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ABSTRACT 

 
Medical research since the early to mid-1990s has indicated that the artery lesion known as soft 

plaque causes most heart attacks. The recent advances in temporal and spatial resolution of 

Multi-Slice Computed Tomography (MSCT) allow studying these structures in 3D with high 

accuracy. This thesis presents a semi-automatic method that detects the soft plaques in the 

coronary arteries and quantifies their volume from 3D MSCT datasets with limited user 

interaction. The presented method consists of: (1) the extraction of the artery centerline with 

an implementation of a multi-scale tracking algorithm, (2) a first segmentation of the vessel’s 

lumen to fix the initial centerline, (3) a final segmentation of the lumen and the wall of the 

artery, (4) the analysis of the volume along the vessel to detect soft plaques, and (4) the 

quantification of the plaques volume. The method was evaluated with 3D real medical images.. 

 

KEYWORDS 

Medical Imaging, Multi-Slice CT, Multi-scale Tracking Algorithm, EM with Gaussian Mixture 

Model segmentation, Soft Plaque Detection, Volume Quantification, Coronary Arteries.  
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GLOSSARY 

Atheroma: Abnormal inflammatory accumulation of macrophage white blood cells within the 

walls of arteries 

CAD: Coronary Artery Disease. See section 2.1. 

Calcium Score: A number reflecting the degree and extent of calcium deposits in the 

coronary arteries. 

Coronary arteries: Arteries that supply blood to the heart. 

EM: Estimation Maximization method. See section 3.3. 

GMM: Gaussian Mixture Model 

IVUS: Intravascular ultrasound 

Lumen: Interior of a vessel within the body. 

MI: Myocardial Infarction (heart attack). See section 2.1. 

MRI: Magnetic Resonance Imaging. 

MSCT: Multi-Slice Computed Tomography. See section 2.2.3. 

Soft plaque: An atheroma particularly prone to plaque rupture, which may produce heart 

attacks. See section 2.1. 

Stenosis: Abnormal narrowing in a blood vessel. 

Vulnerable plaque: Soft plaque. 
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INTRODUCTION 

Heart disease is the leading cause of death in the United States, killing 696,947 people in 2002 

[1]. Nevertheless, the scope of the disease and its effects are worldwide. According to a new 

international health study from the European Heart Journal, heart disease is the primary and 

most widespread health problem facing countries in Europe [2]. 

 

Figure 1: Death reasons in USA from 1958 to 2003. Source: Anderson, Robert N. et al. Deaths: Leading 
Causes for 2002. National Vital Statistics Reports, 2005. 

 
Despite progress in the understanding of atherosclerosis and coronary artery disease (CAD), 

main characters in heart disease, about half of all acute myocardial infarctions (MIs) still occur 

unexpectedly. Moreover, about one-third of people who experience a MI die within 24 hours. 

Certainly, there is a tremendous need for improving individual patient risk assessment for 

acute coronary syndromes (ACS). 
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There is increasing interest in detection of soft plaques in the arteries’ walls for the assessment 

of carotid atherosclerotic disease, as it has revealed to be a predictor of the MI’s risk. An 

automatic detection of these plaques would be useful in the study of their clinical significance. 

Recent improvements in the high-resolution Multi-Slice Computed Tomography (MSCT) 

provide information about the arterial wall that is unavailable with most other non-invasive 

methods, including angiography. Evidence suggests that this technology, in a future, will be 

useful in the characterization of plaque composition and microanatomy, thus leading to the 

identification of lesions that are vulnerable to rupture or erosion. 

The Medical Image Research Center of the Illinois Institute of Technology, in collaboration 

with the Rush Hospital, has tackled the task of creating a tool to make easier the diagnosis of 

CAD through the detection and quantification of these plaques in the CT scans. 

1.1 Project motivation 

With the facts above mentioned, it is clear that the potential aid of the soft plaque detection is 

huge. It could help to detect patients with high risk of myocardial infarction in early stages and 

make an appropriate treatment to avoid a sudden myocardial infarction. In addition, the non-

invasive character of this technique allows massive screening in a near future to select patients 

most likely to benefit from early intervention. 

Adding the possibility of soft plaque volume quantification, the outcome is even more 

attractive. The ability of measuring smaller values than in the common visual inspection makes 

it very useful in the treatment’s progression evaluation. According to Paolo Raggi, from the 

American College of Cardiology, “Minute regressions in percent stenosis equated to a 

phenomenal reduction in event rates (referring to myocardial infarctions).” [7] 

In this paper, we aim to develop an image segmentation and analysis procedure for identifying 

soft plaques in coronary arteries from MDCT image data. In the literature there exists a great 

deal of work on segmentation and visualization of blood vessels in various organs with 

different modalities (e.g., see [6] for a detailed review). Most of these methods, if not all, focus 

on how to extract vascular structures from image data.  



 11

Unlike calcified plaques, soft plaques exhibit as low intensity and have very little contrast from 

the arterial wall inside which they reside. Moreover, the vessel may not always exhibit 

narrowing at soft plaque site; on the contrary, it may even undergo positive remodeling [1].  

This consequently poses a significant challenge for soft plaque identification in the presence of 

imaging noise, as a traditional approach simply based on lumen narrowing analysis no longer 

works well. Our goal in this work is to demonstrate the feasibility of applying image analysis on 

both the lumen and arterial wall for detection and quantification of soft plaques from MDCT 

data.  

In this feasibility study, we will focus on a procedure that is computationally efficient, which is 

critical for practical implementation because modern MDCT scanners can now produce large 

volumes of data with ever reduced imaging time.  

 

1.2 Plan 

The present thesis is organized as follows: In the first part, Background, the framework of the 

subject is described. The biological characteristics are shown in the Medical section and the 

existing imaging devices in the Technical section, with especial stress on the MSCT. The next 

part, Previous Work, introduces the state-of-art in the vessel segmentation and plaque 

detection and ends with a comparative study of the techniques. The body of the thesis is the 

section Method, where it is explained the theory and implementation related to the 

implemented final solution. Finally, in Results and Discussion, a series of tests are run and 

commented, with a final section detailing future directions of work. 



 12

BACKGROUND 

2.1 Medical background 

As mentioned in the introduction, heart disease is the leading cause of death in many western 

countries. Heart disease is a vague term that refer to one of a number of different diseases that 

affect the heart, being the Coronary Artery Disease (CAD from now on) the most usual. 

CAD is the end result of the accumulation of plaques within the walls of the arteries that 

supply the myocardium (the muscle of the heart) [3]. The accumulation of plaque leads to the 

narrowing of the arteries, called stenosis, and may progress to the point where not enough 

blood supply arrives to the heart. In this case, cell starvation of the myocardium produces the 

myocardial infarction, commonly called heart attack. 

The plaques, known as atheroma, are produced by the inflammatory accumulation of 

macrophage white blood cells (WBC) within the walls of arteries. An atherosclerotic plaque 

consists of a core of dead foam cells (lipid-engorged macrophages and smooth muscle cells) 

covered by a fibrous cap. This accumulation may be thrown in the blood stream if the 

covering tissue, called fibrous cap, is ruptured. The fibrous cap is a region of the intimal layer 

that has become thickened as a result of medial smooth muscle cells depositing collagen and 

elastin fibers. A fast development of platelet and clotting over the rupture follows, narrowing 

the vessel, and a shower of debris may result in an occlusion of downstream vessels. 

The thickening artery wall of an atherosclerotic plaque gradually encroaches upon the luminal 

space and can eventually result in a restriction to blood flow. Unstable plaques, which are 

susceptible to rupture, are softer, with a thinner fibrous cap. Plaque rupture triggers the 

formation of a blood clot, which can block the flow of blood through the artery. 
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Figure 2: Three different schematic cross-sections stages (Stable, Unstable, and Rupture) of a coronary artery 
are presented. Source: Ashley, Euan A., Niebauer, Josef  et al., Cardiology Explained, Remedica 2004. 

 

 

Figure 3: Schematic longitudinal section of an artery showing different stages of atherosclerotic plaque 
vulnerability. A: Normal, B: Rupture-prone plaque (soft plaque), C: Plaque rupture with fissure, D: 
Critical stenosis, E: Erosion-prone plaque, F: Intraplaque hemorrhage. Source: Naghavi, Morteza et al., 
New Developments in the Detection of Vulnerable Plaque Current Atherosclerosis Reports 2001. 

 
Until a little over a decade ago, the danger of plaque progression was considered to be the 

resulting progressive vessel narrowing, limiting the blood supply to downstream cardiac 

muscle. The prevailing belief about the culprit plaque was "the smaller, the better". This was 

proved to be false, or at least not reflective of the whole truth [4]. 
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The large, calcified plaque growing on the inside surface of coronary arteries is not the cause of 

most heart attacks. Rather, the primary culprit is the soft, relatively small (less than 

50% stenosis) "vulnerable" plaque that forms within the vessel walls. Large, calcified plaque is 

actually relatively stable and, because of its hard calcified covering, less commonly cracks. The 

more dynamic, less stable soft plaque is much more likely to suddenly rupture. 

Medical research since the early to mid-1990s, using medical image, careful clinical follow-up 

and other methods, have indicated that these lesions are the ones which produce most heart 

attacks. Unfortunately, vulnerable plaques are not revealed by cardiac stress testing or coronary 

angiography, the heart tests most commonly performed clinically with the goal of evaluating 

suspicion to future heart attack. 

2.2 Technical background 

The detection of vulnerable plaque can be considered a recent problem, hence not extensively 

explored. Some techniques have been developed in order to help the heart disease diagnosis. A 

brief review follows, with especial attention to the MSCT. 

The techniques may be roughly split into two categories: intravascular or invasive techniques 

and non-invasive techniques. 

2.2.1 Intravascular techniques 

All they offer a more accurate exam of the plaque. On the other hand, they require a catheter 

introduction in the patient’s vessel. The main are: 

Angioscopy: Angioscopy is the first intravascular imaging device used in clinical practice to 

further evaluate atherosclerotic plaque beyond angiography. The technique is based on fiber 

optic transmission of visible light, which provides a small field of view with relatively low 

resolution for visualization of interior surface of plaque and thrombus. 

The advantage of using angioscopy is that its technology is readily available and less expensive 

than other tests. However, it does have many disadvantages. It only visualizes the surface of 

the plaque and does not provide enough information regarding plaque characterization, it is 
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still rather complicated and difficult to use, it has low resolution, and it is highly dependent on 

the skills of the person performing the test. 

Intravascular Ultrasound: Intravascular ultrasound (IVUS) uses miniaturized crystals 

incorporated at catheter tips, and provides real-time, cross-sectional and longitudinal, high 

resolution images of the arterial wall with three-dimensional reconstruction capabilities. 

There are many advantages to this technique. It is a widely available technology that can be 

used routinely in clinical practice. It provides detailed information about the content of 

plaques, in particular, a large lipid core. IVUS can provide information regarding positive and 

negative remodeling of plaque, and detection of thrombus can be made without much 

difficulty. However, this test is not perfect. The currently available technology of IVUS does 

not have enough resolution to visualize the vulnerable plaque cap. Without significant 

improvement in utilizing ultra-high frequency, IVUS may not identify caps less than 200 mm 

wide. IVUS is also blind towards the area behind calcified regions, and it does not provide 

information about the activity of plaque and inflammation. 

Intravascular Thermography: This technique is based in the fact that the temperature of a 

plaque is inversely correlated to its cap thickness. A thermosensor catheter is used to measure 

the plaque temperature with sensitivity 0.002° centigrade at the presence of continuous blood 

flow. 

The advantages of this test deal with its measurement of temperature. Temperature is one of 

the most sensitive markers of inflammation; therefore, thermography can provide direct 

information for detection of inflamed vulnerable plaque. Also, from a technical point of view, 

measurement of temperature is quite simple and inexpensive. However, because plaque 

temperature is affected by blood temperature, change in blood flow/temperature may affect 

temperature readings. Also, thermography may not provide information about presumably no 

inflamed vulnerable plaque, or lesions with the so-called plaque erosion. 

Other intravascular techniques are Optical coherence tomography, Intravascular electrical 

impedance imaging, Photonic spectroscopy, Elastography and Intravascular and 

transesophageal magnetic resonance imaging. 
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2.2.2 Non invasive techniques 

These less accurate techniques allow a less traumatic scan and a possibility of massive 

screening. Some of them are: 

Magnetic Resonance Imaging (MRI): During the past 10 years, MRI has become an 

important tool in the field of cardiovascular disease and atherosclerosis. It relies in the nuclear 

magnetic resonance and provides angiographic data without radiation exposition. Several pulse 

sequences have been used to characterize atherosclerotic plaque, such as multispectral MRI 

using T1, T2, proton density, and three-dimensional time of flight. Some contrast media have 

been proposed to enhance the diagnostic value. 

There are many advantages and a few disadvantages for MRI. It is noninvasive and exposes 

the patient to no ionizing radiation. It provides information about the lumen of the vessel, as 

well as its wall (plaque). It allows for the possibility of serial follow-up of patients and plaque, 

and can provide other information about a patient's cardiovascular, as well as other, systems. 

The disadvantages of this test include poor coronary access and lack of proper resolution, its 

long acquisition time, and the fact that it only provides structural information. 

Nuclear Imaging: A number of radio labeled materials have been tested for their ability to 

bind to, and permit, scintigraphic detection of plaque materials. Vulnerable plaques, at least in 

part, are metabolically very active so they can be detected with a PET system. 

However, because of the numerous problems of ionizing radiation and the huge cost issue, 

radionuclide techniques are unlikely to become the method of choice for detection of 

vulnerable plaque in the general population. 

Electron Beam Computed Tomography: Electron beam computed tomography (EBCT), 

which quantifies calcification of coronary arteries, has been suggested as a means of diagnosing 

subclinical coronary artery disease and can reflect the burden of atherosclerosis. However, its 

use must yet be researched. 

Multi-Slice spiral/helical Computed Tomography (MSCT): Radiographic computed 

tomography (CT) has been subject to rapid technologic advances in the past few years, which 
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has made it a potential alternative to EBCT. In addition to the development of spiral CT, 

rotation times in the subsecond range and the development of multi-slice detectors were 

important advances. The cardiac reconstruction algorithms for imaging the heart with 

subsecond, multi-slice spiral CT utilizing retrospective electrocardiogram (ECG) information, 

makes it possible to compete with MRI. With synchronous recording of the ECG, the whole 

heart can be imaged continuously with thin slices and high spatial resolution in less than 30 

seconds. The quality of image appears adequate for precise calcium scoring and CT 

angiography of the coronary arteries. Although MRI has some other advantages with respect 

to coronary artery imaging, ultra-fast CT is turning into a real opportunity.  

In this work, the value of detection and quantification of the MSCT will be explored. 

Therefore, a deeper approach to this modality is given below. 

2.2.3 Multi Slice Computed Tomography 

Computed tomography, also called computed axial tomography, is a medical imaging 

technique employing tomography where digital geometry processing is used to generate a 3D 

image of the internals of an object from a large series of 2D X-ray images taken around a 

single axis of rotation [3].  

The first commercially viable CT system was invented by Godfrey Newbold Hounsfield in 

Hayes, England at Thorn EMI Central Research Laboratories using X-rays. Hounsfield 

conceived his idea in 1967, and it was publicly announced in 1972. Allan McLeod Cormack of 

Tufts University independently invented a similar process and they shared a Nobel Prize in 

medicine in 1979. 

X-ray slice data is generated using an X-ray source that rotates around the object; X-ray 

sensors are positioned on the opposite side of the circle from the X-ray source. Many data 

scans are progressively taken as the object is gradually passed through the gantry. They are 

combined together by the mathematical procedure known as tomographic reconstruction. 

Newer machines with faster computer systems and newer software strategies can process not 

only individual cross sections but continuously changing cross sections as the gantry, with the 

object to be imaged, is slowly and smoothly slid through the X-ray circle. These are called 
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helical or spiral CT machines. Their computer systems integrate the data of the moving 

individual slices to generate 3D volumetric information, in turn viewable from multiple 

different perspectives on attached CT workstation monitors. A heart volume is shown in the 

figure 4. 

To show the results, pixels in an image obtained by CT scanning are displayed in terms of 

relative radiodensity. The pixel itself is displayed according to the mean attenuation of the 

tissue(s) that it corresponds to on a scale from -1024 to +3071 on the Hounsfield scale (the 

unity is the HU). 

 

Figure 4: Conventional angiography image (left panel). Corresponding CT images using different image post-
processing techniques: volume rendered (middle panel) and maximum intensity projection (right panel). 
Source: Mollet et al., Non-invasive multislice CT coronary imaging, BMJ Publishing Group & British 
and Cardiac Society, 2005. 

 
Multislice CT represents the latest breakthrough in CT Technology. Fundamentally, MSCT 

scanner is equipped with a multiple detector array that concurrently collects data at different 

slice locations, a defining feature that brings in numerous advantageous spin-offs like rapid 

scanning, large patient coverage volume, high z-axis resolution, and generation of true 

isotropic datasets which in combination facilitates 3D imaging. MSCT provides a huge gain in 

performance that can be used to reduce scan times, reduce scan collimation or to increase scan 

length substantially [5]. 
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Figure 5: Frontal (A) and side (B) view of a computed tomography (CT) scanner. Source: Mollet et al., Non-

invasive multislice CT coronary imaging, BMJ Publishing Group & British and Cardiac Society, 2005. 
 
In the work of Schroeder et al. [6], the accuracy of non invasive MSCT and invasive IVUS in 

the soft plaque detection is compared. Experiences were performed in 15 patients with a total 

burden of 34 plaques. As a result, they stated that MSCT can differentiate coronary lesion 

configuration, with an especial mention to the soft plaque evaluation, which could make the 

MSCT an important diagnostic tool for risk stratification. 

Following the article of Budoff [12] states, the identification of a non-calcified plaque may very 

well be a plaque at an earlier stage of atherosclerosis, more amenable to anti-atherosclerotic 

therapies. Identifying a person with a large area of lipid-laden plaque and then initiating lipid-

lowering therapy to treat the asymptomatic CAD has logical appeal. However, one question is 

whether CT angiography can properly differentiate different types of non-calcific 

atherosclerotic plaque. Fibrous plaque generally is considered more stable (less vulnerable), 

whereas soft plaques with a large lipid core are far more vulnerable to rupture. Several CT 

studies have demonstrated that the lipid-rich plaque has a lower, but overlapping attenuation 

pattern to fibrous-rich plaque. Although there is no issue about detecting non-calcium plaque 

from the blood pool or calcium, there is substantial overlap between lipid-laden and fibrous 

plaque, not always permitting consistent differentiation [13]. Considering this, further studies 

are needed to demonstrate inter-reader and inter-scan reproducibility of the measure, autopsy 

studies are needed to validate quantification and identification of plaque burden, and validation 

of CT modalities ability is needed to separate coronary plaque composition into lipid- or 

fibrous-rich plaques. 
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PREVIOUS WORK 

For now, due to the recent innovation in both medical and technical background, the number 

of research studies about the soft plaque detection with MSCT scanners is still limited. The 

soft plaque volume quantification is virtually inexistent. Nevertheless, many have started to be 

interested. 

The big companies in the medical imaging field have begun to study, or even commercialize, 

some products for the soft plaque detection. For instance, Siemens with the HeartView CT 

Cardiac Imaging, which offers coronary plaque visualization, or Toshiba with its SurePlaque –

still in-progress– which provides color-coding of vessel walls, non-calcified and calcified 

plaques. 

Other projects related to soft plaque detection are being developed in other institutions, as 

“Detection of vulnerable plaque in the carotid artery with multislice CT” in the Erasmus 

University of Rotterdam or the project directed by Hans et al. [8] in Harvard Medical School. 

3.1 Vessel’s intensity 

The segmentation consists on separate an object with special features from an image. For the 

vessel’s segmentation, the used feature is the vessel’s intensity. This is evaluated using 

subjective evaluation criterion. In fact, lot of segmentation’s techniques use two a priori 

knowledge: 

• the inner of the vessel is brighter than the wall of the vessel. 

• the background is darker than the vessel. 

Even though most of the algorithms use the intensity, few articles discussed about the fact that 

vessel’s intensity has a gaussian distribution ([14], [15] and [16]). 

The second article defines the vessel’s intensity as a piecewise of Gaussian, but still consider 

the vessel as a one part. Moreover the study is for retinal vessels. The last article defines the 
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vessel’s intensity as the same as a blood-filled-region (vessel but also ventricle). The paper 

separates the thorax image only in three parts: myocardium, blood and lung. We will see in 

section 3.2 another way to separate the different parts of a vessel (inner, wall and stenoses). 

3.2 Vessel segmentation 

An extensive collection of papers has been published on the subject of segmentation and 

analysis of vessels, foundation of the soft plaque detection. An excellent overview is given by 

Kirbas and Quek [9]. In this survey, they divided the existing vessel segmentation algorithms 

and techniques into six main categories: pattern recognition techniques, model-based 

approaches, tracking-based approaches, artificial intelligence-based approaches, neural 

network-based approaches, and tube-like object detection approaches. These categories 

embrace the main trends in vessel segmentation, although many techniques use a mix of them.  

We can separate all this methods in two main classes of approach: one based on ”local 

measure” (region growing, differential geometry-based approaches, model-based approaches...) 

and the other based on ”global measure” (Parametric deformable models, level-set methods, 

front propagation methods...) . In general, the local measure is faster than the global one, 

because it uses a minimized region of interest. 

Growing and thresholding methods, in their most general form, are not sufficient to extract 

only the whole coronary arteries, because of the properties of these images. Finding 

appropriate methods is known to be a challenging problem because of the data imperfections 

such as noise, heterogeneous intensity and contrasts of similar tissues.  

Following this classification and comparing with other more recent papers (Kirbas review was 

published in 2004), we searched for the current trends and the most reliable techniques, in 

function of the citations in other papers and the tests performed. The first aim was to get a 

method that could be used in the soft plaque detection in MSCT images. The second aim of 

this project is to combine an accurate method with a fast one. No method appeared as the 

perfect one but, according to the mentioned criteria, it was observed the prevalence of some 

techniques: front propagation method, region growing and differential geometry-based 

approaches, detailed below. 
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3.2.1 Region Growing 

Region growing technique segments image pixels that belong to an object into regions. 

Segmentation is performed based on some predefined threshold. The threshold is in general a 

percentage of the intensity of the seed point. This technique has been used in some papers, 

such as Extraction of Blood Vessel in CT angiography image aided by fuzzy logic ([10]) or 

System for Analyzing High-Resolution Three-Dimensional Coronary Angiograms ([11]). 

This technique is not really robust against noise (threshold is an approximation), so there are 

lot of pre-treatments such 3D smooth image filter, threshold operations to separate brighter 

and darker region. Another problem with this technique is the difficult way to extract some 

features, in order to study the vessel characteristics and to detect soft plaques. 

3.2.2 Differential geometry-based approaches 

Approaches based on differential measures typically use partial derivatives of the image data up 

to second order. In the segmentation of vessel, the Hessian matrix is used, used, which 

requires second-order partial derivatives of an image. In general, the used kernel is Gaussian, 

which permits a good detection of edges. In this approach, eigenvalues and eigenvectors are 

exploited, and a vesselness measure can be calculated with the eigenvalues. The main problem 

of this technique is that is very sensitive to the noise (the region of interest is very small, and 

biased value have more consequences). The robustness can be improved with by using a multi-

scale approach. 

3.3 Soft Plaques Detection 

For the detection of the soft plaque, the main idea is to extract the centerline of the vessel, 

then to calculate its diameter or its radius, and finally to detect where the vessel narrow down. 

There are many problems for this detection. First of all, the accuracy of the centerline is very 

important. The diameter depends directly of the centerline. To find it, the main algorithms use 

iterative algorithms, which can take a lot of time. The second problem to find a precise 

centerline is to have a good segmentation. But the threshold of the segmentation is not really 

precise. 
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The second main problem is the use of the diameter. The vessel lumen may not be a regular 

cylinder. In fact, the soft plaques are usually eccentric and asymmetric (see the figure 6, part A) 

. The use of the diameter is an approximation. Consequently there are other features which are 

extracted like cross-section areas ([17] and [18]). This method is more robust than the 

diameter. But it depends hardly on the cross section segmentation. If the plane is not 

perpendicular, the cross-section area will increase really fast (see the figure 6, part B). 

 

Figure 6: Problems of using diameter and cross-section area for detection of soft plaques 
We will introduce a new feature in our approach: local volume of the vessel (see the part 3.3).  

For the segmentation of the soft plaques, a first approach uses a convex algorithm is described 

in the paper Detection of vulnerable plaque in the carotid artery with MSCT by Hans et al. [8]. 

They have good results but the region of interest is small, consequently they can segment only 

small soft plaques. 
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METHOD 

Since soft plaques are known to lie within the arterial wall [2], our procedure begins with 

segmentation of the major coronary arteries, which includes separate segmentation of the 

lumen and arterial wall. We then identify the presence of soft plaques by examining the 

geometric and image features of the lumen and its surrounding wall surfaces. Our proposed 

semi-automatic procedure consists of the following five steps that are explained below:  

 1) Approximate detection of the arterial lumen's centerline using a multi-scale tracking algorithm 

 2) Segmentation of the vessel's lumen by means of an EM segmentation  

 3) Correction of the initial centreline by means of the lumen segmentation  

 4) Segmentation of the lumen and the wall separately with an EM segmentation method 

 5) Identification of soft plaques by comparing the cross-sectional areas of the lumen and wall.  

  

The method is semi-automatic, as the user has to manually select the seed point from real 

MSCT scan slices. The rest of the algorithm is automatic. 

3.1 First extraction of the vessel centerline 

With contrast enhancement the lumen voxels of the coronary arteries appear brighter than 

their immediate surroundings, and as a consequence the blood vessels can be modeled by a 

tubular structure in MDCT images. As mentioned earlier, there are many methods developed 

in the literature for vessel tracking based on this property (e.g., [22]). Out of consideration of 

computation complexity, we adopt a centerline tracking approach that is similar in spirit to [16] 

and [17], where vessel tracking is guided by a multi-scale filter based on local eigenvalue 

analysis of the Hessian matrix of the image.  

The main advantage of this method is that it is very fast. Indeed, the algorithm calculates the 

vessel locally and avoids the problem of working with a large amount of data, that would make 

the overall computation slow. Moreover, this algorithm gives us the normal vector of the 

consecutives orthogonal planes of the lumen's centerline. They will be used to calculate the 

local volume. The main drawback of the multi-scale tracking algorithm is its accuracy, as it 
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gives an approximate centerline of the vessel. As having the true centerline of the artery is 

essential to obtain a precise EM segmentation of the lumen and wall in posterior steps, further 

corrections of this initial tracking extraction are required (See 3.3). 

This first step requires the user to select the seed point where the tracking algorithm can start 

from, making the overall method semi-automatic. The algorithm implements the extraction of 

the centerline of the vessel starting from the seed point selected by the user. It can be divided 

in two parts: 

• the estimation of the position of the centerline’s point. 

• the local direction estimation. 

 

As a first approach, we just look for the tracking of one single branch of the vessel. In future 

work, extracting the whole vessel’s tree will be a priority like in the paper of Yang [14]. 

3.1.1 Estimation of the centerline’s point 

 
First of all, we take a seed point inside the vessel we will segment. Then we take a window 

region of interest around this seed point, and find the center of gravity of this window. Indeed, 

we suppose that the inner vessel is brighter than the background (this point is developed in 

section 3.2), and consequently that the centerline’s point corresponds to the center of gravity 

of the window. 

Moreover, we assume that the vessel is a cylinder, so we take a spherical window. But the 

results is similar with a cubical window, but the dynamic is different (we find centerline’s 

points but not the same points that we get with spherical window). 

We applied the first geometric central moments to compute this local centroid. The 

coordinates of the local centroid ( ), ,x y z
� �� �

inside a spherical window is given by: 

( ) 100 010 001

000 000 000

, , , ,
M M M

x y z
M M M

 
=  
 

� �� �
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where Mrpq is the r order moment in the x
��

direction, p order moment in the y
��

direction, and 

q order moment in the z
��

direction. We can read the paper of Hew [20] to learn more about 

the gravity center. The window center and the local centroid can be different, so we make an 

iterative process (see the figure 7). We replace the window center by the last local centroid. 

Due to the hypothesis that the centerline is brighter than the background, this iteration 

matches the local centroid with the center line of the vessel. 

 

Figure 7: One step of the algorithm between two points of the center line (in bold the vessel, we use a 
spherical window) 

 
You can have a problem of robustness if the size of the window is too small or too large. If it 

is too small, the iteration is very long and is very sensitive to the noise. If it is too large, a heart 

cavity can be located inside your window, which is brighter than the vessel. Moreover local 

centroid can have a problem to stabilize itself (it can go fast and let a big gap). Consequently 

we choose a window radius close to the vessel radius, but higher than it to avoid some noise. 
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3.1.2 Local vessel direction estimation 

A multi-scale filter based on eigenvalue analysis of the Hessian matrix was locally applied to 

the estimated point of the centerline. It permits to estimate the orientation of the vessel. We 

define the Hessian matrix for a voxel X at scale σ such as: 

       

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

xx xy xz

xy yy yz

xz yz zz

I X I X I X

H X I X I X I X

I X I X I X

 
 

=  
 
 

σ

  
  
  

           

where I__ is the regularized derivatives of the image I(X), which are obtained by convolving the 

image using the Gaussian kernel G(X, σ) at scale σ: 

          
2 ( , )

( ) * ( )
G X

I X I X
σ∂=

∂ ∂αβ σ  
α β

           

with Gaussian kernel: 
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The second derivative of a Gaussian kernel at scale σ permits to detect the contrast between 

the regions inside (vessel) and outside (background) in the direction of the derivative. 

Now, let λ1, λ 2, λ3 and 1v
��

, 2v
���

and 3v
��

be the eigenvalues and the unit eigenvectors of ( )H Xσ .  

he eigenvector 1v
��

corresponds to the smallest eigenvalue λ1 and it follows the direction of the 

vessel (see the figure 8). The properties of the eigenvalues of ( )H Xσ  give important 

information about the vessel structure at the found centerline point ip , such as tubular vs. 

plate-like structure (at vessel bifurcation); moreover, the eigenvector associated with the 

smallest eigenvalue (in magnitude) 1v
��

corresponds to the principal direction of the vessel, and 
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the other two eigenvectors correspond to the cross-section of the vessel, so 2v
���

and 3v
��

form a 

base of the orthogonal plane to 1v
��

.  

Frangi et al. [21] introduced two geometric ratios RA, RB in their vessel likeliness function 

V(X,σ) that follows : 

( ) 22 2

22 222 2

0
0 0

,
(1 )( )(1 )

RR SV X
else

e e e
σ −− −

 ≥ ≥= 
 − −

βσ

2 3

βα c

if λ  and λ
           

The ratios Ra, Rb and S are define as: 

            R = 2
a

3

λ
λ

                     1

2 3
bR = λ

λ λ
                   S = + +1 2 3λ λ λ  

The parameters α, β and c control the sensitivity of the filter. It is fixed arbitrarily. The 

parameters Ra, Rb and S describe the geometry of the vessel, but we don’t use this information 

in our paper. The interested reader can refer to the paper [14], [21], [22] and [23]. 

The response of this filter was computed at different scales σ. The response of the filter is 

maximum for the scale σ which approximates the vessel. So we have: 

            max ( ( , ))V X=
min max

used σ < σ <σ
σ σ                 

The direction of the vessel corresponds to the eigenvector 1v
��

at the scale σ used.  

 

Figure 8: Eigenvectors of H σat the point Pi 
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It is expected that the estimated principal direction above will be sensitive to the imaging noise, 

because the Hessian matrix ( )H Xσ  involves the second derivatives of the image. To reduce 

the impact of the noise, we apply a post-filtering step on the search direction vector. 

Specifically, let i′v  denote the computed principal direction at ip from eigenvalue analysis as 

above. Then the search direction iv  is obtained by using the following autoregressive filter:  

                                                            1(1 )i i iα α −′= + −v v v    

where 1i−v is the search direction at previous centerline point 1( )iI +p , 0 1α< <  is a constant 

used to control the update speed. In our experiments, 0.5α =  was used. 

To avoid backward tracking, the eigenvector i′v  is chosen to be in the general direction of 

1i−v , i.e., 1, 0i i−′ >v v ; otherwise, its opposite direction is used. In our experiments, for 

centerline extraction a cubic window with 10 voxels in each dimension was used for 

computing the center of gravity. Now we have to choose an incremental displacement along 

the vessel’s centerline. As the radius of the window, we have to choose wisely this parameter. 

If it is too small, the time of the algorithm can be very long, and we can be blocked. If the step 

is too long, we can go to the nearest cavity (see the figure 9) and the posterior cross-sectional 

area measurement could be less accurate in when the cross-sectional planes are not exactly 

orthogonal to the real centerline of the vessel.  

 

Figure 9: Two divergent cases if the length of the displacement is too long 
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After considering the time cost of having a short step size and evaluation the posterior volume 

measurement relying on the cross-sectional area of every tracking step, the step size used was 2 

voxels between two consecutive centerline points. 

We iterate the estimation of the position of the centerline’s point and the local vessel direction 

estimation until some stop criterions. By estimating the radius, area and perimeter of every 

tacking step, we implement three stop criterions: 

• Entering big cavities next to the vessel when the radius R>15 voxels  

• Entering a tracking loop when the next centerline point 1i+p  has been already tracked 

• Entering to a myocardium (background) area when the next point intensity is too low 

1( )iI +p <900 and our of the vessel's intensity range 

• Next tracking point is out of the scan image bounds 

After finding stopping criteria, the algorithm goes back to the initial seed point and starts 

tracking to the reverse tracking way, until we meet other stopping criteria. So, the tracking 

procedure starts with a seed point 0p  selected on the lumen of a coronary artery, and searches 

for a set of centerline points along the path of the lumen in the  following successive fashion: 

at point , 0,1,i i =p ⋯  

 

a. Refine the point ip  so that it lies on the centerline of the lumen. 
b. Perform multi-scale Hessian filter analysis to obtain the local main local direction 

iv  of the lumen  at ip . 

c. Search the next tracking point with direction iv , i.e., 1i i i id+ = +p p v , where id  is 
the step size. 

d. Repeat the above steps until the stop criterion is met. 

e. Go back to seed starting point ip picking the reverse local principal direction iv  of 
the lumen and repeat the above steps 

We present an operating diagram of this two steps and of the stop criterions in figure 10: 
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Figure 10: Operating diagram for the extraction of the centerline 
 
It is important to notice again that this tracking algorithm doesn't detect nor track bifurcations 

on the seed's point vessel, so it ignores the ramifications from the artery. This approach is 

more simplistic. Albeit the simplification was deliberate. This project is not intended to create a 

vessel tree but to validate the centerline extraction and improve the vessel segmentation and 

soft plaque detection. Further extension of the artery tree tracking will be desirable.  

3.2 Pre-segmentation operations 

The local differences in contrast agent distribution and other undesired features lead to a noisy 

data. Therefore, the first task of the preprocessing should be improving the image quality. 

Several filtering options were considered but, after analyzing the filtering steps already done by 

the post-processing of the Phillips MSCT 64-slice scan such as z-axis multi-slice filtering, at 

last, the 2D median filtering gave the best results. The median of a group, containing an odd 

number of elements, is defined as the middle element, when the elements of the group are 
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sorted. A median filter finds the median of a number of elements at its input. In the standard 

median filtering applications, a window of size [ w , w ] , where w  is odd, is moved along the 

sampled values of the image. The median filter considers each voxel and looks for the values 

of its 2D neighbors. Then, it calculates its median value, i.e. the number dividing the higher 

half of the ordered sample, and replaces the considered output voxel located at the same 

position as the central element of the window with it [24]. The median computed at this 

operation is called the running or the moving median. Since the size of the window is constant, 

the number of incoming elements is equal to the number of outgoing elements. [25] 

Our filter takes the neighbors in the cube of size 4x4. The result is a new image that eliminates 

the impulse noise and conserves accurately the edges. 

             

Figure 11: Original image scan  (left) and median-filtered image scan (right). 
 

 

Figure 12: Cross-sectional original (top) and median-filtered image (bottom) segmentation view results. 
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Figure 13: 3D lumen segmentation view results without (left) and with median-filtered image (right). 
 
Before entering to the segmentation step of the algorithm, we resize the constructed 3D image 

volume data to the region of interest as computational efficiency increases, defining the new 

bounds of the dataset with a rectangular prism containing the previously tracked vessel.  

3.3 EM segmentation 

After the first centerline extraction, we have obtained a sampled approach to the real centerline 

of the vessel, orthogonal planes to the direction of the centerline at each tracking point and the 

approximate radius of the lumen. With this basis, we perform an Estimation Maximization  

(EM from now on) for Gaussian Mixture estimation process to eventually segment separately 

the lumen and the wall of the coronary artery selected with the seed point.  

The EM for Gaussian Mixture Model (GMM) is a iterative statistical process in which a 

histogram of gray intensity values is modeled as mixture of Gaussians by means of an data 

input of voxels. By using this GMM, we assume that the lumen and wall intensity distribution 

is Gaussian. Prior to the EM for GMM description, let's analyze this assumption by stydying 

the vessel intensity distribution. 
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3.3.1 Vessel intensity distribution 

Some papers present that the vessel has a Gaussian distribution for its intensity rank ([14], [15] 

and [16] ).. The second paper [15] describe the vessel in a piecewise Gaussian distribution. But 

all this papers don’t make a difference between the wall and the inner of the vessel. For the 

detection and the segmentation of the soft plaques, this difference is pivotal. In fact, the soft 

plaques have the same intensity as the wall. 

In our paper, we study the wall vessel intensity (lumen and wall) and the myocardium 

(background), which are the surrounding coronary components surrounding the vessel 

centerline. These heart components voxels are critical as they are the ones that our 

segmentation algorithm will have to classify after having tracked the artery centerline. The 

main goal of this point is to check if the vessel has an approximate Gaussian intensity 

distribution as the previous mentioned papers present. Firstly, we study the case of the inner 

vessel (lumen) and the wall of the vessel.  

First of all, we explain how we have the intensity rank for the different cases. To have 

experimental intensity rank of the vessel, we segment the vessel with the tracking multi-scale 

algorithm to get the centerline, and we process a region growing algorithm with a threshold of 

90% and 110% of the centerline’s intensity. 

This threshold is rough, but sufficient to have enough voxels to make some experiments in 

order to show that the intensity for each of this three heart components has a Gaussian kind 

of distribution. When we try to get intensity distributions on a huge image, the vessel intensity 

range is included in the big heart cavities intensity range. So the curve obtains for the wall and 

the myocardium is better than the curve for the wall and the inner vessel (there are more 

samples in the first one). With this experimentation, we acquire a good knowledge of the 

background (myocardium). 

We fit the wall vessel intensity and the myocardium with a sum of two Gaussians (figure 14). 

Each Gaussian corresponds to one component. The segmentation of each part using this 

intensity range difference allows us to have a good separation of coronary components. The 

formula is the following: 



 35

                                              

2 2
1 2
2 2
1 22 2

1 2( )

x m x m

GMM x A e A e

   − −
   − −
   
   = +σ σ                                   

where 1A  and 2A  are the amplitudes, 1m and 2m  the means, and 1σ  and 2σ the variance. 

 

Figure 14: In blue the experimental intensity histogram for voxels of both the myocardium and the wall where 
two Gaussians are distinguishable, in red the Gaussian theoretical model for the myocardium part, in 

green the Gaussian theoretical model for the wall. 
 
As we can see in the figure 15, both myocardium and wall experimental intensity distributions 

have an approximate Gaussian shape. The myocardium intensity range has a lower mean than 

the wall's, as the wall voxels are brighter. Now we are going to study the case of the wall and 

the inner vessel. We have less samples than for the last case, so the histogram is noisier.  
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Figure 15: The experimental intensity histogram for the wall (in blue) and the inner (in black) of the vessel. 
 
In this last case of the vessel's wall and lumen intensity distribution, we can distinguish again 

two approximate Gaussian functions in the histogram. The wall intensity range has a lower 

mean than the lumen's, as the lumen voxels are brighter. Finally, we plot the experimental 

histogram of the surrounding vessel's centerline voxels to show the 3 Gaussian components 

corresponding to the background, the wall and lumen.  
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Figure 16: Experimental intensity histogram of the wall (blue), inner and background (black) of the vessel. 
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In other papers [14], a differentiation of three intensity coronary components is done (blood, 

lung and myocardium), but they didn’t separate the wall and the inner vessel case. After this 

experimental study with real MSCT scan, we proved the piecewise of Gaussian used in [15], 

and we can separate the surrounding voxels of the vessel in three coronary components (inner, 

wall and myocardium by modeling them with three Gaussian intensity distribution functions of 

weight A, mean 1m and deviation σ, as follows: 

22 2
31 2
22 2
31 2 22 2

1 2 3( )

x mx m x m

GMM x A e A e A e

     −− −
     −− −

     
     = + + σσ σ

 

where the myocardium is the Gaussian with lower intensity mean and the lumen is the 

Gaussian with higher intensity mean. Assuming now that we can model the intensity 

distribution of this three coronary components, we can apply the EM segmentation for 

Gaussian mixture model to classify every surrounding voxel of the vessel centerline. 

3.3.2 Estimation Maximization for Gaussian Mixture Model 

In the general case, the Expectation Maximization (EM) Algorithm is a method of finding the 

maximum-likelihood estimate of the parameters of an underlying distribution from a given 

data set when the data is incomplete or has missing values. The EM algorithm is an 

optimization algorithm that attempts to find a set of model parameters that corresponds to a 

maximum in the likelihood function. However the EM algorithm assumes that some variables 

are not observable, so the likelihood function cannot be exactly calculated and it is estimated 

with its expectation. Actually, it is the likelihood expectation that is maximized rather than the 

true likelihood. The EM is an iterative algorithm where each iteration consists of an  

Estimation step, were the expected likelihood function is calculated, and the Maximization step 

where it is maximized. 

Once selected the input voxels for the EM algorithm, for the Probability Density Function of 

mixture Gaussian function, the likelihood function is defined as follows: 

( ) ( )2
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The logarithm of the likelihood function ( );Λ ΘX  is given by 

( ) ( )2

1 1

; log ; ,
N d

i n i i

n i

P p xλ µ σ
= =

Θ = ⋅∑ ∑X                           

To find expressions that are valid at local maxima of λ  (or equivalently Λ ), we compute the 

derivatives of λ  with respect to 
i

P , 
i

µ , and 
i

σ . Setting the derivatives equal to zero, we obtain 

three groups of equations for the mixing probabilities, means, and standard deviations (Tomasi 

[28]): 
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At this point, we assume that approximate (initial) estimates ( )k

i
P , ( )k

i
µ , and ( )k

i
σ  are available 

for the parameters of the likelihood function ( );Λ ΘX  or its logarithm ( );λ ΘX . Then, 

better estimates ( 1)k

i
P + , ( 1)k

i
µ + , and ( 1)k

i
σ +  can be computed by first using the old estimates to 

construct a lower bound ( )
k

b Θ  for the likelihood function, and then maximizing the bound 

with respect to 
i

P , 
i

µ , and 
i

σ . 

Expectation maximization (EM) starts with initial values (0)

i
P , (0)

i
µ , (0 )

i
σ  for the parameters, 

and iteratively performs these two steps until convergence. Construction of the bound ( )
k

b Θ  

is called the “E step,” since the bound is the expectation of a logarithm, derived from use of 

Jensen’s inequality. The maximization of ( )
k

b Θ  that yields the new estimates ( 1)k

i
P + , ( 1)k

i
µ +  and 

( 1)k

i
σ +  is called the “M step.” 

Given the old parameter estimates ( )k

i
P , ( )k

i
µ  and ( )k

i
σ , we can compute estimates ( )|kP i n  for 

the membership probabilities 
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This is the actual computation performed in the E step. The rest of the “construction” of the 

bound ( )
k

b Θ  is theoretical, and uses Jensen’s inequality to bound the logarithm ( );λ ΘX  of 

the likelihood function in the following.  

In summary, given an initial estimate (0)

i
P , (0)

i
µ  and (0 )

i
σ , EM iterates the following 

computations until convergence to a local maximum of the likelihood function: 

E Step: 
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3.3.3 Voxel classification with the EM GMM segmentation 

For our specific vessel segmentation case, it is especially interesting to use an EM algorithm to 

fit a Gaussian Mixture Model (GMM) -determined by the weight
i

P , the mean 
i

µ  and the 

variance 
i

σ - to our MSCT scan voxels. A GMM is simply a probability distribution made up 

of linear combination of Gaussian distributions.  

                                                     ( ) ( )
1

,
k

i i i
i

GMM Gα
=

=∑x x µ Σ   

where ( ),G x µ Σ   is a multivariate Gaussian distribution 
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Since the ( )GMM x  is a probability distribution it is required that the iα ’s sum to 1. For the 

case of data clustering, each Gaussian component corresponds to a cluster. 

Unlike the single Gaussian case, no analytic ML estimation exists for a GMM. Thus, the only 

option is to resort to the iterative methods such as the EM algorithm. In our case, the latent 

variables – weight, mean, variance of each Gaussian intensity distribution for the lumen, wall 

and background – allows us to classify of the surrounding voxels of the lumen centerline, 

associating each  voxels to one component or cluster they are more likely to belong to. 

In the classical application of the EM algorithm to mixture models the number of components 

k is fixed from the beginning [27]. In our specific case, our local problem consists on 

estimating the Gaussian intensity probability functions for the surroundings of the vessel's 

path. So, as we have seen in (3.3.1), the voxels along and surrounding the vessel have three 

main Gaussians components, so our mixture model for the vessel has 3 Gaussian mixture 

components: 

• Myocardium or background: lowest gray intensity range values (gray voxels) 

• Artery wall: middle gray intensity range values (bright gray voxels) 

• Artery lumen: highest gray intensity range values (white-gray voxels) 

       

Figure 17: Two MSCT scan slice zoomed to show several arteries in the right ventricle and the different 
brightness level for every scan. Lumen voxels are almost white (left) and bright gray (right), myocardium 

voxels are gray, and wall voxels are bright gray, although hard to distinguish visually. 
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The algorithm is started with each component assigned an initial set of parameters that may be 

assigned by a human supervisor or some heuristic method or simply corresponding to random 

data points.  

Our input data to the algorithm is the surrounding voxels of the centerline. As this method is 

time-consuming and the intensity values doesn’t change a between consecutive tracking points 

ip and 1i +p , we use a squared prism with a cross-section width of 12 voxels per every 4 

tracking steps. Results are the same than estimating the Gaussian parameters per every tracking 

step, but four times faster.  

 

Figure 18: The EM algorithm estimates the Gaussian mixture parameters once per every 4 consecutive 
tracking steps for time efficiency purposes with a large input voxels selected with a square prism centered 

in the extracted centerline along the 4 consecutive points from ip to 3i+p to have more precise GMM 

estimation. 
 
The posterior probabilities for each component c and point x are calculated given the current 

GMM estimate as follows 
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These posterior probabilities can be viewed as a soft classification of each centerline neighbor 

voxel. We associate every neighbor voxel to the intensity Gaussian range of the component c 
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that it is more likely to be, so the probability of being part of the component c is the maximum 

amongst the other two Gaussians. The mean and covariance matrices are then updated using 

its corresponding single Gaussian ML estimation with each point weighted by its 

corresponding posterior probability. 

After each EM GMM estimation step for every 3 consecutive segments of the tracking (or for 

every 4 consecutive tracking points), we obtain 3 modeled Gaussian intensity distributions with 

its weight
i

P , the mean 
i

µ  and the variance 
i

σ  (see figure 19) and we proceed to the centerline 

surrounding voxels classification. 
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Figure 19: The EM algorithm obtains a model of 3 Gaussian intensity distribution curves, each with its 

intrinsic weight 
i

P , mean 
i

µ  and the variation 
i

σ defining parameters so that they maximize the 

likelihood function with the true probability distribution 
 
After the centerline's surrounding voxels classification step, we obtain an initial segmentation 

of the lumen and the wall. 
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3.4. Post-segmentation processing 

The classical EM approach to mixture models has two major limitations. The first is that the 

number of components is fixed through out the process thus some prior knowledge of how 

many components are to be expected is need or an exhaustive search must be done. In our 

case, we have the prior knowledge of the Gaussian intensity distribution of the coronary 

components, so it is not a critical drawback for our method.  

The second is that the EM algorithm is heavily dependant in the initial parameter estimation. 

The EM algorithm is efficient but excessively sensitive to the starting point (initial estimates). 

A poor starting point might make the EM algorithm terminate prematurely or get stuck due to 

computational difficulties. In our method, that involves two main practices:  

• Having a large amount of input voxels to the EM algorithm so the estimated weight, 

mean and variance for each and every of the 3 Gaussian components are precise and 

reliable. Our 4 consecutive tracking point square prism allows having the quantity to 

guarantee precise EM results.  

• The input voxels of the EM segmentation algorithm should contain a majority voxels 

form the lumen and the wall, so the following voxel classification is accurate with 

maximum likelihood intensity distribution estimation and distinguishes the lumen 

voxels from the vessel voxels with precision. Having an accurate extraction of the 

vessel's centerline is critical to guarantee the quality of the input voxels to the EM 

algorithm to obtain precise EM results, so the square prism should be really lumen-

centered to select the maximum amount of vessel voxels and minimum amount of 

myocardium voxels. See figure 20 to compare the results difference. 
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Figure 20: The EM algorithm estimation of  the GMM parameters with a non accurate centerline extraction at 
one step segmentation (left) showing a predominant myocardium Gaussian component and residual 
lumen Gaussian component. With a precise centerline extraction at one segmentation step (right),  the 
lumen and wall Gaussians have more weight and less variation, providing a much more precise voxel 
classification 

 
As our initial vessel's path tracking at point 3.1 is a good approximation of the centerline, but 

not accurate enough (see figure 21) at every tracking step to guarantee the quality of the input 

voxels to the EM for GMM and assure a proper myocardium, wall and lumen classification, 

further practices have to be made.  

 

Figure 21: Two 3D views of the initial EM segmentation examples with a non accurate centerline at some 
segmentation steps (left: right-bottom segment; right: bottom) showing an accurate lumen but deficient 
wall segmentation along the artery. Morphological filtering isn't enough to compensate these low-quality 
results. 
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The analysis of this initial segmentation with the approximate Hessian centerline presents us 

two main conclusions: 1) The lumen segmentation is overall accurate regardless of the tracking 

algorithm's imprecision. 2) The wall segmentation is sensitive to the imprecision, concentrating 

the segmented voxels in the lopsided side of the vessel, where the centerline has deviated. 

Considering this, our approach to improve and correct the initial centerline extraction to 

obtain an accurate and precise lumen and wall segmentation will be based on the initial lumen 

segmentation, and the overall segmentation method is the following: 

• Perform an initial lumen EM GMM segmentation with the surrounding voxels of the 

initial Hessian centerline extraction 

• Fix the initial centerline by computing the centroid of every cross-sectional lumen 

segmented slice of all the tracking steps 

• Perform the final lumen and wall EM GMM segmentation with the surrounding 

voxels of the fixed Hessian centerline 

3.4.1 Hessian centerline correction 

To correct the initial Hessian centerline extraction, we compute the centroid of the cross-

section of every tracking step by means of the 2v
���

and 3v
��

eigenvectors that form a base of the 

orthogonal plane defined by the direction vector 1v
��

. 

 

Figure 22: Orthogonal cross-section plane of the initial lumen segmentation defined by the eigenvectors 

2v
���

and 3v
���

, used to extract the centroid for every tracking step. 

V2 

V3 
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Figure 23: Orthogonal cross-section views of the lumen (white) and wall (gray) segmentation for 5 
consecutive tracking steps before (top) and after (bottom) the centerline correction algorithm. The 
centerline point is represented by the black dot. 

 
We obtain as well an approximate diameter of the lumen, with the diameter of a circle with the 

same area as the cross-section lumen slice. 

The correction of the position of the centerline points implies a change for every tracking step 

of the direction vector 1v
��

and the 2v
���

and 3v
��

vectors that form the base of the cross-sectional 

plane. Updating this vectors is pivotal for the further volume measurement technique.  

For the direction vector 1v
��

, we update it by computing the difference between two 

consecutive centerline points ip  and 1i+p : 

1
1i i iv += −p p

��� ����� ���

 

For the other two orthogonal vectors, we find them by means of a method based on the 

Householder reflection matrix transformation property [29]. We create a mirror vector to  

1v
��

by adding the norm 1v
���

 to one the vector's dimensions. 

1 1 1 1[ , , ]x y zu v v v v= +
� ���

  

Afterwards, we calculate the Householder matrix with the new vector u
�

: 
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This is Householder matrix or Householder reflection and the vector u
�

is called the 

Householder vector. The Householder matrix Q is symmetric and orthogonal and reflects 

every vector x in the plane through 0 perpendicular to u
�

 as shown in Figure 24. 

 

Figure 24: Householder matrix Q acting on vector x is a reflection of the vector x in a plane perpendicular to 
the householder vector u. 

The utility of the Householder matrix for our research of the 2v
���

and 3v
��

vectors is that the first 

row of H provides us the unit vector parallel to u
�

, and the 

other second and third rows gives us the unit vectors orthogonal to u
�

 and orthogonal to each 

other. So, we obtain the desired 2v
���

and 3v
��

vectors. 

3.4.2 Morphological filtering 

Once obtaining the classification of the centerline surrounding voxels (for both segmentation 

steps of our method), the original segmentation of the inner and wall obtained has a good 

quality, but it can be improved by applying morphological filtering.  

 

Figure 25: 3D view of the initial EM segmentation results, with presence of unconnected and parasite voxels 
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The first step is to perform a 3D flood-fill operation on empty voxel regions of the lumen and 

the wall. A 6-connected background neighbors for 3-D input is used.  

The second morphological operation consists on applying image closing. The effect of this 

morphological operator having a small structuring element is to smooth the contours, to fuse 

the narrow breaks and to eliminate small holes gradually [30]. The closing of an image A by a 

structuring element B is defined as 

( )A B A B B• = ⊕ ⊙  

Where ⊕  represents the dilation operation and ⊙  the erosion operation. The former enlarges  

the boundaries of the planes eliminating thus the holes between them. Once the holes have 

disappeared, we apply image erosion to sand the volume expansion caused by the dilation. As 

a result, a compact segmented vessel is obtained.  

The last morphological operation that is applied is the image opening. This operator smoothes 

the contours as it removes smaller objects than the structuring element from the surfaces of 

the lumen and wall. 

( )A B A B B= ⊕� ⊙  

 

Figure 26: Comparison between the EM segmentation results for cross-section slices of 5 consecutive tracking 
steps with the real scan cross-section slice, before the morphological filtering (top) and after (bottom) 
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Figure 27: Two 3D view of the EM GMM segmentation results, the original segmentation with some holes 
and blank areas (left) and the segmentation after the morphological filtering. 

 

3.3 Detection and Segmentation of the Soft Plaques 

3.3.1 Volume estimation  

At this part of this algorithm, we have an accurate centerline of the vessel, orthogonal planes 

to the centerline and the segmented voxels for the inner and wall of the vessel. Now we are 

going to extract some characteristics of the vessel in order to detect the soft plaques. Lot of 

papers extract the diameter of the vessel, or its mean. The problem linked to this 

characteristics are multiple: 

• the vessel is not a perfect cylinder. So we can’t define really a diameter. 

• the calculus of the true centerline can take the most important time in algorithm. 

That’s why we are interested in a more robust feature to base our soft-plaque detection. To 

quantify possible narrowing of the vessel caused by plaques, we compute the effective cross-

section area of the lumen. This is obtained by dividing the volume of the lumen segment 

between two centerline points ip  and 1i+p  by the distance between them. We obtain the cross-
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section planes with the 2v
���

and 3v
��

vectors computed in the point 3.4.1. Let ( )lA i  denote this 

resulting area (figure 28). In a similar fashion, we can compute the effective cross-section area 

of the identified arterial wall ( )wA i . This area measure can signal the presence of positive vessel 

remodeling.  

1( , )normalized

i
i i

i i

V
V A

distance P P+

= =  

with Pi, one centerline point, and Vi  the volume corresponding. 

Thus, by contrasting these two area measures ( )lA i  and ( )wA i , we obtain a measure that will 

signal the presence of either calcified or soft plaques. Specifically, we calculate the difference 

between the two measures ( ) ( ) ( )d w lA i A i A i= − .  

               

Figure 28: Two consecutive cross-section planes will establish the bounds for the local volume measurement 
at each tracking segment of the vessel (left). A local segment is showed (right). 

 
The problem to segment the vulnerable plaques is that they have the same intensity’s rank. So 

we have to have some other informations to segment them properly. Sometimes the centerline 

experiments sudden angle changes and, consequently, the orthogonal planes do not 

correspond to a transversal slice. These planes have a bigger area and create peaks in the 

volume plot. The segments with the beginning of a vessel ramification will give bigger areas, 

too. So, the problems that you can find in a vessel are: 

• Bifurcations of the vessel that produces a peak in the volume curve 

• A fast change in the vessel's direction (a sharp turn in the artery's path) 
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To avoid these peaks being considered as a soft plaque, we introduce two conditions. To 

minimize the bifurcations bug, we introduce threshold for the volume. To avoid having a very 

high peak in the volume curve, we create a sphere of radius 1.5* the estimated diameter of the 

lumen obtained in step 3.4.1 .  
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Figure 29: Example of a peak on the volume curve (right) when there is a bifurcation segmented (left). 
 
The spherical window fixes as well the computation of far voxels not belonging to the segment 

of the vessel on which the algorithm is calculating the volume when the vessel present a 

curved path. 
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Figure 30: Example of inter-cross-section planes volume measurement in a curved artery. Without the 
spherical window (left), far voxels are computed producing a peak in the volume curve. Applying the 
window, we just compute the voxels belonging to the local segment of measurement. 

 
To fix the problem of the fast change in the vessel in a curved segment of the coronary artery, 

we calculate the scalar product between two consecutive direction vectors – and normal 

vectors of the cross-section planes – to detect in which tracking step the vessel is curved. We 

compute the scalar product as follows:  

1
1 1|i iv v +< >= α
��� ����

 

 
 

Figure 31: Coefficient α between two consecutive planes obtained by the scalar product of its normal vectors. 
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where < | > is the scalar product. If this coefficient is too small, the consecutive planes aren’t 

parallel, so the amount of voxels in between the two cross-section planes can be inaccurate. 

Our practice to fix the inaccuracy of the algorithm for this particular case consists on 

modifying the cross-section plane of the tracking step ip  by taking a parallel plane to the next 

1i+p  point. Replacing the direction vector 1
iv
���

for the 1
1

iv +
����

provides us a better approximation 

to the volume of lumen and wall voxels in between two consecutive points located in a curved 

segment of the artery. 

 

Figure 32: Correction of the first cross-sectional plane when the local segment of measurement has a curve. 
Consecutive planes have are not close to be parallel (left), so one of the planes is modified and becomes 
parallel to the other (right) in order to obtain a more accurate and precise local volume measurement. 

 
Another solution adopted to reduce the volume estimation inaccuracy in the crooked segments 

of the artery is to reduce the distance between consecutive centerline tracking points. As seen 

in (3.1.2), the incremental gap at every tracking step is chosen to be as short as possible 

considering the time-cost of reducing the distance to the tracking algorithm. After analyzing 

the time-cost, the increment gap is almost minimum, 2 voxels. 
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Once we have a reliable volume curve for both the lumen and the wall, a Moving Average 

Filtering (MAF) with a moving window size 6 is performed in order to obtain smoother curves 

with less noise to make it easier to detect real drops, peaks in the volume curve so we can have 

a more reliable soft plaque detection. Generally speaking, there is a large class of filters that can 

be expressed in terms of the following moving average form, 

M
T
t i t i

i N

y w y −
=−

= ∑  

for N, M two integers and the wi a set of weights. The simplest example is a centered 

moving average 

1

2 1

K
T
t t i

i K

y y
K −

=−
=

+ ∑  

The implemented MAF for our specific case quickly smoothes the input volume curve by 

averaging each element along with 6 samples at its sides. The elements at the ends are also 

averaged but the extremes are left intact. With the windows size defined this way, the filter has 

zero phase. 
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Figure 33: Original curve (in red) of the local volume at each tracking step along the vessel, and its moving 
average filtered version (in blue) with a smoother and less noisy plot. 
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This filter, acting as a high frequency barrier, eliminates the little local variations, making a 

mean value of its neighbors. The number of times this filtering is performed is selected by the 

user, being one usually enough.  

3.3.2 Soft Plaque detection 

Once we have a reliable and smooth volume curve, we should be able to detect the presence 

of soft plaques by some criteria. One interesting paper on this topic is “Using 3D Convex 

Hulls to Detect Coronary Artery Stenoses and Atherosclerotic Vessel Wall Lesions in Contrast 

Enhanced MDCT Images” [8]. They use their own convex hull algorithm to compare it to 

vessels and extract in this way the concavity regions. However, as they recognized, it can be 

only applied to a small ROI (Region Of Interest) and they mention the volume quantification 

as a future amelioration.  

In this work, another approach is used. As before, we use the hypothesis of the slow variation 

of the radius along the healthy vessel (without plaques). This seems to be precise in the 

available artery’s images. When a plaque grows in the vessel walls, it reduces its natural inner 

width and so it's cross-section area. The lumen volume reduction can be considered as plaque.  

Recently, some studies state that the vessel may not always exhibit narrowing at soft plaque 

site, and it may even undergo positive remodelling [31]. This consequently poses a significant 

challenge for soft plaque identification in the presence of imaging noise, as a traditional 

approach simply based on lumen narrowing analysis no longer works well. Our goal in this 

work is to demonstrate the feasibility of applying image analysis on both the lumen and arterial 

wall for detection and quantification of soft plaques from MDCT data, and further 

improvements in the soft plaque detection algorithm will be required to detect this kind of 

plaques. Our paper is focused on the vulnerable plaques that present a narrowing in the vessel 

and are more likely to produce a rupture in its fibrous cap. 

The goal for this detection part is to detect the local minimums of the longitudinal lumen 

volume curve to find the soft plaques. Once the minimums are detected, the two successive 

local neighbor maximums per each minimum are detected. At this point, we can find local 

parasite maximums in the volume curve still after the moving average filtering, by means of 
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thresholds we are able to ignore them. With the apriori knowledge of the size of a vulnerable 

plaque, thresholds for the minimum and maximum width and height of the volume curve hole 

are established. This threshold will mark the sensitivity of the detection and it can be selected 

by the user. Finally, we analyze the difference local volume curve between the lumen and the 

wall of the artery to classify the hole as a sudden narrowing of the inner or as a soft plaque. As 

the cross-section area of the wall is expected to be higher than the lumen's, having a peak in 

the difference curve (moving averag filtered) satisfying again the soft plaque's size thresholds 

condition will confirm the presence of a plaque.  

 

Figure 34: Operating diagram for the volume’s vessel 
 
We can implement an algorithm using convex properties to have an approximation of the 

volume of these soft plaques (see table 1). Based on this, our method calculates the volume 

that the affected region would have had in normal conditions, with a convhull method, to 

quantify the size of the soft plaque hole in the lumen volume curve. 

We assume that the local wall volume is always higher than the lumen's. Considering this, the 

algorithm is as follows: 

Table 1: Soft Plaque detection algorithm 
Detect all the minimums on the lumen local volume curve 
For every minimum detected 
 Detect the neighbor maximums ignoring parasite maximums 
 If the width (separation between maximums) and the depth of the hole > thresholds 
  If the difference volume curve has a peak in the region of interest 
             Soft Plaque detected and its size is quantified 
                        End 
 End 
End 
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Figure 35: Local volume curves along the vessel for the lumen, wall and difference curve. A) Valley of 
sufficient width and depth  in the lumen plot and peak in the difference plot, a soft plaque is detected. B) 
Peak in the difference curve but the lumen has average values; an increase of the wall's volume could be a 
soft plaque, but as ther is no narrowing of the inner vessel, it is not detected. 

 
The last step soft plaque segmentation in order to show its location in the 3D rendering of the 

vessel, we make a simple region growing process in the region where the volume hole is. The 

intensity threshold for this region growing process is established with the knowledge acquired 

on the EM GMM estimated parameters, concretely with the mean 
i

µ  and the variance 

i
σ associated to the Gaussian components of the lumen and the wall.. 
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RESULTS AND DISCUSSION 

The method described above was tested with several datasets to assess its capacity and 

accuracy in the soft plaque detection and quantification. All the tests were coded and run in 

Matlab 7.0 (R14) with the Image Processing Toolbox, in a Hewlett Packard computer with 

1.99 GHz AMD Turion 64 Mobile processor and 1GB of RAM. 

The 2D real images were obtained from the Rush Hospital with a Phillips Brilliance 64-slice 

scanner. The algorithm had worked for every dataset, regardless of the brightness and noise 

level of the MSCT scan images. The following figures correspond to the execution of the 

algorithm when picking the seed point from the Right Anterior Descending coronary artery:  

 

Figure 36: Initial  Hessian centerline extraction 
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Figure 37: Intensity histogram for the wall (blue) and lumen (black) 
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Figure 38: First lumen segmentation  with an approximate centerline 
 

 

Figure 39: Cross-section views of the scan image (top), the final EM segmentation before the post-
morphological operation (middle) and after the morphological filtering 
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Figure 40: 3D views of the final EM segmentation results with a corrected centerline (bottom), wall and 
lumen segmentation (middle) and lumen segmentation (top). It is visually feasible to detect a soft plaque 
at the beginning of the curvature in the middle of the artery. 
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Figure 411: Volume curves along the vessel. At position 62, there is a soft plaque. 
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Figure 422: Average intensity values along the vessel of the centerline (the brightest, in red), the lumen 
(slightly darker than the centerline, in blue) and the wall (much darker than the lumen, in green) 

 
 

 

Figure 43: Cross-section views of 10 consecutives steps around the soft plaque, with real scan images on top 
and the segmentation on the bottom. Soft plaque is visible at steps 7 and 8. The centerline is the real 
centroid.  
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The log for the execution of the algorithm is: 

***** Soft-Plaque Detection Results ***** 
  
Number of Soft-Plaques Detected: 1 
  
- Soft-Plaque #1:     Volume: 104     Tracking Step: 62 
  
  
***** Average intensity ***** 
  
Centerline: 1290;  Lumen: 1255;  Wall: 1141 
  
  
***** Computation Stats ***** 
  
Patient ID: s                  |                    Slices loaded: 139 (#110-249)                     |                Tracking 
steps: 115 
  
-Loading scan data:                               44 seconds 
-Initial Tracking Vessel Path:                    86 seconds 
-1st Lumen Segmentation & Lumen Centerline:       480 seconds 
-2nd Lumen & Wall Segmentation:                   439 seconds 
-Lumen & Wall Volume computation:                 4 seconds 
-Soft-Plaque Segmentation:                        18 seconds 
-Printing results:                                14 seconds 
  
-1st Segmentation cost per tracking step:         4 seconds 
-2nd Segmentation cost per tracking step:         3 seconds 
  
Total Time:                                      1091 seconds 

 
 

The EM GMM segmentation is computationally expensive, monopolizing with the 84% of the 

overall running time. For every tracking step, it takes 4 and 3 seconds, but it is not exactly 

accurate to conclude this as we perform a EM Gaussian parameters estimation per each 4 

consecutive centerline points. The initial Hessian centerline extraction represents de 8% of the 

total time requirement.  

5.4 Discussion 

The present project describes a semi-automatic operative method to detect soft plaques and 

estimate their volume. The implementation combines techniques that have become successful 

in other segmentation processes, but performs its task in a slow way due to the 

computationally-expensive EM for Gaussian mixture model. It provides an accurate 
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segmentation base that will allow further development on the detection of plaque. One 

possible direction of future research could solve the user dependency, generating a method 

independent of the user’s selection points and, thus, providing a fully automatic method. 

Knowing the geometric properties of the aorta, with its big and circle shape in the MSCTA 

scan, we could start tracking the whole vessel tree.  

The centerline extraction method is accurate but low-efficient, further work should be done to 

track the centerline to avoid a second EM segmentation step that makes the current algorithm 

slow. The 4 tracking step window method used to input the voxels for the EM algorithm 

could be optimized by overlapping the windows. Using previous parameter estimations, 

already computed, for next EM estimations could save a lot of computation cost. As the 

accuracy of the volume vessel relies in the exact segmentation, any improvement in this area 

will ameliorate the outcome.  

The soft plaque detection can be polished and, should detect all kinds of vulnerable plaques, 

and not only the unstable type. In addition, a soft plaque index reflecting the extent of 

atheroma deposits in the walls of coronary arteries could be created, emulating the works in 

calcium score. The present method should be clinically validated by a radiologist. Finally, when 

the soft plaque detection is accurate and precise and the method time-efficient, the tracking 

algorithm should be extended to the ramifications by detecting the artery bifurcations, so the 

method would be intensive and exhaustive. 
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