

FINAL MASTER THESIS

Master of Science in Information and Communication Technologies

Simulation of a sensor network
embedded in rail train

Albane Delos

albane.delos@gmail.com

Adviser: Jordi Casademont Serra

UPC - ETSETB

Barcelona, October 2010

Simulation of a sensor network embedded in rail train

ii

Simulation of a sensor network embedded in rail train

iii

Table of contents

Table of figures .. vi

Table of graphics ... vi

List of tables ... vii

Acronyms ... ix

Introduction .. 1

1. Previous study: simulators .. 2

1.1. Glomosim .. 2

1.2. OPNET .. 2

1.3. OMNeT++ .. 4

1.4. NS2 .. 5

1.4.1. General description ... 5

1.4.2. 802.15.4 ... 6

1.5. NS3 .. 6

1.5.1. General description ... 6

1.5.2. 802.15.4 ... 7

1.6. Conclusion ... 8

2. NS2: environment setup ... 9

2.1. Installation ... 9

2.1.1. Download and install ... 9

2.1.2. Set the environment variables .. 10

2.1.3. Troubleshooting .. 11

2.2. Compiling/debugging .. 11

2.2.1. In a terminal .. 11

2.2.2. With GDB/DDD .. 12

2.2.3. With Eclipse ... 13

3. NS2: 802.15.4 module ... 16

3.2. Module architecture ... 16

3.3. List of parameters of 802.15.4 in ns2 .. 17

3.3.3. Parameters from the C++ files... 17

3.3.4. Parameters in the TCL script ... 22

Simulation of a sensor network embedded in rail train

iv

3.4. MAC sublayer .. 25

3.4.3. General architecture ... 25

3.4.4. General notes .. 26

3.4.5. MAC data service ... 26

3.4.6. MAC management service .. 29

3.5. Topologies ... 43

3.5.3. With one PAN .. 44

3.5.4. With three PANs .. 44

3.5.5. TCL script ... 45

3.6. CBR traffic .. 45

3.7. ARP .. 46

3.8. AODV ... 47

3.8.3. Generalities ... 47

3.8.4. Problems.. 47

3.9. Transmission/reception of a message .. 47

3.9.3. Conditions ... 47

3.9.4. General behavior ... 48

3.9.5. Steps of the process .. 48

3.10. Energy model ... 50

3.10.3. Default mode ... 51

3.10.4. Sleep mode .. 51

4. NS2: analysis of performances .. 53

4.2. Useful bitrate and delay vs Payload size ... 53

4.2.3. Conditions ... 53

4.2.4. Theoretical study ... 54

4.2.5. Results ... 55

4.3. Useful bitrate and delivery ratio vs Number of devices .. 60

4.3.3. Conditions ... 60

4.3.4. Varying traffic load per device .. 61

4.3.5. Varying data payload ... 63

4.4. Useful bitrate vs Beacon order .. 64

4.5. Energy model... 66

4.5.3. Theoretical study ... 67

4.5.4. Results ... 67

Simulation of a sensor network embedded in rail train

v

4.5.5. Comparaison sleep mode vs non sleep mode ... 68

4.6. Conclusion ... 69

5. Protocol simulation ... 70

5.2. Architecture ... 70

5.3. Protocol ... 70

Sending the temperature message ... 71

The gateway response... 71

Sending the vibration message ... 72

Frames details ... 74

5.4. The simulation ... 75

5.5. Experimentation results .. 76

5.5.3. Useful bitrate and loss rate vs Distance .. 76

5.5.4. Useful bitrate and loss rate vs Packet size .. 78

5.5.5. Energy consumption vs Network size ... 80

Conclusions ... 82

References ... 83

Simulation of a sensor network embedded in rail train

vi

Table of figures

Figure 1 - OPNET Modeler's hierarchical models .. 4

Figure 2 - 802.15.4 module architecture ... 16

Figure 3 - Scheme of MAC sublayer .. 25

Figure 4 - Sequence diagram of MCPS-DATA primitives ... 26

Figure 5 - Sequence diagram of the association primitives .. 29

Figure 6 - Sequence diagram of orphan primitives ... 33

Figure 7 - Sequence diagram of MLME-RX primitives ... 35

Figure 8 - Sequence diagram for the superframe configuration... 39

Figure 9 - Sequence diagram for the synchronization primitives ... 41

Figure 10 - Sequence diagram for requesting data ... 42

Figure 11 - Topology used in research field .. 43

Figure 12 - Nam screenshot of the topology using one PAN .. 44

Figure 13 - Nam screenshot of the topology using three PANs .. 44

Figure 14 - Star topology with one coordinator, one main transceiver and three load generators

 ... 60

Figure 15 - Superframe structure .. 64

Figure 16 - Network architecture .. 70

Figure 17 - Sequence diagram: the sensor sends a temperature frame 71

Figure 18 - Sequence diagram: the gateway response ... 72

Figure 19 - Sending vibration data with no loss .. 73

Figure 20 - Sending vibration data with losses.. 73

Figure 21 - Network topology and node addresses .. 76

Table of graphics

Graphic 1 - Useful bitrate without acknowledgment .. 56

Graphic 2 - Delay of one packet without acknowledgment .. 56

Simulation of a sensor network embedded in rail train

vii

Graphic 3 - Useful bitrate (without ACK) - using only SIFS interval ... 57

Graphic 4 - Delay of one packet (without ACK) - using only SIFS interval 57

Graphic 5 - Useful bitrate with acknowledgment ... 58

Graphic 6 - Delay of one packet with acknowledgment ... 59

Graphic 7 - Delay of one packet (with ACK) - using only LIFS interval .. 59

Graphic 8 - Useful bitrate (with ACK) - using only LIFS interval .. 59

Graphic 9 - Useful bitrate vs Number of devices (Varying traffic load) .. 61

Graphic 10 - Delivery ratio vs Number of devices (Varying traffic load) 62

Graphic 11 - Useful bitrate vs Number of devices (Varying payload size) 63

Graphic 12 - Delivery ratio vs Number of devices (Varying payload size) 64

Graphic 13 - Useful bitrate vs Beacon order ... 66

Graphic 14 - Energy consumption: Theory vs Simulation ... 68

Graphic 15 - Useful bitrate vs Distance ... 77

Graphic 16 - Loss rate vs Distance ... 78

Graphic 17 - Useful bitrate vs Packet size ... 79

Graphic 18 - Loss rate vs Packet size ... 80

Graphic 19 - Lifetime vs Network size ... 81

List of tables

Table 1 - Comparison of several simulators .. 8

Table 2 - MCPS-DATA.confirm parameters ... 27

Table 3 - MCPS-DATA.request parameters ... 27

Table 4 - MCPS-DATA.indication parameters .. 27

Table 5 - MCPS-PURGE.request parameter ... 28

Table 6 - MCPS-PURGE.confirm parameters ... 28

Table 7 - MLME-DATA.indication parameters ... 30

Table 8 - MLME-ASSOCIATE.request parameters ... 30

Table 9 - MLME-ASSOCIATE.confirm parameters ... 30

Table 10 - MLME-ASSOCIATE.response parameters ... 30

Table 11 - MLME-BEACON-NOTIFY.indication parameters ... 31

Simulation of a sensor network embedded in rail train

viii

Table 12 - MLME-GET.request parameters ... 32

Table 13 - MLME-GET.confirm parameters ... 32

Table 14 - MLME-ORPHAN.indication parameters ... 33

Table 15 - MLME-ORPHAN.response parameters ... 33

Table 16 - MLME-RESET.request parameter ... 34

Table 17 - MLME-RESET.confirm paramter ... 34

Table 18 - MLME-RX-ENABLE.confirm parameter... 36

Table 19 - MLME-RX-ENABLE.request parameters ... 36

Table 20 - MLME-SCAN.request parameters .. 37

Table 21 - MLME-SCAN.confirm parameters .. 37

Table 22 - MCPS-COMM-STATUS.indication parameters ... 38

Table 23 - MLME-SET.request parameters ... 38

Table 24 - MLME-SET.confirm parameters ... 38

Table 25 - MLME-START.confirm parameter .. 40

Table 26 - MLME-START.request parameters ... 40

Table 27 - MLME-SYNC.request parameters ... 41

Table 28 - MLME-SYNC-LOSS.indication.. 41

Table 29 - MLME-POLL.confirm parameter ... 43

Table 30 - MLME-POLL.request parameters ... 43

Table 31 - Detailed steps for transmission and reception of a single message 50

Table 32 - Useful bitrate and delay without acknowledgment ... 56

Table 33 - Useful bitrate and delay with acknowledgment .. 58

Table 34 - Useful bitrate and delivery ratio (Varying traffic load) .. 61

Table 35 - Useful bitrate and delivery ratio (varying data payload) ... 63

Table 36 - Useful bitrate varying beacon order .. 65

Table 37 - Energy consumption for 1 packet .. 68

Table 38 - Energy consumption (sleep mode/non sleep mode) ... 69

Table 40 - Useful bitrate and Loss rate vs Distance .. 77

Table 41 - Useful bitrate and loss rate vs Packet size ... 79

Table 44 - Lifetime vs Network size ... 81

Simulation of a sensor network embedded in rail train

ix

Acronyms

AODV Ad hoc On-Demand Distance Vector

BE Backoff Exponent

BLE Battery Life Extension

BO Beacon Order

CAP Contention Access Period

CBR Constant Bit Rate

CCA Clear Channel Assessment

CFP Contention-Free Period

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

DDD Data Display Debugger

FFD Full Function Device

GDB GNU DeBugger

GTS Guaranteed Time Slot

IFS InterFrame Space or Spacing

LIFS Long InterFrame Spacing

LR-WPAN Low Rate Wireless Personal Area Network

MAC Medium Access Control

MCPS MAC Common Part Sublayer

MLME MAC subLayer Management Entity

MPDU MAC Protocol Data Unit

MSDU MAC Service Data Unit

PAN Personal Area Network

PHY PHYsical layer

PIB PAN Information Base

POS Personal Operating Space

PPDU PHY Protocol Data Unit

PSDU PHY Service Data Unit

RFD Reduced Function Device

SIFS Short InterFrame Spacing

SAP Service Access Point

SO Superframe Order

SPDU SSCS Protocol Data Units

SSCS Service-Specific Convergence Sublayer

WPAN Wireless Personal Area Network

Page 1

Introduction

Wireless communications are becoming more and more important in our world. Wireless

communication is an alternative to wire communications, often more expensive to deploy due

to the extensive number of cables. In some location, it is simply not possible to deploy cables

and wireless communications come up handy reducing by far the expenses. We can also see the

part of wireless communications in our day to day life, from cellular phone, to computer wifi

and even headphones.

One of the other ways to use wireless communications is through sensor networks. Sensors are

small devices with small transmission range and low energy consumption. Sensors can be used

in environmental monitoring, for example to monitor temperature in a forest and, this way,

prevent the apparition of fires.

The standard protocol 802.15.4 defines a physical layer and a MAC layer which are well suited

to be used in sensor network such as LR-WPAN (Low Rate Wireless Personal Area Network). This

project will focus on the simulation of a sensor network using 802.15.4 protocol deployed on

train wheels. Those sensors would be able to retrieve information as temperature or vibration

values and transmit them to a more powerful computer able to treat that information.

First of all, I will rapidly describe some simulators which could be used to perform the

simulation. By the study of some characteristics, a choice will be drawn.

Then, to ensure the reliability of the simulator, a set of tests will be conducted and the results

obtained will be compared to theoretical ones.

Finally, the last part will deal with the simulation of the sensor network on the train. I will

explain the protocol itself and then perform some tests of energy consumption and throughput.

Page 2

1. Previous study: simulators

First of all, in order to find the adequate simulator for the sensor network using protocol

802.15.4, an analysis of several simulators has been done. The simulator has to be reliable and

free of use. Of course it also has to implement 802.15.4 as a native feature.

1.1. Glomosim

GloMoSim stands for Global Mobile Information System Simulator [1]. It is available for

academic use only.

GloMoSim uses a parallel discrete-event capability provided by Parsec, C-based simulation

language developed by the Parallel Computing Laboratory at UCLA, the University of California.

[2]

GloMoSim does not implement 802.15.4 and seems not to be supported anymore. The last

version available, GloMoSim 2.0, dates back December 2000. It can be downloaded here [3].

1.2. OPNET

OPNET stands for Optimized Network Engineering Tools.

OPNET technologies Inc. is a company founded in 1986 in the USA by Alain Cohen. It provides a

range of solutions for network and application performance management. [4]

OPNET is a commercial software. However, free licenses can be obtained for the use in

academic research.

To do that, it is required to fill in a form and provide a complete research description.

To renew a license, the user has to create a web page describing how the research with OPNET

license is being utilized. The user must also provide progress reports, such as drafts of papers,

final papers, lab materials and sample models to OPNET Technologies Inc. The user may also

send copies of published papers. Papers must reference OPNET. There is no guarantee that the

license will be renewed. [5]

The form for requiring an academic license can be found in [6].

Page 3

OPNET offers several solutions [7]:

• Application Performance Management will ensure that the application will perform

effectively in production, that systems have adequate capacity to support them, and

that networks that deliver application functionality can meet service level objectives.

It consists of:

o ACE Analyst: Analystics for Networked Applications

o ACE Live: End-User Experience Monitoring & Real-Time Network Analytics

o ACE Enterprise Management: Server Enterprise-Wide Packet Capture

o OPNET Panorama: Real-Time Monitoring and Analytics

o IT Guru Systems Planner: Systems Capacity Management for Enterprises

• Network Engineering, operations and Planning offers capabilities throughout the entire

life cycle of network management, leveraging predictive planning and optimization,

network audit and change validation and rapid troubleshooting.

It consists of:

o Guru Network Planner: Network Planning and Engineering

o SP Guru Transport Planner: Transport Network Planning and Engineering

o Net Mapper: Automated Up-to-Date Network Diagramming

o Sentinel: Network Audit, Security and Policy-compliance

o OPNET nCompass

• Network R&D enables technology innovation and accelerate network protocol and

device R&D combining high-fidelity models with industry-leading scalable simulation

technologies.

It consists of:

o OPNET Modeler: Accelerating Network R&D

o OPNET Modeler Wireless Suite: Wireless Network Modeling and Simulation

o OPNET Modeler Wireless Suite for Defense: Modeling and Simulation for

Defense Communications

The latest solution: OPNET Modeler is the one interesting in our case.

OPNET provides three hierarchic models: network domain, node domain and process domain.

See Figure 1.

Page 4

Figure 1 - OPNET Modeler's hierarchical models

Network level/Project Editor:

It is the highest level of OPNET hierarchy. It allows defining the network topology, installing

routers, hosts, switches etc.

Node domain/Node Editor:

Node domain enables defining the constitution of nodes. A model is constituted by blocks called

modules. Some models can’t be programmed and others are entirely programmable. It is

described with a Finite State Machine

Process domain:

It is where the role of each module is defined.

OPNET provides a full documentation and a debugger is included in the software.

1.3. OMNeT++

OMNet++ [8] is a component-based, modular and open-architecture discrete event network

simulator. It is written in C++ with an Eclipse-based IDE and a graphical runtime environment.

Page 5

It is popular in academia for its extensibility and plentiful online documentation. It is free for

academic and non-profit use.

OMNeT++ can run under Linux, MAC OS or Windows. Its last version is OMNeT++ 4.1 and was

released in June 2010. It can be downloaded here: [9].

OMNeT++ seems to be easy to use thanks to its graphic interface. OMNet++ currently provides

802.15.4 standard but only for the non-beacon enabled PANs.

1.4. NS2

1.4.1. General description

NS is a discrete event network simulator. It is open source and so can be extended. This

simulator is very well-known and therefore there is plenty of documentation as well as a mailing

list where help can be asked.

NS2 [10] is built in C++ and provides a simulation interface through OTcl [11], an object-oriented

dialect of Tcl.

OTcl has the advantage of being very easy to use. OTcl serves to describe the topology of the

network and specifies the parameters. It interfaces with C++ to perform the simulation. OTcl is

easy to use and fast to implement but does not run very fast. On the contrary, C++ needs more

time for the implementation but is faster during the launch of the simulation. C++ can be used

to create new protocols or to alter one which is already implemented in the simulator.

A hierarchy of the C++ classes are available here [12] as well as the methods and parameters of

those classes.

NS2 uses a network animator: nam [13]. It is a Tcl/TK based animation tool for viewing network

simulation traces and real world packet traces.

The actual latest version of ns2 is ns-2.34 released June, 17
th

 2009 and there will be no new

version. It can be downloaded here: [14].

NS2 can be installed either under Windows or Linux but it was aimed at first to run under Linux.

Page 6

1.4.2. 802.15.4

A module of 802.15.4 had been created first by Jianliang Zheng and Myung J. Lee from SAIT-

CUNY Joint Lab and has been then modified by several researchers [15]. The module has been

since included in the installation package of the ns2 simulator.

The 802.15.4 module being first a separated module, the global documentation of ns2 does not

include documentation for 802.15.4 module, so, it may be complicated at first to understand

how it works. Some documents provided by Jianliang Zheng list some parameters and their

usage.

In this module, almost all 802.15.4 standard is implemented.

• Non beacon enabled/ beacon enabled

• Direct/Indirect communication

• Sleep mode

• ACK or no ACK mode

• GTS (Guaranteed Time Slot) is not implemented.

The backoff calculation of the CSMA/CA algorithm used by 802.15.4 uses a uniform distribution.

The number of backoff slots is chosen randomly, however, the random sequence is the same for

every simulation. That is, if we run more than once the same simulation, we will have exactly

the same results.

1.5. NS3

1.5.1. General description

NS3 [16] is intended to eventually replace ns2 simulator. It is not backwards compatible with

ns2.

As ns2, ns3 is an open-source project; it has got open mailing lists, bug tracker and wiki.

Ns3 will use and needs participation from the research community in order to improve the

simulation credibility. It is written in C++ with optional Python interface. There are no more Otcl

scripts. All the implementation of the topology of the networks is done through C++ or Python.

The ns3 model node is thought more like a real computer and has a behaviour closer to it.

Page 7

Ns3 conforms to standard input/output formats so that other tools can be reused, as Wireshark

for instance. It is then easier to use tools we already know than to familiarise with new tools

included in the simulator which do the same thing.

NS3 is very well documented. NS3 documentation is maintained using Doxygen which allow

seeing the hierarchy of all the classes and how they work [17].

NS3 pays more attention to realism. The Internet nodes are designed to be a more faithful

representation of real computers, including the support for key interfaces such as sockets and

network devices, multiple interfaces per nodes, use of IP addresses etc.

The architecture supports the incorporation of more open-source networking software such as

kernel protocol stacks, routing daemons, and packet trace analyzers, reducing the need to port

or rewrite models and tools for simulation.

NS3 will support virtualization of machines.

NS3 will enable testbed integration. It will be possible to emit or consume network packets over

real device drivers or LANs. Therefore, the internal representation of packets is network-byte

order.

In NS3, it will be possible to control easily all simulation parameters for static objects and to

visualize them into a GUI.

The development of NS3 dated back July 1
st

 2006 and was foreseen to last 4 years.

The actual version is ns-3.9 and has been released on August 20
th

 2010. Each new version brings

new features and protocols implemented. Actually, ns3 focuses on the development of 802.11

protocol as well as Ipv6 and WiMax.

1.5.2. 802.15.4

802.15.4 is not currently implemented and is not to be implemented in the next releases. There

are no modules either, developed by other sources on 802.15.4.

Page 8

The only way to work with 802.15.4 under ns3 for now is to develop ourselves a module.

802.15.4 being a complete protocol with physical and MAC layer, it would be very time

consuming.

1.6. Conclusion

Several simulators have been studied. Table 1 sums up the presence or absence of different

characteristics important to the project.

 Glomosim OPNET OMNet++ NS2 NS3

802.15.4 � No � Yes � Not the

whole

standard

� Yes � Not yet

Support � Last version:

December 2000

� Yes � Yes � Yes � Yes

Free of

use

� Yes for academic

use
� Yes but there are

heavy

counterparts

� Yes � Yes � Yes

User

friendly

 � Graphic UI � Graphic

UI

� No

graphic

UI

� No graphic

UI

Table 1 - Comparison of several simulators

Glomosim is not at all fitted for this project, it does not have 802.15.4 implemented and is not

anymore supported either.

OMNeT++ is a very good software with a lot of documentation. Its graphical interface makes it

more user friendly than others. However, only part of the 802.15.4 standard is implemented,

therefore, it reduces its application.

OPNET would be the best choice: a lot of documentation, graphic UI. However, the counterparts

for using OPNET freely are too heavy and risky because there is no guarantee the license would

be renewed.

NS3 shows itself to be more faithful to reality. Nevertheless, 802.15.4 is not yet implemented.

So, if ns2 reveals itself to be reliable with the 802.15.4 module, it will sure be a designated

choice.

Page 9

2. NS2: environment setup

This part will explain thoroughly how to install and set up the NS2 environment. When not

knowing how to begin with the installation, it can be difficult and time consuming. This part

should provide all the intel needed.

2.1. Installation

NS2 can be installed either under a Windows environment or a Linux environment. However,

NS2 was first meant for Linux, this is why the following installation procedure is the one for

installing NS2 under Linux environment

2.1.1. Download and install

The sources of ns2 simulator can be downloaded here [18]. This is a tar.gz package.

The package is the all-in-one package which contains everything that is necessary: ns2, tcl etc.

The package can also be gotten directly through the terminal, typing:

$ wget http://nchc.dl.sourceforge.net/sourceforge/n snam/ns-allinone-
2.34.tar.gz

First of all, some tools have to be installed; they will be later used to install ns2. Depending on

the linux distribution, those tools can already be installed, but anyway, it can be done just in

case.

$ sudo apt-get install autoconf automake g++ libxmu -dev

Now, the installation can begin. To execute the following commands, we have to be in the

directory where we want to install ns2.

$ tar -xzvf ns-allinone-2.34.tar.gz
$ cd ns-allinone-2.34
$ sudo apt-get install build-essential autoconf aut omake libxmu-dev
$./install

If the installation did succeed, something like that should be displayed:

Please put /your/path/ns-allinone-2.34/bin:/your/pa th/ns-allinone-
2.34/tcl8.4.18/unix:/your/path/ns-allinone-2.34/tk8 .4.18/unix into your
PATH environment; so that you'll be able to run itm /tclsh/wish/xgraph.

Page 10

IMPORTANT NOTICES:

 (1) You MUST put /your/path/ns-allinone-2.34/otcl- 1.13, /your/path/ns-
allinone-2.34/lib, into your LD_LIBRARY_PATH enviro nment variable.

If it complains about X libraries, add path to your X libraries into
LD_LIBRARY_PATH.

If you are using csh, you can set it like:
setenv LD_LIBRARY_PATH <paths>

If you are using sh, you can set it like:
export LD_LIBRARY_PATH=<paths>

 (2) You MUST put /your/path/ns-allinone-2.34/tcl8. 4.18/library into
your TCL_LIBRARY environmental variable. Otherwise ns/nam will complain
during startup.

After these steps, you can now run the ns validatio n suite with

cd ns-2.34; ./validate

For trouble shooting, please first read ns problems page

http://www.isi.edu/nsnam/ns/ns-problems.html. Also search the ns
mailing list archive for related posts.

2.1.2. Set the environment variables

After the installation, some environment variables must be set so that ns2 can find all the

components needed.

The file .bashrc has to be modified.

$ gedit ~/.bashrc

The following lines have to be added at the end of the file and /your/path must be replaced by

the folder where ns2 has been installed: /home/yourName for instance.

LD_LIBRARY_PATH
OTCL_LIB=/your/path/ns-allinone-2.34/otcl-1.13
NS2_LIB=/your/path/ns-allinone-2.34/lib
X11_LIB=/usr/X11R6/lib
USR_LOCAL_LIB=/usr/local/lib
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$OTCL_LIB:$NS2_LIB :$X11_LIB:$USR_LOCAL
_LIB

TCL_LIBRARY

Page 11

TCL_LIB=/your/path/ns-allinone-2.34/tcl8.4.18/libra ry
USR_LIB=/usr/lib
export TCL_LIBRARY=$TCL_LIB:$USR_LIB

PATH
XGRAPH=/your/path/ns-allinone-2.34/bin:/your/path/n s-allinone-
2.34/tcl8.4.18/unix:/your/path/ns-allinone-2.34/tk8 .4.18/unix
NS=/your/path/ns-allinone-2.34/ns-2.34/
NAM=/your/path/ns-allinone-2.34/nam-1.14/
PATH=$PATH:$XGRAPH:$NS:$NAM

Then the changes are committed with this command:

$ source ~/.bashrc

To test if everything is all right:

$ ns

% should appear in the terminal. exit stops the program.

There is a validation suite to test ns2 but this can take more than one hour and is not really

necessary. If the beginning of the simulation works, the program should work properly.

$ cd ns-2.34
$./validate

2.1.3. Troubleshooting

If the following message is displayed while starting ns2:

The program 'ns' is currently not installed. You ca n install it by
typing:
sudo apt-get install host '''(DO NOT do this step) '''
Make sure you have the 'universe' component enabled
bash: ns: command not found

It is either because the environment variables are not set properly or this is still the same

terminal used for installation. Sometimes, a change of terminal is necessary.

2.2. Compiling/debugging

2.2.1. In a terminal

To compile the ns2 project from a terminal:

./configure
make

Page 12

Configure permits to update the Makefile. Indeed, if some changes in the Makefile have to be

done, they have to be made in the file Makefile.in and not Makefile. Configure commits the

changes made in Makefile.in in Makefile.

Compiling the whole project after a clean can take several minutes.

2.2.2. With GDB/DDD

GDB [19] is a powerful debugger with a command-line interface. It may seem bothersome at

first but it can be a good investment to make.

DDD [20] is a GUI front end for GDB debugger. It permits to see the code and use buttons;

however, the command-line interface can still be used.

In order to make GDB/DDD work, we have to enable debug symbols:

Edit the install file

The file install is situated in the ns-allinone-2.34 folder.

In the tcl section,

Build Tcl8.3.2 (should be around line 421)

We need to add the option --enable-symbols to the line:

./configure --enable-gcc --disable-shared --prefix= $CUR_PATH ||…

so it becomes:

./configure --enable-gcc --enable-symbols --disable -shared --
prefix=$CUR_PATH ||…

In the tclcl section:

Build tclcl (should be around line 514)

We need to add --enable-debug to the configure line, such that:

./configure --with-otcl=../otcl-$OTCLVER ||…

becomes

./configure --enable-debug --with-otcl=../otcl-$OTC LVER ||…

Page 13

Edit the Makefile.in file

In Makefile.in. Search for CFLAGS (should be around line 85), and change it from

CFLAGS += $(CCOPT) $(DEFINE)

to

CFLAGS += -g $(CCOPT) $(DEFINE)

Reinstallation/compilation

Now, we have to reinstall ns by typing ./install in the ns-allinone directory.

Then, recompile with ./configure and make.

Now, we should be able to run ns in ddd or gdb with gdb ns or ddd ns .

2.2.3. With Eclipse

Eclipse can be a good choice for working with ns2. It is not the lightest IDE but it permits to edit,

compile and debug with the same tool. It also provides auto-completion which can be very

useful with such a project.

Here is a guide to follow for working with Eclipse

NS2 modification

Edit Makefile:

1. Open “…/ns-allinone-2.34/ns-2.34/Makefile.in”

2. Add those lines anywhere near the top of the file to enable debug symbols

CCOPT = -g
DEFINE = -DNDEBUG
DEFINE = -DDEBUG

3. Navigate to …/ns-allinone-2.34/ns-2.34 and run “./configure” and then “make”

Eclipse installation

Download Eclipse IDE for C/C++ developers here: [21].

Extract the archive to the folder where you want to install it.

Page 14

Adding ns2 as a project

1. Open Eclipse

2. Set the workspace setting as the ns installation path(/home/username/ns-allinone-2.34

) by selecting File -> Switch Workspace

3. Choose File -> New -> Project -> C++ Project

Toolchains: Linux GCC

4. Select Project Type as Makefile Project -> Empty C++ Project

5. Enter Project Name as ns-2.34

6. Select “Finish”

7. From the workspace, Selecting the NS-2 Project and choosing Project -> Build All should

not give Error.

8. Running the project must open the console with the NS-2 prompt, %

Debug configuration

1. Select Run -> Debug Configurations

2. Choose C/C++ Application. Type in any name (ns should be put by default)

3. Under the Main tab, choose the following (it should be already put by default):

a. Project as ns-2.34

b. C/C++ Application as ns. (search project and choose this)

4. Under the Debugger tab, choose GDB Debugger. Uncheck the “Stop on startup at”

option.

5. Apply and debug.

Troubleshooting

If you have the following error while compiling:

make all
Building file: ../ns_tclsh.cc
Invoking: GCC C++ Compiler
g++ -O0 -g3 -Wall -c -fmessage-length=0 -MMD -MP -M F"ns_tclsh.d"
-MT"ns_tclsh.d" -o"ns_tclsh.o" "../ns_tclsh.cc"
Dans le fichier inclus à partir de ../ns_tclsh.cc:2 8:
../config.h:60:19: attention : tclcl.h : No such fi le or
directory
../ns_tclsh.cc:34: erreur: ‘Tcl_Interp’ was not dec lared in this
scope
../ns_tclsh.cc:34: erreur: ‘interp’ was not declare d in this
scope
../ns_tclsh.cc:35: erreur: expected ‘,’ or ‘;’ befo re ‘{’ token
../ns_tclsh.cc: In function ‘int main(int, char**)’ :
../ns_tclsh.cc:52: erreur: ‘Tcl_Main’ was not decla red in this
scope
make: *** [ns_tclsh.o] Erreur 1

Page 15

Make sure you have chosen Makefile Project->Empty C++ Project when creating the project.

Page 16

3. NS2: 802.15.4 module

In this chapter, a study of the ns2 simulator will be conducted in order to check the reliability of

the 802.15.4 module.

3.2. Module architecture

Figure 2 - 802.15.4 module architecture

Figure 2 shows a scheme of 802.15.4 module architecture presented in NS2.

Wireless scenario definition: It selects the routing protocol, defines the network topology and

schedules events such as initialization of PAN coordinator, coordinators and devices, and

starting/stopping applications. It defines radio-propagation model, antenna model, interface

queue, traffic pattern, link error model, link and node failures, superframe structure in beacon

enabled mode, radio transmission range, and animation configuration. It is in fact the tcl script

part.

SSCS: This is the interface between 802.15.4 MAC and upper layers. It provides a way to access

all the MAC primitives, but it can also serve as a wrapper of those primitives.

802.15.4 MAC: This is the main module. It implements the 35 MAC sublayer primitives.

Page 17

There are two interfaces in the module. One is through the traditional link layer call-back.

Another is through IEEE 802.15.4 primitives. By default, it is the traditional link layer which is

used.

If we want to use a routing protocol, say AODV, we have to pass through the traditional

interface. If we want to use SSCS directly to transmit data, it means that we are not using any

routing protocol.

802.15.4 PHY: It implements the 14 PHY primitives

3.3. List of parameters of 802.15.4 in ns2

Here is a list of all 802.15.4 parameters as they appear in ns2 module.

3.3.3. Parameters from the C++ files

Parameter name Value File Comments

P
H

Y
 l

a
y

e
r

c
o

n
st

a
n

ts

aMaxPHYPacketSize 127 p802_15_4const.h Max PSDU size (in bytes) the

PHY is able to receive

aTurnaroundTime 12 p802_15_4const.h Rx-to-Tx or Tx-to-Rx max

turnaround time (in symbol

period)

aCCATime 8 p802_15_4const.h CCA duration (in symbol

period)

P
H

Y
_P

IB
 d

e
fa

u
lt

v
a

lu
e

s

def_phyCurrentChannel 11 p802_15_4const.h Default value for the channel

def_phyChannelsSupported 0x07ffffff p802_15_4const.h

def_phyTransmitPower 0 p802_15_4const.h

def_phyCCAMode 1 p802_15_4const.h

M
A

C
 s

u
b

la
y

e
r

c
o

n
st

a
n

ts
 aNumSuperframeSlots 16 p802_15_4const.h Number of slots contained in a

superframe

aBaseSlotDuration 60 p802_15_4const.h Duration of a superframe slot

of beacon order 0 (in symbol

period)

aMaxBE 5 p802_15_4const.h Max value of the backoff

exponent in the CSMA-CA

algorithm

Page 18

aMaxBeaconOverhead 75 p802_15_4const.h Max number of bytes added by

the MAC sublayer to the

payload of its beacon frame

aGTSDescPersistenceTime 4 p802_15_4const.h # of superframes in which a

GTS descriptor exists in the

beacon frame of the PAN

coordinator

aMaxFrameOverhead 25 p802_15_4const.h max # of octets added by the

MAC sublayer to its payload

without security

aMaxFrameResponseTime 1220 p802_15_4const.h max # of symbols (or CAP

symbols) to wait for a

response frame

aMaxFrameRetries 3 p802_15_4const.h max # of retries allowed after a

transmission failures

aMaxLostBeacons 4 p802_15_4const.h max # of consecutive beacons

the MAC sublayer can miss

without declaring a loss of

synchronization

aMaxSIFSFrameSize 18 p802_15_4const.h max size of an MPDU, in

octets, that can be followed by

a SIFS period

aMinCAPLength 440 p802_15_4const.h min # of symbols forming the

CAP

aMinLIFSPeriod 40 p802_15_4const.h min # of symbols forming a

LIFS period

aMinSIFSPeriod 12 p802_15_4const.h min # of symbols forming a

SIFS period

aResponseWaitTime= 32 *

aBaseSuperframeDuration

 p802_15_4const.h max # of symbols a device shall

wait for a response command

following a request command

aUnitBackoffPeriod 20 p802_15_4const.h # of symbols forming the basic

time period used by the CSMA-

CA algorithm

M
A

C
_P

IB
 d

e
fa

u
lt

 v
a

lu
e

s def_macAckWaitDuration 54 p802_15_4const.h 22(ack) + 20(backoff slot) +

12(turnaround)

The maximum number of

symbols to wait for an

acknowledgment frame to

arrive following a transmitted

data frame

def_macAssociationPermit false p802_15_4const.h Indication of whether a

coordinator is currently

allowing association

Page 19

def_macAutoRequest true p802_15_4const.h Indication of whether a device

automatically sends a data

request command if its

address is listed in the beacon

frame

def_macBattLifeExt false p802_15_4const.h Indication of whether BLE,

through the reduction of

coordinator receiver operation

time during the CAP, is

enabled

def_macBattLifeExtPeriods 6 p802_15_4const.h In BLE mode, the number of

backoff periods during which

the receiver is enabled after

the IFS following a beacon

def_macBeaconPayload “” p802_15_4const.h Default beacon payload

def_macBeaconPayloadLength 0 p802_15_4const.h Default beacon payload length

in octets

def_macBeaconOrder 15 p802_15_4const.h Specification of how often the

coordinator transmits its

beacon. BO=15, the

coordinator will not transmit a

periodic beacon

def_macBeaconTxTime 0x p802_15_4const.h The time that the device

transmitted its last beacon

frame, in symbol periods

def_macCoordExtendedAddress 0xffff p802_15_4const.h Default extended address for

the coordinator

def_macCoordShortAddress 0xffff p802_15_4const.h Default short address for the

coordinator. A value of 0xffff

indicates that the value is

unknown

def_macGTSPermit true p802_15_4const.h TRUE if the PAN coordinator is

to accept GTS requests

def_macMaxCSMABackoffs 4 p802_15_4const.h The maximum number of

backoffs the CSMA-CA

algorithm will attempt before

declaring a channel access

failure

def_macMinBE 3 p802_15_4const.h Min value of the backoff

exponent in the CSMA-CA

algorithm

def_macPANId 0xffff p802_15_4const.h The 16-bit identifier of the

PAN on which the device is

operating. A value of 0xffff

signifies that the device is not

associated

def_macPromiscuousMode false p802_15_4const.h Indication of whether the MAC

sublayer is in a promiscuous

(receive all) mode

Page 20

def_macRxOnWhenIdle false p802_15_4const.h Indication of whether the MAC

sublayer is to enable its

receiver during idle periods

def_macShortAddress 0xffff p802_15_4const.h The 16-bit address that the

device uses to communicate in

the PAN. A value of 0xffff

indicates that the device does

not have a short address

def_macSuperframeOrder 15 p802_15_4const.h The length of the active

portion of the outgoing

superframe, including the

beacon frame. If SO=15, the

superframe will not be active

following the beacon

def_macTransactionPersistenceTime 0x01f4 p802_15_4const.h The maximum time (in unit

periods) that a transaction is

stored by a coordinator and

indicated in its beacon

def_macACLEntryDescriptorSet NULL p802_15_4const.h

def_macACLEntryDescriptorSetSize 0x00 p802_15_4const.h

def_macDefaultSecurity false p802_15_4const.h

def_macACLDefaultSecurityMaterialLen

gth

0x15 p802_15_4const.h

def_macDefaultSecurityMaterial NULL p802_15_4const.h

def_macDefaultSecuritySuite 0x00 p802_15_4const.h

def_macSecurityMode 0x00 p802_15_4const.h

F
re

q
u

e
n

c
y

b

a
n

d

a
n

d

d
a

ta
 r

a
te

BR_868M 20 p802_15_4def.h 20 kb/s -- ch 0

BR_915M 40 p802_15_4def.h 40 kb/s -- ch 1,2,3,...,10

BR_2_4G 250 p802_15_4def.h 250 kb/s -- ch

11,12,13,...,26

SR_868M 20 p802_15_4def.h 20 ks/s (symbol rate)

SR_915M 40 p802_15_4def.h 40 ks/s (symbol rate)

SR_2_4G 62,5 p802_15_4def.h 62.5 ks/s (symbol rate)

max_pDelay 100/ 20 p802_15_4def.h maximum propagation delay

M
A

C
 f

ra
m

e

c
o

n
tr

o
l

fi
e

ld
 defFrmCtrl_Type_Beacon 0x00 p802_15_4field.h Used internally

defFrmCtrl_Type_Data 0x04 p802_15_4field.h Used internally

defFrmCtrl_Type_Ack 0x02 p802_15_4field.h Used internally

defFrmCtrl_Type_MacCmd 0x06 p802_15_4field.h Used internally

D
e

st
/

sr
c

a
d

d
re

ss
in

g
 m

o
d

e
 defFrmCtrl_AddrModeNone 0x00 p802_15_4field.h Used internally

defFrmCtrl_AddrMode16 0x01 p802_15_4field.h Used internally

defFrmCtrl_AddrMode64 0x03 p802_15_4field.h Used internally

Page 21

T
a

sk
 p

e
n

d
in

g
 (

c
a

ll
b

a
c

k
)

TP_mcps_data_request 1 p802_15_4mac.h Requests the transfer of a data

SPDU (ie. MPDU) from a local

SSCS entity to a single peer

SSCS entity

TP_mlme_associate_request 2 p802_15_4mac.h Allows a device to request an

association with a coordinator

TP_mlme_associate_response 3 p802_15_4mac.h Used to initiate a response to

an mlme-association.indication

TP_mlme_disassociate_request 4 p802_15_4mac.h Used by an associated device

to notify the coordinator of its

intent to leave the PAN. It is

also used by the coordinator to

instruct an associated device

to leave the PAN

TP_mlme_orphan_response 5 p802_15_4mac.h Allows the next higher layer of

a coordinator to respond to

the mlme-orphan.indication

TP_mlme_reset_request 6 p802_15_4mac.h Allows the next higher layer to

request that the MLME

performs a reset operation

TP_mlme_rx_enable_request 7 p802_15_4mac.h Allows the next higher layer to

request that the receiver is

either enabled for a finite

period of time or disabled

TP_mlme_scan_request 8 p802_15_4mac.h Used to initiate a channel scan

over a given list of channels. A

device can use a channel scan

to measure the energy on the

channel, search for the

coordinator with which it

associated, or search for all

coordinators transmitting

beacon frames within the POS

of the scanning device

TP_mlme_start_request 9 p802_15_4mac.h Allows the PAN coordinator to

initiate a new PAN or to begin

using a new superframe

configuration. It may also be

used by a device already

associated with an existing

PAN to begin using a new

superframe configuration

TP_mlme_sync_request 10 p802_15_4mac.h Requests to synchronize with

the coordinator by acquiring

and, if specified, tracking its

beacons

TP_mlme_poll_request 11 p802_15_4mac.h Prompts the device to request

data from the coordinator

TP_CCA_csmaca 12 p802_15_4mac.h

Page 22

TP_RX_ON_csmaca 13 p802_15_4mac.h

macTxBcnCmdDataHType 1 p802_15_4mac.h

macIFSHType 2 p802_15_4mac.h

macBackoffBoundType 3 p802_15_4mac.h

TxOp_Acked 0x01 p802_15_4mac.h

TxOp_GTS 0x02 p802_15_4mac.h

TxOp_Indirect 0x04 p802_15_4mac.h

TxOp_SecEnabled 0x08 p802_15_4mac.h

P
H

Y

h
e

a
d

e
r

defSHR_PreSeq 0x0 p802_15_4pkt.h

defSHR_SFD 0xe5 p802_15_4pkt.h

defPHY_HEADER_LEN 6 p802_15_4pkt.h

3.3.4. Parameters in the TCL script

 Parameter name Value Comments

n
o

d
e

-c
o

n
fi

g

-channel Channel/WirelessChannel Channel type

-propType Propagation/TwoRayGround Radio-propagation

mode. Also

available: FreeSpace

and Shadowing

-phyType Phy/WirelessPhy/802_15_4 Network interface

-macType Mac/802_15_4 Mac layer

-ifqType Queue/DropTail/PriQueue Interface priority

queue. Also

available:

Queue/DropTail

-llType LL Link layer type

-antType Antenna/OmniAntenna Antenna model

-ifqLen Max packet in ifq

-adhocRouting DumbAgent Routin protocol.

Also available:

AODV

-topoInstance Topography object

-agentTrace ON/OFF Enable traces at the

agent level

-routerTrace ON/OFF Enable traces at the

router level

-macTrace ON/OFF Enable traces at

mac level

Page 23

-movementTrace OFF Enable traces for

node movement

-energyModel “EnergyModel” Defines the energy

model used

-initialEnergy 1000 Defines the initial

energy available in

the node (in J)

-rxPower 35,28e-3 Defines the energy

used during a

reception (in W)

-txPower 31,32e-3 Defines the energy

used during a

transmission (in W)

-idlePower 712e-6 Defines the energy

used while idle (in

W)

-sleepPower 144e-9 Defines the energy

used while sleeping

(in W)

T
ra

ff
ic

 traffic cbr/poisson/ftp Type of traffic. Can

be cbr, ftp or

poisson

C
B

R

packetSize_ Defines the packet

size

rate_ Bitrate of the

source. interval_

and rate_ are

mutually exclusive

interval_ Interval between

two packets .

interval_ and rate_

are mutually

exclusive

maxpkts_ Max packets to send

 random_ 1/0 Specifies whether or

not to introduce

random noise in the

scheduled

departure times.

Default=off

P
h

y
/

W
ir

e
le

ss
 CsThresh 25m threshold to

determine if the

packet is corrupted

and will be

discarded by the

mac layer

Page 24

 RXThresh 25m threshold to

determine if the

packet is detected

by the receiver

M
a

c
/

8
0

2
_1

5
_4

wpanCmd ack4data On/off Enables or not the

use of ack for data

packet at the mac

level

wpanCmd verbose On/off Enables verbose

Page 25

3.4. MAC sublayer

This section of the document is here to point out the differences between the MAC sublayer as

defined in the 802.15.4 standard [22] and the MAC sublayer which is implemented in the ns2

simulator.

Therefore, it will more be a list of differences rather than really an explication of its mechanism.

For each set of primitives, it will first state the parameters which are or not present in the

simulator and in a second part it will quote from the standard, parts which are not implemented

or which are different.

3.4.3. General architecture

The MAC sublayer handles all access to the physical radio channel and is responsible for the

following tasks:

• Generating network beacons if the device is a coordinator

• Synchronizing to network beacons

• Supporting PAN association and disassociation

• Supporting device security

• Employing the CSMA-CA mechanism for channel access

• Handling and maintaining the GTS mechanism

• Providing a reliable link between two peer MAC entities

The MAC sublayer provides an interface between the SSCS and the PHY. The MAC sublayer

includes a management entity called the MLME. This entity provides the service interfaces

through which layer management functions may be invoked. The MLME is also responsible for

maintaining a database of managed objects pertaining to the MAC sublayer. This database is

referred to as the MAC sublayer PIB.

Figure 3 - Scheme of MAC sublayer

Figure 3 shows a scheme of the architecture of MAC sublayer.

The MAC sublayer provides two services, a

• The MAC data service, accessed through the MAC common part layer (MCPS) data SAP

(MCPS-SAP)

• The MAC management service, accessed through the MLME

3.4.4. General notes

Security is not implemented in the simulator. Therefore, the para

primitives is always set to false and hence the other three security parameters are never used.

Channel pages are not used either.

In the primitive parameters tables, a parameter present in the N

the symbol.

3.4.5. MAC data service

The MCPS-SAP supports the transport of SSCS protocol data units (SPDUs) between peer SSCS

entities.

MCPS-DATA

The MCPS-DATA primitives request the transfer of a data SPDU from a local SSCS entity to a

single peer SSCS entity.

Figure

MCPS-DATA primitives

Page 26

shows a scheme of the architecture of MAC sublayer.

The MAC sublayer provides two services, accessed through two SAPs:

The MAC data service, accessed through the MAC common part layer (MCPS) data SAP

The MAC management service, accessed through the MLME-SAP

General notes

Security is not implemented in the simulator. Therefore, the parameter SecurityLevel in the

primitives is always set to false and hence the other three security parameters are never used.

Channel pages are not used either.

In the primitive parameters tables, a parameter present in the NS2 architecture is indicated by

MAC data service

SAP supports the transport of SSCS protocol data units (SPDUs) between peer SSCS

DATA primitives request the transfer of a data SPDU from a local SSCS entity to a

igure 4 - Sequence diagram of MCPS-DATA primitives

The MAC data service, accessed through the MAC common part layer (MCPS) data SAP

meter SecurityLevel in the

primitives is always set to false and hence the other three security parameters are never used.

S2 architecture is indicated by

SAP supports the transport of SSCS protocol data units (SPDUs) between peer SSCS

DATA primitives request the transfer of a data SPDU from a local SSCS entity to a

Page 27

Figure 4 shows the sequence diagram for the exchange of MCPS-DATA primitives.

The MCPS-DATA.request primitive is generated by a local SSCS entity when a data SPDU (i.e.

MSDU) is to be transferred to a peer SSCS entity.

The MCPS-DATA.confirm primitive is generated by the MAC sublayer entity in response to a

MCPS-DATA.request primitive. The MCPS-DATA.confirm primitive returns a status of either

SUCCESS, indicating that the request to transmit was successful, or the appropriate error code.

The MCPS-DATA.indication primitive is generated by the MAC sublayer and issued to the SSCS

on receipt of a data frame at the local MAC sublayer entity.

Table 2, Table 3 and Table 4 mention which parameters of each primitive are implemented in

NS2.

Differences in the behavior

Apart from the security, there are three differences from the standard.

Below are some quotations from the standard.

MCPS-DATA.request

Simulator Standard

� SrcAddrMode

� DstAddrMode

� DstPANId

� DstAddr

� msduLength

� msdu

� msduHandle

� TxOptions

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

MCPS-DATA.indication

Simulator Standard

� SrcAddrMode

� SrcPANId

� SrcAddr

� DstAddrMode

� DstPANId

� DstAddr

� msduLength

� msdu

� mpduLinkQuality

 DSN

 Timestamp

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

MCPS-DATA.confirm

Simulator Standard

� msduHandle

� status

 Timestamp

Table 2 - MCPS-DATA.confirm

parameters

Table 3 - MCPS-DATA.request parameters

Table 4 - MCPS-DATA.indication

parameters

Page 28

If both the SrcAddrMode and DstAddrMode parameters are set to 0x00 (i.e., addressing fields

omitted), the MAC sublayer will issue the MCPS-DATA.confirm primitive with a status of

INVALID_ADDRESS. [23]

If the msduLength parameter is greater than aMaxMACSafePayloadSize, the MAC sublayer will

set the Frame Version subfield of the Frame Control field to one. [23]

If there is no capacity to store the transaction, the MAC sublayer will discard the MSDU and issue

the MCPS-DATA.confirm primitive with a status of TRANSACTION_OVERFLOW. [23]

Those three tests made on the data SPDU are not implemented in the simulator.

MCPS-PURGE

It is generated by the next higher layer whenever a MSDU is to be purged from the transaction

list.

MCPS-PURGE primitives

The MCPS-PURGE.request primitive is generated by the next higher layer whenever a MSDU is

to be purged from the transaction queue.

The MCPS-PURGE.confirm primitive is generated by the MAC sublayer entity in response to an

MCPS-PURGE.request primitive. The MCPS-PURGE.confirm primitive returns a status of either

SUCCESS, indicating that the purge request was successful, or INVALID_HANDLE, indicating an

error.

Table 5 and Table 6 mention the parameters present in NS2.

 Differences in the behavior

There is no difference between the implementation in the simulator and the standard.

MCPS-PURGE.request

Simulator Standard

� msduHandle

MCPS-PURGE.confirm

Simulator Standard

� msduHandle

� status Table 5 - MCPS-PURGE.request parameter

Table 6 - MCPS-PURGE.confirm parameters

Page 29

3.4.6. MAC management service

The MLME-SAP allows the transport of management commands between next higher layer and

the MLME.

Association

MLME-SAP association primitives define how a device becomes associated with a PAN.

Figure 5 - Sequence diagram of the association primitives

 Association primitives

Figure 5 is the sequence diagram showing the message exchange involved in an association.

The MLME-ASSOCIATE.request primitive is generated by the next higher layer of an

unassociated device and issued to its MLME to request an association with a PAN through its

coordinator. If the device whishes to associate through a coordinator on a beacon-enabled PAN,

the MLME may optionnaly track the beacon of that coordinator prior to issuing this primitive.

The MLME-ASSOCIATE.indication primitive is generated by the MLME of the coordinator and

issued to its next higher layer to indicate the reception of an association request command.

The MLME-ASSOCIATE.response primitive is generated by the next higher layer of a coordinator

and issued to its MLME in order to response to the MLME-ASSOCIATE.indication primitive.

Page 30

The MLME-ASSOCIATE.confirm primitive is generated by the initiating MLME and issued to its

next higher layer in response to an MLME-ASSOCIATE.request primitive. If the request was

successful, the status parameter will indicate a successful association, otherwise, the status

parameter indicates an error code.

Table 8, Table 9, Table 10 and Table 7 show which are the parameters implemented in NS2.

Differences in the behavior

There are no differences in the behavior.

Disassociation

Disassociation has been disabled in the simulator.

MLME-ASSOCIATE.request

Simulator Standard

� LogicalChannel

 ChannelPage

� CoordAddrMode

� CoordPANId

� CoordAddress

� CapabilityInformation

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

MLME-DATA.indication

Simulator Standard

� DeviceAddress

� CapabilityInformation

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

Table 7 - MLME-DATA.indication parameters

Table 8 - MLME-ASSOCIATE.request parameters

MLME-ASSOCIATE.confirm

Simulator Standard

� AssocShortAddress

� status

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

MLME-ASSOCIATE.response

Simulator Standard

� DeviceAddress

� AssocShortAddress

� status

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

Table 9 - MLME-ASSOCIATE.confirm

parameters

Table 10 - MLME-ASSOCIATE.response

parameters

Page 31

Beacon notification

The MLME-SAP beacon notification primitive defines how a device may be notified when a

beacon is received during normal operating conditions.

Beacon notification primitive

The MLME-BEACON-NOTIFY.indication primitive is used to send parameters contained within a

beacon frame received by the MAC sublayer to the next higher layer. The primitive also sends a

measure of the LQI and the time the beacon was received.

Table 11 displays the parameters of the primitive and states if the parameters are also in NS2 or

not.

Differences

There is no difference in the behavior of the beacon notification primitive.

Reading PIB attributes

The MLME-SAP get primitives define how to read values from the PIB.

Primitives

The MLME-GET.request primitive is generated by the next higher layer and issued to its MLME

to obtain information from the PIB.

The MLME-GET.confirm primitive is generated by the MLME and issued to its next higher layer

in response to a MLME-GET.request primitive. This primitive returns a status of either SUCCESS,

MLME-BEACON-NOTIFY.indication

Simulator Standard

� BSN

� PANDescriptor

� PendAddrSpec

� AddrList

� sduLength

� sdu

Table 11 - MLME-BEACON-NOTIFY.indication parameters

Page 32

indicating that the request to read PIB attribute was successful or an error code of

UNSUPPORTED_ATTRIBUTE.

Table 12 and Table 13 mention the parameters of the primitives present in the simulator.

Differences in the behavior

On receipt of the MLME-GET.request primitive, the MLME checks to see if the PIB attribute is a

MAC PIB attribute or a PHY PIB attribute. [24]

If the requested attribute is a PHY PIB attribute, the request is passed to the PHY by issuing the

PLME-GET.request primitive. [24]

In ns2, the MLME does not perform the check. If it is a PHY PIB attribute, the MLME will issue a

MLME-GET.confirm with a UNSUPPORTED_ATTRIBUTE.

GTS management

The MLME-SAP GTS management primitives define how GTSs are requested and maintained.

GTS is not implemented in the simulator.

Orphan notification

The MLME-SAP orphan notification primitives define how a coordinator can issue a notification

of an orphaned device.

MLME-GET.request

Simulator Standard

� PIBAttribute

 PIBAttributeIndex

MLME-GET.confirm

Simulator Standard

� status

� PIBAttribute

 PIBAttributeIndex

� PIBAttributeVAlue
Table 12 - MLME-GET.request parameters

Table 13 - MLME-GET.confirm parameters

Page 33

Figure 6 - Sequence diagram of orphan primitives

Orphan notification primitives

Figure 6 shows the exchange of primitives while resolving a case of orphaning.

The MLME-ORPHAN.indication primitive is generated by the MLME of a coordinator and issued

to its next higher layer on receipt of an orphan notification command.

The MLME-ORPHAN.response primitive is generated by the next higher layer and issued to its

MLME when it reaches a decision about whenever the orphaned device indicated in the MLME-

ORPHAN.indication primitive is associated.

Table 14 and Table 15 display the primitives parameters.

Differences in the behavior

There are no differences in the behavior.

MLME-ORPHAN.indication

Simulator Standard

� OrphanAddress

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

Table 14 - MLME-ORPHAN.indication parameters

MLME-ORPHAN.response

Simulator Standard

� OrphanAddress

� ShortAddress

� AssociateMember

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

Table 15 - MLME-ORPHAN.response parameters

Page 34

Resetting the MAC sublayer

MLME-SAP reset primitives specify how to reset the MAC sublayer to its default values.

Reset primitives

The MLME-RESET.request primitive is generated by the next higher layer and issued to the

MLME to request a reset of the MAC sublayer to its initial conditions.

The MLME-RESET.confirm primitive is generated by the MLME and issued to its next higher

layer in response to a MLME-RESET.request primitive and following the receipt of the PLME-

SET-TRX-STATE.confirm primitive.

Table 16 and Table 17 mention the primitives parameters.

Differences in the behavior

On receipt of the MLME-RESET.request primitive, the MLME issues the PLME-SET-TRX-

STATE.request primitive with a state of FORCE_TRX_OFF. [25]

In ns2, the PLME-SET-STATE.request is issued with a state of TRX_OFF and not

FORCE_TRX_FORCE.

On receipt of the MLME-RESET.confirm primitive, the next higher layer is notified of its request

to reset the MAC sublayer. This primitive returns a status of SUCCESS indicating that the request

to reset the MAC sublayer was successful. [25]

In ns2, there is another status: DISABLE_TRX_FAILURE which is used when the deactivation of

TRX failed.

The MLME-RESET.request primitive is issued prior to the use of the MLME-START.request or the

MLME-ASSOCIATE.request primitives. [25]

MLME-RESET.request

Simulator Standard

� setDefaultPIB

MLME-RESET.confirm

Simulator Standard

� status

Table 16 - MLME-RESET.request parameter Table 17 - MLME-RESET.confirm paramter

Page 35

In ns2, the RESET primitive is not issued prior to the use of the START or ASSOCIATE requests.

Specify the receiver enable time

MLME-SAP receiver state primitives define how a device can enable or disable the receiver at a

given time.

Figure 7 - Sequence diagram of MLME-RX primitives

Receiver enable primitives

Figure 7 shows the sequence diagram of the receiver enable primitives.

The MLME-RX-ENABLE.request primitive is generated by the next higher layer and issued to the

MLME to enable the receiver for a fixed duration, at a time relative to the start of the currentor

next superframe on a beacon-enabled PAN or immediately on a nonBeacon-enabled PAN. This

primitive may also be generated to cancel a previously generated request to enable the

receiver. The receiver is enabled or disabled exactly once per primitive request.

Page 36

The MLME-RX-ENABLE.confirm primitive is generated by the MLME and issued to its next higher

layer in response to an MLME-RX-ENABLE.request primitive.

Table 18 and Table 19 mention the parameters of the primitives present in the simulator.

Differences in behavior

If (RxOnTime + RxOnDuration) is not less than the beacon interval, the MLME issues the MLME-

RX-ENABLE.confirm primitive with a status of ON_TIME_TOO_LONG. [26]

In ns2, the status used in that case is INVALID_PARAMETERS.

If the MLME cannot enable the receiver in the current superframe and is not permitted to defer

the receive operation until the next superframe, the MLME issues the MLME-RX-ENABLE.confirm

primitive with a status of PAST_TIME. [26]

In ns2, the status used is OUT_OF_CAP which does not appear are the available status for this

primitive.

Channel scanning

MLME-SAP scan primitives define how a device can determine the energy usage or the presence

or absence of PANs in a communication channel.

Scan primitives

The MLME-SCAN.request primitive is generated by the next higher layer and issued to its MLME

to initiate a channel scan to search for activity within the POS of the device. This primitive can

be used to perform an ED scan to determine channel usage, an active or passive scan to locate

beacon frames containing any PAN identifier, or an orphan scan to locate a PAN to which the

device is currently associated.

MLME-RX-ENABLE.request

Simulator Standard

� DeferPermit

� RxOnTime

� RxOnDuration

MLME-RX-ENABLE.confirm

Simulator Standard

� status

Table 18 - MLME-RX-ENABLE.confirm parameter

Table 19 - MLME-RX-ENABLE.request parameters

Page 37

The MLME-SCAN.confirm primitive is generated by the MLME and issued to its next higher layer

whenbthe channel scan initiated with the MLME-SCAN.request primitive has completed.

Table 20 and Table 21 show the parameters of the primitives.

Differences in behavior

If the MLME receives the MLME-SCAN.request primitive while performing a previously initiated

scan operation, it issues the MLME-SCAN.confirm primitive with a status of SCAN_IN_PROGRESS.

[27]

In ns2, it is checked but no primitive is sent in that case.

If the scan is successful and macAutoRequest is set to FALSE, the primitive results will contain a

null set of PAN descriptor values; each PAN descriptor value will be sent individually to the next

higher layer using separate MLME-BEACON-NOTIFY primitives. [27]

In ns2, the MLME-BEACON-NOTIFY primitive is not used in this case.

Communication status

The MLME-SAP communication status primitive defines how the MLME communicates to the

next higher layer about transmission status when the transmission was instigated by a response

primitive and about security errors on incoming packets.

MLME-SCAN.request

Simulator Standard

� ScanTypel

� ScanChannels

� ScanDuration

 ChannelPage

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

MLME-SCAN.confirm

Simulator Standard

� status

� ScanType

 ChannelPage

� UnscannedChannels

� ResultListSize

� EnergyDetectList

� PANDescriptorList

Table 20 - MLME-SCAN.request parameters
Table 21 - MLME-SCAN.confirm parameters

Page 38

Primitive

Table 22 shows the parameters of the primitive.

Differences in behavior

There are no differences in the behavior.

Writing PIB attributes

MLME-SAP set primitives define how PIB attributes may be written.

Set primitives

The MLME-SET.request primitive is generated by the next higher layer and issued to its MLME

to write the indicated PIB attribute.

The MLME-SET.confirm primitive is generated by the MLME and issued to its next higher layer in

response to an MLME-SET.request primitive. The MLME-SET.confirm primitive returns a status

of either SUCCESS, indicating that the requested value was written to the indicated PIB

attribute, or the appropriate error code.

Table 23 and Table 24 mention the parameters of the primitives which are implemented in NS2.

MCPS-COMM-STATUS.indication

Simulator Standard

� PANId

� SrcAddrMode

� SrcAddr

� DstAddrMode

� DstAddr

� status

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

Table 22 - MCPS-COMM-STATUS.indication parameters

MLME-SET.request

Simulator Standard

� PIBAttribute

 PIBAttributeIndex

� PIBAttributeValue

MLME-SET.confirm

Simulator Standard

� status

� PIBAttribute

 PIBAttributeIndex

Table 23 - MLME-SET.request parameters Table 24 - MLME-SET.confirm parameters

Page 39

Differences in behavior

Once again, ns2 does not check if the attribute is part of MAC PPIB or PHY PIB.

Updating the superframe configuration

MLME-SAP start primitives define how an FFD can request to start using a new superframe

configuration in order to initiate a PAN, begin transmitting beacons on an already existing PAN,

thus facilitating device discovery or to stop transmitting beacons.

Figure 8 - Sequence diagram for the superframe configuration

Start primitives

Figure 8 shows the sequence diagram for the superframe configuration.

The MLME-START.request primitive is generated by the next higher layer and issued to its

MLME to request that a device start using a new superframe configuration.

The MLME-START.confirm primitive is generated by the MLME and issued to its next higher

layer in response to an MLME-START.request primitive. The MLME-START.confirm primitive

returns a status of either SUCCESS, indicating that the MAC sublayer has started using the new

superframe configuration, or the appropriate error code.

Table 25 and Table 26 show the parameters of the primitives.

Page 40

Differences in behavior

If the BeaconOrder parameter is less than 15, the MLME sets macBattLifeExt to the value of the

BatteryLifeExtension parameter. [28]

In ns2, macBattLifeExt is set anyway.

If the BeaconOrder parameter is less than 15, the MLME examines the StartTime parameter to

determine the time to begin transmitting beacons; the time is defined in symbols and is rounded

to a backoff slot boundary. [28]

Ns2 does not use the startTime parameter.

Synchronizing with a coordinator

MLME-SAP synchronization primitives define how synchronization with a coordinator may be

achieved and how a loss of synchronization is communicated to the next layer.

MLME-START.request

Simulator Standard

� PANId

� LogicalChannel

 ChannelPage

 StartTime

� BeaconOrder

� SuperframeOrder

� PANCoordinator

� BatteryLifeExtension

� CoordRealignment

 CoordRealignSecurityLevel

 CoordRealignKeyIdMode

 CoordRealignKeySource

 CoordRealignKeyIndex

 BeaconSecurityLevel

 BeaconKeyIdMode

 BeaconKeySource

 BeaconKeyIndex

MLME-START.confirm

Simulator Standard

� status

Table 25 - MLME-START.confirm parameter

Table 26 - MLME-START.request parameters

Page 41

Those primitives are used in the case of beacon-enabled network.

Figure 9 - Sequence diagram for the synchronization primitives

Synchronization primitives

Figure 9 displays the sequence diagram of the synchronization with a coordinator.

The MLME-SYNC.request primitive is generated by the next higher layer of a device on a

beacon-enabled PAN and issued to its MLME to synchronize with the coordinator.

The MLME-SYNC-LOSS.indication primitive is generated by the MLME of a device and issued to

its next higher layer in the event of a loss of synchronization with the coordinator. It is also

generated by the MLME of the PAN coordinator and issued to its next higher layer in the event

of a PAN ID conflict.

MLME-SYNC.request

Simulator Standard

� LogicalChannel

 ChannelPage

� TrackBeacon

MLME-SYNC-LOSS.indication

Simulator Standard

� LossReason

 PANId

 LogicalChannel

 ChannelPage

 SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

Table 27 - MLME-SYNC.request parameters

Table 28 - MLME-SYNC-LOSS.indication

Page 42

Differences in behavior

One test is performed in ns2 and which is not specified in the standard. The MLME checks if the

logical channel is supported. If it is not the case, a MLME-SYNC-LOSS.indication is issued with a

UNDIFINED status.

If the PAN coordinator receives a PAN ID conflict notification command, the MLME will issue this

primitive with the LossReason parameter set to PAN_ID_CONFLICT. [29]

In NS2, the PAN ID conflict command is not implemented.

If a device has received the coordinator realignment command from the coordinator through

which it is associated and the MLME was not carrying out an orphan scan, the MLME will issue

this primitive with the LossReason parameter set to REALIGNMENT. [29]

In NS2, this test is not performed while receiving a coordinator realignment command.

Requesting data from a coordinator

MLME-SAP polling primitives define how to request data from a coordinator.

Figure 10 - Sequence diagram for requesting data

Page 43

Polling primitives

Figure 10 presents the sequence diagram for requesting data to the coordinator.

The MLME-POLL.request primitive is generated by the next higher layer and issued to its MLME

when data are to be requested from a coordinator.

The MLME-POLL.confirm primitive is generated by the MLME and issued to its next higher layer

in response to an MLME-POLL.request primitive. If the request was successful, the status

parameter will be equal to SUCCESS, indicating a successful poll for data. Otherwise, the status

parameter indicates the appropriate error code.

Differences in behavior

There are no differences in the behavior.

3.5. Topologies

One of the topologies which are used in the research field is shown in Figure 11Erreur ! Source

du renvoi introuvable..

Figure 11 - Topology used in research field

MLME-POLL.request

Simulator Standard

� CoordAddrMode

� CoordPANId

� CoordAddress

� SecurityLevel

 KeyIdMode

 KeySource

 KeyIndex

MLME-POLL.confirm

Simulator Standard

� status

Table 29 - MLME-POLL.confirm parameter

Table 30 - MLME-POLL.request parameters

Page 44

The topology is formed by Devices communicating with Full Function Devices and those Full

Function Devices communicating between each other using AODV.

There are two ways to implement that topology in ns2. One is using three different PANs, the

other one is to use only one PAN and one of the FFD devices being the PAN coordinator.

3.5.3. With one PAN

One of the FFD has to be the PAN Coordinator. Its functionalities won’t be different from the

other FFDs, it is only a title. It can be seen as the first device which communicated on the

channel. Of course, the other two FFDs will be associated with the PAN coordinator.

The devices connected to the FFDs are RFD, that is, association is not permitted with those

nodes.

Figure 12 shows a screenshot from nam, the ns2 interface permitting to watch the simulation

events. We can see node 0 which is marked as PAN Coord. The other two FFDs are associated

with the PAN Coord and the end devices are associated with their respective coordinator.

Figure 12 - Nam screenshot of the topology using one PAN

3.5.4. With three PANs

Figure 13 shows the topology with three different PANs, one coordinator and two devices in each

PAN.

Figure 13 - Nam screenshot of the topology using three PANs

Page 45

3.5.5. TCL script

In ns2, the topology is specified in a tcl script.

Each node can have a different configuration in terms of power, routing protocol etc. For the

differentiation between FFD and RFD, it is done on starting the nodes.

"$node_(0) sscs startPANCoord" will be used to start the PAN coordinator. We

can also specify here if beacons are enabled. The prototype is:

 $node_(n) startPANCoord <txBeacon = 1> <beaconOrder = 3>
<SuperframeOrder = 3>

"$node_(1) sscs startDevice 1 1" will be used to start the other FFDs. They are

devices for which association is permitted. They can also transmit beacon. The prototype is:

$ node_(n) startDevice <isFFD = 1> <assoPermit = 1> <txBeacon =
0> <beaconOrder = 3> <SuperframeOrder = 3>

"$node_(2) sscs startDevice 0" will be used to start RFDs, association is not

permitted.

The superframe structure, that is the beacon order, can be changed with the following

command:

$ns_ at 9.0 "$node_(5) sscs startBeacon 4 4" This will change BO and SO value to

4 at the time 9s.

3.6. CBR traffic

CBR stands for Constant Bit Rate. It is very practical to measure performances of 802.15.4

protocol due to its constant bit rate.

In ns2, CBR has to be implemented using a udp agent. Below are the steps to follow to start a

CBR traffic.

set udp_($src) [new Agent/UDP]
We create a udp agent which will

be the source

eval $ns_ attach-agent \$node_($src) \$udp_($src)
The source node is attached to

the udp agent

set null_($dst) [new Agent/Null] The destination agent is a sink

eval $ns_ attach-agent \$node_($dst) \$null_($dst)
The sink is attached to the

destination node

Page 46

set cbr_($src) [new Application/Traffic/CBR] The CBR application is created

eval \$cbr_($src) attach-agent \$udp_($src)
The CBR application is attached

to the source node

eval $ns_ connect \$udp_($src) \$null_($dst)
The udp agent and the sink are

connected

Despite the use of the udp agent, when we specify the cbr payload length, the MAC payload

length is actually of the length of the cbr payload; udp header is not present. But it is to be

understood that the udp header does exist and is used by the application. The udp header is not

present in the way that the size of the packet does not take into account the length of udp

header but this will only influence the transmission and reception time.

A UDP agent accepts data in variable size chunks from an application and segments the data if

needed (more than 1000 bytes). UDP packets also contain a monotonically increasing sequence

number and an RTP timestamp. Although real UDP packets do not contain sequence numbers or

timestamps, this sequence number does not incur any simulated overhead and can be useful for

tracefile analysis or for simulating UDP-based applications.

When the UDP Agent receives a packet, it tests if an application is attached to it. If it is the case,

it passes the packet to the application without processing the packet, the application will

process it. In the case of CBR, there is no processing of MAC payload because there is nothing to

process. The only function of the UDP agent is to transport data.

3.7. ARP

ARP is not part of the 802.15.4 standard. However, by default it is used in order to trigger the

transmission of packets from one node to another. It is triggered by the LL layer, so 802.15.4

MAC layer is not aware of it.

It is possible to disable the use of ARP by adding two lines in arp.cc file at the beginning of the

function: int ARPTable::arpresolve(nsaddr_t dst, Packet *p, LL *ll) (line 125)

mac_->hdr_dst((char*) HDR_MAC(p), dst);
return 0;

In my case, a weird behavior occurred. ARP was only disabled when I launched ns from Eclipse

and was not disabled when I launched it from a command-line terminal.

Page 47

3.8. AODV

3.8.3. Generalities

AODV routing protocol is implemented in NS2.

To find the adequate route to a destination, it takes into account only the number of hopes and

not the quality of the link. So, it will always choose the shortest path and not necessarily the

best one.

The AODV protocol uses IP addresses to send messages, therefore, when using AODV, an IP

header is appended to each packet, adding 20 bytes of data.

3.8.4. Problems

The RREQ packets from AODV are sent in broadcast to every node it can reach even if they are

not in the same PAN. Therefore, the route which is found does pass through several PAN, RFD

devices communicating with RFD devices from other PANs and when the device finally sends its

data packet to the destination it follows this path.

In order to resolve this problem, we have to apply AODV only for FFD nodes. However, this

raises another problem: by default, CBR packets do not use IP header so the destination address

is put in the mac destination address field. The RFD node cannot reach that node because it is

not in the same PAN so the transmission of the packet is a failure.

3.9. Transmission/reception of a message

In this part a detail list of what happens in NS2 during transmission and reception of a message

is conducted.

3.9.3. Conditions

• Non-beacon enabled network

• Packet size: 1 byte

• Acknowledgment

• Node 0 is the coordinator

Page 48

• Node 1 sends packets to node 0

3.9.4. General behavior

NS2 handles both side of the communication: the receiver and the sender.

The way of working of NS2 is to use a timer which manages the time in the simulation and all

the events that take place. Events can be added at a certain time and when the time has come,

the event is handled.

NS2 uses also a system of callback. A function can be called back after some events took place.

This enables a function to take care of an entire task. For example, in the case of the

transmission of a message, one function: MCPS-DATA.request takes care of the entire process,

from the construction of the packet, the transmission of the packet to the waiting for the

acknowledgment etc.

3.9.5. Steps of the process

Table 31 lists all the step NS2 passes through during transmission and reception of a message.

Node 1: transmitter Node 0: receiver

Event: Node 1 receives a packet to send from upper

layers

• It checks if the node is asleep and wakes it up if it

the case.

• Set the transmission options: Acked requested for

example.

• Send primitive: MCPS-DATA.request. At this time,

the MCPS-DATA.request takes over and handles all

the transmission process for node 1.

• Construct the mpdu packet

Mcps-data-request: Step 0:

• Begin Csma: initialization, randomly choose time to

wait, start backoff, schedule backoff time to wait in

timer.

Event: Backoff time has elapsed

• Set antenna state to reception: RX_ON

• Perform CCA. (Normally, CCA lasts 8 symbols. In

NS2, CCA lasts 4 symbols but starts after waiting 4

symbols so the entire process does last 8 symbols.

Page 49

• Schedule CCA for the 4
th

 symbol).

Event: 4 symbols have elapsed

• Schedule CCA report after 4 symbols, that is, after

8 symbols in total.

• Decrease energy from last energy update and

beginning of CCA using Pidle power.

• Decrease energy spent in CCA and turnaround

using Pr receive power.

Event: CCA report

Mcps-data-request: Step1:

• Enable transmitter: TX_ON

• Turnaround

Event: End of the turnaround

• PD_DATA.request

• Construction of PPDU

• Compute transmission time

• Send packet to radio for transmission

• Decrease node energy from last energy update

using Pidle power

• Decrease node energy for transmission using

Ptransmission power.

• Send packet

• Compute propagation delay

 Event: Packet detected

• Test if the packet is for itself.

Event: Packet sent

Mcps-data-request: Step 2:

• Acknowledgment is required: enable the receiver

(turnaround)

• Wait for acknowledgment

 Event: Packet received

• Measure link quality

• PD_DATA.indication

• Check if the packet has to be dropped

• Decrease node energy from last update using Pidle

power

• Decrease node energy for reception using

Preception power

• Construct ack packet

• Stop csma if it is pending

• Enable transmitter: TX_ON

Page 50

• Check duplication of the packet

• Delay from aTurnaround symbols

Event: aTurnAround symbols have elapsed

• Construct PPDU for ack packet

• Construct transmission time

• Send packet to radio

• Decrease node energy from last energy update

using Pidle power

• Decrease node energy for transmission using

Ptransmission power

• Compute propagation delay

Event: Packet detected

• Test if the packet is for itself

 Event: packet sent

• Change state to IDLE

• Compute IFS=SIFS

• Set trx state to RX_ON

Event: packet received

• Measure link quality

• PD_DATA.indication

• Check if the packet has to be dropped

• Decrease node energy from last update using Pidle

power

• Decrease node energy for reception using Preception

power

• Check duplication

• Check sequence number in the ack

Mcps-data-request: setp 3:

• Task: send data is a success

Event: IFS has elapsed

• Pass packet to upper layers

Table 31 - Detailed steps for transmission and reception of a single message

3.10. Energy model

In NS2, it is possible to configure an energy model in order to monitor energy consumption of

the nodes. This configuration is done in the tcl script.

Page 51

The parameters of the energy model are:

• initialEnergy: it is the energy available in each node at the beginning of the simulation in

Joules

• rxPower: the receiving power in Watts

• txPower: the transmitting power in Watts

• idlePower: the power used when the node is idle in Watts

• sleepPower: the power used when the node is sleeping in Watts

• sleepTime: a parameter used to enable the sleeping mode in Watts

There are two modes available: the default mode and the sleep mode.

3.10.3. Default mode

In this mode, nodes can’t sleep, when they are doing nothing, they are in idle mode and pass in

receiving or transmitting mode whenever they are about to receive or transmit a packet.

Note that because NS2 is a simulator, each node knows perfectly well when the reception of a

packet will happen.

For the transmitter, energy is decreased after performing the CCA and after the transmission of

a packet.

When a turnaround is effectuated, it consumes energy, however, in NS2, the energy of a

turnaround is not considered except in the case of the CCA. In the case of the CCA, the power

used for the turnaround is the rxPower.

3.10.4. Sleep mode

The sleep mode is activated by the variable sleepTime. sleepTime has to be lower than the

current time, that is, to enable sleep mode, we can give sleepTime the value 0.0.

Sleep mode only serves when in beacon-enabled network and only affect RFD nodes.

In that case, the RFD node will pass in sleep node and wake up when transmitting a packet or

just before the reception of a beacon packet. Because the RFD node and the coordinator are

synchronized, the node is able to predict the instant of reception of such a frame.

Page 52

The sleep mode permits to save a significant amount of energy.

Page 53

4. NS2: analysis of performances

In this part, the performances of NS2 will be analyzed and compared with theoretical results or

results found in papers.

4.2. Useful bitrate and delay vs Payload size

The first two parameters which will be studied are the useful bitrate and the delay of

transmission for one packet; those two parameters being correlated.

The results will be compared to the ones in [30].

In this paper, they study the impact of the length of the addresses used and the usage or not of

acknowledgment on the throughput and the delay in 802.15.4 communication.

4.2.3. Conditions

The simulation will be effectuated with the following conditions and topology:

• Two nodes: one sender and one receiver.

• The devices are within range from each other (no loss)

• Channel is considerate perfect (BER=0)

• No losses due to buffer-overflow

• Non-beacon enabled mode

• The node always has enough packets to send

• Propagation: Two-ray model

• Traffic sent: CBR (constant bitrate)

• 2.4 GHz band

The aspects which will be variable are:

• Presence or not of acknowledgment

• Payload size

• Address size: this is done only in the paper, it will not appear in the ns2 simulation

Page 54

4.2.4. Theoretical study

The maximum throughput is determined as the number of data bits coming from the upper

layer (the network layer). Hence, the throughput we are calculating is the throughput of the

MAC layer.

We will do the theoretical analysis of the maximum throughput in the case of the unslotted

version of the protocol (no super frames) in the 2.4 GHz band, that is, a bitrate of 250 kb/s.

The maximum throughput is calculated as follows:

 �� =
�. �

��	
�(�)
 (1)

• � is the size of the payload

• �����(�) is the delay for one packet containing a payload of x bytes.

The delay for each packet is:

 �����(�) = ��� + ������(�) + ��� + ��� + �!"#(�) (2)

• ��� Back off period

• ������(�) Transmission time for a payload of x bytes

• ��� Turn around time (192 µs)

• ��� Transmission time for an ACK

• �!"#(�) IFS time (SIFS=192 µs if MPDU<=18 bytes, else, LIFS=640 µs)

Backoff period

 ��� = $%&'()&. ��� &'() (3)

• $%&'()& Number of back off slots

• ��� &'() Time for a back off slot (320 µs)

The number of back off slots is a random number uniformly in the interval (0. 2�- − 1), BE

being the back off exponent. Its minimum value is 3. The channel is considered to be perfect so

we can assume BE will always have the value 3. Therefore, the number of backoff slots is the

mean of the interval (0. 20 − 1). µ=3.5.

So, ��� = 3.5 ∗ ��� &'() = 1.1245

Page 55

Transmission time of a frame with a payload of x bytes

 ������(�) = 8.
789: + 7;��_9=> + 7�??��&& + � + 7;��_"�>

@?�)�

 (4)

• 789: Length of the PHY header and the synchronization header in bytes (6

bytes)

• 7;��_9=> Length of the MAC header in bytes (3 bytes)

• 7�??��&& Length of the MAC address fields

• 7;��_"�> Length of the MAC footer in bytes (2 bytes)

• @?�)� Raw data rate of the band used (250 kb/s)

7�??��&& in the ns2 simulation is only of 2 bytes so this is the value which will be used for the

computation.

Transmission time for an acknowledgment

The way to compute the transmission time for an acknowledgment is the same as the one for

an entire frame except that we have no payload and no address field.

 ��� (�) = 8.
789: + 7;��_9=> + 7;��_"�>

@?�)�

 (5)

If no acknowledgment is used, ��� and ��� are omitted.

4.2.5. Results

Hereafter are the results of the useful bitrate and delay without acknowledgment and with

acknowledgment afterward. The results have been computed both from the simulation traces

and by the theoretical way.

Some graphics follow the result tables.

Without acknowledgment

Table 32 shows the numerical results while Graphic 1 and Graphic 2 display the results on a

graph.

Table 32

Graphic

Graphic

Payload (byte) Bitrate (kb/s)
1 4,2380

10 36,7761
20 64,1072
30 85,1884
40 101,9865
50 115,7281
60 127,1103
70 136,7236
80 144,8822
90 152,0118
100 158,1748
110 163,6141
120 168,4716

Useful birate and delay without acknowledgment
Simulation

Page 56

32 - Useful bitrate and delay without acknowledgment

Graphic 1 - Useful bitrate without acknowledgment

Graphic 2 - Delay of one packet without acknowledgment

Bitrate (kb/s) Delay (ms) Payload (byte) Bitrate (kb/s) Delay (ms)
4,2380 1,8877 1 4,5455

36,7761 2,1753 10 39,0625
64,1072 2,4958 20 56,8182
85,1884 2,8173 30 76,5306
101,9865 3,1377 40 92,5926
115,7281 3,4564 50 105,9322
127,1103 3,7762 60 117,1875
136,7236 4,0959 70 126,8116
144,8822 4,4174 80 135,1351
152,0118 4,7365 90 142,4051
158,1748 5,0577 100 148,8095
163,6141 5,3785 110 154,4944
168,4716 5,6983 120 159,5745

Useful birate and delay without acknowledgment
Simulation Theoretical

Delay (ms)
1,760
2,048
2,816
3,136
3,456
3,776
4,096
4,416
4,736
5,056
5,376
5,696
6,016

Discussion

We can see that there are some differences between the theoretical result and the simulation

result.

In particular, we can see a transition in the curve of the theoretical graph both for the bitrate

and the delay but we can see it more clearly in

transition from SIFS to LIFS. However, we c

we can think that there may be a problem in the simulator concerning the choice of SIFS and

LIFS. Though I have found a lot of code lines in the simulator concerning this transition: some

tests on the MPDU size are performed

flaw.

I tried to change the theoretical curve using the SIFS interv

two curves would match better. And indeed,

nearly perfect match even if the bitrate for the theoretical curve is slightly higher.

With acknowledgment

Table 33 shows the numerical results wh

graph.

Graphic 3 - Useful bitrate (without ACK) - using only SIFS interval

Page 57

We can see that there are some differences between the theoretical result and the simulation

In particular, we can see a transition in the curve of the theoretical graph both for the bitrate

and the delay but we can see it more clearly in Graphic 2. This break corresponds to the

. However, we cannot see this transition in the simulation curve so

we can think that there may be a problem in the simulator concerning the choice of SIFS and

LIFS. Though I have found a lot of code lines in the simulator concerning this transition: some

are performed to see which interval to choose, there seems to have a

I tried to change the theoretical curve using the SIFS interval for all payload sizes to see

two curves would match better. And indeed, we can see in Graphic 3 and Graphic

nearly perfect match even if the bitrate for the theoretical curve is slightly higher.

shows the numerical results while Graphic 5 and Graphic 6 display the results on a

using only SIFS interval Graphic 4 - Delay of one packet (without ACK)

We can see that there are some differences between the theoretical result and the simulation

In particular, we can see a transition in the curve of the theoretical graph both for the bitrate

. This break corresponds to the

t see this transition in the simulation curve so

we can think that there may be a problem in the simulator concerning the choice of SIFS and

LIFS. Though I have found a lot of code lines in the simulator concerning this transition: some

to see which interval to choose, there seems to have a

al for all payload sizes to see if the

Graphic 4 that it is a

nearly perfect match even if the bitrate for the theoretical curve is slightly higher.

display the results on a

Delay of one packet (without ACK) - using only SIFS

interval

Table 33

Graphic

Payload (byte) Bitrate (kb/s)
1 3,2896

10 29,4019
20 52,5930
30 71,4122
40 86,9275
50 99,9971
60 111,0541
70 120,6643
80 128,9800
90 136,2969
100 142,7817
110 148,5873
120 153,8094

Useful birate and delay with acknowledgment
Simulation

Page 58

33 - Useful bitrate and delay with acknowledgment

Graphic 5 - Useful bitrate with acknowledgment

Bitrate (kb/s) Delay (ms) Payload (byte) Bitrate (kb/s)
3,2896 2,4319 1 4,0080

29,4019 2,7209 10 35,0263
52,5930 3,0422 20 52,4246
71,4122 3,3608 30 71,1744
86,9275 3,6812 40 86,6739
99,9971 4,0001 50 99,7009
111,0541 4,3222 60 110,8033
120,6643 4,6410 70 120,3783
128,9800 4,9620 80 128,7208
136,2969 5,2826 90 136,0544
142,7817 5,6030 100 142,5517
148,5873 5,9224 110 148,3479
153,8094 6,2415 120 153,5509

Useful birate and delay with acknowledgment
Simulation Theoretical

Bitrate (kb/s) Delay (ms)
1,996
2,284
3,052
3,372
3,692
4,012
4,332
4,652
4,972
5,292
5,612
5,932
6,252

Graphic

Discussion

Once again, we can see that there is a problem of transition between SIFS and LIFS. This time, it

is the second part of the curves that best match.

So, I changed the theoretical curve to use always LIFS and

the result is a perfect match. We can see it in the tables above, for the LIFS

the values are almost the same.

Graphic 8 - Useful bitrate (with ACK) -

Page 59

Graphic 6 - Delay of one packet with acknowledgment

Once again, we can see that there is a problem of transition between SIFS and LIFS. This time, it

is the second part of the curves that best match. See Graphic 6.

So, I changed the theoretical curve to use always LIFS and Graphic 8 and Graphic

the result is a perfect match. We can see it in the tables above, for the LIFS

the values are almost the same.

- using only LIFS interval Graphic 7 - Delay of one packet (with ACK)

Once again, we can see that there is a problem of transition between SIFS and LIFS. This time, it

Graphic 7 show that

the result is a perfect match. We can see it in the tables above, for the LIFS part of the curve,

Delay of one packet (with ACK) - using only LIFS

interval

Page 60

4.3. Useful bitrate and delivery ratio vs Number of devices

The following two studies refer to results found in [31].

4.3.3. Conditions

The conditions for those two experiments are the same: one coordinator and one to four

devices in a star topology. There will be one main transceiver with the coordinator, the other

devices being only traffic load generators. See Figure 14. All the results are computed from

device 1.

Figure 14 - Star topology with one coordinator, one main transceiver and three load generators

• Every device can hear every other device; there is no problem of hidden terminal.

• The aMaxFrameRetries parameter has been set to 0. This way, there is no retransmission

in case of drop packet.

• Non-beacon enabled mode

The results will be compared to ones in [31]. The author realized the experiments using IEEE

802.15.4 development boards.

I have to mention beforehand that it will not be possible to compare expressively the values

obtained because the conditions are somewhat dissimilar but it will be possible to compare the

tendencies and in certain cases we will be able to reuse the results obtained during the previous

simulations.

4.3.4. Varying traffic load per device

Here, the effective data rate and the delivery ratio will be computed for 1, 2, 3 and 4 devices,

varying the traffic load per device other than the main transceiver with the values 10kb/s,

50kb/s and 100kb/s.

I have to remind that the value of the bitrate and the delivery ratio are computed according to

the simulation traces of device 1, the main transceiver

Results

Table 34 shows the numerical re

graph.

On the two graphics, the values marked with

experimental results from the reference paper.

Table 34 -

Graphic 9 - Usefu

Number of
devices

Bitrate (kb/s) Delivery ratio

1 52,5940 100,0000
2 43,0916 96,6859
3 34,0687 92,9117
4 27,9635 89,7804

10 kb/s

Page 61

Varying traffic load per device

Here, the effective data rate and the delivery ratio will be computed for 1, 2, 3 and 4 devices,

varying the traffic load per device other than the main transceiver with the values 10kb/s,

I have to remind that the value of the bitrate and the delivery ratio are computed according to

the simulation traces of device 1, the main transceiver, with the coordinator.

shows the numerical results while Graphic 9 and Graphic 10 display the results on a

On the two graphics, the values marked with “exp” are the ones retrieved from the

the reference paper.

- Useful bitrate and delivery ratio (Varying traffic load)

Useful bitrate vs Number of devices (Varying traffic load)

Delivery ratio
(%)

Number of
devices

Bitrate (kb/s) Delivery
ratio (%)

Number of
devices

100,0000 1 52,5940 100,0000
96,6859 2 24,6800 88,1267
92,9117 3 15,8290 80,7808
89,7804 4 11,9015 75,2593

Useful birate and delivery ratio (Varying traffic load)
50 kb/s

Here, the effective data rate and the delivery ratio will be computed for 1, 2, 3 and 4 devices,

varying the traffic load per device other than the main transceiver with the values 10kb/s,

I have to remind that the value of the bitrate and the delivery ratio are computed according to

display the results on a

are the ones retrieved from the

Number of
devices

Bitrate (kb/s) Delivery ratio
(%)

1 52,5940 100,0000
2 24,7497 87,8760
3 15,6522 79,8357
4 15,9795 81,1338

100 kb/s
Useful birate and delivery ratio (Varying traffic load)

Graphic 10 -

Discussion

Useful bitrate

In Graphic 9, we can see that the tendencies of the

similarity in the values for the high

In my case, the two curves for 50 kb/s and 100 kb/s are equal which seems logical. Indeed, the

maximum bitrate for the load generators is inferior to 50 kb

anything to have 50kb/s in one hand and 100kb/s in the other hand. The results should be the

same.

However we can see that in the case of

also observe this in Graphic 10

Delivery ratio

In Graphic 10, the two curves

the curves for 10 kb/s and 50 kb/s seem to have the same values than the ones in th

paper.

Once again, in my case 50 kb/s and 100 kb/s show the same results and once again, it seems to

have some problem for 100 kb/s in the case of 4 devices.

Page 62

 Delivery ratio vs Number of devices (Varying traffic load)

e can see that the tendencies of the curves are similar. We can even observe a

similarity in the values for the highest numbers of devices.

In my case, the two curves for 50 kb/s and 100 kb/s are equal which seems logical. Indeed, the

maximum bitrate for the load generators is inferior to 50 kb/s in all cases so it would not change

anything to have 50kb/s in one hand and 100kb/s in the other hand. The results should be the

However we can see that in the case of 4 devices, the two curves have different value

10.

, the two curves are very similar both in tendency and in values. We can see that

the curves for 10 kb/s and 50 kb/s seem to have the same values than the ones in th

Once again, in my case 50 kb/s and 100 kb/s show the same results and once again, it seems to

have some problem for 100 kb/s in the case of 4 devices.

are similar. We can even observe a

In my case, the two curves for 50 kb/s and 100 kb/s are equal which seems logical. Indeed, the

/s in all cases so it would not change

anything to have 50kb/s in one hand and 100kb/s in the other hand. The results should be the

different values, we can

are very similar both in tendency and in values. We can see that

the curves for 10 kb/s and 50 kb/s seem to have the same values than the ones in the reference

Once again, in my case 50 kb/s and 100 kb/s show the same results and once again, it seems to

4.3.5. Varying data payload

The simulations here are similar to the previous ones. However,

and 4 is fixed to 100 kb/s and it is the payload size which varies.

But give attention to the fact that even if the payload

reference paper; the size of the packet can be different because in the paper there was no

information about the size of the address field.

Once again, the results marked with

Results

Table 35 - Useful bitrate and delivery ratio (varying data payload)

Graphic 11 - Useful bitrate vs Number of devices (Varying payload size)

Number of
devices

Bitrate (kb/s)
Delivery
ratio (%)

1 52,5940 100,0000
2 24,7497 87,8760
3 15,6522 79,8357
4 15,9795 81,1338

Useful birate and delivery ratio (Varying data payload)
20 bytes

Page 63

Varying data payload

The simulations here are similar to the previous ones. However, the traffic load for devices 2, 3

and 4 is fixed to 100 kb/s and it is the payload size which varies.

But give attention to the fact that even if the payload size may be the same

; the size of the packet can be different because in the paper there was no

nformation about the size of the address field.

Once again, the results marked with “exp” are from the reference paper.

Useful bitrate and delivery ratio (varying data payload)

Useful bitrate vs Number of devices (Varying payload size)

Delivery
ratio (%)

Number of
devices

Bitrate (kb/s)
Delivery
ratio (%)

Number of
devices

100,0000 1 111,0541 100,0000 1
87,8760 2 50,0273 88,5226 2
79,8357 3 31,6181 82,1933 3
81,1338 4 31,5944 81,9391 4

Useful birate and delivery ratio (Varying data payload)
60 bytes

the traffic load for devices 2, 3

may be the same regarding the

; the size of the packet can be different because in the paper there was no

Number of
devices

Bitrate (kb/s)
Delivery
ratio (%)

148,5873 100,0000
66,4807 88,9535
40,3531 82,2731
29,8511 76,3514

Useful birate and delivery ratio (Varying data payload)
110 bytes

Graphic 12 - Deliver

Discussion

We can do almost the same remarks as for the previous simulations.

12, the tendencies of the curves are similar. This is true above all for the delivery ratio. We can

see that for the useful bitrate, in

We can observe also the same problem for the

4.4. Useful bitrate vs Beacon order

For this experiment, we will study the variation of the bitrate with the beacon order.

explains the structure of a superframe.

Page 64

Delivery ratio vs Number of devices (Varying payload size)

We can do almost the same remarks as for the previous simulations. In Graphic

ndencies of the curves are similar. This is true above all for the delivery ratio. We can

see that for the useful bitrate, in the case of the simulation, the curves decrease faster.

We can observe also the same problem for the case of 4 devices.

Useful bitrate vs Beacon order

For this experiment, we will study the variation of the bitrate with the beacon order.

explains the structure of a superframe.

Figure 15 - Superframe structure

Graphic 11 and Graphic

ndencies of the curves are similar. This is true above all for the delivery ratio. We can

, the curves decrease faster.

For this experiment, we will study the variation of the bitrate with the beacon order. Figure 15

Page 65

The beacon order (BO) and the superframe order (SO) define the structure of the superframe.

The superframe is bounded by two beacons. It contains an active part in which transmission can

be effectuated and an inactive part, during which the coordinator enters in a sleep mode.

The superframe length is function of the beacon order:

 $A = �$�5�BCD�EFE�4�GCE�HIJK ∗ 2�� (6)

Where BI stands for Beacon Interval.

The active part length depends on the superframe order:

 BG = �$�5�BCD�EFE�4� ∗ 2#� (7)

Where SD stands for Superframe Duration.

aBaseSuperFrameDuration is the number of symbols forming a superframe when the

superframe order is equal to 0. It is equal to 960 symbols (1 symbol corresponds to 4 bits).

In our case, BO=SO, that is, there is no inactive part. A BO equal to 15 refers to a non-beacon

enabled mode.

Result

Table 36 shows numerical results and Graphic 13 displays the results on a graph.

Table 36 - Useful bitrate varying beacon order

Beacon order Bitrate (kb/s) Beacon Interval (s)
0 37,486453 0,01536
1 40,506306 0,03072
2 41,975134 0,06144
3 42,691877 0,12288
4 43,055200 0,24576
5 43,263008 0,49152
6 43,357714 0,98304
7 43,408000 1,96608
8 43,432000 3,93216
9 NO DATA 7,86432
10 NO DATA 15,72864
11 NO DATA 31,45728
12 NO DATA 62,91456
13 NO DATA 125,82912
14 NO DATA 251,65824
15 52,592982 ∞

Useful bitrate
vs Beacon order

Discussion

We can see that there are no data for a beacon order superior to 8. Indeed, the associati

could not manage to succeed

beacon interval for an order of 9

We can observe that the curve is quite similar to the one in the paper. However, the value for

the non-beacon enabled mode (52,6 kb/s) is much higher than the value where the curve seems

to stagnate (43,5 kb/s).

In the paper’s graphic, the curve increases till the non

to be more an extrapolation of the curve than real results.

4.5. Energy model

Ns2 802.15.4 module provides an energy

consumption for each node.

The following study has been realized taken into account results obtained by Carolina Tripp in

her master thesis. She made an analysis of the energy consumption depending on the payload

size and the presence or not of security.

The same conditions have be

since security is not implemented in ns2.

The motes used are TelosB. From Carolina work, it has been found that applying a voltage of 3V:

• Transmission mode current: 2

Page 66

Graphic 13 - Useful bitrate vs Beacon order

We can see that there are no data for a beacon order superior to 8. Indeed, the associati

could not manage to succeed because the scanning time in NS2 is inferior to 7 seconds

an order of 9 or superior is higher than 7 seconds.

We can observe that the curve is quite similar to the one in the paper. However, the value for

beacon enabled mode (52,6 kb/s) is much higher than the value where the curve seems

urve increases till the non-beacon enabled mode. However, it seems

to be more an extrapolation of the curve than real results.

Energy model

provides an energy model from which it is possible to monitor energy

The following study has been realized taken into account results obtained by Carolina Tripp in

her master thesis. She made an analysis of the energy consumption depending on the payload

size and the presence or not of security.

The same conditions have been recreated in ns2. However, the study will not involve security

since security is not implemented in ns2.

The motes used are TelosB. From Carolina work, it has been found that applying a voltage of 3V:

current: 24 mA

We can see that there are no data for a beacon order superior to 8. Indeed, the association

he scanning time in NS2 is inferior to 7 seconds and

We can observe that the curve is quite similar to the one in the paper. However, the value for

beacon enabled mode (52,6 kb/s) is much higher than the value where the curve seems

beacon enabled mode. However, it seems

model from which it is possible to monitor energy

The following study has been realized taken into account results obtained by Carolina Tripp in

her master thesis. She made an analysis of the energy consumption depending on the payload

en recreated in ns2. However, the study will not involve security

The motes used are TelosB. From Carolina work, it has been found that applying a voltage of 3V:

Page 67

• Reception mode current: 26 mA

• Idle mode current: 4.7 mA

In NS2, we have to put the value of the power for each mode, with L = M. A we obtain:

• Transmission mode power: 72 mW

• Reception mode power: 78 mW

• Idle mode power: 14.1 mW

The simulation has been made transmitting 20 CBR packets with different packet size. The result

has then been divided to get the result for 1 packet.

A theoretical study has been made in order to compare the two results.

4.5.3. Theoretical study

To compute the energy consumed for the total transfer of a frame, it has been considered:

• The energy consumed during the transmission or reception of the frame

• The energy consumed during backoff time and CCA (8 symbols) for the transmitter or

idle time for the receiver

The general formula used is

 N = AM� (8)

where,

• N is the energy (J)

• A is the current (A)

• � is the delay (s)

• M is the voltage applied (V)

And:

 N)��O& = NP�QR(�� + NS?'� + N��� + N)��O&�S&&S(O (9)

 N��QT = NS?'� + N��Q�U)S(O (10)

4.5.4. Results

Table 37 shows numerical results and Graphic 14 displays those results.

Graphic

Discussion

In Graphic 14, we can clearly see that the result do match, the energy consumption in the

simulator is similar to the one found theoretically.

4.5.5. Comparaison sleep mode vs non sleep mod

In sleep mode, the network needs to be in a beacon

and SO equal to 3.

Payload (byte)
Transmitter
energy (mJ)

60 0,210

65 0,222

70 0,233

75 0,245

80 0,257

85 0,268

90 0,280

95 0,291

100 0,304
105 0,316

Energy consumption for 1 packet
Simulation

Page 68

Table 37 - Energy consumption for 1 packet

Graphic 14 - Energy consumption: Theory vs Simulation

, we can clearly see that the result do match, the energy consumption in the

simulator is similar to the one found theoretically.

Comparaison sleep mode vs non sleep mode

etwork needs to be in a beacon-enabled mode. It has been tested with Bo

Transmitter
energy (mJ)

Receiver
energy (mJ)

Payload (byte)
Transmitter
energy (mJ)

0,210 0,201 60 0,202

0,222 0,214 65 0,214

0,233 0,226 70 0,225

0,245 0,239 75 0,237

0,257 0,252 80 0,248

0,268 0,264 85 0,260

0,280 0,277 90 0,271

0,291 0,290 95 0,283

0,304 0,304 100 0,294

0,316 0,317 105 0,306

Energy consumption for 1 packet
Simulation Theoretical

, we can clearly see that the result do match, the energy consumption in the

It has been tested with Bo

Transmitter Receiver
energy (mJ)

0,207

0,220

0,232

0,244

0,257

0,269

0,282

0,294

0,307

0,319

Page 69

The results of Table 38 are those of the RFD, which is the transmitter energy at the end of the

sending of 21 CBR packets. The beginning of the transmission happens at time 30 seconds.

The sleep power is 1.44e-7 Watts.

Table 38 - Energy consumption (sleep mode/non sleep mode)

We can see that in this case, the use of the sleep mode saves about 0,35 mJ of energy. We can

see that in beacon-enable mode, the size of the payload does not really impact the consumption

of energy.

4.6. Conclusion

Regarding the results obtained above, we can say that ns2 simulator seems to be fairly reliable

and that it is a good choice for the simulation of the sensor network embedded on a train.

Payload (byte) Transmitter
energy (mJ)

Payload (byte) Transmitter
energy (mJ)

60 0,10540 60 0,42772
65 0,10570 65 0,42795
70 0,10585 70 0,42818
75 0,10605 75 0,42841
80 0,10632 80 0,42864
85 0,10654 85 0,42888
90 0,10678 90 0,42912
95 0,10700 95 0,42934
100 0,10724 100 0,42958
105 0,10743 105 0,42983

Energy consumption
Sleep mode Non-sleep mode

Page 70

5. Protocol simulation

In this part, I will first describe the architecture of the network wanted as well as the protocol

itself. I will then state the alterations made in order to perform the simulation and the results of

that simulation.

5.2. Architecture

The network is deployed on a train. It is formed by one gateway, situated at the head of the

train, 7 relays spaced by 25 meters along the train and sensors placed on the train wheels.

There are 4 sensors for each relay.

The sensors are in charge of acquiring temperature and vibration information. They do not run

any routing protocol and are associated with a relay node.

The relay nodes are relaying data from the sensors to the gateway and vice versa.

The gateway collects all data coming from sensors and can exert some control on the sensors by

sending control frames to them.

Figure 16 is a scheme of the network as deployed on the train. The scheme is a side view and

therefore shows only two sensors for each relay instead of four.

Figure 16 - Network architecture

5.3. Protocol

The network is formed by the repetition of a cycle formed by three steps. First of all, the sensor

will send a temperature message to the gateway. Then, the gateway will respond to the sensor

and finally, depending on the gateway’s response, the sensor will send vibration information or

go to sleep.

Page 71

Sending the temperature message

Each sensor periodically sends a temperature message to the gateway with a period of one

minute. The sensors are not started up exactly at the same time so the temperature messages

are not sent either at the same time.

To send its message to the gateway, the sensor will send it directly to its relay node. The relay

will then transmit the message to the gateway using AODV protocol.

Figure 17 - Sequence diagram: the sensor sends a temperature frame

The gateway response

Once it has received the temperature message from the sensor node, the gateway needs to

reply. It will send a control message.

Two cases can be seen:

• The gateway sends a “go to sleep” message.

• The gateway asks for vibration information.

The gateway will ask to the sensors to send vibration information in a round robin fashion.

When the gateway receives a temperature message form one node, it will verify if it is this

node’s turn to send vibration data. If it is the case, it will ask for the data or else it will tell the

node to go to sleep.

When the sensor node goes to sleep, it will remain in that state until the 60 seconds have

elapsed and it is then time to send another temperature frame.

Page 72

Figure 18 - Sequence diagram: the gateway response

If the temperature frame or the control frame is lost during its transmission, the sensor will not

receive any response. If the node does not receive anything during 5 seconds, it will

automatically go to sleep.

Sending the vibration message

Once the sensor node receives the “Send vibration control frame”, it will begin the transmission

of the vibration data. The transmit window is 10 packets.

The sensor will begin by sending 10 packets.

If everything goes fine and no packet is lost, the gateway will send an ACK message after

receiving 5 packets correctly. When receiving the ACK message, the sensor sends 5 more

packets. See Figure 19.

Page 73

Figure 19 - Sending vibration data with no loss

If a packet is lost, the gateway sends a N-ACK message to the sensor node for the lost message.

N-ACK message implies that every vibration messages with a sequence number inferior to the

one specified in the N-ACK frame have been received properly. When receiving a N-ACK frame,

the sensor first sends back the lost vibration packet. Then, the sensor sends n vibration packets;

n being the number of packets properly received that the N-ACK acknowledged. See Figure 20.

Figure 20 - Sending vibration data with losses

If during a defined time the gateway does not receive any vibration message, it will send a N-

ACK message for the last vibration message not received.

Page 74

Frames details

General frame

Each frame is composed by the following fields:

• MAC header: information of MAC level (used in 802.15.4 frames)

• Serial header: information of Serial protocol level (used in serial protocol frames)

• AM header: information about the type of frame

• AODV header

• Payload field

The MAC header (9 bytes) is composed by:

• Frame control: 2 bytes

• Sequence number: 1 byte

• Destination PAN address: 2 bytes

• Destination address: 2 bytes

• Source address: 2 bytes

The Serial Protocol header (7 bytes) is composed by:

• AM type: 1 byte

• Destination address: 2 bytes

• Link source packet: 2 bytes

• Message length: 1 byte

• Group ID: 1 byte

AODV header for Data frames (9 bytes) is optional and is composed by:

• Single hop sequence number: 1 byte

• Multi hop source address: 2 bytes

• Multi-hop destination address: 2 bytes

• Application field: 1 byte

• Multi-hop sequence number: 1 byte

• TTL field: 1 byte

• Flag field (optional): 1 byte

Payload field: (variable length and format):

• Data temperature

• Data vibration

• Control

• Association

Data temperature frame payload field

Page 75

The temperature frame has a length of 6 bytes.

• Sensor node source address: 2 bytes

• Sensor relay source address: 2 bytes

• Temperature Data: 2 bytes

Data vibration frame payload field

The vibration frame has a variable length. Its maximum length is of 127 bytes.

• Sensor node source address: 2 bytes

• Sensor relay source address: 2 bytes

• Sequence number: 9 bits

• Data length: 7 bits

• Vibration data: 121 bytes maximum

Control frame payload field

From the gateway to sensor nodes, the frame has a length of 5 bytes

• Sensor node destination address: 2 bytes

• Sensor relay destination address: 2 bytes

• Control type: 1 byte

The control type can be:

• 0x00: Sleep

• 0x01: Send vibration information

• 0x03: Change value of temperature acquisition period

From a sensor to the gateway, the frame has a length of 3 bytes.

• Sensor node source address: 2 bytes

• Control type: 1 byte

The control type is: 0x80: ACK – Action done

5.4. The simulation

To simulate this protocol, I used the ns2 simulator and its 802.15.4 physical and MAC layers. I

then programmed three entire application layers, one for each type of sensor: sensor, relay and

gateway. I also had to modify the UDP layer to take into account the new application layer.

I gave an address to each sensor depending on its location on the train. The gateway has

address 0, then for each relay, the address is the previous one adding ten. The wheel sensors

have the address of the relay they relate to adding one, two, three or four. Figure 21 shows the

Page 76

disposition of the nodes and their addresses. Each relay has a reach range of 50 meters, that is

two relays in each direction.

Figure 21 - Network topology and node addresses

The original protocol specified that the AODV protocol used would be one taking into account

the LQI as well as the number of hops to draw a route between two nodes. This way, the node

would choose a route with better quality and more hops rather than a route with less hops but

a very bad link quality.

In the simulation I conceived, I used the AODV protocol already in the ns2 simulator which does

not take into account LQI. Therefore, if node 31 wants to transmit its temperature packet, it will

first send it to its relay, node 30. Then, node 30 will use AODV protocol to construct the route to

node 0. AODV will respond that node 30 have to send the message to node 10 and then 0. But

we can wonder if sending it first to node 20, then 10 and finally 0 would give better results

because of a better LQI or not.

5.5. Experimentation results

In this part, I will study the influence of some parameters on the useful bitrate, loss rate or the

energy consumption.

5.5.3. Useful bitrate and loss rate vs Distance

Conditions:

Here, I will test the influence of the distance on bitrate and loss rate.

All seven relay nodes will be started in order to perform AODV and conduct the messages from

the sensor node to the gateway. However, only one sensor node will be started, the one we

want to analyze the useful bitrate and the loss rate. For example, for a distance of 20 meters

from the gateway, only node 11 will be started and for a distance of 80, only node 41 will be

started.

The number of vibration packet required is 100 and each packet has a size of 100 Bytes.

The useful bitrate is computed from the reception of a temperature packet by the gateway to

the end of all vibration packets reception.

Page 77

Expected results:

From this experiment, we expect both the useful bitrate and the loss rate to decrease with

distance. Indeed, from a large distance, packets will need more time to travel across the train to

the gateway. Moreover, the packet will have to pass through various relays, increasing the odd

to be lost.

Obtained results:

Table 39 shows the numerical results for the useful bitrate and the loss rate versus the distance

to the gateway. Graphic 15 displays the results of the useful bitrate on a graph whereas Graphic

16 displays the results of the loss rate.

Table 39 - Useful bitrate and Loss rate vs Distance

Graphic 15 - Useful bitrate vs Distance

We can see that the useful bitrate decreases when the distance from the gateway increases.

That’s what was expected. However, between a distance of 40m and a distance of 60m, the

bitrate loses about 24 kb/s. That loss is very high and is not explained. From 80m to 140m, the

Page 78

slope decreases slowly and does not show the same plateau as before whereas the number of

hops to get to the gateway increases.

By analyzing the packets drop, I saw that the majority of the packets are dropped on node 20

situated at 40m. This node has exactly the same configuration as the others and there is no

reason it should drop so much packets.

To conclude, while we can see that the tendency of the slope is the one expected, there seems

to be a problem with large distance. The useful bitrate for a distance higher than 40 meters is

then very low, only about 5 kb/s.

Graphic 16 - Loss rate vs Distance

We can say that loss rate tends to what was expected for its variation with distance. However,

the value of the loss rate is very high. A loss rate higher than 50% does not seem normal. Maybe

the simulator drops more packets than it should.

5.5.4. Useful bitrate and loss rate vs Packet size

Conditions:

This experiment will serve to analyze the influence of vibration packet size on useful bitrate and

loss rate.

Here, only node 11 will be started to keep interferences low and distance constant.

The number of vibration packets sent remains 100 but their size will vary from 10 bytes to 100

bytes.

Page 79

Expected results:

From this experiment, it is expected that the useful bitrate increases with packet size. Indeed,

the impact of headers or CSMA is larger when the payload length is small.

We can also expect that the loss rate would be higher with larger vibration packets.

Obtained results:

Table 40 shows the numerical results of useful bitrate and loss rate varying with vibration

packet size. Graphic 17 shows the graph of the variation of useful bitrate and Graphic 18

displays the graph for the loss rate.

Table 40 - Useful bitrate and loss rate vs Packet size

Graphic 17 - Useful bitrate vs Packet size

The variation of the useful bitrate versus the vibration packet size is exactly what was expected,

it increases with the size.

Page 80

Graphic 18 - Loss rate vs Packet size

The curve of the loss rate does not seem to show any tendency to increase or increase. This is

not at all what was expected. It almost appears that there is a more or less fixed value of about

50% losses and that the length of the packets has no influence at all.

5.5.5. Energy consumption vs Network size

Conditions:

The purpose of this experiment is to emphasize the impact of the network size, that is, the

number of nodes in the network, on the sensor’s lifetime.

For this test, the vibration packets size is fixed to 100 bytes and the number of packet is 100.

The number of sensors started varies from 1 to 28. We will however focus on the energy

consumption of node 11.

If the sensor works with two AA batteries, it will work on 3V and have 2000mAh. Converting it

on Joules, it gives 21,600 Joules.

From the remaining energy of the node after a fixed amount of time and given that it had an

initial energy of 100 J, the expected lifetime of the sensor can be computed.

Expected results:

It is expected that the sensor lifetime would increase with the size of the network. Indeed, we

can assume that the major part of the energy consumption takes place during the transmission

of the 100 vibration packets. When the network is composed by a lot of sensors, node 11 is not

able to transmit its vibration packets as often as it would do if it were alone. Indeed, the sensors

transmit their vibration information in a round robin fashion.

Page 81

Obtained results:

Table 41 shows the numerical results for the longevity of the sensor depending on the network

size. Graphic 19 shows the graph.

Table 41 - Lifetime vs Network size

Graphic 19 - Lifetime vs Network size

The longevity of the sensor tends to increase with the number of nodes in the network.

However, it is not a regular increase; it has some variation, going down before it rises again. This

can be due to the fact that for this experiment, I couldn’t repeat it several times. Indeed, for

each case, I could only run the program once because the randomness of the simulator is

random during one run but if we want to rerun the program, the same sequence will be played

again.

This experiment tells us that the sensor can last at least 10 months before it runs out of power.

Page 82

Conclusions

The results obtained by the simulation of the train network can give some perspectives on the

results we could expect from a real deployed network.

However, I find there are a lot of inconsistencies between the expected results and the obtained

ones.

Taking into account the characteristics of the simulator we wanted, NS2 was the only choice.

Though, given my experience on NS2 I acquired during this project, I can point out various

drawbacks. First of all, the simulator itself is not very user friendly. To simulate a simple network

can take some time at the beginning. But when we want to do something more complex as I had

to do, develop our own application layer for example, this is where it really becomes

troublesome.

I found the ns2 simulator not very stable. Quite often, when I was working on the application

level, it raised problems on a totally different level which was not at all connected to the

changes made. In this case, it is very difficult to find where the problem comes from and hours

can be spent working with the debugger.

Another remark is that I just can’t say if the inconsistencies seen in the simulation come from

flaws from the simulator itself or from the code I made. I know that my program is not perfect

and that there are flaws which can impact the results. But maybe flaws on the lower layers of

the simulator exist also and could explain for example the very high rate of packet loss.

I think that the new NS3 simulator coming up could be a good alternative when it is finished.

Indeed, more reflection has been conducted on the conception of the simulator and it would

less be patch codes as it is a little bit with ns2.

Page 83

References

1. GloMoSim. About GloMoSim. [Online] http://pcl.cs.ucla.edu/projects/glomosim/.

2. UCLA Parallel Computing Laboratory. UCLA Parsec Programming Language. [Online]

http://pcl.cs.ucla.edu/projects/parsec/.

3. GloMoSim. Obtaining GloMoSim. [En ligne]

http://pcl.cs.ucla.edu/projects/glomosim/obtaining_glomosim.html.

4. OPNET. Application and Network Performance with OPNET | Monitoring, Troubleshooting,

Auditing and Prediction. [Online] http://www.opnet.com/.

5. —. University Program-Research requirements. OPNET. [Online]

http://www.opnet.com/university_program/research_with_opnet/research_requirements.html

.

6. —. Untitled Document. [En ligne]

http://www.opnet.com/4d_forms/university/app_research_w.html.

7. —. OPNET solutions. [Online] http://www.opnet.com/solutions/index.html.

8. OMNeT++ Community. OMNeT++ Community Site. [En ligne] http://www.omnetpp.org/.

9. —. Downloads | OMNeT++. [En ligne]

http://www.omnetpp.org/component/docman/cat_view/1-omnet-releases.

10. Nsnam. [En ligne] http://nsnam.isi.edu/nsnam/index.php/Main_Page.

11. OTcl. [En ligne] http://otcl-tclcl.sourceforge.net/otcl/.

12. ns2 Class Hierarchy. [En ligne] http://www.isi.edu/nsnam/nsdoc-classes/hierarchy.html.

13. Nam: Network Animator. [En ligne] http://www.isi.edu/nsnam/nam/.

14. SourceForge. Browse nsnam Files on SourceForge.net. [En ligne]

http://sourceforge.net/projects/nsnam/files/allinone/ns-allinone-2.34/.

15. Low Rate Wireless Personal Area Networks - NS2 Simulation Platform. [En ligne]

http://www-ee.ccny.cuny.edu/zheng/pub/index.html.

16. The ns-3 network simulator. [En ligne] http://www.nsnam.org/.

17. doxygen. NS-3. [En ligne] http://www.nsnam.org/doxygen-release/index.html.

18. Source Forge. Brows nsnam Files on SourceForge.net. sourceForge.net. [En ligne]

http://sourceforge.net/projects/nsnam/files/allinone/ns-allinone-2.34/.

19. Free Software Foundation. GDB: The GNU Project Debugger. [Online]

http://www.gnu.org/software/gdb/.

Page 84

20. —. DDD - Data Display Debugger - GNU Project. [Online]

http://www.gnu.org/software/ddd/.

21. Eclipse. Eclipse Downloads. [Online] http://www.eclipse.org/downloads/.

22. 802.15.4 standard.

23. IEEE Computer Society. IEEE std 802.15.4 . 2006. p. 70.

24. —. IEEE std 802.15.4. 2006. p. 95.

25. —. IEEE std 802.15.4. 2006. p. 107.

26. —. IEEE std 802.15.4. 2006. p. 107.

27. —. IEEE std 802.15.4. 2006. p. 113.

28. —. IEEE std 802.15.4. 2006. p. 125.

29. —. IEEE std 802.15.4. 2006. p. 130.

30. Latré, Benoît, et al. Maximum throughput and Minimum delay in IEEE 802.15.4. [éd.]

Springer Berlin / Heidelberg. Mobile Ad-hoc and Sensor networks. 2005, Vol. 3794/2005, pp.

866-876.

31. Lee, Jin-Shian. Performance Evaluation of IEEE 802.15.4 for Low-Rate Wireless Personal Area

Networks. IEEE Transactions on Consumer Electronics. August 2006, Vol. 52, 3, pp. 742-749.

