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Abstract

Numerical simulation of the dynamics of fluid membranes

Laurence Grosjean

The goal of this project is to explore the mechanics of lipid fluid membranes as

found in biological and made-man systems through continuum models and numerical

simulations. Traditionally, the focus has been on the equilibrium configurations of

vesicles through minimization of the curvature energy subject to constraints. Here,

the goal is to describe the time-evolution of out-of-equilibrium vesicle configurations,

which are of relevance in biological systems. Towards this goal, an accurate descrip-

tion of the dissipative mechanisms is crucial, in particular the viscous dissipation

induced by the 2D flow of lipids on the deforming surface that describes a vesicle [1].

The resulting equations can only be solved analytically in very simple settings. So the

problem is solved numerically using a B-Spline description of the membrane vesicle.

The dynamics are described using two types of viscosity: the L2 or Willmore viscosity

and the inner flow viscosity. By comparing the evolution in time of the two systems, it

is stated that the dynamics are clearly different. It is found that one describes better

the physics of the system.
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Chapter 1

Introduction

1.1 Motivation

The ability to separate oneself from the hostile environment and to exchange compo-

nents with the surroundings made life possible.

The biologic cells (Fig.1.1), as well as the organelles are separated from the exterior

by a membrane. They are closed bags which allow the coexistence of different ionic

medium. They are impermeable for macromolecules and so, define different compar-

timents of different compositions. The biomembranes can be seen as a lipid bilayer

decorated by amphiphilic proteins (Fig.1.2).

Figure 1.1: Diagram of a cell [2].

The modelling of vesicle is important because we hope to learn the tricks of nature

and exploit those for biotechnological applications. Two examples of those appilcation

are the use of vesicles for drug delivery systems or the combination of membranes with

electronic or optoelectronic devices in order to build biosensors.
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2 Introduction

Figure 1.2: Diagram of the biomembrane [3].

Dynamic shape transformations define cells locomotion. Some aspect of these mor-

phological transformations can be studied with closed bag of lipid bilayer in aqueous

solutions. This is the simplest system to represent a biological membrane, however it

provides interesting results.

Figure 1.3: Discocyte [4].

Figure 1.4: Formation of a stomatocyte

[5].

The membrane bending energy stabilizes the cell shapes or drives on the shape

transitions. The study of the dynamics gives us a large variety of shapes that one

can organise in a phase diagram depending on the parameters (spontaneous curvature
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and reduced volume in this case).

There are two branches of different shapes: the oblate-branch and the prolate-branch.

The first one displays, for example, the change of shape of a red blood cell with the

concentration of cholesterol (Fig.1.3 and Fig.1.4). The last one is related to the bud-

ding of the cells (Fig.1.5).

Figure 1.5: Pear-shaped - budding [6].

1.2 Outline

To model the dynamics of vesicles, we proceed as follows.

In the first chapter, some biological explanations are given. The objectives are ex-

plained and the mathematical model is developed under some hypothesis.

The second chapter deals with the implementation of the model. The finite elements

model is elaborated. The B-Splines are briefly expounded. The curve and its param-

eters are worked out. Then, the numerical integration is explained.

In the third chapter, the static study of the vesicle is made. The different equilibriums

are worked out and paths in the phase diagram are followed.

The fourth chapter talks about the dynamic study. Two different viscosities are im-

plemented and compared.
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Chapter 2

Mathematical model

2.1 Biophysics of vesicles

2.1.1 Bending elasticity and spontaneous curvature model

In equilibrium, we can neglect some processes like the hydrodynamic flows or the

transport related to temperature gradients. Then, the vesicles will take the shape

which minimizes their total energy. To model it, we take into account some features

of lipid bilayers (Fig.2.1).

Figure 2.1: Diagram of the lipid bilayer [7].

5



6 Mathematical model

First, the thickness of the bilayer is in the nanometer range while the size of the

vesicles is two or three orders larger. This observation will allow us to describe the vesi-

cle membrane like a closed two-dimensional surface embedded in three-dimensional

space. Second, we suppose that the lipid bilayer is in a fluid state, so it does not

resist shear forces in the lateral plane. Third, the membrane is supposed to be in-

soluble, that means that the number of molecules in it is constant. Finally, the two

monolayers are allowed to glide over each other and sometimes to exchange molecules1.

The 2D surface which represents the lipid bilayers can be locally characterized by

the two radii of curvature R1 and R2 which carry a sign (Fig.2.2).

Figure 2.2: Principal curvatures of a surface.

The mean and the Gaussian curvature are respectively defined as

H =
(

1
R1

+ 1
R2

)
K = 1

R1R2
.

The spontaneous curvature model for vesicles is based on the assumption that we

can define a local energy density f1 associated to the mean and the Gaussian curvature

f1 =
κ

2
(H − C0)

2 + κGK

where there are three material parameters: κ, κG and C0.

1This is characterized by the spontaneous curvature C0.
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The bending rigidity κ, can be evaluated whereas the Gaussian bending rigidity κG

is difficult to measure. The spontaneous curvature C0 is used to represent an asym-

metry of the membrane. For instance, the number of lipids can be greater or/and the

"head" of the lipids can be larger in one monolayer than in the other. Moreover, the

chemical environment on both sides can be different. This parameter is supposed to

be laterally homogeneous, it does not depend on the local shape of the membrane.

We can take a term of density of lipids into account but it is known that it is not

coupled to the shape and that the energy is minimum for a uniform density [8].

On the other hand, the changes of area are negligeable because of the insolubility

of the lipid bilayers. The volume can either be taken as constant or not, it depends on

the osmostic pressure. The cells contain water and additional molecules (ions or im-

pureties) which can pass the membrane thanks to different pumps. If there is change

of the ionic concentration of the vesicle or of the surroundings, the water will pass the

membrane to equilibrate the osmotic pressure and so the volume will change. The

figure 2.3 explains this fact: the ions are represented in red. As the concentration

of ions is greater in the cell than in the aqueous solution, water goes into the cell to

equilibrate the osmotic pressure and so, the volume increases.

Figure 2.3: Effects of the osmotic pressure.

The total energy is obtained by integration of the local energy over the surface of
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the closed vesicle. Noting that the integral of the Gaussian curvature over a closed

surface is a topological invariant, and that we will not consider topological changes,

this term can be ignored [8] and we are left with the expression for the curvature

energy

EHC =

∫
κ

2
(H − C0)

2 dS (2.1)

This expression has to be minimized at constant total enclosed volume and con-

stant surface S to find the equilibrium shape.

2.1.2 Material parameters

Bending rigidity

Great effort has been devoted in order to determine the bending rigidity κ. Three

different methods can be distinguished: mechanical, mechanical and entropic and

thermally excited membrane fluctuations approach.

For the same lipid, the value of κ obtained by the different methods can differ

of a factor two. Furthermore, the same method applied by different research groups

yields different values (further analysis is needed to know if theses differences are due

to impurities or experimental effects).

Here are some experimental values of the bending rigidity κ for different lipids [8]:
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Lipid κ [10−19J ] Method

DMPC 1.15± 0.15 Flickering of quasi-spherical vesicles

DMPC 0.56± 0.06 Entropic tension, micropipet

DGDG 0.12− 0.27 Fluctuations of planar pieces

DGDG 0.44± 0.3 Entropic tension, micropipet

EYPC 1.15± 0.15 Flickering of quasi-spherical vesicles

EYPC 0.8 Fluctuations of planar pieces

Table 2.1: Value of bending rigidity for different lipids and methods.

2.2 Equations and hypothesis

2.2.1 Mechanisms of the problem

For fluid membranes, the inertial forces are negligible. So, the flow is a Stokes flow

and acts as a dissipative force opposed to the rate of change of the driving forces

(forces induced by the curvature for example).

The dynamics of the fluid membrane are the result of the balance between the driving

forces and the dissipation forces, under some constraints.

The energetic driving forces only depend on the configuration of the vesicle.

The first one is the curvature elasticity (eq.2.1) which can promote a spontaneous

curvature different from zero. This parameter can change with the flip-flop diffusion

of the lipids at very long time scales.

The second one is the line tension that exists in multi-components vesicles. It pro-

motes the budding of vesicles.

Two dissipative mechanisms depend on the rate of change of the system.

First, we can consider the dissipation caused by the reorganization of the bilayers’
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particles with the change of configuration. We call it the inner viscosity.

Second, the outer viscosity is the dissipation due to the disturbances caused to the

surrounding fluid by the change of configuration.

The constraints reckoned are the inextensibility of the membrane and sometimes

the incompressibility of the surrounding fluid. The forces acting on the membrane

are generally small, so the lipid bilayer can be considered as inextensible and we need

to preserve locally the area. Moreover, as seen before, the volume of the vesicle is

function of the osmotic pressure. It will be constant in the static study and constant

or not in the dynamic part depending on the case studied.

This list of mechanisms is not exhaustive, for example some research has been done

about interlayer slip and friction, swelling and osmotic pressure effects or energetic

forces due to membrane-bound actin networks.

2.2.2 Hypothesis

In this work, we implement a particular case of vesicle: the axisymmetric case. More-

over, we only study the vesicle of one component, then we do not have to evaluate

the tension line as an energetic driving force. Finally, we neglect the outer flow dis-

sipation, which is a correct assumption for small vesicle or very viscous membrane2 [1].

2.2.3 Parametrization invariance

The physics of the model is invariant with respect to re-parametrizations. This means

that the choice of the parameters does not change the values of the energies, volume

and area of the problem.

2The very viscous membrane can be a membrane of polymerosomes.
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Figure 2.4: Invariance of the parametrization.

Considering the initial parametrization

x(u) : [0, 1] 7−→ R2

and the strictly increasing change of variables

û : [0, 1] 7−→ [0, 1]

then, one can write

EHC [x(u)] = EHC [x(û (u))]

likewise for the other energies, rates of change of energy, volume and area calculated.

2.2.4 Equations

The first reference dealing with fluid dynamics in the interfacial state is Sriven [9] who

studies the mechanics of insoluble surface films and foam stability. These equations

make extensive use of the covariant derivative, and therefore the pratical calculations

are complex. The latter contributions of research did not lead to easier equations.

Recently, M.Arroyo and A. DeSimone derived equations governing the flow of two

dimensional fluid moving on a surface in the Euclidean space evolving in time which
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are easier to compute numerically and analytically [1].

In the static part of the project, we only use the curvature energy EHC (eq.2.1).

The minimization of this energy is made under different constraints to find the equi-

librium shape. The two first restrictions are the invariance of the area and of the

volume. One more restriction due to the parametrization will be added later.

The dynamic of the axisymmetric problem is described using two different viscous

dissipations.

First, we consider L2 dissipation related to the Willmore flow defined as

WL2 [vn] =
µ̂

2

∫
Γ

v2
ndS (2.2)

and second, the physical inner flow dissipation [1]

WD[vt, vn] = µ

∫
Γ

{(
1

a
v′t

)2

+

(
r′

ar
vt

)2

− 2vn

a

(
b

a3
v′t +

z′r′

ar2
vt

)
+ (H2 − 2K)v2

n

}
dS

(2.3)

where vt = av (a is defined later (eq.3.1))3.

We will consider two dynamic cases:

• The explicit scheme for the L2 dissipation

• The explicit scheme for the physical inner flow dissipation

The constraints taken for these different cases are explained in the dynamic part

of this study.

3It is necessary to multiply v by a because ∂
∂u is not a unit vector.



Chapter 3

Implementation

3.1 Introduction

The representation of the curve is made using B-Splines. We first parametrize the

surface in the r-z plane and calculate its different geometric parameters (mean cur-

vature, gaussian curvature) which do not change with the parametrization (section

2.2.3). The numerical integration of Gauss-Legendre is used to evaluate the global

parameters of the curve (volume, area, energy) and the boundary conditions are en-

forced.

3.2 Finite element discretization

As we study an axisymmetric case, all the parameters are independent of the angle θ

and we only need a curve in the r − z plane to describe the 2D surface of the vesicle

(Fig.3.1).

13
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Figure 3.1: Plane of the parametrization.

If the coordinates of every points of the 2D curve in the r-z plane are known, the

coordinates in the 3D space can be found with

y3D = r2D sinθ

r3D = r2D cosθ

z3D = z2D

with θ ∈ [0, 2π].

3.2.1 B-Splines

The two most used methods to represent a curve in space are the implicit equations

and the parametric functions.

The implicit equations are implicit relations between the coordinates r and z of the

point on the curve (f(r, z) = 0) whereas the parametric functions represent each of

the coordinates of the point on the curve as an explicit function of an independent

parameter u (x(u) = cos(u), y(u) = sin(u), a 6 u 6 b). Therefore, the parametriza-

tion is not unique.

The parametric description of a curve has some advantages. The description is

more natural in computer code and the algorithms are numerically stable. However,

sometimes, one has to deal with parametric anomalies (like the poles in a circle which

are the same points as the others geometrically but have difficulties of calculations in
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parametric representation).

In this study, the choice made is to use a parametric description of the curve: the

B-Splines. The curve is defined by

C(u) =
N+1∑
i=1

Ni(u)Pi

where Ni(u) is the ith basis function and Pi is the vector of coordinates (r, z) of

the ith control point. The control points define the control polygon which supports

the curve drawed (Fig.3.2).

Figure 3.2: Control polygon.

The basis function used are B-Splines of second order (p = 2) because we need C1

continuity1. They are piecewise polynomial with some useful properties like convex

hull, variation diminishing, transformation invariance and local support [10]. The last

propriety is very interesting: the change of the position of one control point only has

consequences in the neighbourhood of this point (Fig.3.3).

1The second derivatives are necessary, so the C1 is the less restrictive condition to have a second
order derivative defined.
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Figure 3.3: B-Splines - propriety of local support.

The definition of the basis functions changes at the breakpoints. In figure 3.4, each

dot line represents a breakpoint and every different second order polynome is drawn

in another color.

Figure 3.4: Definition of a second order basis function.

The knot vector (vector of breakpoints2) U, is taken non-periodic and uniform3.

That means that its form is

2Or vector of knot, no difference is made here.
3The order of continuity is equal to p− k, as p = 2 and as C1 continuity is needed, k = 1, with k

the multiplicity of the knot.
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U =


m+1︷ ︸︸ ︷

0, 0, 0︸ ︷︷ ︸
p+1=3

, up+1, · · · , um−p−1, 1, 1, 1︸ ︷︷ ︸
p+1=3



where the number of knots in the knot vector is m + 1, the number of control

points is N + 1 and the link between m and N for a non-periodic and uniform knot

vector is N = m− p− 1.

As the order of the shape functions is fixed (p = 2), one can remark that the length

of the knot vector is totally defined by the numbers of control points (N + 1).

The ith B-Spline basis function of p-degree, denoted by Ni,p(u) is defined as [10]:

Ni,0(u) =

{
1 if ui 6 u < ui+1

2 otherwise

Ni,p(u) =
u− ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u)

The illustration of second order basis function for the knot vector

U =

{
0, 0, 0,

1

6
,
2

6
,
3

6
,
4

6
,
5

6
, 1, 1, 1

}

is showed at figure 3.5, where the black lines represent the breakpoints.
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Figure 3.5: Second order B-Splines.

Using the B-Spline representation , it is easy to compute the derivatives of C(u).

Let C(k)(u) be the kth derivative of C(u). If u is fixed, we can obtain the derivative

by computing the kth derivatives of the basis functions. In particular,

C(k)(u) =
N+1∑
i=1

N
(k)
i,p Pi

As we only need the first and the second derivatives of the basis functions, we can

apply these two formules [10]:

N
(1)
i,p (u) = 2 (a1,0Ni,p−1(u) + a1,1Ni+1,p−1(u))

N
(2)
i,p (u) = 2

2∑
j=0

a2,jNi+j,p−2(u)

with 
a0,0 = 1

ak,0 =
ak−1,0

ui+p−k+1−ui

ak,j =
ak−1,j−ak−1,j−1

ui+p+j−k+1−ui+j
j = 1, ..., k − 1

ak,k =
−ak−1,k−1

ui+p+1−ui+k
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3.2.2 Program used

To implement the code, we use the powerfull mathematic program Matlab which al-

lows us to easily make graphs, programs, movies and optimization because it contains

a lot of prepared functions.

We have implemented a lot of files.m in Matlab to describe the curve using B-

Splines. The main steps are the following: for a u ∈ [0, 1] given, the number of the

interval related is found, then the values of the basis different from zero are calculated

at u. The algorithm implemented is based of the one of [10]. The first and the second

derivatives are calculated too. Knowing all of this, the position of the points of the

curve and the values of their derivatives can be calculated by assembling.

After, the geometric parameters are easily worked on and the global variables which

are necessary to compute with integration are found with Gauss numerical integration.

3.3 Description of the curve

3.3.1 Mathematical process

At first, the supposition is made that the control points are given and the curve re-

lated is computed, as well as its geometric parameters.

Each point of the curve is defined with the couple of coordinates (r, z). Knowing

the basis functions at a point u of the knot vector, we can find the coordinates of the

point on the curve associated

C(u) =
N+1∑
i=1

Ni(u)Pi with Pi =

{
ri

zi

}
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⇒ r(u) =
N+1∑
i=1

Ni(u)ri z(u) =
N+1∑
i=1

Ni(u)zi

Recall that u ∈ [0, 1]4.

The derivatives of the curve at the breakpoints can be calculated using the same

method

r(u)(k) =
N+1∑
i=1

N
(k)
i (u)ri z(u)(k) =

N+1∑
i=1

N
(k)
i (u)zi

Then, the geometric parameters of the curve can be found. The formulation of

the mean curvature H in the axisymmetric case is [1]

H(u) =
1

a(u)

(
b(u)

a(u)2
+

z′(u)

r(u)

)
with

{
a2(u) = (r′(u))2 + (z′(u))2

b(u) = −r′′(u)z′(u) + r′(u)z′′(u)
(3.1)

and the Gaussian curvature is

K(u) =
b(u)z′(u)

(a(u))4r(u)
.

After, some global characteristics of the curve like the volume, the area, the cur-

vature energy are needed.

To compute them, it is necessary to evaluate integrals.

As the points are not fixed, the method used is the numerical Gauss integration be-

cause it maximizes the order of the quadrature for a number of integration points

given5.

4To have a good representation of the curve, it is required to take a very large interpolation vector
(1000 components for example).

5The basis functions are of order 2, so we need 2 Gauss points by interval to integrate exactly.
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Let’s take a general case and suppose it is necessary to integrate the function f(u),

independent of θ, over the surface. Hence, one can write

∫
S

f(u)dS = 2π

∫ u=1

u=0

f(u)a(u)r(u)du (3.2)

Moreover, the basis functions are quadratic and they change of definition at every

breakpoint. So this integral is divided in a sum of smaller integrals (Fig.3.6). Those

are evaluated in an interval contained between two adjacent breakpoints (where the

basis functions have the same polynamial definition).

2π

∫ u=1

u=0

f(u)a(u)r(u)du = 2π

m−2p∑
i=1

∫ u=ui+1

u=ui

f(u)a(u)r(u)du (3.3)

The vector of the ui is of the type U = {0, 0.25, 0.5, 0.75, 1}6 and m − 2p is the

number of intervals.

Figure 3.6: Splitting of the interval [0, 1] for the numerical integration. The Gauss

points are in green.

Now, to integrate exactly over one interval, the Gauss-Legendre integration with

change of variables and two Gauss points7 is applied and leads to

6The same as the knot vector but without repetition of knots.
7The case of three and four Gauss points has been implemented too.
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2π

m−2p∑
i=1

∫ u=ui+1

u=ui

f(u)a(u)r(u)du = 2π

m−2p∑
i=1

(
ui+1 − ui

2

Ng∑
j=1

wjf(ugij
)a(ugij

)r(ugij
)

)
(3.4)

where ugij
is the jth Gauss point of the ith interval considered and Ng the number

of Gauss points considered in each subintervals.

This method can be applied to calculate integrals of a function independent of θ

over the area.

To integrate the volume8, the formule is

∫
V

f(u)dV =

∫ θ=2π

θ=0

∫
z

∫ r=r(u)

r=0

r(u)dθ
dz

du
drdu

= −2π

∫ u=1

u=0

∫ r=r(u)

r=0

r(u)z′(u)drdu

= −2π

∫ u=1

u=0

(r(u))2z′(u)

2
du

and then the same method as before can be used to integrate this expression nu-

merically.

3.3.2 Boundary conditions

For the modelization of axisymmetric shapes, it is required to enforce boundary con-

ditions.

We can consider two types of boundary condition depending on the problem resolved.

8The sign minus comes from this equality dz
du = −z′ which depends on the parametrization chosen.
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Figure 3.7: Boundary conditions for the closed vesicle (on the left) and the open

vesicle (on the right).

Closed vesicle

As the curve computed will be rotated of 2π around the z-axis, the first and the last

tangent have to be horizontal (perpendicular to the z-axis). This condition is very

easy to set with the B-Splines: the z-coordinates of the two first control points have

to be equal. Likewise, the z-coordinates of the two last control points have to be the

same.

Moreover, the first and the last points must be on the z-axis. So, the r-coordinates

of the first and the last control points have to be zero.

At the end, to prevent the rigid body motions, the z-coordinate of one breakpoint is

fixed during all the process. To keep the symmetry, this condition is enforced at the

middle-control point (Fig.3.7).
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z1 = z2 zN+1 = zN

r1 = 0 rN+1 = 0

zmiddle control point = constant

Open vesicle

This case is identical to the previous case but without the requirements in the last

and the middle point:

z1 = z2

r1 = 0



Chapter 4

Static study

4.1 Introduction

In this part, shapes of minimum energy of the membranes are found under constraints

of constant enclosed volume and constant area.

Therefore, the curvature energy and its gradient in relation with the control points

are calculated in order to find the shape of equilibrium of the vesicle through a matlab

optimization function under some boundary conditions.

After, different shapes are found changing the value of the volume and of the sponta-

neous curvature but keeping the area fixed. Paths in the phase diagram of spontaneous

curvature model are done too.

4.2 Research of equilibrium

4.2.1 Mathematical process

The shape of mimimum energy of the vesicle under some constraints is determined

using the penalty method which replaces a constrained optimization problem by a

series of unconstrained problems whose solutions must converge to the solution of the

original constrained problem.

25



26 Static study

In this study, the constraints are the imposition of a certain volume and a certain

area. The problem of minimization of the energy can be written as

min
P

F (P) = EHC(P) + k1(V (P)− V0) + k2(S(P)− S0) + k3A(P)

where k1 , k2 and k3 are the constants of penalization, V0 and S0 the volume

and the area prescribed, V (P) and S(P) the current volume and area and A is an

additional constraint due to the parametrization

A =

∫
S

(a′(u))2dS = 2π

∫ u=1

u=0

(a′(u))2a(u)r(u)du.

In fact a(u) is the velocity or stretching of of the interval [0, 1] into the curve and,

with the last restriction, it is imposed to be constant. It prevents the accumulation

of all the control points in one part of the curve (Fig.4.1).

Figure 4.1: Effect of a(u) constant.

The Matlab function fmincon1 is used to perform this optimization. Before using

this function, one must calculate the gradient of F for each control point.

∇F =

(
∂F

∂r
,
∂F

∂z

)
1This function uses a large-scale method to find the equilibrium.
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with

∂F

∂r
=

∂EHC

∂r
+ 2k1(V (P)− V0)

∂V (P)

∂r
+ 2k2(S(P)− S0)

∂S(P)

∂r
+ k3

∂A(P)

∂r

∂F

∂z
=

∂EHC

∂z
+ 2k1(V (P)− V0)

∂V (P)

∂z
+ 2k2(S(P)− S0)

∂S(P)

∂z
+ k3

∂A(P)

∂z
.

Therefore, the computation of the derivatives of r(u), z(u), a(u), b(u), H(u), a′(u)

is worked out.

∂r(u)
∂ri

= Ni(u) ∂r(u)
∂zi

= 0
∂z(u)
∂ri

= 0 ∂z(u)
∂zi

= Ni(u)
∂a(u)
∂ri

= r′(u)
a(u)

N ′
i(u) ∂a(u)

∂zi
= z′(u)

a(u)
N ′

i(u)
∂b(u)
∂ri

= −z′(u)N ′′
i (u) + z′′(u)N ′

i(u) ∂b(u)
∂zi

= −r′′(u)N ′
i(u) + r′(u)N ′′

i (u)
∂(H(u))2

∂ri
= 2H(u)∂H(u)

∂ri

∂(H(u))2

∂zi
= 2H(u)∂H(u)

∂zi

∂(a′(u))2

∂ri

= 2

[
(N ′

i(u)r′′(u) + r′(u)N ′′
i (u))− a′(u)

∂a

∂ri

]
∂(a′(u))2

∂zi

= 2

[
(N ′

i(u)z′′(u) + z′(u)N ′′
i (u))− a′(u)

∂a

∂zi

]
∂H(u)

∂ri

=
1

(a(u))3

∂b(u)

∂ri

−
[

3b(u)

(a(u))4
+

z(u)′

r(u)(a(u))2

]
∂a(u)

∂ri

− z′(u)Ni(u)

(r(u))2a(u)

∂H(u)

∂zi

=
1

(a(u))3

∂b(u)

∂zi

−
[

3b(u)

(a(u))4
+

z(u)′

r(u)(a(u))2

]
∂a(u)

∂zi

+
N ′

i(u)

r(u)a(u)

With the last calculations, the derivatives of the curvature energy, the volume, the

area and A can easily be worked out.

Using (eq.2.1), (eq.3.2) and (eq.3.3) to transform the integral, the derivatives of the

curvature energy, can be written as

∂EHC

∂ri
= 2π

∫ u=1

u=0

κ

2

[
2(H(u)− C0)a(u)r(u)

∂H(u)
∂ri

+ (H(u)− C0)2
(

r(u)
∂a(u)
∂ri

+ a(u)Ni(u)
)]

du
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∂EHC

∂zi

= 2π

∫ u=1

u=0

κ

2

[
2(H(u)− C0)a(u)r(u)

∂H(u)

∂zi

+ (H(u)− C0)
2r(u)

∂a(u)

∂zi

]
du

and the numerical integration can be computed with (eq.3.4).

The same process is applied to the derivatives of the volume, of the area and of A:

∂S

∂ri

= 2π

∫ u=1

u=0

[
r(u)

∂a(u)

∂ri

+ a(u)Ni(u)

]
du

∂S

∂zi

= 2π

∫ u=1

u=0

r(u)
∂a(u)

∂zi

du

∂V

∂ri

= 2π

∫ u=1

u=0

z′(u)r(u)Ni(u)du
∂V

∂zi

= 2π

∫ u=1

u=0

(r(u))2

2
N ′

i(u)du

∂A

∂ri

= 2π

∫ u=1

u=0

[
(a′(u))2

(
r(u)

∂a(u)

∂ri

+ Ni(u)a(u)

)
+

∂(a′(u))2

∂ri

a(u)r(u)

]
du

∂A

∂zi

= 2π

∫ u=1

u=0

[
(a′(u))2r(u)

∂a(u)

∂zi

+
∂(a′(u))2

∂zi

a(u)r(u)

]
du

Finally, F and its gradient can be evaluated.

4.2.2 Choice of the parameters

The choice of the constants of penalization k1, k2 and k3 is important.

First, they do not play the same role: the conservation of the volume and of the aera
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is more important than the conservation of the velocity of the parametrization a(u).

So, the ratios between the parameters are significant.

Moreover, it is not recommanded to use high values because the system will be too

rigid.

Atfer some tests, the set of parameters to get an equilibrium position of minimum

energy and with the surface and the volume prescribed is

k1 = 10 k2 = 10 k3 = 10−4

4.2.3 Matlab function

Matlab offers a lot of functions which facilate the resolutions of the problems. The

function fmincon finds a minimum of a constrained nonlinear multivariable function

under some constraints. In this study, they are linear equalities. One have to write

them in matrix formulation to use the Matlab function:

1 0 0 0 ... 0 0 0 0

0 1 0 −1 ... 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 ... −1 0 1 0

0 0 0 0 ... 0 0 0 1


[

P

]
=



0

0

z0(middle point)

0

0


This system holds for the boundary conditions for the closed vesicles. If the vesicles

are open, the system is reduced at the 2 first rows.

The variables defining the shape of the curve are the control points. Therefore the

minimization will search within the position of these points.
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The parameters of the function fmincon are chosen in order to find the equilibrium

with enough precision.

In the following table we compare the volume and the area prescribed and obtained

for four cases (Fig.4.3 and Fig.4.4)

type of shape area prescribed area obtained volume presribed volume obtained

oblate 314.1593 314.1331 471.2389 471.2504

discocyte 314.1593 314.1377 314.1593 314.1730

prolate 314.1593 314.1379 471.2389 471.2483

dumbbell 314.1593 314.1364 408.4070 408.4186

Table 4.1: Comparison between the volume and area prescribed and obtained.

4.3 Phase diagrams

4.3.1 Types of axisymmetric shape

We are going to study two different branches of axisymmetric shape: the prolate -

dumbbell - pear-shaped vesicle (which are related to budding), the oblate - discocyte

- stomatocyte (Fig.4.2).
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Figure 4.2: Different vesicle shapes.

In the spontaneous curvature model, most of the transitions between the different

types of shape are discontinuous while they are continuous for the bilayer-coupling

model, another representation of the lipid bilayer. This fact will introduce difficulties

in the numerical study of transitions.

The prolate-dumbbell and the oblate-discocyte shapes are easier to obtain than

the stomatocyte and the pear-shapes vesicle because the transitions are continuous.
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Figure 4.3: Shape of minimum of energy for a volume, an area and a spontaneous

curvature : oblate and discocyte.

Figure 4.4: Shape of minimum of energy for a volume, an area and a spontaneous

curvature given: prolate and dumbbell.

Two different parameters have a strong influence over the shape obtained: the ra-

tio volume-area of the vesicle and the spontaneous curvature C0. Their values define
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the type of shape the vesicle will take.

As the bending energy is scale invariant, the phase diagram and the energy diagram

are constructed thanks to three dimensionless parameters2, which are the reduced

volume

v =
V (P)
4π
3

R3
0

the reduced spontaneous curvature

c0 = C0R0

and a ratio of the energy

EHC

8πκ
.

To obtain different equilibrium positions and make paths in the phase diagram,

the next method is applied.

2Two for each graph.
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Figure 4.5: Diagram of the program for the static study.

DATA and INDP are Matlab structures array which contain respectively all the

data of the problem and all the parameters independent of the position of the break-

points.

A path of different values of the reduced volume and of the spontaneous curvature is

applied. To implement this, we define two vectors which contain all the values of the

reduced volume and of the spontaneous curvature the system will take:

v = [1 0.95 0.9 0.85 0.8 0.75 0.7] and c0 = [0 0.2 0.4 0.6 0.8 1 1.2].

Then, first we search the equilibrium for v(1) and c0(1) with the matlab opti-

mization function. Starting from this state, the second position of equilibrium (cor-

responding to the next set of parameters): v(2) and c0(1)) is calculated. The same

is applied until the end of the vector v. After, the reduced volume is set to v(end)

and the spontaneous curvature changed from c0(1) to c0(end). Only one parameter is

changed at every step.
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In this way, some consecutive positions of equilibrium are obtained.

We will consider first the simplest case of a spontaneous curvature equal to zero.

This case will give a good display of the behaviour of the system.

4.3.2 Case 1: Spontaneous curvature equal to zero

In this case, the vesicle can evolve in two different ways. The first starts with the pro-

lates and finishes with the dumbbells. As we can see in the following graph (Fig.4.6),

the pear-shaped vesicles do not exist in this case. The second begins with the oblates

and ends with the discocytes/stomatocytes (Fig.4.2).

Figure 4.6: Bending energy in function of the reduced volume and the type of shape

for the spontaneous curvature model and for C0 = 0 [8].
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As first approximation, we take a slight disformed sphere to display the oblate-

discocyte case (rdef = 1.01r, zdef = 0.99z) and the opposite for the prolate-dumbbell

case (rdef = 0.99r, zdef = 1.01z).

The discontinuity between the stomatocyte and the discocyte is too great and it is

not possible to compute it with a curvature energy equal to zero.

The first analyzed case is the transformation from an oblate to a discocyte.

In the graphs below (Fig.4.7 and Fig.4.8), the shape evolution and the corresponding

energy are displayed. The figure 4.7 shows the curve in the r − z plane. One can

point out that the evolution of energy matches the one of figure 4.6: the line named

"oblate". The evolution is linear and, as the reduced volume decreases, the energy

increases because the shape has more curvature.

Figure 4.7: Evolution from an oblate to a discocyte by decrease of the reduced volume

from 1 until 0.6.
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At the end, the reduced volume is 0.6, the energy corresponding is 1.95. It is the

same as in the phase diagram (Fig. 4.6).

Figure 4.8: Variation of the energy in function of the reduced volume for the trans-

formation oblate-discocyte.

Then, the transition from a prolate to a dumbbell is displayed. The reduced vol-

ume decreases from 1 until 0.6 and the energy reaches 2.2.

The principal difference is the variation of the energy which is not linear anymore.

Because of this competition between the linear and the non-linear energy curve, at the

beginning the shape of minimum energy is the prolate and when the reduced volume

reaches v = 0.65, the shape of minimum energy becomes the oblate (Fig. 4.6).
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Figure 4.9: Evolution from an prolate to a dumbbell by decrease of the reduced

volume.

Figure 4.10: Variation of the energy in function of the reduced volume for the trans-

formation prolate-dumbbell.

4.3.3 Case 2: Spontaneous curvature different from zero

By changing the two parameters (volume and spontaneous curvature), more shapes

are displayed. We will compare our results with the phase diagram for the spontaneous
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curvature (Fig.4.11) [8]

Figure 4.11: Phase diagram for the spontaneous curvature model.

Some of the transitions are discontinuous and are represented in this graph with

a line whose name starts with a D. There exist places in the diagram that have not

been explained yet3.

First, the stomatocytes are computed. Different sorts of stomatocytes are showed

depending on the reduced volume. The first method is to start with a sphere of

nil spontaneous curvature as initial aproximation and to decrease the volume slowly.

Then the spontaneous curvature is changed in order to obtain stomatocyte. For the

stomatocyte, the spontaneous curvature has to be positive4.
3Under the Lsto line and after the SI lines.
4This is the contrary of the diagram (Fig.4.6) but it is just a question of definition of the curve

parametrization.
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The first test is to reduce the volume until v = 0.8 and then change the spon-

taneous curvature until c0 = 1.3. The stomatocyte is obtained in the last change:

v = 0.8 and c0 = 1.3. In the following graph (Fig. 4.12 and Fig.4.13), the gap is clear

between the discocyte and the stomatocyte states. The geometric change between the

discocyte and the stomatocyte is discontinuous.

At first, the energy is more or less constant (for the two first iteration), this is related

to the change of reduced volume. When the spontaneous curvature begins to change,

the energy increases a lot. And then, when the stomatocyte is obtained, the increase

of energy vanishes (after the blue line)(Fig.4.14).

Figure 4.12: Evolution from an oblate to a discocyte by variation of the reduced

volume and of the spontaneous curvature. At the end, for the curve in black, the

parameters are v = 0.8 and c0 = 1.2.

This fact can be explained by the examination of the curvature of the different

shapes. For a spontaneous curvature equal to zero and a volume and area equal to



4.3 Phase diagrams 41

the one of the sphere, the shape of minimum energy is the sphere. When the volume

decreases, the shape has to modify itself and the discocyte is displayed. However, this

leads to an raise of the energy because the mean curvature increases. When a sponta-

neous curvature different from zero is enforced, the energy growths too. Then, while

the changes of shape are discontinuous, the discocyte changes instantaneously into a

stomatocyte. This allows a decrease of the energy because the part of spontaneous

curvature added is compensated by the one of the shape (which is not symmetric

anymore with the plane r = 0).

Figure 4.13: Discontinuous transformation from a discocyte (v = 0.8 and c0 = 1.2)

into a stomatocyte (v = 0.8 and c0 = 1.3).
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Figure 4.14: Variation of the energy in function of the reduced volume for the trans-

formation oblate-stomatocyte.

Figure 4.15: Evolution from an oblate to a discocyte by variation of the reduced

volume and the spontaneous curvature.

The second test is the same as the first but the reduced volume is decreased

until v = 0.6 in place of v = 0.8. The stomatocyte obtained is a bit different: the

formation of an intern sphere can be seen. In the figure 4.15, the first and the last
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position respectively correspond to a set of parameters of

v = 1 and c0 = 0, v = 0.6 and c0 = 0.6.

Figure 4.16: Discontinuous transformation from a discocyte to stomatocytes.

The figure 4.16 shows the discontinuous transformation from a discocyte (v = 0.6

and c0 = 0.6) into a first stomatocyte (v = 0.6 and c0 = 0.7) in red dot line and

another (v = 0.6 and c0 = 1.3) in black.
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Figure 4.17: Variation of the energy in function of the reduced volume for the trans-

formation oblate-stomatocyte.

The energy increases when the curvature of the shape increases. While the dis-

cocyte changes into a stomatocyte, the energy decreases. In fact, as the spontaneous

curvature is different from zero, the vesicle tends to have more curvature in one way

(positive for the stomatocyte). To minimize its curvature energy with a spontaneous

curvature different from zero, the vesicle displays a shape non-symmetric with the

plane r = 0: the stomatocyte. This is logical considering the definition of the curva-

ture energy (eq. 2.1).

Now, a different branch of the diagram is studied: the prolates. While the volume

decreases, the energy increases sensibily. As the spontaneous curvature is added (af-

ter the dot-line in Fig. 4.20), the energy decreases, stabilizes and then increases one

more time. At the blue line, there is a discontinuous transition between the dumbbell

and the pear-shaped vesicle. This type of transformation is related to budding. The

type of finite elements implemented does not allow the separation of the curve in two

different curves. So, the two different vesicle are linked with a small neck. This leads
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to a shape of the type of a tube (Fig.4.18 ,Fig.4.19 and Fig.4.20).

Figure 4.18: Evolution from a prolate to a dumbbell by variation of the reduced volume

and the spontaneous curvature. At the end, for the curve in black, the parameters

are v = 0.8 and c0 = 0.

In this case, the spontaneous curvature added to display the pear-shaped vesicle

is negative (the opposite to the one that leads to the stomatocyte shape).

The pear-shaped vesicle can be explained in the same way as the stomatocyte. As one

enforces a spontaneous curvature different from zero, the system reacts to decrease

the energy corresponding. This is possible with a shape which is no longer symmetric

with the plane r = 0: the pear-shaped vesicle .
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Figure 4.19: Discontinuous transformation from a dumbbell (in red, v = 0.8 and

c0 = 0) into a pear-shaped vesicle (in mallow, v = 0.8 and c0 = −1.2) and then in a

tube (in black, v = 0.8 and c0 = −2.2) .

Figure 4.20: Variation of the energy in function of the reduced volume for the trans-

formation prolate-tube

The last test is different. The spontaneous curvature is different from zero at the

beginning. Then, the reduced volume is decreased to obtain a stomatocyte. At the
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end, the spontaneous curvature is changed until zero and the discocyte is displayed

one more time.

Figure 4.21: Evolution from an discocyte (in red dot line) to a stomatocyte (in black)

by variation of the reduced volume and the spontaneous curvature.

Figure 4.22: Evolution from an stomatocyte (in red) to a discocyte(in black) by

variation of the reduced volume and the spontaneous curvature.
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Figure 4.23: Variation of the energy in function of the reduced volume for the trans-

formation discocyte-stomatocyte-discocyte.

The first shape is a discocyte in red dot line in the figure 4.21 for v = 0.88 and

c0 = 1.2, then the discocyte transforms into a stomatocyte for v = 0.84 and c0 = 1.2.

The next graph (Fig. 4.22) displays the inverse transformation: the stomatocyte

(v = 0.78 and c0 = 0.2) changes into a discocyte (v = 0.78 and c0 = 0).

The energy only decreases for this path. Actually at the beginning, the spontaneous

curvature is different from zero, therefore, a decrease of the reduced volume decrease

the energy until a certain point. Then, the spontaneous curvature is changed until

zero, and the energy follows decreasing.



Chapter 5

Dynamic study

5.1 Introduction

The dynamics of the problem are governed by the dissipation and by the curvature

energy. Two kinds of dissipation will be studied. The first one is the dissipation

related to the Willmore flow or L2 dissipation and the second one is the inner flow

dissipation which models the dissipation of energy as the lipids move on the bilayer

to accommodate shape changes. The evolution in time of the shape and the energy

corresponding is displayed for both methods.

Some interesting dynamic cases are studied with an explicit scheme in time.

5.2 Mechanical analogy

The dynamics of the vesicle can be compared with a mechanical system formed by

a spring and a dashpot in parallel (Fig.5.1). The dashpot represents the mechanics

which dissipate the energy in time, it is function of the velocity of the system. The

spring is the device which stores potential energy and absorbes the energy propor-

49
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tionally to the velocity.

Figure 5.1: Mechanical analogy: dashpot and spring in

parallel

Equations governing the

mechanical system:

Ek = 1
2
k(x− l0)

2

WD = 1
2
µẋ2

One can define the energy release rate as the energy dissipated by unit of time

Gk = −Ėk

The dynamics of the system can be found as the minimum of the difference between

the energy release rate Gk and the dissipation energy WD

min(WD −Gk) = 0. (5.1)

This system could lead to different equilibrium positions in function of the dissi-

pation used (Fig.5.2). However, in our case, the time evolution is so small that the

equilibrium found will be the same.
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Figure 5.2: Different equilibriums.

The same can be done with the dynamics of the vesicle. The energy will be the

curvature energy and the dissipation can be either the L2 dissipation or the innerflow

dissipation.

To find the evolution of the surface of the vesicle in time, the first step is to cal-

culate the field of velocity on the surface (Fig. 5.3). Then, the position of the control

points at time n + 1 will be found using a a forward Euler method.

Figure 5.3: Field of normal velocities on the curve at time n.

As we use an explicit scheme, the value of the time step has to be small enough.
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5.3 Mathematical process

5.3.1 Setup and discretization

We consider an axisymmetric representation of surfaces through the generating curve.

This curve is represented parametrically using B-Splines approximants (chapter 3).

We discretize other quantities defined on the surface in a similar way, for instance the

normal velocity and the tangential velocity (here both are scalar quantities)

vn(u) =
N+1∑
i=1

vniNi(u), vt(u) =
N+1∑
i=1

vtiNi(u).

The pressure or surface tension, when needed, has to be interpolated with lower-order

approximants, e.g. first-order B-Splines (linear finite elements)

p(u) =
N+1∑
i=1

piN̂i(u).

A tangent unit vector to the surface in the u direction and a unit normal are (Fig.5.4)

t =
1

a
{r′, z′}, n =

1

a
{−z′, r′}
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Figure 5.4: Tangential and normal vector on the curve.

The velocity of the surface is

v = {ṙ, ż},

hence

vt =
1

a
(r′ṙ + z′ż), vn =

1

a
(−z′ṙ + r′ż)

5.3.2 Governing equations

One needs to collect all the dissipation potentials into the functional W [vt, vn], here

quadratic in the velocities. The energetic mechanisms depend essentially on the shape

of the surface, and are collected in Π[x]. We can compute their rate of change Π̇[vt, vn],

which depends parametrically on the shape (in the same way that W does) and is

linear on the velocities. We typically have (linear) local constraints on the velocities,

which we write as c(vt, vn) = 0. We can also have global shape constraints C[x] = 0,

which we linearize into Ċ[vt, vn] = 0. The dynamics equilibrate the dissipative and

the energetic forces, or minimize W + Π̇ with respect to vt and vn subject to the

constraints (section 5.2). Forming the Lagrangian

L[vt, vn, λ](Λ) = W [vt, vn] + Π̇[vt, vn]−
∫

Γ

λc(vt, vn) dS − ΛĊ[vt, vn]
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we find the velocities at each configuration given by x by finding stationary points,

i.e.

δvtL = δvnL = δλL = δΛL = 0

for all possible variations. In a Galerkin finite element method, we allow for variations

of the form δvt = δvn = NI , δλ = N̂I . Naturally, we identify λ with the surface tension

or 2D pressure.

The update of the surface is then performed explicitly from

ṙ =
1

a
(r′vt − z′vn), ż =

1

a
(z′vt + r′vn),

i.e.

rn+1 = r +
∆t

a
(r′vt − z′vn), zn+1 = z +

∆t

a
(z′vt + r′vn),

where unless the superscript n+1 is present, everything is evaluated at t = tn. Since

the B-Splines shape functions are not interpolatory, it makes more sense to perform

this update using a least-squares approach, i.e. minimizing

∫
Γ

(
rn+1 − r

∆t
− 1

a
(r′vt − z′vn)

)2

dS

which leads to the linear systems

∑
J

∫
Γ

NINJ dS rn+1
J =

∫
Γ

[
r +

∆t

a
(r′vt − z′vn)

]
NI dS (5.2)

∑
J

∫
Γ

NINJ dS zn+1
J =

∫
Γ

[
z +

∆t

a
(z′vt + r′vn)

]
NI dS (5.3)
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subject to the constraints

rn+1
1 = 0, rn+1

n = 0, zn+1
1 = zn+1

2 , zn+1
n = zn+1

n−1 .

5.3.3 Energetic contributions

Curvature elasticity

As seen before (2.1), we consider the curvature energy

EHC =

∫
Γ

κ

2
(H − C0)

2 dS.

Its energy release rate is [1]

GHC = −ĖHC = −
∫

Γ

κ

2
(H − C0)

[
2∆vn + (H2 − 4K + HC0)vn

]
dS

−κπr(H − C0)
2(±1)vt

∣∣
boundary

The plus/minus sign comes from the sign of ∂/∂u · ν. (ν) is the exterior normal at

the end of the surface (Fig. 5.5).
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Figure 5.5: Normal exterior of the surface.

For axisymmetric surfaces, we have

∆vn =
1

ar

∂

∂u

(
r

a

∂vn

∂u

)
=

1

ar

[
r′a− ra′

a2
v′n +

r

a
v′′n

]
.

Consequently, the nodal forces can be computed as follows:

fHC,vn

I = δGHC ·NI = −
∫

Γ

κ

2
(H − C0)

{
2

1

ar

[
r′a− ra′

a2
N ′

I (5.4)

+
r

a
N ′′

I

]
+ (H2 − 4K + HC0)NI

}
2πar du (5.5)

fHC,vt

1 = κπr(H − C0)
2
∣∣
u=0

, fHC,vt
n = −κπr(H − C0)

2
∣∣
u=1
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5.3.4 Dissipative contributions

L2 dissipation

The L2 dissipation is (eq.2.2)

WL2 [vn] =
µ̂

2

∫
Γ

v2
ndS.

Its variation follows as

δWL2 = µ̂

∫
Γ

vnδvn dS

which results in the stiffness terms

KL2,vn,vn

IJ = µ̂

∫
Γ

NINJ2πardu

Inner flow dissipation

The physical inner flow dissipation reads (eq.2.3)

WD[vt, vn] = µ

∫
Γ

{(
1

a
v′t

)2

+

(
r′

ar
vt

)2

− 2vn

a

(
b

a3
v′t +

z′r′

ar2
vt

)
+ (H2 − 2K)v2

n

}
dS

Its variation is

δWD = 2µ

∫
Γ

{
1

a2
v′tδv

′
t +

(
r′

ar

)2

vtδvt −
vn

a

(
b

a3
δv′t +

z′r′

ar2
δvt

)}
dS + (5.6)

2µ

∫
Γ

{
−1

a

(
b

a3
v′t +

z′r′

ar2
vt

)
+ (H2 − 2K)vn

}
δvndS (5.7)
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which results in the stiffness contributions

KD,vt,vt

IJ = 2µ

∫
Γ

{
1

a2
N ′

IN
′
J +

(
r′

ar

)2

NINJ

}
2πar du

KD,vn,vn

IJ = 2µ

∫
Γ

(H2 − 2K)NINJ2πar du

KD,vn,vt

IJ = −2µ

∫
Γ

1

a
NI

(
b

a3
N ′

J +
z′r′

ar2
NJ

)
2πar du, KD,vt,vn

IJ = KD,vn,vt

JI

5.3.5 Constraints

Volume constraint

Assuming the surface has no free end, this single constraint is simply

Cst = V̇ = −
∫

Γ

vn(2πar) du

where the constant can be either nil or different from zero depending on the case

studied.

The resulting constraint vector is

Lvol,vn

I = −
∫

Γ

NI2πar du

Global area constraint

This single constraint is simply

0 = Ṡ = −
∫

Γ

Hvn dS ± 2πrvt

∣∣
boundary

.
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The resulting constraint vector is

Larea,vn

I = −
∫

Γ

HNI2πar du

and if free boundaries are present, one of the following terms may be present

Larea,vt

1 = −2πr(0), Larea,vt
n = 2πr(1)

Local area constraints

The weak statement of the constraint is

0 = −
∫

Γ

p[
(rvt)

′

ar
−Hvn]dS

which results in the constraint matrices

Lp,vt

IJ = −
∫

Γ

N̂I (r′NJ + rN ′
J) 2πdu, Lp,vn

IJ =

∫
Γ

N̂IHNJ2πardu

5.3.6 Boundary conditions

For a symmetry boundary point, one has for each configuration that r = 0 and z′ = 0.

The time-evolution needs to preserve these conditions, hence

ṙ = ż′ = 0, at symmetry end-points.

Recalling the identities

ṙ =
1

a
(r′vt − z′vn), ż =

1

a
(z′vt + r′vn)
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we obtain the constraints

r′(u)vti − z′(u)vni = 0, with u = 0, i = 1 and/or u = 1, i = n

which reduce to vt1 = 0 and/or vtn = 0, and also, at u = 0 for simplicity (an analogous

expression is obtained at u = 1), we have

(
z′′ − z′a′

a

)
u=0

vt1 +

(
r′′ − r′a′

a

)
u=0

vn1 + z′(0)
3∑

i=1

N ′
i(0)vti + r′(0)

3∑
i=1

N ′
i(0)vni = 0.

This constraint simplifies to

(
r′′ − r′a′

a

)
u=0

vn1 + r′(0)
3∑

i=1

N ′
i(0)vni = 0.

The constraint matrices are then (to be modified if one end is free)

LBCs,vt =

 1 0 . . . 0

0 . . . 0 1



LBCs,vn

1J =

[ (
r′′ − r′a′

a

)
u=0

+ r′(0)N ′
1(0) r′(0)N ′

2(0) r′(0)N ′
3(0) 0 . . . 0

]

LBCs,vn

2J =

[
0 . . . 0 r′(1)N ′

n−2(1) r′(1)N ′
n−1(1) r′(1)N ′

n(1) +
(
r′′ − r′a′

a

)
u=1

]

5.3.7 L2 gradient flow with exact global area and volume con-

straints

Now, we consider KL2,vn,vn , KL2,vt,vt , fHC , and the constraints given by LBCs, Lvol

and Larea
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and the system to solve is

 Ktot Ltot

Ltot
′ 0


 v

LM

 =

 fHC

fLM


with

Ktot =

 KL2,vn,vn 0

0 KL2,vt,vt


and

Ltot =

[
LBC Lvol Larea

]
where LBC depends on the case of boundary used and LM the Lagrangian multi-

plicators and fLM the rigth-hand side corresponding to the Lagrangian conditions.

5.3.8 Inner flow dissipation with exact local area and volume

constraint

In this case, we consider KD, fHC , LBCs, Lp and Lvol

and the system to solve is

 Ktot Ltot

Ltot
′ 0


 v

LM

 =

 fHC

fLM


with

Ktot =

 KD,vn,vn KD,vn,vt

KD,vt,vn KL2,vt,vt


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and

Ltot =

[
LBC Lvol Lp

]

where LBC depends on the case of boundary used and LM the Lagrangian multi-

plicators and fLM the rigth-hand side corresponding to the Lagrangian conditions.

This case of dissipation is a local definition and so, the translations (rigid body

motions) do not dissipate energy. To avoid these cases of moves, one has to fix a point

and so there is one more boundary consition.

5.4 Program

To implement the dynamics of the vesicle, the following steps are followed (Fig.5.6).

The first state is one of equilibrium calculated before in the static part. Then, one

(or two) of its parameters is changed brutally (spontaneous curvature for example).

To reach the new equilibrium, the system has to move. Two sorts of dissipations are

used and the evolutions in time are different.

The velocities (normal and tangential) at the control points are found and help to

update the curve. The interpolation of these velocities at the Gauss points of the

curve are done in order to calculate the position of the breakpoints in time n + 1

thanks to (eq. 5.2) and (eq.5.3).
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Figure 5.6: Diagram of the dynamic program.

5.5 Reparametrization

The deformations are great and so, sometimes the breakpoints cannot move as much

as they want on the curve and stay all in the same part.

This is bad and prevents us from finding the good evolution of the vesicle in time.

To resolve this problem a reparametrization is done everytime the system reaches a

certain time or when there is too much difference between the shortest and the longest

distance between two breakpoints.
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We use a minimization function of Matlab (Fminunc) to calculate the reparametriza-

tion but it is not so efficient because we do not give it the gradient of the function we

want to minimize.

5.6 Dynamic evolution

With the program implemented, the dynamics can be study in a lot of ways. How-

ever, as the program takes a very long time to give the results, only a few cases are

analysed.

First, one has to choose the initial position. The choice is made to take an equilib-

rium position with a spontaneous curvature different from zero and a reduced volume

different from one.

Then , there is two methods to put our shape out of its equilibrium: the first is to

change suddenly the spontaneous curvature. It can be enforced to be zero or the one

of the sphere. The second is to enforce the variation of volume (V̇ ) to be different

from zero until reaching the volume of the sphere.

The dynamics are calculated for the both cases: inner and L2 viscosities.

The numerical parameters are taken equal for the both to make a good comparison

of the dynamics.

Choice of parameters

The parameters of the program are the following.

First, there are the parameters of the model : µinner, µt and µv. They are taken equal
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to 1.

Second, one has to choose the parameter of the time-scheme: ∆t. It is taken equal to

0.00002 for the stomatocyte transformation and equal to 0.000125 for the pear-shaped

one.

Third, the parameters of the reparametrization are chosen. The constant of reparametriza-

tion is taken equal to 1e5. If we use a lower value, sometimes, the reparametrization

fails because it is not rigid enough. We choose to reparametrize every 101 step-time

for the stomatocyte and every 201 step-time for the prolate because it evolves less

accumulation of control points during the transformation.

Finally, for the pear-shaped - prolate transformation, the only change to put the sys-

tem out-of equilibrium is the change of the spontaneous curvature. It is posed equal

to zero. In the case of the stomatocyte, the spontaneous curvature is posed equal to

the one of the sphere (C0 = −2
Rsphere

) and the volume is changed until it reaches the

one of the sphere.

5.6.1 Pear-shaped vesicle - prolate

The study of the transformation of a pear-shaped vesicle into a dummbbell is done

using the both viscosities.
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Dynamics

Figure 5.7: Dynamics of the transformation pear-shaped vesicle - dumbbell with the

inner-flow viscosity.

One can see that the evolution in time is different for the different viscosities.

In figure 5.7, the inner-flow viscosity is used. The results for L2 viscosity is displayed

at figure 5.8. For both graphics, the first state is represented in red and the last state

in black. Between them, the evolution follows the pink , mallow and then blue line.
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Figure 5.8: Dynamics of the transformation pear-shaped vesicle - dumbbell with the

L2 viscosity.

The evolution for the inner-flow viscosity shows that the pear-shaped vesicle trans-

forms itself into a dumbbell passing by states where the little "head" of the pear stay

more longer small. Just at the end, the two parts become equal.

Differently, the evolution for the L2 viscosity shows that the two head of the pear

tend to nearly egalize themselve at the beginning.

Furthermore, the final equilibriums are different in fonction of the viscosity used: the

one of the inner-flow is shorter (in the z direction), the other shorter in the r direction.
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5.6.2 Stomatocyte - discocyte

In this case, only a part of the transformation process is showed because there are

numerical problems (with the reparametrization).

Dynamics

In this example, the differences of the evolutions can clearly be analyzed.

In the inner-flow case (Fig.5.10), the stomatocyte tends to put out the sphere it con-

tains. The right part of the vesicle do not move.

Figure 5.9: Dynamics of the transformation stomatocyte - discocyte with the inner-

flow viscosity.
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The graphics of the L2 viscosity shows that the stomatocyte tends to open out to

get a discocyte.

Figure 5.10: Dynamics of the transformation stomatocyte - discocyte with the L2

viscosity.

Energy evolution

There are problems in the dynamics for the inner-flow dissipation as we can see in the

curve of energy (Fig5.11).

In fact, every time a breakpoint has to pass the higher point of the curve, it leads to a

pic of energy. To avoid this, one solution is to implement a better reparametrization

or to use a model with more breakpoints.
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Figure 5.11: Evolution of the energy in time for the stomatocyte transformation with

the inner-flow dissipation.

The evolution of energy for the L2 viscosity is displayed at figure 5.12. There

are small instabilities in the beginning of the transformation. It could come from the

reparametrization.

Figure 5.12: Evolution of the energy in time for the stomatocyte transformation with

L2 dissipation.
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3D representation

The 3D representation of the last case is displayed below. It allows to imagine better

the shape and the intern sphere.

Figure 5.13: Initial stomatocyte- cross section.

Figure 5.14: Final stomatocyte with the L2 viscosity.
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Figure 5.15: Final stomatocyte with the L2 viscosity - cross section.

Figure 5.16: Final stomatocyte with the inner-flow viscosity - cross section.



Chapter 6

Conclusion

This project models the dynamics of fluid membranes, with an emphasis on the effect

of the inner flow dissipation. This is the lateral motion within the membrane surface

of the fluid particles making up the membrane.

The first two chapters recall some biologic aspects of the problem, the hypothesis

taken and explain the numerical modelization and implementation chosen.

In the static part, the equilibrium shapes and the paramaters related are found: pro-

late, pear-shaped vesicle, tube, oblate, discocyte and stomatocyte. Paths in the phase

diagram for the spontaneous curvature are modelized and our results are compared

to it.

Then, the dynamic study is done, using two different dissipations and the evolution

in time are clearly different. It shows that the dissipation, often neglected by the

scientists is important and worth to be well modelized to clearly represent the physics

of the problem.

This work is the beginning of a larger study. Actually, some method used are very

simple and not enough accurate and can easily be improved.

In the dynamic part, we used an explicit temporal scheme which slows down the

73
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program because the time-step needed to have a stable scheme is very small for this

model. One first improvement would be to implement an implicit time-scheme for the

dynamic part.

Moreover, the reparametrization used is not very efficient. This leads to a lot of an-

noying problems during the tests. A new method is necessary to improve the program

and to get more accurate results.

Other ideas of study could be to use another representation of the asymmetry of the

bilayer: the area-difference model. It is more complex to implement but all the shape-

transitions are continuous and therefore it is easier to display the change of shapes

numerically.

On the other hand, this project only modelizes vesicles of one component. The line

tension between two different components which induced budding can be modelized

to have a more realistic model [11]. To represent the entire budding, the last thing to

add, is the separation of one vesicle in two. This kind of study was done before [12]

and leads to a lot of different and interesting shapes but this study is not realistic

biologically speaking.

These are some ideas which would allow us to go deeper into in the subject but there

are many more ways of study: non-asymmetric shapes, topologicaly variant shapes,

others energetic mechanisms (outer flow, flip-flop, ...), interactions [13].

One can see that this subject is very large and that our study is just a little part of

it. Much more work is needed to modelize the biology accurately.
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