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Abstract

The trend of the last years in the aeronautic industry is to reduce the weight

of the commercial aircrafts. This weight reduction implies the need for more

electrical power on board, since the heavy hydraulic drive system is replaced

by and an electromechanical system. In order to supply this amount of extra

electrical power, a Symmetric ±270V DC Power Supply as a part of a Universal

Power Converter is presented in this thesis. The Universal Power Converter

generates the different airborne voltages - 32VDC, ±270V DC and 230V AC-

using as Fuel Cell Stack as raw energy supply.

The thesis focus on the the power conditioning system includes three DC-DC

converters, generating regulated ±270V DC output. The first stage, a 3-phase

interleaved full-bridge soft-switching converter, so called V6, boosts the Fuel

cell voltages to a non regulated DC-Link bus with a voltage between the 320

and 580 Volts. The following stage, composed of a SEPIC converter and Cúk

converter parallel connected and in interleaving operation provide the regulated

output. The three converters of the proposed conditioning system has been

studied obtaining the design equations, sized the components and then verified

with computer simulations using Matlab Simulink. The simulation results

show regulation in the entire range of load with and excellent result within

the Continuous Conduction Mode of the converter, a high performance of 93%

at full load and a small current ripple at the Fuel Cell input, less than 17%

peak-to-peak of the drawn current at full load.

Furthermore, this thesis presents the Universal Power Converter at system level,

to place the reader in context. The system supplied with a 16kW Proton

Membrane Fuel Cell is designed to generate different outputs: 32Vdc at 5kW,

±270Vdc at 16kW and 230Vac at 16kW; supplying at a time three, two or one

voltage. Furthermore, the selected Fuel Cell is introduced and a Simulink model

is build to perform simulations of th econverters.
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4.11 Cúk Control-To-Output Bode . . . . . . . . . . . . . . . . . . . . 65
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4.24 Simulation: SEPIC and Cúk input currents . . . . . . . . . . . . 75

4.25 Simulation: Cascaded converters efficency . . . . . . . . . . . . . 76

4.26 Simulation: Output and bus voltage vs. load variation . . . . . . 77

4.27 Simulation: Input current ripple . . . . . . . . . . . . . . . . . . 77





List of Tables

1.1 FC specifications UPC requirements . . . . . . . . . . . . . . . . 17

2.1 Main specification of the HyPM-HD-16-500 . . . . . . . . . . . . 24

2.2 Extrapolated values from the I-V model . . . . . . . . . . . . . . 26

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 3-phase MOSFET PM parameters . . . . . . . . . . . . . . . . . 40

3.3 Transformer main parameters . . . . . . . . . . . . . . . . . . . 40

3.4 MOS main parameters . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Components sizing values . . . . . . . . . . . . . . . . . . . . . . 41
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4.4 Computed values of the passive components . . . . . . . . . . . . 58

4.5 Components sizing values . . . . . . . . . . . . . . . . . . . . . . 59

10



Preface

This thesis arouse from my internship in the Power Group of the Polytechnic

Institute of New York University, with the Associate Professor Dariuz Czarkowsi

as a internship supervisor. During the internship Boeing Corporation requested

for a design of a Universal Power Converter (UPC) for airborne applications. In

order to work and develop this project a work group formed with different MS

and PhD students was created, which I got involved as a internship student. The

thesis is the product of the work done during my internship in the PolyNYU.

The opportunity to work with the Universal Power Converter, give me the

chance to improve my knowledge on the subject of the Power Electronics and

the Switched-Mode Power Supply. Moreover, since the project was a technologi-

cal challenge, it boosted my interest on this subject of the Electrical Engineering.

During the time I dedicated to this thesis I had the chance to discover a large

number of concepts and technologies around the world of the Power Electronics,

which where merely or completely unknown for me, such as: Fuel Cell technol-

ogy, interleaved techniques for SMPS, current model control, current sharing,

planar magnetics technology. The resulting experience in the PolyNYU was

successfully for my professional career and a better personal experience from

my personal sight.

Thesis Organization

This thesis has been organized into two parts:

• Part I: Introduction to the UPC System

• Part II: UPC Power Converters Design

Part I, as its name indicates, introduces the concepts at the system level of

the Universal Power Converter and the related technologies that this system

involves; without entering into the design aspects of the Power Converters.

Part II, focuses on the design process of the different Switched Power Units



that composes the system; developing the design equations for each converter,

sizing the components and finally validating the design with the simulation

tool Matlab Simulink.

This organization separates the thesis in a two parts, on more descriptive which

will help to place the reader in context, and the second part completely technical

where the reader will figure out the design process of the converters.



Part I

Introduction to the

Universal Power Converter

System

13





Chapter 1

Universal Power Converter

The current tendency in the aeronautics industry is to reduce weight of new

commercial aircraft models. Lighter airplanes reduce fuel consumption, con-

sequently the costs of the airborne transportation and the polluting emissions

decrease. The benefits of weight reduction are an important issue for the flight

companies and also a compromise with the sustainable development, hence it

is an interesting research topic for the aeronautics industry.

One way to go in the weight reduction of the aircraft is replacing the old

steering system -based on a hydromechanics system- with an electrical steering

system. Furthermore, the heavy cables, pipes and rods that bind the cabin with

the moving parts of the plane (actuators) are substituted for electrical lines

which transmit the steering information to the actuators. As a consequence,

the amount of electrical power needed in the aircraft increases -to feed the

electrical steering system.

The idea of the Universal Power Converter (UPC) comes form the need of

more electrical power in the new aircrafts. So the goal of the UPC is to supply

this extra power using a Fuel Cells stack (FC) as a raw electrical source and

generate the different voltages needed in the aircraft.

The goal of this chapter is to present the requirements of the Universal Power

Converter, and discuss at system level the way to generate the different

voltages. However power converter names and other power electronics concepts

will appear, they will not be explained or clarified in this chapters.

15



System Description 1. Universal Power Converter

1.1 System Description

The goal of the Universal Power Converter is to supply different voltages levels

current used in aircrafts with a fuel cell as raw electrical energy source. The

unit shall be designed to meet aerospace standards for power quality and

Electro-Magnetic Interference (EMI) as specified by the RTCA Standard DO-

160 Environmental Conditions and Test Procedures for Airborne Equipment or

as provided by Boeing.

Figure 1.1: Voltages and powers of the UPC system

The power electronic converter has to provide the following regulated aircraft

voltages 32V DC , ±270V DC and 230V AC within the frequency range from

400Hz to 800Hz. The power requirements for the outputs are 5kW for the 32V

DC output and 16.5kW -maximum FC power- for the other outputs, as figure

1.1 shows.

The fuel cell candidate is the HyPM R© HD 16-500 of Hydrogenics, since

it has the highest power density of the series HyPM which is suitable for

transportation systems. The main characteristics are: nominal power 16.5kW,

output voltage range between 40-80 VDC and weight 114kg. Some restrictions

of the fuel cells that will compromise the design are the no inverse current

drawn capability, low input current ripple and slow dynamics. The chapter 3

is dedicated exclusively to the Fuel Cell technology, where we will dig into this

technology more deeply.

16



System Topology 1. Universal Power Converter

1.2 System Topology

The topology of the UPC is determined by the output voltage range of the fuel

cell -we can see the most relevant characteristics in the Table 1.1. Another

important factor for the topology is the availability of all, two of them, or just

one voltage output at a time. Figure 1.2 shows the solution proposed that

fullfills the UPC requirements and overcomes the restrictions of the fuel cell.

The system is composed by two subsystems, power delivery and power backup.

The first one encompass all the converters dedicated to generate the regulated

output levels of the UPC -part of it is the focus of this thesis. The second one,

connected to the FC with dashed wires, could be added to backup the FC and

improve its slow dynamics, f.e. in case of a load step the super-capacitor will

supply the extra power need until the FC delivers the required power.

The power delivery system is composed of four statics converters. A buck

converter steps-down the fuel cell voltage to generate the regulated 32Vdc

output. A boost converter steps-up the FC voltage above 320Vdc, providing an

unregulated DC Bus for the symmetric buck converter and the inverter. The

symmetric buck steps-down the bus voltage generating the regulated ±270V

output and the inverter generates the 230Vac output between 400-800Hz. The

presented topology allows all type of outputs available in any combination.

Notice that the total drawn power extract from the FC can not exceed 16.5kW,

so the outputs should split the power or in case of one of the 16.5kW output

is supplying the maximum power the other outputs should be disconnected,

otherwise the FC could be damaged.

The power backup system is composed of a super capacitor and a bi-directional

Table 1.1: FC specifications UPC requirements

Name Value

FC Model FC HyPM R© 16-500

FC Nominal Power 16.5 kW

FC Voltage Bounds 40 - 80 Vdc

FC Max. Current 350 A

UPC Out Voltages 32 Vdc ±270 Vdc 230 Vac

UPC Nominal Power 5 kW 16.5 kW [max FC pwr.]

17



System Topology 1. Universal Power Converter

Figure 1.2: System topology

power converter. The super capacitor stores some energy to deliver at any time

in case of strong load changes, the bi-directional buck-boost converter controls

the charge and discharge of the super-capacitor. As you could see in the Figure

1.2 the power backup is optional, hence this two blocs are represented with thin

colors and connected with dotted wires to the FC. We will not go in further

explanations about the power backup subsystem, however we would like to

introduce this concept here due to the fact that FC based systems usually adds

power backup systems.

18



Converters Topologies 1. Universal Power Converter

1.3 Converters Topologies

Once the system topology has been defined, a hard work have been done to

decide the topology of each converter. The selection criteria is given by two

facts: the first in terms of performance to make the UPC suitable for airborne

application; the second in terms of electrical characteristics to accomplish the

FC and UPC power quality specifications.

The performance factors of the UPC set by Boeing are (order by relevance):

weight, volume and efficiency ; so the goal is to achieve a unit with the highest

power density ( W/kg ) possible, even against the efficiency loss. With this idea

in mind, we adopt some restrictions in our design space. First, reduction the

size of the magnetics (inductors and transformers), since the major contribution

in weight and volume is due to this components. And second, the use of fast

switching semiconductors, such as Power MOSFETs, IGBTs and Ultra-Fast or

SiC Diodes.

In the other hand, the use of a FC as energy source is a challenge for the overall

system. Due to its I-V characteristic the voltage decreases as the load increases,

so the system is not set to a constant operating point; instead it must operate

in a dynamic operating point because changes in the load will also affect the

FC voltage. In addition, the FC has some other limitations, it can not accept

power, so it does not allow inverse current; as well drawn current must to be

continuous and current ripple not too large, hence both have a negative effect

on the efficiency and lifespan of the FC unit.

The diagram of the figure 1.3 could help to better understanding the depen-

dence of the system on the FC stack, it shows the system topology with the

power, current and voltage that each converter have to manage. Actually, the

most critical power stages are the ones that connect directly with the fuel

cell -the buck and the boost converters - because they have to deal with high

currents, in the order of hundreds of amperes. Also, the out voltage range of

the FC, 40 to 80 volts, determine the conversion nature of those converters, so

for the 32V output a buck converter is needed and for the DC link bus at 320V

a boost converter. Finally, all the converter stages should have continuous

input current, beside small input current ripple amplitude.
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Converters Topologies 1. Universal Power Converter

Figure 1.3: Power, voltages and maximum currents values of each converter

Based on the previous considerations the final topology candidates are:

For the 32Vdc output: A 4-phase interleaved buck converter.

For the DC link: A 3-phase interleaved full-bridge isolated converter, called

V6.

For the 270Vdc output: A SEPIC converter generates the positive output

and the Cuk generates the negative. The converters operate 180 degrees

out of phase, like a 2-phase interleaved buck converter, and the compo-

sition of them operate as a single converter that we named Symmetric

converter.

For the 240Vac output: A 3-phase inverter.

Three of the candidates are interleaved converters, actually the buck and the

boost stages are pure interleaved converters, the SEPIC and the Cuk only take

some advantages of this concept. In this way, the converters can deal with this

high currents at high frequencies, hence the energy storage elements (magnet-

ics) keep small in size, so do the volume of the converters. Also, interleaved

converters mitigate the current ripple amplitude and current discontinuities by

harmonic cancellation fact that allow the reduction of the filtering components

20



Converters Topologies 1. Universal Power Converter

(capacitors). The next chapters focus on the study analysis of the V6 converter

and the Symmetric converter. The other aforementioned topologies has been

presented to place the reader in context and have a better understanding of the

UPC.
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Chapter 2

Fuel Cell Technology

A fuel cell is a system that produces electrical and thermal energy from an

electrochemical reaction, like a battery. Unlike a battery it does not run down

of charge or it does not need to be recharged, it will produce energy as long as

fuel is supplied.

A fuel cell consist of two electrodes sandwiched around a electrolyte. In an

hydrogen fuel cell, hydrogen is feed on the anode side and and oxidant (oxygen

or air) is feed on the cathode side. Encouraged by a catalyst the hydrogen

atom splits into a proton and an electron, which take different paths. The

protons go through the electrolyte. The spare electrons generate a current

that can be used before they return to the cathode, and then reunited to

the hydrogen proton and the oxygen into a molecule of water as exhaust product.

Since a fuel cell operation relies on chemistry reaction and not combustion, the

emissions are much smaller than the cleanest fuel combustion engine.

2.1 Selected Model

Proton Exchange Membrane (PEM) is the suitable fuel cell technology type

for mobile applications. PEM fuel cells operate in a relatively low temperature

range, 80◦ C (175◦ F ), have a high power density and can vary their output

quickly to meet shifts in power demand.

A series of Hydrogenics 4.5, 8.5, 12, and 16.5 kW HyPM R© fuel cells provide

20-40, 20-40, 30-60, and 40-80 Vdc at the output, respectively. These fuel cells

differ only slightly in volume and mass. Hence, the 16.5-kW fuel cell is selected

as a model cell for aircraft applications. As sold by Hydrogenics, this fuel cell

23



Selected Model 2. Fuel Cell Technology

Figure 2.1: Hydrogen fuel cell diagram

dimensions are 910 x 448 x 312 mm and its weight is 114 kg. These size-weight

parameters could be further decreased by removal of covers and some monitoring

circuitry. NYU-Poly is in possession of full specifications of Hydrogenics fuel

cells under a confidentiality agreement.

2.1.1 System Specifications

The full technical specification document of the Hy-PM 16-500 could be found

in the annex 1, however the most relevant values are in the table 2.1.

Table 2.1: Main specification of the HyPM-HD-16-500

Property Unit Value

Performance

Net Electrical Power kW 16.5

Operating Current Range ADC 0 to 350

Operating Voltage Range VDC 40 to 80

Peak Efficiency (@100A ) % 56

Physical

Dimensions (L x W x H) mm 910 x 448 x 312

Total Mass kg 114

Volume L 127

Emissions

Water Collected (Anode + Cathode) mL/min < 56

Noise (@350A, 1m distance ) dBA < 70

In the figure 2.2 a, we could appreciate the typical I-V characteristic (blue

24



Selected Model 2. Fuel Cell Technology

line). Here the output voltage, varies between 72V in open circuit, to 56V at

full load. This I-V characteristic will change during the lifetime of FC, however

the out voltages will keep within the range given in the technical specifications

(40V to 80V).

(a) HyPM-HD 16-500 (b) Simulink model

Figure 2.2: Typical performance

Other relevant aspects are:

• The PMFC has a CAN interface to query and control the system

• An overall system controller capable of communicating via the CAN in-

terface to control the PMFC is required

• The user (or the system controller) must avoid to exceed the maximum

power rating

• The user (or the system controller) must avoid to exceed the Current Draw

Allowed (CDA) value, sent by the PMFC via CAN

• Provide reverse current protection for the PMFC

• The PMFC must not run below 10% of its rated power during more than

5 minutes

• Maximum peak to peak current ripple on the PMFC must not exceed 5%

of the system current draw

• A fuel supply and a cooling system is required by the PMFC

• External power supply of 12V, 300W is required to start-up the PMFC

25



Selected Model 2. Fuel Cell Technology

2.1.2 Power Converter Design Considerations

As we explained in the previous chapter, the UPC topology has a strong

dependence on the fuel cell electrical characteristics. During the design process

we needed to make some considerations about the output voltage and current

of the FC system in order to dimension the converters components.

We adopted the I-V characteristic given in technical documentation, figure 2.2

a, as the standard output characteristic and build a Simulink model to run

simulations, see in the figure 2.2 b the model I-V curve and in the figure 2.3 the

Simulink model. From the build model, 3 pairs of values have been extrapolated

to use as points of operation : at the maximum power rating, at half power and

at about 10% 1 of the maximum power rating.

Table 2.2: Extrapolated values from the I-V model

Net power (kW) Voltage (V) Current (A)

16.50 54 305

8.25 62 133

2.14 68 31.5

14.00 40 350

The two first extrapolation points are chosen considering that all the convert-

ers operate in continuous conduction mode (CCM) from full load to half load;

however we sized the components to handle the fuel cell voltage in minimum

load conditions- this is the third point. Since the I-V characteristic will change

during the lifetime of the fuel cell, we added another pair of values extracted

from the specifications sheet, we considered in the worst case the fuel cell will

give 40V at 350A.

Figure 2.3 shows the Simulink model build to model the behavior of the FC.

The system is composed by a controlled voltage source, PMFC block, where

the output current is measured, Iin block, and used as a feed back signal. The

measured current is limited between the 0-350 amperes, to do not exceed the

I-V curve boundaries, and low-pass filtered, FC Dynamics block, to emulate

the slow dynamics of the fuel cell. Then LPF output value is the input for a

look-up table, I-V Char block, with the I-V characteristic of the fuel cell, and

the output signal of this block closes the loop connection to the input of the
1Is the minimum power rating that the FC must provide.
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Selected Model 2. Fuel Cell Technology

Figure 2.3: Fuel Cell Simulink model

voltage controlled source, PMFC block.

Since we did not have any information yet about the dynamics of the fuel cell,

we set an arbitrary vale of τ = 100µs to give some dynamics to the fuel cell,

but without aggravate the simulation time. The FC Dynamics block should be

enhanced when we get the fuel cell dynamics specifications.
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UPC Power Converters

Design
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Chapter 3

V6 converter

The V6 converter steps-up the Fuel Cell voltage generating the DC bus link for

the PWM inverter and the Symmetric converter. The DC link voltage must be

at least 320V to guarantee a good power quality at the inverter output; and

deliver 16.5 kW -the maximum FC power.

This topology has been chosen among other candidates [1–4], for the following

reasons:

• High step-up conversion ratio

• High power capability

• Isolation

• Reduced transformer turns ratio

• High Efficiency

• No filtering components

• Soft switching

Besides this reasons, this topology has a relevant disadvantage: it has no

regulation; so its conversion ratio is constant and can not be regulated in

anyway. However, the regulation in the outputs is a achieve through the

converters connected to the DC-Link bus.

This chapter is entirely dedicated to the V6 converter divided in four sections.

The first section introduces the converter at circuit level and how works the

converter . The second section develops the model and extracts the design

equations of the converter. The third section puts values to the converter and
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Topology Description 3. V6 converter

sizes the components using the equations of the previous section. The fourth

section does a rough estimation of the losses and the efficiency of the converter,

and the last section presents the results from the simulations.

3.1 Topology Description

This topology is extracted from the work of [5]. The converter is composed

by three full-bridge DC-DC converter, each one connected to an independent

transformer. The secondary windings of the transformers are connected in a

wye configuration to the bridge rectifier. You could see the circuit in the figure

3.1.

Figure 3.1: Circuit of the V6 converter

The resulting circuit is an interleaved full-bridge converter with 3-phases, where

each phase is operated synchronously, but shifted 120◦. The circuit may be

controlled either with the classical pulse width modulation (PWM) control or

with phase shifted modulation (PSM) control. Operating the circuit in PSM

and setting the angle shift (α) as control variable, the converter has two modes

of operation, divided in the following cases: when 0◦ < α < 120◦ and when

120◦ < α < 180◦. For a more accurate analysis of the converter operation you

could read [6].

In the first case, the averaged output voltage is:

VOUT =
α

60◦
nVFC (3.1)

in the second case, the averaged output voltage is:

VOUT = 2nV FC (3.2)

where n is the transformers turns ratio.
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Steady State Circuit Model 3. V6 converter

The second case, is the operation mode used for the V6 converter of the UPC,

so no more details of the first operation mode will be given in the thesis.

The following section does a detailed analysis of the operation of the second op-

erating mode, extracting the equivalent model and the equations of the circuit.

3.2 Steady State Circuit Model

When the converter operates with a phase angle above 120◦ at least two and

at most three phases transfer power to the output, see circuits of the figure

3.3. Since the secondary windings of the transformers are conected in wye

configuration the voltage at the output terminals of the converter is always

proportional to the input by the factor 2n, therefore there is no regulation.

Owing to the fact that the conversion ratio is a constant we could say that

the converter behaves like a DC-DC transformer. The V6 does not modify the

waveform of the current and the voltage, besides the small ripple noise cause of

the commutation. Hence, the converter does not requires the output filter stage.

The figure 3.2 shows the most relevant signals of the converter, operating the

circuit with a phase shift angle of 150◦. We could see that the voltage waveform

of three phases is shifted 120◦ from each other, marked with the dashed orange

lines. Considering the transistors ideal switches , the voltage amplitude at left

winding of the transformer is fuel cell voltage, VFC , and its applied during

during α = 150◦ in this example, marked with the orange line. u,in green, is

the equivalent duty cycle, it is value between 0 and 1 that represents the phase

shift angle within the boundaries of 120◦ and 180◦; this variable is created to

simplify the equation derivation.

From this graph, when the three transformers are conducting, two of them are

connected in parallel with the fuel cell terminals and the other in anti-parallel,

as the circuit in the figure 3.3 a. In the other case, when just two of them are

conducting (figure 3.3 b ) , the two primaries are connected in ant-parallel (with

the fuel cell terminals reversed). Due to the wye connection of the secondaries,

the windings with opposite voltages result in a series connection, and the

windings with same voltage in a parallel connection. Due to the fact that

there is always two primaries with opposite voltages, there is all the time two

secondaries connected in series, so the output voltage is always the sum of them.
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TH

u
3

T H
1
3

TH
2
3

TH ud
3

T H

120º

α= 150º

120º
u 

I IN

4

I IN

2

I IN

4

I IN

2n

−V FC

V FC

V P,1

V P,2

V P,3

I P ,1

I P ,2

V gs, 1

I ds ,1,2

I ds ,3,4

V gs, 2

V gs, 3

I P ,3

V gs, 4

I f ,1

I IN

2

I IN

4n

I f ,2

Figure 3.2: Operating the converter with a phase angle of 150◦:

VP,x → x-phase transformer primary winding voltage

IP,x → x-phase transformer primary winding current

Vgs,x → x transistor gate voltage

Ids,x → x transistor channel current

If,x → x diode forward current 34
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(a) Three phases conduct (b) Two phases conduct

Figure 3.3: Generic states of the converter

In case of two transformers conducting, the voltages in the primaries are

VP1 = VFC VP2 = 0 VP3 = −VFC (3.3)

and the secondaries voltages are

VS1 = nVFC VS2 = 0 VS3 = −nVFC (3.4)

hence, the out voltage is:

VOUT = VS1 − VS3 = nVFC − (−nVFC) = 2nVFC (3.5)

So the converter conversion ratio is:

VOUT

VFC
= 2n (3.6)

The resulting circuit model of the converter is shown in the figure 3.4, it is as

simple as an ideal transformer with a conversion ratio of 2n. Since, the converter

operates in open-loop there is no need for the small signal analysis.

Figure 3.4: Circuit model of the converter

As we explained before, there is at least two and at most three phases con-

ducting. In the first case, the converter input current (IIN ) is divided equally
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Steady State Circuit Model 3. V6 converter

in each phase, so the primaries of each converter conduct the half of the input

current. The currents in the A node of circuit b figure 3.3 are,

IIN = IP1 − IP3 (3.7)

in the output there is only one net, so the currents are,

IOUT = IS1 = −IS2 (3.8)

hence, the currents in the primary keep this relation,

IP1 = −IP2 (3.9)

substituting in 3.7 we obtain

IIN = IP1 − (−IP1)⇒ IP1 =
IIN

2
(3.10)

The second case is not that evident, there is two of the primaries connected in

parallel -with the fuel cell terminals at VFC voltage, so their secondaries are as

well connected in parallel. The remaining winding is connected in anti-parallel

-with its terminals upside-down with the FC terminals at −VFC voltage, so

its secondary winding is connected in series with the other two windings, thus

conducting the sum of the current of the other windings. As a result, the two

phases in parallel conduct the half of the current, and the remaining phase

conducts the other half of the total current amount.

The currents in the node A in circuit of the figure 3.3 a are

IIN = IP1 + IP2 − IP3 (3.11)

and the currents in the node B are,

− IS3 = IS1 + IS2 (3.12)

hence, the currents in the primaries keep this relation

− IP3 = IP1 + IP2 (3.13)

and assuming the transformers are identical, T1 and T2 conduct the same

amount of current, so

− IP3 = 2IP1 (3.14)

substituting in 3.11 we solve the equation for IP1 and IP3

IIN = 2IP1 + 2IP1 ⇒ IP1 = IP2 =
IIN

4

IIN = IP3 + IP3 ⇒ IP3 =
IIN

2
(3.15)
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The figure 3.2 shows the current waveform in the primary winding of the first

transformer. We can obtain the RMS value for the current, since the signal is

symmetric the calculation is done for one half-period, thus

IP,rms =

√√√√√ 1
TH

TH∫
0

ip(t)2
dt =

√√√√√√ 1
TH


u
3 TH∫
0

(
IIN

4

)2

dt+

2
3 TH∫

u
3 TH

(
IIN

2

)2

dt+

u+2
3 TH∫

2
3 TH

(
IIN

4

)2

dt

 (3.16)

solving the integrals, we have√
1
TH

[
I2
IN

16
u

3
TH +

I2
IN

4

(
2
3
− u

3

)
TH +

I2
IN

16

(
u+ 2

3
− 2

3

)
TH

]
(3.17)

simplifying

IP,rms =

√
I2
IN

4

[
1
4
u

3
+

2
3
− u

3
+

1
4
u

3

]
=
IIN

2

√
2
3
− u

6
(3.18)

As well, we can derive the expression of the RMS and the mean current in

the transistors from the waveform of the figure 3.2. In this case the period of

integration is 2TH . Hence the RMS current is

Ids,rms =

√√√√√ 1
2TH

2TH∫
0

ip(t)2
dt (3.19)

since the current between TH and 2TH is zero, we can reformulate the equation

as

Ids,rms =
1√
2

√√√√√ 1
TH

TH∫
0

ip(t)2
dt =

IP,rms√
2

(3.20)

substituting 3.18

Ids,rms =
IIN

2

√
1
3
− u

12
(3.21)

and the mean current is

Îds =
1

2TH

2TH∫
0

ip(t)2
dt =

1
2TH


u
3 TH∫
0

IIN

4
dt+

2
3 TH∫

u
3 TH

IIN

2
dt+

u+2
3 TH∫

2
3 TH

IIN

4
dt

 (3.22)
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solving the integrals, we have

1
2TH

[
IIN

4

(u
3
TH

)
+
IIN

2

(
2
3
− u

3
TH

)
+
IIN

4

(
u+ 2

3
− 2

3
TH

)]
(3.23)

simplifying

Îds =
IIN

6
(3.24)

The figure 3.2 shows equal waveform of the currents in the diodes and in the

transistors, but with a factor of transformer turns ratio, the equations of the

RMS and mean current in the diodes keep also this relation.

In order to derive an expression to dimension the transformer turns ratio, we

added the non idealities of the switches to the circuit, as you could see in the

figure 3.5. Thus, ON resistances are added for the transistors ,RON , and DC

sources for the diodes, VD.

(a) Three phases conduct (b) Two phases conduct

Figure 3.5: The two states of the converter with the conduction losses

The derivation of the equations in the case of having three phases conducting.

The voltages in the primaries are,

VP,1 = VFC −
RONIIN

2
VP,3 = −VFC +RONIIN (3.25)

and applying KVL in the output net, we have

VOUT + 2VD = VS,1 − VS,3 (3.26)

applying the turns ration relation between the secondary and the primary and

substituting in 3.25

VOUT + 2VD = n

(
2VFC −

3
2
RONIIN

)
(3.27)
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so the transformer turns ratio expression is n

n =
VOUT + 2VD

2VFC − 3
2RONIIN

(3.28)

The derivation of the equations in the case of having two phases conducting.

The voltages in the primaries are,

VP,1 = VFC −RONIIN VP,3 = −VFC +RONIIN (3.29)

applying the turns ration between the secondary and the primary and substi-

tuting 3.29 in 3.27

VOUT + 2VD = n (2VFC − 2RONIIN ) (3.30)

so the transformer turns ratio expression is n

n =
VOUT + 2VD

2VFC − 2RONIIN
(3.31)

The worst of the two cases is when only two phases conducting, so 3.31 is the

equation used to dimension the converter.All the equations used to dimension

the components of the converter are in the table 3.1

Table 3.1

Transformer Vmax Imax Irms n

Primary Winding VFC
IIN

2
IIN

2

√
2
3 −

u
6

VOUT +2VD

2VF C−2RON IIN

Secondary Winding nVFC
IIN

2n
IIN

2n

√
2
3 −

u
6 -

Switches VGD,max ID,max ID,rms ID,mean

Transistor VFC
IIN

2
IIN

2

√
1
3 −

u
12

IIN

6

Diode 2nVFC
IIN

2n
IIN

2n

√
1
3 −

u
12

IIN

n6

3.3 Component Sizing

The V6 shall boost at least the fuel cell voltage to 320VDC . The design is

dimension to handle the voltages and the currents for the test points defined in

the chapter 2 section 2.1.2. The switching frequency of the converter is fixed

to 100kHz, because the transformers are optimized to achieve the maximum

efficiency at this frequency.

The technology chosen to implement the switches of the H-bridges is MOSFET,

because MOSFET switches achieve better performance at this frequency range
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than IGBTs. Since we need a large number of devices (12), the bridges are

implemented using two Power Modules (PM) with part number GMM 3x120-

0075x2 by IXYS. This PM integrates 6 MOS transistors and their reverse diodes

placed in a 3-legs full bridge layout and it is suitable for high power density

applications. Find the relevant characteristics in table 3.2 and the datasheet in

the appendix A.

Table 3.2: 3-phase MOSFET PM parameters

Model Company VDS ID RON tr tf

GMM 3x120-0075x2 IXYS 75V 110A 4 mΩ 100 ns 100 ns

The required transformers turns ratio is computed with the equation 3.31 .

It is solved for the defined operating point: minimum voltage, (40V, 350A),

converter output, (320V), MOS RON , 4mΩ and we estimated a diode direct

voltage drop of 1.2V. With these values the turns ratio relation to step-up

from 40V to 320V is n = 4.18, thus is not an number with round relation we

designed the transformer with the relation 3 : 13 that give a turns ratio re-

lation of n = 4.33. With this n we guarantee a DC bus voltage grater than 320V.

Since the application is critical in volume and mass, we decided to employ the

planar transformers manufactured by Payton Group, hence they have a high

power density and efficiency. The specifications given for the transformers are

in the table 3.5, fora an operating frequency of 100kHz.

Table 3.3: Transformer main parameters

Model T1000DC -

Firm Payton Group -

PWR 6 kW

fopt 100 kHz

RDC 0.25 2.5 mΩ

Lleak 61 551 µH

Weight 1 kg

Dim. (WxLxH) 135x89x32 mm

With the turns ratio defined we can dimension the diodes for the rectifier bridge.

The bridge is implemented with a 3-phase rectifier bridge module from IXYS

with part number VUO-220NO1. Find the relevant characteristic in the table

3.5 and the datasheet in the appendix A.
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Simulation 3. V6 converter

Table 3.4: MOS main parameters

Model Company VR ID Vf Rf

VUO-220NO1 IXYS 800V 22 A 1.2V 40 mΩ

Table 3.5: Components sizing values

Parameters Unit Values Max.

F
u
el

C
el

l

Pwr kW 16.5 8.25 2.14 14 -

VOUT V 54 62 68 40 -

IOUT A 305 133 32 350 -

T
ra

n
si

st
o
rs VDS V 54 62 68 40 68

Imax A 152 67 16 175 175

Iavg A 51 23 5 58 58

T
ra

ns
fo

rm
er

PWR kW 6 6

n - 4.33 3:13

VS−P
1 V 180 206 226 133 226

P
ri

m
ar

y VP V 54 62 68 40 68

IP,max A 152 67 16 175 175

IP,rms A 116 54 13 143 143

Se
co

nd
ar

y

VS V 251 268 294 173 294

IS,max A 35 15 3.6 40 40

IS,rms A 27 13 3 33 33

D
io

d
e VR V 455 530 585 331 585

Imax A 35 15 3.6 40 40

Iavg A 12 5.1 1.2 13.5 13.5

3.4 Simulation

The V6 converter is implemented in Matlab Simulink with the SimPowerSys-

tems library. This simulation is a first approach of the system behaviour, to

validate the calculations of the previous section and to have a rough estimation

of the converter losses. The switches and the transformers include the parasitic

resistances, in order to estimate the conducting losses. The switching losses are

not considered in the simulation, indeed the converter is designed to operate

in soft switching, thus switching losses should not be relevant. The operation

conditions for the V6 converter are: switching frequency 100 kHz, phase shift

modulation angle of 150◦.
1Voltage between primary to secondary windings
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The first simulation runs the converter operating at full load, drawing the max-

imum power of the fuel cell, 16.5kW . Then the converter is subjected to a load

step at minimum load, drawing the minimum power from the FC, about 2kW .

The figure 3.6 shows the voltage and the current of the fuel cell and in the

Figure 3.6: Simulation results: Load step transient voltage and current response,

Top- Fuel Cell; Bottom- V6 converter output

DC-link bus. At full load the DC-link voltage is 454V and the fuel cell voltage

is 54V, so the conversion ratio of the converter is 8.4. At minimum load the

DC-link voltage is 582V and the fuel cell voltage is 67.5V, so the conversion

ratio of the converter is 8.62. The variation in the converter step-up ratio is

cause of the parasitic resistances in the components.

Figure 3.7: Simulation Results: MOSFETs voltage and current at maxi-

mum(left) and minimum (right) load, Top- Channel Current; Bottom- Drain-

Source Voltage.

Blue-instantaneous value; Green- mean value
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In the figures 3.7, 3.8 and 3.9 we can see the voltages and currents waveforms

of one of the MOS-Transistors, one of the Diodes and the primary winding of

one of the transformers, respectively. The simulation results match with the

tensions and currents calculated for those devices in the previous section and

presented in the table 3.5.

Figure 3.8: Simulation Results: Diodes current(top) and voltage(bottom) at

maximum(left) and minimum (right) load.

Blue-instantaneous value; Green- mean value

The second simulation runs the converter under abnormal conditions when

the fuel cell stack only provides 40V and 350A, emulating the FC end-of-life

conditions. In this case the DC-link bus voltage is 330 V, so the step-up ratio

is 8.25, it is large enough to guarantee a bus voltage of 320V. The figure 3.10

shows the voltages and currents of the MOSFET, Diode and Transformer

primary, in the graphs we can appreciate that the components are dimensioned

to handle the high currents that will this abnormal mode produce.

The last simulation is preformed to evaluate the efficiency of the converter. The

simulation runs the model with the standard I-V FC characteristic with a load

sweep from minimum to full power, the figure 3.11 shows the results. This is

a rough first approach of the converter efficiency, that only takes into account

the conduction losses. However wit the achieve results, 97% of efficiency at full

power, we considered that is a good result for conducting losses.
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Figure 3.9: Simulation Results: Transformer primary winding current (top) and

voltage(bottom at maximum(left) and minimum (right) load).

Blue- instantaneous value, Red - RMS value

Figure 3.10: Simulation Results: Top- MOSFET channel current , Diode current

and Transformer Primary Winding current; Bottom- MOSFET channel voltage,

Diode voltage and Transformer Primary Winding voltage.

Blue- instantaneous value; Green- Mean value; Red - RMS value
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Figure 3.11: Simulation Results: V6 converter efficiency versus input power
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Chapter 4

Symmetric converter

The goal of this power stage is to supply a regulated output of - from the DC-

link bus. Since the DC-link has no regulation and the voltage varies with the

load, this stage should provide regulation for variations in the load and in the

DC-link voltage in order to guarantee the ±270V in the outputs. Furthermore,

since the V6 converter behaves like a DC-DC transformer, this stage should

fulfill FC electrical restrictions -continuous drawn current and low current ripple.

The stage is implemented using two converters with dual characteristics, a

SEPIC converter and a Cúk converter. The SEPIC converter provides the

+270V and the Cúk converter provides -270V. The selection of this topologies

is cause of both converters have continuous input current, required by the

FC. As well as they have continuous input current, the fact to use theses

converters with dual characteristics, let us reduce the current ripple in the bus ,

up to 66%, through harmonic cancellation by operating them 180 ◦ out of phase.

This chapter is divided in five sections. In the first section describes the con-

verters topology. In the second section the steady state models and equations

are derived for each topology, the components are dimensioned and validated

through open-loop simulations. In the third section the small signal model and

the transfer functions are computed for each converter. In the fourth section is

designed the close-loop control for the converters and the results are presented

through simulations.
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4.1 Topology Description

SEPIC and Cúk converter, respectively figures 4.1 and 4.2, are converter with

dual characteristics, besides the voltage inversion of the Cúk converter. Both

converters allow the voltage at its output to be grater than, less than or equal

to that its input voltage, and the conversion ratio is controlled by the duty

cycle of the switching transistor. Also, the converters have true shutdown

mode: when the transistor is turned off, its output drops to 0V.

SEPIC and Cúk converter, respectively figures 4.1 and 4.2, have analogous

characteristics, besides the voltage inversion of the Cúk converter. Both

converters have a buck-boost transformation ration -that allow the voltage at

its output to be grater than, less than or equal to that its input voltage- it is

controlled by the duty cycle of the switching transistor Q1. Both converters

use a capacitor as storage element to transfer the energy from the input to

the output, unlike most other types of converter which use an inductor. This

capacitor (placed in series between input and output) provides isolation from

input to output, and true shutdown mode: when the transistor is turned off,

the output drops to 0V.

Figure 4.1: Schematic of SEPIC

Figure 4.2: Schematic of Cúk

Besides the advantages of theses topologies, these converters have the disadvan-

tage of having a large number of passive components, 2 coils and 2 capacitors.

This increases the complexity in the implementation and in the circuit analysis.
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4.2 Steady State Circuit Model

4.2.1 SEPIC converter

The figure 4.3 shows the two equivalent circuits during the two states of the

SEPCI converter. When transistor Q1 is turned on, on TON , the currents in

the inductors increases, the voltage supply E transfers power to L1 and the

capacitor C1 transfers energy to L2; at same time C2 feeds the load. When

transistor Q1 is turned off, on TOFF , the current in the inductors decreases, the

current of L1 charges C1 and i2 adds to i1 to supply current to the load and

charge C2.

(a) Circuit during TON (b) Circuit during TOFF

Figure 4.3: Equivalent circuits during the two intervals of SEPIC converter

During the interval TON , circuit reduce to figure 4.3 a, the inductor voltages

and capacitor currents are:
vL1 = ve

vL2 = v1

iC1 = −i2
iC2 = −v2

R

(4.1)

We next assume the switching ripple magnitudes in i1(t), i2(t), v1(t) and v2(t)

are small compared to their DC components I1, I2, V1 and V2. We can therefore

make the small ripple approximation, and Eq.(4.1) becomes:

vL1 = Ve

vL2 = V1

iC1 = −I2

iC2 = −V2

R
(4.2)

During the interval TOFF , circuit reduce to figure 4.3 b, the inductor voltages
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and capacitor currents are:

vL1 = ve − v1 − v2

vL2 = −v2

iC1 = i1

iC2 = i1 + i2 −
v2

R
(4.3)

We next make the small ripple approximation, and Eq.(4.3) becomes:

vL1 = Ve − V1 − V2

vL2 = −V2

iC1 = I1

iC2 = I1 + I2 −
V2

R
(4.4)

The next step is to equate the DC components, or averaged values, of the in-

ductor currents and the capacitor voltages with Eq.(4.2, 4.4). We make the

assumption that the mean values of the inductor voltages and capacitors cur-

rents are 0. The results are:

< vL1 > = DVe +D′(Ve − V1 − V2)

< vL2 > = DV1 +D′(−V2)

< iC1 > = D(−I2) +D′I1

< iC2 > = D

(
−V2

R

)
+D′

(
I1 + I2 −

V2

R

)
(4.5)

where D and D′ is the duty cycle of the switching signal that defines the times

of the commutations intervals as tON = DT and tOFF = D′T .

Solution for this system of equations for the DC components of the capacitor

voltages and the inductor currents leads to

V1 = Ve

V2 = Ve
D

D′

I1 = I2
D

D′
=
Ve

R

(
D

D′

)2

I2 =
V2

R
=
Ve

R

D

D′
(4.6)

Equations (4.2) ,( 4.4) and (4.6) are used to sketch the inductor currents and

capacitor voltages waveforms of in Fig. 4.4.
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Figure 4.4: SEPIC converter waveforms: (a) inductor L1 current; (b) inductor

L2 current; (c) capacitor C1 voltage; (d) capacitor C2 voltage

The next step is to equate the ripple amplitudes of the inductor currents and

the capacitor voltages, we obtain them multiplying the slopes defined in Fig.

4.4 by the interval time DT and dividing by 2. Then, using DC relations of Eq.

(4.6) we simplify to eliminate V1, V2, I1 and I2, and the results are:

∆v1 =
VeD

2T

2C1RD′

∆v2 =
VeD

2T

2C2RD′

∆i1 =
VeDT

2L1

∆i2 =
VeDT

2L2
(4.7)

With the ripple amplitudes we can equate the maximum absolute values of the

capacitor voltage and inductors currents adding the ripple amplitude to the DC

component from Eq. (4.6) it yields to

v1,max = V1 + ∆v1

v2,max = V2 + ∆v2

i1,max = I1 + ∆i1

i1,max = I2 + ∆i2 (4.8)
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With these equations we now can compute the minimum vales for L1, L2 and C1

which guarantee the continuous conduction mode (CCM) of the converter. The

boundary between the CCM and the DCM (discontinuous conduction mode) is

when the ripple amplitude of those components equals to their DC component,

so we equal the DC magnitudes in Eq. (4.6) to the ripple amplitudes of Eq.

(4.7), hence we have:

Ve =
VeD

2T

2C1RD′

Ve
D

D′
=

VeD
2T

2C2RD′

Ve

R

(
D

D′

)2

=
VeDT

2L1
(4.9)

Solution for this system of equations leads to:

C1,min =
D2T

2RD′

L1,min =
D′

2
RT

2D

L2,min =
D′RT

2
(4.10)

The minimum value for capacitor C2 is given by the output voltage ripple spec-

ification, so with the expressions of V2 from Eq.(4.6) and ∆v2 from Eq.(4.7) and

isolating for C2 we obtain

C2,min =
V2

∆v2

DT

2RD′
=

Vout

∆vout

DT

2RD′
(4.11)

The equations (4.10) and (4.11) will be used to dimension the passive com-

ponents, next we need to find the equations to dimension the semiconductors.

Therefore we need to know the maximum blocking voltage, maximum forward

current and the averaged current for the transistor Q1 and the diode D1. We

can write the voltage drop and the current as:

vQ1(t) =

{
0 0 < t < ton

v1(t) + v2(t) ton < t < T

iQ1(t) =

{
i1(t) + i2(t) 0 < t < ton

0 ton < t < T

vD1(t) =

{
v1(t) + v2(t) 0 < t < ton

0 ton < t < T

iD1(t) =

{
0 0 < t < ton

i1(t) + i2(t) ton < t < T
(4.12)
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With these equations we sketch the currents and the voltages of the devices in

Fig. 4.5

vQ1t 

tDT T

vQ1 ,max=v1,maxv2,max

a 

iQ1 t 

tDT T

iQ1 ,max=i1,maxi 2,max

b

vD1t 

tDT T

c

iQ2 t 

tDT T

iD1 ,max=i1,maxi2,max

d 

v D1,max=v1,maxv2,max

Figure 4.5: SEPIC converter waveforms: (a) transistor voltage; (b) transistor

current; (c) diode voltage; (d) diode current

From the figure the maximum and minimum current and voltage can be written

as

vQ1,max = vD1,max = v1,max + v2,max

iQ1,max = iD1,max = i1,max + i2,max

vQ1,min = vD1,min = v1,min + v2,min

iQ1,min = iD1,min = i1,min + i2,min (4.13)

next we can equate the mean value of the current in the transistor

IQ1 =
1
T

T∫
0

iQ1(t)dt =
DT

T

[
iQ1,max − iQ1,min

2
+ iQ1,min

]
(4.14)

using the expression in Eq.(4.14) the solution to the system leads

IQ1 = (I1 + I2)D (4.15)

In the same way the mean current in the diode is

ID1 =
1
T

T∫
0

iD1(t)dt = (I1 + I2)D′ (4.16)
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The table 4.1 presents all the deign equations for the SEPIC converter.

4.2.2 Cúk converter

The figure 4.6 shows the two equivalent circuits during the two states of the

Cúk converter. When transistor Q1 is turned on, at TON , the currents in the

inductors increases, the supply E transfers power to L1 and the capacitor C1

transfers energy to L2; at same time C2 feeds the load. When transistor Q1 is

turned off, at TOFF , the current in the inductors decreases, the current of L1

charges C1 and i2 supplies current to the load and charges C2.

(a) Circuit during TON (b) Circuit during TOFF

Figure 4.6: Equivalent circuits during the two intervals of Cúk converter

Applying the small ripple approximation, during the interval TON , the con-

verter reduces to figure 4.6 a, the DC components in the inductor voltages and

capacitor currents are:

vL1 = Ve

vL2 = (V1 + V2)

iC1 = −I2

iC2 = −I2 −
V2

R
(4.17)

And, during the interval TOFF , the converter reduces to figure 4.6 b, the DC

components in the inductor voltages and capacitor currents are:

vL1 = Ve − V1

vL2 = V2

iC1 = I1

iC2 = −I2 −
V2

R
(4.18)

The next step is to equate the DC components, or averaged values, of the

inductor currents and the capacitor voltages with Eq.(4.17, 4.18). We make

the assumption that the mean values of the inductor voltages and capacitors
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currents are 0. The results are:

< vL1 > = DVe +D′(Ve − V1)

< vL2 > = D(V1 + V2) +D′(V2)

< iC1 > = D(−I2) +D′I1

< iC2 > = −I2 −
V2

R
(4.19)

where D and D′ is the duty cycle of the switching signal that defines the times

of the commutations intervals as tON = DT and tOFF = D′T .

Solution for this system of equations for the DC components of the capacitor

voltages and the inductor currents leads to

V1 =
Ve

D′

V2 = −Ve
D

D′

I1 = I2
D

D′
=
Ve

R

(
D

D′

)2

I2 =
V2

R
=
Ve

R

D

D′
(4.20)

We can see that the resulting equations for the DC output voltage V2 and the

inductors current I1 and I2 are the same as the SEPIC converter, but the voltage

sing in V2.

Since the both converters are analogous their equations of the voltage ripple in

V1 and the current ripples in I1 and I2 are the same of the SEPIC converter;

and the boundaries for the CCM are as well the same.

The most relevant difference in this converters is in the output capacitor.In

the Cúk converter inductor L2 and capacitor C2 are always connected to the

load. Hence the output capacitor only filter the AC component of the inductor

current, but it does not supply the load. To compute the voltage ripple we will

proceed as proposes Erickson, Rober .W in [?] with

∆v2 =
∆i2T
8C2

=
VeDT

2

16C2L2
(4.21)

The value of C2 is determined by the specifications of the output voltage ripple,

so we reformulate the expression to be the design equation of the out capacitor

C2 =
V2

∆v2

D′T 2

16L2
(4.22)

55



Steady State Circuit Model 4. Symmetric converter

Table 4.1: SEPIC and Cúk design equations

SEPIC Cúk

V1 Ve
Ve

D′

V2 Ve
D
D′ −Ve

D
D′

I1
Ve

R

(
D
D′

)2
I2

Ve

R
D
D′

∆v1 Ve
TD2

2C1RD′

∆v2 Ve
TD2

2C2RD′ Ve
TD2

16C2L2

∆i1 Ve
TD
2L1

∆i2 Ve
TD
2L2

C1,min
TD2

2D′2Rmin

C2,min
Vout

∆Vout

DT
2D′Rmin

Vout

∆Vout

DT 2

16L2

IC1,rms

√
I1

2D′ + I2
2D

IC2,rms

√
I1

2D′ + I2
2D ∆i2√

3

L1,min
TD′2Rmax

2D

L2,min
TD′Rmax

2

Itrt I1

Vtrt,max V1 + V2 + ∆v1 + ∆v2 V1 + ∆v1

Idiode I2

Vdiode,max V1 + V2 + ∆v1 + ∆v2 V1 + ∆v1

4.2.3 Component Sizing

Since Boeing did not yet defined the specifications of the converter, the following

assumptions have been done in order to to dimension the components of the

converter:

• Absolute voltage at the outputs must be 270V

• Minimum load to operate in CCM is half of the FC power

• Maximum output ripple peak-to-peak is 5% of the rated output voltage

• Components should withstand the power and the currents for the 4 oper-

ating points defined in table 4.2

In the table 4.2 are the opertions points of the Fuel Cell defined in the chapter

2 The table has been extended with the values of the DC bus and load that

the SEPIC and Cúk converter will supply. The value of the load is computed

assuming that those converters has no losses.
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Table 4.2: Power, current, voltages of the FC, DC link voltage for the four

operating points

Fuel Cell DC link Load

PFC PFC VFC IFC Pbus Vbus Ibus Ro

[kW] [%] [V] [A] [kW] [V] [A] [Ω]

16.50 100 54 305 15.9 455 35.00 9.2

8.25 50 62 133 8.1 530 15.36 18.0

2.14 13 68 31.5 2.0 585 3.63 72.9

14.00 84 40 350 13.4 331 40.42 10.9

First we compute the values of the DC components of the currents in the

inductors and in the transistors and of the voltages in the capacitors for the

both converters. The table results are presented in the tables ?? and ??.

From the results, we can see that the semiconductors will conduct currents in

the order of 30 amperes and the reverse voltage will be in the order of 700

volts, so the technology able to mange those voltages and currents for the

controlled switches are the IGB devices. Due to the technology the switch-

ing frequency is fixed to operate at in 50kHz that is the limit for the IGB devices.

Table 4.3: DC components in the converters, subscript: S denotes SEPIC and

C denotes Cúk

Ve D V1,S V1,C V2 I1 I2 IQ ID

[V] - [V] [V] [V] [A] [A] [A] [A]

455 0.373 455 725 270 17.6 29.7 17.6 29.7

530 0.338 530 780 270 7.7 15.1 7.7 15.1

585 0.316 585 855 270 1.8 3.9 1.8 3.9

332 0.449 332 602 270 20.2 24.8 20.2 24.8

Once the frequency is set we compute the values of the inductors and capacitors.

The values of the inductors are the most critical, because their value will fix

the limit between the CCM and DCM (discontinuous conduction mode). The

inductors are dimensioned to fix the boundary between the two operation

modes at half of the maximum FC power.

In the other hand, capacitor C1 is not dimensioned using the assumption of

CCM, because that will fix a huge ripple in the capacitor and the maximum
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h

Table 4.4: Computed values of the passive components

L1 [µH] L2 [µH] C1 [µF ] C2 [µF ]

SEPIC 233 120 3 30

Cúk 233 120 3 3.7

voltage values in the semiconductors will be higher than a thousand of volts.

Therefore, the assumption to dimension C1 is to have 40V peak-to-peak of

voltage ripple in the capacitor at full power. The assumption to dimension C2

is to limit the output voltage ripple peak-to-peak to 5% of the output voltage,

that is 13.5 volts peak-to-peak.

The values of the table 4.4 are all the same for both converters, but the

output capacitor. Here we can see that the SEPIC converter needs a bigger

capacitor C2 to achieve the same output voltage ripple. That is due to the

discontinuous output current of this topology. However, we decoded to use the

same value of 3 µF for both capacitors, thus the dynamics of the converter

is the equal for both converters, this will be further discusses in the next section.

With the values defined in the table 4.4, we compute all the AC components

in the currents and voltages of the converters for the four points of operation

defined in 4.2. The results are presented in table 4.5, there we can see that

currents and the voltages are almost the same for all the components in both

converters, but for capacitor C1 which has a higher voltage stress in Cúk

converter than in SEPIC converter.

The candidate for the active switches is the high speed IGBT IRG4PF50WD

from IR, with the following characteristics:

• VCES = 900V

• VCE = 2.25V

• IC,avg(@100◦C) = 28A

• IC,max = 204A

• tr = 50ns , tf = 170ns

The candidate for the passive switches is the high speed diodes STTH9012TV

from ST semiconductors, with the following characteristics:
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Table 4.5: Components sizing values

Parameters Unit Values Max.
F
u
el

C
el

l
Pwr kW 16.5 8.25 2.14 14 -

VOUT V 54 62 68 40 -

IOUT A 305 133 32 350 -

D
C

li
n

k

Vbus V 455 530 585 331 -

Ibus A 35.00 15.36 3.63 40.42 -

SE
P

IC

C
1 Vmax V 492 547 590 369 590

Irms A 22.9 10.8 2.7 22.4 22.9

C
2 Vmax V 273.7 271.7 270.4 273.7 273.7

Irms A 4.1 4.3 4.5 3.6 4.5

L
1 Imax A 24.9 15.4 9.75 26.6 24.9

Vmax V 492 547 590 369 590

L
2 Imax A 43.8 30 19.4 37.25 43.8

Vmax V 492 547 590 369 590

T
R

T

VR V 766 819 860 643 860

Imax A 58 34 17.4 54.4 58

Iavg A 17.6 7.7 1.8 20.2 20.2

D
io

de

VR V 766 819 860 643 860

Imax A 58 34 17.4 54.4 58

Iavg A 29.7 15.1 3.9 24.8 29.7

C
úk

C
1 Vmax V 762 817 860 639 860

Irms A 22.9 10.8 2.7 22.4 22.9

C
2 Vmax V 271.2 271.2 271.3 271 271.2

Irms A 4.1 4.3 4.5 3.45 4.5

L
1 Imax A 25 15.4 9.8 26.6 26.6

Vmax V 492 547 590 369 590

L
2 Imax A 43.8 30 19.4 37.25 43.8

Vmax V 492 547 590 369 590

T
R

T

VR V 762 817 860 640 860

Imax A 58.0 34.0 17.4 54.4 54.4

Iavg A 17.6 7.7 1.8 20.2 20.2

D
io

de

VR V 762 817 860 640 860

Imax A 58.0 34.0 17.4 54.4 54.4

Iavg A 29.7 15.1 4.0 24.9 29.7
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• Tow diodes per packages

• VRRM = 1200V

• VF = 1.2V

• IF,avg(@75◦C) = 45A

• IFRM = 600A

• trr = 50ns

Capacitor C1 implementation will be 2 capacitors of 1.5µF connected in parallel;

the candidate is a Round Polypropylene Film capacitors from Cornell Dubilier

with part number 940C10W1P5K-F and the following characteristics:

• C = 1.5µF

• ESR(@100kHz) = 4mΩ

• Vmax = 1000V

• Irms(@70◦, 100kHz) = 17.9A

• Size(L x D) = 46x35.5mm

Capacitor C2 implementation will be 2 capacitors of 15µF connected in parallel;

the candidate is a Round Polypropylene Film capacitors from Cornell Dubilier

with part number 932C4W15J–F and the following characteristics:

• C = 15µF

• ESR(@100kHz) = 3.1mΩ

• Vmax = 400V

• Irms(@70◦, 100kHz) = 11A

• Size(L xD) = 55x30mm

The sizing of the inductors is not a trivial task and goes further the scope of this

thesis, so no candidates are proposed. The goal of having some candidates is to

perform a more accurate simulations since the non-idealities can be extracted

form the proposed components, for the inductors we will do the assumption

of 95% efficiency. Once the design will be freezed, the inductors specifications

should be sent to the magnetics suppliers that build an optimum solution for

the magnetics.
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4.3 AC Circuit Modeling

4.3.1 SEPIC small signal model and transfer functions

Figure 4.7: SEPIC small signal model

Figure 4.7 shows the small signal model for the SEPCI converter, from the

model we write the equations for the four state variables:

L1
di1
dt = ve − (v1 + v2)d′ C1

dv1
dt = i1d

′ − i2d
L2

di2
dt = v1d− v2d

′ C2
dv2
dt = (i1 + i2)d′ − v2

R

(4.23)

Applying the averaged model for the variables, where the variables are decom-

posed in the DC (X) component and the AC (x̂) component and then elimi-

nating the 2nd Order terms, we can now write the equations in the S-Domain

as:

sL1î1 = v̂e − v̂1D
′ − v̂2D

′ + d̂Ve(1 +
D

D′
) (4.24)

sL2î2 = v̂1D − v̂2D
′ + d̂Ve(1 +

D

D′
)

sC1v̂1 = î1D
′ − î2D − d̂

Ve

R

D

D′2

sC2v̂2 = î1D
′ + î2D

′ − v̂2

R
− d̂Ve

R

D

D′2

Due to the complexity of the system with the four equations, we solved the

transfer function using the symbolic library of Matlab, the program is the ap-

pendix B. The transfer function of the plant leads to,

H(s) =
v̂2

d̂
= Ho

s3A3 + s2A2 + sA1 +A0

s4B4 + s3B3 + s2B2 + sB1 +B0
(4.25)
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where the coefficients are

Ho = E
D′2 B4 = C1C2L1L2R

A3 = −C1L1L2D B3 = C1L1L2

A2 = C1(L1 + L2)RD′ B2 = R
[
C1D

′2(L1 + L2) + C2(L1D
2 + L2D

′2)
]

A1 = −L1D
2 B1 = L1D

2 + L2D
′2

A0 = D′
2
R B0 = D′

2
R

(4.26)

Since the SEPIC converter has four storage elements, the control-to-output

transfer function is a 4th order system. Figure 4.8 shows the bode plot of

the transfer function when the converter is at full load (8.25kW) and at half

load(4.12kW); within this boundaries is where the converter operates in CCM,

hence the transfer function is true.

Figure 4.8: Bode diagram of the transfer function for SEPIC converter

With the s-plane plot 4.9 and the bode plot 4.8, we can identify the zeros and

the poles of the transfer function. The first complex pole is around 2 kHz, at

this point the phase drops 180o ant the magnitude takes an slope of 40 dB/dec.

The next resonance peak in the bode plot is close to 5kHz, at this point there

are a superimposed complex zero and complex pole, so they cancel each other,

we can see in the bode plot the phase has a discontinuity of 360o, after this point

the magnitude still decreases with the same slope of 40 dB/dec. More deep in

frequency around 47kHz their is a real zero which is in the right half-plane of the
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S-plane, so it drops 90o the phase and after this point the magnitude decrease

with a slope of 20 dB/dec.

Figure 4.9: Location of the zeros and poles in the s-plane for the output-to-

control transfer function of the SEPIC converter

In the bode plot we can see that in both cases the open-loop phase margin

is around -90 degrees so the system needs to be regulated with a close-loop

compensator. In addition, when the load increases the Q of the systems increases

too, so the peaks at the resonance frequency are higher, since the system has

less losses. Having this in mind, we will design the close loop compensator using

the output-to-control transfer function with the values of half-load operation.

4.3.2 Cúk small signal model and transfer functions

Figure 4.10 shows the small signal model for the Cúk converter, from the model

we write the equations for the four state variables:

L1
di1
dt = ve − v1d

′ C1
dv1
dt = i1d

′ − i2d
L2

di2
dt = v1d+ v2 C2

dv2
dt = −i2 − v2

R

(4.27)

Applying the averaged model for the variables, where the variables are decom-

posed in the DC (X) component and the AC (x̂) component and then elimi-

nating the 2nd Order terms, we can now write the equations in the S-Domain
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Figure 4.10: Cúk small signal model

as:

sL1î1 = v̂e − v̂1D
′ + d̂

Ve

D′
(4.28)

sL2î2 = v̂1D + v̂2 + d̂
Ve

D′

sC1v̂1 = î1D
′ − î2D − d̂

Ve

R

D

D′2

sC2v̂2 = −î2 −
v̂2

R

Due to the complexity of the system with the four equations, we solved the

transfer function using the symbolic library of Matlab, the program is the ap-

pendix B. The transfer function of the plant leads to,

H(s) =
v̂o

d̂
= Ho

s2A2 + sA1 +A0

s4B4 + s3B3 + s2B2 + sB1 +B0
(4.29)

where the coefficients are

Ho = − E
D′2 B4 = C1C2L1L2R

A2 = C1L1L2D
′ B3 = C1L1L2

A1 = −L1D
2 B2 = R(L1C1 + C2(L1D

2 + L2D
′2))

A0 = RD′2 B1 = L1D
2 + L2D

′2

B0 = D′
2
R

(4.30)

The study did for the SEPIC converter is done for the Cúk converter. Cúk

converter has also four storage elements, so its control-to-output transfer

function is a 4th order system, however the transfer function has one zero

less than the SEPIC converter. The figure 4.11 shows the bode plot of the

transfer function when the Cúk converter is at full load(8.25kW) and at

half-load(4.12kW).

With the s-plane plot 4.12 and the bode plot 4.11, we can identify the zeros

and the poles of the transfer function. The first complex pole is close to 2
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Figure 4.11: Bode diagram of the transfer function for Cúk converter

kHz, at this point the phase drops 180o and after this point the magnitude

start decreasing with a slope of 40 dB/dec. The next resonance peak in

the bode plot is close to 5kHz, at this point there are a complex zero and

complex pole very close to each other, their natural frequency is at 5.17kHz

for the complex pole and at 4.9 kHz for the complex zero. Since their are

so close, they cancel each other in the magnitude plot, where it appears a

resonance peak in between them, an for this point the magnitude keeps still

decreasing whit 40 dB/dec. In the phase plot a drop of 360o appears, due to

the fact that the complex zero is in the right half-plane of the S-plan so it

adds - 180o to the phase plus the -180o of the complex pole the total drop is 360o.

As it happened in the SEPIC converter, the phase margin of the open-loop

output-to-control does not guarantee the stability of the system, so a close-loop

compensator will be added to regulate the output voltage. Also, the variation

of the load modifies the transfer function of the converter, improving the Q of

the system when the load decreases (the output resistance increases), hence the

peaks at the natural frequencies are higher. As we did for the SEPIC converter,

the close-loop controller is designed with the values when converter is at half-

load.
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Figure 4.12: Location of the zeros and poles in the s-plane for the output-to-

control transfer function of the Cúk converter

4.4 Close-Loop Controller Design

During the previous sections SEPIC and Cúk convert have been studied

separately, but in the practice form the point of view of the load they will be a

single converter with a symmetric voltage of +- 270 V DC. The way to achieve

this single converter behaviour is through the close-loop controller, where the

design of the compensator has the goal of give identical dynamic response to

the converters.

The figure 4.13 is the block diagram of the Symmetric converter including the

feed back loop. The diagram shows in the middle the Symmetric converter

composed by the SEPIC and the Cúk converter, where they respectively supply

+270V and -270V. The output voltage of each plant is sensed and attenuated by

the sensor gain H(s) then its compared to the reference voltage Vref . The error

signal is amplified by the compensator network Gc(s) and after modulated with

the Pulse Width Modulator, PWM, ( PWM of each converter are 180o out-of-

phase to introduce the interleaving concept to the Symmetric, which reduces the

current ripple in the DC-link bus). Then the PWM signal is amplified with the
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IGBT driver to have enough current to charge fast the IGBT gate capacitors,

and assure the IGBT commutation.

Figure 4.13: Block diagram of the feedback for the Symmetric converter

4.4.1 Compensation Network Design

In the previous sections, we identified the poles and zeros of the output-to-

control transfer function for both converters. In fact both converters have almost

identically transfer function, as as figure 4.14 shows. A complex-pole is located

around 2kHz, and a complex zero and a complex pole are around 5kHz in

both converters; in addition SEPIC converter has one more real zero at 47kHz.

Therefore the same compensator network will be valid for both converters.

First we compute the feedback gain H(s), the value chosen for the voltage

reference, Vref , is 3V, so the sensor gain for the SEPIC converter is,

H(s) =
Vref

Vo
=

3
270

=
1
90

(4.31)
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Figure 4.14: Bode diagram of the transfer function for SEPIC and Cúk

and for the Cúk converter

H(s) =
Vref

Vo
=

3
−270

= − 1
90

(4.32)

The amplitude of the sawtooth generator is fixed to 1, this leads the loop-gain

transfer function

T (s) = H(s)Gc(s)Gplant(s) (4.33)

The transfer function chosen for the compensation networks is:

Gc(s) = K ∗ 1
s2

s
ω1

+ 1
( s

ωo
)2 + 2ξ s

ωo
+ 1

(4.34)

Where,

• The double pole at the origin improves the gain at the origin, cancelling

the steady state error.

• The zero at ω1 = 6Hz increases the band-with of the magnitude and

advances the phase close the cut-off frequency to achieve a positive phase

margin PM.

• The complex pole at ωo = 400Hz and ξ = 1 attenuates the resonance

frequency of the converter, which can cause instability and also it improves

the filtering of the switching frequency of the converter. It also help to

decrease the phase to achieve the goal PM.

• The gain is adjusted to K = 1000, to give the desired dynamics to the

system.
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Simulation 4. Symmetric converter

The proposed compensation network, aims to attenuate the two resonance peaks

of the open loop converter and meanwhile attenuate the switching noises of the

converter. This forces to have the cut-off frequency fc of the Loop-Gain T (s) far

enough to achieve enough attenuation to avoid the second resonance peak cross

the 0 dB magnitude. As a result fc is small, which implies a slow dynamics

response of the Symmetric converter. Figure 4.15 shows the Loop-Gain of both

Figure 4.15: Bode diagram of the Gain-Loop for both converters

converters, you can see that is practically identical in both converters. The Gain

Band With GMB of the converter is 56Hz and the Phase Margin is 67.7o. The

achieved step response is represented in the figure 4.16, from the plot we see

that the converter reaches its steady state after 120ms, and the output voltage

has overshoot that do not overpass the 300V, so the components of the converter

will not be stressed for high voltages.

4.5 Simulation

4.5.1 Symmetric Converter Stand-Alone

The first simulation runs the model of the Symmetric Converter in the three

operation points defined in the table 2.2 of the section Components Sizing 4.2.3.

Therefore the simulation is divided in three steps: first at full load, drawing 8.25

kW each converter; second at half load, 4.12kW, and third at minimum load,

1kW. The model used for this simulation has the converter in close-loop and

without including the losses of any component.
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Simulation 4. Symmetric converter

Figure 4.16: Close-Loop step response of the Symmetric Converter

Figure 4.17: Simulation results: Output voltage of the Symmetric converter

The plot 4.17 shows the voltage at the two outputs regulated to the ±270V

DC. We can see the close loop achieves regulation in both outputs in any of

the three points of operation, also when the converter operates in DCM. The

time to reach the steady state regime last about 50ms in the three cases, with
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Simulation 4. Symmetric converter

a dramatic voltage overshoot in the transition between CCM to DCM, beside

this aspect the dynamic response of the system is correct, and identically for

both outputs.

(a) Transient response of step load (b) Output voltage ripple

Figure 4.18: Simulation: Transient of load step; Detail of output voltage ripple

The voltage ripple at the outputs, figure 4.19, is 7.8V peak-to-peak in the posi-

tive, 2.8% of the output voltage, and is 2.4V peak-to-peak n the negative, 0.89%

of the output voltage; the values are much small than the given specifications.

The difference in the ripple amplitude between the outputs is because the Cúk

converter has continuous output current, as we can see in the current plot; the

maximum RMS current in the capacitor is about 24.5A in the SEPIC, and 10A

in the Cúk.

Figure 4.19: Simulation results: Output Capacitor voltage and current. Top-

SEPIC; Bottom- Cúk. Legend: Blue- Full Load; Red- Half Load; Cyan- Mini-

mum Load
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Simulation 4. Symmetric converter

Figure 4.20: Simulation results: Transfer Energy Capacitor voltage and current.

Top- SEPIC; Bottom- Cúk. Legend: Blue- Full Load; Red- Half Load; Cyan-

Minimum Load

The voltage and the current of the energy transfer capacitor is plotted in

figure 4.20. In the voltage graph we can see the mean voltage increases when

the load decreases due to the I-V characteristics of the FC, achieving the

maximum when the converter is supplying the minimum load. In opposite the

ripple amplitude decreases when the load increases. The maximum voltage

at the capacitors is 600V in the SEPIC and 860V in the Cúk, the maximum

ripple voltage is about 50V . The current through the capacitors average is

0A, verifying the capacitor amp-seconds balance principe, the maximum RMS

current is measured when the converter is supplying full load, with a value

about 23.5A in both converters. The ripple of the current decreases when the

load decreases, since there is less energy to transfer to the output.

The figure 4.21 plots the current values on the inductors, we measure a

maximum ripple 15A in the input inductor and 30A in the output inductor.

Observing the red line we see that the inductors value is correct to guarantee

the critical conduction mode at half load, further this point the converter enters

to the DCM where the inductors currents is zero during a certain time for each

switching period, cyan line.

The figure 4.22 and 4.23 show the reverse voltage and the direct current in the

IGBTs and in the diodes; we see that, the voltages and the currents are the

same in both converters. The maximum reverse voltage is about 860V , and
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Simulation 4. Symmetric converter

Figure 4.21: Simulation results: Current in the input inductor (left) and output

inductor(right) , Top- SEPIC; Bottom- Cúk. Legend: Blue- Full Load; Red-

Half Load; Cyan- Minimum Load

Figure 4.22: Simulation results: IGBT reverse voltage and direct current, Top-

SEPIC ; Bottom- Cúk. Legend: Blue- Full Load; Red- Half Load; Cyan- Mini-

mum Load

the maximum peak current is around 70A. When the converter is operating in

73



Simulation 4. Symmetric converter

the DCM, cyan line, the voltage stress on the switches achieves the maximum

absolute value, but it last during less time, once the inductors have extinguished

their current the reverse voltages drops to the DC-link value in the IGBTs and

to the output value in the Diodes.

Figure 4.23: Simulation results: Diode reverse voltage and direct current, Top-

SEPIC ; Bottom- Cúk. Legend: Blue- Full Load; Red- Half Load; Cyan- Mini-

mum Load

The input current of the Symmetric converter drawn from the DC-link bus is

plotted in the figure 4.24. The graphs with the input current of SEPIC and Cúk

converter, show the interleaved operation of the Symmetric converter. Hence

the interleaving operation of the converter the current ripple in the DC bus

is dramatically reduced, achieving a ripple amplitude at full load about 5A

compared to the 15A measured in the input of each converter. In addition the

frequency of the ripple is twice the switching frequency of the converter, hence

it will be advantageous in case of introduce a input filter.

4.5.2 Cascaded V6 and Symmetric converters

This simulation runs a Simulink model with the two converters cascaded

connecting the load to the FC through the DC-Link, thus representing the
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Simulation 4. Symmetric converter

Figure 4.24: Simulation results: Top (left to right)- Input current of SEPIC an

Cúk converter at full, half and minimum load; Bottom- Current drawn from the

DC-link Bus.

complete system. The models used for this simulation includes the conducting

losses produced by the non-idealities of the converters components, such as the

RDS of the MOSFETs, the voltage drops of the Diodes and IGBTs and the

parasitic resistances of the transformers, capacitors and inductors. The values

used in the components are extracted from the datasheet of the component

candidates described in the previous sections.

The simulation varies the load from full power about 16.5kW to minimum

power about 1.5kW. The graph of the figure 4.25 plots the efficiency of the

converters as function of the load, the achieved results are not representative

to the real system, however it led us to have a rough approach of the system

efficiency and the trends of the efficiency whit the load variations. In this

simulation the cascaded converters achieve the best performance with higher

loads with a efficiency of 92% at full load, and the worst performance with at

the minimum load with an efficiency of 83%.

The figure 4.26 plots the voltage variation in the FC, DC-Link bus and the
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Simulation 4. Symmetric converter

Figure 4.25: Simulation results: Efficiency of the converters as function of the

output load.

Regulated Output. As it is logical the voltage in the FC and DC-Link bus keep

an almost linear relation decreasing when the load increases, due to of the I-V

characteristic of the FC; the two voltages keep a constant transformation ratio

of the V6 converter. The regulated 270V Output, suffer a slight variations

around the regulated voltage in function of the load charge with a maximum

variation of 1.25V when the converter operates close to the boundary between

the CCM and DCM, and a variation of 0.75 volts when the converter is at full

load.

The figure ?? show the current ripple in the Fuel Cell, the DC-Link bus and

the input of the SEPIC and Cúk converter at full load. The measure ripple

in the output converters is 15A peak-to-peak in each converter. Since the cur-

rent waveforms are 180◦ out-of-phase, due to the interleaved operation of the

converters, they cancel each other by harmonic cancellation leading a current

ripple in the bus of 6A peak-to-peak, with a DC component of 35A. The V6

converter multiplies the current at the Fuel Cell input where a current ripple

of 50A peak-to-peak is measured with a DC component of 305A; which express
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Simulation 4. Symmetric converter

Figure 4.26: Simuation results: Votages of the FC, DC-Link, Output Votage as

function of the output load.

in relative terms represents 16.5% of the current drawn. This value exceeds the

5% given in the FC specifications, however the current ripple could be decreased

with a capacitor in the DC-Link Bus.

Figure 4.27: Simulation results: Current ripple at (top to bottom) SEPIC and

Cúk input current , DC-Link bus and Fuel Cell
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Chapter 5

Conclusions and Further

Actions

The proposed topologie with the V6 and Symmetric converter for the UPC is

suitable to boost the FC voltage and provide the regulated ±270V DC ouput

and a high voltage DC-link for the Inverter; the achieved results demonstrate

the feasability of both converters.

However in this first approach of the system important aspects of the converters

desing were obviated such as enveriomental conditons, phisical and mechanical

desing of the UPC and switching losses of the semiconductors. So to continue

the desing and provide a real solution of the system and build the prototipe

further actions should be done:

• Airbus should define the enviromental conditons for the convertar

• Airbus should define test conditions of the system (EMIs, mechanical and

enviromental)

• Airbus could define the target volume of the system

• Design a refregeration system for the semiconductors, transforemrs and

inductors. With the efficency achieved in the simulations, the system at

least will dissipate 1.5kW , so in order to dissipate this amount of power

a water or forced air system will be necessary.

• Desing the electronics and PCBs for the converters wich has to provide

at least drivers for the MOSFETs and the IGBTs, current, voltage and
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5. Conclusions and Further Actions

temperature measurements, overcurrent protections for the switches and

the control system (digital or analogic).

• Reduce the current ripple in the Fuel Cell with a filter in the DC-Link
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The following are technical specifications for the HyPM HD 16-500-01 Fuel Cell Power 
Module (FCPM).  The following supporting documents are enclosed: 
 

1. Photographs 
2. Dimensions 
3. Technical Data 
4. Performance 
5. Mechanical Interface Diagram 
6. Electrical System Signal & Power Interface Diagram 
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2. Dimensions 
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Units:  mm (±3 mm) 
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3. Technical Data  
 

PROPERTY UNIT VALUE 

PRODUCT INFORMATION 

Model Number  HyPM HD 16-500-01 

Part Number  1035785 

PHYSICAL 

Dimensions of FCPM (L x W x H)
(1)

 mm 910 x 448 x 312 

Total Mass kg 114 

Volume of FCPM L 127 

PERFORMANCE 

Net Electrical Power
(2)

 kW 16.5 

Operating Current Range
(3)

 Adc 0  to 350 

Operating Voltage Range Vdc 40 to 80 

Peak Efficiency
(4)

 % 56 

Time from Off Mode to Idle
(5)

 s < 25 

Time from Idle to 16.5 kW
(6)

 s < 5 

FUEL SYSTEM 

Gaseous Hydrogen
(7)

 % ≥ 99.99 

CO ppm ≤ 0.2 

Sulfur (total, ex. H2S, COS) ppb ≤ 4 

Total Hydrocarbons ppm ≤ 2 

Supply Pressure
(8)

 kPa 515 to 584 

Stack Operating Pressure kPa < 120 

Consumption
(9)

 lpm < 230 

Hydrogen Temperature °C 2 to 35 

AIR DELIVERY SYSTEM 

Flow Rate
(9)

 lpm < 1100 

Air Filtration - Particulate & Chemical Filter 

Composition  Ambient Air 

Sulfur ppb < 4 
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PROPERTY UNIT VALUE 

OPERATING ENVIRONMENT 

Storage Air Temperature
(10)

 °C -20 to 40 

Operating Air Temperature °C 2 to 35 

Orientation ° ± 15 
 

EMISSIONS 

Allowable Pressure Drop of Customer Cathode Exhaust kPa < 3 

Water Collected
(11)

   

            Anode mL/min < 24 

            Cathode mL/min < 32 

Noise
(12)

 dBA < 70 

COOLING SYSTEM REQUIREMENTS 

Heat Rejection kW < 20 

FCPM Coolant Outlet Temperature
(13) 

°C 40 to 60 

Coolant Type   

            De-ionized Water (DI H2O) % 100 

            Ethylene glycol (EG) / de-ionized water (DI H2O) % 40 / 60 

Resistivity kΩ·cm > 200 

Coolant Flow Rate
(11) (14)

 lpm > 40 

Maximum Pressure Drop of Customer Coolant System kPa < 20 

ELECTRICAL INPUT  

Signal Voltage (FCPM Enable & E-stop) Vdc 12 to 13.8 

Start-up - 12 to 13.8 Vdc, 300 W ≤ 25 s 

MAIN SAFETIES  

Cathode Outlet High Temperature 

Communication Loss 

Coolant High Temperature 

Coolant Low Flow Rate 

FCPM Internal Over-Pressure 

FCPM Internal Under-Voltage 

Fuel Under Pressure 

Over-Current 

COMMUNICATION INTERFACES  

CAN v2.0A (standard 11 bit) 

Baud Rate 250 kbit/s 
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Footnotes: 
 
(1)   

All dimensions are ±3 mm. 
(2)   

User must not exceed rated electrical power.  
(3)   

Current is to be limited by the user and must not exceed the Current Draw Allowed (CDA) value, sent by the FCPM via CAN.  
(4)

  Operating at 100 Adc (lower heating value of hydrogen, 25°C, 101.3 kPa)
 

(5)   
During off mode, the FCPM does not require start-up or signal power 

(6)
  Based on use of Current Draw Request (CDR) mode. 

(7)   
Hydrogen supplied should conform to the Hydrogen Fuel Quality Specification Guideline, published 

     in SAE J2719, November 2005. 
(8)   

All reported pressures are absolute pressures.
 

(9)   
At 350 Adc in RUN MODE-Closed Loop.  Referenced to 0°C and 101.3 kPa. 

(10) 
For storage temperature below 2

o
C, the module must undergo freeze storage procedure as described in the user manual. 

(11) 
Referenced to 25°C and 101.3 kPa. 

(12) 
At 350 Adc, measured at a 1 m distance from the FCPM. 

(13) 
Temperature set point changes within range based on load. 

(14) 
Flow rate is based on use of de-ionized water only.

 

 
System Integration Notes 
 

• Warranty will be voided if the system integrator operates outside of the reported 
technical specifications. 

 

• An overall system controller or a computer capable of communicating via the 
CAN interface to the control the FCPM is required. 

 

• Ensure there is no air flow through the cathode inlet or outlet of the FCPM when 
not operational. 

 

• Fuel storage medium is to be supplied by the system integrator. 
 

• Install a hydrogen supply valve and a safety relief device between the hydrogen 
delivery system and the FCPM. 

 

• A varying number of hydrogen sensors and leak detectors may be required, 
depending on the specific requirements and conditions at the installation site. 

 

• Limit the 12 Vdc power source with a 35 Adc fuse. 
 

• For diagnostic mode operation, provide 12 to 13.8 Vdc, 300 W ≤ 6.5 min. 
 

• Provide load disconnect hardware (contactor).  Rating must not exceed 5 Adc and 
28 Vdc (resistive). 

 

• Provide reverse current protection for the FCPM (ex. diode). 
 

• Maximum peak to peak current ripple on the FCPM must not exceed 5% of the 
system current draw. 
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• Electrical and mechanical interface connectors to the FCPM are not supplied with 
the module.  These connectors may be purchased from Hydrogenics or directly 
from the manufacturer.  Part numbers are provided in the installation manual. 

 

• A de-ionized water polisher is required to be installed on user’s cooling system.  
(This may be purchased from Hydrogenics). 

 

• A coolant filter rated to strain particles > 381 µm is required on the coolant inlet 
port of the FCPM. 

 

• A cooling loop pressure relief device is required and must be rated to a maximum 
of 170 kPa (ex. radiator cap). 

 

• Three temperature control options are available: 
1. Cooling set-point is communicated via a low powered (maximum 1 A, 12 

Vdc nominal) PWM signal to a radiator fan motor or cooling valve. 
2. A PWM output drives a fan motor.  The maximum current of the radiator 

fan(s) is not to exceed 20 A at 12 Vdc. 
3. The coolant outlet temperature set-point is broadcasted on CAN.   

 

• For freeze tolerance of the FCPM, the customer must provide: 
1. Control Power: 

� 12 to 13.8 Vdc, 225 W ≤ 5 min, 275 W peak 
2. Blower Power: 

� 80 Vdc, 2400 W ≤ 5 min, 3000 W peak 
 

• The FCPM does not require the customer to transmit the hydrogen supply 
pressure to the FCPM via CAN. 

 

• The FCPM must not run below 10% of rated power for greater than 5 minutes. 
  

• Specifications are subject to change without notice. 
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4. Typical Performance 
 

• Below is a graph which illustrates typical HyPM HD 16-500-01 performance. 
 

 

 

Note: 
 
The FCPM efficiency reported in the graph above is calculated based on the lower heating value of 
hydrogen, at 25°C, 101.3 kPa, and takes into account all on-board parasitic loads.
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5. Mechanical Interface Diagram 
 
 
 

 
 
(1)

 Referenced to 0°C and 101.3 kPa. 
(2)

 Referenced to 25°C and 101.3 kPa.

CATHODE IN AIR 
 
Q < 1100 lpm

(1)
 

P = Atmospheric 
T = 2 to 35°C 
 

COOLANT IN 
 

Q > 40 slpm
(2)

 
T = 40 to 55°C  
Resistivity > 200 kΩ·cm 
 
Fluid = DI H2O (100%)  

        or 
     EG (40%) / DI H2O (60%) 
             
 

ELECTRICAL OUTPUT 
 
V = 40 to 80 Vdc 
 I = 0 to 350 Adc 

CATHODE OUT 
(O2, N2, H2, H2O) 
 
QH2O < 32 mL/min

(2)
 

P = Atmospheric 
T ≤ 60°C 
 

ANODE OUT 
(H2, H2O) 

 
QH2O < 24 mL/min

(2)
 

P = Atmospheric 
T ≤ 60°C 

COOLANT OUT 
 
Q > 40 lpm

(2)
 

T = 40 to 60°C 
Heat Rejection < 20 kW 
 
Fluid = DI H2O (100%)  
          or 
     EG (40%) / DI H2O (60%) 
             

 

ELECTRICAL INPUT 
 

12 to 13.8 Vdc, 300 W < 25 s 
12 to 13.8 Vdc (signal) 

ANODE IN HYDROGEN 
 
Q < 230 lpm

(1)
 

P = 515 to 584 kPa  
T = 2 to 35°C 
 
H2 Conc. > 99.99% 
 

 
FUEL CELL POWER MODULE 

16.5 kW DC Output 
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6. Electrical System Signal & Power Interface Diagram 
 

• FCPM Voltage 

• FCPM Current 

• Current Draw Allowed 

• FCPM State 

• FCPM Faults 

• Coolant Temperature 

• Temperature Setpoint 
 

• FCPM Control Commands 
• Current Draw Request 

FCPM BOUNDARY 

Fuel Cell  
Power Module 

16.5 kW 
 

40 to 80 Vdc 

0 to 350 Adc 

FUEL CELL POWER OUT 

User Supplied  
Load Contactor 

Digital Input: 

• FCPM Enable 

• E-Stop 

• ID Select                   
 

User Load 

CAN Communication 
to Overall System 

Controller 

 

Control / 
Power (PWM) 

Electrical Input: 
12 to 13.8 Vdc, 300 W < 25 s 

12 to 13.8 Vdc (signal) 
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VDSS	 =	 75	V
ID25	 = 	110	A
RDSon typ. =	 4.0	mW

Three phase full Bridge
with Trench MOSFETs
in DCB isolated high current package

Applications

AC drives
• 	in automobiles
	 -	electric power steering
	 -	starter generator
• 	in industrial vehicles
	 -	propulsion drives
	 -	 fork lift drives
• 	in battery supplied equipment

Features

• 	MOSFETs in trench technology:
	 -	 low RDSon

	 -	optimized intrinsic reverse diode
• 	package:
	 -	high level of integration
	 -	high current capability
	 -	aux. terminals for MOSFET control
	 -	 terminals for soldering or welding 	

		 connections
	 -	 isolated DCB ceramic base plate 	

		 with optimized heat transfer
•	Space and weight savings

Symbol Conditions Characteristic Values

(TVJ = 25°C, unless otherwise specified)

min. typ. max.

RDSon 
1) on chip level at	 TVJ =   25°C

VGS = 10 V�	 TVJ = 125°C
4.0
7.2

4.9
8.4

mW
mW

VGS(th) VDS = 20 V; ID = 1 mA 2.0 4.0 V

IDSS VDS = VDSS;  VGS = 0 V	 TVJ =   25°C
TVJ = 125°C 50

1 µA
µA

IGSS VGS = ± 20 V; VDS = 0 V 0.2 µA

Qg

Qgs

Qgd

VGS = 10 V; VDS = 36 V; ID = 25 A
115

30
30

nC
nC
nC

td(on)

tr

td(off)

tf

inductive load
VGS = 10 V; VDS = 30 V
ID = 80 A; RG = 39 Ω;
TJ = 125°C

130
100
500
100

ns
ns
ns
ns

Eon

Eoff

Erecoff

0.20
0.50
0.01

mJ
mJ
mJ

RthJC

RthJH with heat transfer paste (IXYS test setup) 1.3
1.0
1.6

K/W
K/W

1) VDS = ID·(RDS(on) + 2RPin to Chip)

MOSFETs

Symbol Conditions Maximum Ratings

VDSS TVJ = 25°C to 150°C 75 V

VGS ± 20 V

ID25

ID90

TC = 25°C
TC = 90°C

110
85

A
A

IF25

IF90

TC = 25°C (diode)
TC = 90°C (diode)

110
80

A
A

S2

L3

G2

S1

G1

S3

G3

S4

G4

S5

G5

S6

G6

L3+

L2L1

L1+ L2+

L3-L1- L2-
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Component

Symbol Conditions Maximum Ratings

IRMS per pin in main current paths (P+, N-, L1, L2, L3)
may be additionally limited by external connections
2 pins for output L1, L2, L3

75 A

TJ

Tstg

-55...+175
-55...+125

°C
°C

VISOL IISOL < 1 mA, 50/60 Hz, f = 1 minute 1000 V~

FC mounting force with clip 50 - 250 N

Symbol Conditions Characteristic Values

min. typ. max.

Rpin to chip 
1) tbd mW

CP coupling capacity between shorted
pins and back side metallization

160 pF

Weight 25 g
1) VDS = ID·(RDS(on) + 2RPin to Chip)

Source-Drain Diode

Symbol Conditions Characteristic Values

(TJ = 25°C, unless otherwise specified)
min. typ. max.

VSD (diode) IF = 80 A; VGS = 0 V 0.9 1.2 V

trr

QRM

IRM

IF = 80 A; -diF/dt = 800 A/µs; VR = 30 V
55

0.9
30

ns
µC

A
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Leads Ordering
Part Name & 

Packing Unit Marking
Part Marking Delivering Mode Base Qty.

Ordering 
Code

SMD Standard GMM 3x120-0075X2 - SMD GMM 3x120-0075X2 Blister 36 507 508
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VUO 22

IXYS reserves the right to change limits, test conditions and dimensions.

IdAV	 =	 25	A
VRRM	 = 	800-1800	V

Three Phase Rectifier Bridge

Features

• Package with DCB ceramic base plate
•	Isolation voltage 3600 V~
•	Planar passivated chips
•	Blocking voltage up to 1800 V
•	Low forward voltage drop
•	UL registered E 72873

Applications

• Supplies for DC power equipment
•	Input rectifiers for PWM inverter
•	Battery DC power supplies
•	Field supply for DC motors

Advantages

• Easy to mount with one screw
•	Space and weight savings
•	Improved temperature & power cycling

Symbol Conditions Maximum Ratings

IdAV

IdAV

IdAVM

TC = 90°C, module
TA = 45°C (RthKA = 0.5 K/W), module
module

22
25
25

A
A
A

IFSM TVJ = 45°C;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

100
106

A
A

TVJ = TVJM;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

85
90 

A
A

I2t TVJ = 45°C;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

50
47

A2s
A2s

TVJ = TVJM;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

36
33

A2s
A2s

TVJ

TVJM

Tstg

-40...+130
130

-40...+125

°C
°C
°C

VISOL 50/60 Hz, RMS	 t = 1 min
IISOL < 1 mA	 t = 1 s

3000
3600

V~
V~

Md Mounting torque	 (M5)
	 (10-32 UNF)

2 - 2.5
18 - 22

Nm
lb.in.

Weight Typ. 35 g

VRSM/DSM VRRM/DRM Type
V V

  900   800 VUO 22-08NO1
1300 1200 VUO 22-12NO1
1500 1400 VUO 22-14NO1
1700 1600 VUO 22-16NO1
1900 1800 VUO 22-18NO1

Symbol Conditions Characteristic Values

IR VR = VRRM 	 TVJ = 25°C
 	 TVJ = TVJM

0.3
5.0

mA
mA

VF IF = 7 A	 TVJ = 25°C 1.12 V

VT0

rt

For power-loss calculations only 0.8
40 

V
mW

RthJH per diode, 	 120° rect.
per module, 	 120° rect.

 3.1
0.516

K/W
K/W

dS

dA

a

Creeping distance on  surface
Creepage distance in air
Max. allowable acceleration

12.7
9.4
50

mm
mm
m/s2

Data according to IEC 60747 and refer to a single diode unless otherwise stated.

1/2

10
8
6

4/5

8

21 ~

6

54

10
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Dimensions in mm (1 mm = 0.0394“)

Marking on Product
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A
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t
10-3 10-2 10-1 100
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10-3 10-2 10-1 100 101 102
0.0

0.5

1.0
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2.0
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3.5

A
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0
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80

100

0 25 50 75 100 125 150
0

5
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15

20

25

30

TVJ = 130 °C
TVJ = 25°C

max.

typ.

0.8 x VRRM

50 Hz

TVJ = 45°C

TVJ = 130 °C

Ptot

°C

TA

6

0.5
1
1.5
2
3
4

RthKA K/W

°C

ZthJK

K/W
ZthJK

V

t

A

W

 s

Fig. 1	 Forward current versus
	 voltage drop per diode

Fig. 2	 Surge overload current per diode 	
	 IFSM: Crest value. t: duration

Fig. 3	 I2t versus time
	 (1-10 ms) per diode

Fig. 4	 Power dissipation versus direct output current and ambient temperature Fig. 5	 Maximum forward current
	 at	 case temperature

Fig. 6	 Transient thermal impedance per diode

Constants for ZthJC calculation:

i Rthi (K/W) ti (s)
1 0.005 0.008
2 0.1 0.02
3 1.635 0.05
4 1.35 0.4
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IdAV	 =	 25	A
VRRM	 = 	800-1800	V

Three Phase Rectifier Bridge

Features

• Package with DCB ceramic base plate
•	Isolation voltage 3600 V~
•	Planar passivated chips
•	Blocking voltage up to 1800 V
•	Low forward voltage drop
•	UL registered E 72873

Applications

• Supplies for DC power equipment
•	Input rectifiers for PWM inverter
•	Battery DC power supplies
•	Field supply for DC motors

Advantages

• Easy to mount with one screw
•	Space and weight savings
•	Improved temperature & power cycling

Symbol Conditions Maximum Ratings

IdAV

IdAV

IdAVM

TC = 90°C, module
TA = 45°C (RthKA = 0.5 K/W), module
module

22
25
25

A
A
A

IFSM TVJ = 45°C;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

100
106

A
A

TVJ = TVJM;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

85
90 

A
A

I2t TVJ = 45°C;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

50
47

A2s
A2s

TVJ = TVJM;	 t = 10 ms	 (50 Hz)
VR = 0	 t = 8.3 ms	 (60 Hz)

36
33

A2s
A2s

TVJ

TVJM

Tstg

-40...+130
130

-40...+125

°C
°C
°C

VISOL 50/60 Hz, RMS	 t = 1 min
IISOL < 1 mA	 t = 1 s

3000
3600

V~
V~

Md Mounting torque	 (M5)
	 (10-32 UNF)

2 - 2.5
18 - 22

Nm
lb.in.

Weight Typ. 35 g

VRSM/DSM VRRM/DRM Type
V V

  900   800 VUO 22-08NO1
1300 1200 VUO 22-12NO1
1500 1400 VUO 22-14NO1
1700 1600 VUO 22-16NO1
1900 1800 VUO 22-18NO1

Symbol Conditions Characteristic Values

IR VR = VRRM 	 TVJ = 25°C
 	 TVJ = TVJM

0.3
5.0

mA
mA

VF IF = 7 A	 TVJ = 25°C 1.12 V

VT0

rt

For power-loss calculations only 0.8
40 

V
mW

RthJH per diode, 	 120° rect.
per module, 	 120° rect.

 3.1
0.516

K/W
K/W

dS

dA

a

Creeping distance on  surface
Creepage distance in air
Max. allowable acceleration

12.7
9.4
50

mm
mm
m/s2

Data according to IEC 60747 and refer to a single diode unless otherwise stated.

1/2

10
8
6

4/5

8

21 ~

6

54

10
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Dimensions in mm (1 mm = 0.0394“)

Marking on Product
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Fig. 1	 Forward current versus
	 voltage drop per diode

Fig. 2	 Surge overload current per diode 	
	 IFSM: Crest value. t: duration

Fig. 3	 I2t versus time
	 (1-10 ms) per diode

Fig. 4	 Power dissipation versus direct output current and ambient temperature Fig. 5	 Maximum forward current
	 at	 case temperature

Fig. 6	 Transient thermal impedance per diode

Constants for ZthJC calculation:

i Rthi (K/W) ti (s)
1 0.005 0.008
2 0.1 0.02
3 1.635 0.05
4 1.35 0.4



PAYTON GROUP
P.O.B 4068 RISHON LE ZION 75140 ISRAEL      TEL.972 3 9616601, 9611164 FAX. 972 3 9616677

                        PAYTON 7872 W SMPS TRANSFORMER.
                                Functional specs.

         Date     :  15/11/09

      1. Generic Type                   :  T1000DC-2-6.

      2. Output power                   :  7872 W (164 Vdc/48 Adc).

      3. Operating frequency of trafo   :  100 kHz.

      4. Output ripple frequency        :  200 kHz.

      5. Input voltage of power stage   :  57 - 72 Vdc link.

      6. Input voltage of transformer   :  55 - 70 Vpeak.

      7. Topology                       :  Full bridge, 4 diodes rectifier.

      8. Operating Duty Cycle           :  2x0.5.

      9. Operating Volt-Sec product     :  2x275 V-usec, max.

     10. Pri. to Sec. turns ratio       :  1 : 3.
         (Sec. current - 48 Arms)

     11. Pri. current, max.             :  159 Arms.
         (for 90% power supply effic.)

     12. Dielectric strength
         (Sec. to Pri.+ Core)           :  500 Vdc.
         (Pri. to Core)                 :  500 Vdc.

     13. Ambient temperature range      :  0  50ºC.

     14. Estimated total losses         :  60 W.
         (With 55ºC heat sink)

     15. Estimated HOT SPOT temperature :  110ºC.
         (With 55ºC heat sink)

     16. Mechanical dimensions.         :  Length - 135mm.
         (for reference only)              Width  - 89mm.
                                           Height - 32mm.

        
         Payton P/N : 54658  Issue : A  Rev : 00     Page : 1  of : 2  
        



PAYTON GROUP
P.O.B 4068 RISHON LE ZION 75140 ISRAEL      TEL.972 3 9616601, 9611164 FAX. 972 3 9616677

                        PAYTON 7872 W SMPS TRANSFORMER.
                                Functional specs.
         Date     :  15/11/09
         Electrical diagram.

                        1       4
                                  *       *
                                         
                   Pri.    2t                  6t        Sec.
                                         
                                         
                        3       8

   Terminations and fixations holes location sketch (top view; not in scale).

                                  
                                   +               + 
                                  
                                           
                                                  
                                                              +  8
             1    +                                       
                                                          
                                                  
                                                  
                                                          
                  +                    Clasp               + 
                                                          
                                                  
                                                  
                                                          
             3    +                                       
                                                              +  4
                                                  
                                           
                                  
                                   +               + 
                                  

        Note:   All terminations made of copper strips suitable
                for screw connections of cable shoes.

        
         Payton P/N : 54658  Issue : A  Rev : 00     Page : 2  of : 2  
        



IRG4PF50WD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features

E

G

n-cha nne l

C

•  Optimized for use in Welding and Switch-Mode
    Power Supply applications
•  Industry benchmark switching losses improve
   efficiency of all power supply topologies
•  50% reduction of Eoff parameter
•  Low IGBT conduction losses
•  Latest technology IGBT design offers tighter
   parameter distribution coupled with
   exceptional reliability
• IGBT co-packaged with HEXFREDTM ultrafast,
  ultra-soft-recovery anti-parallel diodes for use in
  bridge configurations
• Industry standard TO-247AC package
Benefits

PD- 91788

              Parameter Min. Typ. Max. Units
RθJC Junction-to-Case - IGBT ––– ––– 0.64
RθJC Junction-to-Case - Diode ––– ––– 0.83 °C/W
RθCS Case-to-Sink, flat, greased surface ––– 0.24 –––
RθJA Junction-to-Ambient, typical socket mount ––– ––– 40
Wt Weight ––– 6 (0.21) ––– g (oz)

Thermal Resistance

•  Lower switching losses allow more cost-effective
   operation and hence efficient replacement of larger-die
  MOSFETs up to 100kHz
• HEXFREDTM   diodes optimized for performance with IGBTs.
  Minimized recovery characteristics reduce noise,  EMI and
   switching losses

www.irf.com 1

TO-247AC

VCES = 900V

VCE(on) typ. = 2.25V

@VGE = 15V, IC = 28A

              Parameter Max. Units
VCES Collector-to-Emitter Breakdown Voltage 900 V
IC @ TC = 25°C Continuous Collector Current 51
IC @ TC = 100°C Continuous Collector Current 28 A
ICM Pulsed Collector Current � 204
ILM Clamped Inductive Load Current � 204
IF @ TC = 100°C Diode Continuous Forward Current 16
IFM Diode Maximum Forward Current 204
VGE Gate-to-Emitter Voltage ± 20 V
PD @ TC = 25°C Maximum Power Dissipation 200
PD @ TC = 100°C Maximum Power Dissipation 78
TJ Operating Junction and -55  to + 150
TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm) from case )
°C

Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)

Absolute Maximum Ratings

W
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                                Parameter Min. Typ. Max. Units        Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage� 900 — — V VGE = 0V, IC = 250µA
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.295 — V/°C VGE = 0V, IC = 3.5mA
VCE(on) Collector-to-Emitter Saturation Voltage — 2.25 2.7 IC = 28A          VGE = 15V

— 2.74 — V IC = 60A          See Fig. 2, 5
— 2.12 — IC = 28A, TJ = 150°C

VGE(th) Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -13 — mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance � 26 39 — S VCE = 50V, IC = 28A
ICES Zero Gate Voltage Collector Current — — 500 µA VGE = 0V, VCE = 900V

— — 2.0 VGE = 0V, VCE = 10V, TJ = 25°C
— — 6.5 mA VGE = 0V, VCE = 900V, TJ = 150°C

VFM Diode Forward Voltage Drop — 2.5 3.5 V IC = 16A          See Fig. 13
— 2.1 3.0 IC = 16A, TJ = 150°C

IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V

                                Parameter Min. Typ. Max. Units        Conditions
Qg Total Gate Charge (turn-on) — 160 240 IC = 28A
Qge Gate - Emitter Charge (turn-on) — 19 29 nC VCC = 400V See Fig. 8
Qgc Gate - Collector Charge (turn-on) — 53 80 VGE = 15V
td(on) Turn-On Delay Time — 71 — TJ = 25°C
tr Rise Time — 50 — ns IC = 28A, VCC = 720V
td(off) Turn-Off Delay Time — 150 220 VGE = 15V, RG = 5.0Ω
tf Fall Time — 110 170 Energy losses include "tail" and
Eon Turn-On Switching Loss — 2.63 — diode reverse recovery.
Eoff Turn-Off Switching Loss — 1.34 — mJ See Fig. 9, 10, 18
Ets Total Switching Loss — 3.97 5.3
td(on) Turn-On Delay Time — 69 — TJ = 150°C,     See Fig. 11, 18
tr Rise Time — 52 — ns IC = 28A, VCC = 720V
td(off) Turn-Off Delay Time — 270 — VGE = 15V, RG = 5.0Ω
tf Fall Time — 190 — Energy losses include "tail" and
Ets Total Switching Loss — 6.0 — mJ diode reverse recovery.
LE Internal Emitter Inductance — 13 — nH Measured 5mm from package
Cies Input Capacitance — 3300 — VGE = 0V
Coes Output Capacitance — 200 — pF VCC = 30V      See Fig. 7
Cres Reverse Transfer Capacitance — 45 — ƒ = 1.0MHz
trr Diode Reverse Recovery Time — 90 135 ns TJ = 25°C    See Fig.

— 164 245 TJ = 125°C        14            IF = 16A
Irr Diode Peak Reverse Recovery Current — 5.8 10 A TJ = 25°C    See Fig.

— 8.3 15 TJ = 125°C        15          VR = 200V
Qrr Diode Reverse Recovery Charge — 260 675 nC TJ = 25°C     See Fig.

— 680 1838 TJ = 125°C         16       di/dt = 200A/µs
di(rec)M/dt Diode Peak Rate of Fall of Recovery — 120 — A/µs TJ = 25°C     See Fig.

During tb — 76 — TJ = 125°C        17

Switching Characteristics @ T J = 25°C (unless otherwise specified)

Electrical Characteristics @ T J = 25°C (unless otherwise specified)
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Fig. 1  - Typical Load Current vs. Frequency
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Fig. 6  - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 5  - Collector-to-Emitter  Voltage  vs.
Junction Temperature

Fig. 4  - Maximum Collector Current vs. Case
Temperature
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Fig. 11 -  Typical Switching Losses vs.
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Fig. 12  - Turn-Off SOA

Fig. 13  - Typical Forward Voltage Drop vs. Instantaneous Forward Current
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Fig. 14  - Typical Reverse Recovery vs. dif/dt Fig. 15  - Typical Recovery Current vs. dif/dt

Fig. 16  - Typical Stored Charge vs. dif/dt Fig. 17  - Typical di(rec)M/dt vs. dif/dt
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Same t ype
device as
D.U.T.

D.U.T.

430µF80%
of Vce

Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf

Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
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Fig. 18d - Test Waveforms for Circuit of  Fig. 18a,
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V g G AT E  S IG N AL
D EVIC E U N D ER  TE ST

C UR R EN T  D .U .T .

VO LT A G E  IN  D .U.T .

C UR R EN T  IN  D 1
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Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current
Test Circuit

RL= 720V
4 X IC @25°C

0 - 720V

Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
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Notes:
�Repetitive rating: VGE=20V; pulse width limited by maximum junction tem-

perature (figure 20)

�VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0Ω (figure 19)

�Pulse width ≤ 80µs; duty factor ≤ 0.1%.

�Pulse width 5.0µs, single shot.

Case Outline and Dimensions — TO-247AC

D im ensions in  M illime ters and (Inches)
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)  

- D  -
5 .3 0  ( .20 9)
4 .7 0  ( .18 5)

3 .6 5  ( .14 3)
3 .5 5  ( .14 0)

2.5 0  ( .0 89)
1.5 0  ( .0 59)

4

3 X
0 .80  ( .03 1 )
0 .40  ( .01 6 )

2 .6 0 ( .10 2 )
2 .2 0 ( .08 7 )3 .40  ( .13 3)

3 .00  ( .11 8)

3 X

0.2 5  ( .0 10) M C A S

4.3 0  ( .1 70)
3 .7 0  ( .1 45)

-  C  -

2 X
5.5 0  ( .2 17)
4 .5 0  ( .1 77)

5.5 0  ( .2 17)

0 .2 5  ( .0 1 0)

1.4 0  ( .0 56)
1.0 0  ( .0 39)

DM MB
- A  -

15 .90  ( .62 6 )
15 .30  ( .60 2 )

-  B -

1 2 3

2 0 .3 0  ( .80 0)
1 9 .7 0  ( .77 5)

1 4 .8 0  ( .5 8 3)
1 4 .2 0  ( .5 5 9)

2 .40  ( .09 4 )
2 .00  ( .07 9 )

2 X

2 X

5.4 5  ( .21 5)

*

N O TE S :
     1   D IM E N SIO N S &  T O LE R A N C IN G
         P E R  A N S I Y 14 .5M , 1982 .
     2   C O N T R O LLIN G  D IM EN S IO N  : IN C H .
     3   D IM E N SIO N S A R E  S H O W N  
         M ILL IM E T ER S  (IN C H E S).
     4   C O N F O R M S  T O  JE D E C  O U T LIN E
         T O -247A C .

LEA D  A S S IG N M E N T S
     1 - G A T E
     2 - C O LLEC T O R
     3 - E M IT T ER
     4 - C O LLEC T O R

* LO N G E R  LEA D E D  (20m m ) 
V E R S IO N  A VA ILA B LE  (T O -247A D )
T O  O R D E R  A D D  "-E " S U F F IX
T O  P A R T  N U M B E R
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STTH9012TV

Ultrafast recovery - 1200 V diode

Main product characteristics

Features and benefits
■ Ultrafast, soft recovery

■ Very low conduction and switching losses

■ High frequency and/or high pulsed current 
operation

■ High reverse voltage capability

■ High junction temperature

■ Insulated package: 
Electrical insulation = 2500 VRMS
Capacitance = 45 pF

Description
The high quality design of this diode has 
produced a device with low leakage current, 
regularly reproducible characteristics and intrinsic 
ruggedness. These characteristics make it ideal 
for heavy duty applications that demand long term 
reliability. 

Such demanding applications include industrial 
power supplies, motor control, and similar 
mission-critical systems that require rectification 
and freewheeling. These diodes also fit into 
auxiliary functions such as snubber, bootstrap, 
and demagnetization applications. 

The improved performance in low leakage 
current, and therefore thermal runaway guard 
band, is an immediate competitive advantage for 
this device.

Order codes

IF(AV) 2 x 45 A

VRRM 1200 V

Tj 150° C

VF (typ) 1.20 V

trr (typ) 50 ns

Part Number Marking

STTH9012TV1 STTH9012TV1

STTH9012TV2 STTH9012TV2

K2

K1

A2

A1 K2

K1A2

A1

A1

A2

K1

K2

A1

A2
K1

K2

STTH9012TV2STTH9012TV1

ISOTOP

www.st.com
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1 Characteristics

         

         

When the diodes are used simultaneously:
∆Tj(diode1) = P(diode1) x Rth(j-c) (per diode) + P(diode2) x Rth(c) 

         

To evaluate the conduction losses use the following equation: 
P = 1.40 x IF(AV) + 0.0089 IF

2
(RMS)

Table 1. Absolute ratings (limiting values per diode at 25° C, unless otherwise specified)

Symbol Parameter Value Unit

VRRM Repetitive peak reverse voltage 1200 V

IF(RMS) RMS forward current 150 A

IF(AV) Average forward current, δ = 0.5 Tc = 75° C per diode 45 A

IFRM Repetitive peak forward current tp = 5 µs, F = 5 kHz square 600 A

IFSM
Surge non repetitive forward 
current 

tp = 10 ms Sinusoidal 420 A

Tstg Storage temperature range -65 to + 150 °C

Tj Maximum operating junction temperature 150 °C

Table 2. Thermal parameters

Symbol Parameter Value Unit

Rth(j-c) Junction to case
Per diode 0.74

°C/WTotal 0.42

Rth(c) Coupling thermal resistance 0.1

Table 3. Static electrical characteristics

Symbol Parameter Test conditions Min. Typ Max. Unit

IR
(1) Reverse leakage current

Tj = 25° C
VR = VRRM

30
µA

Tj = 125° C 30 300

VF
(2) Forward voltage drop

Tj = 25° C

IF = 45 A

2.10

VTj = 125° C 1.25 1.90

Tj = 150° C 1.20 1.80

1. Pulse test: tp = 5 ms, δ < 2 %

2. Pulse test: tp = 380 µs, δ < 2 %
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Table 4. Dynamic characteristics

Symbol Parameter Test conditions Min. Typ Max. Unit

trr Reverse recovery time

IF = 1 A, dIF/dt = -50 A/µs, 
VR = 30 V, Tj = 25° C

125

ns
IF = 1 A, dIF/dt = -100 A/µs,
VR = 30 V, Tj = 25° C

63 85

IF = 1 A, dIF/dt = -200 A/µs,
VR = 30 V, Tj = 25° C

50 70

IRM Reverse recovery current
IF = 45 A, dIF/dt = -200 A/µs,
VR = 600 V, Tj = 125° C

32 45 A

S Softness factor
IF = 45 A, dIF/dt = -200 A/µs,
VR = 600 V, Tj = 125° C

1

tfr Forward recovery time
IF = 45 A      dIF/dt = 100 A/µs
VFR = 1.5 x VFmax, Tj = 25° C

700 ns

VFP Forward recovery voltage
IF = 45 A, dIF/dt = 100 A/µs,
Tj = 25° C

4.5 V

Figure 1. Conduction losses versus 
average current

Figure 2. Forward voltage drop versus 
forward current
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Figure 3. Relative variation of thermal 
impedance junction to case 
versus pulse duration 

Figure 4. Peak reverse recovery current 
versus dIF/dt (typical values)
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Figure 5. Reverse recovery time versus 
dIF/dt (typical values)

Figure 6. Reverse recovery charges versus 
dIF/dt (typical values)
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Figure 7. Softness factor versus
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Figure 8. Relative variations of dynamic 
parameters versus junction 
temperature
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Figure 9. Transient peak forward voltage 
versus dIF/dt (typical values)

Figure 10. Forward recovery time versus dIF/dt 
(typical values)

Figure 11. Junction capacitance versus 
reverse voltage applied (typical 
values)
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2 Package information

Epoxy meets UL94, V0

Cooling method: by conduction (C)

         

In order to meet environmental requirements, ST offers these devices in ECOPACK® 
packages. These packages have a lead-free second level interconnect. The category of 
second level interconnect is marked on the package and on the inner box label, in 
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering 
conditions are also marked on the inner box label. ECOPACK is an ST trademark. 
ECOPACK specifications are available at: www.st.com. 

Table 5. ISOTOP dimensions

REF.

DIMENSIONS

Millimeters Inches

Min. Max Min. Max.

A 11.80 12.20 0.465 0.480

A1 8.90 9.10 0.350 0.358

B 7.8 8.20 0.307 0.323

C 0.75 0.85 0.030 0.033

C2 1.95 2.05 0.077 0.081

D 37.80 38.20 1.488 1.504

D1 31.50 31.70 1.240 1.248

E 25.15 25.50 0.990 1.004

E1 23.85 24.15 0.939 0.951

E2 24.80 typ.  0.976 typ.

G 14.90 15.10 0.587 0.594

G1 12.60 12.80 0.496 0.504

G2 3.50 4.30 0.138 0.169

F 4.10 4.30 0.161 0.169

F1 4.60 5.00 0.181 0.197

P 4.00 4.30 0.157 0.69

P1 4.00 4.40 0.157 0.173

S 30.10 30.30 1.185 1.193

F1 F

D1GD S

B

E1

G1

ØP

P1

E

E2

G2
C

C2

A1
A
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3 Ordering information

         

4 Revision history

         

Part Number Marking Package Weight Base qty Delivery mode

STTH9012TV1 STTH9012TV1 ISOTOP 27 g 10 Tube

STTH9012TV2 STTH9012TV2 ISOTOP 27 g 10 Tube

Date Revision Description of Changes

02-Mar-2006 1 First issue.
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    Type 932  Polypropylene Film Capacitors   

Specifi cations

Metallized
Axial Leads

High Voltage/High Frequency
Switching Power Supplies

250—700 Vdc (160-400 Vac, 60 Hz)
1.0—30.0 µF
±5% (J) standard
±10% (K) optional
 –55 ºC to 105 ºC*
*Full-rated voltage at 85 °C–Derate linearly to 50%-rated voltage at 105 °C

200% (1 minute)
.10% Max. (25 ºC, 1kHz)
200,000 M. x µF
400,000 M. Min.
1,000 Hours at 85 ºC at 125% Rated Voltage

Cap.
(µF)

Catalog
Part Number

D
±.062(1.5)

Inches(mm)

L
+.062(1.5)

Inches(mm)
d

Inches(mm)

Typical
ESR

@100 KHz
milliohms

dV/dt
V/µs

I peak
A

IRMS
70 ºC

100 kHz
(A)

250 Vdc(160 Vac)
1 932C2W1J–F 0.433 11.0 0.748 19.0 .040 1.0 2.7 90 90 5

1.5 932C2W1P5J–F 0.394 10.0 1.220 31.0 .040 1.0 5.4 50 75 7

2.2 932C2W2P2J–F 0.453 11.5 1.220 31.0 .040 1.0 3.7 50 110 9

2.5 932C2W2P5J–F 0.472 12.0 1.220 31.0 .040 1.0 3.3 50 125 9

3 932C2W3J–F 0.531 13.5 1.220 31.0 .040 1.0 2.9 50 150 9

5 932C2W5J–F 0.669 17.0 1.220 31.0 .040 1.0 2.1 50 250 9

6.8 932C2W6P8J–F 0.787 20.0 1.220 31.0 .040 1.0 1.8 50 340 9

10 932C2W10J–F 0.787 20.0 1.654 42.0 .040 1.0 2.1 30 300 9

15 932C2W15J–F 0.965 24.5 1.654 42.0 .051 1.3 1.6 30 450 11

20 932C2W20J–F 1.102 28.0 1.654 42.0 .051 1.3 1.5 30 600 11

25 932C2W25J–F 1.240 31.5 1.654 42.0 .051 1.3 1.5 30 750 11

30 932C2W30J–F 1.161 29.5 2.165 55.0 .051 1.3 2.6 20 600 11

400 Vdc (250 Vac)
0.68 932C4P68J–F 0.394 10.0 1.220 31.0 .040 1.0 7.4 70 48 6

1.00 932C4W1J–F 0.472 12.0 1.220 31.0 .040 1.0 5.1 70 70 8

Ratings 

Type 932 axial-leaded, metallized polypropylene capacitors are 
available in a wide range of capacitance values in reduced sizes. 
Flame-retardant tape wrap and epoxy end seals provide moisture 
resistance. Used most frequently in high-voltage/high-frequency 
switching power supplies where superior stability and AC perfor-
mance characteristics are important.

Voltage Range:                      
Capacitance Range:  

Capacitance Tolerance:   
                                      

Operating Temperature Range:

Dielectric Strength: 
Dissipation Factor: 

Insulation Resistance:      

Life Test: 
  Complies with the EU Directive 

2 0 0 2 / 9 5 / E C  r e q u i r e m e n t 
restricting the use of Lead (Pb), 
Mercury (Hg), Cadmium (Cd), 
Hexavalent chromium (Cr(VI)), 
PolyBrominated Biphenyls (PBB) 
and PolyBrominated Diphenyl 
Ethers (PBDE).

CDE
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Cap.
(µF)

Catalog
Part Number

D
±.062(1.5)

Inches(mm)

L
+.062(1.5)

Inches(mm)
d

Inches(mm)

Typical
ESR

@100 KHz
milliohms

dV/dt
V/µs

I peak
A

IRMS
70 ºC

100 kHz
(A)

400 Vdc (250)
1.50 932C4W1P5J–F 0.571 14.5 1.220 31 .040 1.0 3.6 70 105 9

2.00 932C4W2J–F 0.650 16.5 1.220 31 .040 1.0 2.9 70 140 9

2.20 932C4W2P2J–F 0.689 17.5 1.220 31 .040 1.0 2.8 70 155 9

2.50 932C4W2P5J–F 0.728 18.5 1.220 31 .040 1.0 2.5 70 175 9

3.00 932C4W3J–F 0.787 20.0 1.220 31 .040 1.0 2.3 70 210 9

4.00 932C4W4J–F 0.768 19.5 1.654 42 .040 1.0 3 50 200 9

4.70 932C4W4P7J–F 0.827 21.0 1.654 42 .040 1.0 2.7 50 235 9

5.00 932C4W5J–F 0.846 21.5 1.654 42 .040 1.0 2.6 50 250 9

6.80 932C4W6P8J–F 0.984 25.0 1.654 42 .051 1.0 2.1 50 340 11

10.00 932C4W10J–F 1.181 30.0 1.654 42 .051 1.3 1.8 50 500 11

15.00 932C4W15J–F 1.260 32.0 2.165 55 .051 1.3 3.1 30 450 11

600 Vdc (330 Vac)
1.00 932C6W1J–F 0.61 15.5 1.220 31 .040 1.0 4.2 100 100 9

2.00 932C6W2J–F 0.728 18.5 1.654 42 .040 1.0 4.1 75 150 9

2.20 932C6W2P2J–F 0.768 19.5 1.654 42 .040 1.0 3.9 75 165 9

3.00 932C6W3J–F 0.886 22.5 1.654 42 .051 1.3 3.1 75 225 9

4.70 932C6W4P7J–F 1.083 27.5 1.654 42 .051 1.3 2.3 75 350 11

5.00 932C6W5J–F 1.122 28.5 1.654 42 .051 1.3 2.2 75 375 11

6.80 932C6W6P8J–F 1.122 28.5 2.165 55 .051 1.3 4.5 50 340 11

10.00 932C6W10J–F 1.358 34.5 2.165 55 .051 1.3 3.5 50 500 11

700 Vdc (400Vac)
0.68 932C7P68J–F 0.669 17.0 1.220 31 .040 1.0 4.6 125 85 9

1.00 932C7W1J–F 0.807 20.5 1.220 31 .040 1.0 3.4 125 125 9

1.50 932C7W1P5J–F 0.807 20.5 1.654 42 .040 1.0 4.2 90 135 9

2.00 932C7W2J–F 0.925 23.5 1.654 42 .051 1.3 3.3 90 180 11

2.20 932C7W2P2J–F 0.965 24.5 1.654 42 .051 1.3 3.1 90 200 11

3.00 932C7W3J–F 1.122 28.5 1.654 42 .051 1.3 2.6 90 270 11

4.00 932C7W4J–F 1.299 33.0 1.654 42 .051 1.3 2.2 90 360 11

4.70 932C7W4P7J–F 1.181 30.0 2.165 55 .051 1.3 5.2 60 280 11

5.00 932C7W5J–F 1.201 30.5 2.165 55 .051 1.3 4.9 60 300 11
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Type 940C through 943C Power Film Capacitors               

Electrical Characteristics

  Operating Temperature   –55 ºC to +105 ºC
  *Full rated voltage at 85 ºC, derate linearly to 50% rated voltage at 105 ºC

  Capacitance tolerance   ±10% standard tolerance
  Dissipation Factor   <0.1% at 1 kHz, 25 ºC
  Dielectric Withstand   1.6 x rated voltage for 60 seconds

  Insulation Resistance
  >100,000 MΩ x µF at 100 Vdc
  measured after 2 minutes

  Equivalent Series Resistance (ESR)   See rating tables for values
  Equivalent Series Inductance (ESL)   See rating tables for values
  dV/dt   See rating tables for values
  Rated Current, Ipk and Irms   See rating tables for values
  Maximum allowable current in amperes at 70 ºC

  Capacitance Temperature Coefficient   –200 ppm/ºC ±100 ppm

  Service Life
  30,000 hours @ rated Vac, 70 ºC
  60,000 hours @ rated Vdc, 70 ºC

Accelerated Tests

  Accelerated Life
  1.25 x rated DC voltage at 85 ºC
  for 2,000 hours

  Performance
  <3% capacitance change
  ESR <125% of initial reading
  IR >50% of initial limit

  Accelerated Pulse Testing   per IEC-384

  Performance
  <3% in capacitance change
  <.003 increase in DF from initial value

Typical Characteristics
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Type 940C High dV/dt, Round Polypropylene Film Capacitors
Double Metallized – Axial Leads

Type 940C round, axial leaded fi lm capacitors have polypropylene fi lm 
and dual metallized electrodes for both self healing properties and high 
peak current carrying capability (dV/dt). This series features low ESR 
characteristics, excellent high frequency and high voltage capabilities.

Specifi cations
Voltage Range: 600 – 3000 Vdc (275 - 750 Vac, 60 Hz)
Capacitance Range: 0.01 – 4.7 µF
Capacitance Tolerance: ±10%
Operating Temperature Range: –55 °C to 105 °C*
*Full-rated voltage at 85 °C–Derate linearly to 50%-rated voltage at 105 °C

Ratings                                                                         

Construction
850 Vdc and Higher

Double
Metallized
Polyester

Polypropylene

Metallized Polypropylene

NOTE: Refer to Application Guide for test conditions. Contact us for other capacitance values, sizes and performance specifi cations.

IRMS

Catalog Typical Typical 70 ºC
Cap. Part Number D L d ESR ESL dV/dt I peak 100 kHz

(µF) Inches (mm) Inches (mm) Inches (mm) (mΩ) (nH) V/µs (A) (A)
600 Vdc (275 Vac)

.10   940C6P1K-F .354 (9.0) 1.339 (34.0) .032 (.8) 28 19 196 20 2.5

.15   940C6P15K-F .413 (10.5) 1.339 (34.0) .032 (.8) 13 20 196 29 4.0

.22   940C6P22K-F .453 (11.5) 1.339 (34.0) .032 (.8) 12 20 196 43 4.4

.33   940C6P33K-F .531 (13.5) 1.339 (34.0) .032 (.8) 9 21 196 65 5.6

.47   940C6P47K-F .610 (15.5) 1.339 (34.0) .040 (1.0) 7 22 196 92 6.9

.68   940C6P68K-F .709 (18.0) 1.339 (34.0) .040 (1.0) 6 23 196 134 8.1
1.00   940C6W1K-F .827 (21.0) 1.339 (34.0) .040 (1.0) 6 24 196 196 8.9
1.50   940C6W1P5K-F .984 (25.0) 1.339 (34.0) .047 (1.2) 5 26 196 295 10.9
2.00   940C6W2K-F .925 (23.5) 1.811 (46.0) .047 (1.2) 5 31 128 255 11.8
3.30   940C6W3P3K-F 1.063 (27.0) 2.126 (54.0) .047 (1.2) 4 36 105 346 15.3
4.70   940C6W4P7K-F 1.240 (31.5) 2.126 (54.0) .047 (1.2) 4 38 105 492 16.8

850 Vdc (450 Vac)
.15   940C8P15K-F .512 (13.0) 1.339 (34.0) .032 (.8) 8 21 713 107 5.8
.22   940C8P22K-F .610 (15.5) 1.339 (34.0) .040 (1.0) 8 22 713 157 6.4
.33   940C8P33K-F .709 (18.0) 1.339 (34.0) .040 (1.0) 7 23 713 235 7.5
.47   940C8P47K-F .827 (21.0) 1.339 (34.0) .040 (1.0) 5 24 713 335 9.8
.68   940C8P68K-F .965 (24.5) 1.339 (34.0) .047 (1.2) 4 26 713 485 12.0

1.00   940C8W1K-F .886 (22.5) 1.811 (46.0) .047 (1.2) 5 30 400 400 11.5
1.50   940C8W1P5K-F 1.063 (27.0) 1.811 (46.0) .047 (1.2) 4 32 400 600 14.3
2.00   940C8W2K-F 1.201 (30.5) 1.811 (46.0) .047 (1.2) 3 34 400 800 17.9
2.20   940C8W2P2K-F 1.260 (32.0) 1.811 (46.0) .047 (1.2) 3 34 400 880 18.4
2.50   940C8W2P5K-F 1.339 (34.0) 1.811 (46.0) .047 (1.2) 3 35 400 1000 19.1

Complies with the EU Directive 2002/95/EC requirement restricting the use of Lead (Pb), 
Mercury (Hg), Cadmium (Cd), Hexavalent chromium (Cr(VI)), PolyBrominated Biphenyls 
(PBB) and PolyBrominated Diphenyl Ethers (PBDE).

CDE



  CDE Cornell Dubilier•1605 E. Rodney French Blvd.•New Bedford, MA 02740•Phone: (508)996-8561•Fax: (508)996-3830 www.cde.com

IRMS

Catalog Typical Typical 70 ºC
Cap. Part Number D L d ESR ESL dV/dt I peak 100 kHz
(µF) Inches (mm) Inches (mm) Inches (mm) (mΩ) (nH) V/µs (A) (A)

1000 Vdc (500 Vac)
.15   940C10P15K-F .591 (15.0) 1.339 (34.0) .040 (1.0) 7 22 856 128 6.7
.22   940C10P22K-F .689 (17.5) 1.339 (34.0) .040 (1.0) 7 23 856 188 7.4
.33   940C10P33K-F .807 (20.5) 1.339 (34.0) .040 (1.0) 6 24 856 283 8.8
.47   940C10P47K-F .945 (24.0) 1.339 (34.0) .047 (1.2) 5 26 856 402 10.6
.68   940C10P68K-F 1.102 (28.0) 1.339 (34.0) .047 (1.2) 5 27 856 582 11.7
1.00   940C10W1K-F 1.024 (26.0) 1.811 (46.0) .047 (1.2) 5 32 480 480 12.5
1.50   940C10W1P5K-F 1.220 (31.0) 1.811 (46.0) .047 (1.2) 4 34 480 720 15.6
2.00   940C10W2K-F 1.398 (35.5) 1.811 (46.0) .047 (1.2) 3 36 480 960 19.6

1200 Vdc (500 Vac)
.10   940C12P1K-F .610 (15.5) 1.339 (34.0) .040 (1.0) 9 22 1142 114 6.1
.15   940C12P15K-F .728 (18.5) 1.339 (34.0) .040 (1.0) 7 23 1142 171 7.6
.22   940C12P22K-F .846 (21.5) 1.339 (34.0) .040 (1.0) 7 24 1142 251 8.4
.33   940C12P33K-F .787 (20.0) 1.811 (46.0) .040 (1.0) 7 29 640 211 9.0
.47   940C12P47K-F .906 (23.0) 1.811 (46.0) .047 (1.2) 7 30 640 301 9.8
.68   940C12P68K-F 1.063 (27.0) 1.811 (46.0) .047 (1.2) 6 32 640 435 11.7
1.00   940C12W1K-F 1.299 (33.0) 1.811 (46.0) .047 (1.2) 5 35 640 640 14.5
1.50   940C12W1P5K-F 1.378 (35.0) 2.126 (54.0) .047 (1.2) 4 39 502 754 17.9

1600 Vdc (630 Vac)
.10   940C16P1K-F .709 (18.0) 1.339 (34.0) .040 (1.0) 7 23 1427 143 7.5
.15   940C16P15K-F .846 (21.5) 1.339 (34.0) .040 (1.0) 5 24 1427 214 9.9
.22   940C16P22K-F 1.004 (25.5) 1.339 (34.0) .047 (1.2) 7 26 1427 314 9.3
.33   940C16P33K-F .925 (23.5) 1.811 (46.0) .047 (1.2) 7 31 800 264 10.0
.47   940C16P47K-F 1.083 (27.5) 1.811 (46.0) .047 (1.2) 6 32 800 376 11.8
.68   940C16P68K-F 1.280 (32.5) 1.811 (46.0) .047 (1.2) 6 35 800 544 13.1

1.00   940C16W1K-F 1.535 (39.0) 1.811 (46.0) .047 (1.2) 5 37 800 800 16.2
1.50   940C16W1P5K-F 1.654 (42.0) 2.126 (54.0) .047 (1.2) 4 42 628 942 20.1

2000 Vdc (630 Vac)
.022   940C20S22K-F .453 (11.5) 1.339 (34.0) .032 (.8) 35 6 1712 38 2.6
.033   940C20S33K-F .531 (13.5) 1.339 (34.0) .032 (.8) 20 21 1712 57 3.8
.047   940C20S47K-F .591 (15.0) 1.339 (34.0) .040 (1.0) 12 22 1712 80 5.2
.068   940C20S68K-F .689 (17.5) 1.339 (34.0) .040 (1.0) 8 23 1712 116 6.9
.100   940C20P1K-F .827 (21.0) 1.339 (34.0) .040 (1.0) 7 24 1712 171 8.3
.150   940C20P15K-F .768 (19.5) 1.811 (46.0) .040 (1.0) 7 29 960 144 8.9
.220   940C20P22K-F .866 (22.0) 1.811 (46.0) .040 (1.0) 8 30 960 211 9.0
.330   940C20P33K-F 1.063 (27.0) 1.811 (46.0) .047 (1.2) 8 32 960 317 10.1
.470   940C20P47K-F 1.260 (32.0) 1.811 (46.0) .047 (1.2) 6 34 960 451 13.0
.560   940C20P56K-F 1.220 (31.0) 2.126 (54.0) .047 (1.2) 7 37 754 422 12.6
.680   940C20P68K-F 1.339 (34.0) 2.126 (54.0) .047 (1.2) 6 39 754 513 14.3
1.00   940C20W1K-F 1.614 (41.0) 2.126 (54.0) .047 (1.2) 5 42 754 754 17.7

3000 Vdc (750 Vac)
.010   940C30S1K-F 0.453 (11.5) 1.339 (34.0) .032 (.8) 60 20 2568 26 2.0
.015   940C30S15K-F 0.531 (13.5) 1.339 (34.0) .032 (.8) 40 21 2568 39 2.7
.022   940C30S22K-F 0.61 (15.5) 1.339 (34.0) .040 (1.0) 25 22 2568 57 3.6
.033   940C30S33K-F 0.709 (18.0) 1.339 (34.0) .040 (1.0) 14 23 2568 85 5.3
.047   940C30S47K-F 0.65 (16.5) 1.811 (46.0) .040 (1.0) 14 28 1440 68 5.7
.068   940C30S68K-F 0.748 (19.0) 1.811 (46.0) .040 (1.0) 12 29 1440 98 6.7
.100   940C30P1K-F 0.886 (22.5) 1.811 (46.0) .047 (1.2) 10 30 1440 144 8.1
.150   940C30P15K-F 1.063 (27.0) 1.811 (46.0) .047 (1.2) 8 32 1440 216 10.1

Type 940C High dV/dt, Round Polypropylene Film Capacitors
Ratings                                                                         
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B. Matlab Files

Solve SEPIC TF Symbolic.m

% Title: Solve_SEPIC_TF_Symbolic

% Description: Solve TF for the SEPIC converter with the symbolic math

% toolbox

%

% Autor: Julia Delos Ayllon

% Mail: jdelos.etsetb@gmail.com

%

tic %Start timer

clear %Clear Workspace

syms v1 v2 i1 i2 C1 C2 L1 L2 D Dp E e d R s %Define the Symbolic variables

%Symbolic variables definition:

% Small Signla Variables:

% v1 => C1 voltage

% v2 => C2 voltage

% i1 => L1 current

% i2 => L2 current

% e => Vin

% d => duty cycle

% Steady State Varaibles

% D => duty cycle

% E => input voltage

% Parameters

% C1, C2 => Capacitors

% L1, L2 => Inductors

% R => Load

%Matrix represetnation of the state equations

% 0 = A * x + B

% Where:

% x => state variables vector

% A => state variables constants
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B. Matlab Files

% B => independent vaiables

x = [v1; v2; i1; i2];

A = [-s*C1 0 Dp -D; 0 -(s*C2+1/R) 0 -1; -Dp 0 -s*L1 0; D 1 0 -s*L2 ];

B = [-(E/R*D/Dp^2)*d; 0; e + d*E/Dp; +d*E/Dp];

StateEq= A * x + B;

%Solve the system for the control transfer functions

%Hence we have H(s)= state_var/d ,when e=0

StateCtr = subs(StateEq,[e d],[0 1]);

Hcrt_cuk = solve(StateCtr,v1,v2,i1,i2); %Solve the system

Gcrt_cuk = collect(Hcrt_cuk.v2,’s’); %Isolate the TF control-to-output

pretty(Gcrt_cuk)

%Solve the system for the input to output transfer functions

%hence we have H(s)= state_var/e ,when d=0

StateOut = subs(StateEq,[e d],[1 0]);

Hout_cuk = solve(StateOut,v1,v2,i1,i2); %Solve the system

Gout_cuk = collect(Hout_cuk.v2,’s’); %Isolate the TF input-to-output

pretty(Gout_cuk)

toc

Solve Cuk TF Symbolic.m

% Title: Solve_Cuk_TF_Symbolic

% Description: Solve TF for the Cúk converter with the symbolic math

% toolbox

%

% Autor: Julia Delos Ayllon

% Mail: jdelos.etsetb@gmail.com

%
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tic %Start timer

clear %Clear Workspace

syms v1 v2 i1 i2 C1 C2 L1 L2 D Dp E e d R s %Define the Symbolic variables

%Symbolic variables definition:

% Small Signla Variables:

% v1 => C1 voltage

% v2 => C2 voltage

% i1 => L1 current

% i2 => L2 current

% e => Vin

% d => duty cycle

% Steady State Varaibles

% D => duty cycle

% E => input voltage

% Parameters

% C1, C2 => Capacitors

% L1, L2 => Inductors

% R => Load

%Matrix represetnation of the state equations

% 0 = A * x + B

% Where:

% x => state variables vector

% A => state variables constants

% B => independent vaiables

x = [v1; v2; i1; i2];

A = [-s*C1 0 Dp -D; 0 -(s*C2+1/R) 0 -1; -Dp 0 -s*L1 0; D 1 0 -s*L2 ];

B = [-(E/R*D/Dp^2)*d; 0; e + d*E/Dp; +d*E/Dp];

StateEq= A * x + B;

%Solve the system for the control transfer functions

%Hence we have H(s)= state_var/d ,when e=0

StateCtr = subs(StateEq,[e d],[0 1]);
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Hcrt_cuk = solve(StateCtr,v1,v2,i1,i2); %Solve the system

Gcrt_cuk = collect(Hcrt_cuk.v2,’s’); %Isolate the TF control-to-output

pretty(Gcrt_cuk)

%Solve the system for the input to output transfer functions

%hence we have H(s)= state_var/e ,when d=0

StateOut = subs(StateEq,[e d],[1 0]);

Hout_cuk = solve(StateOut,v1,v2,i1,i2); %Solve the system

Gout_cuk = collect(Hout_cuk.v2,’s’); %Isolate the TF input-to-output

pretty(Gout_cuk)

toc
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