. 
   end  
4.  go to 2  
 

So in this experiment if there is a changing point: ‘a’ is set to the beginning of the next 

BICEVALSTEP and not to the last BICEVALSTEP.  

The figure 6.12 shows how became the [a, b] interval if the changing point was in the red 

zone. 

  

 

Figure 6.12: [a, b] interval setting in the third experiment. 

 

In this experiment BICEVALSTEP is set to 160 frames and BICTRAILBUFFER is set to 10 

frames. We made also in this experiment the λ tuning in order to choose the optimal value of 

λ. 

In the table 6.4 there are the number of the detected segments varying λ. In this case we can 

choose the same value of λ for all the segments. In fact I chose the value of λ corresponding to 

the number of detected segments in the yellow area.  
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GRR # T 
Seg 

# P Seg 
Λ=1 

# P Seg 
Λ=1.1 

# P Seg 
Λ=1.2 

# P Seg 
Λ=1.3 

# P Seg 
Λ=1.4 

# P Seg 
Λ=1.5 

1-GR3-
Seg1 

47 67 57 48 45 42 41 

2-GR3-
Seg1 

40 64 50 43 34 34 34 

3-GR1-
Seg2 

53 68 59 51 45 42 42 

4-GR2-
Seg2 

31 52 43 34 28 27 25 

5-GR2-
Seg2 

25 46 35 29 26 25 23 

3-GR1-
Seg1 

57 77 61 56 54 54 52 

4-GR2-
Seg1 

49 68 53 45 44 42 38 

5-GR2-
Seg1 

56 70 59 58 57 54 51 

3-GR1-
Seg3 

92 78 74 68 64 58 52 

4-GR2-
Seg3 

54 66 48 45 40 40 38 

5-GR2-
Seg3 

63 78 60 49 47 43 40 

1-GR3-
Seg2 

38 61 52 42 40 37 36 

2-GR3-
Seg2 

39 78 57 49 44 43 39 

Table 6.5: λ tuning in the third experiment 

 

In the figures 6.13 and 6.14 it should be noted that the performance of the algorithm is rather 

stable also using one value of λ for all segments. 

 

Figure 6.13: F function of the third experiment varying range. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Fu
n

ct
io

n
 F

GRR

range1s
range2s
range3s



Chapter 6 – Experiments and Results 

 

82 

 

 

 Figure 6.14: Fam of the third experiment. 

 

6.7 Conclusion 

In the figure 6.15 and 6.16 are reported the F function and Fam of the tree experiment. This 

graphs show that the performance of the third experiment is more stable than the performance of the 

other experiment, and moreover in the third experiment we have only one value of λ for all segments. 

 

 

Figure 6.15: F function of the three experiments with range=3s. 
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Figure 6.16: Fam of the three experiments. 

Summarizing: 

 In the first experiment the recall metric has a too large variation. 

 In the second experiment the recall variation is decreased, but we have tree different 

values of lambda. 

 In the third experiment we reach good performance using only one value of lambda.  

 

So the third experiment on the GRR database show that the last algorithm can successfully 

detect speaker change in the GRR wav file. 

The output of this system could be the input of the classification system implemented by 

Giuseppe Dimattia in his thesis [71]. 
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CHAPTER 7 

CONCLUSION 

I am very pleased with the amount of research and testing that took place toward the 

completion of this project. I believe I achieved the goals of the project as well. 

In this thesis a segmentation system was developed in order to segment a continuous audio 

stream in terms of acoustically homogenous regions. In fact it was able to detect audio events 

in a radio newscast audio stream. The experiments conducted on some samples of the GRR 

database that was created demonstrated that the spectral descriptors extracted using CLAM 

music annotator was able to distinguish music and speech; male and female; anchor and 

telephone reporter; one speaker and more speakers. After these experiments the MFCC 

descriptor was chosen to segment the GRR audio stream. The segmentation system based on 

BIC was implemented in Matlab and an XML parser was employed to allow the 

communication between CLAM and Matlab. 

The evaluation of output of algorithms is, at least in the research phase, as important as the 

algorithm itself. If the evaluation procedure does not produce useful and applicable 

performance numbers any effort to optimize an algorithm becomes futile. In fact you would 

not know whether algorithm A performs better than algorithm B. 

Thus, I decided to devote a significant part of my work to my evaluation system. 

It is very handy if there is a simple-to-use procedure that automatically produces both optical 

appealing and informative reports. This makes it possible to have rapid feedback loops in a 

phase where you adjust the large number of degrees of freedoms, i.e., algorithm parameters, 

to get an optimal result. I implemented two matlab codes in order to evaluate the performance 

of the segmentation system. The first one is based on boundary it computes recall; precision 

and the F function that is a mean of the other two metrics. The second one is based on the 

Directional Hamming Distance and is based on overlap and not on boundaries. These have as 

input the two lab file one obtained by an hand-segmentation and the second one is the output 

of the segmentation code. The manual segmentation is performed using WaveSurfer that 

allows the manual annotation and that has as output a lab file. A matlab code that converts 

these file lab into XML MPEG-7 compliant document was also implemented. In order to 

make experiments 15 GRRs was collected. In the first experiment the weigh parameter 

lambda is set to 1. In the second experiment a tunning of lambda was performed and I choose 

three different value of lambda according the contents of the GRR 
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In the last experiment I modified the algorithm and I also implemented a lambda tunning but 

this time we could choose one value for lambda for all kind of segments and the performances 

of the segmentation system are improved. 

The outputs of the segmentation system are the segments that are ready to be the input of 

classification system. In the figure 7.1is represented the entire system implemented in this 

thesis. 

 

 
 

Figure 7.1: Segmentation System. 

 

7.1 Future Works 
In this thesis for the extraction of the low level descriptors I employed the 

ClamExtractorExample in the future one could start from this extractor and develop an own 

one modifying some parameters. 

Another future work could be changing the matlab code in oder to segment the audio stream 

basing on another spectral features extracted using CLAM or on the Low Level Descriptors 

MPEG-7 compliant and then using the evaluation system could compare the different 

segmentation system. 

One could consider also integration of this work into CLAM code base. Integration into a big 

existing project is often appreciated. 

Another direction for future research could be modifying this system in order to make it real 

time. 
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