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Local discrimination of rotationally invariant states

Elio Ronco Bonvehi

Grup de F́ısica Teòrica: Informació i Fenòmens Quàntics.
Facultat de Ciències, edifici C,Universitat Autònoma de Barcelona, 08193, Bellaterra
(Barcelona), Spain.

Abstract. We provide lower bounds for the minimum error discrimination
probability of multipartite rotationally invariant states using separable measurements.
The separability of the measurement operators has been investigated, and we have
found PPT-based conditions which can be directly tested in the total angular
momentum basis.

1. Introduction

Discrimination of states plays a key role in quantum communication and quantum

computation, but it also offers great insight in fundamental aspects of quantum

mechanics, since the notion of indistinguishability lies at the very heart of the theory.

Moreover, if the states to discriminate consist of several subsystems distributed among

some parties, entanglement becomes possible and can affect the distinguishability of

the states. We will study the discrimination of orthogonal rotationally invariant states,

which are completely distinguishable when global measurements can be performed, but

when they can not, some information becomes lost and thus the discrimination becomes

non-trivial. This contrasting performance of different strategies can be used to design

communication protocols, for exemple.

1.1. Entanglement and separability

Entanglement is a pure quantum property which has several and very astonishing

consequences, many of them with direct applications in quantum communication,

cryptography and computation. Formally, a bypartite state ρ acting on the composite

space HA ⊗ HB is entangled iff it can not be expressed as a convex sum of product

states:

ρ =
∑

i

piρ
A
i ⊗ ρB

i (1)

where pi are probabilities. A state which can be expressed in this way is called

separable. The case of multipartite states is more complex, since they can be entangled

in many different ways, corresponding to the different partitions of the parties. For
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instance, a 3-party state ρABC can be entangled respect to the following partitions:

{{A}, {B}, {C}}, {{A}, {B, C}}, {{A, B}, {C}}, etc. The first corresponds to a fully

entangled state whereas the rest correspond to states entangled respect to a particular

partition.

A multipartite state ρ of N parties, acting on a space H =
⊗N

i=1 Hi, is fully separable,

or N -separable, iff it can be written in the form:

ρ =
∑

i=1

pi

N⊗

j=1

ρj
i (2)

otherwise it must contain some form of entanglement.

Now, the question is how can we detect if a state is separable or not. Although extensive

research has been carried out, until now there is no definite answer to that question†,

yet some criteria have been stated [4, 5, 6]. One of the most useful is the Positive

Partial Transposition (PPT) or Peres-Horodecki criterion [4]:

Proposition 1. The state ρ acting in H = HA ⊗ HB is separable only if its partial

transposition ρTA is positive. The condition is also sufficient for the cases H = C2⊗C2

and H = C2 ⊗ C3

The partial transposition is nothing but the standard transposition applied only

to some of the parties, which is an operation that will clearly affect in a different way

entangled and separable states. It is a particular case of the non-completely positive

maps as in the reference [5].

Although the formal separability conditions can be straightforwardly generalized to

the multipartite case, the PPT criterion would only detect entanglement between

bipartite splits of a N -partite state, since it is naturally designed for bipartite states.

Nevertheless, the positivity of the partial transposition corresponding to each of the

2N−1 − 1 possible bipartite splits is still a necessary condition for full-separability.

1.2. Collective versus local measurements

When the states to discriminate are multipartite, entanglement can be essential for

achieving the lowest error probability. If possible, the best strategy is to use global

measurements, acting over the total quantum state (all parties simultaneously) without

any restriction upon it.

On the other hand, one can consider local measurements, that act on each party

independently. In this case the discrimination reduces to a N different measurement

processes and a post-measurement statistical analysis of the results. This kind of

strategies range from the most simple ones, where the same POVM is used for each

† Formally, necessary and sufficient separability conditions based on positive maps exist [5], although
they are not operational. Entanglement witnesses, for example, must be constructed for particular
states, thus not detecting entanglement for arbitrary states.
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party (local fixed), to a very sophisticated ones, where the POVM used on each party

depends on the results obtained in the previous measurements (local measurements and

classical communication, LOCC).

If the states to be discriminated contain entanglement, the reduced states (the state of

some parties when the information from the others is ignored) will be noisy, hence any

local strategy would be worse than a global one (provided that both are optimal).

However, local strategies are very important, since they are feasible with current

technology. One can design discrimination scenarios involving several parties where

one achieves low error rates with collective measurements but high error with local

strategies. An example can be found in reference [8].

Since local strategies are difficult to characterize, due to the many ways in which each

measurement can depend on the previous ones, a more convenient idea is to analyze

collective strategies with separable POVM’s, which include LOCC. Any POVM element

can be turned into a state by normalizing it. Using that fact, a POVM is separable iff

the corresponding state for each element is separable††.

Since separable strategies are more general than the local ones, the minimal error

achievable with the former represents a lower bound to the latter.

2. Rotationally invariant states

Any problem can be significantly simplified if a convenient symmetry can be found.

Many composite states used in quantum communication are symmetric under the

permutations of its parties (for instance, multi-copy states ρ⊗N), which already

simplifies many things. Here, we will focus on rotational symmetry.

A multipartite state is invariant under the action of the SO(3) group iff [D(R), ρ] = 0

for all R, where D(R) is the representation of an element of SO(3). By Schur’s lemma,

ρ must be proportional to the identity on each irreducible subspace spanned by the

eigenvectors of the total angular momentum. It must have the form

ρ =
N/2∑

j=jmin

A(j)

nj(2j + 1)

+j∑

m=−j

nj∑

α=1

| j m α〉〈j m α |=
N/2∑

j=jmin

A(j)

nj(2j + 1)
Ij (3)

where nj =
(

N
N/2−j

)
−

(
N

N/2−j−1

)
is the multiplicity of the representation with angular

momentum j, and Ij is the identity in this particular invariant subspace.

The former expression is completely general, and can be simplified when dealing with

bipartite systems. In our case, we will consider multipartite states with 1/2−spin

subsystems (q-bits) shared by N parties. This kind of states offer some advantages

besides their simple mathematical expression, like robustness against noise, not to

mention the importance of the projectors Ij in quantum mechanics.

†† Notice that both PPT and entanglement witnesses can be directly applied to an operator, since a
normalization constant will not affect the test.
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3. Minimum error discrimination

Our goal is to discriminate between a given pair of states ρj1 and ρj2 each corresponding

to a different invariant subspace, namely, states of the simple form:

ρj =
1

nj(2j + 1)
Ij (4)

For simplicity we assume an equal a priori probability: πj1 = πj2 = 1/2.

An expression for the minimum error discrimination with a general POVM can be

given for these kind of states. First, we try to determine the form of the measurement

operators.

Any optimal POVM for rotationally invariant states can be fully characterized by a set

of %N/2&+ 1 parameters {γj} in the following way:

E1 =
∑

j

γjIj (5)

E2 =
∑

j

(1− γj)Ij

0 ≤ γj ≤ 1

The reason is that given an optimal POVM element, the rotational invariance of the

states allows us to choose it also invariant:

tr(Eiρi) =

∫
dR tr[Ei D(R)†ρiD(R)] =

∫
dR tr[D(R)EiD(R)†ρi] =

= tr

{[∫
dRD(R)EiD(R)†

]
ρi

}
= tr {E ′

i ρi} (6)

Hence, by Schur’s lemma,

E ′
i =

∫
dRD(R)EiD(R)† =

∑

j

γjIj (7)

Therefore, with the POVM defined in (5), the error probability in discriminating the

states ρj1 and ρj2 is:

perr = π1ρ(2 | 1) + π2ρ(1 | 2) =
1− (γj1 − γj2)

2
(8)

Only two out of the %N/2&+1 coefficients show up in the error probability, the rest will

be necessary to ensure that the POVM is separable. Obviously, if no further constraint

is imposed on the POVM, perfect discrimination will be achieved with perr = 0 for

γj1 = 1, γj2 = 0, with the rest of the coefficients being completely arbitrary. This

corresponds to projecting onto the subspaces corresponding to the given states, and

since they are ortogonal, they are also completely distinguishable. However, that does

not holds when global measurements are not possible. Note, for instance, that even
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though IJmax is a separable operator§, IJmax is not.

Our main goal now is to find a suitable separability criterium, that takes full advantage

of the symmetry of the problem.

4. Separability of rotationally invariant states

A huge effort has been devoted to determine under which conditions a given state is

separable or not, and in the first section some results have been commented. Most of the

results are for bipartite systems, and this is specially the case concerning rotationally

invariant states. The main difficulty when dealing with a multipartite rotationally

invariant state is that all criteria can be applied easily in the computational basis

(product basis), and rotationally invariant states are easily characterizable only in

the total angular momentum basis. Only for bipartite systems the Clebsch-Gordan

decomposition becomes easier and some interesting results can be obtained [9].

Most of the criteria found in the literature are based directly or indirectly on PPT, and

since partial transposition requires to change basis, they are not suitable for rotationally

invariant states. Entanglement witnesses may seem appropriate since they are operators

and can be constructed in any basis; however, finding the right witness for a mixed state

is quite a difficult task, and may involve partial transpositions or related operations.

Other criteria based on expected values inequalities may seem suitable for our states

[10, 11], but they proved to be useless‖.

Finding no suitable conditions for our states in the literature, we have tried to analyze

how an operator of the form (5) behaves under partial transpositions, by performing

the change of basis and computing the resulting eigenvalues with Mathematica. Since

our states are permutational invariant the only relevant parameter is the number of

transposed parties, but not which ones are. Therefore we define a k-PT as the partial

transposition performed on the first k parties. Obviously, k only ranges from 1 to

(N/2), for the rest can be obtained by a further total transposition.

We find that 1-PPT is equivalent to the following simple conditions:

(2j + 1)γj ≥ γj−1 ∀j (9)

2-PPT and above yield more complex relations.

§ IJmax =
∫

dRD(R) | JJ〉〈JJ | D(R)† =
∫

dRD(R)(|↑〉⊗N 〈↑|⊗N )D(R)†
‖ The depolarization process used in the first destroys all entanglement in rotationally invariant states,
and the second is not useful since it is affected by the normalization constant, which in turn depends
on the variables {γj}, hence making more difficult the optimization.
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5. Minimum-error lower bounds

5.1. Optimal POVM

Now we can use the separability condition to determine the optimal values of {γj} in

order to make the operators positive under 1-PT. Since we need both elements of the

POVM, we requiere condition (9) and the complementary one:

(2j + 1)(1− γj) ≥ 1− γj−1 ∀j (10)

both to hold. Assuming j1 > j2, it is clearly desirable to minimize γj2 in order to

minimize the error probability. In fact, γj2 = 0 is compatible with the conditions,

provided all the coefficients with j < j2 are also zero. All coefficients with j > j1 are

not a problem, since for them the choice γj = γj1 trivially fulfills the conditions. Thus,

we just have to find the maximum value of γj1 , which is bounded by the complementary

condition (2j1 + 1)(1− γj1) ≥ 1− γj1−1. If γj2 = γj1−1 = 0 we immediately obtain:

γj1 =
2j1

2j1 + 1
(11)

For arbitrary j1 and j2 we can to write the set of inequalities:

γj ≥
γj−1

2j + 1
≥ γj−2

(2j + 1)[2(j − 1) + 1]
≥ γj−3

(2j + 1)[2(j − 1) + 1][2(j − 2) + 1]
≥ . . .

(12)

And then the relation between both parameters is:

γj1 ≥
γj2∏j1

j=j2+1(2j + 1)
and 1− γj1 ≥

1− γj2∏j1
j=j2+1(2j + 1)

(13)

Again, setting γj2 = 0 yields the optimal choice:

γj1 =

∏j1
j=j2+1(2j + 1)− 1
∏j1

j=j2+1(2j + 1)
(14)

which conveniently reduces to (11) when j2 = j1 − 1.

5.2. Bounds

Substituting (14) in (8) we obtain the following bound for arbitrary states (assuming

j1 > j2):

perr(j1, j2) ≥
1

2
∏j1

j=j2+1(2j + 1)
(15)

An interesting particular case is when the states to discriminate are ρjmax and ρjmax−1.

Using (11) we obtain the following simple lower bound for the error probability:

perr(jmax, jmax − 1) ≥ 1

2(2jmax + 1)
=

1

2(N + 1)
(16)
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It is interesting to note that the bounds do not depend on the number of parties

N , despite what (16) may suggest. This is reasonable, since the difficulty of the

discrimination rest on the difference of singlets contained in each state, hence on the

values j1, j2. A different behaviour is expected for truly local measurements, for in that

case a larger number of parties imply the possibility of a more complex depencence

between the N different measuments, allowing to extract more information from the

reduced states. In any case, the final error probability will be larger than the lower

bounds obtained for separable measurements.

5.3. Full-PPT bound and discussion

Now we can compute numerically the error probability imposing k-PPT for all k and

compare this strong bound with the weaker one resulting from 1-PPT. The problem

of discrimination subjected to full-PPT conditions can be formulated as a semidefinite

program[3] and efficiently solved with the Yalmip toolbox [12] for matlab, and the solver

SeDuMi [13]. We show the results from N = 2 to N = 7. For N > 7 the computation

time becomes excessively large.

• Jmax vs. Jmax − 1.

First we analyse the bounds for the states corresponding to the maximum total angular

momentum subspace and the immediately subsequent. The values for the bounds on

the minimum error probabilities can be seen in fig.1. The cases with even and odd

values of N are plotted apart in order to appreciate the monotonicity.

The 1-PPT-based bound goes to zero very fast, while the much stronger full-PPT-based

one keeps growing with N . Hence, the bound, although strictly valid, is too week to be

useful for large values of N , when the error is expected to grow, because the states to

discriminate differ only by a singlet, which is harder to detect as N →∞.

Figure 1. Minimum error probabilities for the discrimination of ρJmax and Jmax−1.
On the left are plotted the probabilities for even parties N , while on the right are
plotted the ones for odd N . The probabilities found with the full-PPT condition are
pictured in blue, while the red ones correspond to the 1-PPT condition.
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• Jmax vs. Jmin.

We analyze a second particular case, which is also of interest. States ρJmax and ρJmin

are clearly the most distinguishable ones, for a given number of parties, so in that case

we expect the bound to go to zero as N grows. We see in fig.2 that now, although 1-PPT

still yields a weaker bound than full-PPT, both bounds are very close and converge to

zero quite fast.

Figure 2. Minimum error probabilities for the discrimination of states corresponding
to Jmax and Jmin. On the left are plotted the probabilities for even parties N , while
on the right are plotted the ones for odd N . The probabilities found with the full-PPT
condition are pictured in blue, while the red ones correspond to the 1-PPT condition.

6. Summary and conclusions

We have studied the separability of multipartite rotationally invariant states and have

found a simple condition for the positivity of the partial transposition respect to a single

party. It provides a way to test states directly in the basis of total angular momentum

eigenstates with simple inequalities.

As a way to obtain a bound to the local discrimination error, we have used the former

criterion to bound the separable error. The bound can be obtained analytically and

has a very simple form.
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Appendix A: Quantum states and measurement

Here we provide a brief summary of concepts and formulae used throughout the work.

For more detailed explanations see references [1, 2].
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Any physical system is associated to a Hilbert space. The state of the system is fully

described by a state vector | ψ〉 of this space. Given two possible states, a system can

be also in any superposition of them, due to the linearity of the Hilbert space.

A more general picture is the density matrix formalism: a system is described by a

collectivity {pi, | ψi〉}, where pi represents the probability of the system being in the

quantum state | ψi〉. The state is now represented by a matrix operator ρ:

ρ =
∑

i

pi | ψi〉〈ψi | (17)

Such a state is called mixed, in contrast to the pure states | ψ〉, and contain classical

randomness besides the intrinsically quantum one.

Quantum measurement. The information of a quantum state can be retrieved via

measurements. Formally, a measurement is represented by a POVM, which is a set of

positive operators {Ei} such that
∑

i Ei = I. This two conditions allow us to define a

probability rule:

P (i | ρ) = tr(Eiρ) (18)

Then, if we associate an operator Ei to each possible outcome of a measurement,

equation (18) represents the probability for the outcome i, provided we measure the

state ρ.

Quantum state discrimination with two hypothesis. Given a state ρ which is equal

to one of the two states {ρ1, ρ2} with a priori probabilities {π1, π2}, the problem of

discrimination consist on determining with the minimum error which one of the states

is ρ. Assigning each hypothesis to an operator of a two-element POVM and using (18),

the error probability is:

perr = π1 × P (ρ2 | ρ1) + π2 × P (ρ1 | ρ2) = π1 × tr(E2, ρ1) + π2 × tr(E1, ρ2) (19)

The success probability is clearly:

psucc = π1 × P (ρ1 | ρ1) + π2 × P (ρ2 | ρ2) = π1 × tr(E1, ρ1) + π2 × tr(E2, ρ2) (20)

Appendix B: Semidefinite programming

Semidefinite programming is a subfield of convex optimization. A semidefinite program

can be cast in the following form

min.〈c | x〉 (21)

s.t. F (x) 0 0

with

F (x) = F0 +
m∑

i=1

xiFi (22)
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where c ∈ Rm and Fi ∈ Rn×n are given and x ∈ Rm is the vector of variables. This is

called the primal SDP. Alternatively, one can formulate the dual problem:

max.− trFoZ (23)

s.t. trFiZ = ci, i = 1, ...,m

Z 0 0

where F0, Fi and ci are the same as in the primal problem, and Z ∈ Rn×n is the new

variable.

Primal and dual forms of the problem are equivalent and provide bounds to the solution.

That is the basis of many efficient algorithms for solving the problems.

Minimum-error discrimination as a SDP

min. perr = η1Tr(E2ρ1) + η2Tr(E1ρ2) (24)

s.t. E1 0 0 (25)

E2 0 0

E1 + E2 = I
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