

Resource management on Cloud systems with

Machine Learning

Master thesis

Zhenyu Fang

fangzhenyufzy@gmail.com

Master in Information Technology

Barcelona School of Informatics

Technical University of Catalonia

Advisor: Ricard Gavaldà Mestre

Co-Advisor: Jordi Torres Viñals

July, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41800344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Machine Learning techniques based on Weka are adopted to build a middleware

platform called “SysWeka”, which extends Weka capabilities and provide a software

interface for usage by higher application for managing resources on cloud systems.

This work is based on Javier Alonso‟s and Josep Lluís Berral‟s doctoral theses works.

In this work, three different machine learning methodologies are employed to make

classifications and predictions from source datasets; these predictive results can be

used in distributed decision systems. Particularly, the confidence prediction and the

study about Importance-Aware Linear Regression involve innovative application

usage and a promising research. The experimental evaluation platform offers here

contains detailed performance estimation and evaluation of referred methods. It is

expected that this framework provides a fast and easy approach to build applications

based on Machine Learning.

Contents

1 Introduction

 1.1 Project background

 1.2 Project motivation

 1.3 Project objectives

 1.4 Project environment

 1.5 Document Organization

2 State of the Art

 2.1 Cloud systems

 2.2 Data mining

 2.3 Resource management with machine learning

3 Machine Learning techniques

 3.1 Linear Regression

 3.2 Decision Tree and Model Tree

 3.3 Bayesian Networks

4 The SysWeka Platform

 4.1 Framework description

4.2 Prediction components

 4.3 Confidence Prediction

 4.4 Importance-Aware Linear Regression

5 Experimental Evaluation

 5.1 Experimental prediction with diverse Machine Learning methods

 5.2 Confidence Prediction experiments

 5.3 Evaluation on Importance-Aware Linear Regression

 5.4 General Practice

6 Conclusions

 6.1 Conclusions

 6.2 Future work

 6.3 Acknowledgements

7 Appendix

 7.1 Model structures

 7.2 Bayesian network prediction results

 7.3 Confidence prediction results with varied methods

 7.4 Numeric and nominal class confidence prediction

 7.5 Importance-Aware Linear Regression model

Chapter 1

Introduction

1.1 Project background

With progressive spotlight on cloud computing as a possible solution for a flexible,

on-demand computing infrastructure for lots of applications, many companies and

unions have joined the tendency. Obviously, cloud computing have been recognized

as a model in support of services. Within that cloud system, massive distributed data

center infrastructure, virtualized physical resources, virtualized middleware platform

as well as applications are all being provided and consumed as services.

Since large numbers of data processed and the energy resources cost generated

have become a major economical and environmental factor, Green IT [1] has been put

forward as a solution to lessen IT departments’ cost. Therefore, it is crucial to obtain a

rational prediction from this complicated system in order to achieve better

management.

 To make the data center more economical and reduce the environmental impact,

framework that can highly optimize energy efficiency has been proposed by Josep

Lluís Berral [2], from Technical University of Catalonia, where a framework was

proposed that provides an intelligent consolidation methodology using different

techniques including Machine Learning.

 On the other hand, the growing complex of modern computer systems has lead to

increasingly software faults. Just like the operation systems, application platforms

have become more functional, extensible, complicated and even interact with each

other, which greatly increase the software-level errors. Therefore, plenty of techniques

have been researched and developed to avoid software failures. General bug-fixed

mode cannot catch the pace of modern on-demand system, Machine Learning, model

construction and prediction strategy are now proposed to address this tough problem.

As Javier Alonso’s works described in [3] [4], adaptive software aging prediction

based on Machine Learning is proposed in [3]. A series system metrics are used to

predict software aging time, which is an important foundation for this project.

1.2 Project motivation

Machine Learning contains massive advantageous methods to make classification and

prediction. Weka is a data mining and Machine Learning tools written in Java that

involves API interface and easy extensibility. This tool is appropriate for common

experiments and testing manually. However, our goal is to do prediction automatically

and more general for the energy efficiency and software failures like scenarios.

A platform should be constructed to meet these requirements and be extensible as

well. Therefore, further applications using machine learning can just interact with this

platform and call the functions directly without operating from raw data. This can

provide more general view from application layer and hide specific machine learning

algorithms, which improves application efficiency and make it easy to start.

1.3 Project objectives

This project is focusing on building a software platform for making developments in

cloud computer systems to achieve decision-making prediction, which utilizes diverse

Machine Learning techniques and provides a software interface for prediction

operation.

This work is based on the idea proposed by Josep Lluís Berral [2] and Javier

Alonso [3], for this project, Machine Learning is the key point to enhance the

prediction accuracy and construct the components for flexible and general usage. Also

data mining and mathematical methodologies are applied to gather information,

implement and promote the core functionality.

The objective of this work is to offer an extensible middleware that uses different

Machine Learning techniques to provide functionality of building models, prediction,

evaluation and performance analysis based on proposed framework. Those Cloud

applications can work with these interfaces without even realizing certain low level

infrastructure details, which causes high transparence and convenience for massive

Cloud application development.

The middleware is designed and built between the lower Machine Learning

infrastructures and higher cloud applications, where prediction accuracy, extensible

functionality, confidence prediction and evaluation measurements are developed to

construct the extension of the existing standard. Data gathered from emulator [3] is

regarded as input knowledge and will be modeled with different Machine Learning

algorithms including Linear Regression, M5P and Bayesian networks. Predicting

instances to obtain predictive results and confidence after modeling data can acquire

prediction of future states which helps to make wise decision for the higher cloud

applications.

Within this middleware, Weka is adopted as a communication interface to the

original dataset and offers well-defined API to manipulate building models and

classification.

1.4 Project Environment

This project is developed in the framework of a multidisciplinary effort started

approximately three years ago by researchers at the Computer Architecture

Department (DAC) of UPC, the Software department (LSI) of UPC, and the

Barcelona Supercomputing Center (BSC). One of the advisors of this thesis, Professor

Jordi Torres, belongs to the High Performance Computing Group of DAC, and

manager for Autonomic Systems and eBusiness Platforms research line in BSC. The

other advisor of this thesis, Professor Ricard Gavaldà, belongs and currently

coordinates the LARCA research group of UPC, whose main line of research is the

theory and applications of machine learning and data mining. Recently, both teams

have investigated the role of machine learning and data mining to build self-managing

systems, with emphasis on achieving efficiency without compromising performance.

As part of this research effort, there are two ongoing Ph.D. theses co-advised by

professors Torres and Gavaldà. The Ph.D. thesis of Javier Alonso, to be defended in a

few months, deals with ways of achieving high-availability in cluster systems, and in

particular of mitigating the effects of software aging in web servers; to this end, it is

essential to be able to predict the effect of software aging and oncoming machine

crashes, for which machine learning techniques are particularly applicable. The Ph.D.

thesis of Josep Lluís Berral, currently taking shape, will deal with the efficient

scheduling of workloads and resource allocation in virtualized cloud environments;

there, it is crucial to be able to predict the variation and resource consumption of

incoming workloads, as well as the effect of workload variation and resource

allocation on the performance of both virtual and physical machines.

The goals of this Master thesis can be viewed as providing some bridge between

existing machine learning frameworks (specifically, Weka) and the specific, not

totally standard, machine learning requirements of these Ph.D. Thesis and the ongoing

research project.

1.5 Document Organization

The document is structured as follows: In chapter 2, the state of the art in Resource

management on Cloud systems with machine learning is shown. In chapter 3, three

main Machine Learning methodologies are explained. Chapter 4 describes the work in

this project, SysWeka Platform. Chapter 5 illustrates experimental evaluation on this

platform in detail. In chapter 6, some conclusions and expectation on future work are

presented. Finally, chapter 7 as Appendix involves numerous experimental results,

model structures and datasets representation.

Chapter 2

State of the Art

This chapter explains the state of the art of Cloud systems, data mining and resource

management with Machine Learning, from the whole complex systems to key

technologies in resource management.

2.1 Cloud systems

Cloud Computing has become one of the popular buzzwords in the IT area after

Web2.0. This is not a new technology, but the concept that binds different existed

technologies altogether including Grid Computing, Utility Computing, distributed

system, virtualization and other mature technique. As a key service delivery platform,

Cloud computing systems provide environments to enable resource sharing in terms

of scalable infrastructures, middleware, application development platforms and

value-added business applications. Software as a Service (SaaS), Platform as a

Service (PaaS) and Infrastructure as a Service (IaaS) are three basic service layer [5].

Figure 2.1: Cloud system architecture

 SaaS: This layer is very familiar to the web users that hosts applications and

provides on-demand services to users. Applications delivered via the SaaS

model benefit consumers by relieving them from installing and maintaining

the software and they can be paid by resource usage or license models [5].

 PaaS: This is the layer in which we see application infrastructure emerge as a

set of services and support applications. In order to achieve the scalability

required within a cloud, the different services offered here are often

virtualized. Examples of offerings in this part of the cloud include IBM

WebSphere Application Server virtual images, Amazon Web Services, Boomi,

Cast Iron, and Google App Engine. Platform services enable consumers to be

sure that their applications are equipped to meet the needs of users by

providing application infrastructure based on demand [5].

 IaaS: The bottom layer of the cloud is the infrastructure services layer. Here a

set of physical assets such as servers, network devices and storage disks

offered as provisioned services to consumers. Examples of infrastructure

services include IBM BlueHouse, VMWare, Amazon EC2, Microsoft Azure

Platform, Sun ParaScale Cloud Storage, and more. Infrastructure services

address the problem of properly equipping data centers by assuring

computing power when needed. In addition, due to the fact that virtualization

techniques are commonly employed in this layer, cost savings brought about

by more efficient resource utilization can be realized [5].

 According to [6], typically there are four types of resources that can be

provisioned and consumed over the Internet. They can be shared among users by

leveraging economy of scale. Provisioning is a way of sharing resources with

requesters over the network. One of the major objectives of Cloud Computing is to

leverage Internet or Intranet to provision resources to users.

 Infrastructure resources contain computing power, storage and physical

machine and networks provision. For instance, Amazon EC2 provides web

service interface to easily request and configure capacity online [7].

 Software resources include middleware and development resources. The

middleware consists of cloud-centric operating systems, application servers,

databases and others. The development resources comprehend design

platforms, development, testing, and deployment tools.

 Application resources mean that various applications have been moved into

cloud environment and delivered as a service known as SaaS as explained

above. For example, Google has adopted the Cloud Computing platform to

offer many Web-based applications for business and personal usage [8].

 Business Process is a set of coordinated tasks and activities, which represents

certain business service shown as a workflow. Business Process Management

tools integrated in cloud systems can reuse, compose and communicate with

these processes.

2.2 Data mining

Data mining is a practical technology to analyze and extract patterns from raw data,

which can transform the original data into knowledge and beneficial information. The

idea is to build computer programs that sift through databases automatically, seeking

regularities or patterns. Strong patterns, if found, will likely generalize to make

accurate predictions on future data.

 In data mining, the data is stored electronically and the search is automated or at

least augmented by computer. It has been estimated that the amount of data stored in

the world’s databases doubles every 20 months. As the flood of data swells and

machines that can undertake the searching become commonplace, the opportunities

for data mining increase. As the world grows in complexity, overwhelming us with

the data it generates, data mining becomes our only hope for elucidating the patterns

that underlie it. Intelligently analyzed data is a valuable resource. It can lead to new

insights and, in commercial settings, to competitive advantages [11].

 There have been some efforts to define standards for data mining, for example the

1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0)

and the 2004 Java Data Mining standard (JDM 1.0). These are evolving standards;

later versions of these standards are under development. Independent of these

standardization efforts, freely available open-source software systems like the R

Project, Weka, KNIME, RapidMiner and others have become an informal standard for

defining data-mining processes. The first three of these systems are able to import and

export models in PMML (Predictive Model Markup Language) which provides a

standard way to represent data mining models so that these can be shared between

different data mining applications [9].

 In this project, Weka (Waikato Environment for Knowledge Analysis) is used to

perform data mining and Machine Learning functions, which is a popular suite of

Machine Learning software written in Java, developed at the University of Waikato,

New Zealand [10]. The Weka workbench contains a collection of visualization tools

and algorithms for data analysis and predictive modeling, together with graphical user

interfaces for easy access to this functionality. Weka supports several standard data

mining tasks, more specifically, data preprocessing, clustering, classification,

regression, visualization, and feature selection. All of Weka's techniques are

predicated on the assumption that the data is available as a single flat file or relation,

where each data point is described by a fixed number of attributes.

2.3 Resource management with machine learning

Machine Learning is concerned with the design and development of algorithms that

allow computers to evolve behaviors based on empirical data, such as from sensor

http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
http://en.wikipedia.org/wiki/Java_Data_Mining
http://en.wikipedia.org/wiki/R_Project
http://en.wikipedia.org/wiki/R_Project
http://en.wikipedia.org/wiki/Weka_(machine_learning)
http://en.wikipedia.org/wiki/KNIME
http://en.wikipedia.org/wiki/RapidMiner
http://en.wikipedia.org/wiki/PMML
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/New_Zealand
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Predictive_modeling
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Preprocessing
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Feature_selection
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Sensor

data or databases. A major focus of Machine Learning research is to automatically

learn to recognize complex patterns and make intelligent decisions based on data; the

difficulty lies in the fact that the set of all possible behaviors given all possible inputs

is too complex to describe generally in programming languages, so that in effect

programs must automatically describe programs.

There are two main types of Machine Learning algorithms. In this work,

supervised learning is adopted here to build models from raw data and perform

regression and classification.

 Supervised learning: It deduces a function from training data that maps

inputs to the expected outcomes. The output of the function can be a

predicted continuous value (called regression), or a predicted class label from

a discrete set for the input object (called classification). The goal of the

supervised learner is to predict the value of the function for any valid input

object from a number of training examples. The most widely used classifiers

are the Neural Network (Multilayer perceptron), Support Vector Machines,

k-nearest neighbor algorithm, Regression Analysis, Bayesian statistics and

Decision tree.

 Unsupervised learning: It determines how the inputs are formed like

clustering where learner is given unlabeled examples. Unsupervised learning

is closely related to the problem of density estimation in statistics. However

unsupervised learning also encompasses many other techniques that seek to

summarize and explain key features of the data. Some forms of unsupervised

learning is clustering, self-organizing map.

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Classification_(machine_learning)
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://en.wikipedia.org/wiki/Support_Vector_Machines
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Bayesian_statistics
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Self-organizing_map

Chapter 3

Machine Learning techniques

In this chapter we describe some machine learning techniques, the ones that will be

most relevant to our work. Many, many more techniques exist, and the ones we chose

here are neither the most sophisticated, nor necessarily the ones that provide better

accuracy in general. We chose two of them (linear regression and decision trees)

because they were the ones mostly used in our reference works [2,3,4]; additionally,

one of the goals of the thesis was to investigate the use of a third kind of techniques

(Bayesian networks) in the context of computer resource management and prediction.

3.1 Linear Regression

In statistics, linear regression is a staple technique that works with numeric attributes.

It is one method of linear models which model the relationship between a scalar

variable y and one or more variables denoted X and these models depend linearly on

the unknown parameters to be estimated from the data. Generally, linear regression

could refer to a model in which the median or some other quantile of the conditional

distribution of y given X is expressed as a linear function of X.

Linear regression has been used extensively in practical applications, because

models which depend linearly on their unknown parameters are much easier to build

than non-linear ones. Specifically, when the outcome or class and all attributes are

numeric, linear regression is a natural method to consider.

 The idea is to express the class as a linear combination of the attributes with

predetermined weights:

 y = w0 + w1a1 + w2a2 + … + wkak

where y is the class; a1, a2… ak are the attribute values and w0, w1… wk are weights.

 The weights are calculated from the training data. Here the notation gets a little

heavy, because this is a clear way of expression the attribute values for each training

instance. The first instance will have a class, say y
(1)

 and attribute values a1
(1)

, a2
(2)

,…,

ak
(1)

, where the superscript denotes that it is the first example. Moreover, it is

notationally convenient to assume an extra attribute a0 whose value is always 1.

 So the predicted value for the first instance’s class can be written as:

w0a0
(1)

 + w1a1
(1)

 + w2a2
(1)

 + … + wkak
(1)

 =

This is the predicted, not the actual, value for the first instance’s class. The

difference between the predicted and the actual values the interest one. The method of

linear regression is to calculate the coefficients wj, there are k + 1 of them, to

minimize the sum of the square of these differences over all the training instances.

Suppose there are n training instances; denote the ith one with a superscript (i). Then

the sum of the squares of the differences is

where the expression inside the parentheses is the difference between the ith

instance’s actual class and its predicted class. This sum of squares is what we have to

minimize by choosing the coefficients appropriately.

 Numerous procedures have been developed for parameter estimation and

inference in linear regression. These methods differ in computational simplicity of

algorithms, presence of a closed-form solution, robustness with respect to

heavy-tailed distributions, and theoretical assumptions needed to validate desirable

statistical properties such as consistency and asymptotic efficiency.

 Ordinary least squares (OLS) is the simplest and thus very common estimator. It

is conceptually simple and computationally straightforward. OLS estimates are

commonly used to analyze both experimental and observational data. This method

minimizes the sum of squared residuals, and leads to a closed-form expression for the

estimated value of the unknown parameter w.

 Often those n equations are stacked together and written in vector form as:

 Y = AW +ε ,
where

Y = , A = = , W= , ε =

 yi is called dependent variable which represent the real class value with instance i.

 The matrix A is called independent variables which shows each attribute value

with each instance.

 W is a k +1 dimensional parameter vector. Its elements are called effects, or

regression coefficients.

 is called error term or noise.

According to the OLS algorithm, the unknown parameter W can be calculated as:

W = A‟Y

where „ denotes matrix transpose and
-1

 is matrix inversion.

 Linear regression is an excellent, simple method for numeric prediction, and it

has been widely used in statistical applications for decades. Of course, linear models

suffer from the disadvantage of, well, linearity. If the data exhibits a non-linear

dependency, the best-fitting straight line will be found, where ―best‖ is interpreted as

the least mean-squared difference. This line may not fit very well. However, linear

model serve well as building blocked for more complex learning methods.

3.2 Decision Tree and Model Tree

A ―divide-and-conquer‖ approach to the problem of learning from a collection of

independent instances leads naturally to a style of representation called a decision tree.

Decision tree is one of the most popular classification algorithms in Data mining and

Machine Learning, which is a tree-structured model of a set of attributes to test in

order to predict the output. Decision tree learning is a methodology that uses inductive

inference to approximate a target function, which will produce discrete values. It is

widely used, robust to noisy data and considered a practical method for learning

disjunctive expressions [11].

 Nodes in a decision tree involve testing a particular attribute. Usually, the test at a

node compares an attribute value with a constant. However, some trees compare two

attributes with each other, or use some function of one or more attributes. Leaf nodes

give a classification that applies to all instances that reach the leaf or a set of

classifications, or a probability distribution over all possible classifications. To

classify an unknown instance, it is routed down the tree according to the values of the

attributes tested in successive nodes and when a leaf is reached, the instance is

classified according to the class assigned to the leaf [11].

 The structure of decision tree is shown below, which is a simple tree generated

with Weka. This example predicts whether the weather is good enough to play outside.

There are five nominal attributes in all (outlook, temperature, humidity, windy, play)

and play is the class to be predicted. And the decision tree learning algorithm just

selects four attributes including class to construct the tree with five leaves and eight

nodes.

Figure 3.1: Example decision tree used to predict playing outside or not according to

weather

 If the attribute that is tested at a node is a nominal one, the number of children is

usually the number of possible values of the attribute. If the attributes is numeric, the

test at a certain node usually determines whether its value is greater or less than a

predetermined constant, giving a two-way split.

 This kind of decision trees are designed for predicting categories rather than

numeric quantities. When it comes to predict numeric quantities, the same kind of tree

can be used, but the leaf nodes of the tree should contain a numeric value that is the

average of all the training set values to which the leaf applies. Since statisticians use

term regression for the process of computing an expression that predicts a numeric

quantity, decision trees with averaged numeric values at leaves are called Regression

Tree [11].

Figure 3.2 shows a linear regression equation for class and Figure 3.3 shows a

regression tree. The leaves of the tree are numbers that represent the average outcome

for instances that reach the leaf. The tree is much larger and more complex than the

regression equation. And regression tree is more accurate because a simple linear

model poorly represents the data in this problem. Figure 3.4 is a tree whose leaves

contain linear expressions, that is, regression equations, rather than single predicted

value. This is called Model Tree. Figure 3.4 involves five linear models that belong to

the five leaves, labeled from LM1 to LM5. The model tree approximates continuous

functions by linear models.

Figure 3.2: Linear regression

Figure 3.3: Regression tree

Figure 3.4: Model tree

The problem of constructing a decision tree can be expressed recursively. First,

select an attribute to place at the root node and make one branch for each possible

value. This splits up the example set into subsets, one for every value of the attribute.

Now the process can be repeated recursively for each branch, using only those

instances that actually reach the branch. If at any time all instances at a node have the

same classification, stop developing that part of the tree. One practical algorithm is

call C4.5 that is a series of improvements to ID3 which was developed and refined

over many years by J.Ross Quinlan of the University of Sydney, Australia [12]. In

Weka, J48 classifier implements the C4.5 algorithm and M5P implements the model

tree method.

3.3 Bayesian Networks

A Bayesian network, belief network or directed acyclic graphical model is a

probabilistic graphical model that represents a set of random variables and their

conditional independencies via a directed acyclic graph (DAG). Bayesian networks

are drawn as a network of nodes, one for each attribute, connected by directed edges

in such a way that there are no cycles – a directed acyclic graph [11].

Formally, Bayesian networks are directed acyclic graphs whose nodes represent

random variables in the Bayesian sense: they may be observable quantities, latent

variables, unknown parameters or hypotheses. Edges represent conditional

dependencies; nodes which are not connected represent variables which are

conditionally independent of each other. Each node is associated with a probability

function that takes as input a particular set of values for the node's parent variables

and gives the probability of the variable represented by the node [11].

From [11], we can acquire definition and explanation of Bayesian network. Some

contents are as follows.

Probability estimates are often more useful than plain predictions. They allow

predictions to be ranked, and their expected cost to be minimized. In fact, there is a

strong argument for treating classification learning as the task of learning class

probability estimates from data. What is being estimated is the conditional probability

distribution of the values of the class attribute given the values of the other attributes.

The classification model represents this conditional distribution in a concise and

easily comprehensible form.

 Given values for each of a node’s parents, knowing the values for any other

ancestors does not change the probability associated with each of its possible values,

which means ancestors do not provide any information about the likelihood of the

node’s values over and above the information provided by parents. This can be

expressed:

Pr [node | ancestors] = Pr [node | parents]

http://en.wikipedia.org/wiki/Graphical_model
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Conditional_independence
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Probability_function
http://en.wikipedia.org/wiki/Probability_function
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Directed_acyclic_graphs

which must hold for all values of the nodes and attributes involved. In statistics this

property is called conditional independence. Multiplication is valid provided that each

node is conditionally independent of its grandparents, great-grandparents and so on,

given its parents. The multiplication step results directly from the chain rule in

probability theory, which states that the joint probability of n attributes ai can be

decomposed into this product:

Pr [a1,a2,…,an] =

The decomposition holds for any order of the attributes. Because Bayesian network is

an acyclic graph, its nodes can be ordered to give all ancestors of node ai indices

smaller than i. Then, because of the conditional independence assumption,

 Pr [a1,a2,…,an] = =

which is exactly the multiplication rule that we applied previously.

Therefore,

P(X1 = x1 ,…, Xn = xn) =

=

 The way to construct a learning algorithm for Bayesian networks is to define two

components: a function for evaluation a given network based on the data and a

method for searching through the space of possible networks. The quality of a given

network is measured by the probability of the data given the network.

Figure 3.5 shows the Bayesian network Graph with the weather sample generated

by Weka. Figure 3.6 illustrates the Probability Distribution Table for node

―temperature‖ that contains three nominal values: hot, mild and cool. These

probabilities are calculated given the value of the parents of ―temperature‖ – ―play‖

and ―outlook‖.

Figure 3.5: Bayesian network Graph with the weather sample.

Figure 3.6: Probability Distribution Table for node ―temperature‖

 One simple and fast learning algorithm is call K2 [13], starting with a given

ordering of the attributes. Then it processes each node in turn and greedily considers

adding edges from previously processed nodes to the current one. In each step it adds

the edge that maximizes the network’s score. When there is no further improvement,

attention turns to the next node. One potentially instructive trick is to ensure that

every attribute in the data is in the Markov blanket [14] of the node that represents the

class attribute. A node’s Markov blanket includes all its parents, children and

children’s parents. It can be shown that a node is conditionally independent of all

other nodes given values for the nodes in its Markov blanket [11].

 Another good learning method for Bayesian network classifiers is called tree

augmented Naïve Bayes (TAN) [15]. As the name implies, it takes the Naïve Bayes

classifier and adds edges to it. The class attribute is the single parent of each node of a

Naive Bayes network: TAN considers adding a second parent to each node. If the

class node and all corresponding edges are excluded from consideration, and

assuming that there is exactly one node to which a second parent is not added, the

resulting classifier has a tree structure rooted at the parentless node – this is where the

name comes from. For this restricted type of network there is an efficient algorithm

for finding the set of edges that maximizes the network’s likelihood based on

computing the network’s maximum weighted spanning tree. This algorithm is linear

in the number of instances and quadratic in the number of attributes [11].

 Bayesian networks are a special case of a wider class of statistical models called

graphical models, which include networks with undirected edges (called Markov

networks). Graphical modes are becoming increasingly popular in the Machine

Learning community today.

Chapter 4

The SysWeka Platform

4.1 Framework description

The SysWeka platform for Systems-oriented Weka is designed and built between the

lower Machine Learning infrastructures and higher cloud applications, which provides

interface for higher software development. Figure 4.1 is the architecture of this

platform. Command Interpreter collects the input and interpret the commands.

General Evaluation utilizes the Prediction and Confidence models to provide general

functionality for evaluation. Prediction and Confidence calculate the predictive values

and confidence values with different classifiers specified in the command. Moreover,

data interface is used to load raw data from source files and categories them into two

types, numeric one and nominal one, which is constructive for prediction and

confidence components. There is another new Importance-Aware Linear Regression

method that is updated from normal linear regression with Importance-Aware feature.

Figure 4.1: SysWeka platform architecture

The following graph is the main class diagram. The Predictor and Command

Interpreter support the user interface of the middleware. Prediction and Confidence

are computed according to the class data type. Also General Evaluation model can be

considered from both nominal and numeric views internally. Actually, in the whole

project environment, data type should be specified. The source data file is generated

by the emulator [4] and is processed in the Prediction or Confidence model to predict

the class values and confidence. General Evaluation is designed for general

confidence prediction, which means that Machine Learning data sample gathered

from all kinds of resources can be tested and evaluated here to obtain the prediction

result directly. This is a common platform to do prediction and confidence

calculations.

Figure 4.2: SysWeka main class diagram

The Figure 4.3 is the start-up user interface including command explanation and

configuration information.

Figure 4.3: Start-up user interface

4.2 Prediction components

Prediction components provide prediction interface to predict nominal or numeric

class and also evaluate the prediction results from original datasets. These source

datasets are the outcome of Javier Alonso’s works [3] [4]. Those system metrics are

selected to represent the specific field of systems and models are built based on these

attributes to predict the TIME_UNTIL_FAULT class. The work in this paper will

extend and apply to that kind of scenarios.

 During this process, we make further development from results of Javier Alonso’s

works. Mainly, TIME_UNTIL_FAULT class is divided into three categories (RED,

YELLOW and GREEN), which can indicate different urgency of application actions.

These categories predicted from TIME_UNTIL_FAULT have different definitions

according to varied applications. Furthermore, these three metrics can donate the

necessity of migrating some VM to other physical machine [2] or necessity of

recovery operation, jobs-rescheduling and booting.

In this paper, RED means this machine will crash within very limited time.

YELLOW means this machine will crash in a certain time, which gives an ordinary

warning to the scheduling system, and GREEN, of course, shows the satisfying

performance of certain machine.

 After building and labeling this new class, classifiers should be adopted to

construct new prediction models. We use three main methods here: Linear Regression,

M5P and Bayesian networks, all described in previous section. As is known, linear

regression and M5P are used to predict numeric values, while Bayesian networks

focus on nominal prediction. In order to employ these methodologies, different

strategies are made. Since TIME_UNTIL_FAULT is numeric class, Linear Regression

and M5P can be used directly to predict TIME_UNTIL_FAULT first, and then

TIME_WARNING could be calculated from the TIME_UNTIL_FAULT values. With

Bayesian networks, first, TIME_WARNING is calculated, and then it will be

predicted without TIME_UNTIL_FAULT class.

 Internally, Bayesian networks, Decision Table and other nominal prediction

method can be used for Nominal Prediction. And Linear Regression, M5P, Decision

Table, REPTree and other numeric prediction method can be used for Numeric

Prediction for this TIME_WARNING class. Furthermore, after building prediction

models, predictions can be acted through batch file or property file, while batch file

mode is similar as off-line and property file mode is like on-line process.

 When it comes to evaluation, relative coefficient is specified to estimate the

relative error rate that is used in numeric prediction to express the relative error.

Because in some cases, errors should be considered with relative rate not exact values.

The relative rate is more suitable for especially large numbers, for instance, given 900

seconds to crash, the predictive time-to-crash is 1500 seconds, this difference, 600

seconds, is more crucial than given 9000 seconds to crash with predictive value 8400

seconds. Consequently, relative error rate is introduced in numeric prediction to

specify the relative error status.

 In addition, error metrics are involved when evaluating the TIME_WARNING

predictive results. The different predictive results can have a diverse influence based

on different real values. For example, if the real value is RED and the predictive value

is GREEN, which means the decision system may continue to assign jobs to this

machine and this will of course make machine crash and reduce the availability. So,

this is an important error. On the other hand, if the real value GREEN is predicted as

RED, the decision system may no longer send any jobs to this machine and do

recovery procedures on that machine. This will not badly damage the availability and

performance and it seems to have no influence on the whole system. Considering the

different importance of distinct results could generate, error metrics are required to

adjust the error accuracy.

4.3 Confidence Prediction

Confidence has been defined as ―a state of being certain either that a hypothesis or

prediction is correct or that a chosen course of action is the best or most effective‖ in

science, which is an essential metrics to represent the correctly rate.

Confidence is calculated from the difference of real value and predictive value

assigned from 0 to 1 to indicate the correctly rate of prediction. After acquiring the

confidence values, confidence is selected as the new class to be predicted and models

will be built using original attributes, predictive value and confidence without

previous class—the real value. In this case, there are two models constructed, one to

predict the real value and the other to predict the confidence based on the previous

predictive value. Therefore, we can not only do time-warning prediction but also

measure the predictive result with confidence to reveal its accuracy.

 The confidence process can be described as follows:

(a)

(b)

(c) (d)

Figure 4.4:

(a): set TIME_WARNING as class for training and predict the class value.

(b): add a new numeric attribute Confidence and calculate its value.

(c): remove the real value attribute and set Confidence as class for training.

(d): utilize first model to predict the TIME_WARNING then adopt second model to

predict Confidence.

 During Confidence prediction, two different models will be built to predict the

TIME_WARNING and Confidence. Afterwards, we can obtain both predict values

and its confidence according to different attribute values, which improves the

prediction accuracy extraordinarily.

Each instance’s confidence is predicted respectively and whole prediction

confidence of each warning type (RED, YELLOW, and GREEN) is measured as well.

The following chart shows the distribution of prediction results using M5P algorithm

and error metrics with 2751 numbers of instances where the confidence demonstrates

the correctly rate of each category (R-R, Y-Y and G-G).

Figure 4.5: Distribution of prediction results using M5P and error metrics

4.4 Importance-Aware Linear Regression

In Section 3.1, we discuss Linear Regression and Ordinary least squares (OLS)

estimator. Here, Importance-Aware features are added to linear regression to support

prediction with different importance of different instances. Since diverse instance may

have varied importance in practical environments, prediction with Importance-Aware

can surely enhance the experience and usage of prediction. Here, we still use Ordinary

least squares (OLS) to estimate the Importance-Aware Linear Regression.

4.4.1 Derivation of the formulas

From Section 3.1, the sum of the squares of the differences is written as:

where the expression inside the parentheses is the difference between the ith

instance’s actual class and its predicted class. This sum of squares is what we have to

minimize by choosing the coefficients appropriately.

Here importance metric imp(i) is added into this formula:

This sum of the product of given importance and squares is what we should minimize

by choosing the coefficients appropriately. Using the same mathematic idea, we let

the first order derivative equal to zero and compute the coefficients wj. That is

These formulas can be written with matrix form:

We define A = , then A
’
 = .

Define diagonal matrix T = ,

Then

A
’
T =

Define X = (A'T)‟ = T‟(A‟)‟ = T‟A = TA =

X‟ = A‟T

So the matrix form can be expressed as follows:

X‟X W = X‟TY, where W = and Y =

According to matrix operation, because Rank(X) = k+1, X‟X is a square matrix of rank

k+1. So X‟X is a square matrix of full rank. Therefore, the inverse matrix of X‟X exists.

Then

W = (X‟X)
-1

 X‟TY

After matrix inversing and transposing, the coefficient matrix W is acquired, which is

the goal for our Importance-Aware linear regression.

On the other hand, the weights of linear regression without Importance-Aware

can be expressed as follows using the definition above.

W = (A‟A)
-1

A‟ TY

The two formulas are very similar and the Importance-Aware weighs involve one

additional diagonal matrix T, which means we can build our own linear regression

new version or can modify the Weka source code conveniently.

Chapter 5

Experimental Evaluation

5.1 Experimental prediction with diverse Machine Learning

methods

During the experiments, a source dataset file is used to make further prediction and

analysis. This dataset file is one of Javier Alonso’s works for predicting software time

until crash [3] [4]. There are many system metrics in that dataset file including two

different resources: Threads and Memory, individually or merged, where the numeric

class TIME_UNTIL_FAULT is predicted by those system metrics in Javier Alonso’s

work using M5P methodology. However, these series of experiment focus on

predicting the nominal class TIME_WARNING (R-RED, Y-YELLOW and

G-GREEN) with confidence, performance comparison and accuracy improvements.

 Starting from the source dataset file, there are 49 kinds of numeric system metrics

in the model and some of them are listed as follows. Detailed descriptions on these

metrics can be found in [3].

throughput

Reponse_time

Workload

SYSTEM_LOAD

DISC_USAGE

SWAP

PROCESSES

MEMORY_SYSTEM

TOMCAT_MEMORY

THREADS

HTTP_CONNECT

MSYSQL_CONNECT

THREADS_VARIATION_EWMA

EDEN_PERCENTAGE_USED

DIVISION_ATTRIBUTE_EDEN_MEMORY_VARIATION

NORMALIZED_INVERSE_EDEN_MEMORY_VARIATION

MEMORY_SYSTEM_EWMA

TOMCAT_MEMORY_EWMA

TOMCAT_MEMORY_VARIATION_EWMA

NORMALIZED_SYSTEM_MEMORY_VARIATION_EWMA

OLD_MEMORY_USED

OLD_PERCENTAGE_USED

……

Table 5.1: Key system metrics in the dataset source file

 In respect of TIME_UNTIL_FAULT class, minimum is 0, maximum is 20362,

mean is 7393.124 and standard deviation is 5550.533. Based on upper and lower

thresholds, TIME_UNTIL_FAULT value is transformed into TIME_WARNING value.

In our experiments, the default value of upper limit is 3600 seconds and lower limit is

2400 seconds. Within 2751 instances, there are 610 instances labeled R, 319 instances

labeled Y and 1822 labeled G.

 First, linear regression, M5P, and Bayesian network are adopted to show the

different accuracy for prediction. Nominal and numeric prediction can be utilized in

these experiments using different strategies described in Chapter 4.

The details of the Linear Regression Model, M5P Model, and Bayesian network

Model with default setting values, relative rate and error Matrix presented can be

found in Appendix 7.1.

 From this experiment, we can get the comparison table as follows:

 Linear Regression M5P Bayesian network

Time to build model 0.594 s 1.438 s 0.313 s

Correlation coefficient -0.0108 0.9958 NAN

Correctly

Classified Instances

NAN NAN 92.8753%

Relative absolute error 54617311691.7164% 4.1581% 14.4073%

Relative error 47.8735% 7.5972% NAN

Correctly Prediction

Rate for R

41.3887% 87.4857% 57.8723%

Correctly Prediction

Rate for Y

10.6886% 65.1972% 74.1772%

Correctly Prediction

Rate for G

94.2192% 98.5908% 91.2998%

Table 5.2: Comparison with three kinds of methods

This table indicates the different key measurements generated by Linear

Regression, M5P and Bayesian network using K2 as search algorithm and

SimpleEstimator as estimator. The Correctly Classified Instances, Correlation

coefficient and other metrics are generated by 10-fold cross-validation while the

matrix information shown is calculated by predicting training data with relative error

matrix to test models.

As is illustrated above, linear regression is not appropriate for this time-warning

prediction, whose Correlation coefficient is negative, Relative absolute error is even

out of imagination and higher Correctly Prediction Rate for G. This means linear

regression is suitable to predict large numbers that is, if system runs smoothly without

unexpected errors, it is linear and will take a long time until crash. And that is why it

is widely used and generally successful.

 M5P is more successful in this experiment than linear regression and Bayesian

network only with lower Correctly Prediction Rate for Y compared with Bayesian

network. The Correctly Prediction Rate for R and G are more satisfactory and the

relative error shows a large improvement. Just like statements in Javier Alonso’s work

[4], M5P proved to be more efficient to predict non-linear numeric values, because it

involves model tree and partly linear.

 Bayesian network, even though it is a more sophisticated technique, does not

have a promising performance in this experiment. According to its definition

discussed in Section 3.3, Bayesian networks are drawn as a network of nodes, one for

each attribute, connected by directed edges – a directed acyclic graph.

 In this experiment, the Bayesian network prediction method adopts K2 as search

algorithm with max one parent per node, which definitely degrades Bayesian

network’s function at this point, because there are 49 attributes in this dataset and

some of these attributes are relative to each other and these connections have a large

influence on the class. With max one parent per node K2 search algorithm, every node

only has one parent – the class. The Probability Distribution Table can be only

calculated based on class, which eliminates the impact with other possible attributes.

So the result is not as good as it should be. The more parents a node has, the higher

impact the node will obtain. As more parents per node are specified using K2 search

algorithm, the performance improves tremendously.

 Here we do not change the estimator and still use the simple and fast search

algorithm K2 only with more parents per node, actually three parents and five parents

for comparison. To be surprised Bayesian network prediction with max three or more

parents per node using training set results performs perfect classification to predict

training set.

 The details of Bayesian networks with max three or more parents per node using

training set results obtained by these algorithms can be found in Appendix 7.2.

Though Bayesian networks with max three parents per node obtain 100%

classification using training set test, they still achieve 99.3457% correctly rate for

cross-validation. Another experiment using 10-fold cross-validation shows the little

difference between Bayesian network with max three parents and five parents per

node.

The Correctly Classified Rate is very similar but it costs 6.19 seconds with max

five parents per node to build models, 4 times longer than time spent with max three

parents per node. So we only consider max three parents per node in this project.

 In the last experiment, Bayesian network using K2 as search algorithm and

SimpleEstimator as estimator has perfect classification with max three parents per

node using training set test. According to the 10-fold cross-validation above, it also

proved to be very satisfactory, almost 99% correctly rate. The following experiment is

using 60% percentage split for Bayesian network with max three parents per node.

The details of these experiments can be also found in Appendix 7.2.

Bayesian network using K2 as search algorithm and SimpleEstimator as estimator

with max three parents per node performs advantageous classification with three

different kinds of testing methods: use training set, cross- validation and percentage

split. Though the graphical model is more complex than other models, this method

does provide high performance within reasonable time.

5.2 Confidence Prediction experiments

Here confidence prediction experiments of both numeric class and nominal class will

be presented. Since confidence is a number valued from 0 to 1 measuring the

accuracy of the predictive values, there are two other classifiers that can help to

improve the confidence accuracy. Decision Table is used for both numeric and

nominal prediction and REPTree is used for numeric prediction.

M5P is adopted to train and predict the numeric class value as a start and then use

other methods to make a confidence training and prediction.

Decision Table is the simplest and basic way to represent the dataset, which

involves selecting attributes to build plenty of rules that try to conclude the dataset.

REPTree builds a decision or regression tree using information gain/variance

reduction and prunes it using reduced-error pruning [11].

The detailed experimental results are shown in Appendix 7.3.

These charts in Appendix 7.3 show that confidence prediction and class value

prediction are quite two different thing. M5P works well in prediction class values

while is inappropriate for confidence prediction here. So experiments should be

performed to test the advantageous algorithms. Furthermore, when we look at the

dataset, we can find that because the class prediction classifier is more accurate and

GREEN data (large TIME_UNTIL_FAULT value) is more than other YELLOW and

RED data, the confidence valued 1 is much more than that valued 0, the predictive

confidence (average value is almost 0.9) is more close to 1 than 0.5 or 0.

The following image is training middle-dataset using M5P to predict class value

and REPTree to predict confidence. In this experiment, entire training set is used for

testing confidence prediction. Weka ArffViewer is used here to represent these

datasets.

Figure 5.1: Training confidence mid dataset

This real-confidence is generated by comparing the difference between the real

value and the predictive value for TIME_UNTIL_FAULT using thresholds. Then this

model is trained to predict confidence value.

The following dataset can be found in Appendix 7.4.

The dataset (Figure 7.18) is the result of the whole confidence prediction work.

Predictive value for TIME_UNTIL_FAULT and the confidence about this prediction

is also estimated. So we can make a further decision whether this prediction can be

trusted or not.

 Since Bayesian network with max three parents per node performs perfect using

training set test, in order to illustrate the status of confidence, Bayesian network with

max one parent per node is practiced in the following experiment to reduce the

accuracy to make sure that there will be enough confidence valued 0.

 Nominal class value is predicted and also the numeric confidence is estimated.

Here some prediction is not correct so the confidence is estimated as 0.

5.3 Evaluation on Importance-Aware Linear Regression

In this section, experiments are taken to clarify the functionality of Importance-Aware

Linear Regression. In order to represent the result explicitly, we test the algorithm

using training dataset without relative error matrix to verify the accuracy and compare

the difference. When using this algorithm, importance-per instance should be

specified. Generally in the future, this method will be further updated and developed

to benefit the importance of current instances. The principle of this algorithm is

described and derived in Section 4.4.

 The comparison of general Linear Regression model and Importance-Aware

Linear Regression model can be found in Appendix 7.5.

Here imp(R) is assigned 1, imp(Y) as 4 and imp(G) as 2. The Importance-Aware

Linear Regression prediction results are more satisfactory than linear regression as

shown in table 5.3. The Importance-Aware correctly prediction rate for R and Y

improve 10% from 70% and 29% to 80% and 39%, which is very important for R

prediction, because if R is predicted as Y or G, it is rather detrimental for decision

system.

Real

class

value

Linear Regression

(Predictive Result)

Importance-Aware

Linear Regression

(Predictive Result)

 R Y G R Y G

R 426 102 82 494 37 79

Y 115 95 109 69 126 124

G 13 28 1781 7 19 1796

Correctly

Prediction

Rate

69.836%

29.781%

97.750%

80.984%

39.498%

98.573%

Table 5.3: Prediction results of Linear Regression and Importance-Aware Linear

Regression

In next experiment, we set the importance according to the training set class

classification. We assign GREEN data 4, YELLOW data 4 and 2 to RED data. These

coefficients are obtained by minimizing the formula (4.4.1.1) in Section 4.4.

According to the formula (4.4.1.1) and experiment, the larger value we assign to

one classification, the less chance for the class close to the thresholds be predicted

into this classification. This can be explained from the expression above: if the imp(i)

is becoming larger, the sum value will be correspondingly bigger with original

classification while the difference between the real value and predictive value does

not change. At the same time, if another classification can reduce the difference and

involves a smaller imp(i) value, then this new classification is more accepted for the

model. However, since formula (4.4.1.1) is calculated with sum operation, every imp(i)

value has an impact on each other. Practically, it is more complicated to manipulate

them accurately.

 Therefore, we assign a smaller value to the RED data in order to try to classify

more data to RED category, because RED data predicted as YELLOW will make

more detrimental influence than YELLOW data classified as RED. Exactly, RED

prediction accuracy is higher valued 89.18% compared with 69.83% but the

YELLOW prediction accuracy is relatively lower only 15%. If all the importance is

same, just as there is not importance specified.

Imp(R) value while

Imp(Y)=4 Imp(G) = 4

R-Prediction

Rate

Y-Prediction

Rate

G-Prediction

Rate

2 89.180 % 15.047 % 98.683 %

3 81.639 % 26.019% 98.024 %

4 69.836 % 29.781% 97.750%

5 63.934 % 42.006 % 95.664 %

6 47.869% 32.602% 95.664 %

7 33.279% 26.019% 95.280%

8 19.016% 19.749% 94.786%

9 10.984% 15.987% 93.578%

10 7.049% 14.734% 92.261%

Table 5.4: Different prediction rate with different Imp(R)

From this table, given Imp(Y) and Imp (G) are the same valued 4, the larger

Imp(R) value is, the worse performance R-Prediction Rate will have. Also Y and G

prediction rate will be affected gradually. Of course, these series of experiments set

the importance based on classification. On the other hand, different importance

making strategies can be developed to meet more complex requirements in practice.

5.4 General Practice

Here we utilize this framework to predict other general dataset. A famous dataset call

―Congressional Voting Records Data Set‖ [16], which includes votes for each of the

U.S. House of Representatives Congressmen on the 16 key votes identified by the

CQA. This dataset contains nine difference attributes that represent distinct types of

votes. The objective is to predict whether a person is a democrat or republican from

his varied kinds of votes. Predictive class and confidence are all estimated.

Figure 5.2: Predictive class value and confidence

Figure 5.3: Comparison of real values and prediction values

 In this example, Bayesian network using K2 as search algorithm with max three

parents per node is used to predict nominal class value and DecisionTable method is

adopted to predict the confidence.

 These grey areas mean the missing values. Figure 5.2 is the standard output for

general prediction involving predictive class value and confidence, while dataset in

Figure 5.3 is utilized for testing to show the difference explicitly. Confidence 0 means

this prediction for class value is incorrect, which can be explained as the diverse

values of ClassName (class) and Prediction result. From this dataset, the following

table can be achieved.

Confidence Threshold Correctly Prediction Rate

Confidence >= 75% 99.29%

Confidence < 75% 0%

Table 5.5: Confidence accuracy

The following experiment is designed for general numeric confidence prediction

using ―Auto MPG‖ dataset that was taken from the StatLib library which is

maintained at Carnegie Mellon University. The dataset was used in the 1983

American Statistical Association Exposition [17].

There are eight attributes and one numeric class ―mpg‖. Figure 5.11 is the output

dataset of the confidence prediction. M5P method is used for class and confidence

prediction here.

Figure 5.4 Predictive class value and confidence

(a) (b)

Figure 5.5: Different view of numeric confidence prediction

Figure 5.5 (a) shows the class value (mpg), predictive value for class and predictive

confidence, while Figure 5.5 (b) indicates all data attributes above and also the real

confidence assigned by program to show the difference directly. Confidence 0 means

this prediction for class value cannot be trust, otherwise confidence 1 implies the

correct prediction. From these middle datasets, we can make the following

conclusion.

Confidence Threshold Correctly Prediction Rate

Confidence >= 51.9% 98.03%

Confidence < 51.9% 14.29%

Table 5.6: Confidence accuracy

 Another example uses the famous ―adult‖ dataset to determine whether a person

makes over 50K a year [18]. There are 14 nominal and numeric attributes, one

nominal class and 17000 instances in this experiment. Bayesian network using K2 as

search algorithm with max three parents per node is used to predict nominal class

value and DecisionTable method is adopted to predict the confidence.

 Figure 5.6 illustrates the comparison of predictive results and real values

including confidence.

Figure 5.6: Mid-dataset for predictive class and confidence

Confidence Threshold Correctly Prediction Rate

Confidence >= 69.2% 97.41%

Confidence < 69.2% and

Confidence >= 52.8%

74.82%

Confidence < 52.8% 36.70%

Table 5.7: Confidence accuracy

This confidence accuracy table is calculated approximately but different

confidence decision threshold may have a large impact on the correctly prediction

rate.

 The following experiment is based on ―Car Evaluation‖ dataset, which was

derived from a simple hierarchical decision model originally developed for the

demonstration of DEX, M. Bohanec, V. Rajkovic: Expert system for decision making

[19]. There are 6 nominal attributes and one nominal class to decide whether a car is

acceptable or not. Also Bayesian network using K2 as search algorithm with max

three parents per node and DecisionTable method are adopted here shown in Figure

5.7.

(a)

(b)

Figure 5.7: Difference segments of mid-dataset for predictive class and confidence

Confidence Threshold Average

Correctly Prediction Rate

Confidence >= 1% 100.00%

Confidence < 1% and

Confidence >= 78.57%

79.79%

Confidence < 78.57% 13.33%

Table 5.8: Confidence accuracy

 From these general confidence prediction experiments, we can make further

conclusion that confidence can be divided according to different confidence level,

which means we can set the threshold automatically and within diverse levels,

confidence can result in different correctly prediction rate. According to these results,

two confidence threshold can divide the correctly prediction rate into three types: 98%

- very good, 75% - good, and 30% or less than 30% - poor. The more different level

we create, more accurately we can illustrate the confidence prediction.

Chapter 6

Conclusions

6.1 Conclusions

In this paper, we have shown some important Machine Learning techniques and

presented SysWeka platform and experimental evaluation on the performance of this

framework. From this SysWeka platform, we can conclude that although linear

regression has been widely used in many fields to build models with successful results,

it cannot produce benefit outcome in our scenarios. By contrast, Bayesian network

acts as a more proper choice and performs much better.

 Moreover, confidence prediction is presented and developed to measure the

accuracy of predictions, which gives us another opportunity to make a further

decision whether to trust the predictive result or not.

Besides, Importance-Aware linear regression has been proposed and derived by

mathematics. Experiments evaluation also shows a different view of the

Importance-Aware dataset, which indicates a promising application usage in the future

work. Instances can be specified by different importance and thus may create more

valuable results in further studies.

6.2 Future work

This platform is mainly using these three methods: linear regression, M5P (Model tree)

and Bayesian network for prediction and comparison. In the future work, more

Machine Learning techniques will be presented and evaluated to study the practical

performance in the same scenario. And common testing functionality should be added

into this framework that involves training set testing, cross validation, using test set

and percentage split testing. Also Importance-Aware linear regression and confidence

usage can be further studied.

6.3 Acknowledgements

I am very grateful to Jordi Torres and Ricard Gavaldà for teaching me and giving me

plenty of advice and reference on my study and master thesis. Also thanks to Josep

Lluís Berral for giving me some tips on working here and to Javier Alonso for his

previous work that I can continue this research work.

Chapter 7

Appendix

7.1 Model structures

Linear Regression Model:

Time taken to build model: 0.594 seconds

Figure 7.1: Linear regression prediction results

Figure 7.2: Linear regression prediction models

M5P Model:

Time taken to build model: 1.438 seconds

Figure 7.3: M5P prediction results

Figure 7.4: M5P prediction model tree with 38 leaves

Each leave contains one linear regression. The following is leaf No.1.

Figure 7.5: Leaf No.1 linear regression

Bayesian network Model:

Time taken to build model: 0.313 seconds.

Figure 7.6: Bayesian network predictions results

This Bayesian network uses default values of Weka and each node has only one

parent-class. So this is a tree with one root (TIME_WARNING) and 49 nodes. Each

node is the son of the root.

7.2 Bayesian network prediction results

Time taken to build model: 1.375 seconds

Figure 7.7: Bayesian network predictions using training set test with max three

parents per node

Figure 7.8: Part of Bayesian network graphical model with max three parents per node

Figure 7.9: Bayesian network predictions using 10-fold cross-validation with max

three parents per node

Figure 7.10: Bayesian network predictions using 10-fold cross-validation with max

five parents per node

Figure 7.11: Bayesian network predictions with max three parents per node using 60%

percentage split

7.3 Confidence prediction results with varied methods

M5P to predict class value

Figure 7.12: M5P prediction result

Linear Regression to predict confidence

Figure 7.13: Confidence predictions with linear regression

M5P to predict confidence

Figure 7.14: Confidence predictions with M5P

Decision Table to predict confidence

Figure 7.15: Confidence predictions with decision table

REPTree to predict confidence

Figure 7.16: Confidence predictions with REPTree

Figure 7.17: Bayesian network prediction with max one parent per node to predict

class value and REPTree to predict confidence

7.4 Numeric and nominal class confidence prediction

Figure 7.18: Final numeric confidence prediction results

Figure 7.19: Training confidence mid dataset with nominal class

Figure 7.20: Final confidence prediction dataset with nominal class

7.5 Importance-Aware Linear Regression model

Figure 7.21: General linear regression model with training set test

Importance-Aware Linear Regression:

Figure 7.22: Importance-Aware Linear Regression with training set test

Bibliography

[1] Green Gird Consortium, 2010. http://www.thegreengrid.org/

[2] Josep Lluís Berral, Inigo Goiri, Ramon Nou, Ferran Julia, Jordi Guitart, Ricard

Gavalda and Jordi Torres. Towards energy-aware scheduling in data centers using

machine learning. First Intl. Conf. on Energy-Efficient Computing and

Networking. Passau (Germany), April 13-15, 2010.

[3] Javier Alonso, Josep Lluís Berral, Ricard Gavaldà and Jordi Torres. Adaptive

on-line software aging prediction based on Machine Learning. The 40th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

2010).

[4] Javier Alonso, R. Gavalda and Jordi Torres. Predicting Web Server Crashes: A

Case Study in Comparing Prediction Algorithms. Proceedings of the 2009 Fifth

International Conference on Autonomic and Autonomous Systems. Pages:

264-269. 2009.

[5] Dustin Amrhein, Scott Quint. Cloud computing for the enterprise - Understanding

cloud computing and related technologies: Part 1: Capturing the cloud.

http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904

_amrhein.html, 2009.

[6] Liang-Jie Zhang, Carl K Chang, Ephraim Feig, Robert Grossman, Keynote

Panel, Business Cloud: Bringing The Power of SOA and Cloud Computing, 2008

IEEE International Conference on Services Computing (SCC 2008), July 2008.

http://www.thegreengrid.org/
http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html
http://www.ibm.com/developerworks/websphere/techjournal/0904_amrhein/0904_amrhein.html

[7] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/

[8] Google Web Applications. http://www.google.com/apps

[9] Data mining From Wikipedia. http://en.wikipedia.org/wiki/Data_mining

[10] Weka, Data Mining with Open Source Machine Learning Software in Java.

http://www.cs.waikato.ac.nz/ml/weka/

[11] Ian H.Witten, Eibe Frank. Data Mining Practical Machine Learning Tools and

Techniques, 2005.

[12] Quinlan, J. R. Induction of decision trees, Machine Learning 1(1): 81–106, 1986.

[13] ―A Bayesian Method for the Induction of Probabilistic Networks from Data‖,

Gregory F. Cooper and Edward Herskovits, Machine Learning 9, 1992.

[14] Tsamardinos, I., Aliferis, C., StatnikovA. Algorithms for Large Scale Markov

Blanket Discovery. The 16th International FLAIRS Conference, St. Augustine,

Florida, USA, 2003.

[15] L. Jiang, H. Zhang, Z. Cai and J. Su. Learning Tree Augmented Naive Bayes for

Ranking. Proceedings of the 10th International Conference on Database Systems

for Advanced Applications, 2005.

[16] Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL:

Congressional Quarterly Inc. Washington, D.C., 1985.

[17] Auto MPG Data Set. http://archive.ics.uci.edu/ml/datasets/Auto+MPG.

[18] Ron Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: a

Decision-Tree Hybrid, Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, 1996.

http://aws.amazon.com/ec2/
http://www.google.com/apps
http://www.cs.waikato.ac.nz/ml/weka/
http://archive.ics.uci.edu/ml/datasets/Auto+MPG

[19] M. Bohanec and V. Rajkovic: Knowledge acquisition and explanation for

multi-attribute decision making. In 8th Intl Workshop on Expert Systems and

their Applications, Avignon, France. Pages: 59-78, 1988.

