
DEPARTMENT OF

COMMUNICATION SYSTEMS

MASTER THESIS PROJECT

IP Mouse
CRISTINA RIERA MENCIÓ

Examiner and Academic Supervisor

Prof. Mark T. Smith

TRITA-ICT-EX DEPARTMENT

Stockholm, Sweden 2010

 i

Abstract

Windowing systems [1] have been created to support a single user at the use of

different applications. This Master Thesis consist of developing a new pointing device,

from now called IP Mouse (IPM), that allows multiple cursors to interact with one

application at the same time and supports the execution of a well-established

applications in a multi-user context. That means that the system supports real time

interaction in a shared display.

The IPM system is based on the PS/2 protocol, and the core of its hardware is a

ColdFire microcontroller integrated in a Freescale board (M52233EVB) that controls

and supports all the parts of the design and has the features to can send the data through

Ethernet.

This work shows that the complete IPM system could be an effective support for

multi-pointing interfaces on shared display systems.

 ii

Acknowledgements

I would like to express sincere gratitude and love to my family for their endless

support and inspiration during this period and my entire life.

I am very thankful to my supervisor and examiner, Professor Mark T. Smith, for

giving me the opportunity to work on this amazing project and for his kind, advice and

encouragement to help me complete this project.

I want to express my happiness to all my friends and colleagues who supported

me during this year: Ana Santamaría, Elena Márquez, Fernando Guillén, Joaquín Juan,

Luís Maqueda, Maria Kroich, María Gorrochategui, Oriol Boix, Ramon Claramunt,

Víctor García. And I want to express my most sincere thanks to my friends Pablo Jorba

and Fran Aleo for their help and knowledge with microcontrollers and programming.

I want to express my happiness also to all the friends that helped me during my

university period: Yasmina, Miquel, Marc G., Aleix, Albert, Patri, Mireia, Nuria, Dani

F., Lluís, Robert, Aïda, Lucía, Alberto, Txetxu, Dani O., and a long etcetera. Sorry I

cannot mention you all!

I really had a rewarding experience at Wireless@KTH with the company of all the

folks and colleagues.

Finally, I want to make a special mention to my grandfather, Llorenç, for his love

during my entire life and for his endless support during my Erasmus period even on his

last days.

TABLE OF CONTENTS Table of Contents

 iii

Table of Contents

1 INTRODUCTION .. 1

2 BACKGROUND ... 3

2.1 MOUSE HISTORY AND EVOLUTION .. 3

2.2 MOUSE TECHNOLOGIES ... 6

2.2.1 First Mechanical Mouse ... 6

2.2.2 Track ball mechanical mouse ... 6

2.2.3 Optical Mouse .. 7

2.2.4 Laser Mouse ... 7

2.2.5 Wireless Mouse ... 8

2.3 PREVIOUS WORK ... 9

2.4 WHY IPM? .. 13

2.5 IPM COMPLETE SYSTEM OVERVIEW ... 14

3 IPM SYSTEM ARCHITECTURE ... 15

3.1 M52233EVB ... 15

3.2 DESIGN OF THE PS/2 INTERFACE BOARD .. 16

3.2.1 Design of the PS/2 Hardware Interface ... 16

3.2.2 Main Blocks .. 17

3.2.3 Design of the schematic .. 26

3.2.4 Design of the PCB .. 27

3.2.5 Building the board .. 28

4 IMPLEMENTATION .. 31

4.1 HUMAN INTERFACE DEVICES (HID) .. 31

4.1.1 The PS/2 Interface .. 32

4.1.2 PS/2 General information ... 33

4.1.3 PS/2 Communication Protocol ... 34

4.2 WINDOWING SYSTEMS .. 40

4.2.1 What is X-Windowing? ... 40

TABLE OF CONTENTS Table of Contents

iv

4.2.2 The X server .. 42

4.2.3 X-Window System Core Protocol ... 42

4.2.4 Windowing hierarchy ... 44

4.2.5 Events ... 45

4.3 NETWORK PACKETS ... 45

4.4 CONNECTING THE BOARD .. 47

4.5 PROGRAMMING THE BOARD ... 49

4.5.1 Testing the board .. 49

4.5.2 Interruptions Test Program .. 52

4.5.3 Final program .. 55

4.5.4 Implementation of the IP Mouse ... 71

5 DATA, TESTS AND EVALUATION ... 73

5.1 IPM INTERFACE ... 73

5.2 TIMING AND FREQUENCY SPECIFICATIONS.. 84

5.3 SENDING PACKETS INTERFACE .. 85

5.4 IPM LIMITATIONS AND COSTS .. 88

6 CONCLUSION ... 90

7 FUTURE WORK .. 91

8 REFERENCES ... 93

APPENDIX 1 .. 102

APPENDIX 2 ... ERROR! BOOKMARK NOT DEFINED.

LIST OF FIGURES List of Figures

 v

List of Figures

Figure 1. Multi-user application. Multiple mice on a windowing system. 2

Figure 2. IPM Complete System graphic ... 14

Figure 3. Main blocks of the PS/2 interface hardware ... 17

Figure 4. TPS61072’s Application Circuit for Adjustable Output Voltage 18

Figure 5. Simplified Outline of the BC546 transistor ... 21

Figure 6. Open Collector circuit for the PS/2 mouse ... 22

Figure 7. IPM schematic design ... 26

Figure 8. IPM’s PCB design ... 28

Figure 9. Front side of the PCB .. 29

Figure 10. Back side of the PCB .. 29

Figure 11. Front side of the final PCB ... 29

Figure 12. Back side of the final PCB .. 29

Figure 13. Complete system from the top .. 30

Figure 14. Profile of the complete system .. 30

Figure 15. 6-pin Mini-DIN (PS/2) connectors ... 33

Figure 16. Device to Host data packet and timing diagram ... 35

Figure 17. Host to Device data packet and timing diagram ... 37

Figure 18. X-Windowing client/server model .. 41

Figure 19. Communication interaction between a client and a server............................ 43

Figure 20. X-Windows hierarchy ... 44

Figure 22. TCP/IP Stack Overview .. 46

Figure 23. M52233DEMO board ... 47

Figure 24. Hyper Terminal log window ... 48

Figure 25. Mouse State Diagram .. 56

Figure 26. SendData Flow Chart .. 60

Figure 27. Sending and Reading data from a mouse .. 63

Figure 28. Flow chart of readData .. 63

Figure 29. flow chart for waiting state ... 64

LIST OF FIGURES List of Figures

vi

Figure 30. Flow Chart of D0 state .. 66

Figure 31. Three bytes sent from the mouse when Left Button is pressed..................... 75

Figure 32. Left Button. First Byte .. 75

Figure 33. Left Button. Second Byte .. 75

Figure 34. Left Button. Third Byte ... 75

Figure 35. Three bytes sent from the mouse when right button is pressed 77

Figure 36. Right Button. First Byte .. 77

Figure 37. Right Button. Second Byte .. 77

Figure 38. Right Button. Third Byte .. 77

Figure 39. 3 bytes sent from the mouse when moved towards the X direction.............. 79

Figure 40. Right Movement First Byte ... 79

Figure 41. Right Movement Second Byte .. 79

Figure 42. Right Movement Third Byte ... 79

Figure 43. 3 bytes sent from the mouse when movement to the right has occurred 80

Figure 44. Right Movement. First Byte .. 80

Figure 45. Right Movement. Second Byte ... 80

Figure 46. Right Movement. Third Byte .. 80

Figure 47. Up movement. 3 bytes sent from the mouse ... 81

Figure 48. Up movement. First Byte .. 82

Figure 49. Up movement. Second Byte .. 82

Figure 50. Up movement. Third Byte... 82

Figure 51. Down movement. 3 bytes sent from the mouse .. 83

Figure 52. Down movement. First Byte ... 83

Figure 53. Down movement. Second Byte ... 83

Figure 54. Down movement. Third Byte .. 83

Figure 55. Timing of a byte sent from IPM .. 84

Figure 56.Timing between packets sent from IPM .. 84

Figure 57. WireShark screen capture for left button .. 85

Figure 58. WireShark screen capture for the right button .. 86

Figure 59. Screen capture for mouse movement .. 87

LIST OF TABLES List of Tables

 vii

List of Tables

Table 1. Values of the TPS61072 application circuit components................................. 20

Table 2. NPN transistor Pin description ... 21

Table 3. BC546 electrical characateristics ... 21

Table 4 Electric features of MAX3224E .. 25

Table 5. Movement Data Packet .. 32

Table 6. PS/2 protocol. Bus states .. 34

Table 7. Movement Data Packet .. 73

Table 8. Left button expected vs. obtained values ... 74

Table 9. Right button expected vs. obtained values ... 76

Table 10. X movement expected vs. obtained values ... 78

Table 11. Left movement (negative) expected vs. obtained values................................ 79

Table 12. Up movement expected vs. obtained values... 81

Table 13. Up movement expected vs. obtained values... 82

Table 14. Overview of the prices of the different components used and final cost of the

IPM prototype ... 89

LIST OF ABBREVIATIONS List of Abbreviations

 viii

List of Abbreviations

2D: Two-Dimension

3D: Three-Dimension

AC: Alternating Current
ACK: Acknowledgement

ADC: Analog to Digital Converter

AN: Analogic

API: Application Programming Interface

ARP: Address Resolution Protocol

AWG: American Wire Gauge

BDM: Background Debug Module

BIOS: Basic Input-Output System

BSD: Berkeley Software Distribution

CAD: Computer Aided Design

CAN: Controller Area Network

CD: Compact Disk

CMOS: Complementary Metal Oxide Semiconductor

COM: COMmunication

CPN: Coloured Petri Net

CPU: Central Processing Unit

CRC: Cyclic Redundancy Check

CW: Code Warrior

DB-9: D-Shape Shell Body 9-pins

DC: Direct Current

DDRx: Data Direction Register

DHCP: Dynamic Host Configuration Protocol

LIST OF ABBREVIATIONS List of Abbreviations

 ix

DIN: Deutsches Institut für Normung (German Standardization Organization)

DMA: Direct Memory Access

DNS: Domain Name System

DOS: Disk Operating System

DSP: Digital Signal Processor

EMAC: Ethernet Media Access Controller

EMI: Electromagnetic Interferences

EPORT: Edge Port

ESD: Electrostatic Discharge

ESR: Equivalent Series Resistance

FB: FeedBack

FEC: Fast Ethernet Controller

GND: Ground

GPIO: General Purpose Input/Output

GPT: General Purpose Timer

GUI: Graphic Unit Interface

GWWS: Groupware Windowing System

HCT: High-speed CMOS [logic] with TTT-compatible [logic] levels (IC, MOS)

HID: Human Interface Device

HW: HardWare

I/O: Input/Output

IBM: International Business Machine

IC: Integrated Circuit

ICMP: Internet Control Message Protocol

ID: Identity

IEC: International Electro-technical Commission

LIST OF ABBREVIATIONS List of Abbreviations

 x

IIC: Also I2C. Inter-Integrated Circuit

IP: Internet Protocol

IPM: Internet Protocol Mouse

IRQ: Interrupt Request

JTAG: Joint Test Action Group

LED: Light Emitting Diode

LSB: Least Significative Bit

MAC: Macintosh

MIPS: Mega Instruction per Second

MIT: Massachusetts Institute of Technology

MMM: Multi-Device, Multi-User, Multi-Editor

MPWM: Multi-Pointer Window Manager

MPX: Multi-Pointer X Server

MSB: Most Significative Bit

NACK: Negative Acknowledgement

NPN: Negative-Positive-Negative

OS: Operative System

PC: Personal Computer

PCB: Printed Circuit Board

PDA: Personal Digital Assistant

PIT: Programmable Interrupt Controller

PLL: Phase Lock Loop

PS/2: Personal System/2 (Protocol Serial 2)

PTM: Point To Multipoint

PTMP: Point To Multipoint Protocol

PWM: Pulse-Width Modulation

LIST OF ABBREVIATIONS List of Abbreviations

 xi

QSPI: Queued Serial Peripheral Interface

RAM: Random Access Memory

RF: Radio-Frequency

RJ-45: Registered Jack 45

ROM: Read Only Memory

RS-232: Recommended Standard 232

RTC: Real Time Controller

SCTP: Stream Control Transmission Protocol

SDG: Single Display Groupware

SDGT: Single Display Groupware Toolkit

SRAM: Static Random Access Memory

SOTn:

SSOP: Shrink Small Outline Package

TCP/IP: Transfer Control Protocol /Internet Protocol

TIDL: Tool Integration Description Language

UART: Universal Asynchronous Receiver/Transmitter

UDP: User Datagram Protocol

URL: Uniform Resource Locator

USA: United States of America

USB: Universal Serial Bus

XMP: Extensible Metadata Platform

XMP: X Multi Pointer

XP: eXPerience

µC: microController

1. INTRODUCTION 1. Introduction

 1

1 Introduction

Nowadays everybody has a computer and has worked with it. Users are used to

having their computer screen and some peripheral devices such as a keyboard, a joy-

stick or a mouse. People with a laptop can either choose if they want to use the

touchpad, a peripheral mouse, or both. At present, if more than a mouse is plugged in a

computer, there is always only one pointer.

Windowing systems [1] have been designed to support multiple applications at the

same display just by dividing the screen, so one user can run multiple applications.

These systems are scalable, intelligent and able to control each part of the screen. Even

so, users of windowing systems can only interact with one of the applications at the

same time, because they still have only one single cursor.

Although windowing systems are a great solution to run multiple applications at

the same time, users can wonder how it would be if besides of having multiple

windows, multiple mice were able to be connected to one machine and work

simultaneously without interfere with each other. That would be the perfect

environment for applications that use more than a window (i.e. graphic applications,

that use to have several windows to show tool bars such as layers or colours) or to run

actively different applications simultaneously.

By contrast, instead of having one single user and many applications, a very

common situation is to find many people in front of a single display (i.e. in a

conference, meeting or teamwork). In that situation, multi-pointing devices could be a

very useful tool to get active collaboration and a better approach from the users with the

application running.

According to this, the idea of having a multi-pointing device, which could be

built-in to any wearable electronic device such as a mobile phone or a PDA, could be

very useful in real time collaboration with one or more applications in multi-user

context situations.

1. INTRODUCTION 1. Introduction

 2

This project consists of designing and building a virtual mouse device with

Ethernet features capable of supporting multiple cursors on the same display. The

virtual mouse motion is based on the PS/2 protocol [2] and its hardware is built around

a 68k/ColdFire microprocessor [3] attached on a Freescale Evaluation Board [4]

The virtual mouse, from now called IP Mouse (IPM), must be able to perform the

basic 2D-motion movements of a conventional mouse and also must have the features to

send its data to the system required through Ethernet.

This work presents the research, design, building and implementation of the IPM

device, which is intended to be an effective support for multi-pointing interfaces on

shared display systems, with multiple applications in a multi-user context.

Figure 1. Multi-user application. Multiple mice on a windowing system.

2. BACKGROUND 2.1 Mouse History and Evolution

 3

2 Background

Something new needs to be created. Therefore, the review of existing technology

and knowledge related to this area could be relevant to understand and solve the

problem described on chapter 1. It is important to know what devices exist, what kind of

device needs to be created and how should it work. A good start point is to start

researching about the existent devices and the evolution they suffered across the years

in terms of technology.

2.1 Mouse History and Evolution

A computer mouse is a very common pointing device. Its aim is to detect two

dimensional motions relative to the surface where it is supported and translate this

movement into the motion of a cursor on a display.

The appearance of the first mouse redefined the way of interaction with the

computers. Since then, its purpose is the same but its shape and technology have

evolved and improved in terms of position accuracy, material and technology.

Hereafter, some history of the mice from its beginning until the present days is

presented.

The first mouse prototype was invented in 1963 by Douglas Engelbart. Engelbart

was an American inventor and is known for the invention of the mouse and for being

pioneer in human-computer interaction.

Engelbart’s prototype was patented in 1970 under the title “X-Y Position

Indicator for a Display System” [5]. The mechanism of this device consisted of two

perpendicular toothed wheels, allocated in a way that the rotation of each wheel was

transferred into motion along one of the respective axes in a plane.

2. BACKGROUND 2.1 Mouse History and Evolution

 4

It was 8 years later, in 1971, when Bill English, engineer and Engelbart’s work

collaborator, improved the first mouse prototype by replacing the toothed wheels with a

metal ball.

 The track ball could rotate to any direction and it was pressed against metallic

rollers for tracking the movement, so the mouse could drive a pointer around the screen

with ease.

Some years later, the professor Jean-Daniel Nicoud improved the mouse model

incorporating a hard rubber ball and three buttons. Nicoud’s design lasted until 1985

when René Sommer added a microprocessor to the mouse.

Computer mice appeared on the market in the early 1980s. By those days, to can

use a mouse, an additional expansion board/card was required, so mice didn’t became

popular until the late 1980s when many of IBM [6] began to sell computers with a serial

port build-in and Apple Macintosh [7] began to sell their computer systems with a

mouse included. Most mice had either one or two buttons and were connected to the

computer through a serial connector.

It was in the early 1990s when mice increased considerably its popularity, with

Microsoft [8] claiming mouse’s benefits with the Windows 3.1 package, which had just

been released in 1992.

IBM was the first company to introduce the PS/2 connector for mice and those

connectors started gaining popularity over the serial port models. The popularity was so

big that in the late 1990s, many computers came with another PS/2 port built-in

specifically for the mouse.

In the late 1990s, the mouse model changed once again with the apparition of the

scroll-wheel mouse and USB connectors started being used. USB became more

widespread and gained popularity over PS/2 mice.

2. BACKGROUND 2.1 Mouse History and Evolution

 5

Mice technology improved quickly during the 1990s and towards the beginning of

2000s appeared the first optical mice. It was developed by Agilent Technologies [9] but

many peripheral manufacturers adopted the model quickly.

At the beginning of the 21st century, technology was evolving fast and wireless

communications were very popular, so mice started using wireless technologies. Most

popular are RadioFrequency (RF) and Bluetooth.

Moreover, a laser design based on the optical mice was developed and appeared

on the market. Although laser mice have much better tracking solutions, it is not well

extended yet, because of the elevate price over the other existent devices.

At present, new models of mice have appeared, featuring three dimensional

motion and gyroscopic solutions. An example of a 3D pointing device is the Wii

Remote, which is a motion-sensing device. It can detect its spatial position by

comparing the distance and position of the lights from the infrared sensors.

Overall, computer mice have evolved since its beginning. Different ports have

been used, the mouse housing material and amount of buttons has changed and it is

already possible to include them with new systems and technologies, such as electronic

wearable devices (i.e. mobile phones or PDAs).

2. BACKGROUND 2.2 Mouse Technologies

 6

2.2 Mouse Technologies

Despite that over the years the mice’s principle remains the same: to translate

motion from a physical surface onto motion of a cursor on a display, its mechanism and

technologies have evolved. Different mice models functioning are explained on the next

subsections.

2.2.1 First Mechanical Mouse

The first pointing device prototype consisted of a small wood housing, two wheels

and a bearing ball for contacting the surface on which it was supported. The two wheels

were orthogonal to each other and there was a potentiometer attached to each wheel in a

way that when the device was moved, the two wheels rotated changing this way the

resistance of the potentiometer.

Electrical cables connected the potentiometers to a computer which continuously

monitored the device’s position. The computer displayed then a cursor, which moved

accordingly with the movement of the device.

2.2.2 Track ball mechanical mouse

This model was based on the first prototype but its mechanism was improved. It

was so successful that despite advances in material and technology, a basic ball mouse

can still be easily found today.

A track ball mouse consists of one ball and two rollers oriented orthogonal to one

another so they can detect movement in the X and Y direction respectively. As the

mouse moves, the ball inside the mouse touches the supporting surface and roll.

Consequently, one or both of these rollers rotate as well. The rollers each connect a bar,

and the bar spins a disk with holes in it.

There is also an infrared LED and an infrared sensor, one on each side of the disk.

As the mouse move, the ball rolls and so does the bar and the disk. The holes of the disk

break the beam of light coming from the LED so that the infrared sensor sees pulses of

light.

2. BACKGROUND 2.2 Mouse Technologies

 7

The rate of the pulsing is directly related to the speed of the mouse and the

distance it travels. A microprocessor reads the pulses from the infrared sensors and

turns them into binary data that the computer can understand.

2.2.3 Optical Mouse

Optical mice mechanism consists of a small, red light-emitting diode (LED) and a

complimentary metal-oxide semiconductor (CMOS) sensor. The LED emits light onto

the surface where the mouse rests and this light bounces off the surface onto the CMOS

sensor.

The CMOS sensor sends each image to a digital signal processor (DSP) for

analysis. Then the DSP detects patterns in the thousands of images sent and compares

the new pattern with the previous image. Based on the change in patterns over a

sequence of images, the DSP determines how far and at what speed the mouse has

moved.

The DSP then sends the corresponding coordinates to the computer, which moves

the cursor on the screen accordingly with the received coordinates from the mouse. This

happens hundreds of times each second, making the cursor appear to move very

smoothly.

The benefits of optical mice over track ball mice are that they have more

accuracy, don’t require any maintenance and last longer due to fewer moving parts.

Moreover, they don’t require a special surface, such as a mouse pad.

2.2.4 Laser Mouse

A laser mouse works identically as an optical mouse but uses an infrared laser

diode instead of a LED to illuminate the surface below their sensor. The use of the laser

diode increases about a 20 times the sensitivity to the surface, so the laser mouse

tracking is much better, has better response times and can be used on even more

surfaces compared to the ones using LED technology.

2. BACKGROUND 2.2 Mouse Technologies

 8

2.2.5 Wireless Mouse

Wireless mice mostly use radio frequency (RF) technology to send information to

a computer. The most common type of RF used are the 802.11b or 802.11g. These

standards operate at 2.4 GHz and guarantee quick data transfer speeds, usually either

11Mbps or 56 Mbps.

RF devices require two main components: a transmitter and a receiver. In order to

avoid other RF devices interferences, the transmitter (usually included inside the

mouse) and its receiver must be paired. Two devices are paired if they operate at the

same frequency on the same channel using a common identification code.

Some benefits of RF devices over an infrared technology are that they do not need

a clear line of sight between the transmitter and the receiver, RF components are

inexpensive and RF transmitters require low power and can run on small batteries.

Another wireless technology emerging for mice is Bluetooth. Bluetooth mice

operate on the same frequency 2.4 GHz, however, it also uses software called adaptive

frequency hopping to choose frequencies that have no or little interference. Bluetooth

also has a range of 10 meters.

2. BACKGROUND 2.3 Previous Work

 9

2.3 Previous Work

As it has been written at the beginning of this chapter, knowing about what others

have done previously is a good way to start working yourself. Different works relating

to the areas of mice, multi-user application and multi-pointer have been looked at and

the ones considered more relevant are briefly resumed on the next lines.

During the research, this reference showed up unexpectedly and I considered it

had to be mentioned:

“...Using two hands is the natural mode people use to interact with the physical

World. Stewart et al. mentioned that at 1998. He meant that users do not like to share

input devices when working collaboratively...”

At 1999, Stewart examined the effectiveness of Single Display Groupware

(SDG) [10] with the help of a group of elementary school children. SDG stands for

applications that run on a single computer display but allow multiple users to interact

with one application simultaneously. Steward wanted to design and build a prototype

SDG system called Sushy, consisting in an authoring tool for interactive multimedia

stories. SDG applications and toolkits require the support for multiple input devices.

At 1991, Bier worked in the MMM (Multi-Device, Multi-User, Multi-Editor)

[11] project. MMM is one of the earliest implementations of SDG. MMM enabled

multiple users, each with an independent input device, to interact with multiple editors

on the same computer display.

In 2004, Wallace et al. [12] developed a multi-cursor window manager where

users could connect to a shared display over a network. The Window Manager assigned

one different pointer for each connection. There was no support for multiple input

devices, so the cursor had to be time-sliced and moved to the position of virtual cursor

when an event occurred. This worked for single-time events such as mouse moves and

button events but didn’t work for events that required state information of the pointer.

2. BACKGROUND 2.3 Previous Work

 10

The system worked as a windowing system and its behaviour was unpredictable

when multiple input devices were used.

At 2006, Peter Hutterer implemented the TIDL (Transparent Input Device Layer)

[13]. TIDL is a toolkit that permits to use an arbitrary number of independent input

devices based in Java Swing API applications. The input devices connect to the system

over a network and can be distributed amongst any number of host computers. This

allows multiple users to be in front of the same host and collaborate on the application

displayed.

Later on, Peter Hutterer and Bruce H. investigated how to integrate groupware

support for Single Display Groupware (SDG) [14]. A GroupWare Windowing

System (GWWS) combines the traditional single-user single-input event and newly

multi-input desktop environments.

They presented the Multi-Pointer X Server (MPX) [15], which together with the

Multi-Pointer Window Manager (MPWM) was the first GWWS that fully supported

SDG. MPX and MPWM support an arbitrary number of cursors, sophisticated floor

control, which means that resources could be utilized and shared without access

problems, and per-window annotation overlay. They also implemented the Device

Shuffler, a system that was located between the operating system and the device driver

whose function was to couple input devices from any computer.

The physical connection point of a device was transparent to both the windowing

system and the application. The system altogether supported multi-user collaboration on

shared screens.

With the MPX, they enhanced the X Window System to support up to 255

independent mouse cursors. The cursors can operate in multiple applications

independently. The MPWM actively supports multiple input devices for window

operations.

2. BACKGROUND 2.3 Previous Work

 11

There is also another project, named Multiple Mice for computers in education

in developing countries [16] in which Udai Singh Pawar, Joyojeet Pal and Kentaro

Toyama studied the behaviour of children in front of a computer of schools in

developing countries. They noticed that, due to economic constraints, student-to-

computer ratios ranged up to ten-to-one. Previous research in learning showed that

involvement is an important factor of effective learning. Thus, they observed that active

participant students were likely to be receiving more educational value than the ones

without access to the mouse.

In consequence, they proposed, implemented and tested a technical solution to

this problem by providing one mouse with its correspondent cursor to each child. This

way, each child could have active interaction with the software. They implemented a

Single Display Groupware (SDG) in developed countries’ classroom.

Based on previous work and tests, they concluded the project claiming that in an

educational context, one-to-many ratio of PC’s to students is desirable, provided that

every student has some control over what is happening on the screen.

At 2009, Tsutomu Kawai, Joutarou Akiyama and Minoru Okada proposed the

Point-to-multipoint communication protocol (PTMP) [17]. The system is intended to

distribute and display identical data on many workstations simultaneously on the X

window system with the stream-type data communication.

PTMP is intended to communicate with high performance and reliability on

requiring low bandwidth. In order to implement that, PTM protocol combines the

efficiency of broadcast, which is the easiest way to send information to multiple

workstations, and the reliability of TCP/IP, which helps controlling the right reception

of the data.

PTMP adopts the selective-repeat algorithm, which consists on sending a negative

acknowledgement (NACK) only if the packet is erroneously received and suppressing

the acknowledgements (ACKs) if the packets are received correctly.

2. BACKGROUND 2.3 Previous Work

 12

PTM protocol sends basic data using broadcast protocol and uses UDP point to

point protocol with some reliability added for the messages control. After analysis and

tests they observed that PTMP was better than TCP/IP as the amount of clients

increases. Even so, the protocol needs to be improved and better evaluated in terms of

logical limitation of clients and completeness.

A Keyboard Video Mouse switch (KVM) [18] is a hardware device that allows

controlling many computers or servers with only a monitor, a keyboard and a mouse.

Usually KVM switches can control up to 64 computers at once.

At present, there are also devices able to share USB devices and speakers with

multiple computers. By contrast with the usual KVM switches, some devices can

function in reverse configuration, that is, one single PC can be connected to many

monitors, keyboards and mice. This configuration is useful when a user wants to access

a single computer from different locations.

KVM are very useful to control many computers which must be accessed

independently and they can be accessed by hot keys or quick commands that can be

used to access a specific computer or server fast and easily.

There are also KVM switches that allow the manageability of PC or servers

through the TCP/IP connection. It is possible to access to a computer through internet,

being in another location but feeling as if he was sitting in front of it.

Mobile Air Mouse [19] is a brand new application developed for RPA Tech [20].

That application instantly transforms an i-Phone or i-Pod Touch into a wireless mouse

for any MAC or PC. It can operate into three different modes: air Mouse, track pad and

wireless remote control for the computer.

The air mouse uses the built in accelerometer to translate hand motions into

mouse movements on the screen. Mobile air mouse can also operate as a track pad,

allowing controlling a computer with a single finger. Track pad mode is easier to use,

because it is like a usual track pad of a laptop.

2. BACKGROUND 2.4 Why IPM?

 13

Both modes have the screen divided into two different parts. The top half of the

screen is reserved for the mouse options, and the bottom half part is reserved for the

usual i-phone keyboard with 3 keys added: Control, Alt and Command keys.

This application can also work as a remote control of the computer. Using an

innovative application notification system, the i-Phone will always know what

applications are running at any time and show the appropriate keys for that program,

providing the user with a single screen for controlling all the media and web

applications. It has no screen size limitation and works with multiple monitors.

2.4 Why IPM?

IPM is an innovative and interesting idea, because there have been many attempts

but not many successes on this area. The purpose of IPM is similar to the goal pursued

in many of the works presented before: to find out how to build and implement a multi-

pointing device capable of being coupled transparently to any computer without

interfere with other pointing devices that may be connected to the same machine,

allowing this way multi-user collaboration.

Despite of the idea is similar, the methods and results used are different for each

work. Nevertheless, the work of Hutterer and Bruce H., with the MPX system, is very

relevant for this work because it shows that it is possible to do such a thing.

Even so, IPM device have another purpose, which is to send the device’s data to

any computer through TCP/IP protocol. The device needs to be newly created and needs

to fulfil some requirements. It has to be able to perform 2D-motion, and need to have

Ethernet features.

Moreover it is desirable for the device to be flexible, as it may be included to any

electronic device in a future. However, this is only the first prototype and

implementation of IPM. Next section describes the functional overview of IPM device

and its design and implementation.

2. BACKGROUND 2.5 IPM Complete System Overview

 14

2.5 IPM Complete System Overview

In this section the complete system is briefly explained and analyzed. The main

parts of the system are shown on the figure below:

Figure 2. IPM Complete System graphic

The Mouse together with the microcontroller and the PS/2 interface constitute an

independent pointer device that can be connected to any computer. The bus between

them is bidirectional, which means that data can be transferred in both directions, from

the PC to the device (i.e. when sending configuration commands or acknowledge bit)

and from the device to the computer (i.e. when sending data information from the

device).

Most of the operations are controlled by the microcontroller, which controls every

process, movement or event occurred and received. The microcontroller controls all the

hardware components such as the ports, connectors, Ethernet, etc. and provides the

appropriate communication between the device and the host computer.

The computer acts like a server that establishes communication with the mouse

and send the commands to set the correspondent configurations to the device.

Afterwards, it stays waiting and listening to the correspondent port to receive the data

transferred. Any external program previously run on the computer could take the data

received and process it (i.e. print it on screen).

Subsequent chapters detail the hardware and software design and implementation

of each part of the IPM system.

MOUSE
PS/2

INTERFACE
µC

mcf52233evb

PC Ethernet

3 IPM SYSTEM ARCHITECTURE 3.1 M52233EVB

 15

3 IPM System Architecture

This chapter details the different parts introduced on the overview of the IPM

system. It breaks down into two main subchapters: M52233EVB, where the board

features are explained, and PS/2 mouse interface hardware, where all the different

blocks and components used on this part are described.

3.1 M52233EVB

The DEMO52233 board is the main board used for this project. This board is an

evaluation board for the MCF52233 ColdFire microcontroller [4]. The M52233EVB

includes a DB9 serial port, USB (Background Debug Module) BDM port and Ethernet

port. It is provided with a development kit, which includes a special edition of software

support Code Warrior IDE [21] which supports application development and debug.

The Freescale board consists of many modules, timers, connectors and features,

which can be useful for many applications and different projects, but the most relevant

features for the development of the IP Mouse are:

M52233evb uses V2 ColdFire Core. The ColdFire V2 core is based on a memory-

configurable hierarchical architecture that is 100 percent synthesizable, which means

that it is conceived to be reused and integrated into custom designs easily. It has up to

46 Dhrystone 2.1 MIPS at 50MHz. A Dhrystone is a benchmark program that measures

the system’s integer performance. Dhrystones per second is the metric used to measure

the number of times the program can run in a second.

Another feature that will be used for the IP Mouse design is the Ethernet Media

Access Controller Module (EMAC) and Hardware Divide, as the virtual device will

need to send data through Ethernet.

Regarding the memory modules of the M52233EVB, it has 32 Kbytes of SRAM

(Static Random Access Memory) and 256 Kbytes of flash memory. Moreover, once the

data is saved, 10 years of data retention are guaranteed.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 16

The Freescale board needs 3.3V of power supply and it can be powered up by the

USB cable or by the 2.0 mm Barrel Power Input. The demo board also includes a USB,

Serial, Ethernet cables and a 40-pin header connector, which gives user access to most

of the I/O signals from the ColdFire microcontroller.

Freescale provides a free public source TCP/IP stack on their website. This

TCP/IP stack is documented thoroughly in applications note AN3470, and the IPM

TCP/IP stack is based on that application. Both files can be obtained in the Freescale

official website [22].

3.2 Design of the PS/2 interface board

The demo board have been introduced on the previous section, but as the aim of

this project is to design a virtual mouse, there’s a need to design and build the hardware

interface to connect the mouse with the Freescale board.

In order to implement the mouse interface, many interfaces could be used: serial,

USB or PS/2. For this project the PS/2 interface, which will be further detailed on the

Implementation section (chapter 4), has been chosen. Next subsections detail the design

goals and the main blocks of the PS/2 interface board and the searching and choosing of

the different components.

3.2.1 Design of the PS/2 Hardware Interface

Before designing the parts, some things need to be considered. It is important to

know exactly what needs to be done and what features are required.

Based on the IPM system is using the Freescale DEMO board described at the

previous section, which works at 3.3V, and knowing that there’s the need to include a

mouse, which works at a voltage of 5V, there should be included some voltage regulator

on the design. An elegant way to solve this problem is using a boost device.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 17

Moreover, the system might need an extra buffer and the output ports: serial and

PS/2. Some resistors, capacitors and inductors should also be used according to the

design needs of the different parts.

3.2.2 Main Blocks

Having the problem statement and the requirements clear, one can proceed to the

search of the right components for designing and building the system. This section

presents the main blocks of the prototype design of the IPM’s PS/2 interface hardware.

Figure 3. Main blocks of the PS/2 interface hardware

 From the figure, the link between the demo board and the PS/2 interface is

clear. The connection between the two boards is done through the 40-pin header

connector from the demo board. The first pin of this connector is the power supply and

it is 3.3V. The Power conversion block takes this voltage and converts it to a 5V voltage

that will be used for interfacing the mouse with the open-collector circuit.

The output of the open-collector goes back to the 40-pin connector of the demo

board, where the microprocessor will control and proceed with the operations.

Moreover, there is an RS-232 transceiver included on the design, which includes a serial

connector. Each block of the PS/2 interface is detailed on the next subsections.

M52233EVB

Open-collector
circuit

40-pin header
connector

Power
Conversion

RS-232
transceiver

3.3V 5V

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 18

3.2.2.1 Power subsystem

The demo board must be connected to the PS/2 interface. As have already been

presented, the Demo board works at 3.3 V and the input of the PS/2 interface needs 5V.

To solve this little problem of power conversion, and after ask what devices were

available, the TPS61072 [23] device was selected. TPS61072 is a synchronous boost

convertor from Texas Instruments [24].

The boost converter supports input voltages between 0.9 and 5.5 V. It is based on

a fixed frequency of 600 kHz and synchronous rectifier to obtain maximum efficiency.

The output voltage regulation is only maintained when the input voltage applied is

lower than the programmed output voltage. Its maximum peak current is limited to

600mA.

The TPS61072 output voltage is programmed by an external resistor divider. The

converter can be disabled in order to enlarge the battery life, and during shutdown, the

load is completely disconnected from the battery to minimize the current drains. The

device is packaged in a 6 pin SOT23 package. The circuit used to adjust the output

voltage with this boost regulator is the following:

Figure 4. TPS61072’s Application Circuit for Adjustable Output Voltage

In the figure 4, Vin is the input voltage and Vout the output (or desired) voltage.

The most important components in the figure are the inductor (L1), the boost regulator

(IC1), the resistors at the output and the capacitors.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 19

In order to calculate the right values for the components of that configuration,

some electrical characteristics from the regulator device must be considered. Those can

be found on the regulators’ datasheet [23].

 The most important characteristics are:

• The typical value of the voltage at the feedback pin (FB) is 500 mV.

• The maximum recommended value for the output voltage is 5.5V.

• The current through the resistive divider should be about 100 times greater than

the current into the FB pin.

• The typical current into the FB pin is 0.01 µA.

• The voltage across R2 is typically 500 mV.

The feedback voltage is useful to fix the output voltage of the regulator. This

voltage is present between the FB pin and GND (as shown in figure 4). The feedback

voltage will be useful to calculate the values of the output resistors to achieve the

desired output voltage.

Based on the recommendations from the datasheet, the value for R2 should be in

the range of 200 kΩ. From that, the value of resistor R1, depending on the needed

output voltage (Vo), can be calculated using the equation:

 Ω≈





 −×Ω=






 −×Ω=








−×= M

mV
Vk

mV
Vk

V
VRR O

FB

O 21
500

52201
500

220121

Note that R2 has been taken 220 kΩ (in the range of 200 kΩ) and that the desired output voltage of

the system is 5V.

As presented on figure 4, a boost converter normally requires two main passive

components for storing energy during the conversion. A boost inductor and a storage

capacitor at the output are required. Regarding the capacitor selection, 10 µF or higher

input capacitor is recommended to improve transient behaviour of the regulator and

electromagnetic interferences (EMI) behaviour of the total power supply circuit.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 20

In the IPM design, datasheet recommendations of inductance and capacitors

selection have been taken. Therefore, the inductance selected is, as in typical

applications, of a value of 4.7µH and the capacitor values selected are 10 µF.

Taking all the considerations the final values obtained are:

Component Value
R1 100 kΩ
R2 2 MΩ
R3 220kΩ

L1 4.7 µA

C1 10 µF

C2 10 µF

Table 1. Values of the TPS61072 application circuit components

From the datasheet, one can see that the feedback voltage is a pseudo constant

voltage between the FB pin and Ground. This is useful to calculate the output voltage.

The FB voltage forces a constant current of
2

5.0
R

I bias = that supposes a voltage drop of

1RIV biasdrop ×= . Joining the two equations, the resultant output voltage can be calculated

following the expression: dropFBout VVV += .

Using the values obtained, IPM system have an Ibias = 2.27µA. What makes the

Vdrop = 4.54 V and an output voltage obtained of Vout = 5.04V. The system

accomplishes the requirements mentioned on page 19.

3.2.2.2 Open-Collector Interface

In order to connect a PS/2 mouse to the Freescale board, it is required to build an

open-collector circuit to make the interface between the two boards. For the design of

the open-collector circuit, NPN transistors and pull-up resistors will be used. Next lines

describe these components and its function.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 21

BC546 [25]: NPN general purpose transistors

The NPN transistors general purpose is switching and amplification. These

transistors have low current (max. 100 mA) and low voltage (max. 65 V).

The transistor outline is:

Figure 5. Simplified Outline of the
BC546 transistor

Table 2. NPN transistor Pin description

PIN DESCRIPTION

1 Emitter

2 Base

3 Collector

And its main characteristics are:

Parameter Description Min Typ Max Unit

hFE DC current gain 150

VCE Collector-emitter voltage 5 V

VBEsat Base-emitter saturation voltage 700 mV

VBE Base-emitter voltage 580 660 700 mV

Vce Collector-emitter 100 mV

Table 3. BC546 electrical characteristics

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 22

74LCX86: Low Voltage Quad 2-Input XOR Gate with 5V tolerant Inputs.

The LCX86 [26] contains four two-input exclusive-OR gates. It is fabricated with

advanced CMOS technology, which allows high speed operation and low power

dissipation. The inputs tolerate voltages up to 7V allowing the interface of 5V systems

to 3V systems.

The LCX86 are adequate for the mouse interface, because even if they have a 5V

of input voltage, they have an output of 3.3 V at the highest. This property is useful to

convert the 5V coming from the PS/2 mouse to the 3.3 V needed for the DEMO board.

Another feature that is good for the project is that this component output is low if

the two inputs are equal, and the output is high if the two inputs are different. In other

words, it can work both as a buffer and as an inversor.

The PS/2 interface schematic used for this part is shown below:

Figure 6. Open Collector circuit for the PS/2 mouse

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 23

The PS/2 electrical interface consists of two lines: Data and Clock, pins 1 and 5

from the PS/2 connector respectively. Both lines are open-collector with pull-up

resistors to Vcc. An open-collector interface has two possible states: low or high

impedance. In the low state, a transistor pulls the line to ground level. In the high state,

the interface acts as an open circuit and let the output float. Furthermore, a “pull-up”

resistor is connected between the bus and Vcc so the bus is pulled high if none of the

devices on the bus are actively pulling it low. The exact value of the pull-up resistor

isn’t too important. Typically, the resistances take values between 1 and 10 kΩ.

In order to calculate the right values of its resistors, some rules have been used.

The most important things to be aware of are that the pull-up resistors use to be of the

order of 10k. The value chosen is 15kohms. Accordingly to this and knowing from the

datasheet information that the DC gain of the transistor is approximately 150, the value

of the resistors Rb1 and Rb2 have been calculated following the next equations:

According to this, Rb should be:

Experimental tests demonstrated that the Rb values were not good enough, it was

too big, and it was decided to reduce its value until getting the right behavior of the

circuit. The differences between the calculated value and the final experimentally

obtained value used can be caused for many reasons. The first one is that the real DC

gain from the transistor, is usually smaller than what is said on the datasheet.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 24

Another important factor is that this resistance is connected to the I/O connector

from the demo board, so there can be surges currents from the board itself, unknown

from an external observer and difficult to calculate.

The final values of the open-collector components experimentally obtained are:

Rpull-up1 = Rpull-up2 = 15 kΩ

Rb1 = Rb2 =22 kΩ

According to this and following the equations used previously, that resistor values

lead us to different base currents.

The collector current is still approximately 327 µA.

The base current is approximately 32 µA.

With those values, the transistor would be working with a DC gain of

approximately 10.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 25

MAX 3224ECAP: RS-232 Transceivers with AutoShutdown Plus

The MAX3224ECAP [27] is an RS-232 Transceiver from MAXIM [28]. It is 3V

powered and has automatic shutdown/wakeup features, high data-rate capabilities, and

enhanced electrostatic discharge (ESD) protection.

Some electrical features from of the RS-232 transceiver can be obtained from the

datasheet. The main features are:

Parameter Min Typ Max Unit
Supply current 1 10 µA
Vcc 3.3 5.5 V
Maximum Data Rate 250 Kbps

Table 4 Electric features of MAX3224E

The AutoShutdown feature allows saving power. It consists on automatically

entering a low power shutdown mode if the device finds that the RS-232 cable is

disconnected of the transmitters or if there is no activity during more than 30 seconds. It

turns on again when senses activity at any transmitter or receiver input.

Other interesting features from this device and accordingly to the datasheet are:

 “...The transceivers have a proprietary low-dropout transmitter output stage enabling true

RS-232 performance from a +3.0V to +5.5V supply with a dual charge pump. Each charge

pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+

and V+ supplies. Those capacitors have to be 0.1 μF for operation from a 3.3V supply.

The MAX3224E feature a logic-level output (READY) that tells when the charge pump is

regulating and the device is ready to begin transmitting. The READY output is low when the

charge pumps are disabled in shutdown mode. The READY asserts high when V- goes below -

4V...”

Moreover, recommendations from the datasheet are taken, so for the design, a

0.1 uF Vcc bypass capacitor will be used. This capacitor is used to decouple power-

supply. MAX3224E device is 20-pin SSOP packaged.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 26

3.2.3 Design of the schematic

Knowing all the parts and the right values of the components needed, the

schematic can be designed. The size is not an important factor, but it is intended to

design it as small as possible.

With all the information gathered one have to think about how to place each part

and have to be careful and try not to overload the tracks between the components. For

that I am using a special CAD tool named Eagle Layout Editor [29], which is free

software and easy to use.

The schematic design of the IPM system looks like the following:

Figure 7. IPM schematic design

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 27

3.2.4 Design of the PCB

Once the schematic design is finished and without any errors of connection (Eagle

has the option to check for errors of connection), the Printed Circuit Board (PCB) needs

to be created. For that, Eagle CAD software will be used again. In order to design and

place the components on the PCB, some layout considerations need to be followed.

Layout Considerations for TPS6107x boost converter:

The layout is an important step in the design, especially when working at high-

peak currents and high switching frequencies, like switching power supplies. If the

layout is not carefully done, the regulator could show stability and EMI problems, as

mentioned in section 3.2.2.1.

Therefore, wide and short traces should be used for the main current path and for

the power ground tracks. Moreover, the input capacitor, output capacitor, and the

inductor should be placed as close as possible to the Integrated Circuit (IC) ground

noise.

The feedback divider should be placed as close as possible to the ground pin of

the IC. To lay out the control ground, short traces should be used as well, and they

should separated from the power ground traces to avoid ground shift problems, which

can occur due to superimposition of power ground current and control ground.

Knowing this, the connections for the PCB can be done. In Eagle, there is a

function that takes the schematic information and makes the connections between the

components automatically. So the only thing missing to do is to place each component

on the right position and route the traces between components, trying to optimize the

size of the board, it should be as small as possible, and without crossing or overloading

any of the traces, as the circuit would be shorted.

This is not as simple as it seems, because you need to make some intends and

replace over and over the components in order to get it.

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 28

The final printed circuit board sizes 57.6 x 70.8 mm and it is shown at figure 8.

Note that the board has both top and bottom layers, because this was the way to avoid

overloading the footprints and traces between the different components. Red lines are

placed on the top layer, and blue lines and devices are placed on the bottom layer. There

are also some vias that connect top and bottom layers in order to simplify or short some

tracks. Once the board is fabricated, there is a need to connect the top layer with the

bottom layer putting a piece of cable inside the hole of the vias, in order to keep the

connections between the two layers.

Figure 8. IPM’s PCB design

3.2.5 Building the board

With the schematic and the PCB designed, the only thing missing is to fabricate

the board. To do that, two different programs are used, the CircuitCAM [30] and the

Board Master [31]. The machine used to build the board is the LPKF protomat S42 [32].

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 29

After creating the Gerbo files, obtained from the same software named before,

Eagle, importing the files to the CircuitCAM program and making all the necessary

configurations, it will create a new file that contains all the information needed to build

the board. This file has an extension (*.LMD).

This file obtained has to be imported to the second program, the MasterBoard.

Once there, and with the board printed on-screen, one should check that have the right

information and holes size in each layer, and proceed on building the board. It is a slow

process, because the drilling tools need to be changed manually for each hole-size, and

the two layers, top and bottom, need to be performed separately.

The PCB resulting is the next:

Figure 9. Front side of the PCB

Figure 10. Back side of the PCB

After soldering all the components and vias carefully, the final result of the board

is this one:

Figure 11. Front side of the final PCB

Figure 12. Back side of the final PCB

3 IPM SYSTEM ARCHITECTURE 3.2 Design of the PS/2 interface board

 30

Attaching the PS/2 interface board with the previously mentioned M52233EVB,

the complete system mounted is shown below. On the profile picture of the IPM (figure

14), the PS/2 connector where the external mouse will be connected is shown.

Figure 13. Complete system from the top

Figure 14. Profile of the complete system

4. IMPLEMENTATION 4.1 Human Interface Devices

 31

4 Implementation

The IPM has been designed and built. As any peripheral device, IPM needs to be

implemented according to a protocol. Prior to the implementation itself of the device, a

good start point is to investigate and search about the actual devices and the protocol

they use. A good start point is to search about Human Interface Devices (HID) to find

out how computers use them and learn about the protocol they use. The next subsection

of this chapter introduces the X-Windowing, which will be useful to learn and

understand how windowing systems works and how could that help an IP Mouse

device. There is also a subsection introducing the network packets and the TCP/IP

stack. Further to those introductory subsections, the IPM implementation itself will be

accurately explained.

4.1 Human Interface Devices (HID)

A human interface device (HID) [33], as its name indicates, is a type of peripheral

device that enables humans to interact directly with a computer. The most common

examples of HID devices are a mouse, a keyboard or a joystick.

HID were intended to innovate in computer input devices by simplifying the

process of installing these peripherals. Prior to HID, devices usually conformed to very

restrictive protocols that needed upgrading of data and protocol each time the hardware

was modified.

By contrast, at present most HID devices have self describing packages that may

contain a huge variety of data types and formats, which make the installation much

easier. A single HID driver on the PC currently analyzes the data and enables dynamic

association of data I/O with application functionality. This has enabled rapid innovation

and proliferation of new human interface devices.

4. IMPLEMENTATION 4.1 Human Interface Devices

 32

There are many types of HID available for modern PCs. The most common

interfaces they use to communicate with a personal computer are the Universal Serial

Bus (USB) or the Personal System 2 (PS/2). As PS/2 interface has been chosen for this

project, it is further detailed on the next subsections.

4.1.1 The PS/2 Interface

PS/2 stands for Personal System 2 [2]. The PS/2 system was the second

generation line of computers of the IBM Corporate back in the 90’s. The PS/2 system

was innovative for its age and incorporated a new I/O connector for peripherals such as

keyboard and mouse, which later on became a standard connector that was also named

as PS/2 connector. PS/2 port is bidirectional and uses an in/out clock to transmit and

receive data. Data is sent and received synchronous to this clock.

The PS/2 mouse interface uses a bidirectional serial protocol to transmit data to

the host’s controller. The computer, in turn, may send a number of commands to the

mouse to set the report rate, set the resolution, reset the mouse, enable/disable data

reporting, get the device ID, enable/disable the mouse or set mouse mode. The computer

also provides the mouse with an overload-protected 5V power supply.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte 1 Y overflow X overflow Y sign bit X sign bit Always 1 Mid. Btn Right Btn Left Btn
Byte 2 X movement
Byte 3 Y movement

Table 5. Movement Data Packet

Table 5 shows a movement data packet from a standard PS/2 mouse. A standard

PS/2 mouse sends a 3 byte packet of movement/button information to the host.

The first byte contains position information, status of the mouse buttons (1 for

pressed and 0 for unpressed) and the X and Y overflows, which are set if the counters

go past 255. Second and third bytes contain information regarding the X and Y

movement respectively.

4. IMPLEMENTATION 4.1 Human Interface Devices

 33

These movements are calculated based on the counter values in the mouse. These

counters are updated when the mouse reads its input, from its sensors, and finds that

movement has occurred. Their value is the amount of movement that has occurred since

the last movement data packet was sent to the host. The range of values of the

movement counters is -255 to +255. If this range is exceeded, the appropriate overflow

bit is set.

The resolution is the parameter that determines the amount by which the

movement counters are increased / decreased. The default resolution is 4 counts/mm

and the host may change that value communicating with the mouse accordingly. The

PS/2 mouse also allows scaling the value of the mouse movements. By default the

scaling factor is set to 1.

4.1.2 PS/2 General information

There are two types of PS/2 connectors: The 5-pin DIN and the 6-pin mini-DIN.

Both connectors are electrically similar and the only difference between them is the

arrangement of pins. The 6-pin mini-DIN is the one that will be used on the IPM design.

Male

(Plug)

Female

(Socket)

Pin Function
1 Data

2 Not implemented

3 Ground

4 Vcc (+5V)

5 Clock

6 Not Implemented

Figure 15. 6-pin Mini-DIN (PS/2) connectors

• Vcc/Ground provides power to the device.

o Typically: Vcc comprehends values between 4.5 V and 5V.

• The current of the keyboard/mouse must not be higher than 275 mA.

o That is important to avoid transient surges, caused by “hot

plugging” the device (i.e. connect or disconnect the device while

the computer’s power is on).

5 6

3

5

1 2

4

5 6

3

5

1 2

4 3

5

12
4

6

4. IMPLEMENTATION 4.1 Human Interface Devices

 34

4.1.3 PS/2 Communication Protocol

The PS/2 electrical interface consists of two lines: Data and Clock. Both lines are

open-collector with pull-up resistors to Vcc. The open-collector interface has been

already presented on section 3.2.

The PS/2 mice implement a bidirectional synchronous serial protocol. It can either

transmit data from the Device to the Host and the opposite way, Host to Device. The

bus is “idle” when both data and clock lines are high (open collector). This is the only

state in which the mouse is allowed to begin transmitting data. The host has ultimate

control over the bus and may inhibit communication at any time by pulling the Clock

line low.

The device always generates the clock signal. If the host wants to send data, it

must first inhibit communication from the device by pulling the clock line low. The host

then pulls the data line low and releases the clock. This is the “Request-to-Send” state

and signals the device to start generating clock pulses. The device bus states are:

Data Clock State
High High Idle state
High Low Communication inhibit
Low High Host Request to Send

Table 6. PS/2 protocol. Bus states

All data is transmitted one byte at a time. Each frame has a length of 11-12 bits:

• Start bit. This is always 0

• 8 data bits, least significant bit first

• 1 parity bit (odd parity)

• 1 stop bit. This is always 1

• 1 acknowledge bit (host to device communication only)

The parity bit is used for error detection. It is set if there is an even number of

1’s in the data bits. Otherwise it is reset. The number of 1’s in the data bits plus the

parity bit always add up to an odd number (odd parity).

4. IMPLEMENTATION 4.1 Human Interface Devices

 35

The data sent from the host to the device is read on the rising edge of the clock.

Data sent from the device to the host is read on the falling edge. The mouse always

generates the clock signal, but the host always has ultimate control over

communication.

4.1.3.1 Device to Host Communication

Data and Clock lines are both open collector, so the idle state of the bus is high.

When the mouse wants to send information, it first checks if the Clock line is at high

logic level. If it’s not, the host is inhibiting communication and the device must wait

until the host releases the Clock line. Prior the device can begin transmitting its data, the

Clock line must be at high level for at least 50 microseconds.

The mouse writes a bit on the Data line when the Clock is high, and it is read by

the host when Clock is low.

Figure 16. Device to Host data packet and timing diagram

The clock frequency is 10-16.7 kHz. The time from the rising edge of a clock

pulse to a Data transition must be at least 5 microseconds. The time from a data

transition to the falling edge of a clock pulse must be at least 5 microseconds and no

greater than 25 microseconds.

The host may inhibit communication at any time by pulling the Clock line low for

at least 100 microseconds. If the communication is inhibited before the 11th clock pulse,

the device must abort the current transmission and prepare to retransmit the current data.

T1 T2 T1 = 5 ms
T2= 5 - 25 ms

4. IMPLEMENTATION 4.1 Human Interface Devices

 36

If the host pulls the clock low before the first high-to-low clock transition, or after

the falling edge of the last clock pulse, the mouse does not need to retransmit any data.

However, if new data is created and needs to be retransmitted, it will have to be

buffered until the host releases the Clock.

The basic process and timing that the mouse uses while sending a data is:

1. Waits for Clock to be high

2. Delays 50 μs

3. Check if the clock is still high. If it’s not, go to step 1

4. Check if data line is high. If it is not, abort communication and read from the host

5. Delays 20 μs (or 40 μs if the time clock is pulled low in sending the start bit)

6. Outputs Start bit (it is always 0)

7. Outputs 8 data bits

8. Outputs Parity bit (odd parity)

9. Outputs Stop Bit (it is always 1)

10. Delays 30 μs (or 50 μs since the time Clock is released in sending the stop bit)

4.1.3.2 Host-to-Device Communication

The packet is sent a little differently in host-to-device communication. Since the

device always generates the clock signal, if the host wants to send data, it must first

inhibit communication and second apply “Request-to-Send” state by pulling Data low,

and releasing then the Clock.

The device should frequently check for this state. When the device detects this

state, it will begin generating Clock pulses and will send an acknowledge frame with

eight data bits and one stop bit. Contrary with Device To Host Communication, in Host

to Device communication the host writes the data only when the Clock line is low, and

the device reads the data when the clock line is high.

4. IMPLEMENTATION 4.1 Human Interface Devices

 37

After the clock is received, the device will acknowledge the received byte by

bringing the Data line low and generating one last clock pulse. If the host does not

release the Data line after the 11th clock pulse, the device will continue generating clock

pulses until the Data line is released and then will generate an error.

The host may abort transmission at time before the 11th clock pulse (acknowledge

bit) by holding Clock low for at least 100 microseconds. The steps the host must follow

to send data to a PS/2 driver are:

1. Bring the Clock line low for at least 100 microseconds

2. Bring the Data line low

3. Release the Clock line

4. Wait for the device to bring the Clock line low

5. Set or reset the Data line to send the first data bit

6. Wait for the device to bring Clock high

7. Wait for the device to bring Clock low

8. Repeat steps 5-7 for the other seven data bits and the parity bit

9. Release the Data line

10. Wait for the device to bring Data low

11. Wait for the device to bring Clock low

12. Wait for the device to release Data and Clock

Figure 17. Host to Device data packet and timing diagram

4. IMPLEMENTATION 4.1 Human Interface Devices

 38

4.1.3.3 Defining device’s operation mode and parameters1

As described previously, the host needs to communicate with the device in order

to define the parameters the device will use. The device has four standard modes of

operation: Reset, Stream, Remote and Wrap. They all can be entered by sending the

right command to the mouse.

The mouse only enters the Reset mode at power-up or after receiving the Reset

(0xFF) command. On this mode a self-test is initiated, the mouse sets default

configurations values: Sampling rate = 100 samples/s; Resolution = 4 counts/mm,

Scaling = 1:1 and Disable Data Reporting. Then responds with an acknowledge (0xFA)

command.

The default mode is the Stream mode. It is entered after the reset mode is

executed. In this mode, the programmed sample rate is the maximum rate of transfer.

Data report is transmitted if an event (button pressed or movement detection) occurred.

In the Remote mode the data is transmitted only in response to a Read Data

command. This mode may be entered by sending the Set Remote Mode (0xF0) to the

mouse.

Wrap mode is used for testing the connection between the mouse and its host.

Wrap mode may be entered by sending the “Set Wrap Mode” (0xEC) command.

There are many commands the host can send to a standard PS/2 mouse in order to

set the operating mode and configurations. The IPM is working according to the Stream

Mode. The most used and useful for the IP Mouse system are explained below.

• Reset (0xFF): this command is used to enter the Reset Mode. After this

command the mouse responds with an “acknowledge” (ACK).

1 All data information and commands from this section is adapted from the Adams text, that can be found
on www.computer-engineering.com

4. IMPLEMENTATION 4.1 Human Interface Devices

 39

• Set Defaults (0xF6): this command is used to load the default values of the

mouse, reset its movement counters and enter to the stream mode. The mouse responds

with an ACK.

• Disable Data Reporting (0xF5): is used to disable the data reporting and reset

the movement counters. The mouse responds with an ACK.

• Enable Data Reporting (0xF4): is used to enable data reporting and reset its

movement counters. The mouse responds with an acknowledge command.

There are many other commands that can be used either to set the sample rate,

resolution or scaling of the mouse, to get the device ID or to request the status of the

mouse.

The only commands the standard PS/2 mouse will send to the host are “Resend”

(0xFE) and “Error” (0xFC). They both work the same as they do as host-to-device

commands.

4. IMPLEMENTATION 4.2 Windowing Systems

 40

4.2 Windowing Systems

A windowing system [1] enables the computer user to work with multiple

applications at the same time. Each program runs in its own window. Most windowing

systems have basic support of re-parenting which allows windows to overlap, however

the window manager is who controls the way in which windows interact.

Different Windowing systems have been developed until now. Some of them, like

X Windowing, are characterized for being network transparent, allowing the user to

display graphical applications running on a remote machine. Even though that many

windowing systems have been designed over the years, the most known and used at

present are Mac OS X, X Window System or Y Window System. Moreover, some

operating systems such as Microsoft Windows [34], Mac OS [35] and Palm OS [36],

contain windowing systems integrated with the OS.

4.2.1 What is X-Windowing?

The MIT [37] team developed X Window as a distributed, network-transparent,

device independent, multitasking windowing and graphics system. As a windowing

system it permits to display multiple applications on the same screen, and it lets one

application use many windows. It supports overlapping and hidden windows, text with

soft fonts, and two-dimensional graphics drawing.

X Window uses a client/server model in which, by contrast with the common

configuration of client/server systems, the server runs on the local machine (user’s

computer), and the client’s applications or requests can run either locally or remotely.

http://en.wikipedia.org/wiki/Window_manager�
http://en.wikipedia.org/wiki/Remote_computer�

4. IMPLEMENTATION 4.2 Windowing Systems

 41

Figure 18. X-Windowing client/server model

The client communicates with the server by sending packets of instructions

conforming to the X Protocol. This is a network protocol that can run locally or through

a network regardless of whether a client program is local or remote.

Each workstation has its own server, which contains the hardware-dependent

drivers for that workstation. The server also manages the requests from the clients: the

input devices (keyboard or mouse), and the display of the screen (see figure 18).

X provides the basic framework for building Graphic Unit Interface (GUI)

environments: interacting with input devices (mouse or keyboard) and drawing or

moving windows on the screen. The application programmer links the client program

with X Window using Xlib [38], a library of graphics and windowing functions.

Network

X protocol
 packet

keyboard Pointer

Screen keyboard PointerNetwork

OS

Client 1

Xlib

OS OS

Client 2

Xlib

Client 1

Client 2

Screen

User's workstation

 X Server

X Client

4. IMPLEMENTATION 4.2 Windowing Systems

 42

4.2.2 The X server

Each workstation has its own X server. The X server interacts with the hardware

and performs the action. It captures input events from the input devices (i.e. keyboard or

mouse) and passes the information to the Window Manager, which tells the server

which client application has requested it and where to replace the window. It also

receives requests from the graphical output (window) and sends it back user input (input

device).

A good thing from X windowing is its ease of communication. As long as the X

clients are written accordingly to the X Protocol, they can run on any system and

communicate with the X server. Only the server software has to be hardware-specific.

An X server, from a structural point of view is conformed of:

• A device-independent layer, which receives and translates client request

messages.

• An operating system-dependent layer, that interfaces to a particular OS

• A device-dependent layer, where are the device drivers for the specific

hardware supported.

4.2.3 X-Window System Core Protocol

The communication protocol between server and client runs network-

transparently, which means that the client may run on the same machine than the server

or on different ones, possibly with different architectures and operating systems.

Communication between server and clients is done by exchanging packets over a

network channel. The client is who establish the connection by sending the first packet.

The server then sends back a packet stating the acceptance or refusal of the connection.

The server can also answer with a request for a further authentication.

If the connection is accepted, the acceptance packet contains data that the client

will need to use for the next interaction with the server.

4. IMPLEMENTATION 4.2 Windowing Systems

 43

After connection is established, the client and the server can exchange four types

of packets over the channel: Request, Reply, Event and Error.

Figure 19. Communication interaction between a client and a server

1. Request: The client requests information from the server or requests it to

perform an action.

2. Reply: The server answers to a request. Not all requests generate replies.

3. Event: The server sends an event to the client, e.g. keyboard or mouse input,

or move, resize or expose a window.

4. Error: If a request is invalid, the server sends an error packet. Since requests

are queued, error packets may not be sent immediately.

first packet

accept/refuse

request

event

reply

authentication
(optional)

...

...

Client Server

4. IMPLEMENTATION 4.2 Windowing Systems

 44

4.2.4 Windowing hierarchy

X treats windows as a hierarchy. The root or origin window on which the

application windows are displayed is called parent. Application windows can only be

created as a sub window of a parent window and the name given to them is children. In

X-Windowing system, graphical elements and input events such as buttons’ status,

menus, icons or inputs from a peripheral device are all realized using windows.

The root or parent of this windowing hierarchy is automatically created by the

server. Moreover, this hierarchy can have top-level windows, which are the direct sub

windows of the root window. Each window and sub window may have its own sub

windows.

 Visibly, the root window is the same size as the screen, and lies behind all other

windows. Children always stay in front of their parents. If there’s a part of a window

outside its parent, this part is not visible. Window manager is who controls the overlap

and visibility of windows.

Figure 20. X-Windows hierarchy

In this figure:
 1 is the root window, which covers the whole

screen;

 2 and 3 are top-level windows (children of 1)

 4 and 5 are sub windows of 2 (children of 2)

The number of windows that can be created and destroyed is almost limitless.

Each window has its own attributes such as foreground, background, border colour,

cursor shape, etc.

1

2
 4

5

3

4. IMPLEMENTATION 4.2 Windowing Systems

 45

4.2.5 Events

Events are packets sent from the server to the client to notify that something has

occurred. Every event is relative to a window, and each packet contains an identifier of

that window. Events can be for input (i.e. when a user presses a mouse button) or for

output (i.e. to indicate the creation of a new sub-window).

Events can also be used for communication between clients. For example, a client

can request the text that is being selected, so this event is sent to the client that is using

the window with the selectioned text.

Client requests are sent continuously but the Window Manager is who has

ultimate control over the screen usage. The manager tries to satisfy these client requests

as fairly as it can. Windows can be moved, resized, closed, or reduced to an icon via the

performance of a window manager. In fact, a window manager can do whatever its

implementer can dream up.

4.3 Network packets

A network packet is the basic unit of information that is transferred across

an Ethernet network. The basic packet consists of a header and a body. The header

contains the sending and receiving systems’ addresses, and the body contains the data to

be transferred. As the packet travels through the TCP/IP protocol stack, the protocols at

each layer either add or remove fields from the basic header. When a protocol on the

sending system adds data to the packet header, the process is called data encapsulation.

Network packets are important for this work, because the pointing device being

created, IPM, will need to send its data through packets via the TCP/IP stack. The data

packets need to be created from the beginning, adding a header and a checksum for

being able to go through all the internet layers. The data sent by the IPM will be sent

through internet and it will be able to be received to any computer.

4. IMPLEMENTATION 4.3 Network Packets

 46

For the IPM implementation to send the data, UDP protocol has been chosen, as

it is connectionless protocol and it is easier to implement the sending interface.

An overview of the TCP/IP stack of the M52233EVB is presented below:

Figure 21. TCP/IP Stack Overview

The Session/Presentation layer is a mini-socket interface similar to the Berkeley

Software Distribution (BSD) socket interface. The stack has been optimized for

embedded application using zero-copy functionality for minimum RAM usage.

The TCP/IP stack implements the following protocols:

• Internet protocol (IP)

• Internet Control Message protocol (ICMP)

• User Datagram Protocol (UDP)

• Transmission Control Protocol (TCP)

• Ethernet Address Resolution Protocol (ARP)

• Domain Name Server (DNS)

• Dynamic Host Configuration Protocol (DHCP)

For more information about those protocols, the RFC’s official website [39] can be

consulted.

Physical Layer (10BaseT/100BaseT)

Network Layer (IP)

Transport Layer
(UDP)

Transport Layer
(UDP)

Transport Layer
(UDP)

Session/Presentation Layer
(Socket Interface)

Application Layer
(DHCP)

Application Layer
(HTTP/TFTP/DNS)

Network Layer
(ARP)

4. IMPLEMENTATION 4.4 Connecting the board

 47

4.4 Connecting the board

As presented in chapter 3, the M52233EVB is provided with a RS-232 cable, a

Code Warrior CD, a USB cable (or debugger cable) and an Ethernet Crossover cable

and, of course, the DEMO board, that looks like this:

Figure 22. M52233DEMO board

Prior to connecting the board to a computer, specific software needs to be

installed on the computer. This software, CodeWarrior, is also provided with the board

contents and can be updated through internet.

Once the CodeWarrior is installed, verifying the right configuration of the board

and connecting the cables to the computer should be the next steps. Three different

cables need to be connected. USB cable will provide power supply to the board. Serial

cable will be used for debugging and downloading the code from the computer to the

board and Ethernet cable will connect the board to a local Ethernet network. When

everything is well connected the two leds situated next to the USB connector turn on

(with amber and green colours). More information can be found on the DEMO52233

board quick guide [40].

4. IMPLEMENTATION 4.4 Connecting the board

 48

The board should be now connected and settled. In order to test the right

behaviour of that, emulator software should be configured. There are many terminal

emulators such as Tera Term, HyperTerminal. Those programs are communications

utilities that provide terminal emulation and file transfer protocols, and allow setting

options for point-to-point communication via a serial (RS-232) link or a TCP/IP link.

Due to the operative system used is Windows, and it comes with Hyper Terminal

included, this is the one that will be used. It can be found by following the next:

Start  Programs  Accessories  Communication  Hyper Terminal

According to the Quick user guide, the terminal has to be set the protocol to

115200, 8 bits, no flow control and 1 stop bit and should as well be configured for the

COM port to which the serial cable is attached on the PC. To ensure the right COM port

number, Windows have a Devices Administrator place that can be found going to:

 Control Panel  System  Hardware  Devices Administrator

Terminal window will display the start-up sequence for the target device. The IP

address and Gateway address will also be displayed in a window like this:

Figure 23. Hyper Terminal log window

4. IMPLEMENTATION 4.5 Programming the board

 49

From now on the board is connected and ready to start using and testing the right

behaviour of the same. To do that, ColdFire have available some demonstrations and

applications that can be used easily by navigating to the IP address 192.168.1.99, that is

the demo board IP, and clicking on the links of the applications that appear on the

welcome screen display. It is useful to learn and understand the right functioning of the

board.

4.5 Programming the board

At this point, the hardware part is completely finished but it has to be tested in

order to check that it is working alright. The next sections explain the tests performed

and used to learn about the functioning of the Freescale board and to get ability to

manage the CodeWarrior tools and the board features. By doing these tests, the right

functioning and behaviour of the board are checked.

4.5.1 Testing the board

The first test consists of implementing two simple programs. First of them is a

simple “Hello World”. In order to implement that, a new stationary project needs to be

created. As expected, using and executing the code shown below, a new window with a

“Hello World in C” written appears, which means that the board is working properly.

/** Hello World **/

#include <stdio.h>

int main()

{

 printf("Hello World in C\n\r");

 fflush(stdout);

 while(1); //idle

 return 0;

}

4. IMPLEMENTATION 4.5 Programming the board

 50

The second implementation done is a looping program. The aim of it is to loop

two pins of the I/O port connector of the demo board turning them on and off

alternatively. To do that, the ColdFire microprocessor needs to be configured carefully,

because many of the pins associated with the external interface may be used for several

different functions. When not used for their primary function, many of the pins may be

used as general-purpose digital I/O pins (GPIO pins), which means that can be used

either as an input or as an output and with digital signal.

Register information from M52233RM [41] provides the information needed to

configure the correspondent ports as wished. First off, the I/O ports need to be

configured as a GPIO function. The function/variable used to implement that is called

PANPAR (IPSBAR:0x10_000A) and it assigns the register bits to the pins. If the bit is

1, the pin assumes its primary function. If it is 0, the pin assumes its GPIO function.

Using the command: MCF_GPIO_PANPAR = 0x00, the program assumes that all

the pins are settled as a GPIO function.

Once the GPIO function is settled the data direction of the pins need to be

established. The pins need to be set either as input or output.

To do that, the ColdFire has the DDRn register. The DDRn registers control the

direction of the port n pin drivers when the pins are configured for digital I/O. The

DDRn registers are read/write. At reset, all bits in the DDRn are cleared to 0’s.

If DDRn is 1, the pin is configured as an output. By contrast, if it is 0 it is

configured as an input. After using this command, the pins are configured as its GPIO

function and as input or output.

For this looping test, pins 22 and 24 (AN6 and AN7 respectively) are configured

as outputs and all the others as inputs. This can be done using this command:

MCF_GPIO_DDRAN = 0xC0 // 1100 0000

4. IMPLEMENTATION 4.5 Programming the board

 51

The final code for the looping test program is the following:

/**
 ************* LOOPÌNG TEST ******************
***/

#include "mcf5223_gpio.h"
#include "common.h"

int main()
{

/*PnPARx pin assignment register bits:
 1 Pin assumes its primary function
 0 Pin assumes its GPIO function
*/

 MCF_GPIO_PANPAR = 0x00; // Configuration of PORTAN as GPIO.

// It could also be bit by bit, but we don't want any Analog I/O.

/*DDRnx sets data direction for port nx pin when the port is

configured as a digital output
 1 DDRnx is configured as an OUTPUT
 0 DDRnx is configured as an INPUT
*/

// Configuration of pins AN7 and AN6 as an OUTPUT
 MCF_GPIO_DDRAN = 0xC0;

 while(1)
 {

 if(MCF_GPIO_PORTAN == 0x00)
 {

 MCF_GPIO_PORTAN = 0x40; //AN6 = 1; (logic 1)
 }
 else
 {
 MCF_GPIO_PORTAN = 0x80; //AN7 = 1; (logic 1)
 }
 }

}

4. IMPLEMENTATION 4.5 Programming the board

 52

The result is a square signal of logic values ‘1’ and ‘0’ in both pins 22 and 24 of

the J1 connector, which is the 40-pin header connection mentioned on previous chapter.

The signal obtained in this test is the following:

Figure 25. Result of the looping test (pin 22)

Looking at the figure, an observer can see that the output signal is a square signal

of approximately 3.2 Vp-p and 320.5 kHz frequency. This frequency might depend on

how many instructions are written between the changes of the logic levels, so the output

signal may not be constant.

With those two little tests, one can assume that the board is working alright.

4.5.2 Interruptions Test Program

For the final program, the pointer device will generate the clock signal. As it has

been explained on the PS/2 protocol section (section 4.1) and in order to follow the

protocol, some strict conditions need to be considered. For example, in order to

synchronize the data to the clock line, which is required to send and read the data from

the device, the program may need to know when the clock signal is low, rising, high or

falling.

The best way to solve that is by using interruptions. The problem is that the

M52233DEMO board does not support interruptions on its I/O data port. The solution is

to use an external interruption request (IRQ) from the Edge Port (EPORT) and

reconfigure the pins of the connector.

4. IMPLEMENTATION 4.5 Programming the board

 53

Interrupt Requests (IRQs) are a mechanism that allows the program to jump the

processing queue in order to execute the predetermined tasks even if is not their turn.

For the implementation of IP Mouse, the external interruption IRQ7 (pin 39 of the

J1 connector of the DEMO board) will be used. This interruption can be configured to

stop the running program every certain established time or to sign when the signal is

rising or falling. The program will use IRQ7 to sign every time the edge changes its

value.

The right commands to be followed in order to configure the interruptions for

both rising and falling edges are:

#if 1
 /* Enable IRQ signals on the port */
 MCF_GPIO_PNQPAR = 0
 | MCF_GPIO_PNQPAR_IRQ7_IRQ7;

 /* Set EPORT to look for both rising and falling edges */
 MCF_EPORT_EPPAR0 = 0
 | MCF_EPORT_EPPAR_EPPA7_BOTH;

 /* Clear any currently triggered events on the EPORT */
 MCF_EPORT_EPIER0 = 0
 | MCF_EPORT_EPIER_EPIE7;

MCF_EPORT_EPFR0 |= 0x80; /** Reset flag

 /* Enable interrupts in the interrupt controller */

 MCF_INTC0_IMRL &= ~(MCF_INTC_IMRL_MASK7);

#else

Typing this code to the main.c file and modifying the code provided inside

int_handlers file to support IRQ7 and recognize the variable flag_up, the program looks

like it’s showed to the next page:

4. IMPLEMENTATION 4.5 Programming the board

 54

/*
 * File: main.c
 * Purpose: sample program
 */

#include <stdio.h>
#include "common.h"

#include "mcf52233_gpio.h"

void configurePins(void);
void configureInterrupts(void);

unsigned char pepi;

int main()
{
 mcf52233_init();
 printf("Write sth!!!! \n");
 pepi = 0;
 while(1){}
 return 0;
}

void configurePins()
{

 printf("Configuring pins ... \n");
 fflush(stdout);

 /* Enable IRQ signals on the port */
 MCF_GPIO_PNQPAR = 0
 | MCF_GPIO_PNQPAR_IRQ7_IRQ7;

 return;
}
void configureInterrupts()
{
 printf("Configuring interrupts ... \n");
 fflush(stdout);

 /* Set EPORT to look for rising and falling edges */
 MCF_EPORT_EPPAR0 = 0
 | MCF_EPORT_EPPAR_EPPA7_BOTH;

 /* Clear any currently triggered events on the EPORT */
 MCF_EPORT_EPIER0 = 0
 | MCF_EPORT_EPIER_EPIE7;

 MCF_EPORT_EPFR0 |= 0x80; /** Reset flag

 /* Enable interrupts in the interrupt controller */
 MCF_INTC0_IMRL &= ~(MCF_INTC_IMRL_MASK7);

 return;
}

4. IMPLEMENTATION 4.5 Programming the board

 55

On the demo board, IRQs pins are connected with the Switches 1 and 2 of the

same board. Particularly, IRQ7 is related with SW2. For this test, using the SW2

simulates a manual clock, because its pin is set to ‘1’ or to ‘0’ depending on if the

switch is pressed or unpressed.

To try the code, a break point has to be inserted. The correct way to see if the

interruption routine is executing and check if the interruptions are working fine is to let

the program run and press the button (keeping it pressed). The interruption routine

should be then executed, what means that the pin level has changed. Running the

program again, and unpressing the button, the interruption routine should be executed as

well. As expected, the program stops at both cases, which means that the interruption

routine is configured alright for both falling and rising edges.

4.5.3 Final program

The aim of the final program is to simulate an implement a mouse according the

PS/2 protocol. To do so, the program utilizes the features mentioned in previous

sections such as the configuration of the GPIO port and pins and interruption routine. In

addition, it needs to have some new functions, to implement the features of being able

to read/write data from/to the mouse.

To do that, the PS/2 protocol has to be read carefully again (see PS/2 subsection)

in order not to forget anything. The PS/2 mouse protocol is very useful, but to see it

clearer a mouse state diagram has been drawn, including all the states that need to pass

through to get a good communication in both cases: Host To Device and Device.

4. IMPLEMENTATION 4.5 Programming the board

 56

After the mouse state diagram, the code use to implement all the states is

presented and further detailed.

Figure 24. Mouse State Diagram

Having the mouse protocol and the state diagram clear, the final program can be

started. Next there’s a brief explanation of what is done in each part of the final code

and the function of it.

DEVICE TO HOST
Read Data

HOST TO DEVICE
Write data

IDLE

WAITING

ST_BIT

D0

D1RELEASE_CLOCK

START BIT
Wait falling edge

WRITE_DATA

PREPARE_DATA

CLOCK_LOW

WAIT_1

DATA_LOW

D2

D3

D4

D5PARITY BIT

STOP BIT D6

D7

PARITY

STOP

4. IMPLEMENTATION 4.5 Programming the board

 57

As any usual program, the first thing to do is to include the files and libraries

that will be needed altogether with the definitions of the variables that will be used and

an introduction of the functions that need to be created as well as declaration and

initialization of the main variables.

 1 #include <stdio.h>
 #include "common.h"
 #include "main.h"
 #include "mcf52233_gpio.h"
 5
 #define READ_CLOCK() ((MCF_EPORT_EPPDR0 & MCF_EPORT_EPPDR_EPPD7)>>7)
 #define READ_DATA() ((MCF_GPIO_SETAN & MCF_GPIO_SETAN_SETAN4) >> 4)

 #define RESET_COMMAND 0xff
10 #define DATA_REPORTING_COMMAND 0xf4
 #define SET_STREAM_MODE 0xea

 void configureInterrupts(void);
 void sendData(unsigned char Mdata);
15 unsigned char parity(unsigned char par);

enum _d2h
{
 INIT,
 WAITING,
 ST_BIT,
 D0,
 D1,
 D2,
 D3,
 D4,
 D5,
 D6,
 D7,
 PARITY,
 STOP;
};

typedef enum _d2h d2hState;

d2hState state;

unsigned char flag_up = 0;
unsigned char pinClock;
unsigned char pinData;
unsigned char data = 0;

By these lines:

 #define READ_CLOCK()((MCF_EPORT_EPPDR0 & MCF_EPORT_EPPDR_EPPD7)>>7)

 #define READ_DATA()((MCF_GPIO_SETAN & MCF_GPIO_SETAN_SETAN4) >> 4),

the program is reading the correspondent pins where the data from the Mouse is

received.

4. IMPLEMENTATION 4.5 Programming the board

 58

From now on, the program will assume that if it has READ_CLOCK it will read

the clock line, and when facing with READ_DATA it will read from the pin in which

the data from the mouse is received. Right after that, there are the commands that

compulsory need to be sent to the mouse. Its value is defined on the PS/2 mouse

protocol.

#define RESET_COMMAND 0xff

#define DATA_REPORTING_COMMAND 0xf4

#define SET_STREAM_MODE 0xea

The major part of the code is implemented inside the main function. In order to do

not mess the program too much, the full system is divided into two principal parts easily

distinguishable one from another: Device to Host and Host to device. In addition, some

functions are created and used in parallel to the main ones.

 The main function is opened with the declarations and initialization of some

variables and the configuration of the I/O port into GPIO function, which has already

been further detailed on section 4.5.1 Test programs.

int main()

{

 unsigned char tick = 0;
 unsigned char Data = 0;
 unsigned char parity = 0;
 unsigned char countB = 0;
 unsigned char Byte1=0, Byte2=0, Byte3=0;

 state = INIT;
 mcf52233_init();

 MCF_GPIO_PANPAR = 0x00; // Configuration of PORTAN as GPIO.
 MCF_GPIO_DDRAN = 0xC0; // Configuration of pins AN7 and AN6
 // as an OUTPUT
 MCF_GPIO_PORTAN = 0x00; // Initialize M_clock and M_data both
 // high

 . . .

4. IMPLEMENTATION 4.5 Programming the board

 59

Until here, some variables have been defined and the PORTAN, the I/O data port

used, have been configured as a GPIO. Direction of the pins has also been configured.

Pins 6 and 7 are set as outputs, because the program might need to write on them. Pins

from 1 to 5 are configured as inputs, because the program will read from them.

Physically, at this point, both data and clock are at high level, so the device should

be now on IDLE state. Following with the code, the next part to program is the Host to

Device, where the host needs to send some data to the device in order to establish

communication and set previous configurations. This is important because the mouse is

previously configured as disabled data reporting, which means, the device cannot send

any data unless it is told to do so. All this is implemented inside the sendData function.

The sendData function is based on what the protocol says and follows the diagram

states shown at Figure 24.

To begin transmitting data, and after initializing the variables i and Mdata2, the

clock has to inhibit communication by pulling the clock low. The delay of 100 ms

inserted is because of the protocol. Afterwards, data must be pulled low while holding

clock low, and immediately after, the clock line must be released.

The device is now generating the clock signal itself. Its frequency is 12.6 kHz

approximately. The variable flag_up reads the clock line. Its value is 1 if the clock is at

high level and 0 if the clock is low. Since the data is already at low level, the program

will assume that it is the start_bit, so the program needs to wait one clock cycle doing

nothing, just waiting.

Variable i is an auxiliary variable, which will be used to count the number of bits

sent. While it is smaller than 8, because the host need to send 8 data bits, and while the

clock line is high (flag_up = 1), the program just waits, because while the clock is high

the host is sending the data, and the device reads this data when the clock is low. At the

next falling edge of the clock, the program sends the first bit of data.

Mdata is the byte sent by the mouse. By doing Mdata & 0x01, the program is

taking only the first bit of that byte. If Mdata2 (the data bit) is different from 0, the

system pulls the data high. By contrast, if it is not, the program pulls the data line low.

4. IMPLEMENTATION 4.5 Programming the board

 60

The next thing the program does is to shift the mask one position in order to get

the next bit at the next round, and increases the counter one unity. It stays inside that

loop until i = 8 and then waits for the clock line to go high.

After that, if the parity bit is 1, the program pulls data high and if it is not, pulls

data low. The program then just waits another clock cycle until it goes high and then

pulls data high, which will be used as a stop_bit.

Figure 25. SendData Flow Chart

START

INIT
VARIABLES

i, Mdata2, par

Is
flag_up = 1

?

ST_BIT

Mdata2 = Mdata&0x01;

STOP

Pull data line low

Mdata = Mdata >> 1;

i++;

Pull Clock line low
Pull Data line low
Release clock line

YESNO

Is
i < 8

?

YES

Is
flag_up = 1

?

YES

NO

NO

Is
par = 1

?

Is
flag_up = 1

?

NOYES

Is
flag_up = 1

?

YES

NO

STOP bit

YESNO

Is
Mdata2 = 1

?

YES NO

Pull data line lowPull data line high

Pull data line high

Is
flag_up = 1

?

YESNO

The mouse starts generating
the clock signal

4. IMPLEMENTATION 4.5 Programming the board

 61

Figure 25 shows the sendData function, and the implementation code is written

below:

void sendData(unsigned char Mdata)
{
 int i=0, Mdata2 = 0;

 unsigned char par = parity(Mdata);

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN
 | MCF_GPIO_SETAN_SETAN7; //Pull clock low

 cpu_pause(100); //delay

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN
 | MCF_GPIO_SETAN_SETAN6; //Pull data low while
holding clock low

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0x7F; //Release clock

 while(flag_up) {}
 while(!flag_up) {} // start bit

 while(i<8)
 {
 while(flag_up) {}
 if(!flag_up)
 {
 Mdata2 = Mdata & 0x01;

 if (Mdata2)MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0xBF;
 else MCF_GPIO_PORTAN = MCF_GPIO_PORTAN | 0x40;

 Mdata = Mdata>>1;

 i++;
 }
 while(!flag_up) {}
 }
 while (flag_up) {}

 if(par) MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0xBF;
 else MCF_GPIO_PORTAN = MCF_GPIO_PORTAN | 0x40;

 while (flag_up) {}

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0xBF;
}

By this line unsigned char par = parity(Mdata); the sendData is using the

parity function to calculate the parity bit of the bytes sent (Mdata).

4. IMPLEMENTATION 4.5 Programming the board

 62

 The parity bit is used for error detection. It is calculated according to the odd

parity. What this function does is to take bit by bit and add them up. If result value is 1,

the parity will be 0. If it is 0 the parity bit will be 1.

unsigned char parity(unsigned char Mdata)
{
 unsigned char par = 0;
 int p, aux=0;
 for (p=0;p<8;p++)
 {
 aux = Mdata & 0x01;
 par += aux;
 par &= 0x01;
 Mdata>>1;
 }
 par = ~par;
 return par;

}

SendData function is used on the main function to send the commands, previously

defined, from the computer to the device.

// ------------------ HOST TO DEVICE--------------------

 sendData(RESET_COMMAND); // To set the default values of
the mouse

 sendData(SET_STREAM_MODE);

 sendData(DATA_REPORTING_COMMAND); //Enables Data Reporting
from the mouse

 state = WAITING;

 flag_up = READ_CLOCK(); //initialized at the current state
of the clock

Once the mouse is settled and ready to receive and send data, the Device to Host

part is programmed. To implement that part, the protocol and the state diagram are

being followed once again. Next graphic is useful to understand what happening and

what is the program is doing.

4. IMPLEMENTATION 4.5 Programming the board

 63

On the figure 26 there are the rising edges of the clock marked. The mouse always

starts at the “Idle” state, with both clock and data lines high, and waits for something to

happen.

The mouse writes a bit on the Data line

when Clock is high, and it is read by the host

when Clock is low. If the device wants to send

data, it must inhibit communication first by

pulling the clock line down. Data is sent and

received synchronous to the clock.

A flow chart is drawn hereafter to

understand the general concept of what the

reading of the data is achieved. This shows the

main part of reading the data from the mouse,

implemented with a switch-case, where each

case is one state of the mouse.

Each state is better detailed on the next

paragraphs.

D0

D1

D2

D3

D4

D5

D6

D7

PARITY

STOP

NO

NO

NO

NO

NO

NO

NO

NO

NO

waiting

st_bit

NO

NO

Evaluate
state

Figure 26. Sending and Reading data from a mouse

Figure 27. Flow chart of readData

4. IMPLEMENTATION 4.5 Programming the board

 64

In the waiting state: the program first reads the clock and data line. They both

must be at high level. Then do nothing until the clock line falls to a low state. While the

clock line is low, the mouse writes the data to be sent. If the data line is low, which

means that the START_BIT has been sent, the program initialize variables parity, Data

and tick to 0 and passes to the next state: START_BIT. tick is an auxiliary variable that

changes its value every time the clock changes its edge.

Figure 28. Flow chart for the "waiting state"

// ------------------ DEVICE TO HOST ---------------------
while(1)
 {
 switch(state)
 {
 case WAITING:

 pinData = READ_DATA();
 if(!flag_up)
 if(!READ_DATA()) //START bit
 {
 parity = 0;
 Data = 0;
 tick = 0;
 state = ST_BIT;
 }
 break;

Is
flag_up =1

?

Pindata = READ_DATA();

Parity = 0;
Data = 0;
Tick = 0;

State = ST_BIT;

Is
READ_DATA = 0

?

WAITING

ST_BIT

4. IMPLEMENTATION 4.5 Programming the board

 65

During the START_BIT state, the program reads the clock and the tick. When the

clock rises (flag_up = 1) and the tick variable is 0, the program changes the tick to 1.

Afterwards, initializes the temp variable to 0, and changes the tick to 0 again. Then the

host reads the first bit of data, D0 in this case, and save this bit inside the Data variable.

Now the value of Data = START_BIT + D0. Thereafter the program increases the

counter 1 unity and goes to the next state, D0.

 case ST_BIT:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D0
 Data += temp;
 countB++;
 state = D0;
 }
 break;

tick =1;

Temp = READ_DATA;
Data + = temp;

CountB++;
State = D0;

Temp = 0;
Tick=0;

ST_BIT

WAITING

Is
flag_up =1
& tick = 0

?
Is

flag_up =0
& tick = 1

?

D0

4. IMPLEMENTATION 4.5 Programming the board

 66

During the D0 state, if the flag_up =1 and the tick = 0, tick changes to 1.

At the falling edge of the clock, initialize the variables temp and tick and read

the next bit of data, D1. The program shifts it one position in order to put the final data

on the right order. The actual Data value is START_BIT + D0 + D1.

Once again, the program increases the counter one unity and goes forward to the

next state, D1.

From D1 to D6 states, the program is doing almost the same. Change the tick

variable, wait for the falling edge of the clock and initialize once again the temp and tick

variables.

The host is then ready to read one more bit of data, and place it to its right

position. Afterwards, updates the Data variable, increases the counter and go to the next

state.

Figure 29. Flow Chart of D0 state

The cases D0 – D6 do exactly the same but only change the X value and the

nextstate. In that case, as D0 is being implemented, X should be 1 and nextstate should

be D1. The X value increases 1 unity for each state, as the bit taken is 1 position moved.

So at D6 state X have to be 7 and nextstate will be D7.

tick =1;

temp = READ_DATA;
temp=temp<<X;
Data+ = temp;

CountB++;
State = nextstate;

Temp = 0;
Tick=0;

D0

ST_BIT

Is
flag_up =1
& tick = 0

?
Is

flag_up =0
& tick = 1

?

D1

4. IMPLEMENTATION 4.5 Programming the board

 67

That can be clearer looking at the code:

 case D0:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D1
 temp = temp << 1;
 Data += temp;
 countB++;
 state = D1;
 }
 break;

 case D1:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D2
 temp = temp << 2;
 Data += temp;
 countB++;
 state = D2;
 }
 break;

 case D2:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D3
 temp = temp << 3;
 Data += temp;
 countB++;
 state = D3;
 }

 break;

4. IMPLEMENTATION 4.5 Programming the board

 68

 case D3:
 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D4
 temp = temp << 4;
 Data += temp;
 countB++;
 state = D4;
 }

 break;

 case D4:
 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D5
 temp = temp << 5;
 Data += temp;
 countB++;
 state = D5;
 }

 break;

 case D5:
 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D6
 temp = temp << 6;
 Data += temp;
 countB++;
 state = D6;
 }

 break;

 case D6:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D7
 temp = temp << 7;
 Data += temp;
 countB++;
 state = D7;
 }

 break;

4. IMPLEMENTATION 4.5 Programming the board

 69

 case D7:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read parity
 parity += temp;

 state = PARITY;
 }

 break;

 As in all the other cases, the first thing the program does in case D7 is to change

the tick value to 1 and wait for the falling edge of the clock. After that, it initializes the

temp and tick variables and read the bit data previously sent. This bit is the parity bit. So

the program updates this bit at the parity variable and changes the case to the PARITY

case.
 case PARITY:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 unsigned char temp = 0;
 tick = 0;

 temp = READ_DATA(); //read STOP bit

 if (countB==8)
 {
 Byte1 = Data;

 state = WAITING;
 }
 if (countB==16)
 {
 Byte2 = Data;

 state = WAITING;
 }
 if (countB==24)
 {
 Byte3 = Data;

 countB = 0;
 state = STOP;
 }

 }
 break;

4. IMPLEMENTATION 4.5 Programming the board

 70

The PARITY case starts the same as the previous ones, setting the tick and

waiting for the falling edge and initializing temp and tick variables again. Then, one

more data bit is read, and since it is the STOP bit and the last one of the 11 bit sequence,

the program must check the counter value. If the counter is equal to 8, that mean that the

host has only read the 1st byte, or 16, that would mean that the mouse has read until the

2nd byte, it goes directly to the waiting state. If the counter is 24, the mouse has already

sent the 3 bytes of data and the programs goes to the next case, STOP case.

 case STOP:

 state = WAITING;
 break;

 default:

 break;
 }
 }
}

 In the STOP case, the program reads the flag_up and the tick variables. When

the clock edge falls and the tick value is 1, it initializes the variables temp, tick and reads

the actual bit of data, that in this case it corresponds to the STOP bit. The program then

goes back to the waiting state to start reading the data of the second and third bytes sent

by the device.

As explained before, the final program requires the use of interruptions. They are

configured as have been explained on section 4.5.1, but are implemented in parallel in a

separate function named configureInterrupts() that looks like the following:

void configureInterrupts()
{

 printf("Configuring interrupts ... \n\r");
 fflush(stdout);
 while(1);

 /*......same code explained before.......*/

 return;
}

4. IMPLEMENTATION 4.5 Programming the board

 71

4.5.4 Implementation of the IP Mouse

Until now a complete pointing device system have been designed and

implemented, but the aim of the project is to implement an IP Mouse, which means that

the device must be able to communicate with the host through IP. This brings the

system to include some Ethernet features, which need as well being implemented. At

this section, the mouse code is used with some little modifications and improvements

and there’s also a sending interface part. The protocol used on the sending interface is

UDP.

With the ColdFire the packet needs to be created from the beginning, adding the

appropriate header and/or checksum to the packet body. This part has been adapted

from the AN3470SW project [42] and demonstration code samples that can be found on

the Freescale webpage. To create and send the packet, the program use several functions

that can be looked at the code, since this section is only explaining the main functions

used and that have been modified somehow.

Assuming that all the parameters have been already declared and created in other

functions, the main functions used to send the device’s data through the network, are int

emg_upsend and emg_send_data_via_udp. The udpsend function sets the destination

address, and port, the out buffer size and the length of the packets.

At the send_data_via_UDP function sends the data the user want to send. This

function just takes the data received from the mouse and sends it through the port and to

the destination previously set.

4. IMPLEMENTATION 4.5 Programming the board

 72

int emg_udpsend (ip_addr dest_ip,
 unsigned short dest_port,
 char *outbuf,
 int outlen)
{
 PACKET pkt2; // packet to send & free
 int e;

 pkt2 = udp_alloc(outlen, 0);
 if(!pkt2)
 return -1;

 for(e=0; e<outlen; e++)
 pkt2->nb_prot[e] = outbuf[e];

 pkt2->nb_plen = outlen;
 pkt2->fhost = dest_ip;
 pkt2->net = NULL;
 // local port
 e = udp_send(dest_port, 0x1234, pkt2);

 if(e < 0)
 {
#ifdef NPDEBUG
 dprintf("tftp_udpsend(): udp_send() error %d\n", e);
#endif
 return e;
 }
 else
 return 0;
}

The emg_send_data_via_udp function is where the program put the variables

that need to be sent.

//**
void emg_send_data_via_udp(void)
{
 ip_addr dest_ip = SERVER_IP;
 int len;

 #if 1
 data_to_send[0] = Byte1;
 data_to_send[1] = Byte2;
 data_to_send[2] = Byte3;

 #endif

 // Send data_to_send to ip address det_ip, port PORT_NUMBER
if(emg_udpsend(dest_ip, PORT_NUMBER, (void *)data_to_send, len))
printf("\nError sending via UDP ");
printf("\nsent %d", len);
}

5. DATA and TESTS 5.1 IPM Interface

 73

5 Data, Tests and Evaluation

5.1 IPM Interface

Previous chapters present the design, build and implementation of the IPM device.

Some tests have already been made, but there’s a need to test the complete system and

check that it is working alright. This section shows the expected values and compares

them with the obtained ones so one can see how the complete system is working.

To explain and compare the data, the PS/2 protocol is followed once again and

table 5, from HID section needs to be reminded.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte 1 Y overflow X overflow Y sign bit X sign bit Always 1 Mid. Btn Right Btn Left Btn
Byte 2 X movement
Byte 3 Y movement

Table 7. Movement Data Packet

As explained on the PS/2 protocol section, this table gives the appropriate

information about the data that is sent from the mouse, and shows the data and

information that can be found inside each byte sent.

Looking at the table and in general terms, when the mouse is sending button

information, Byte 1 will carry that information and Bytes 2 and 3 should be 0, as the

device is not doing any movement.

If the mouse is moving but no button is pressed, Byte 1 usually takes a value of

‘8’, because bit 3 of Byte 1 is always set to 1. Even so, when no button is pressed but

movement occurs, Byte 1 can take different values according to the movement made, as

it also contains information of movement sign bit and movement overflow bit, which

are set when the counters of the mouse go past 255.

5. DATA and TESTS 5.1 IPM Interface

 74

Moreover if the movement made is on the X edge, Byte 2 will take any value

from 0 to 255, and Byte 3 will be 0, as the movement is not made on the Y direction. By

contrast, if the movement made is on the Y edge, Byte 2 will be 0 and Byte 3 can take

any value from 0 to 255 according to the amount of movement recurred. As mentioned,

if the movement achieved makes the mouse counters go over 255, Byte 1 can change its

value because of the movement sign and the movement overflow bits.

Overall, data sent differs according to the event created: button pressed or X/Y

movement. The comparison is made through a table that contains each frame received

from the mouse, including the start bit, the 8 data bits, the parity bit and the stop bit.

Note that the order is upside down than the order on table 7. That is because the

data is sent according to the Little endian format, which means that the Least

Significative Bit (LSB) is sent first and the Most Significative bit (MSB) is the last bit

sent.

The expected value table have some things in common independently of the event

performed. Those things are the start bit, which is always 0, and the parity bit, which is

always 1. The other values are written accordingly to the input event from the mouse. In

order to make the results more visible, the most relevant bits or the ones more likely to

change or to be checked for each case (input event) are highlighted in bold characters.

Further details on this data is analysed and better detailed on the next lines.

If the LEFT BUTTON is pressed, the data expected and obtained are shown on

the following table:

 EXPECTED OBTAINED

St
ar

t

B
it0

B
it1

B
it2

B
it3

B
it4

B
it5

B
it6

B
it7

Pa
rit

y
St

op

St
ar

t
B

it0

B
it1

B
it2

B
it3

B
it4

B
it5

B
it6

B
it7

Pa
rit

y

St
op

Byte 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1

Byte 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

Byte 3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

Table 8. Left button expected vs. obtained values

5. DATA and TESTS 5.1 IPM Interface

 75

Observe that in the obtained values from Table 8 the start bit is always 0 and the

stop bit is always 1, as it was expected to be. The data sent on Byte 1 has a decimal

value of ‘9’. Data from Bytes 2 and 3 is 0, as expected, because there is no movement

made, just a button pressed. In that table, it is demonstrated that the parity bit is set

when there are an even number of ones sent, so the final add up of 1’s at the frame is an

odd number.

Visually, the data sent from the mouse when its left button has been pressed, has

the shape shown on the next figures obtained with an oscilloscope:

Figure 30. Three bytes sent from the mouse when Left Button is pressed

Figure 31. Left Button. First
Byte

Figure 32. Left Button.
Second Byte

Figure 33. Left Button. Third
Byte

5. DATA and TESTS 5.1 IPM Interface

 76

Figures 30 to 33, contain the data sent from the mouse and extracted using an

oscilloscope. Remembering that data is read on the falling edge of the clock, and as

shown on previous table, the data (in binary) sent is:

Frame 1: 0 1001 0000 11. Frame 2: 0 0000 0000 11. Frame 3: 0 0000 0000 11.

Taking only the mouse information data (the 8 data bits alone without the start bit,

parity bit and stop bit), the data sent corresponds with a decimal value of:

Byte1: 09 Byte2: 00 Byte3: 00

The data fulfils all the expectations.

Following with the analysis of the data, if the RIGHT BUTTON is pressed, the

data expected and obtained is:

 EXPECTED OBTAINED

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

Byte 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1
Byte 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1
Byte 3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

Table 9. Right button expected vs. obtained values

As before, the start bit is always 0 and the stop bit is always 1. The data sent on

Byte 1 has a decimal value of ‘10’. Data from Bytes 2 and 3 is 0, as expected, because

no movement has occurred. The parity bit also corresponds to be an odd parity bit.

Extracting the data with the oscilloscope to see the real data transmitted, when

the right button from the mouse is pressed, the frame values (in binary) obtained is:

Frame 1: 0 0101 0000 11. Frame 2: 0 0000 0000 11. Frame 3: 0 0000 0000 11.

5. DATA and TESTS 5.1 IPM Interface

 77

Taking only the mouse information data (the 8 data bits alone without the start bit,

parity bit and stop bit), the data sent corresponds with a decimal value of:

Byte1: 0a Byte2: 00 Byte3: 00

Visually, the data sent from the mouse when its right button has been pressed,

has the shape shown on the next figures:

Figure 34. Three bytes sent from the mouse when right button is pressed

Figure 35. Right Button. First

Byte

Figure 36. Right Button.

Second Byte

Figure 37. Right Button.

Third Byte

IP Mouse only has two buttons implemented, so the next data analyzed to check if the

mouse is working alright and sending the right data are the X and Y movements.

5. DATA and TESTS 5.1 IPM Interface

 78

Moving the mouse toward the X edge to the right, the data expected and obtained are:

 EXPECTED OBTAINED

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

Byte 1 0 0 0 0 1 X 0 X 0 X 1 0 0 0 0 1 0 0 0 0 0 1
Byte 2 0 X X X X X X X X X 1 0 1 0 0 0 0 0 0 0 1 1
Byte 3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

Table 10. X movement expected vs. obtained values

As on previous cases, the start bit is always 0 and the stop bit is always 1. In that

case, the data sent on Byte 1 has a decimal value of ‘8’. But it could be also ‘24’ if the

X sign bit (bit 4) was set, or ‘72’ if the X overflow bit (bit6) was set, or ‘88’ if both bits

were set. Data from Bytes 2 takes a value of ‘1’ in this case, but it could be any valour

from 1 to 255. Data from Byte 3 is 0, because the movement was made only on the X

direction. The parity bit also corresponds to be an odd parity bit, it is ‘0’ on Byte 1, as

there is only one bit set on the data byte sent, and it is ‘1’ on Bytes 2 and 3. Extracting

the data with the oscilloscope to see the real data transmitted, the obtained values (in

binary) are:

Frame 1: 0 0001 0000 11. Frame 2: 0 1000 0000 11. Frame 3: 0 0000 0000 11.

Following with what have been done on previous cases, taking only the mouse

event information data, the data sent corresponds with a decimal value of:

Byte1: 08 Byte2: 01 Byte3: 00

5. DATA and TESTS 5.1 IPM Interface

 79

Visually, the data sent from the mouse when its right button has been pressed,

has the shape shown on the next figures:

Figure 38. 3 bytes sent from the mouse when moved towards the X direction

Figure 39. Right Movement
First Byte

Figure 40. Right Movement
Second Byte

Figure 41. Right Movement
Third Byte

Doing the same but with the mouse moving towards the X direction to the left,

the data obtained is:

 EXPECTED OBTAINED

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

Byte 1 0 0 0 0 1 X 0 X 0 0 1 0 0 0 0 1 1 0 0 0 0 1
Byte 2 0 X X X X X X X X X 1 0 1 1 1 1 1 1 1 1 1 1
Byte 3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

Table 11. Left movement (negative) expected vs. obtained values

5. DATA and TESTS 5.1 IPM Interface

 80

As on the other data analyzed, the start bit is 0 and the stop bit is 1. In that case,

the data sent on Byte 1 has a decimal value of ‘24’, which means that the X sign bit is

set, and data from byte 2 is ‘255’. Data from Byte 3 is ‘0’, because the movement was

made only on the X direction. The parity bit also corresponds to be an odd parity bit.

Extracting the data with the oscilloscope to see the real data transmitted:

Frame 1: 0 0001 1000 11. Frame 2: 0 1111 1111 11. Frame 3: 0 0000 0000 11.

Taking only the eight data bits of information relevant for the event sent from the

mouse, the data sent and received corresponds with a decimal value of:

Byte1: 24 Byte2: 255 Byte3: 00

Figure 42. 3 bytes sent from the mouse when movement to the right has occurred

Figure 43. Right Movement.
First Byte

Figure 44. Right Movement.
Second Byte

Figure 45. Right Movement.
Third Byte

5. DATA and TESTS 5.1 IPM Interface

 81

The Data from the mouse to be analyzed when moving the mouse towards the Y

edge, up direction is:

 EXPECTED OBTAINED

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

Byte 1 0 0 0 0 1 0 X 0 X X 1 0 0 0 0 1 0 0 0 0 0 1
Byte 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1
Byte 3 0 X X X X X X X X X 1 0 0 1 0 0 0 0 0 0 0 1

Table 12. Up movement expected vs. obtained values

As checked on all the other cases, start bit is ‘0’ and stop bit is ‘1’. The data sent

on Byte 1 has a decimal value of ‘8’. But it could be also ‘40’ if the Y sign bit (bit 4)

was set, ‘136’ if the Y overflow bit (bit 6) was set, or ‘168’ if both bits were set. Data

from Byte 2 is ‘0’ because the movement made is on the Y direction. Data from byte 3

is ‘2’ in this case, though it could be any valour from ‘1’ to ‘255’ according with the

distance moved. The parity bit also corresponds to be an odd parity bit.

Extracting the data with the oscilloscope, the real data transmitted obtained is:

Figure 46. Up movement. 3 bytes sent from the mouse

5. DATA and TESTS 5.1 IPM Interface

 82

Figure 47. Up movement.
First Byte

Figure 48. Up movement.
Second Byte

Figure 49. Up movement.
Third Byte

The movement data (in binary) sent and received in that case is:

Frame 1: 0 0001 0000 11. Frame 2: 0 0000 0000 11. Frame 3: 0 0100 0000 11.

Taking only the eight data bits of information relevant for the movement

information sent from the mouse, the data sent and received corresponds with a decimal

value of:

Byte1: 8 Byte2: 0 Byte3: 2

The data transmitted and received fulfils with all the expectations.

Performing the movement towards the Y edge but to the bottom direction, the data

obtained is:

 EXPECTED OBTAINED

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

St
ar

t
B

it0

B
it1

B

it2

B
it3

B

it4

B
it5

B

it6

B
it7

Pa

rit
y

St
op

Byte 1 0 0 0 0 1 0 X 0 X X 1 0 0 0 0 1 0 0 0 0 0 1
Byte 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1
Byte 3 0 X X X X X X X X X 1 0 1 0 1 1 1 1 1 1 0 1

Table 13. Up movement expected vs. obtained values

As presented on all the other cases, the start bit is 0 and the stop bit is 1. In this

case, the data sent on Byte 1 has a decimal value of ‘40’, that means that the Ysign bit

has been set. Data from Byte 2 is ‘0’ because the movement made is on the Y direction

and Data from Byte 3 is ‘253’ in this case, which remains inside the 1 to 255 range.

5. DATA and TESTS 5.1 IPM Interface

 83

The parity bits are set according to the odd parity bit. Extracting the data

transmitted with the oscilloscope, the results obtained are:

Figure 50. Down movement. 3 bytes sent from the mouse

Figure 51. Down movement.
First Byte

Figure 52. Down movement.
Second Byte

Figure 53. Down movement.
Third Byte

The movement data (in binary) sent and received obtained on the oscilloscope

(see figures 50-53) for this case are:

Frame 1: 0 0001 0000 11. Frame 2: 0 0000 0000 11. Frame 3: 0 1011 1111 11.

Taking only the eight data bits of information relevant for the movement

information sent from the mouse, the data obtained have a decimal value of:

Byte1: 8 Byte2: 0 Byte3: 2

The data transmitted and received fulfils all the expectations.

5. DATA and TESTS 5.2 Timing and Frequency Specifications

 84

5.2 Timing and Frequency Specifications

The mouse works with a power supply of 5 V. Checking the data and clock lines

with the oscilloscope, can be observed that both data and clock lines have a voltage of

3.4 V approximately.

The clock frequency obtained with the frequency measure option from the same

oscilloscope, the IP Mouse is 11.76 kHz. Visually from the oscilloscope, the frequency

is 10 kHz approximately. The difference obtained between the two values is because of

the resolution of the oscilloscope screen. Anyways, the device frequency remains inside

the range 10 – 16.7 kHz.

As a curiosity, it was observed that when the mouse sends its data bytes, it sends

the 3 bytes in just 2975 µs.

The time from byte to byte is approximately 138µs and the time to send data

packets consecutively is 7.060 ms. Timing diagrams are shown below:

Figure 54. Timing of a byte sent from IPM

Figure 55.Timing between packets sent from IPM

TB2B = 138 µs
Tpacket = 2.975 ms

Tpkt2pkt = 7.060 ms

5 DATA, TESTS AND EVALUATION 5.3 Limitations and Costs

 85

5.3 Sending Packets Interface

The system is now proved to be working alright. The next trials were to see if the

data was sent ok. To do so, one can either look at the watchdog window of the compiler,

CodeWarrior software, or use any external program to capture packets and see what’s in

them. In this case, WireShark [43] software has been used, as it is free software and

easy to work with.

With the HyperTerminal one can only know if the packets are being sent or they

have produced an error, so here comes a capture of the WireShark window to proof the

board was sending the data packets alright. Some buttons and movements have been

realized in order to get more than a packet.

WireShark gives all the information needed for the packets received. It shows the

source and destination addresses, the protocol used for the packet, the source and

destination ports used, and the number of packets sent with its length and data. Some

examples of screen captures have been included. The information obtained when

sending a left button packet is:

Figure 56. WireShark screen capture for left button

5 DATA, TESTS AND EVALUATION 5.3 Limitations and Costs

 86

As shown on the figure 56, the source address is the board IP, 192.168.1.98 and

the destination address is the computer address, 192.168.1.1. The program also shows

that the protocol used for the packet is UDP and that the source port is 4660 and the

destination port used is 5678. Those port numbers could be other values, it all depends

on how the code was programmed, and they were chosen randomly.

The source and destination addresses and ports are easy to check, as the values

coincide, but the data sent from the mouse need to be more analyzed. The mouse sends

data information in 3-byte packets, so the lengths of the packets received should be 3

bytes. The data information is different depending on the event sent or the movement

occurred, as shown at all the examples from the previous section. In that case, according

to the PS/2 protocol and to the Table 7, as a left button was pressed, the packet received

should be of a decimal value 09 00 00 (according to the first, second and third Bytes).

On the figure, there is this value marked with a red circle, showing that the data

received is the data expected.

Looking the capture for the right button event:

Figure 57. WireShark screen capture for the right button

5 DATA, TESTS AND EVALUATION 5.3 Limitations and Costs

 87

The addresses are still the same, but now, the expected data value (in decimal)

received, as the right button has been pressed, is 0a 00 00. Once again, the result shows

that the data received is the data expected. It has been red circled on the screen capture.

Finally, with a random movement performed, the screen print and the obtained

results are:

Figure 58. Screen capture for movement

In that case, the mouse was moved very little towards the Y edge. The result

should be, no button pressed for the first byte. The X movement byte (second byte)

should take the value ‘0’, as the movement has been done to the Y direction, and the

third byte (the one showing Y movement) should take some value, in that case, as it has

been very few moved, should take a small value, like 1 or 2.

So the expected values for this movement are 08 00 0x. And the obtained values,

as shown on the figure are 08 00 01, which confirms the hypothesis.

With all the tests made for the data sent and received, one can conclude that the IP

Mouse is working as expected, and fulfils all the requirements expected.

5. DATA and TESTS 5.4 IPM Limitations and Costs

 88

5.4 IPM Limitations and Costs

The IPM system has been tested and it works fine. It fulfils the initial

requirements: is able to perform 2D-motion and send the data through Ethernet. The

data received is the expected. Even though, the device is not visually seen as a cursor on

a computer display, as it should need the programming of a new graphic interface for

the whole system, and that is included with the suggested improves that can be done in

future prototypes.

As mentioned on previous chapters, this is only a prototype, and its cost, design

and manufacture can differ depending on where is required to be included the device,

computer mouse itself, PDA, mobile phone, etc., an overview of the total cost of the

device have been noted.

Prices are not exact, because in most of electronic components, the prices changes

depending on the quantity asked, as more components are asked, lower is the price per

unit. Moreover, the prices have been searched on internet, and some of them are USA

prices, so the values can differ from USA and Europe, and it also depends on the

distributer or the store chosen. Even so, different prices have been compared and most

common prices found or an average between them has been included on the next table.

Considering all the statements described, a general overview about the total cost

of the IPM system is outlined on the next page:

5 DATA, TESTS AND EVALUATION 5.3 Limitations and Costs

 89

COMPONENT DESCRIPTION MANUFACTURER PACKAGE UNIT PRICE2 QUANT.
TOTAL
PRICE

ColdFire M52233 student Learning kit Freescale 99 USD 1 70 €

Copper-clad board
Double-sided
1.5mm/35µ Cu

 100x160mm
< 5€

1 5€

TPS61072 DDRC
IC Boost Converter
600mA SW

Texas Instruments TSOT23-6
1.50 €/1 unit

1 1.50 €

MAX3224 ECAP RS-232 transceiver MAXIM 20-SSOP 2.28 USD 1 1.60 €

74LCX86 X-OR gate
Fairchild

Semiconductors
SOP-14

0.671 USD
0.404 €

1 0.5 €

BC546 NPN transistor TO92 0.05€ 2 0.1 €

CDPH4D19FNP-
4R7MC

SMD Power Inductor

4.7μH±20％
Sumida

Surface
Mount

0.756 USD
1 0.53 €

Capacitors
SMD capacitors
0.1 µA / 50 V

Murata 0603 X7R
0.0327 €

7 0.23

Capacitors
SMD capacitors
10 µA / 25V

Taiyo Yuden 1206 X5R
0.283 €

1 0.28

Resistors
SMD resistors
5% tolerance

Uni-Ohm 0805
0.0018 €

7 0.0126

Total price 79.75€

Table 14. Overview of the prices of the different components used and final cost of the IPM
prototype

With the research of the material and components used to build the IPM system,

can be concluded that the complete system would cost a total amount of 80 Euro plus

the price of a commercial PS/2 mouse device. That price is affordable, because the price

of the components can be cheaper if they are bought in bigger quantities. Moreover, if

the system may be intended to be built-in any electronic device, as a mobile phone or a

PDA, the cost would be lower, because the whole system could be included in just a

board, without the need of the complete evaluation kit from Freescale.

2 As mentioned, all the prices are found on the website, and on different websites, that can be found on
the Reference section numbered under the items [55] to [64].

6. CONCLUSION 6 Conclusion

 90

6 Conclusion

In this work, an IP mouse prototype is presented. IPM is intended to provide multi

cursor environment in a multi-application context, such as a windowing system. Even

so, this work shows one single device capable of performing the usual 2 button and 2D

motion pointer device. The IPM system performs that alright according to the PS/2

protocol and adds Ethernet features to send its data to a computer.

Based on technology and computer applications are growing up fast and that there

are already some advanced systems like windowing systems taking advance and control

of the screen and new ways of pointer devices are being investigated and actually

arriving to the market, this prototype improved or something similar could become a

common peripheral device for everybody in a not so far future.

The IPM system fulfils the previous desired characteristics and even being actually

a limited function pointer device, it can be improved and be used as a multi pointer in

future improved prototypes of the same. The use of the fully functioning IPM could

facilitate the interaction with the same application in several scenarios like meetings,

conferences, team work or school lectures.

Future improvements and functions to add to the system are countless, some of

them are explained on the next subsection.

7. FUTURE WORK 7. Future Work

 91

7 Future Work

Until now, the IP-Mouse has been prototyped, described and developed. IPM shows a new

way to interact with a computer by having a pointer that can be connected through IP to any

host compute.

The aim of the IPM is to provide multiple collaboration, which means, to allow different

users to use different applications at the same time, or, to allow multiple cursors to interact with

one application also at the same time.

The completed design shows a conventional mouse motion, two buttons and 2D motion.

Knowing that, the immediate work that could be done, would be to extend the protocol and

drivers in order to get a 3D pointer device (3D-IPM). This could be done by changing the code

and following the PS/2 extended protocol. A 3D-IPM device could be helpful in future graphic

interface systems such as in medicine or building design applications.

One may think that it can be a chaos to use multiple cursors on the same display. Therefore

another improvement that could be done to the device in order to solve that problem is to

research and find how to ID each device and to identify them on the screen. That could be done

using the X Windowing server and toolkits. X Windowing has already some tools that focus the

active window or event. Making the system compatible to X Windowing, could include some

more improvements such as think how to distinguish cursors easily from one another. That

could be to build each cursor of a different colour, to change the pointer shape, etc.

Future editions of IP-Mouse should study the possibility of using different protocols, such

as USB, or even better, wireless communications, one may say Bluetooth, Zig-bee and

especially 3G cellular. That could depend on the use that one want to give to the device,

considering the distance and time of reaction of the same. That could help in multitudinary

conferences, where everybody can take active part during the conference. Thinking of the same

conference situation, it would be great if one device could connect at any system just identifying

itself to its server or to the applications.

7. FUTURE WORK 7. Future Work

 92

Applications for multi-pointing devices are endless. In my opinion, many of the existent

software could be improved and modified in order to support IPM. But the more immediate

things I think about when I imagine real nice working multi-cursor devices are computer games.

Normally, the games for more than 1 or 2 players, the players have to wait for their turns. While

one is playing the other players have to wait for their turn to come, and conform in seeing the

other games. With multi-cursor, every player could be playing at the same time against the

other, what could be, on my opinion, much more fun and competitive. The only thing that

should also be improved is to increase the display size to make the game interface more

comfortable.

Far from the games applications, IPM system could be introduced on educational software

and applications. The TIC are rapidly increasing in schools and nowadays everybody is tired to

hear politicians talking about if children on schools should have its own computer. In some

countries (see Spain) there is already a test, where each child will have its own computer instead

of the conventional school books. The intention is to innovate in resources and to approach the

students to the technology. With multi-cursor, this could be even better, because everyone could

interact actively with the common application that the teacher, in that case, could be explaining

at the “blackboard” that, in this case would be a big display.

Moreover, in developing-world classrooms, where financial resources may be scarce, or

even in developed countries, now that everybody is talking about the crisis, the addition of a

few mice is far easier and cheaper than a PC per child. Apart from that would encourage team

working, which has been demonstrated that is the best way to learn. Moreover, this would not

only work in school, it could only take an important part in multitudinary conferences,

meetings, etc.

More options can be analyzed in order to add features to the IP Mouse. During this work,

multi-pointing features for having multi-user on one machine have been predominated, but

looking further, there could be studied a way to provide IPM with memory and think how this

memory could be used to cut and paste data from one computer to another, not just from one

application to another. Depending on the memory size, the files memorized could be multimedia

files, so the mouse could work as a temporary memory stick to copy files from one computer to

another with ease and fast.

A new age of pointers is coming, and soon they will be devices of common use at work and

free time applications.

8 REFERENCES References

 93

8 References

[1] World Wide Web Page

 GUIdebook>Articles> “The X-Window System” by Dick Pountain, from Byte, 1989.

[On-line]. Accessed on August, 2009 at URL:

http://guidebookgallery.org/articles/thexwindowsystem

[2] World Wide Web Page

 The PS/2 Mouse/Keyboard Protocol by Adam Chapweske, 2003 [On-line]. Accessed

on October, 2009 at URL: http://www.computer-engineering.org/ps2protocol/

[3] World Wide Web Page

 68k/ColdFire. [On-line]. Accessed on May, 2009 at URL:

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=PC68KCF

[4] World Wide Web Page

 M5223X Product Summary Page.[On-line]. Accessed on June, 2009 at URL:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF5223X&nod

eId=0162468rH3YTLC00M95448

[5] Technical Report, Patent

 Engelbart, D.C., (1970). X-Y Position Indicator for Display System (Pat. Number

3,541.541). Palo Alto, California. Assignor to Stanford Research Institute, Menlo

Park, California. USA

[6] Company

 International Business Machines Corporate (IBM Corporation). Headquarters:1

New Orchard Road. Armonk, New York 10504-1722. United States. Corporate URL:

http://www.ibm.com/us/en/

http://guidebookgallery.org/articles/thexwindowsystem�
http://www.computer-engineering.org/ps2protocol/�
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=PC68KCF�
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF5223X&nodeId=0162468rH3YTLC00M95448�
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF5223X&nodeId=0162468rH3YTLC00M95448�
http://www.ibm.com/us/en/�

8. REFERENCES References

 94

[7] Company

Apple Inc. Headquarters: Infinite Loop, Cupertino, CA 95014.United States. Official

corporate URL: http://www.apple.com

[8] Company

Microsoft Corporation. Address: Redmond, WA 98052-8300. United States. Official

URL: http://www.microsoft.com

[9] Company

Agilent Technologies. Corporation Address: 5301 Stevens Creek Blvd, Santa Clara

CA 95051. United States. Corporate URL: http://www.home.agilent.com/

[10] Technical Report

Stewart J., Bederson B., and Druin A. (1999) Single Display Groupware: A model for

Co-present Collaboration. Conference on Human Factors in Computing Systems, CHI

1999, ACM Press

[11] Technical Report

Bier E.A, and Freeman S., (1991). MMM: A User Interface Architecture for Shared

Editors on a Single Screen. Proceedings of the fourth annual ACM Symposium on

User Interface Software and Technology

[12] Technical Report

Wallace, G., Bi, P., Li, K., and Anshus, O. (2004): A Multi-Cursor X Window

Manager Supporting Control Room Collaboration. Princeton University, Computer

Science, Report No. TR-0707-04, July 2004

[13] Technical Report

Hutterer, P., Close, B. S., and Thomas, B. H. (2006): TIDL: Mixed Presence

Groupware Support for Legacy and Custom Applications. In Proceedings of the

seventh conference on Australasian user interfaces. Hobart, Australia, 2006

http://www.home.agilent.com/�

8. REFERENCES References

 95

[14] Technical Report

Peter Hutterer and Bruce H. Thomas. (2006) Groupware Support in the Windowing

System. Australia, 2006. Project for the School of Computer and Information

Science,University of South Australia. Mawson Lakes SA 5095

[15] World Wide Web

MPX: The Multi-Pointer X Server by Peter Hutterer. (2008) [On-line] Accessed on

May, 2009 at URL: http://wearables.unisa.edu.au/mpx/

[16] Technical Report

Udai Singh Pawar, Joyojeet Pal and Kentaro Toyama. Multiple Mice for Computers in

Education in Developing Countries.(2006)

[17] Technical Report

Tsutomu Kawai, Joutarou Akiyama and Minoru Okada.(2009): Point-to-Multipoint

Communication Protocol PTMP and Evaluation of Its Performance. Department of

Information Electronics, Graduate School of Engineering, Nagoya University

Education Center for Information Processing, Nagoya University Furo-cho, Chikusa-

ku, Nagoya, 464-01, Japan

[18] World Wide Web

What is a KVM Switch? [On-line] Accessed on December 2009 at URL:

http://www.tech-faq.com/kvm-switch.shtml

[19] World Wide Web

Mobile Air Mouse by RPATech. [On-line] Accessed on November 2009 at the URL:

http://www.mobileairmouse.com/

[20] Company

RPA Tech, a Boston based development company specializing in web, desktop and

mobile software solutions for companies large and small. http://rpatechnology.com/

[21] Computer software

CodeWarrior IDE (Version 6.3) [Computer Software]. (2005) from URL:

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_SUITES&tid=CW

H

http://wearables.unisa.edu.au/mpx/�
http://www.mobileairmouse.com/�
http://rpatechnology.com/�
http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_SUITES&tid=CWH�
http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_SUITES&tid=CWH�

8. REFERENCES References

 96

[22] Company

Freescale Semiconductor. Headquarters: Austin, TX. United States. Corporate URL:

http:// www.freescale.com

[23] Datasheet

TPS61072 90% efficient synchronous boost converter with 600 mA switch.

(January 2007) by Texas instruments.

[24] Company

Texas instruments. Address: 12500 TI Boulevard, Dallas, Texas 75243, USA.

Accessed on August 2009 at the URL: http://www.ti.com/

[25] Datasheet

BCN546;BCN547. NPN General Purpose Transistors. (1999) from Philips. Doc. order

No.: 9397 750 05677. URL: http://www.semiconductors.philips.com

[26] Datasheet

74LCX86: Low Voltage Quad 2-Input Exclusive-OR Gate with 5V Tolerant Inputs.

(March 1999) Fairchild semiconductor.

[27] Datasheet

MAXIM. MAX3224ECAP. ±15kV ESD-Protected, 1μA, 1Mbps, 3.0V to 5.5V, RS-232

Transceivers with AutoShutdown Plus. (1998). Doc No. 19-1339; Rev 0; 1/98.

[28] Company

MAXIM. Address: Maxim Integrated Products, Inc. 120 San Gabriel Drive

Sunnyvale, CA 94086. USA. Corporate URL: http://www.maxim-ic.com/

[29] Computer software

EagleCAD (version 5.4.0) [Computer software]. 19620 Pines Blvd. Pembroke Pines,

FL 33029. USA. Official URL: http://www.cadsoft.de/

[30] Computer Software

CircuitCAM. [computer software] from URL http://www.lpkf.com/products/rapid-

pcb-prototyping/software/circuitcam-lite.htm

http://www.freescale.com/�
http://www.ti.com/�
http://www.maxim-ic.com/�
http://www.cadsoft.de/�
http://www.lpkf.com/products/rapid-pcb-prototyping/software/circuitcam-lite.htm�
http://www.lpkf.com/products/rapid-pcb-prototyping/software/circuitcam-lite.htm�

8. REFERENCES References

 97

[31] Computer Software

Board Master. [computer software] At URL: http://www.lpkf.es/productos/creacion-

rapida-prototipos-pcb/software/boardmaster.htm

[32] Product

 LPKF protomat S42. LPKF Laser & Electronics AG. Addess: Osteriede 7, D-30827

Garbsen. Germany. Official URL: http://www.lpkfusa.com/protomat/s42.htm

[33] World Wide Web

Human Interface Devices.[On-line]. Accessed on June 2009 at URL:

http://en.wikipedia.org/wiki/Human_interface_device

[34] Computer software

Windows [Computer Software] . Microsoft Corporate. Address: Redmond, WA 98052-

8300. United States. Official URL: http://www.microsoft.com/WINDOWS/

[35] Computer Software

Mac OS X [Computer Software] . Cupertino, CA: Apple Computer Inc. Corporate

URL: http://www.apple.com/macosx/

[36] Computer software

Palm OS [Computer Software]. Access, adquiring company for Palmsource Inc.

Corporate headquarters: Hirata Bldg, 2-8-16 Sarugaku-cho, Chiyoda-ku, Tokyo 101-

0064. Official URL: http://www.access-company.com/home.html

[37] Institute of Technology

Massachusetts Institute of Technology (MIT). Computer Science and Artificial

Intelligence Laboratory. Accessed on October 2009. Address: MIT Computer Science

and Artificial Intelligence Laboratory. The Stata Center, Building 32. 32 Vassar

Street. Cambridge, MA 02139. USA. Institute URL: http://www.csail.mit.edu/

[38] Publication

Xlib – C Language X Interface. X Consortium Standard. X version 11. James Gettys

and Robert W. Scheifler. Release 6.7 Draft, 2002. Accessed on July 2009 from the

URL: http://www.xfree86.org/current/xlib.pdf

http://www.lpkf.es/productos/creacion-rapida-prototipos-pcb/software/boardmaster.htm�
http://www.lpkf.es/productos/creacion-rapida-prototipos-pcb/software/boardmaster.htm�
http://www.lpkfusa.com/protomat/s42.htm�
http://en.wikipedia.org/wiki/Human_interface_device�
http://www.microsoft.com/WINDOWS/�
http://www.apple.com/macosx/�
http://www.access-company.com/home.html�
http://www.csail.mit.edu/�
http://www.xfree86.org/current/xlib.pdf�

8. REFERENCES References

 98

[39] Technical Report

Official Internet Protocol Standards (2007). [On-line] Accessed on December 2009 at

URL: http://www.rfc-editor.org/rfcxx00.html

[40] Publication

M52233DEMO. Demonstration Board for Freescale MCF52233. (2006) Axiom

Manufacturing. 2813 Industrial Lane, Garland, TX 75041. United States

[41] Technical Report

Freescale Semiconductor. M52233RM. MCF52235 ColdFire® Integrated

Microcontroller Reference Manual. 2813 Industrial Lane, Garland, TX 75041. United

States

[42] Technical Report

Freescale Semiconductor. MCF52235 ColdFire® Integrated Microcontroller

Reference Manual. Doc No. MCF52233RM. Rev.5 09/2007.Headquarters: ARCO

Tower 15F, 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan.

[43] Computer Software

WireShark [Free Computer Software]. Free Software Foundation, Inc. Headquarters:

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA URL:

http://www.wireshark.org/.

[44] Technical Report

Freescale Semiconductor. (2005) ColdFire® Family Programmer’s Reference

Manual. Doc No. CFPRM. Rev.3 03/25.Headquarters: ARCO Tower 15F, 1-8-1,

Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan.

[45] World Wide Web

What is the X Window System by O’Reilly.(2005) [On-line] Accessed on June 2009

at URL http://linuxdevcenter.com/pub/a/linux/2005/08/25/whatisXwindow.html

[46] World Wide Web

PS/2 Mouse by Louis Ohland. [On-line] Accessed on June 2009 at URL

http://www.tavi.co.uk/ps2pages/ohland/mouse.html#Signals

http://www.rfc-editor.org/rfcxx00.html�
http://www.wireshark.org/�
http://linuxdevcenter.com/pub/a/linux/2005/08/25/whatisXwindow.html�
http://www.tavi.co.uk/ps2pages/ohland/mouse.html#Signals�

8. REFERENCES References

 99

[47] Technical Report

Freescale Semiconductor. MCF523x Integrated Microprocessor Hardware

Specification by Microcontroller Division. Doc. No. MCF5235EC, Rev. 2, 08/2006.

Headquarters: ARCO Tower 15F, 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-

0064, Japan.

[48] Technical Report

MCF52235 ColdFire Microcontroller Data Sheet. Doc. No. MCF5235DS, Rev. 7,

08/200. Headquarters: ARCO Tower 15F, 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo

153-0064, Japan.

[49] World Wide Web

Eagle PCB -> LPKF Milling Machine Mini-How-To by Steve D. Sharples. (2002)

[On-line] Accessed on March 2009 at URL

http://optics.eee.nottingham.ac.uk/eagle/eagle2lpkf.html

[50] World Wide Web

ECE Illinois. Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign [On-line] Accessed on March 2009 at

URL http://www.ece.illinois.edu/eshop/pcbdesign/Programs.htm

[51] World Wide Web

Computer Mouse History Timeline by Z. Perry, 2009. [On-line] Accessed on

December 2009 at URL http://hubpages.com/hub/computer-mouse-history

[52] World Wide Web

 Computer Mouse – History – , 2004. [On-line] Accessed on December 2009 at URL

http://www.youtube.com/watch?v=0MUOn_nJmRA

[53] World Wide Web

HowStuffWorks “How Computer Mice Work” by Marshall Brain and Carmen

Carmack, 2008. [On-line] Accessed on December 2009 at the URL

http://computer.howstuffworks.com/mouse3.htmhttp://www.youtube.com/watch?v=0

MUOn_nJmRA

http://optics.eee.nottingham.ac.uk/eagle/eagle2lpkf.html�
http://www.ece.illinois.edu/eshop/pcbdesign/Programs.htm�
http://www.youtube.com/watch?v=0MUOn_nJmRA�
http://www.youtube.com/watch?v=0MUOn_nJmRA�
http://www.youtube.com/watch?v=0MUOn_nJmRA�

8. REFERENCES References

 100

[54] World Wide Web

History of the computer mouse by Alex Vochin, 2009. [On-line] Accessed on

December 2009 at URL http://gadgets.softpedia.com/news/History-of-the-Computer-

Mouse-3938-01.html

[55] Coldfire M52233 Student Learning Kit Product Summary Page by Freescale

semiconductor. [On-line]. Accessed on December 09 at URL

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=M52233SLK&ta

b=Buy_Parametric_Tab&nodeId=0162468rH38031&pspll=1&fromSearch=false

[56] TEXAS INSTRUMENTS|TPS61072DDCR|Linear Voltage Regulator IC|

Newark.com [On-line]. Accessed on December 09 at URL

http://www.newark.com/jsp/displayProduct.jsp?sku=30M1829&CMP=AFC-SF

[57] TPS61072DDCR by Mouser Electronics. [On-line]. Accessed on December 09 at

URL:http://es.mouser.com/Search/Refine.aspx?Ntt=*TPS61072DDCR*&N=1323038

&Ntx=mode%252bmatchall&Ns=P_SField&OriginalKeyword=TPS61072DDCR&Nt

k=Mouser_Wildcards

[58] Voltage Regulators – Switching DC DC Converters & Controllers | Digi-Key by Digi

Key Corporation [On-line]. Accessed on December 09 at URL

http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_b

uynow&site=us&mpart=TPS61072DDCR

[59] Digi-Key – MAX3224ECAP-ND (Manufacturer – MAX3224ECAP) by Digi-Key

Corporation [On-line]. Accessed on December 09 at URL

http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_b

uynow&site=us&mpart=MAX3224ECAP

[60] Digi-Key – 74LCX86M-ND (Manufacturer – 74LCX86M) by Digi-Key Corporation

[On-line]. Accessed on December 09 at URL

http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_b

uynow&site=us&mpart=74LCX86M

http://gadgets.softpedia.com/news/History-of-the-Computer-Mouse-3938-01.html�
http://gadgets.softpedia.com/news/History-of-the-Computer-Mouse-3938-01.html�
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=M52233SLK&tab=Buy_Parametric_Tab&nodeId=0162468rH38031&pspll=1&fromSearch=false�
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=M52233SLK&tab=Buy_Parametric_Tab&nodeId=0162468rH38031&pspll=1&fromSearch=false�
http://www.newark.com/jsp/displayProduct.jsp?sku=30M1829&CMP=AFC-SF�
http://es.mouser.com/Search/Refine.aspx?Ntt=*TPS61072DDCR*&N=1323038&Ntx=mode%252bmatchall&Ns=P_SField&OriginalKeyword=TPS61072DDCR&Ntk=Mouser_Wildcards�
http://es.mouser.com/Search/Refine.aspx?Ntt=*TPS61072DDCR*&N=1323038&Ntx=mode%252bmatchall&Ns=P_SField&OriginalKeyword=TPS61072DDCR&Ntk=Mouser_Wildcards�
http://es.mouser.com/Search/Refine.aspx?Ntt=*TPS61072DDCR*&N=1323038&Ntx=mode%252bmatchall&Ns=P_SField&OriginalKeyword=TPS61072DDCR&Ntk=Mouser_Wildcards�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=TPS61072DDCR�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=TPS61072DDCR�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=MAX3224ECAP�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=MAX3224ECAP�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=74LCX86M�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=74LCX86M�

8. REFERENCES References

 101

[61] Order 74LCX86M Parts Online, Download Datasheets, View Manufacturer Info at

Avnet Express by Avnet Electronics Marketing. [On-line]. Accessed on December 09

at URL http://avnetexpress.avnet.com/store/em/EMController?langId=-

1&storeId=500201&catalogId=500201&action=products&N=0&hrf=http://www.supp

lyframe.com/distributor/inventory/search/74lcx86&term=74LCX86M

[62] 74LCX86M by Mouser Electronics[On-line]. Accessed on December 09 at URL

http://es.mouser.com/Search/Refine.aspx?Ntt=*74LCX86M*&N=1323038&Ntx=mod

e%252bmatchall&Ns=P_SField&OriginalKeyword=74LCX86M&Ntk=Mouser_Wild

cards

[63] Welcome to ELFA – one of northern Europe’s leading supplier of electronics. By

ELFA. [On-line]. Accessed on December 09 at URL

https://www1.elfa.se/elfa~eu_en/b2b/catalogstart.do?tab=catalog

[64] Fixed – Digi-Key by Digi-Key Corporation. [On-line]. Accessed on December 09 at

URL:http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_07

09_buynow&site=us&mpart=CDPH4D19FNP-4R7MC

[65] MPX demo video (2007) by Peter Hutterer.

http://www.youtube.com/watch?v=0MUOn_nJmRA

[66] Film “Pirates of Silicon Valley”(1999). Director : MArtyn Burke. Is about the History

of the foundation of Apple Computer Corporation and Microsoft Inc and the early

days of its founders and the companies.

http://avnetexpress.avnet.com/store/em/EMController?langId=-1&storeId=500201&catalogId=500201&action=products&N=0&hrf=http://www.supplyframe.com/distributor/inventory/search/74lcx86&term=74LCX86M�
http://avnetexpress.avnet.com/store/em/EMController?langId=-1&storeId=500201&catalogId=500201&action=products&N=0&hrf=http://www.supplyframe.com/distributor/inventory/search/74lcx86&term=74LCX86M�
http://avnetexpress.avnet.com/store/em/EMController?langId=-1&storeId=500201&catalogId=500201&action=products&N=0&hrf=http://www.supplyframe.com/distributor/inventory/search/74lcx86&term=74LCX86M�
http://es.mouser.com/Search/Refine.aspx?Ntt=*74LCX86M*&N=1323038&Ntx=mode%252bmatchall&Ns=P_SField&OriginalKeyword=74LCX86M&Ntk=Mouser_Wildcards�
http://es.mouser.com/Search/Refine.aspx?Ntt=*74LCX86M*&N=1323038&Ntx=mode%252bmatchall&Ns=P_SField&OriginalKeyword=74LCX86M&Ntk=Mouser_Wildcards�
http://es.mouser.com/Search/Refine.aspx?Ntt=*74LCX86M*&N=1323038&Ntx=mode%252bmatchall&Ns=P_SField&OriginalKeyword=74LCX86M&Ntk=Mouser_Wildcards�
https://www1.elfa.se/elfa~eu_en/b2b/catalogstart.do?tab=catalog�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=CDPH4D19FNP-4R7MC�
http://search.digikey.com/scripts/DkSearch/dksus.dll?wt.mc_id=supplyframe_0709_buynow&site=us&mpart=CDPH4D19FNP-4R7MC�
http://www.youtube.com/watch?v=0MUOn_nJmRA�

APPENDIX 1 Final Code

 102

APPENDIX 1 – Final Code
The code explained on the implementation part is the first version of the IP Mouse

implemented that was working. The final code, is a little improved and some

functions have been added and changed. The final code used is the following:

//***
// File name : IPM UDP client.c
// Author: Cristina Riera
//
// Part of this code was modified and adapted from a
// free Freescale sample written by Eric Gregory
//
// Description : UDP client
//***
#include "ipport.h"
#include "tcpapp.h"
#include "msring.h"
#include "menu.h"
#include OSPORT_H
#include "ipport.h"
#include "libport.h"
#include "udp.h"
#include <stdio.h>

#define PORT_NUMBER 5678
#define TEST_BUFFER 3
#define INTER_PACKET_DELAY 1
#define SERVER_IP 0xC0A80101 // 192.168.1.1

#define READ_CLOCK()((MCF_EPORT_EPPDR0 & MCF_EPORT_EPPDR_EPPD7)>>7)
#define READ_DATA()((MCF_GPIO_SETAN & MCF_GPIO_SETAN_SETAN4)>>4)

#define RESET_COMMAND 0xff
#define DATA_REPORTING_COMMAND 0xf4
#define SET_STREAM_MODE 0xea

void configurePins(void);
void configureInterrupts(void);
void readData(void);
void sendData(unsigned char Mdata);
unsigned char parity(unsigned char par);

#include "mcf52233_gpio.h"

volatile unsigned char flag_up = 0;
volatile unsigned char pinClock=0;
volatile unsigned char pinData=0;
volatile unsigned char data = 0;

volatile unsigned char tick = 0;
volatile unsigned char Data = 0;
volatile unsigned char Mparity = 0;
volatile unsigned char countB = 0;
unsigned char cnt = 0;

APPENDIX 1 Final Code

 103

 enum _d2h
 {
 WAITING,
 ST_BIT,
 D0,
 D1,
 D2,
 D3,
 D4,
 D5,
 D6,
 D7,
 PARITY,
 STOP,
 };

typedef enum _d2h d2hState;

d2hState state;

 volatile unsigned char Byte1 = 0;
 volatile unsigned char Byte2 = 0;
 volatile unsigned char Byte3 = 0;

 int sth = 0;

//**
// Declare Task Object
//**

TK_OBJECT(to_freescale);
TK_ENTRY(tk_freescale);
struct inet_taskinfo freescale_task = {

 &to_freescale,
 "FreeScale
Task",

 tk_freescale,

 NET_PRIORITY,
 0x800
 };

volatile unsigned char data_to_send[TEST_BUFFER];

//**
// Declare a Socket structure and communications queue "msring"
//**

APPENDIX 1 Final Code

 104

//**
//
// emg_udpsend based on tftp_udpsend
// Written by Eric Gregori
//
// Send outbuf to dest_port at ip address dest_ip
//
//**
int emg_udpsend (ip_addr dest_ip,
 unsigned short dest_port,
 char *outbuf,
 int outlen
)
{
 PACKET pkt2; // packet to send & free
 int e;

 pkt2 = udp_alloc(outlen, 0);
 if(!pkt2)
 return -1;

 for(e=0; e<outlen; e++)
 pkt2->nb_prot[e] = outbuf[e];

 pkt2->nb_plen = outlen;
 pkt2->fhost = dest_ip;
 pkt2->net = NULL;
 // local port
 e = udp_send(dest_port, 0x1234, pkt2);

 if(e < 0)
 {
#ifdef NPDEBUG
 dprintf("tftp_udpsend(): udp_send() error %d\n", e);
#endif
 return e;
 }
 else
 return 0;
}

//***
//
// Sample function for a UDP client
//
//***
void emg_send_data_via_udp()
{
 ip_addr dest_ip = SERVER_IP;
 int len;

 if (!sth)
 {

 configureInterrupts(); // configuring my Interrupts

printf("Writing!!!! \n");

 configurePins();

APPENDIX 1 Final Code

 105

 // ------------------ HOST TO DEVICE--------------------

 flag_up = READ_CLOCK();

 sendData(RESET_COMMAND); //Set the default values of the mouse

 sendData(SET_STREAM_MODE);

 sendData(DATA_REPORTING_COMMAND); //Enables Data Reporting

//from the mouse

 state = WAITING;

// ------------------ DEVICE TO HOST ---------------------

 readData();
 }
 else if(sth)
 {
 readData();
 }

}// end of void emg_send_data_via_udp()

//***
//
// UDP client init
//
//***

void emg_init_udp_client(void)
{
/* unsigned int i;

 for(i=0; i<TEST_BUFFER; i++)
 data_to_send[i] = i; */
}

//***
//
// UDP client init
//
//***

void emg_udp_client_cleanup(void)
{

}

APPENDIX 1 Final Code

 106

//**
// The application thread works on a "controlled polling" basis:
// it wakes up periodically and polls for work.
//
// The task could aternativly be set up to use blocking sockets,
// in which case the loops below would only call the "xxx_check()"
// routines - suspending would be handled by the TCP code.
//
//
// FUNCTION: tk_emg_http_srv
//
// PARAM1: n/a
//
// RETURNS: n/a
//
//***

TK_ENTRY(tk_freescale)
{
 while (!iniche_net_ready)
 TK_SLEEP(1);

 emg_init_udp_client();

 for (;;)
 {

 emg_send_data_via_udp();
 tk_yield();

 if (net_system_exit)
 break;
 }
 TK_RETURN_OK();

}

//***
// create_freescale_task() - Written by Eric Gregori
// // modified by Cristina Riera
//
// Free application provided for Freescale
//
// Insert the FreeScale task into the RTOS.
//***
void create_freescale_task(void)
{
 int e = 0;

 e = TK_NEWTASK(&freescale_task);
 if (e != 0)
 {
 dprintf("Freescale task create error\n");
 panic("create_apptasks");
 }
}

APPENDIX 1 Final Code

 107

void configurePins(void)
{

 MCF_GPIO_PANPAR = 0x00; // Configuration of PORTAN as GPIO.

 MCF_GPIO_DDRAN = 0xC0; // Configuration of pins AN7 and
AN6 as an OUTPUT

 MCF_GPIO_PORTAN = 0x00; //Initialize M_clock and M_data
both high
}

void configureInterrupts()
{

// printf("Configuring interrupts ... \n\r");
// fflush(stdout);
// while(1);

 /* Enable IRQ signals on the port */
 MCF_GPIO_PNQPAR = 0
 | MCF_GPIO_PNQPAR_IRQ7_IRQ7;

 /* Set EPORT to look for both edges */
 MCF_EPORT_EPPAR0 = 0
 | MCF_EPORT_EPPAR_EPPA7_BOTH;

 /* Clear any currently triggered events on the EPORT */
 MCF_EPORT_EPIER0 = 0
 | MCF_EPORT_EPIER_EPIE7;

 MCF_EPORT_EPFR0 |= 0x80; /** Reset flag

 /* Enable interrupts in the interrupt controller */
 MCF_INTC0_IMRL &= ~(MCF_INTC_IMRL_MASK7); //

 /* EPORT Data Direction Register */

 MCF_EPORT_EPDDR0 = 0x00; // All pins INPUT

 return;
}

APPENDIX 1 Final Code

 108

/**
/
// This function reads the data bits from the mouse
// calculates the parity bit using the parity function
// and also sends the stop bit by pulling data high
//
// FUNCTION: sendData()
//
//----------------- HOST TO DEVICE COMMUNICATION -----------------
//
// PARAM1: n/a
//
// RETURNS: n/a
/**/

void sendData(unsigned char Mdata)
{
 int i=0;
 int Mdata2 = 0;

 unsigned char par = parity(Mdata);

// flag_up = READ_CLOCK();

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN
 | MCF_GPIO_SETAN_SETAN7;
 //Pull clock low

 cpu_pause(100); //delay

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN
 | MCF_GPIO_SETAN_SETAN6; //Pull data
low while holding clock low

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0x7F; //Release clock

 while(flag_up) ;
 while(!flag_up) ; // start bit

 while(i<8)
 {
 while(flag_up) ; // do nothing

//the host sends the data while clock is high
 if(!flag_up)
 {
 Mdata2 = Mdata & 0x01;
 //set data line
 if (Mdata2) MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0xBF;
 //reset data line
 else MCF_GPIO_PORTAN = MCF_GPIO_PORTAN | 0x40;

Mdata = Mdata>>1;
 i++;

 }
 while(!flag_up) ;
 }

APPENDIX 1 Final Code

 109

while (flag_up) ;

 if(par) MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0xBF;
 else MCF_GPIO_PORTAN = MCF_GPIO_PORTAN | 0x40;
 // write parity bit

 while (flag_up) ;

 MCF_GPIO_PORTAN = MCF_GPIO_PORTAN & 0xBF; // stop bit

}
unsigned char parity(unsigned char Mdata)
{
 unsigned char par = 0;
 int p, aux=0;
 for (p=0;p<8;p++)
 {
 aux = Mdata & 0x01;
 par += aux;
 par &= 0x01;
 Mdata>>1;
 }
 par = ~par;
 return par;
}

/**
/
// This function reads the data bits from the mouse
// calculates the parity bit using the parity function
// and also sends the stop bit by pulling data high
// send the data via Ethernet
//
// FUNCTION: readData()
//
// PARAM1: n/a
//
// RETURNS: n/a
/***/

void readData()
{
 ip_addr dest_ip = SERVER_IP;
 int len;
 int sent = 0;

 len = TEST_BUFFER;

APPENDIX 1 Final Code

 110

// ------------------ DEVICE TO HOST ---------------------

 state = WAITING;

 while(!sent)
 {
 switch(state)
 {
 case WAITING:

 pinData = READ_DATA();
 if(!flag_up)
 if(!READ_DATA()) //START bit
 {
 Mparity = 0;
 Data = 0;
 tick = 0;
 state = ST_BIT;
 }
 break;

 case ST_BIT:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D0
 Data += temp;
 countB++;
 state = D0;
 }

 break;

 case D0:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D1
 temp = temp << 1;
 Data += temp;
 countB++;
 state = D1;

 }

 break;

APPENDIX 1 Final Code

 111

 case D1:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D2
 temp = temp << 2;
 Data += temp;
 countB++;
 state = D2;
 }

 break;

 case D2:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D3
 temp = temp << 3;
 Data += temp;
 countB++;
 state = D3;
 }

 break;

 case D3:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D4
 temp = temp << 4;
 Data += temp;
 countB++;
 state = D4;
 }

 break;

APPENDIX 1 Final Code

 112

 case D4:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D5
 temp = temp << 5;
 Data += temp;
 countB++;
 state = D5;
 }

 break;

 case D5:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D6
 temp = temp << 6;
 Data += temp;
 countB++;
 state = D6;
 }

 break;

 case D6:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read D7
 temp = temp << 7;
 Data += temp;
 countB++;
 state = D7;
 }

 break;

APPENDIX 1 Final Code

 113

 case D7:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;
 temp = READ_DATA(); //read parity
 Mparity += temp;

 state = PARITY;
 }

 break;

 case PARITY:

 if(flag_up && !tick)tick=1;
 if(!flag_up && tick)
 {
 volatile unsigned char temp = 0;
 tick = 0;

 temp = READ_DATA(); //read STOP bit

 if ((countB==8) && (cnt == 0))
 {
 countB =0;
 cnt++;
 state = WAITING;
 }
 if((countB == 8) && (cnt != 0))
 {
 Byte1 = Data;
 state = WAITING;
 }
 if (countB==16)
 {
 Byte2 = Data;
 state = WAITING;
 }
 if (countB==24)
 {
 Byte3 = Data;
 countB = 0;
 state = STOP;
 }
 }

 break;

APPENDIX 1 Final Code

 114

 case STOP:
 data_to_send[0] = Byte1;
 data_to_send[1] = Byte2;
 data_to_send[2] = Byte3;

 // Send data_to_send to ip address dest_ip,port PORT_NUMBER
 if(emg_udpsend (dest_ip,

 PORT_NUMBER,
 (void *)data_to_send,
 len)

)
 printf("\nError sending via UDP ");
 printf("\nsent %d", len);

sth =1;
 sent = 1;
 break;
 }

 }

}

APPENDIX 2 Final Design

 115

APPENDIX 2 – Final Designs

FINAL SCHEMATIC DESIGN

APPENDIX 1 Final Code

 116

FINAL PCB DESIGN

	1 Introduction
	2 Background
	2.1 Mouse History and Evolution
	2.2 Mouse Technologies
	2.2.1 First Mechanical Mouse
	2.2.2 Track ball mechanical mouse
	2.2.3 Optical Mouse
	2.2.4 Laser Mouse
	2.2.5 Wireless Mouse

	2.3 Previous Work
	Later on, Peter Hutterer and Bruce H. investigated how to integrate groupware support for Single Display Groupware (SDG) [14]. A GroupWare Windowing System (GWWS) combines the traditional single-user single-input event and newly multi-input desktop environments.

	2.4 Why IPM?
	2.5 IPM Complete System Overview

	3 IPM System Architecture
	3.1 M52233EVB
	3.2 Design of the PS/2 interface board
	The demo board have been introduced on the previous section, but as the aim of this project is to design a virtual mouse, there’s a need to design and build the hardware interface to connect the mouse with the Freescale board.
	3.2.1 Design of the PS/2 Hardware Interface
	3.2.2 Main Blocks
	3.2.2.1 Power subsystem
	3.2.2.2 Open-Collector Interface

	3.2.3 Design of the schematic
	3.2.4 Design of the PCB
	3.2.5 Building the board

	4 Implementation
	4.1 Human Interface Devices (HID)
	4.1.1 The PS/2 Interface
	4.1.2 PS/2 General information
	4.1.3 PS/2 Communication Protocol
	4.1.3.1 Device to Host Communication
	4.1.3.2 Host-to-Device Communication
	4.1.3.3 Defining device’s operation mode and parameters

	4.2 Windowing Systems
	4.2.1 What is X-Windowing?
	4.2.2 The X server
	4.2.3 X-Window System Core Protocol
	4.2.4 Windowing hierarchy
	4.2.5 Events

	4.3 Network packets
	4.4 Connecting the board
	4.5 Programming the board
	4.5.1 Testing the board
	4.5.2 Interruptions Test Program
	4.5.3 Final program
	4.5.4 Implementation of the IP Mouse

	5 Data, Tests and Evaluation
	5.1 IPM Interface
	5.2 Timing and Frequency Specifications
	5.3 Sending Packets Interface
	5.4 IPM Limitations and Costs

	6 Conclusion
	7 Future Work
	8 References

