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PREFACE

Nuevas técnicas en adquisición de imagen a través de microscopio se están de-

sarrollando en los últimos años [1]. Antes de que aparecieran dichas técnicas, la

microscoṕıa era utilizada como una herramienta de simple visualización. Gracias a

la obtención de imágenes digitales, se pueden desarrollar técnicas de procesado de

imagen que de forma automática o semiautomática, evalúen los diferentes tejidos.

Este proyecto trata la segmentación y el alineamiento de pilas de imágenes tomadas

a través de microscopios multifotón. Dichos microscopios se basan en un láser de luz

cuyos fotones excitan el objeto a visualizar. Figure A.2 muestra el diagrama de este

tipo de microscopios.

Las estructuras biológicas que se analizan en este estudio consisten en su mayor

parte en vasos sangúıneos de h́ıgados y riñones de ratas vivas. El objetivo del estudio,

con las dificultades que conlleva, es el análisis de dichas imágenes teniendo en cuenta

que los espećımenes están vivos y por lo tanto se están produciendo movimientos

debidos a que los animales respiran. Es por ello que el problema del alineamiento de

las imágenes se hace todav́ıa más exigente.

En este documento se describen dos técnicas utilizadas para el procesado de las

imágenes. En la Section 2 se explica la primera idea desarrollada que más adelante

se abandona en favor de la segunda. En el siguiente apartado, se opta por un filtrado

paso bajo, binarización adaptativa y filtrado morfológico con un alineamiento de las

imágenes como paso intermedio. Todo ello es explicado en la Section 3. Seguida-

mente, se muestra un amplio caṕıtulo donde se presentan y se evalúan resultados.

El siguiente caṕıtulo (Section 5) muestra alternativas que se han estudiado en el

proyecto. Finalmente, se exponen las conclusiones y se proponen ideas que pueden

ser estudiadas en el futuro. Además, se incluyen tres anexos, el primero de ellos

desarrolla el funcionamiento de los microscopios utilizados para la adquisición de las
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imágenes, el segundo ampĺıa resultados y el tercero sirve de ayuda para el acceso a

las imágenes analizadas v́ıa web.

El método descrito en Section 2 hace, en primer lugar, la descomposición mul-

tinivel con filtros de apertura (Ver Figure 2.2) de la imagen obteniendo diferentes

objetos en las consecutivas imágenes dependiendo del tamaño de los mismos. La

suma de algunas de estas imágenes hace obtener estructuras deseadas despreciando

el ruido de fondo. Después de ello, se segmentan las imágenes utilizando el algoritmo

de contornos activos, produciendo a su salida una imagen binaria. Dicha imagen es

posteriormente filtrada con un filtro morfológico de apertura y luego cerradura con

reconstrucción para eliminar pequeños objetos indeseados que han sido segmentados

y también rellenar los objetos segmentados ya que no son uniformes. Finalmente, se

toma la imagen binaria como máscara para reconstruir la original. El siguiente paso

del método consiste en cambiar el algoritmo de contornos activos por una simple bi-

narización. Tras el filtro multiescala, se diferencia claramente entre vasos sangúıneos

y fondo de la imagen lo que hace posible que sólo sea necesaria la binarización para

obtener los dos niveles (vasos y fondo de imagen). Debido a la diferencia de ilu-

minación entre las primeras imágenes de cada pila y las últimas, es necesario algún

algoritmo que se adapte a dicha iluminación. Se decide implementar K-means cuya

función es separar los ṕıxeles en dos grupos minimizando la suma de cuadrados. Re-

sultados de este proceso se pueden ver en la Figure 4.1 para las imágenes introducidas

en la Figure 1.1. El motivo por el cuál se desprecia este método y se opta por el sigu-

iente es que, dependiendo del tipo de imágenes, la selección de las diferentes salidas

de los filtros no es uniforme. Además, el siguiente método trata el problema del

alineamiento de las imágenes.

En la Section 3 se desarrolla el algoritmo que en la Section 4 presenta extensos

resultados. Figure 3.1 muestra el diagrama de bloques del proceso. En primer lugar,

y debido a que las caracteŕısticas del ruido introducido por el microscopio se modelan

como de Poisson, se aplica un filtro MAP (Maximum a Posteriori). El objetivo de

este filtro es disminuir el ruido. Como se puede ver en la Figure 2.1, después de
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que las imágenes son filtradas, el ruido ha disminuido aunque todav́ıa es notable.

Después se aplica un filtrado espacio-temporal para apaciguar el ruido ya que el ruido

está presente en forma de impulsos. En primer lugar, la imagen es filtrada en el

dominio espacial usando un filtro triangular de tamaño 5x5 ṕıxeles. Sólo si todas las

imágenes están alineadas, se puede aplicar el filtro temporal. Por ello se introduce en

este punto el alineamiento de las imágenes explicado en el siguiente párrafo. Para el

filtrado temporal de la imagen se opta por un filtro triangular de tamaño 5 imágenes

(2 previas y 2 posteriores). Para la binarización de la imagen, se aplica el mismo

algoritmo explicado en el párrafo anterior (K-means). El siguiente bloque consiste en

un filtro de apertura y cerradura para eliminar pequeños objetos tal como se explica

en el primer método. Finalmente, y a partir de la imagen binarizada se construye la

imagen original segmentada y alineada.

El alineamiento de la imagen se lleva a cabo solamente teniendo en cuenta movimien-

tos horizontales y verticales entre consecutivas imágenes. La métrica utilizada mini-

miza en el error cuadrático medio. Además, el algoritmo de descenso de gradiente es

utilizado en lugar de una búsqueda exhaustiva de forma que se minimiza el tiempo

de computación. También se utiliza interpolación bilineal de forma que en lugar de

utilizar los ṕıxeles de la imagen como rejilla, se utilizan fracciones de los mismos.

Finalmente y como condición de borde se utiliza la condición de Neumann de forma

que se aplica el valor más cercano dentro de la imagen para el computo de la métrica.

Gran cantidad de pilas de imágenes han sido procesadas y comparadas en este

trabajo. Section 4 y Section B muestran, comparan y comentan gran parte de ellas.

Debido a que la mejor forma de visualizar el alineamiento de las imágenes es mediante

la reproducción de toda la pila en forma de video, y ya que eso no es posible en el

documento escrito, Section C explica como acceder v́ıa web a estos archivos. Los

resultados incluidos en este documento consisten en la representación de 2 consec-

utivas imágenes y seguidamente los resultados del procesado de las mismas (Véase

Figure 4.2, Figure 4.3, Figure 4.4, Figure B.3, Figure B.5, Figure B.7 y Figure B.9).

Además de estos resultados, y en las siguientes respectivas figuras, se pueden ver las
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gráficas de los movimientos verticales y horizontales además de la gráfica del valor

del umbral obtenido después de la binarización.

Debido a la naturaleza del movimiento entre imágenes, en algunas de las pilas

no se consigue el perfecto alineamiento, pues es necesario tener en cuenta otro tipo

de movimientos (rotación, escalado). También se requiere el alineamiento de los

diferentes objetos en la imagen debido a la respiración de los animales. Aśı, en la pila

ruben34 (Véase Section C), se pueden apreciar movimientos ondulatorios que con los

métodos arriba expuestos, pueden ser corregidos. La segmentación también puede ser

perfeccionada con métodos más avanzados como se explica en la Section 6

Se pretende que con el conocimiento de la forma, tamaño, movimiento de estruc-

turas biológicas, se llegue a una interpretación y futuro desarrollo de soluciones para

problemas médicos. Por ello, el trabajo realizado espera aportar un grano de arena

al complejo mundo de la bioingenieŕıa.
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ABSTRACT

Serrano Cebollero, Francisco , Purdue University, May 2009. Segmentation and Reg-
istration of 2D Multiphoton Microscopy Images. Major Professor: Edward J. Delp.

Optical microscopy exhibits many challenges for digital image analysis. In gen-

eral, microscopy volumes are inherently anisotropic, suffer from decreasing contrast

with tissue depth, and characteristically have low signal levels. This thesis describes

the initial work in segmenting and registering multiphoton fluorescent microscopy im-

ages via a combination of methods. In particular, it describes a method that utilizes

image enhancement and spatial filtering along with registration (to correct transla-

tional motion) and temporal filtering. Experimental results indicate the methods are

promising.
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1. INTRODUCTION

Although traditionally used as an observational tool, optical microscopy has devel-

oped into a quantitative approach with the development of digital imaging and image

analysis methods. For example, various light microscopy imaging techniques have

been developed in nephrology. A review of many of these techniques is presented

in [1] where their advantages, imaging properties, and limitiations are discussed.

When combined with digital image analysis, microscopy is capable of quantifying

physiology and structure at a cellular and subcellular level [2]. However, automated

methods of quantitative 3D microscopy are still in their infancy. This primarily re-

flects the lack of image analysis tools suited to the unique properties of microscope

image volumes. First, microscopy volumes are inherently anisotropic, with aberra-

tions and distortions that vary in different axes. At a larger scale, contrast decreases

with depth in biological tissues. This contrast decrease aggravates a general problem

of fluorescence, which characteristically have low signal levels [3], consisting of as lit-

tle as a single photon. Signal levels are further decreased by the need for high image

capture rates necessary to image dynamic biological structures. Finally, biological

structures often consist of many different kinds of irregular and complicated struc-

tures that are frequently incompletely delineated with fluorescent probes. Each of

these characteristics contribute to low contrast and small intensity gradients in mul-

tiphoton image volumes, making segmentation and rendering results very sensitive to

small changes in parameters, causing the failure of typical image analysis methods [4].

Nonetheless, automatic image segmentation is absolutely necessary for quantification

of multiphoton image volumes, whose size and complexity makes manual image seg-

mentation impractical.

Knowledge of the shape, size, and motion of biological structures may aid in un-

derstanding and developing solutions for human and non-human diseases. Gaining
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this knowledge often requires the analysis of microscopy image sets and using segmen-

tation methods to identify and separate relevant biological structures. In attempts to

perform automated segmentation of cellular structures in microscopy images, several

segmentation methods have been proposed for microscopy data, including methods

that rely on a priori shape information and methods that do not. For example,

methods proposed in [5] identify cells with a circular structure based on a priori

knowledge, while in [3] active contours are used to segment and track cells by min-

imizing a piece-wise constant energy function that includes terms that penalize the

variance of the intensity inside and outside the boundary as well as a regulariza-

tion term that penalizes total boundary length. In [6] a combination of thresholding

and watershed segmentation is used to segment nuclei in time-lapse fluorescence mi-

croscopy images. This was followed by a scheme in which segmented nuclei less than

some experimentally determined size threshold are merged together and those greater

than this size threshold are split. In [4] chromosome feature extraction by using a

Kohonen self organizing feature map is described. Neuron segmentation is described

in [7] by identifying edges via a multiscale wavelet edge detection technique [8].

Microscopy image sets are frequently obtained from live specimens. Therefore,

motion artifacts are introduced into the scene as a result of factors such as respira-

tion and voluntary muscle contractions. It has also been demonstrated that using

registration schemes can aid with segmentation, especially with volumetric data. Im-

age registration involves matching two or more images taken at different times or

from different viewpoints. Registration aligns the images so that they all share a

common coordinate system, a condition aiding in future image analysis. The process

is often described as finding an explicit function that performs a backward map-

ping of a target image onto a source image [9, 10]. Methods proposed in [11] use

motion patterns of cells to register consecutive images, while methods in [6] use a

matching process between consecutive images to determine displacement distances.

Nonetheless, there exists much controversy over approaches to image segmentation

with confocal and multiphoton microscopy. Some argue [12] that user interaction is
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best suited since no automated procedure can truly reproduce the accuracy of the

human visual system in correctly identifying individual cellular objects. While the

entire segmentation process is not completely manual, it requires at least a man-

ual input of an initial seed value or starting point. Additionally, several authors have

based their registration schemes on manually selecting landmarks [13–15]. Finding an

optimal relation between images given specified landmarks is described as NP-hard,

and therefore heuristics is often used to make the matching process practical [16]. In-

troducing a smoothness/regularity constraint to reduce the effects of noise on elastic

materials have been promising [17]. Other authors have mixed the use of landmarks

with contribution from the image [18]. However, others argue [2] that a completely

automated process is necessary to obtain quantitative, objective, and repeatable re-

sults. User interaction causes varying results for identical input data sets which may

be unacceptable in certain applications.

This document describes a method to segment multiphoton fluorescent microscopy

images via a combination of segmentation and registration methods. In particular,

the proposed method utilizes image enhancement and spatial filtering along with

registration (to correct for translational motion) and temporal filtering. Motivation

for the development of our proposed technique is provided by the desire to analyze two

types of data sets of multiphoton fluorescent microscopy images. One data set type

consists of a progression of images corresponding to focal planes looking deeper in the

tissue. Outside literature may refer to this type of data set as “z-series” data, as the

z-axis typically corresponds with depth. A specific example of this data set type used

in this work is referred to as the nuclei data set, which contains approximately one-

hundred images of rat kidney cells. The other data set type consists of a progression of

images corresponding to a series of time instances. Outside literature may refer to this

type of data set as “time-series” data. A specific example of this data set type used in

this work is referred to as the vascular flow data set, which contains approximately

two-hundred images comprising vascular flow in a rat liver. Example images from

each data set are shown in Figure 1.1. Both data sets have been corrupted with noise
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(a) Image 29 of nuclei data set

(b) Image 70 of vascular flow data set

Fig. 1.1. Example of Images Used in Our Study

from a variety of sources, including photon shot noise and detector noise due to the

small number of photons available to illuminate each pixel or voxel, creating low SNR

values.

The goals of this project include:
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Image segmentation The goal is to identify and segment individual nuclei from

the nuclei image set for the purpose of quantifying the number and volume of

nuclei in the scene. In this data set, given any particular image, some nuclei

appear with significantly increased intensity. This is expected, as cells that are

currently in the middle of the focal plane will appear with more intensity, while

cells that are on the edge of the focal plane will appear with less intensity. This

is a common occurrence with multiphoton microscopy as opposed to confocal

microscopy. This effect is caused by the dye concentrating within the middle of

the nuclei creating a non-homogeneous distribution. Naturally, selecting which

cells are relevant in any given image is subjective. Additionally, the objective is

to identify the path of blood flow in the vascular flow image set for the purpose

of quantifying the area occupied by vascular vessels in the scene.

Image registration In the nuclei data set, since there does not appear to be sig-

nificant movement between images, registration techniques may not need to

be utilized. This is expected as the tissue was fixed and not live. Regarding

the vascular flow data set, movement between images is much more significant

due to specimen motion during acquisition. Therefore, registration is needed to

correct these movements between images. Registration is expected to improve

segmentation performance. However, registration is also a goal in itself of the

project.

The general goal of this work is to segment a sequence or “stack” of confocal

fluorescent microscopy images. Concerning data set types consisting of progressive

tissue depths such as the nuclei data set, the images are acquired at various (known)

depths across a 3D sample of renal structures in a rat. Regarding time series data

set types such as the vascular flow data set, the images are acquired at evenly spaced

time intervals across a single focal plane of liver structures in a rat. Two funda-

mental approaches have been developed to address the aforementioned issues, with

the second approach replacing the initial approach. This thesis is organized as fol-
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lows: Section 2 describes the initial approach for image segmentation despite later

being abandoned, Section 3 describes the second approach for image segmentation

and registration, Section 4 shows experimental results from the second approach, Sec-

tion 5 discusses alternatives and modifications available to the second approach, and

Section 6 discusses future work and concludes the document.
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2. INITIAL APPROACH

This section describes the initial approach for image segmentation. Despite sufficient

performance and results as shown in Figure 4.1, this approach is later abandoned in

favor of the approach described in Section 3.

2.1 Maximum a Posteriori Filtering

The first step in this initial approach is a denoising filter. Specifically, this filter

is a maximum a posteriori (MAP) filter [19] which takes advantage of the known

characteristics of the noise, as photon noise is known to predominantly have a Poisson

distribution. By utilizing this additional information about the characteristics of

photon noise, particularly in the nuclei data set, cellular objects become more well-

defined to enhance the performance of the segmentation process to follow. Figure 2.1

shows the effects of the filter on an example image.

2.2 Morphological Filtering and Segmentation

With respect to image segmentation, the initial approach was to consider a grayscale

morphological multi-scale analysis of both data sets [20], as shown in Figure 2.2. Raw

data images are provided as the input to the system, shown at the bottom of the fig-

ure as xi, indicating a single image. Each operator Fk represents a morphological

opening followed by a morphological reconstruction, both using the same structuring

element. Morphological reconstruction is a series of repeated dilations of an image,

known as the marker image, until the profile of the marker image is entirely less than

the profile of a second image, known the mask image. This process causes the peaks

in the marker image to dilate [21]. The marker image is given as the morphologically
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(a) Original Image

(b) MAP Filtered Image

Fig. 2.1. Maximum a Posteriori Filtering of Image 29 from Nuclei Data Set
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opened image, while the mask image is given as the original input image. Each oper-

ator Fk uses a flat, square structuring element of size 2k + 1 × 2k + 1. Due to the

multi-scale structure, subsequent images, lk, extract increasingly larger objects from

the previous gk−1 images. The gk images contain the remaining objects after objects

segmented in lk have been removed. The results of the morphological multi-scale

analysis for an example image in the nuclei data set are shown in Figure 2.3, and

results for an example image in the vascular flow data set are shown in Figure 2.4.

In selecting which filter outputs should appear in the final output, the analysis

was subjective. Compositions such as l4 + l5 + l6 + g6 and g4 appeared to produce

acceptable results. However, the segmented objects in these composition images

often contained small holes. To eliminate these holes, a single morphological closing

operation with a flat, square structuring element of size 5 × 5 was used. The

size of this structuring element was selected empirically. The resulting image now

contained large, undesired dark artifacts. Only the cells with the greatest intensity

are desired. Therefore, a binary image was created by using a simple thresholding

technique, where the threshold was chosen subjectively to eliminate the dark artifacts

and retain the desired cell objects. From this binary image, the final output image

was created. For black pixels in the binary image, the corresponding pixels in the

output image remain black. For white pixels in the binary image, the corresponding

pixels in the output image are restored to the corresponding pixels in the original

image. The binary image acts as a segmentation mask for the original image:

F (m,n) = B(m,n)O(m,n) (2.1)

where F is the final image, B is the binary image, and O is the original image. It

should be noted that this approach is a causal system. Furthermore, the current out-

put image only depends on the current input image. No dependencies on previous or

future images are created. However, a drawback with this approach became apparent

due to the nature of the data set. In the majority of the images, individual cells

are composed of individual pixels that are not very contiguous. Images of the cells
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do not appear as solid objects and often contain many black pixels interspersed be-

tween white pixels. This is due to the cell itself not having a rigid boundary, or more

likely due to characteristics of the image acquisition system. For extreme cases, the

morphological opening operations eliminated all of these cells, and the corresponding

images turned out to be essentially completely black, particularly for beginning and

ending images in the sequence.

In an attempt to improve on this approach, active contours were introduced as

a replacement for the subjective threshold.1 However, the results showed no notice-

able improvement, but greatly increased computational complexity. Therefore, active

contours were abandoned and the simple subjective threshold was used.

1The active contour based segmentation was provided by: F. Marqués and P. Salembier, Signal
Theory and Communications Department, Technical University of Catalonia
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Fig. 2.2. Morphological Multi-Scale Analysis
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(a) Original Image

(b) Image l1 (c) Image g1 (d) Image l2

(e) Image g2 (f) Image l3 (g) Image g3

(h) Image l4 (i) Image g4 (j) Image l5

(k) Image g5 (l) Image l6 (m) Image g6

Fig. 2.3. Multi-Scale Decomposition of Image 29 from Nuclei Data Set
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(a) Original Image

(b) Image l1 (c) Image g1 (d) Image l2

(e) Image g2 (f) Image l3 (g) Image g3

(h) Image l4 (i) Image g4 (j) Image l5

(k) Image g5 (l) Image l6 (m) Image g6

Fig. 2.4. Multi-Scale Decomposition of Image 70 from Vascular Flow Data Set
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3. PROPOSED APPROACH

The initial approach discussed in Section 2 only addressed image segmentation. This

implementation now considers both image segmentation and registration. By intro-

ducing registration along with segmentation, motion artifacts within the scene may

be reduced. Changes in shape, size, and motion of cellular structures may be better

visualized. These artifacts were not addressed using the initial approach described in

Section 2. For example, the motion of particular cellular objects may be exaggerated

by specimen respiration. Therefore, the results would not reflect the true motion of

just the internal biological structures.

The proposed analysis technique is shown in Figure 3.1. First, each image in

the image stack is denoised via a Bayesian estimation technique [19] as used in the

initial approach described in Section 2.1. Each image is then low-pass filtered to

provide some local blurring and is subsequently spatially registered. One dimensional

smoothing along the vertical (space/time) axis after the images have been aligned

is then done followed by adaptive thresholding to produce a binary image using K-

means. Finally, the segmentation mask constructed using K-means is filtered using

morphological techniques. This new mask is then used to segment each image.

3.1 2-D Spatial Low-Pass Filtering

After denoising, each image is then low-pass filtered to provide some local blurring

using a 3 × 3 low-pass filter with impulse response:
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h(m,n) =



























0.2 if m,n = 0

0.1 if −1 ≤ m,n ≤ 1

0 else

(3.1)

Our experiments have shown that this blurs the image so that segmentation is

more robust. The blurring process mitigates shot noise remaining in the image after

the Bayesian denoising filter is used. A similar approach was adopted in [11]. It is a

commonly held belief that blurring traditionally reduces segmentation performance,

as object boundaries become less well-defined. However, object boundaries for our

images are poorly defined in the sense that they are not composed of rigid continuous

edges. In this case, blurring the objects improves the segmentation by creating more

well-defined continuous boundaries in contrast to ill-defined sparse boundaries. The

coefficients of this filter were selected empirically.

The comparison between the input and output of the filter can be seen on figure

Figure 4.7(a) and Figure 4.7 respectively. It can be seen that the filtered image has

a more uniform light intensity values than the original image.

3.2 Registration

After each image has been blurred, it is then registered to remove translations

due to respiration and other motion artifacts. The registration technique used was

obtained from ITK1 [22]. Registration within ITK requires several parameters to be

specified. An extended description of these parameters along with an overview of all

components of the registration process can be found in [23]. All user adjustable pa-

rameters and their corresponding options for registration are presented in Table 3.1,

with the selected options used in this approach shown in bold. The particular regis-

tration parameters selected for this approach include a Neumann boundary condition,

where pixel values outside of the image boundary are given the values of the nearest

1National Library of Medicine Insight Segmentation and Registration Toolkit (http://www.itk.org)
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pixel within the image boundary. Additionally, registration is performed in a simu-

lated continuous space, not in the discrete space of the image grid. Equivalently, a

fixed sub-pixel resolution is not specified. The value at any arbitrary fraction of a pixel

location may be requested, and a bilinear interpolation is used to obtain pixel values

at these non-integer sub-pixel locations. Some authors have compared the various

interpolation methods [24, 25]. Furthermore, an exhaustive search is not performed

to compute the registration solution. Instead, several optimization methods (see Ta-

ble 3.1) have been studied [26, 27]. Our registration implementation employs a step

gradient descent optimizer. This optimization method greatly reduces computational

complexity by computing the error metric only for locations along the direction with

the steepest gradient and using a bipartition scheme to compute the step size [23].

The metric employed was the mean squared error metric:

(u, v) = argmin
(u,v)

{

∑

m

∑

n

(xi−1(m,n) − xi(m − u, n − v))2

}

(3.2)

where xi−1(m,n) and xi(m,n) denote the pixels at location (m,n) within the reference

image xi−1 and target image xi, respectively. A full comparison of the use of metrics

in Medical image registration is done in [28]. The reference image used is always the

current image’s prior neighbor. If the registration of the current image in reference to

the previous image is denoted as r(xi, xi−1) = xi ◦xi−1, the output of the registration

process in terms of the first image can be represented as a concatenation of all previous

registrations:

r(xi, x1) = r(xi, xi−1) ◦ r(xi−1, xi−2) ◦ · · · ◦ r(x2, x1) (3.3)

as was similarly performed in [29]. This was found to greatly improve registration

performance instead of using the first image in the stack as the reference image, as

well as reduce the computational complexity and consequently the time required to

analyze the entire series. This result was especially true for z-series data, or image

sequences corresponding with increasing tissue depth. Using the first image in the

stack as the reference image may be suitable for time-series data, or image sequences
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corresponding with increasing time instances, as the same cellular objects are expected

to be in view for every image in the sequence.

Future enhancements to this registration process will involve considering other

linear and non-linear transformations in addition to translation. This will further

reduce artifacts caused by specimen movements and data acquisition limitations.

It can be seen on Figure 4.7(c) that the input image has been placed, after reg-

istering, on a bigger image. The first image of the stack is located at the center of

the output image and the consecutive images are placed in their respective locations

taking into account the movement values of the registration process.

3.3 1-D Low-Pass Filtering

Thus far, any information about the current image that is contained in previous

and/or future images has not been utilized. If a particular object was segmented in

the previous image, it is highly likely that this same object should also appear and

be segmented in the current image. It has been observed in our images, particularly

for the nuclei data set, that the intensity of a specific pixel related to an object of

interest, as a function of depth (image number), starts out low, increases as the dye

concentration in the object of interest increases in the current focal plane, peaks, and

then decreases as the object fades away. However, noise interferes with this expected

behavior, as seen in Figure 3.2(a), which displays an example of the pixel intensity as

a function of image number. With the noise inducing sharp discontinuities in pixel

intensity, objects segmented in the current image may disappear in the next image,

then reappear in the following image. Therefore, to address this effect and restore the

expected behavior of a pixel’s intensity as a function of image number, a 1-D low-pass

filter is used across the images. The filter is given by:

Tn =
1

10
In +

2

10
In−1 +

4

10
In−2 +

2

10
In−3 +

1

10
In−4 (3.4)
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Parameter
Options Available

Option Selected

Boundary condition

Neumann

Constant padding

Circular

Error metric

Mean squared error

Normalized correlation

Mean reciprocal squared difference

Mutual information

Kullback Liebler distance metric

Normalized mutual information

Mean squares historgram

Correlation coefficient histogram

Cardinality match

Kappa statistics

Gradient difference

Optimizer

Amoeba

Conjugate gradient

Gradient descent

Quaternion rigid transform gradient descent

Limited memory minimization

Bounded limited memory minimization

One plus one evolutionary

Regular step gradient descent

Powell

Simultaneous perturbation stochastic approximation

Versor transform

Versor rigid 3D transform

Interpolator

Nearest neighbor

Bilinear

B-Spline

Windowed sinc

Table 3.1
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where Tn denotes the n-th filtered image corresponding to the n-th input image In

and its four preceding images In−1, In−2, In−3, and In−4, respectively. The coefficients

of this filter were selected empirically. The filter is chosen so that the system remains

causal, with the idea of establishing a real-time system. The largest coefficient is

chosen to correspond with the second previous image. Therefore, the system will

have a time delay of two images. For images at the beginning of the sequence, where

not all of the four previous images are available, the n-th filtered image is obtained

by:

Tn =
1

4
In +

1

4
In−1 +

1

4
In−2 +

1

4
In−3

Tn =
1

3
In +

1

3
In−1 +

1

3
In−2

Tn =
1

2
In +

1

2
In−1

Tn = In

(3.5)

The filtered intensity profile corresponding to Figure 3.2(a) is shown in Fig-

ure 3.2(b). It has been observed that if consecutive images have significant movement

or displacement, then any analysis following the 1-D filtering fails. This is because

the relationship between image number and pixel intensity shown in Figure 3.2 is no

longer valid. Therefore, this movement must be corrected using registration before

the 1-D filter.

Image Figure 4.7(d) shows the output of that filter compared with the input on

previous figure. Note here that the light intensity inside the blood vessels is now more

constant which was the objective of the filter. Also, note that the boundaries are less

defined.

3.4 K-Means Threshold

After filtering and registration, K-means (K = 2) is used to generate binary im-

ages to serve as segmentation masks [30]. The objective here is to generate image
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Fig. 3.2. This shows the effects of image number or depth (x-axis) on
the pixel values (y-axis)
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dependent thresholds, whereby binary segmentation masks can be constructed. The

threshold obtained clusters each pixel from every image into one of two classes, seg-

mented and unsegmented objects.

K-means is a method that achieves thresholding based on the shape properties of

the histogram. It is an iterative scheme which uses the average of the foreground and

background class means. The computation of the mean is computed as follows:

mb(Tn) =
Tn
∑

g=0

gp(g)

mf (Tn) =
G

∑

g=Tn+1

gp(g)

(3.6)

where mf and mb are the computed means for the foreground and the background

respectively, Tn is the value of the threshold (inizialiced to 256/2) and p(g) is the

value of the histogram for the intensity g. After the means are computed, a new

threshold is found as:

Tn+1 =
mf (Tn) + mb(Tn)

2
(3.7)

Finally, the algorithm stops once |Tn − Tn−1| < α with α = 1 in our case. It

can be seen that for all the images in the stacks we tried, the number of iteration is

smaller than 10 iterations.

Each binary mask was initially obtained by setting all pixels whose values fall

below the image’s corresponding threshold to zero, and those whose values are greater

than or equal to the threshold to 255. It was observed, however, that the threshold

does not change drastically between consecutive images. Therefore, K-means does not

have to be used for every image, rather only when there is significant movement or a

scene change. K-means is necessary because a static threshold obtained subjectively

may work for a given specific data set, but would not be adaptive to other data sets.
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The output of the binarization process can be seen on Figure 4.7(e). We can

appreciate that the filter has split the image on two groups but there still are undesired

objects that have been segmented.

3.5 Morphological Filtering

Upon examining the resulting binary masks, we observed that they often contained

small black holes inside objects and small white objects in the background. To remove

these isolated objects, several morphological filters were used [20]. First, a binary

morphological opening with a flat, square 7 × 7 structuring element was used to

remove small objects. Next, a morphological closing with a flat, square 4 × 4

structuring element was used to remove small holes. The sizes of these structuring

elements were selected empirically. This resulted in the final binary masks used to

segment the original images. Denoting an original image by O, its corresponding

mask by B, then the segmented image F is given by F (m,n) = B(m,n)O(m,n), just

as was performed in the initial approach.

The output of the morphological filter and the reconstruction image can be seen

on Figure 4.7(f) and Figure 4.7(g) respectively.
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4. EXPERIMENTAL RESULTS

Example images displaying the segmentation results for both the nuclei and vascular

flow data sets for the initial approach described in Section 2 are shown in Figure 4.1.

Despite satisfactory segmentation results, this approach did not include any registra-

tion techniques and was therefore abandoned.

All of the results henceforth in this section now pertain to the second approach

described in Section 3. A table summarizing all data sets processed with the sec-

ond approach is shown in Table 4.1. Due to the similarity among the ruben34min,

ruben62min, ruben70min, and ruben120min data sets, only the results from the

ruben34min data set have been shown in this document for brevity. Likewise, the

glomerulus1 and glomerulus2 data sets are very similar, and therefore only the re-

sults from the first data set have been included in this document. The rest of the

Section 4 shows finals results of segmentation and registration of nuclei data set, vas-

culature data set and ruben data set. For the three stacks, outputs of two consecutive

images are shown. A brief discussion of the registration and binarization technique is

introduced here through the plots of horizontal and vertical movement and also the

value of the threshold. The rest of the data sets of Table 4.1 are shown on Section B.

Just one image of each stack is shown as a result, the complete stack of images in

png format and also videos in avi format can be found on the following web page:

https://redpill.ecn.purdue.edu/~kidney/thesisSerrano/ (See Section C).

Representative images showing the performance of our entire system for the nuclei,

vascular flow and ruben data sets are given in Figure 4.2, Figure 4.3 and Figure 4.4,

respectively. As it can be seen, nuclei with the greatest intensity are retained, while

those with the lowest intensity are eliminated. Similarly, structures with the greatest

intensity are retained in the vascular flow and ruben data sets, while those with the

lowest intensity are eliminated. Note that in the ruben data set, the results images
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(a) Image 29 of nuclei data Set

(b) Image 70 of vascular flow data Set

Fig. 4.1. Morphological segmentation results using initial approach
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Name in Filename Objective Main Problem

Report Prefix

nuclei BCHAN Segment nuclei in sharp

focus

Severe photon noise

vascular flow rat1-infusion Segment vasculature

structures

Translational motion

hmang hmang Segment vasculature

structures shown in red

Endosomes and tubular

lumen have large red

component

ruben ruben34min Segment vasculature

structures shown in red

Registration requires

non-linear distortion

correction

unnamed ruben62min Segment vasculature

structures shown in red

Registration requires

non-linear distortion

correction

ruben70 ruben70min Segment vasculature

structures shown in red

Registration requires

non-linear distortion

correction

unnamed ruben120min Segment vasculature

structures shown in red

Registration requires

non-linear distortion

correction

glomerulus glomerulus1 Segment vasculature

structures

Artifacts due to

respiration and

acquisition

unnamed glomerulus2 Segment vasculature

structures

Artifacts due to

respiration and

acquisition

liver vasculature vasculature-live Segment vasculature

structures shown in

green

Significant green

background fluorescence

outside of blood vessels

Table 4.1
List of Data Sets
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are the original with the boundary of the segmentation instead of the output of the

block diagram shown on Figure 3.1.

Registration results for the vascular flow, nuclei and ruben data sets are shown

in Figure 4.5. Movements on vascular flow data set are almost constant values on

positive direction for both, horizontal and vertical directions. Large spikes appear in

the middle of the data set. It can be an indicator to possible distinguishes between

multiple separate data sets. Playing the video for this data set, we observe a change

of scene near image 103. The video also proves the constant value of the traslation in

the same direction for the entire stack despite of some negative values. In a similar

way, nuclei data set movements are also constant in the same direction in the first 60

frames. The last frames show a random movement. The reason of this movement is

that the light intensity is too dark and the algorithm fails. For ruben data set we can

appreciate a negative vertical movement but no horizontal movement is distinguished.

After each data set was denoised, filtered and registered, it was thresholded via K-

means. Figure 4.6 shows the threshold value for the three stacks. vascular flow data

set threshold is a constant value for all the images with a smaller value when a change

of scene is present. In contrast, nuclei data set has a big variation of the threshold

values. It’s because of the fact of different light intensity on the stack having a low

threshold values when the image is darker. Most clear is the case of ruben data set

where there is a constant value until image 33 due to the light is constant in these

images. From here to the end, there is a linear decreasing of the threshold due to the

out of focus of the images.

Finally, to demonstrate intermediate results from every block in Figure 3.1, the

output of each block from the analysis of an example image from the ruben data set

is shown in Figure 4.7.
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(a) Image 29 (b) Image 30

(c) Image 29

(d) Image 30

Fig. 4.2. Original Images (a, b) from Nuclei Data Set; Output Images (c, d)
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(a) Image 45 (b) Image 46

(c) Image 45

(d) Image 46

Fig. 4.3. Original Images (a, b) from Vascular Flow Data Set; Output Images (c, d)
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(a) Image 30 (b) Image 31

(c) Image 30

(d) Image 31

Fig. 4.4. Original Images (a, b) from ruben Data Set; Output Images (c, d)
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(a) Horizontal movement of vascuar flow (b) Vertical movement of vascuar flow

(c) Horizontal movement of nuclei (d) Vertical movement of nuclei

(e) Horizontal movement of ruben (f) Vertical movement of ruben

Fig. 4.5. Registration results
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(a) vascuar flow data set

(b) vascuar flow data set

(c) nuclei data set

Fig. 4.6. K-means Threshold vs. Image Number
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(a) Original image (b) 2-D spatial low-

pass filter

(c) Registration (d) 1-D low-pass filtering

(e) K-means (f) Morphological filtering

(g) Binary restoration

Fig. 4.7. Example of intermediate output images
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5. USER ADJUSTABLE PARAMETERS IN PROPOSED

APPROACH

The second approach has completely automated the image processing of the data

sets. However, user interaction may be introduced to modify certain parameters of

the analysis. Specifically, in the second approach, the following four parameters may

be modified by the user: 2-D spatial low-pass filter, registration, 1-D low-pass filter,

and morphological filter. These parameters may be adjusted depending on specific

input data sets to produce more desired results. A diagram depicting these user

adjustable parameters is shown in Figure 5.1.

out
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Fig. 5.1. User Adjustable Parameters in Block Diagram
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5.1 2-D Spatial Low-Pass Filtering

The simplicity of the 2-D low-pass blurring filter lends itself well to this applica-

tion. Other filters such as Gaussian smoothing [31] have a higher computation cost

without necessarily producing improved results. An edge-preserving smoothing filter

has also been studied. However, due to the characteristics of image noise, the edge

preserving filter may perform poorly, as edges of objects are not well defined in the

original data images.

Additionally, the form of the 2-D spatial low-pass filter introduced previously was

selected experimentally. The coefficients and dimension of the filter may be modified

to produce slightly different blurring effects. A filter with impulse response:

h =























0.03 0.03 0.03 0.03 0.03

0.03 0.05 0.05 0.05 0.03

0.03 0.05 0.12 0.05 0.03

0.03 0.05 0.05 0.05 0.03

0.03 0.03 0.03 0.03 0.03























(5.1)

with h(0, 0) = 0.12 being the center element of the filter, has also shown to produce

acceptable results.

5.2 Registration

In addition to the mean squared error metric used, the following metrics have

been evaluated:

(u, v) = argmax
(u,v)

{

∑

m

∑

n

xi−1(m,n)xi(m − u, n − v)

}

(u, v) = argmin
(u,v)

{

∑

m

∑

n

|xi−1(m,n) − xi(m − u, n − v)|

} (5.2)

where xi−1(m,n) and xi(m,n) denote the pixels at location (m,n) within the ref-

erence image and target image, respectively. The registration was performed using



36

both metrics, where the results were visually identical. If the reference images are

binary, computation will be greatly reduced using the first metric, where a logical AND

operation is significantly faster than a subtraction operation. However, for grayscale

reference images, the mean square error metric is a common metric with a large

capture radius [9].

Additionally, the mutual information metric has been evaluated [32]. The mutual

information metric consists of maximizing the following:

(u, v) = argmax
(u,v)

{I(xi−1(m,n), xi(m − u, n − v))} (5.3)

where

I(x(m,n), y(m−u, n−v)) = H(x(m,n))+H(y(m−u, n−v))−H(x(m,n), y(m−u, n−v))

(5.4)

and the operator H denotes the entropy. The mutual information implementation

from Mattes et al. [33] has been used on this approach. Figure 5.2 shows the reg-

istration results. Unlike the mean squared error metric, when there is significant

movement between images, the mutual information metric does not produce large

peaks in the metric value. Additionally, the mutual information metric values con-

tains more variation than the mean squares metric values. More information about

this technique can be found in [34,35].

Surprisingly, worse results have been obtained using this metric. However, it is

known that the mutual information metric produces optimal results when images of

different modalities are involved. In such cases, metrics based on direct comparison

of gray levels are not applicable. It has been extensively shown that metrics based on

the evaluation of mutual information are well suited for overcoming the difficulties of

multi-modality registration.

If the system is not required to be real-time where the entire stack of images

is available, the system can be implemented using non-causal methods. Therefore,

there is the advantage of being able to analyze the entire data set before creating
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Fig. 5.2. Registration Results from Vascular Flow Data Set Using
Mutual Information Metric
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any output images. In the second approach introduced previously, the output image

size is unknown unless the maximum total displacement due to registration is known.

However, this information is not available until the entire data set has been analyzed.

For the system to be causal, an assumption about the output image size had to be

made, and the placement of the first image in the output image had to be chosen.

However, with a non-causal approach, the system is able to analyze the entire data

set before producing any output images. After all images have been analyzed, the

maximum displacement across all images can be determined to set the output image

size so that no source images are truncated.

5.3 1-D Low-Pass Filtering

By continuing through with a non-causal approach, the 1-D vertical low-pass filter

can be made non-causal as well. The filter can now be given by:

Tn =
1

10
In−2 +

2

10
In−1 +

4

10
In +

2

10
In+1 +

1

10
In−2 (5.5)

where Tn denotes the n-th filtered image corresponding to the n-th input image In and

its two preceding and two succeeding images In−2, In−1, In+1, and In+2, respectively.

Implementing this filter requires analyzing all input images twice, once for the spatial

low-pass filter, and a second time for the 1-D low-pass filter. For images at the

beginning and end of the sequence, where not all of the four previous images are

available, the n-th filtered image is obtained by:

Tn =
1

3
In−1 +

1

3
In +

1

3
In+1

Tn = In

(5.6)

Additionally, similar to the 2-D spatial low-pass filter, the form of the 1-D low-

pass filter introduced previously was also selected experimentally. The coefficients

and length of the filter, for both the causal and non-causal cases, may be modified to

produce slightly different smoothing effects.
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5.4 Morphological Filtering

The size and shape of the structuring elements used in the morphological filter

were also selected experimentally. By altering the size and shape of the structuring

elements for the opening and closing operations, the user can remove smaller or larger

objects, and remove smaller or larger holes, respectively, from the binary mask.
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6. CONCLUSIONS AND FUTURE WORK

This document described two techniques to segment microscopy image data sets. The

second approach is deemed to be a more comprehensive method in addressing the is-

sues and is chosen as the preferred method over the second approach. Experimental

results indicated that this method was promising in segmenting objects in time se-

ries data sets as well as data sets comprised of images acquired at increasing tissue

depths. Nevertheless, evaluation of results proves to be difficult without having any

ground truth data available. This makes evaluation significantly more subjective and

less objective. Future work will involve developing registration schemes that correct

rotations and other non-linear distortions, especially those prevalent in the new data

sets.

All methods have been implemented in both MATLAB and in C using ITK 1.

The computational complexity of the MATLAB implementation is extremely high,

particularly for the registration component of the process. However, the ITK imple-

mentation has a speedup factor of 200 over the MATLAB implementation. All figures

of analyzed results in Section 4 have been created with the ITK implementation. A

complete guide of this image processing toolkit is presented in [22].

Lastly, it is becoming increasingly common in medical imaging to analyze high

dimensional images. For this reason, future work can be based on the implementation

of higher dimensional filters. The 2-D morphological filter may be replaced with a 3-D

filter which takes into account the time/depth dimension. However, it is important

to note that, registration must be performed on all the frames before applying any

type of 3-D filter due to the specimen movements.

1National Library of Medicine Insight Segmentation and Registration Toolkit (http://www.itk.org)
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Also, it’s important to note that in future implementations; it can be useful, pro-

cessing the different channels separately for obtaining a better performance in terms

of segmentation and registration. For example, on hmang data set (see Figure B.1),

red channel could be used for segmentation while green channel (Undesired objects)

can be used for registration. Blood vessels (on red) are not useful for registration due

to the movement of the blood inside them. Endosomes and tubular lumen, with a

high ratio of green to red signal, however could be used for registration.
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A. MICROSCOPY IMAGING

This chapter describes the techniques that are currently in use for acquiring the

images that have been analyzed on that project. Microscopy involve the diffraction,

reflection, or refraction of electromagnetic radiation interacting with the subject of

study, and the subsequent collection of this scattered radiation in order to build up

an image. An extended review of the novel light microscopy imaging techniques in

nephrology can be found in [1]. Application of these new technologies to problems

specific to areas of interest to the nephrology community presents both opportunities

and challenges. The challenges arise from the unique anisotropy of the kidney for light

in the visible spectrum. Although many tissues have a homogeneous refractive index

that simplifies image acquisition, fluorescently labeled structures in the kidney are

more difficult to image due to a heterogeneous network of intertwined or anastomosing

tubules, vessels and nerves with intervening stroma [1].

Confocal microscopy This optical imaging technique was first presented by Minsky

[36] in 1951. A confocal microscope uses point illumination and a pinhole in

an optically conjugate plane in front of the detector to eliminate out-of-focus

information. Only the light within the focal plane can be detected, so the image

quality is much better than that of wide-field images. As only one point is

illuminated at a time in confocal microscopy, 2D or 3D imaging requires scanning

over a regular raster in the specimen. The thickness of the focal plane is defined

mostly by the square of the numerical aperture of the objective lens, and also by

the optical properties of the specimen and the ambient index of refraction. These

microscopes also are able to see into the image by taking images at different

depths. Figure A.1 shows a schematic diagram of the confocal principle described

before. Several papers describe this technique in detail [37, 38]
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Fig. A.1. Laser scanning confocal microscope diagram
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Multiphoton Fluorescence Microscope It uses pulsed long-wavelength laser light

to excite fluorophores within the specimen being observed. The fluorophore ab-

sorbs the energy from two long-wavelength photons which must arrive simulta-

neously in order to excite an electron into a higher energy state, from which

it can decay, emitting a fluorescence signal. It differs from traditional fluores-

cence microscopy in which the excitation wavelength is shorter than the emission

wavelength, as the summed energies of two long-wavelength exciting photons will

produce an emission wavelength shorter than the excitation wavelength. Mul-

tiphoton fluorescence microscopy has similarities to confocal laser scanning mi-

croscopy. Both use focused laser beams scanned in a raster pattern to generate

images, and both have an optical sectioning effect. Unlike confocal microscopes,

multiphoton microscopes do not contain pinhole apertures, which give confocal

microscopes their optical sectioning quality. The two-photon excitation micro-

scope [39] is a special variant of the multiphoton fluorescence microscope. The

major advantage of this technique in front of confocal microscopy is the deeper

tissue penetration. Figure A.2 shows the diagram of a two-photon microscope.

There we can see the differences between Multiphoton and Confocal microscope

mentioned above.
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Fig. A.2. Two-photon microscope diagram
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B. EXTENDED RESULTS

New data sets similar to the vascular flow data set are presented now, also consisting

of liver structures of a rat across a series of time instances. These data sets will be

referred to as the hmang data set, ruben 70 data set, glomerulus data set, and liver

vasculature data set. Example images from each data set are shown in Figure B.1. See

Section C for the complete data set. The objective is to segment vasculature structures

in all of these new data sets. Vascular structures are shown predominantly in red in

the hmang and ruben70 data sets, and predominantly in green in the liver vasculature

data set. Therefore, regarding the ruben70 and liver vasculature data sets in color, the

respective color component is extracted. Then, only this color component is analyzed

using the proposed approach, just as the nuclei and vascular flow data sets were

analyzed. However, the hmang data set must undergo additional preprocessing due to

the image set characteristics and desired objects to be segmented. This preprocessing

is called green component clamping, and is explained in the following section.

B.1 Green Component Clamping

The images in the hmang data set contain many yellow structures (endosomes

and a tubular lumen have a combination of red and green fluorescence), which are

undesired to be segmented. Therefore, simply using the red component of these

images will cause segmentation of unwanted objects in addition to the vasculature.

Therefore, to reduce the visibility of yellow structures, a new image is constructed by

identifying unique ratio of red to green signal as follows:

f̃r(m,n) =











0 if fr(m,n)
fg(m,n)

< 1
α

fr(m,n) else

(B.1)
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(a) Image 13 of hmang data set (b) Image 26 of ruben70 data set

(c) Image 20 of glomerulus data set (d) Image 32 of liver vasculature data set

Fig. B.1. Example of New Images Used in Our Study
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where fr and fg are the red and green components, respectively, of the current image

in the stack being analyzed, and α is a constant greater than one. Selecting α = 3

has been experimentally shown to produce sufficient results. Then, f̃r is analyzed

using the proposed approach, but only with regard to the hmang data set due to its

unique characteristics. The effects of this preprocessing can be seen in Figure B.2.

Segmentation and registration results for hmang data set are shown on Figure B.3.

Figures of the registration and thresholding are shown in Figure B.4. There, we

can see that the horizontal and vertical movements are almost constant and equal

to 1 pixel in the positive and negative axes respectively. The value of the threshold

decreases on the second half of the stack due to the low light intensity on the last

images.

B.2 Other results

Results of ruben70 data set are shown on Figure B.5. Red channel has been used

for processing this stack of images. As it can be shown on the video (See Section C)

there is some vibration on that image, so this is the nature of the horizontal and

vertical movements shown in Figure B.6. Both movements can be represented by a

sinusoid of a 3-4 images of period.

Glomerulus data set results are presented on Figure B.7. There we can appreciate

that some non desirable structures have been segmented (See endosomes on the bot-

tom left of the images). Also, as can be shown in the complete stack (See Section C,

we can see that as the light intensity is decreasing (we are out of focus), it’s even

more difficult segmenting some parts of the image. For example, see the center of

the image 19. Regarding to the movements on Figure B.8, we cannot appreciate a

arranged movement in some direction as it was clear on the ruben70 data set. The

value of the threshold is almost constant for the entire stack.

The last stack of images we are showing is the liver vasculature data set. Image

results are shown on Figure B.9. Due to the noise present on the images and the low
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(a) Red component (b) Green component

(c) New image

Fig. B.2. Image 10 of hmang data set
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(a) Image 13 (b) Image 14

(c) Image 13

(d) Image 14

Fig. B.3. Original Images (a, b) from hmang Data Set; Output Images (c, d)
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(a) Horizontal movement (b) Vertical movement

(c) K-means Threshold

Fig. B.4. Graphs of hmang data set
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(a) Image 46 (b) Image 47

(c) Image 46

(d) Image 47

Fig. B.5. Original Images (a, b) from ruben70 Data Set; Output Images (c, d)
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(a) Horizontal movement (b) Vertical movement

(c) K-means Threshold

Fig. B.6. Graphs of ruben70 data set
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(a) Image 13 (b) Image 14

(c) Image 13

(d) Image 14

Fig. B.7. Original Images (a, b) from glomerulus Data Set; Output Images (c, d)
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(a) Horizontal movement (b) Vertical movement

(c) K-means Threshold

Fig. B.8. Graphs of glomerulus data set
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light intensity, after image 40, the method fails with the segmentation. Figure B.10

shows the horizontal and vertical movements and the threshold values after processing.

There is a regular movement of one pixel in the positive value of both axes. Finally,

the threshold try to adapt to the light intensity but as it’s mentioned above, it fails.
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(a) Image 29 (b) Image 30

(c) Image 29

(d) Image 30

Fig. B.9. Original Images (a, b) from liver vascularure Data Set;
Output Images (c, d)
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(a) Horizontal movement (b) Vertical movement

(c) K-means Threshold

Fig. B.10. Graphs of vasculature data set
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C. WEB PAGE STRUCTURE

The segmentation effectiveness results can clearly be shown through the representa-

tion of some images. On the other hand, the graphics presented on section Section 4

and Section B, regarding to the registration process, show the direction and intensity

of the movements but they don’t show how the stack is lined up. For this reason, we

refer to the following web page were, videos of the stacks can be easily played:

https://redpill.ecn.purdue.edu/~kidney/thesisSerrano/

Also, all the stacks presented on Table 4.1 have been processed and they are

accessible from the web page. It can be seen there stacks of images similar to the

stacks presented on this document.

The main page of the link divides the files into 2 groups: images and videos.

Take in mind that just images have been processed with the method that this thesis

proposes. The videos have been created by putting the images into a pile and then

compression methods have been used. Therefore, just the registration process has

to be observed through the videos. The problem of the segmentation is better seen

through the image folder.

Each folder is then split into the original images or videos and the processed.

When clicked each of this folder, we access to the files which can be downloaded or

visualized on the web browser.

Finally, regarding to the segmentation process, for a clear understanding of the

results, the images included are not the output of the process but the originals with

the boundary of the segmentation mask. It allows the observer to objectively qualify

the segmentation.


