View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UPCommons. Portal del coneixement obert de la UPC

Resource management on Cloud systems with
Machine Learning

Master thesis
Zhenyu Fang

fangzhenyufzy@gmail.com
Master in Information Technology
Barcelona School of Informatics

Technical University of Catalonia

Advisor: Ricard GavaldaMestre

Co-Advisor: Jordi Torres Virals

July, 2010

https://core.ac.uk/display/41800344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Machine Learning techniques based on Weka are adopted to build a middleware
platform called “SysWeka ", which extends Weka capabilities and provide a software
interface for usage by higher application for managing resources on cloud systems.
This work is based on Javier Alonso s and Josep Llu & Berral 5 doctoral theses works.
In this work, three different machine learning methodologies are employed to make
classifications and predictions from source datasets; these predictive results can be
used in distributed decision systems. Particularly, the confidence prediction and the
study about Importance-Aware Linear Regression involve innovative application
usage and a promising research. The experimental evaluation platform offers here
contains detailed performance estimation and evaluation of referred methods. It is
expected that this framework provides a fast and easy approach to build applications
based on Machine Learning.

Contents

1 Introduction

1.1 Project background

1.2 Project motivation

1.3 Project objectives

1.4 Project environment
1.5 Document Organization

2 State of the Art

2.1 Cloud systems
2.2 Data mining
2.3 Resource management with machine learning

3 Machine Learning techniques

3.1 Linear Regression
3.2 Decision Tree and Model Tree
3.3 Bayesian Networks

4 The SysWeka Platform

4.1 Framework description
4.2 Prediction components
4.3 Confidence Prediction
4.4 Importance-Aware Linear Regression

5 Experimental Evaluation

5.1 Experimental prediction with diverse Machine Learning methods
5.2 Confidence Prediction experiments

5.3 Evaluation on Importance-Aware Linear Regression

5.4 General Practice

6 Conclusions

6.1 Conclusions
6.2 Future work
6.3 Acknowledgements

7 Appendix

7.1 Model structures

7.2 Bayesian network prediction results

7.3 Confidence prediction results with varied methods
7.4 Numeric and nominal class confidence prediction
7.5 Importance-Aware Linear Regression model

Chapter 1

Introduction

1.1 Project background

With progressive spotlight on cloud computing as a possible solution for a flexible,
on-demand computing infrastructure for lots of applications, many companies and
unions have joined the tendency. Obviously, cloud computing have been recognized
as a model in support of services. Within that cloud system, massive distributed data
center infrastructure, virtualized physical resources, virtualized middleware platform
as well as applications are all being provided and consumed as services.

Since large numbers of data processed and the energy resources cost generated
have become a major economical and environmental factor, Green IT [1] has been put
forward as a solution to lessen IT departments’ cost. Therefore, it is crucial to obtain a
rational prediction from this complicated system in order to achieve better
management.

To make the data center more economical and reduce the environmental impact,
framework that can highly optimize energy efficiency has been proposed by Josep
Llu® Berral [2], from Technical University of Catalonia, where a framework was
proposed that provides an intelligent consolidation methodology using different
techniques including Machine Learning.

On the other hand, the growing complex of modern computer systems has lead to
increasingly software faults. Just like the operation systems, application platforms
have become more functional, extensible, complicated and even interact with each
other, which greatly increase the software-level errors. Therefore, plenty of techniques
have been researched and developed to avoid software failures. General bug-fixed
mode cannot catch the pace of modern on-demand system, Machine Learning, model
construction and prediction strategy are now proposed to address this tough problem.

As Javier Alonso’s works described in [3] [4], adaptive software aging prediction
based on Machine Learning is proposed in [3]. A series system metrics are used to
predict software aging time, which is an important foundation for this project.

1.2 Project motivation

Machine Learning contains massive advantageous methods to make classification and
prediction. Weka is a data mining and Machine Learning tools written in Java that
involves API interface and easy extensibility. This tool is appropriate for common
experiments and testing manually. However, our goal is to do prediction automatically
and more general for the energy efficiency and software failures like scenarios.

A platform should be constructed to meet these requirements and be extensible as
well. Therefore, further applications using machine learning can just interact with this
platform and call the functions directly without operating from raw data. This can
provide more general view from application layer and hide specific machine learning
algorithms, which improves application efficiency and make it easy to start.

1.3 Project objectives

This project is focusing on building a software platform for making developments in
cloud computer systems to achieve decision-making prediction, which utilizes diverse
Machine Learning techniques and provides a software interface for prediction
operation.

This work is based on the idea proposed by Josep Llu® Berral [2] and Javier
Alonso [3], for this project, Machine Learning is the key point to enhance the
prediction accuracy and construct the components for flexible and general usage. Also
data mining and mathematical methodologies are applied to gather information,
implement and promote the core functionality.

The objective of this work is to offer an extensible middleware that uses different
Machine Learning techniques to provide functionality of building models, prediction,
evaluation and performance analysis based on proposed framework. Those Cloud
applications can work with these interfaces without even realizing certain low level
infrastructure details, which causes high transparence and convenience for massive
Cloud application development.

The middleware is designed and built between the lower Machine Learning
infrastructures and higher cloud applications, where prediction accuracy, extensible
functionality, confidence prediction and evaluation measurements are developed to
construct the extension of the existing standard. Data gathered from emulator [3] is
regarded as input knowledge and will be modeled with different Machine Learning
algorithms including Linear Regression, M5P and Bayesian networks. Predicting
instances to obtain predictive results and confidence after modeling data can acquire
prediction of future states which helps to make wise decision for the higher cloud
applications.

Within this middleware, Weka is adopted as a communication interface to the
original dataset and offers well-defined APl to manipulate building models and

classification.

1.4 Project Environment

This project is developed in the framework of a multidisciplinary effort started
approximately three years ago by researchers at the Computer Architecture
Department (DAC) of UPC, the Software department (LSI) of UPC, and the
Barcelona Supercomputing Center (BSC). One of the advisors of this thesis, Professor
Jordi Torres, belongs to the High Performance Computing Group of DAC, and
manager for Autonomic Systems and eBusiness Platforms research line in BSC. The
other advisor of this thesis, Professor Ricard Gavaldd belongs and currently
coordinates the LARCA research group of UPC, whose main line of research is the
theory and applications of machine learning and data mining. Recently, both teams
have investigated the role of machine learning and data mining to build self-managing
systems, with emphasis on achieving efficiency without compromising performance.

As part of this research effort, there are two ongoing Ph.D. theses co-advised by
professors Torres and Gavalda The Ph.D. thesis of Javier Alonso, to be defended in a
few months, deals with ways of achieving high-availability in cluster systems, and in
particular of mitigating the effects of software aging in web servers; to this end, it is
essential to be able to predict the effect of software aging and oncoming machine
crashes, for which machine learning techniques are particularly applicable. The Ph.D.
thesis of Josep LIu® Berral, currently taking shape, will deal with the efficient
scheduling of workloads and resource allocation in virtualized cloud environments;
there, it is crucial to be able to predict the variation and resource consumption of
incoming workloads, as well as the effect of workload variation and resource
allocation on the performance of both virtual and physical machines.

The goals of this Master thesis can be viewed as providing some bridge between
existing machine learning frameworks (specifically, Weka) and the specific, not
totally standard, machine learning requirements of these Ph.D. Thesis and the ongoing
research project.

1.5 Document Organization

The document is structured as follows: In chapter 2, the state of the art in Resource
management on Cloud systems with machine learning is shown. In chapter 3, three
main Machine Learning methodologies are explained. Chapter 4 describes the work in
this project, SysWeka Platform. Chapter 5 illustrates experimental evaluation on this
platform in detail. In chapter 6, some conclusions and expectation on future work are
presented. Finally, chapter 7 as Appendix involves numerous experimental results,
model structures and datasets representation.

Chapter 2

State of the Art

This chapter explains the state of the art of Cloud systems, data mining and resource
management with Machine Learning, from the whole complex systems to key
technologies in resource management.

2.1 Cloud systems

Cloud Computing has become one of the popular buzzwords in the IT area after
Web2.0. This is not a new technology, but the concept that binds different existed
technologies altogether including Grid Computing, Utility Computing, distributed
system, virtualization and other mature technique. As a key service delivery platform,
Cloud computing systems provide environments to enable resource sharing in terms
of scalable infrastructures, middleware, application development platforms and
value-added business applications. Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (laaS) are three basic service layer [5].

Softwdare as
a Service

(Saas)
Platformasa
Service

(Paas)
Infrastructureasa
Service

(1aas)

Figure 2.1: Cloud system architecture

® SaaS: This layer is very familiar to the web users that hosts applications and
provides on-demand services to users. Applications delivered via the SaaS

model benefit consumers by relieving them from installing and maintaining
the software and they can be paid by resource usage or license models [5].

PaaS: This is the layer in which we see application infrastructure emerge as a
set of services and support applications. In order to achieve the scalability
required within a cloud, the different services offered here are often
virtualized. Examples of offerings in this part of the cloud include IBM
WebSphere Application Server virtual images, Amazon Web Services, Boomi,
Cast Iron, and Google App Engine. Platform services enable consumers to be
sure that their applications are equipped to meet the needs of users by
providing application infrastructure based on demand [5].

laaS: The bottom layer of the cloud is the infrastructure services layer. Here a
set of physical assets such as servers, network devices and storage disks
offered as provisioned services to consumers. Examples of infrastructure
services include IBM BlueHouse, VMWare, Amazon EC2, Microsoft Azure
Platform, Sun ParaScale Cloud Storage, and more. Infrastructure services
address the problem of properly equipping data centers by assuring
computing power when needed. In addition, due to the fact that virtualization
techniques are commonly employed in this layer, cost savings brought about
by more efficient resource utilization can be realized [5].

According to [6], typically there are four types of resources that can be
provisioned and consumed over the Internet. They can be shared among users by
leveraging economy of scale. Provisioning is a way of sharing resources with
requesters over the network. One of the major objectives of Cloud Computing is to
leverage Internet or Intranet to provision resources to users.

Infrastructure resources contain computing power, storage and physical
machine and networks provision. For instance, Amazon EC2 provides web
service interface to easily request and configure capacity online [7].

Software resources include middleware and development resources. The
middleware consists of cloud-centric operating systems, application servers,
databases and others. The development resources comprehend design
platforms, development, testing, and deployment tools.

Application resources mean that various applications have been moved into
cloud environment and delivered as a service known as SaaS as explained
above. For example, Google has adopted the Cloud Computing platform to
offer many Web-based applications for business and personal usage [8].
Business Process is a set of coordinated tasks and activities, which represents
certain business service shown as a workflow. Business Process Management
tools integrated in cloud systems can reuse, compose and communicate with
these processes.

2.2 Data mining

Data mining is a practical technology to analyze and extract patterns from raw data,
which can transform the original data into knowledge and beneficial information. The
idea is to build computer programs that sift through databases automatically, seeking
regularities or patterns. Strong patterns, if found, will likely generalize to make
accurate predictions on future data.

In data mining, the data is stored electronically and the search is automated or at
least augmented by computer. It has been estimated that the amount of data stored in
the world’s databases doubles every 20 months. As the flood of data swells and
machines that can undertake the searching become commonplace, the opportunities
for data mining increase. As the world grows in complexity, overwhelming us with
the data it generates, data mining becomes our only hope for elucidating the patterns
that underlie it. Intelligently analyzed data is a valuable resource. It can lead to new
insights and, in commercial settings, to competitive advantages [11].

There have been some efforts to define standards for data mining, for example the
1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0)
and the 2004 Java Data Mining standard (JDM 1.0). These are evolving standards;
later versions of these standards are under development. Independent of these
standardization efforts, freely available open-source software systems like the R
Project, Weka, KNIME, RapidMiner and others have become an informal standard for
defining data-mining processes. The first three of these systems are able to import and
export models in PMML (Predictive Model Markup Language) which provides a
standard way to represent data mining models so that these can be shared between
different data mining applications [9].

In this project, Weka (Waikato Environment for Knowledge Analysis) is used to
perform data mining and Machine Learning functions, which is a popular suite of
Machine Learning software written in Java, developed at the University of Waikato,
New Zealand [10]. The Weka workbench contains a collection of visualization tools
and algorithms for data analysis and predictive modeling, together with graphical user
interfaces for easy access to this functionality. Weka supports several standard data
mining tasks, more specifically, data preprocessing, clustering, classification,
regression, visualization, and feature selection. All of Weka's techniques are
predicated on the assumption that the data is available as a single flat file or relation,
where each data point is described by a fixed number of attributes.

2.3 Resource management with machine learning

Machine Learning is concerned with the design and development of algorithms that
allow computers to evolve behaviors based on empirical data, such as from sensor

http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
http://en.wikipedia.org/wiki/Java_Data_Mining
http://en.wikipedia.org/wiki/R_Project
http://en.wikipedia.org/wiki/R_Project
http://en.wikipedia.org/wiki/Weka_(machine_learning)
http://en.wikipedia.org/wiki/KNIME
http://en.wikipedia.org/wiki/RapidMiner
http://en.wikipedia.org/wiki/PMML
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/New_Zealand
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Predictive_modeling
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Preprocessing
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Feature_selection
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Sensor

data or databases. A major focus of Machine Learning research is to automatically
learn to recognize complex patterns and make intelligent decisions based on data; the
difficulty lies in the fact that the set of all possible behaviors given all possible inputs
is too complex to describe generally in programming languages, so that in effect
programs must automatically describe programs.

There are two main types of Machine Learning algorithms. In this work,
supervised learning is adopted here to build models from raw data and perform
regression and classification.

® Supervised learning: It deduces a function from training data that maps
inputs to the expected outcomes. The output of the function can be a
predicted continuous value (called regression), or a predicted class label from
a discrete set for the input object (called classification). The goal of the
supervised learner is to predict the value of the function for any valid input
object from a number of training examples. The most widely used classifiers
are the Neural Network (Multilayer perceptron), Support Vector Machines,
k-nearest neighbor algorithm, Regression Analysis, Bayesian statistics and
Decision tree.

® Unsupervised learning: It determines how the inputs are formed like
clustering where learner is given unlabeled examples. Unsupervised learning
is closely related to the problem of density estimation in statistics. However
unsupervised learning also encompasses many other techniques that seek to
summarize and explain key features of the data. Some forms of unsupervised
learning is clustering, self-organizing map.

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Classification_(machine_learning)
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://en.wikipedia.org/wiki/Support_Vector_Machines
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Bayesian_statistics
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Self-organizing_map

Chapter 3

Machine Learning techniques

In this chapter we describe some machine learning techniques, the ones that will be
most relevant to our work. Many, many more techniques exist, and the ones we chose
here are neither the most sophisticated, nor necessarily the ones that provide better
accuracy in general. We chose two of them (linear regression and decision trees)
because they were the ones mostly used in our reference works [2,3,4]; additionally,
one of the goals of the thesis was to investigate the use of a third kind of techniques
(Bayesian networks) in the context of computer resource management and prediction.

3.1 Linear Regression

In statistics, linear regression is a staple technique that works with numeric attributes.
It is one method of linear models which model the relationship between a scalar
variable y and one or more variables denoted X and these models depend linearly on
the unknown parameters to be estimated from the data. Generally, linear regression
could refer to a model in which the median or some other quantile of the conditional
distribution of y given X is expressed as a linear function of X.

Linear regression has been used extensively in practical applications, because
models which depend linearly on their unknown parameters are much easier to build
than non-linear ones. Specifically, when the outcome or class and all attributes are
numeric, linear regression is a natural method to consider.

The idea is to express the class as a linear combination of the attributes with
predetermined weights:

Y =W +WwWa; + Weap + ... + Wiak

where y is the class; ai, az... a are the attribute values and wp wi . Wy are weights.
The weights are calculated from the training data. Here the notation gets a little
heavy, because this is a clear way of expression the attribute values for each training
instance. The first instance will have a class, say y™ and attribute values a,, a,?, ..,
al, where the superscript denotes that it is the first example. Moreover, it is

notationally convenient to assume an extra attribute ap whose value is always 1.
So the predicted value for the first instance’s class can be written as:
k

woao®™ + wiar® + woa + .. + wia = Z W}.aj ’
i=o

This is the predicted, not the actual, value for the first instance’s class. The
difference between the predicted and the actual values the interest one. The method of
linear regression is to calculate the coefficients wj; there are k + 1 of them, to
minimize the sum of the square of these differences over all the training instances.
Suppose there are n training instances; denote the ith one with a superscript (i). Then
the sum of the squares of the differences is

n k

E S _ E ()2
(} E W}.aj j

i=1 J=o

where the expression inside the parentheses is the difference between the ith
instance’s actual class and its predicted class. This sum of squares is what we have to
minimize by choosing the coefficients appropriately.

Numerous procedures have been developed for parameter estimation and
inference in linear regression. These methods differ in computational simplicity of
algorithms, presence of a closed-form solution, robustness with respect to
heavy-tailed distributions, and theoretical assumptions needed to validate desirable
statistical properties such as consistency and asymptotic efficiency.

Ordinary least squares (OLS) is the simplest and thus very common estimator. It
is conceptually simple and computationally straightforward. OLS estimates are
commonly used to analyze both experimental and observational data. This method
minimizes the sum of squared residuals, and leads to a closed-form expression for the
estimated value of the unknown parameter w.

Often those n equations are stacked together and written in vector form as:

Y=AW +¢ ,
where
vy Ay 1 ai a; Wy £
¥a A, 2 2 W £,
Y= A=z =1 ! Qelw=| 1 ¢ =
" . 1
-h?‘! Jn 1 ﬂ.g e ﬂ.: Wk E?‘!

® ;is called dependent variable which represent the real class value with instance i.

® The matrix A is called independent variables which shows each attribute value
with each instance.

® W is a k +1 dimensional parameter vector. Its elements are called effects, or
regression coefficients.

® = iscalled error term or noise.

According to the OLS algorithm, the unknown parameter W can be calculated as:
W= (4'4)7'AY

where denotes matrix transpose and ™ is matrix inversion.

Linear regression is an excellent, simple method for numeric prediction, and it
has been widely used in statistical applications for decades. Of course, linear models
suffer from the disadvantage of, well, linearity. If the data exhibits a non-linear
dependency, the best-fitting straight line will be found, where “best” is interpreted as
the least mean-squared difference. This line may not fit very well. However, linear
model serve well as building blocked for more complex learning methods.

3.2 Decision Tree and Model Tree

A “divide-and-conquer” approach to the problem of learning from a collection of
independent instances leads naturally to a style of representation called a decision tree.
Decision tree is one of the most popular classification algorithms in Data mining and
Machine Learning, which is a tree-structured model of a set of attributes to test in
order to predict the output. Decision tree learning is a methodology that uses inductive
inference to approximate a target function, which will produce discrete values. It is
widely used, robust to noisy data and considered a practical method for learning
disjunctive expressions [11].

Nodes in a decision tree involve testing a particular attribute. Usually, the test at a
node compares an attribute value with a constant. However, some trees compare two
attributes with each other, or use some function of one or more attributes. Leaf nodes
give a classification that applies to all instances that reach the leaf or a set of
classifications, or a probability distribution over all possible classifications. To
classify an unknown instance, it is routed down the tree according to the values of the
attributes tested in successive nodes and when a leaf is reached, the instance is
classified according to the class assigned to the leaf [11].

The structure of decision tree is shown below, which is a simple tree generated
with Weka. This example predicts whether the weather is good enough to play outside.
There are five nominal attributes in all (outlook, temperature, humidity, windy, play)
and play is the class to be predicted. And the decision tree learning algorithm just
selects four attributes including class to construct the tree with five leaves and eight
nodes.

Trea View

outlook
M
=sunny = overcast =rainy
T | ﬁhhx“ax
hurnidity yes (4.0) windy
A A
= high = narmal =TRLIE = FALSE

na {;I;} y;\{z.ﬂ} na {;;} 'g.r;a\{S.El}

Figure 3.1: Example decision tree used to predict playing outside or not according to
weather

If the attribute that is tested at a node is a nominal one, the number of children is
usually the number of possible values of the attribute. If the attributes is numeric, the
test at a certain node usually determines whether its value is greater or less than a
predetermined constant, giving a two-way split.

This kind of decision trees are designed for predicting categories rather than
numeric quantities. When it comes to predict numeric quantities, the same kind of tree
can be used, but the leaf nodes of the tree should contain a numeric value that is the
average of all the training set values to which the leaf applies. Since statisticians use
term regression for the process of computing an expression that predicts a numeric
quantity, decision trees with averaged numeric values at leaves are called Regression
Tree [11].

Figure 3.2 shows a linear regression equation for class and Figure 3.3 shows a
regression tree. The leaves of the tree are numbers that represent the average outcome
for instances that reach the leaf. The tree is much larger and more complex than the
regression equation. And regression tree is more accurate because a simple linear
model poorly represents the data in this problem. Figure 3.4 is a tree whose leaves
contain linear expressions, that is, regression equations, rather than single predicted
value. This is called Model Tree. Figure 3.4 involves five linear models that belong to
the five leaves, labeled from LM1 to LM5. The model tree approximates continuous
functions by linear models.

class =
0.0431 * MYCT +
0.0152 * MMIN +
0.0056 * MMAY +
0.6295 * CACH +
1.4599 % CHMLX +
-56.075

Figure 3.2: Linear regression

Tree Yiew

-

= 48000 ==48000

<75 =75
assoregranatm s
=12000 == 12000
= BB == Gf =28 == 28

< 56 == 5h

e 10 20080 5 T

=18485 ==184845

~,

5114483100026 83: 20987 10807 161 44

Tree ¥Wiew

LM num:

LM num:

class =

LM nuim:
class =

LM nuim:
class =

LM nuim:
class =

Figure 3.3: Regression tree

==28000 =28000

=13240

1

-0.0055 * MYCT + 0.0013 * MMIN + 0.0020 * MMAX

+0.8007 * CACH + 0.4015 * CHMAX + 11.0971

2

-1.0307 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX

+0.7866 * CACH - 2.4503 * CHMIN + 1.1507 * CHMAX + 708672

3

11057 * MYCT - 0.0086 * NMIN + 0.0031 * NMAX

+0.7095 * CACH - 2.4503 * CHMIN + 1.1507 * CHMAX + 830016

4

-0.8813 * MYCT + 0.0086 * MMIN + 0.0031 * MMAX

+0.6547 * CACH - 2.3561 * CHMIN + 1.1:97 * CHMAX + 82,5725

5

-0.4882 * MYCT + 0.0218 * MMIN + 0.003 * MMAX

+0.3865 * CACH - 1.3252 * CHMIN = 3.3671 * CHMAX - 51.8474
Figure 3.4: Model tree

The problem of constructing a decision tree can be expressed recursively. First,
select an attribute to place at the root node and make one branch for each possible
value. This splits up the example set into subsets, one for every value of the attribute.
Now the process can be repeated recursively for each branch, using only those
instances that actually reach the branch. If at any time all instances at a node have the
same classification, stop developing that part of the tree. One practical algorithm is
call C4.5 that is a series of improvements to ID3 which was developed and refined
over many years by J.Ross Quinlan of the University of Sydney, Australia [12]. In
Weka, J48 classifier implements the C4.5 algorithm and M5P implements the model
tree method.

3.3 Bayesian Networks

A Bayesian network, belief network or directed acyclic graphical model is a
probabilistic graphical model that represents a set of random variables and their
conditional independencies via a directed acyclic graph (DAG). Bayesian networks
are drawn as a network of nodes, one for each attribute, connected by directed edges
in such a way that there are no cycles — a directed acyclic graph [11].

Formally, Bayesian networks are directed acyclic graphs whose nodes represent
random variables in the Bayesian sense: they may be observable quantities, latent
variables, unknown parameters or hypotheses. Edges represent conditional
dependencies; nodes which are not connected represent variables which are
conditionally independent of each other. Each node is associated with a probability
function that takes as input a particular set of values for the node's parent variables
and gives the probability of the variable represented by the node [11].

From [11], we can acquire definition and explanation of Bayesian network. Some
contents are as follows.

Probability estimates are often more useful than plain predictions. They allow
predictions to be ranked, and their expected cost to be minimized. In fact, there is a
strong argument for treating classification learning as the task of learning class
probability estimates from data. What is being estimated is the conditional probability
distribution of the values of the class attribute given the values of the other attributes.
The classification model represents this conditional distribution in a concise and
easily comprehensible form.

Given values for each of a node’s parents, knowing the values for any other
ancestors does not change the probability associated with each of its possible values,
which means ancestors do not provide any information about the likelihood of the
node’s values over and above the information provided by parents. This can be
expressed:

Pr [node | ancestors] = Pr [node | parents]

http://en.wikipedia.org/wiki/Graphical_model
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Conditional_independence
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Probability_function
http://en.wikipedia.org/wiki/Probability_function
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Directed_acyclic_graphs

which must hold for all values of the nodes and attributes involved. In statistics this
property is called conditional independence. Multiplication is valid provided that each
node is conditionally independent of its grandparents, great-grandparents and so on,
given its parents. The multiplication step results directly from the chain rule in
probability theory, which states that the joint probability of n attributes a; can be
decomposed into this product:

(-

Pr [a11a21...,an] = Hpr[ﬂ’ilﬂ’i—ii"'iﬂ’l]

i=1

The decomposition holds for any order of the attributes. Because Bayesian network is
an acyclic graph, its nodes can be ordered to give all ancestors of node a; indices
smaller than i. Then, because of the conditional independence assumption,

Pr[ay,az,...,a0] = 1_[Prla;la,_y,...,a,] = 1_[Pr[a,|a;s parents]
i=1 i=1
which is exactly the multiplication rule that we applied previously.
Therefore,

PXt=X1,e, Xn =Xn) = 1_[PI:X:: =Xy | Xps1 = Xpage e Xy = 2,)
=1
= 1_[P(X, =x,| X; = x; for each X; which is a parent of X)
=1

The way to construct a learning algorithm for Bayesian networks is to define two
components: a function for evaluation a given network based on the data and a
method for searching through the space of possible networks. The quality of a given
network is measured by the probability of the data given the network.

Figure 3.5 shows the Bayesian network Graph with the weather sample generated
by Weka. Figure 3.6 illustrates the Probability Distribution Table for node
“temperature” that contains three nominal values: hot, mild and cool. These
probabilities are calculated given the value of the parents of “temperature” — “play”
and “outlook”.

outlook

temperature

humidity windy

Figure 3.5: Bayesian network Graph with the weather sample.

play outlook het mild coal

YES SURMY 0. 143 0.429 0,423
0. 455 0. 273 0. 273

Yes rainy 0111 0. 556 0. 333
0. 556 0.333 0111

no overcast 0. 333 0.333 0.333
0. 143 0. 4249 0. 429

Figure 3.6: Probability Distribution Table for node “temperature”

One simple and fast learning algorithm is call K2 [13], starting with a given
ordering of the attributes. Then it processes each node in turn and greedily considers
adding edges from previously processed nodes to the current one. In each step it adds
the edge that maximizes the network’s score. When there is no further improvement,
attention turns to the next node. One potentially instructive trick is to ensure that
every attribute in the data is in the Markov blanket [14] of the node that represents the
class attribute. A node’s Markov blanket includes all its parents, children and
children’s parents. It can be shown that a node is conditionally independent of all
other nodes given values for the nodes in its Markov blanket [11].

Another good learning method for Bayesian network classifiers is called tree
augmented Na'we Bayes (TAN) [15]. As the name implies, it takes the Na'we Bayes
classifier and adds edges to it. The class attribute is the single parent of each node of a
Naive Bayes network: TAN considers adding a second parent to each node. If the
class node and all corresponding edges are excluded from consideration, and
assuming that there is exactly one node to which a second parent is not added, the
resulting classifier has a tree structure rooted at the parentless node — this is where the
name comes from. For this restricted type of network there is an efficient algorithm
for finding the set of edges that maximizes the network’s likelihood based on

computing the network’s maximum weighted spanning tree. This algorithm is linear
in the number of instances and quadratic in the number of attributes [11].

Bayesian networks are a special case of a wider class of statistical models called
graphical models, which include networks with undirected edges (called Markov
networks). Graphical modes are becoming increasingly popular in the Machine
Learning community today.

Chapter 4

The SysWeka Platform

4.1 Framework description

The SysWeka platform for Systems-oriented Weka is designed and built between the
lower Machine Learning infrastructures and higher cloud applications, which provides
interface for higher software development. Figure 4.1 is the architecture of this
platform. Command Interpreter collects the input and interpret the commands.
General Evaluation utilizes the Prediction and Confidence models to provide general
functionality for evaluation. Prediction and Confidence calculate the predictive values
and confidence values with different classifiers specified in the command. Moreover,
data interface is used to load raw data from source files and categories them into two
types, numeric one and nominal one, which is constructive for prediction and
confidence components. There is another new Importance-Aware Linear Regression
method that is updated from normal linear regression with Importance-Aware feature.

Command Interpreter

General Evaluation
Importance
I - Aware

Linear

Regression

Figure 4.1: SysWeka platform architecture

The following graph is the main class diagram. The Predictor and Command
Interpreter support the user interface of the middleware. Prediction and Confidence
are computed according to the class data type. Also General Evaluation model can be
considered from both nominal and numeric views internally. Actually, in the whole
project environment, data type should be specified. The source data file is generated
by the emulator [4] and is processed in the Prediction or Confidence model to predict
the class values and confidence. General Evaluation is designed for general
confidence prediction, which means that Machine Learning data sample gathered
from all kinds of resources can be tested and evaluated here to obtain the prediction
result directly. This is a common platform to do prediction and confidence
calculations.

Predictor

Commandinterpreter

Ul

®,

Utility PredictionHapdler

Propertyset

O

BasicClassifierHandler

BasicClassifier

\

NominalPrediction

NumericPrediction

NominalConfidence

ConfigénceHandler

main functionality for
TIME Prediction and

Confidence computation

NumericConfidence

ImpLinearRegression

GeneralBasic

GeneralNomConfidence

GeneralHandler

eralHan

evaluation for general
dataset

GeneralNumConfidence

Figure 4.2: SysWeka main class diagram

The Figure 4.3 is the start-up user interface including command explanation and
configuration information.

Welcome to Predictor!

b o o S e S R R
-help / -7 : show the help information

—gquit / - : guit the program

—show : show the configuration

—-reset : reset the configuration to default wvalues

—=set upper xx @ set the upperlimit for R,¥,G decision.default walue:3600
—=zet lower xx : set the lowerlimit for R,¥,G decision.default walue:Z400

—set errorMatrix x ¥ X... : Set 3*3 errorMatrix with 9 nunbers.default walue: 0 3 5 1 0 3 3 10

—-set relativeRate xx : sSet relativeRate.default wvalue: 0.2

—zet precler name -P XX xx .. @ set prediction classifier followed by classifier parameters

—-get confcler name -FP xx xX .. @ Set confidence classifier followed by classifier parameters

—u nuwd nomw (nuweric or nominal) -pf-c(prediction/confidence) -pf/-bfipropertyfilesbatchfile) -source filensam

Classifier name could be one of these: lr/mSpsdt/reptreebn
LinearRegrssion, M5F, DecisionTable, REPTree for numeric prediction
Bayesnet,DecisionTakle for nowinal prediction

0f course,you can add extra classifier but we can't guarantee good results
Default sourcefile is TrainingMIXTHREADSMEMORY.arff

Default property input file is prediction.property

Default batch input file for numeric is NumwericPrediction.arff

Default batch input file for nominal is NowinslPrediction.arff

Default batch output file for nuweric is NumericBatch.arff

Default batch output file for nominal is NominalBatch.arff

—ext nom/num -cf-p -clhname xXx -—Source XXX -prefile xxx -output xxx -label xxx: extension for extra dataset
b o o S e S R R

Figure 4.3: Start-up user interface

4.2 Prediction components

Prediction components provide prediction interface to predict nominal or numeric
class and also evaluate the prediction results from original datasets. These source
datasets are the outcome of Javier Alonso’s works [3] [4]. Those system metrics are
selected to represent the specific field of systems and models are built based on these
attributes to predict the TIME_UNTIL_FAULT class. The work in this paper will
extend and apply to that kind of scenarios.

During this process, we make further development from results of Javier Alonso’s
works. Mainly, TIME_UNTIL_FAULT class is divided into three categories (RED,
YELLOW and GREEN), which can indicate different urgency of application actions.
These categories predicted from TIME_UNTIL_FAULT have different definitions
according to varied applications. Furthermore, these three metrics can donate the
necessity of migrating some VM to other physical machine [2] or necessity of
recovery operation, jobs-rescheduling and booting.

In this paper, RED means this machine will crash within very limited time.
YELLOW means this machine will crash in a certain time, which gives an ordinary
warning to the scheduling system, and GREEN, of course, shows the satisfying
performance of certain machine.

After building and labeling this new class, classifiers should be adopted to
construct new prediction models. We use three main methods here: Linear Regression,
M5P and Bayesian networks, all described in previous section. As is known, linear

regression and M5P are used to predict numeric values, while Bayesian networks
focus on nominal prediction. In order to employ these methodologies, different
strategies are made. Since TIME_UNTIL_FAULT is numeric class, Linear Regression
and M5P can be used directly to predict TIME_UNTIL_FAULT first, and then
TIME_WARNING could be calculated from the TIME_UNTIL_FAULT values. With
Bayesian networks, first, TIME_WARNING is calculated, and then it will be
predicted without TIME_UNTIL_FAULT class.

Internally, Bayesian networks, Decision Table and other nominal prediction
method can be used for Nominal Prediction. And Linear Regression, M5P, Decision
Table, REPTree and other numeric prediction method can be used for Numeric
Prediction for this TIME_WARNING class. Furthermore, after building prediction
models, predictions can be acted through batch file or property file, while batch file
mode is similar as off-line and property file mode is like on-line process.

When it comes to evaluation, relative coefficient is specified to estimate the
relative error rate that is used in numeric prediction to express the relative error.
Because in some cases, errors should be considered with relative rate not exact values.
The relative rate is more suitable for especially large numbers, for instance, given 900
seconds to crash, the predictive time-to-crash is 1500 seconds, this difference, 600
seconds, is more crucial than given 9000 seconds to crash with predictive value 8400
seconds. Consequently, relative error rate is introduced in numeric prediction to
specify the relative error status.

In addition, error metrics are involved when evaluating the TIME_WARNING
predictive results. The different predictive results can have a diverse influence based
on different real values. For example, if the real value is RED and the predictive value
is GREEN, which means the decision system may continue to assign jobs to this
machine and this will of course make machine crash and reduce the availability. So,
this is an important error. On the other hand, if the real value GREEN is predicted as
RED, the decision system may no longer send any jobs to this machine and do
recovery procedures on that machine. This will not badly damage the availability and
performance and it seems to have no influence on the whole system. Considering the
different importance of distinct results could generate, error metrics are required to
adjust the error accuracy.

4.3 Confidence Prediction

Confidence has been defined as “a state of being certain either that a hypothesis or
prediction is correct or that a chosen course of action is the best or most effective” in
science, which is an essential metrics to represent the correctly rate.

Confidence is calculated from the difference of real value and predictive value
assigned from 0 to 1 to indicate the correctly rate of prediction. After acquiring the
confidence values, confidence is selected as the new class to be predicted and models
will be built using original attributes, predictive value and confidence without

previous class—the real value. In this case, there are two models constructed, one to
predict the real value and the other to predict the confidence based on the previous
predictive value. Therefore, we can not only do time-warning prediction but also
measure the predictive result with confidence to reveal its accuracy.

The confidence process can be described as follows:

TIME_WAR | TIME_WAR
Other NING NING

attributes (realvalue (predictive
class for value)
training)
10000 8000
(a)
TIME_WAR | TIME_WAR | Confidence
Other MNING MNING
attributes (realvalue) | (predictive
value)
10000 2000 1
9000 3000 a
(b)
TIME_WAR | Confidence TIME_WAR | Confidence
Other MING (class for Other MING (predictive
attributes (predictive | training) attributes (predictive | walue)
value) value)
2000 1 2000 098
3000 0 3000 012
(c) (d)
Figure 4.4:

(a): set TIME_WARNING as class for training and predict the class value.

(b): add a new numeric attribute Confidence and calculate its value.

(c): remove the real value attribute and set Confidence as class for training.

(d): utilize first model to predict the TIME_WARNING then adopt second model to
predict Confidence.

During Confidence prediction, two different models will be built to predict the
TIME_WARNING and Confidence. Afterwards, we can obtain both predict values
and its confidence according to different attribute values, which improves the
prediction accuracy extraordinarily.

Each instance’s confidence is predicted respectively and whole prediction
confidence of each warning type (RED, YELLOW, and GREEN) is measured as well.

The following chart shows the distribution of prediction results using M5P algorithm
and error metrics with 2751 numbers of instances where the confidence demonstrates
the correctly rate of each category (R-R, Y-Y and G-G).

Matrix information

R Y G Confidence
R 769 103 7 87.4857%
Y 12 281 138 65.1972%
G 0 20 1819 98.5907%

Figure 4.5: Distribution of prediction results using M5P and error metrics

4.4 Importance-Aware Linear Regression

In Section 3.1, we discuss Linear Regression and Ordinary least squares (OLS)
estimator. Here, Importance-Aware features are added to linear regression to support
prediction with different importance of different instances. Since diverse instance may
have varied importance in practical environments, prediction with Importance-Aware
can surely enhance the experience and usage of prediction. Here, we still use Ordinary
least squares (OLS) to estimate the Importance-Aware Linear Regression.

4.4.1 Derivation of the formulas

From Section 3.1, the sum of the squares of the differences is written as:

n k

E (i § '::' 2
Q = [:}:r'-t:l _ Wjﬂ.j: j

i=1 =0

where the expression inside the parentheses is the difference between the ith
instance’s actual class and its predicted class. This sum of squares is what we have to
minimize by choosing the coefficients appropriately.

Here importance metric impg; is added into this formula:

n k
Q= Z imp ;) (v — Z wa)’ (44.1.1)
i=1 i=o

This sum of the product of given importance and squares is what we should minimize
by choosing the coefficients appropriately. Using the same mathematic idea, we let
the first order derivative equal to zero and compute the coefficients w;. That is

a0

—=0,(j=012 ...k
3, =00)

b3

Kk
imp; yta —Z wja}':.i} = .'me,) yl .'me,E}ZW a;

i=1 j=o i=1
()]
aqd _ . () r— —
=2 (*J fmpp ¥ — JIMppWy - — VIMP() Wia)[Vimpgy) = 0
"o i=1
a0 Sy N S —
—— =32 (M" L'mp,:i:,}r':ﬂ' — A ImMpawy . 4 Imp Wka;‘:})(imp E:,a:' z}) 0
Wi i=1
g} (] (] (]
Wazimpu:e} + Wizimpu:e}ﬂ'f} T ot W:{Zimpu:e}ﬂf} = Zimpu:e}}f':ﬂ
i=1 i=1 = i=1
! (] (] !
. (i) (£} () , (2 _ (i) (i)
Wy impya,” + wy me,ﬂ,a:l a,” + ..+ wy impy [cxk)= impy)ya,
i=1 i=1 i=1 i=1

These formulas can be written with matrix form:

r n n n - - n -
Z I‘mp (i) Z meu (e} a’l) Z me{:} ﬂ.:} Z mel::}}rlzij
i=1 i=1 i=1 Wi i=1
n n T n

. (@ (D2 @ o™ . @ ®
imp;ay impyy(ay impya, a; [|w;|= mpe v a;
i=1 i=1 i=1 i=1
I] e W .

Z Impy ‘1:} Z Imp; ﬂff} ﬂ:} Z mp; (rx;‘:}]: Z imp vy ‘}a' Y
“i=1 i=1 i=1 - “i=1 -
ai a; 1 1 1
,. 5 12 n

WedefineA= |1 @1 ™ | then A= [*1

. . .o 0 [imp, 0O 0
Define diagonal matrix T = v : .
0 0 0
0 0 0 imp,

Then

L impy Jimp, .. Jimp,

s T w2 o n
AT = [Vimpiay (Jimpya; .. /imp,a]
T 1 o 2 T =n
Jimpyap Jimp,ap .. /imp aj

I e 1 1

VUTPy IMpP e TP

I~ I~ 2 T 2

Define X = (AT)'=T'(4) =TA=TA= |vIPz HP201 - 1P 0

= _ oo -

Jimp, Lfimp,al .. \/imp, af

X'=AT

So the matrix form can be expressed as follows:

Wg

wy ?1
X' XW=XTY, where W= [Wz| andY=|"?

W, ¥

According to matrix operation, because Rank(X) = k+1, X X is a square matrix of rank
k+1. So X X is a square matrix of full rank. Therefore, the inverse matrix of X X exists.
Then

W= (XX)" X'TY
After matrix inversing and transposing, the coefficient matrix W is acquired, which is
the goal for our Importance-Aware linear regression.

On the other hand, the weights of linear regression without Importance-Aware
can be expressed as follows using the definition above.

W= (A’A) A TY
The two formulas are very similar and the Importance-Aware weighs involve one
additional diagonal matrix T, which means we can build our own linear regression
new version or can modify the Weka source code conveniently.

Chapter 5

Experimental Evaluation

5.1 Experimental prediction with diverse Machine Learning

methods

During the experiments, a source dataset file is used to make further prediction and
analysis. This dataset file is one of Javier Alonso’s works for predicting software time
until crash [3] [4]. There are many system metrics in that dataset file including two
different resources: Threads and Memory, individually or merged, where the numeric
class TIME_UNTIL_FAULT is predicted by those system metrics in Javier Alonso’s
work using M5P methodology. However, these series of experiment focus on
predicting the nominal class TIME_WARNING (R-RED, Y-YELLOW and
G-GREEN) with confidence, performance comparison and accuracy improvements.

Starting from the source dataset file, there are 49 kinds of numeric system metrics
in the model and some of them are listed as follows. Detailed descriptions on these
metrics can be found in [3].

throughput

Reponse_time

Workload

SYSTEM_LOAD
DISC_USAGE

SWAP

PROCESSES
MEMORY_SYSTEM
TOMCAT_MEMORY
THREADS

HTTP_CONNECT
MSYSQL_CONNECT
THREADS_VARIATION_EWMA
EDEN_PERCENTAGE_USED

DIVISION_ATTRIBUTE_EDEN_MEMORY_VARIATION
NORMALIZED INVERSE_EDEN_MEMORY_VARIATION
MEMORY_SYSTEM_EWMA
TOMCAT_MEMORY_EWMA
TOMCAT_MEMORY_VARIATION_EWMA
NORMALIZED SYSTEM_MEMORY_VARIATION_EWMA
OLD_MEMORY_USED
OLD_PERCENTAGE_USED

Table 5.1: Key system metrics in the dataset source file

In respect of TIME_UNTIL_FAULT class, minimum is 0, maximum is 20362,
mean is 7393.124 and standard deviation is 5550.533. Based on upper and lower
thresholds, TIME_UNTIL_FAULT value is transformed into TIME_WARNING value.
In our experiments, the default value of upper limit is 3600 seconds and lower limit is
2400 seconds. Within 2751 instances, there are 610 instances labeled R, 319 instances
labeled Y and 1822 labeled G.

First, linear regression, M5P, and Bayesian network are adopted to show the
different accuracy for prediction. Nominal and numeric prediction can be utilized in

these experiments using different strategies described in Chapter 4.

The details of the Linear Regression Model, M5P Model, and Bayesian network
Model with default setting values, relative rate and error Matrix presented can be

found in Appendix 7.1.

From this experiment, we can get the comparison table as follows:

Linear Regression M5P Bayesian network
Time to build model 0.594 s 1.438s 0.313s
Correlation coefficient | -0.0108 0.9958 NAN
Correctly NAN NAN 92.8753%
Classified Instances
Relative absolute error | 54617311691.7164% | 4.1581% 14.4073%
Relative error 47.8735% 7.5972% NAN
Correctly Prediction | 41.3887% 87.4857% 57.8723%
Rate for R
Correctly Prediction | 10.6886% 65.1972% 74.1772%
Rate for Y
Correctly Prediction | 94.2192% 98.5908% 91.2998%
Rate for G

Table 5.2: Comparison with three kinds of methods

This table indicates the different key measurements generated by Linear
Regression, M5P and Bayesian network using K2 as search algorithm and
SimpleEstimator as estimator. The Correctly Classified Instances, Correlation

coefficient and other metrics are generated by 10-fold cross-validation while the
matrix information shown is calculated by predicting training data with relative error
matrix to test models.

As is illustrated above, linear regression is not appropriate for this time-warning
prediction, whose Correlation coefficient is negative, Relative absolute error is even
out of imagination and higher Correctly Prediction Rate for G. This means linear
regression is suitable to predict large numbers that is, if system runs smoothly without
unexpected errors, it is linear and will take a long time until crash. And that is why it
is widely used and generally successful.

M5P is more successful in this experiment than linear regression and Bayesian
network only with lower Correctly Prediction Rate for Y compared with Bayesian
network. The Correctly Prediction Rate for R and G are more satisfactory and the
relative error shows a large improvement. Just like statements in Javier Alonso’s work
[4], M5P proved to be more efficient to predict non-linear numeric values, because it
involves model tree and partly linear.

Bayesian network, even though it is a more sophisticated technique, does not
have a promising performance in this experiment. According to its definition
discussed in Section 3.3, Bayesian networks are drawn as a network of nodes, one for
each attribute, connected by directed edges — a directed acyclic graph.

In this experiment, the Bayesian network prediction method adopts K2 as search
algorithm with max one parent per node, which definitely degrades Bayesian
network’s function at this point, because there are 49 attributes in this dataset and
some of these attributes are relative to each other and these connections have a large
influence on the class. With max one parent per node K2 search algorithm, every node
only has one parent — the class. The Probability Distribution Table can be only
calculated based on class, which eliminates the impact with other possible attributes.
So the result is not as good as it should be. The more parents a node has, the higher
impact the node will obtain. As more parents per node are specified using K2 search
algorithm, the performance improves tremendously.

Here we do not change the estimator and still use the simple and fast search
algorithm K2 only with more parents per node, actually three parents and five parents
for comparison. To be surprised Bayesian network prediction with max three or more
parents per node using training set results performs perfect classification to predict
training set.

The details of Bayesian networks with max three or more parents per node using
training set results obtained by these algorithms can be found in Appendix 7.2.

Though Bayesian networks with max three parents per node obtain 100%
classification using training set test, they still achieve 99.3457% correctly rate for
cross-validation. Another experiment using 10-fold cross-validation shows the little
difference between Bayesian network with max three parents and five parents per
node.

The Correctly Classified Rate is very similar but it costs 6.19 seconds with max
five parents per node to build models, 4 times longer than time spent with max three
parents per node. So we only consider max three parents per node in this project.

In the last experiment, Bayesian network using K2 as search algorithm and
SimpleEstimator as estimator has perfect classification with max three parents per
node using training set test. According to the 10-fold cross-validation above, it also
proved to be very satisfactory, almost 99% correctly rate. The following experiment is
using 60% percentage split for Bayesian network with max three parents per node.
The details of these experiments can be also found in Appendix 7.2.

Bayesian network using K2 as search algorithm and SimpleEstimator as estimator
with max three parents per node performs advantageous classification with three
different kinds of testing methods: use training set, cross- validation and percentage
split. Though the graphical model is more complex than other models, this method
does provide high performance within reasonable time.

5.2 Confidence Prediction experiments

Here confidence prediction experiments of both numeric class and nominal class will
be presented. Since confidence is a number valued from O to 1 measuring the
accuracy of the predictive values, there are two other classifiers that can help to
improve the confidence accuracy. Decision Table is used for both numeric and
nominal prediction and REPTree is used for numeric prediction.

M5P is adopted to train and predict the numeric class value as a start and then use
other methods to make a confidence training and prediction.

Decision Table is the simplest and basic way to represent the dataset, which
involves selecting attributes to build plenty of rules that try to conclude the dataset.
REPTree builds a decision or regression tree using information gain/variance
reduction and prunes it using reduced-error pruning [11].

The detailed experimental results are shown in Appendix 7.3.

These charts in Appendix 7.3 show that confidence prediction and class value
prediction are quite two different thing. M5P works well in prediction class values
while is inappropriate for confidence prediction here. So experiments should be
performed to test the advantageous algorithms. Furthermore, when we look at the
dataset, we can find that because the class prediction classifier is more accurate and
GREEN data (large TIME_UNTIL_FAULT value) is more than other YELLOW and
RED data, the confidence valued 1 is much more than that valued 0O, the predictive
confidence (average value is almost 0.9) is more close to 1 than 0.5 or 0.

The following image is training middle-dataset using M5P to predict class value
and REPTree to predict confidence. In this experiment, entire training set is used for
testing confidence prediction. Weka ArffViewer is used here to represent these
datasets.

WOEY_WARTATION | TIME_UNWTIL FAULT | FREDICTICH | CONFIDEHCE

H‘n.mer :i.lC H'II.I'I'EI :i.C H‘D.ITH!:I.' :i.C

-2 0I009GET

1
—-951970. 909091 2432, 02403, 135917 1.0
T258400. 0 1935. 0| 2407. 176413 0.0
—-TOB3SET. 5 2447, 0| 2407. 929529 1.0
0.o 2160, 0] 2405, 9535204 0.0
-1. 9525835ET 2175 0| 2412, T13522 0.0
-543235.0 2462 0| 2416, 150773 1.0
-1. G24TRSET 2190. 0| 2417, 455512 0.0
-B11025. 52353 24TT. 0| 2419, 209107 1.0
-4651755. 0 2410. 0] 2421, 343553 1.0
-4T95920. 0 2395, 0| 2426, TEBROST 0.0
-532318.5 2492 0| 2427, 195052 1.0
-1. TSSTOZET 2235, 0| 2429, T33495 0.0
=-TSTO07T10.0 2335, 0| 2430. BIBBZ4 0.0
-467311. 5 Z507. 0] 2431, 32554 1.0
-1. T8§3125ET 2220, 02431 . 638552 0.0
0.a 2305, 0| 2432, 111529 0.0
-4T0454. 545455 2522 02437, 434294 1.0
-SB5534. Tohg42 2537, 0| 2439, 107779 1.0
-1. 9525835ET 2250, 0] 2439, B3B16T 0.0
-T580955. 0 2350, 0] 2439, TAT453 0.0
-TET925. BZS 2552, 0] 2445, T39553 1.0
-B5E015. 625 Z56T. 0| 2445, 144537 1.0
-513152. 142857 2553, 0] 2449, 544075 1.0
1. 554165ET 2311, 0] 2450. 274505 0.0
1. T49851ET E3E0. 02450, ATEIBE 0.0
-B139300. 0 Z3T1.0[2451. 466573 0.0
-1. B4151ET 2266, 02451, 523559 0.0
—91E29600. 0 2281, 02453, §980T1 0.0
—TE4T35. T14E56 2593, 02454, 150807 1.0
—SB35920. 0 1933, 0] 2455, T43409 0.0
0 0.0

—-S005TT0.0 23685, 0] 2457, 205T46

Figure 5.1: Training confidence mid dataset

This real-confidence is generated by comparing the difference between the real
value and the predictive value for TIME_UNTIL_FAULT using thresholds. Then this
model is trained to predict confidence value.

The following dataset can be found in Appendix 7.4.

The dataset (Figure 7.18) is the result of the whole confidence prediction work.
Predictive value for TIME_UNTIL_FAULT and the confidence about this prediction
is also estimated. So we can make a further decision whether this prediction can be
trusted or not.

Since Bayesian network with max three parents per node performs perfect using
training set test, in order to illustrate the status of confidence, Bayesian network with
max one parent per node is practiced in the following experiment to reduce the
accuracy to make sure that there will be enough confidence valued 0.

Nominal class value is predicted and also the numeric confidence is estimated.
Here some prediction is not correct so the confidence is estimated as 0.

5.3 Evaluation on Importance-Aware Linear Regression

In this section, experiments are taken to clarify the functionality of Importance-Aware
Linear Regression. In order to represent the result explicitly, we test the algorithm
using training dataset without relative error matrix to verify the accuracy and compare
the difference. When using this algorithm, importance-per instance should be
specified. Generally in the future, this method will be further updated and developed
to benefit the importance of current instances. The principle of this algorithm is
described and derived in Section 4.4.

The comparison of general Linear Regression model and Importance-Aware
Linear Regression model can be found in Appendix 7.5.

Here imp(R) is assigned 1, imp(Y) as 4 and imp(G) as 2. The Importance-Aware
Linear Regression prediction results are more satisfactory than linear regression as
shown in table 5.3. The Importance-Aware correctly prediction rate for R and Y
improve 10% from 70% and 29% to 80% and 39%, which is very important for R
prediction, because if R is predicted as Y or G, it is rather detrimental for decision
system.

Real Linear Regression Importance-Aware
class (Predictive Result) Linear Regression
value (Predictive Result)
R Y G R Y G
R 426 102 82 494 37 79
Y 115 95 109 69 126 124
G 13 28 1781 7 19 1796
Correctly
Prediction | 69.836% | 29.781% | 97.750% | 80.984% | 39.498% | 98.573%
Rate

Table 5.3: Prediction results of Linear Regression and Importance-Aware Linear
Regression

In next experiment, we set the importance according to the training set class
classification. We assigh GREEN data 4, YELLOW data 4 and 2 to RED data. These
coefficients are obtained by minimizing the formula (4.4.1.1) in Section 4.4.

According to the formula (4.4.1.1) and experiment, the larger value we assign to
one classification, the less chance for the class close to the thresholds be predicted
into this classification. This can be explained from the expression above: if the impg;
is becoming larger, the sum value will be correspondingly bigger with original
classification while the difference between the real value and predictive value does
not change. At the same time, if another classification can reduce the difference and
involves a smaller impg value, then this new classification is more accepted for the
model. However, since formula (4.4.1.1) is calculated with sum operation, every impg

value has an impact on each other. Practically, it is more complicated to manipulate
them accurately.

Therefore, we assign a smaller value to the RED data in order to try to classify
more data to RED category, because RED data predicted as YELLOW will make
more detrimental influence than YELLOW data classified as RED. Exactly, RED
prediction accuracy is higher valued 89.18% compared with 69.83% but the
YELLOW prediction accuracy is relatively lower only 15%. If all the importance is
same, just as there is not importance specified.

Imp(R) value while R-

Imp(Y)=4 Imp(G) = 4

2 89.180 % 15.047 % 98.683 %
3 81.639 % 26.019% 98.024 %
4 69.836 % 29.781% 97.750%
5 63.934 % 42.006 % 95.664 %
6 47.869% 32.602% 95.664 %
7 33.279% 26.019% 95.280%
8 19.016% 19.749% 94.786%
9 10.984% 15.987% 93.578%
10 7.049% 14.734% 92.261%

Table 5.4: Different prediction rate with different Imp(R)

From this table, given Imp(Y) and Imp (G) are the same valued 4, the larger
Imp(R) value is, the worse performance R-Prediction Rate will have. Also Y and G
prediction rate will be affected gradually. Of course, these series of experiments set
the importance based on classification. On the other hand, different importance
making strategies can be developed to meet more complex requirements in practice.

5.4 General Practice

Here we utilize this framework to predict other general dataset. A famous dataset call
“Congressional Voting Records Data Set” [16], which includes votes for each of the
U.S. House of Representatives Congressmen on the 16 key votes identified by the
CQA. This dataset contains nine difference attributes that represent distinct types of
votes. The objective is to predict whether a person is a democrat or republican from
his varied kinds of votes. Predictive class and confidence are all estimated.

export—adm| PREDICTION | CONFIDEHCE
Hominal Humeric

Vi democrat .o
i demaocrat 0.0
I republican 0.0

republican 0.0

democrat 0.0
¥ republican 0.0
¥ republican 0,75
¥ republican 0,75
¥ republican 0,75

republican 0,75
I republican 0. 956522
¥ republican 0. 956522
ot republican 0. 956522
ot republican 0. 956522
¥ republican 0. 956522

Figure 5.2: Predictive class value and confidence

Cla=sHame | FPREDICTION |[COFFIDEHCE | REALCOFFIDENCE
Hﬂminﬂ.l Hﬂminﬂ.l Hmril: Hmric
democrat |republican n0.o 0.0
republican [demacrat n0.o 0.0
democrat |republican n0.o 0.0
democrat |republican n0.o 0.0
republican [demacrat n0.o 0.0
republican [demacrat n0.o 0.0
republican [demacrat n0.o 0.0
republican [demacrat n0.o 0.0
democrat |republican n0.o 0.0
democrat |republican n0.o 0.0
republican [demacrat n0.o 0.0
democrat |republican n0.o 0.0
republican [republican 0.75 1.0
republican [republican 0.75 1.0
republican [republican 0.75 1.0
democrat |republican 0.75 0.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0
republican [republican 0. 958522 1.0

Figure 5.3: Comparison of real values and prediction values

In this example, Bayesian network using K2 as search algorithm with max three
parents per node is used to predict nominal class value and DecisionTable method is
adopted to predict the confidence.

These grey areas mean the missing values. Figure 5.2 is the standard output for
general prediction involving predictive class value and confidence, while dataset in

Figure 5.3 is utilized for testing to show the difference explicitly. Confidence 0 means
this prediction for class value is incorrect, which can be explained as the diverse
values of ClassName (class) and Prediction result. From this dataset, the following
table can be achieved.

Confidence Threshold Correctly Prediction Rate
Confidence >=75% 99.29%
Confidence < 75% | 0%

Table 5.5: Confidence accuracy

The following experiment is designed for general numeric confidence prediction
using “Auto MPG” dataset that was taken from the StatLib library which is
maintained at Carnegie Mellon University. The dataset was used in the 1983
American Statistical Association Exposition [17].

There are eight attributes and one numeric class “mpg”. Figure 5.11 is the output
dataset of the confidence prediction. M5P method is used for class and confidence
prediction here.

car—name | PREDICTION | CONFIDERCE
Hominal Humeric Humeric
ame ho. .. 18. 285253 0. B527TET
honda ... 33. 894989 0. BROBST
plymon. . . 29 29781 0.BT2435
plymon. . . 29, 4B36T 0.BT2435
oldsmo. . . 21 BZRESZ 0. 832335
chewro. .. 2T. 499855 0. 832335
ford g .. 22 B3931 0. B32574
toyota. . . 2583878 0. TO5924
plymou. . . Z1. 461953 0. 793347
oldzmo. . . 21. BB0555 0. TS5655
toyota. . . 31. 755641 0. 759265
chevro. . . 21.339715 0. Te590z
peugea. .. Z22.89187T8 0.TTETE]L
ame ma. . . 15. 246475 0. TI1856
ford m. .. 19. 549519 0.511985
peugea. . . 23. 365484 0. 932828
ame ma. . . 15. 5B0Z5 0. 935041
dat=zun. . . 30. 544357 0. 9395945

Figure 5.4 Predictive class value and confidence

car—Tame mpg | FREDICTION | CONFIDEHCE mpg | PEEDICTION | CONFIDEHCE |REALCOR

Hominal H'um:r:i.c‘ H‘u.l:n:lrlic — H‘u.n:l:::i.c B8 oA Erofa Hume
Jengeo. . . 2T.2) 24 T53425 0. 334992 2T 2| 24 753455 0. 334992 o
aonda ... 32,4 34410784 0.335309 32 4| 34410784 0. 335309 0
shevro. .. 13.00 15 T9=2083 0. 339168 13.0/ 15. 792063 0. 339166 o
alymon. . . 23.0 20. 49042 0. 341863 230 20 49042 0. 341863 o
Eiat 128 24,00 27033754 0. 345261 24 0 27033754 0. 345261 o
rollesw. .. 30,5 2B 828453 0. 378558 0.5 2R 8FR4S3 0. 3Te555 o
Eord p. .. 23.00 Z21.530265 0. 335597 230 21830765 0. 385597 o
Jengeo. . . 19.0) 22 431831 0.391385 19.0/ 27 431831 0. 391385 o
Eiat 128 29.0) 23 014235 0. 395287 29 0/ 28 014235 0. 395257 o
ame co. .. 24 3 22 380004 0. 39802 24 3 22 30004 0. 39502 o
shevro. .. 20,00 22185981 0. 415365 20,00 2% 135981 0. 415365 o
awonda ... 24,0 29 634507 0421241 24 0 29 B3450T 0. 421241 o
lat=sun. . . 24,00 27.084071 0. 432039 24 0| 27.084071 0. 437033 0
bogota. .. 25.0 26, 326529 0. 4234952 25 0 206, 3PR5ED 0. 434952 0
awonda ... 38.0) 32994336 0. 454995 5.0/ 37 994836 0. 454998 o
Eord m. .. 24,0 20738973 0. 455464 24 0| 20798973 0. 456464 o
awonda ... 36,00 34 46T5TT 0. 431536 6.0/ 34 4BTSTT 0. 481536 o
ame ho. .. 225 19.919751 0. 48632 5| 1g 0. 45637 0
bme ha. ..] ‘0. 1987933 0. 519492 19.0 0. 0.51943 n
Eord m. .. 21.0) 20994229 0.534319 1.0/ =0 0.534319 1.0
bagata. .. 31.0 28, 35473 0. SEEZEZ 3.0 28 35473 0. SeE2Ee a.a

(a) (b)

Figure 5.5: Different view of numeric confidence prediction

Figure 5.5 (a) shows the class value (mpg), predictive value for class and predictive
confidence, while Figure 5.5 (b) indicates all data attributes above and also the real
confidence assigned by program to show the difference directly. Confidence 0 means
this prediction for class value cannot be trust, otherwise confidence 1 implies the
correct prediction. From these middle datasets, we can make the following
conclusion.

Confidence Threshold Correctly Prediction Rate
Confidence >=51.9% | 98.03%
Confidence < 51.9% | 14.29%

Table 5.6: Confidence accuracy

Another example uses the famous “adult” dataset to determine whether a person
makes over 50K a year [18]. There are 14 nominal and numeric attributes, one
nominal class and 17000 instances in this experiment. Bayesian network using K2 as
search algorithm with max three parents per node is used to predict nominal class
value and DecisionTable method is adopted to predict the confidence.

Figure 5.6 illustrates the comparison of predictive results and real values
including confidence.

cla== | FREDICTION | CONFILEHCE | REALCONFIDEHCE

Hominal Hominal Homeric Homeric

50K 50K 0. 630551 1.0
<=50K |»S0K 0. 630551 0.0
50K 50K 0. 630551 1.0
50K 50K 0. 630351 1.0
<=50K |»S0K 0. 630351 0.0
<=50K |»S0K 0. 630351 0.0
50K 50K 0. 630351 1.0
<=50K |»S0K 0. 630351 0.0
50K 50K 0. 630351 1.0
<=50K |»S0K 0. 630351 0.0
S0K 50K 0. 630551 1.0
FS0K 50K 0. B30551 1.0
<=G0K |*S0K 0. B30551 0.0

<F50K [5S0K 0. 632305 0.0
50K 250K 0. 632305 1.0
50K 250K 0. 632305 1.0
50K 250K 0. 632305 1.0
50K 250K 0. 632305 1.0
<=50K [>S0K 0. 632305 0.0
<=50K [>S0K 0. 632305 0.0
50K 250K 0. 632305 1.0
50K 250K 0. 632305 1.0

Figure 5.6: Mid-dataset for predictive class and confidence

Confidence Threshold Correctly Prediction Rate

Confidence >=69.2% 97.41%

Confidence <69.2% and | 74.82%

Confidence >=52.8%

Confidence < 52.8% 36.70%
Table 5.7: Confidence accuracy

This confidence accuracy table is calculated approximately but different
confidence decision threshold may have a large impact on the correctly prediction
rate.

The following experiment is based on “Car Evaluation” dataset, which was
derived from a simple hierarchical decision model originally developed for the
demonstration of DEX, M. Bohanec, V. Rajkovic: Expert system for decision making
[19]. There are 6 nominal attributes and one nominal class to decide whether a car is
acceptable or not. Also Bayesian network using K2 as search algorithm with max
three parents per node and DecisionTable method are adopted here shown in Figure
5.7.

. ——— ——— - P
med acc ace 0.z 1.0
med acc ace 0.z 1.0

unace unace 0. T35T14 1.0
med unace [unace 0.7T85714 1.0
|med unace [unace 0.7T85714 1.0
|med unace [unace 0.7T85714 1.0
|med unace [unace 0.7T85714 1.0
|med unace [unace 0.7T85714 1.0
|med unace [unace 0.7T85714 1.0
|med unace [unace 0. 785714 1.0
ned |ace |umace 0. 785714 0.0
|med unace [unace 0. 785714 1.0
|med unace [unace 0. 785714 1.0
|med unace [unace 0. 785714 1.0
ned lace |umace 0. 785714 0.0
med acc unace 0. 735714 0.0
high ace ace 0.5 1.0
high ace ace 0.5 1.0

(a)
Class | PREDICTION | CONFIDENCE _

Hominal Hominal Humeric

acc acc 0.5 1.0

vgood |ace 0.g 0.

vgood |ace 0.g 0.

veood |ace 0.a 0.

vegood |ace 0.a 0.ao

vgood |ace 0.5 0.o

vgood |ace 0.5 0.o

vgood |ace 0.5 n.o

vgood |ace 0.g 0.

unace uUnace 1.0 1.0

ace ace 1.0 1.0

unace |[unace 1.0 1.0

ace ace 1.0 1.0

unace |unace 1.0 1.0

unace |unace 1.0 1.0

unace [unace 1.0 1.0

unace [unace 1.0 1.0

(b)

Figure 5.7: Difference segments of mid-dataset for predictive class and confidence
Confidence Threshold Average
Correctly Prediction Rate
Confidence >=1% 100.00%

Confidence <1% and | 79.79%
Confidence >=78.57%
Confidence < 78.57% 13.33%

Table 5.8: Confidence accuracy

From these general confidence prediction experiments, we can make further
conclusion that confidence can be divided according to different confidence level,
which means we can set the threshold automatically and within diverse levels,
confidence can result in different correctly prediction rate. According to these results,
two confidence threshold can divide the correctly prediction rate into three types: 98%
- very good, 75% - good, and 30% or less than 30% - poor. The more different level
we create, more accurately we can illustrate the confidence prediction.

Chapter 6

Conclusions

6.1 Conclusions

In this paper, we have shown some important Machine Learning techniques and
presented SysWeka platform and experimental evaluation on the performance of this
framework. From this SysWeka platform, we can conclude that although linear
regression has been widely used in many fields to build models with successful results,
it cannot produce benefit outcome in our scenarios. By contrast, Bayesian network
acts as a more proper choice and performs much better.

Moreover, confidence prediction is presented and developed to measure the
accuracy of predictions, which gives us another opportunity to make a further
decision whether to trust the predictive result or not.

Besides, Importance-Aware linear regression has been proposed and derived by
mathematics. Experiments evaluation also shows a different view of the
Importance-Aware dataset, which indicates a promising application usage in the future
work. Instances can be specified by different importance and thus may create more
valuable results in further studies.

6.2 Future work

This platform is mainly using these three methods: linear regression, M5P (Model tree)
and Bayesian network for prediction and comparison. In the future work, more
Machine Learning techniques will be presented and evaluated to study the practical
performance in the same scenario. And common testing functionality should be added
into this framework that involves training set testing, cross validation, using test set
and percentage split testing. Also Importance-Aware linear regression and confidence
usage can be further studied.

6.3 Acknowledgements

| am very grateful to Jordi Torres and Ricard Gavaldafor teaching me and giving me
plenty of advice and reference on my study and master thesis. Also thanks to Josep
Llu® Berral for giving me some tips on working here and to Javier Alonso for his
previous work that | can continue this research work.

Chapter 7
Appendix

7.1 Model structures

Linear Regression Model:

Time taken to build model: 0.594 seconds

FEesulcs

Correlation coefficient
Mean absolute error

Foot mean sguared error
Felatiwve absolute error

-0.0105
£582448743806.2072
1354493752536416.4605
54617311691.7164 %

Foot relative sguared error 2440260745172.3192 %
Total MNwmber of Instances 2751

Eelative error (20.0%)
MHatrix info:

E ¥ e

=N 495 574
333 104 538
85 = 2347

131742751 —-— 47.87350054525627%

<—-—-Prediction wvalues

| E 41.3858737014762164d%
| ¥ 10.658591953556012%
| = 94.219153908062045%

Figure 7.1: Linear regression prediction results

Linear Regrezzion HModel

TIME UNTIL FAULT =

127

-1Z6.

—-3904

Z26.
25,
Z215.
-5.
Z26.
-135.
—Z679.

—-1539.

-33.
-7,
210.
39326,

4362153

o oo ooon0o

251415

.369

8361
.892

5514
2457
=M=
1235
6314
Q955
1741
L6917
LEZ235
L3904
1012
1504
L2489
L8933
L1337
. 6362
L2674
Loooz
L0729
1947
377
2185
2454
L2404

1759

throughput +

Workload +

DISC USAGE +

PROCEZZES +

MEMORY SYSTEM +

TOMCAT MEMORY +

THEELADS +

HTTP_CONHNECT +

M3VSQL CONNECT +

THRELDS VARIATICON EWHL +

EDEN MAX +

EDEN PERCENTLGE USED +

EDEN MEMORY USED +

EDEN MEMORY WVARIATICHN +

OLD HMAX +

OLD PERCENTAGE TSED +

OLD MEMORY VARIATION +
NORMALIZED OLD MEMORY VARTATICN +

INVERSE OLD MEMORY WARIATION +
NORMALIZED INVERIE CLD MEMORY WARIATION +
MORMALIZED DIVISION ATTRIBUTE OLD MEMORY VARIATICH +
RESPONSE TIME EWMA +

THROUGHPUT EWHML +

MEMORY SYTITEM EWHL +

TCOMCALT MEMORY EWHML +

TOMCAT MEMORY VARIATION EWHA +
NORMALIZED TOMCAT MEMORY WARTATION EWML +

INVERSE TONCAT MEMORY VARIATICN EWMA +

INVERIE 3V3ITEM MEMORY VARIATICON EWMAL +

NORMALIZED INWVERIE SYITEM MEMORY VARIATICON EWMAL +
DIVISTION ATTRIBUTE TOMCAT MEMORY WVARIATION +
NORMALIZED DIVISICON ATTRIBUTE TOMCAT MEMORY VARTATICH +
DIVISION ATTRIEUTE SY3ITEM MEMORY WARIATICH +
MORMALIZED DIVISION ATTRIBUTE SYSTEM MEMORY WARIATION +

Figure 7.2: Linear regression prediction models

M5P Model:

Time taken to build model: 1.438 seconds

Fe=sults=

Correlation coefficient O.9355
Mean =sbsolute error 196. 604
Foot meanh sguared error S05.7475
Felatiwve absolute error 4.1551 %
Foot relative =sdquared error 9.1656 %
Total MNuwber of Instances 2751
Relative error (20.0%) : 2Z09/2751 -- 7.597237368229735%
Matrix info:

2 T T <——Prediction values

TES 103 7 | R S7.4557T929465301%
1z Z81 138 | ¥ 65. 1972157772 6219%
o Z6 1519 | & Q5. 59078590735909%

Figure 7.3: M5P prediction results

<=1306.417 =>1306.417

<=57.023 =57.023 <=1467.5 1467 .5

<=21725 »>21725 <=246428151.5 <=1515.167 >1515.167 <=42.83 »4283

\

<=12034293.5 <=46 9315 932 <=86.586.52 =215 =215 <=24.5 »24.5 <=15784579.5 <=40 7B 702

<=19924802 5 <=23872887 5 <=192892.5 =659 556 <=25.475 25475 <=20.878 »>20878 <=37.247 343

<=19341934.5 <=58.861 >58.861 <=66 =66 <=22.322.38 <=20.229.81 <=17641761 <=36. 1M 195 <=13381839.5

<=1.8948.895 <=2.142.14 <=817817.5 <=1752175 <=0.640.64 <=15681FED 833

/

<=56.08m.025 <=0.00D.002

M5P prediction model tree with 38 leaves

Figure 7.4

Each leave contains one linear regression. The following is leaf No.1.

LM num: 1

TTIME UNTIL FAULT =
0.6736 * SYSTEM LOAD
- 1058.754% * DISC USAGE
+ 0.4941 * MEMORY S5Y5

- 46.1382 * TOMCAT MEMORY

- 0.2542 * THREADS

- 0.4346 * MSYSQL CCHNEC

+ 0.3801 * OLD PERCENTAGE USED

+ 1.0605 * MEMORY SYSTEM EWMA

+ 5.7123 * TOMCAT MEMORY EWMA

+ 1522.379 * TOMCAT MEMCRY VARTATION EWMA
+ 11316.0074

Figure 7.5: Leaf No.1 linear regression
Bayesian network Model:

Time taken to build model: 0.313 seconds.

Results

Correctly Classified Instances Z555 92,8753 %

Incorrectly Classified Instances 194 T.1247 %

Kappa statistic 0.3559

K&E Relatiwve Info 3coaore £235559.0154 %

KE&L&E Infortmation Score 2913.5997 hits 1.0591 hita/instance
Class complexity | order O 3400.1971 hic=s 1.236 hitza/instance
Class complexity | scheme 1522 .5907 hits 0.6625 bhita/instance
Complexity improvement [3£) 1577.6063 hits 0.5735 bitzs/instance
Mean sbsolute error 0o.0479

Root mean sdgquared error 0.2051

Felative absolute error 14.4073 %

Root relative squared error 50.3147 %

Coverage of cases [(0.95 lewvel) 94,9836 %

Mean rel. region size (0.95 lewvel) 35.0418 %

Total Nuber of Instances 2751

Relative error {(Z0.0%) : 02751 —-- 0.0%

Matrix info:

E T e <—--Prediction values

544 u} 396 | R E7.87234042553191%

2 293 100 | ¥ 74.17721518987341%

100 (7151 1763 |G 91.299344640052587%

Figure 7.6: Bayesian network predictions results

This Bayesian network uses default values of Weka and each node has only one
parent-class. So this is a tree with one root (TIME_WARNING) and 49 nodes. Each
node is the son of the root.

7.2 Bayesian network prediction results

Time taken to build model: 1.375 seconds

Results

Correctly Classified Instances 2733
Incorrectly Classified Instances 18
Eappa statistic 0.9569
K&E Relatiwve Info Zcore 271113.6135
KLE Information 3core 3352.943
Class complexity | order O 3400.1971
Class complexity | =scheme 126.899356
Complexity improwermnent 15f) 3273.2035
Mean asbsolute error 0.0045
Root mwean scgquared error 0.0e01
Felatiwve absolute error 1.345
Foot relative sdquared error 14.7346
Coverage of cases (0.95 lewel) 99,6725
Mean rel. region =ize (0.95 lewvel) 353.612
Total Number of Instances 2751
Relative error (20.0%) : 02751 —-- 0.0%

Hatrix info:

R K &) <——Prediction wvalues
610 u] u} IR 100, 0%

u} 319 u} | ¥ 100.0%

u} u] 1522 |G 100.0%

hit=
bhits=
bits
bits

EAE

s

99.
L6543

= O R R

3457

L2188
L2386
L0462
. 15598

A

o

hits/instance
hits/instance
hita/instance
hits/instance

Figure 7.7: Bayesian network predictions using training set test with max three
parents per node

TINE_WARDFING

% PROCESSES DIVISION_ATTRIFUTE_TERFADS_VARIATION_IWE IIET_EENORY_VARIATION
—
Workload SYSTEN_LOAD

= =N

TORNALIZED _XDEN_NFNORY VARIATION

e—e

DISC_USAGE

IENORY_SYSTEX
\\l\l II/

TOXCAT_NFNORY

|

Figure 7.8: Part of Bayesian network graphical model with max three parents per node

IENORY_SYSTEX IWHA

/

LS S

TOXCAT_NXEORY_XWHA

e]

ESYSQL_COTTECT RESPONSE_TINE_IWHL

B
.\.\“

IDET_PIRCEIFIAGE_USID

O0ID_KX

——

IDEIN_NYNORY_USID

OLD_PERCITTAGE_USID IPVIESE_TERFADS_VARIATION_EWHA

OLD_XXNORY_USED DIVISION_ATIRIFUTE_OLD_N¥NORY VARIATION _‘|\

Time taken to build model: 1.36 =zeconds

=== Stratified ecross-walidation ===

=== Summary ===
Correctly Clazs=sified Instances 2734 99,382
Incorrectly Classified Instances 1T 0. 618
Kappa statistic 0.9576&
Mean absolute error 0. 0045
Root mean squared error 0.059
Eelatiwe absolute error 1.349 %
Root relative squared error 14 4809 %
Coverage of cazes (0,95 lewel) 99. 7455 %
Mean rel. region size (0.95 lewel] 33 BTER %
Tatal Humber of Instances 2751
a b e 4~ classzified as
GO1 2 T 2=k
Z 314 3 =71
0 3 15819 | c = iF

Figure 7.9: Bayesian network predictions using 10-fold cross-validation with max
three parents per node

Time taken to build model: B. 19 seconds

=== Stratified cross—walidation ===

=== Summary ===
Correctly Clazsified Instances 2732 99,3093 %
Incorrectly Classified Instances 19 0.8907T %
Eappa statistic 0. 9361
Mean absolute error 0. 0045
Boot mean squared error 0.0619
Belatiwe abszolute error 1.4328 %
Boot relative squared error 15,1572 %
Coverage of cases (0.95 lewel) 99, T09Z2 %
Mean rel. region size (0,95 lewel) 338454 %
Total Humber of Instances 2731
a b ¢ 49— classified as
B01 z T | a=Fk
3 31z 4 | =T
1] 3 1819 | c = i3

Figure 7.10: Bayesian network predictions using 10-fold cross-validation with max
five parents per node

Test mode: split BO. 0% train, remainder test

Time taken to build model: 1.22 =zeconds

=== Ewalmnation on test =plit ===

=== Summary ===

Correctly Clas=sified Instances 1033 09, 3636 %
Incorrectly Classified Instances T 06384 %
Kappa statistic 0. 9387

Mean abselute error 0. 0039

Eoot mean squared error 0. 0535

Eelative absolute error 1.186 %

Foot relatiwve squared error 13,3061 %

Coverage of cazes (0,95 lewel) 93, 8182 %

Mean rel. region size (0.95 lewel) 33,5755 %

Total Humber of Instances 1100

a b c ¢—— rlassified as

233 0 2| a=ER
2174 1] b=T
1 178 | =8

Figure 7.11: Bayesian network predictions with max three parents per node using 60%
percentage split

7.3 Confidence prediction results with varied methods

M5P to predict class value

Correlation coefficient 0.9955
Mean absolute error 196.604
Foot mean squared error S08.7475
Felatiwve absolute error 4.15581 =
Foot relative =sdquared error 9.1658 %
Total MNuwber of Instances 2751
Felative error (20.0%) : 20972751 —- 7.597237363229735%
Matrix info:

24 T T <——Prediction wvalues

TEQ 103 7 | R B7.4857V920485301%
1z 281 138 | ¥ 65. 197215777262 10%
o 26 1519 | & 05.500785907359009%

Figure 7.12: M5P prediction result

Linear Regression to predict confidence

Correlation coefficient O.0032

Mean absolute error 163222154.4931

Foot mean sguared error S5e0299683.2715
Felatiwve asbhsolute error 2899334390969.1459 %
Foot relative sguared error 5137828686427 . 1832 %
Total Mumkber of Instances 2751

Figure 7.13: Confidence predictions with linear regression

MS5P to predict confidence

Correlation coefficient -0.0032

Mean absolute error 17301492720, 6019

Foot mean sguared error a074e2580560.9926
Felatiwve asbsolute error 317582390363142.3308 %
Foot relative sguared error 549907970957339. 05258 %
Total MNuwkher of Instances 2751

Figure 7.14: Confidence predictions with M5P

Decision Table to predict confidence

Decizion Takble:

Nummber of training instances: 2751
MNumber of Bules : 460
MNon matches covered by Majority class.
Be=st first.
Start set: no attributes
Gearch direction: forward
Ztale gsearch after 5 node expansions
Total number of subsets evaluated: 610
Herit of bhest subset found: o.117
Evaluation (for feature selection): CV [leaswve one out)
Feature set: 4,8,10,12,16,25,27,35,36, 44,51

Fesults

Correlation coefficient 0.5743
Hean absolute error O.0273
Foot mean squared error 0.1378
Felatiwve absolute error 50.0913 %
Foot relative =squared error 23.4377 %
Total MNumber of Instances 2751

Figure 7.15: Confidence predictions with decision table

REPTree to predict confidence

OLD PERCENTAGE USED < S.45

PREDICTICON < 5485.27

[PREDICTICN < 3595.41 : 0.97 (6.58/0.01) [0D.52/0.25]

[PREDICTICN »>= 3595.41

[[MEMORY SYSTEM EWML < 1400.37 : 0.01 (18.32/0.02) [10/0]
[[MEMORY SYSTEM EWML »= 1400.37 : 1 (5.06/0) [2/0]
PREDICTICHN >= 54585.27

[MEMORY SYSTEM < 1388.5 : 0.31 (3.19/0.23) [1.13/0.17]

[MEMORY SYSTEM »= 1383.5 : 1 (85/0) [30.13/0]

OLD PERCENTAGE USED »= 5.45

SYSTEM LOLD < 47.69

EDEN MAY < 42.16

[MSYSQL CONNECT < 20.5

[[SYSTEM LOAD < 1.54 : 0.95 (243.17/0.02) [97/0.02]

[[SYSTEM LOAD »= 1.54

[[| MEMORY SYSTEM < 1377.5 : 1 (14/0) [8/0]

[[| MEMORY SYSTEM »= 1377.5 : 0.03 (4/0) [1.17/0.14]
[MSYSQL CONNECT »>= 20.5 : 1 (1286.35/0) [659.76/0.01]
EDEN MAY »= 42.16
I
I
I

OLD PERCENTAGE USED < 44.67 : 0.93 (110.88/0.02) [75.5/0.03]
OLD PERCENTAGE USED »>= 44.67
[MEMORY SYSTEM < 1557.5 : 1 (7.08/0) [2.06/0.01]

[[MEMORY SYSTEM »= 1557.5 : 0.11 (7/0) [8.01/0.13]

YSTEM LOLD »= 47.69

TOMCAT MEMORY < 57.33 : 1 (34.61/0) [15.81/0]

TOMCAT MEMORY »>= 57.33

[SYSTEM LOAD < 118.97 : O (6.94/0) [2.94/0]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[[SYSTEM LOAD »= 118.97 : 1 (2/0) [0/0]

I
I
I
I
I
I
I
I
I
I
I
I
]
I
I
I
I

Jize of the tree : 29

Fesults

Correlation coefficient 0.614
Mean absolute error 0.0305
Foot meanh =squared error 0.1303
Felatiwve shsolute error 55.9464 %
Foot relative sdquared error T8.9578 %
Total Number of Instances 2751

Figure 7.16: Confidence predictions with REPTree

Correctly Classified Instances 2555 92.8753
Incorrectly Classified Instances 196 7.1247

M

Ay

Matrix info:

E k'l o) <——Prediction wvalues

544 o 396 | R 57.87234042553191%
2 293 100 | ¥ 74,.177215158987341%
100 1= 1763 | = 91.299534404003287%
EEPTree

MSYSQL COMNECT < 21.5

THREADS < 581.5

| PREDICTION = B : 0.97 (49/0.02) [22.15/0.04]
| PREDICTION = Y

| | MEMORY SYSTEM < 1082.5 : 1 (55/0) [25/0]

| | MEMORY SYSTEM »= 1082.5

| | | DISC USAGE < 66 : 0.98 (28/0.03) [11/0]
[

[

I
I
I
I
I
I
| | | DISC USAGE »= 66 : 0 (15/0) [6/0]
I
I
I
I
I

PREDICTION = G : 0.95 (124.15/0.01) [32/0.08]
THREADS >= 581.5
| PREDICTION = R : 1 (15/0) [5.04/0]
| PREDICTION = ¥ : 1 (10/0) [7/0]
| PREDICTION = G : 0O (458.04/0) [33/0]
MSYS0L COMNECT »= 21.5

| SYSTEM LOAD < 10.74 : 0.99 (1386.81/0.01) [705/0.01]

| SYSTEM LOAD »= 10.74

| | TOMCAT MEMORY < 57.21

| | | THREADS < 1159.5 : 0.2 (4/0.1%) [1.03/0.08]

| | | THREADS >= 1159.5 : 0.97 (81/0.02) [53.64/0.03]

| | TOMCAT MEMORY »= 57.21

| | | MEMORY SYSTEM < 1282 : 1 (8/0) [5/0]

| | | MEMORY SYSTEM »= 1282

| | | | THROUGHFUT EWML < 114.58 : 1 (2/0) [0/0]

| | | | THROUGHFUT EWMA »>= 114.58 : 0.01 (8/0) [6.14/0.02]

Size of the tree @ 25

Correlation cosfficient 0.58013
Mean absolute error 0.0345
Foot meah =squared error 0.1363
Felative absolute error 33.2111 %
Foot relatiwve sguared error 59.8174 %
Total IMadoer of Instahces 2751

Figure 7.17: Bayesian network prediction with max one parent per node to predict
class value and REPTree to predict confidence

7.4 Numeric and nominal class confidence prediction

MEMORY YARTATION | FEEDICTION | COFFIDENCE
H'II.I'I'EI :i.C H'II.I'I'EI :i.C

—-2. 010096ET 2
—-951970. 909091 .9TEBLS
TZE6400. 0] Z407. 17692 0.0
—-TOB3ET. 5| 2407. 930036 0. 9786813
0. 0] 2405, 9535039 0. 998232
-1, 952855ET| 2412, T13343 0. 110236
-543235. 0| 2416, 151111 0. 9786813
—-1. 824TBIET|Z417. 455694 0. 110236
-B11025. §82355(2419. 209445 0. 9786813
-4631755. 0| 2421, 341592 0. 9786813
—-4T95920. 0| 2426, TRSTTE 0. 9786813
-53532315. 52427, 195245 0. 9786813
—-1. TS5TOZET|Z429. T53354 0. 110236
-TST0T10. 0| 2430, BA5352 0. 032337
-467311. 52431, 325712 0. 9786813
-1. T83125ET|2431. B58556 0. 110236
0.0]2432. 111542 0. 032337
—4T0454. 545455| 2437, 4534463 0. 9786813
-5B5534. T38542|2439. 105115 0. 9786813
—-1. 952855ET| 2439, B3604T 0. 110236
—-TE30985. 0| 2439, TOETZ5 0. 032357
-TETOE5. B25| 2445, T39921 0. 978613
-BSB01S. B25| 2445, 145177 0. 978613
—-513152. 142557 | 2449, 544752 0. 978613
1. 554165ET | 2450. 2T426T 0. 110236
1. T49951ET| 2450, 9T011T 0. 032357
-B1539300. 0| 2451, 4BB309 0. 110236
-1.B4151ET| 2451, 525555 0. 110236
—-9129600. 0| 2453, 596074 0. 110236
—-T54735. T142568|2454. 151145 0. 978613
—-5635920. 0| 2455, T4391T 0.a
-S00STTO. 0| 2457, 205753 0. 032357

Figure 7.18: Final numeric confidence prediction results

_MEMOEY _VARTATION | TIME_WARNING | FREDICTION | COFFIDENCE

Hﬂmlnﬂ.l Hﬂmlnﬂ.l H'II.I'I'EI :i.C

-10236824. 0
—-108T366. 1535346
-11958530.0
-13535100. 0
—-1046995. T14256
-1160082. 5
—95B046. 0
-1032970. 0
-TB3446. 315789
-525930.0
—-569540. 0
-T98975. 0
-593025. 0
-5TOT33. 043475
-1145790.0
=-T42770.0
537071, 052632
-T51630. 0
—-T3B560. 0
-1170900. 0
-T93146. 315789
-15372835.0
—-T42325.0
-975240. 0
-1142540.0
—-5T9624. 0
1056545, 571429
10595685, T14286
-117957T.5
—-G52562. 941176
=-T94001. 1TR4T1
-B51554. 545455

0
0
0
0
0
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

e e e T e e e e R e T R T BT E TR TR R R L el L R e R A R T BT BT R TR TR RN Rl T TR
o T o T e T A e S S B e e T e T e T e T T O S B B B B B T
Lo O e e O e e e e e o e e e e e e e e e e e e e e e e e e o}

Figure 7.19: Training confidence mid dataset with nominal class

_MEMORY_WARTATION | PEEDICTION | COFFIDENCE
Hominal Hameric

-1023824. 0| 0. 973Te5
—-105T366. 1535546|G 0. 973Te5
-1193530. 0| 0. 973Te5
-1355100. 0| 0. 973Te5
—-1045995. T14256|G 0. 973Te5
-11B006Z. S| 0. 973Te5
—95A046. 0% 0. 973Te5
-1052970. 0| 0. 973Te5
-TE3446. 3157395 0. 973Te5
—525930. 0% 0. 973Te5
—569540. 0|1 0.0
=T959TS. 0/ 0.0
-593025. 0/ 0.0
-STO7T33. 043475 0.0
-1145730. 0fY 0.0
=T42770. 0| 0. 973Te5
-53T0TL. OS2R32 | 0. 973Te5
-TS1650. 0% 0. 973Te5
—T3R560. 0% 0. 973Te5
1170800, 0| 0. 973Te5
—-T93146. 3157395 0. 973Te5
-13T2B35. 0| 0. 973Te5
-T42325. 0|7 0.0
-975240. 01 0.0
-1142640. 0fY 0.0
-57a8z24. 0|7 0.0
—-1056545. 5714291 0.0
—-1059565. T14256|5 0. 973Te5
-11T957T. 5(R 0.971574
-5825682. 941176 (R 0.971574
=-T94001. 178471 (Y 0.0
-B515354, 545455 0.0

Figure 7.20: Final confidence prediction dataset with nominal class

7.5 Importance-Aware Linear Regression model

Linear Regression Hodel

TIME UNTIL FAULT =

127.4695 cthroughput +
-126.9073 Workload +
=-390Z.68699 DISC_USAGE +

Z56.5581 FPROCES3ES +

£5.246 * MEMORY_SYSTEN +
215.9845 * TOMCAT MEMORY +
-5.1242 * THREADZ +
26.62895 ®* HTTP_CCNNECT +
-135.9936 * M3VSQL CONNECT +
-267V8.9951 * THREADS _VARIATION EWHA +
-80.68% =* EDEN MAX +
-6.8213 * EDEN_PERCENTAGE USED +
43.3846 * EDEN_MEMORY USED +
-1535.0803 * EDEN MEMORY VARIATION +
=£27.15149 * OLD_MAX +
=-61.2502 ® OLD_PERCENTAGE_USED +
-664.8845 * OLD MEMORY VARTATION +
7eYT0.1761 F NORMALIZED OLD _HMEMORY WVARIATION +
-0.6861 * INVERSE OLD MEMORY WARIATION +
0.26%4 * NORMALIZED INVERSE OLD MEMORY WARIATION +
-0.0002 * NORMALIZED DIVISICN ATTRIBUTE OLD MEMORY WARIATION +
-0.0%72% * RESPONSE TIME EWML +
-3%.2074 = THROUGHPUT_ EWHA +
-7.9373 * MENORY SYSTEN EWML +
210.2131 *= TOMCAT MEMORY EWML +
385596.2361 * TOMCAT_ MEMORY WARIATICON EWHA +
S054360.2036 * NORMALIZED TOMCAT MEMORY WARTATICN EWMA +
o * INVERSE_TOMCAT MEMORY VARIATION EWMA +
* INVERSE SYSTEM MEMORY VARIATION EWMA +
* NORMALIZED INVERSE SYSTEM MEMORY VARIATION EWMA +
DIVISION _ATTRIBUTE _TOMCAT MEMORY VARIATION +
* NORMALIZED DIVISION ATTRIBUTE TOMCAT MEMORY VARIATION +
* DIVISICHN ATTRIBUTE SYSTEM MEMORY VARIATION +
0 * NORMALIZED DIVISION ATTRIBUTE SYSTEM MEMORY VARIATION +
£51411.8307

oo o oo
L

Hatrix info:

E T T <——Prediction values

426 102 gz | R 69.53606557377045%
115 95 109 | ¥ 29.780564263322854%
13 28 1781 | & o7 . V497 EEETE2 80970,

Figure 7.21: General linear regression model with training set test

Importance-Aware Linear Regression:

Linear Pegression Model

TINE UNTIL FAULT =

2Z3.
—-234.
-3lal.
Z8.
-36.
-8.
Z8.

-1842

-59.

3.

-Z8.
-42335.
-1z.
-7,
—-4379.
530619,
-1.

o.

-0.
-33.
-3.
374,
537zZ0.
5581831.

u]

oo ooo o

193460

T
SE7E6
ge01
6342
0497
625
5455
L5352
5505
2762
4526
3ggl
62985
4114
4201
1563
S5E1a
455

1462
1757
0713
4473
2763
6055

. 491

Matrix info:

E
494
3=
=

T
37
1z6
19

=

throughput +

Torkload +

DI3C U3AGE +

MEMORY 3JIYITEM +

TONCAT MEMORY +

THRELDS +

M3T3IQL CONNECT +

THREADZ WARTATION EWMA +

EDEN MAX +

EDEN PERCENTAGE U3ED +

EDEN_ MEMORY TSED +
NORMALIZED EDEM MEMORY VARTATION +

CLD MAX +

OLD PERCENTAGE UIED +

OLD MEMORY WVARTATION +
HNORMALIZED ©OLD MEMORY VARIATICN +

INVERSE OLD MEMORY VARTATION +
HNORMALIZED INVERSE OLD MEMORY VARIATICH +
RESPONZE TIME EWMA +

THROUGHPUT EWHMA +

MEMORY STITEM EWMA +

TOMCAT MEMORY EWMA +

TOMCAT MEMORY WARTATION EWHA +
NORMALIZED TOMCAT MEMORY VARTATION EWHMA +
INVERSE TOMCAT MEMORY WARTATICHN EWHL +
INVERSE STSTEM MEMORY VARTATION EWML +
HNORMALIZED INVERSE 3Y3TEM MEMORY VARIATION EWHA +
DIVIZTON ATTRIBUTE TOMCAT MEMORY VARTATION +
NORMALIZED DIVISTION ATTRIBUTE TOMCAT MEMORY VARTATION +
DIVIZTION ATTRIBUTE 3TITEM MEMORY VARIATION +
NORMALIZED DIVISTION ATTRIBUTE SYSTEM MEMORY VARTATION +

&) <——Prediction wvalues

=) | R 50.98360855737706%
124 | ¥ 39.49543260158805858%
1796 | = 95.57299070691545%

Figure 7.22: Importance-Aware Linear Regression with training set test

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

Green Gird Consortium, 2010. http://www.thegreengrid.org/

Josep LIu® Berral, Inigo Goiri, Ramon Nou, Ferran Julia, Jordi Guitart, Ricard
Gavalda and Jordi Torres. Towards energy-aware scheduling in data centers using
machine learning. First Intl. Conf. on Energy-Efficient Computing and
Networking. Passau (Germany), April 13-15, 2010.

Javier Alonso, Josep Llu® Berral, Ricard Gavaldaand Jordi Torres. Adaptive
on-line software aging prediction based on Machine Learning. The 40th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2010).

Javier Alonso, R. Gavalda and Jordi Torres. Predicting Web Server Crashes: A
Case Study in Comparing Prediction Algorithms. Proceedings of the 2009 Fifth
International Conference on Autonomic and Autonomous Systems. Pages:
264-269. 2009.

Dustin Amrhein, Scott Quint. Cloud computing for the enterprise - Understanding
cloud computing and related technologies: Part 1. Capturing the cloud.

http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904

_amrhein.html, 2009.

Liang-Jie Zhang, Carl K Chang, Ephraim Feig, Robert Grossman, Keynote
Panel, Business Cloud: Bringing The Power of SOA and Cloud Computing, 2008

IEEE International Conference on Services Computing (SCC 2008), July 2008.

http://www.thegreengrid.org/
http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html
http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html

[7] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/

[8] Google Web Applications. http://www.google.com/apps

[9] Data mining From Wikipedia. http://en.wikipedia.org/wiki/Data_mining
[10]Weka, Data Mining with Open Source Machine Learning Software in Java.

http://www.cs.waikato.ac.nz/ml/weka/

[11]1an H.Witten, Eibe Frank. Data Mining Practical Machine Learning Tools and
Techniques, 2005.

[12] Quinlan, J. R. Induction of decision trees, Machine Learning 1(1): 81-106, 1986.

[13]“A Bayesian Method for the Induction of Probabilistic Networks from Data”,
Gregory F. Cooper and Edward Herskovits, Machine Learning 9, 1992.

[14] Tsamardinos, 1., Aliferis, C., StatnikovA. Algorithms for Large Scale Markov
Blanket Discovery. The 16th International FLAIRS Conference, St. Augustine,
Florida, USA, 2003.

[15]L. Jiang, H. Zhang, Z. Cai and J. Su. Learning Tree Augmented Naive Bayes for
Ranking. Proceedings of the 10th International Conference on Database Systems
for Advanced Applications, 2005.

[16] Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL.:
Congressional Quarterly Inc. Washington, D.C., 1985.

[17]Auto MPG Data Set. http://archive.ics.uci.edu/ml/datasets/Auto+MPG.

[18]Ron Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: a
Decision-Tree Hybrid, Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, 1996.

http://aws.amazon.com/ec2/
http://www.google.com/apps
http://www.cs.waikato.ac.nz/ml/weka/
http://archive.ics.uci.edu/ml/datasets/Auto+MPG

[19]M. Bohanec and V. Rajkovic: Knowledge acquisition and explanation for
multi-attribute decision making. In 8th Intl Workshop on Expert Systems and

their Applications, Avignon, France. Pages: 59-78, 1988.

