e p Escola Politécnica Superior
7 de Castelldefels

UNIVERSITAT POLITECNICA DE CATALUNYA

MASTER THESIS

TITLE: Ubicomp: Using iStuff

MASTER DEGREE: Master in Science in Telecommunication
& Management

AUTHOR: Josep Benavent Marco
DIRECTOR: Roc Meseguer Pallarés

DATE: 8" June 2010

Engineering

Title: Ubicomp: Using iStuff
Author: Josep Benavent Marco
Director: Roc Meseguer Pallarés

Date: 8" June 2010

Overview

Ubiquitous computing, ubicomp, represents a scenario where computer
devices are omnipresent usually with a look like not traditional computers. For
this, is also known with the term “disappearing computer”.

There exists also a close relation between ubicomp and human to computer
interaction. With the appearing of new computer devices spread along the
environment, new interfaces to resolve human to computer interaction.

This master thesis presents a ubiquitous computing scenario that uses iStuff
toolkit as communication path. Nintendo’s WiiRemote, known as wiiMote, is
used as new human to computer device to allow user’s interaction. WiiMote is
communicated with a computer using WiiGee java libraries that incorporates an
iIStuff proxy that lets communicating with the scenario. The scenario also
includes a collaborative application, called Collaborative Tetris, to interact with.

The first chapter presents technical concepts and tools: Starting with definitions
of terms ubiquitous computing and human to computer interaction concept and
then the main tools used to develop this master thesis: iStuff toolkit, WiiMote
and WiiGee java libraries

The second chapter describes the start up of mentioned tools and the
description of test scenarios.

Third chapter summarizes the test results of the scenarios: iStuff start up
scenario, communication between iStuff and WiiMote using wiiGee and a
possible ubiquitous computing environment with a collaborative application:
collaborative Tetris.

Finally the conclusions of tests, possible effects over environment in a green
study and personal conclusions are present.

4 Ubicomp:Using iStuff

INDEX

INTRODUCTION ...ttt e et e et e e et n e e e e e aa e eann s 1
CHAPTER 1. TECHNICAL CONCEPTS & TOOLS.........oiiiiiiieiiee e 3
1.1, UDIQUItOUS COMPULING ..eeiiiieiiiiiiiiiiie e i iiiis aeeie ittt e e e e e e ettt e e e e e e s nbneeeeaaaeeeesannnneeeeaaaeeaanns 3
1.2. Collaborative appliCatiONS.......coiiiiiiiiiis et e e e e a e e 7
TG TR 01 (i o o 1| PR PP PPRPPP 8
R S VT o (T 1 4 To | £ PRSPPI 13
S T VT 1= TC I I o] = o PSPPSR 14
CHAPTER 2. TECHNICAL IMPLEMENTATIONccoiiiiiiies e 17
2.1, QSHUTF JAVA IDFAIY ... et 17
2.2. WIHREIMOLEeeiiiiie ittt e s oottt et e oot e ettt e e e e e e e e a b e be e e e e e e e e s nbbbeeeeaaeeeaannreneeaaaens 18
2.3, WIIGEE JAVA lIDFAIESt ettt e et e e e e e e e e ee e e e s 19
S =TS BT =1 - T (o J PRSP 23
CHAPTER 3. TEST St e e e e 33
3L ISHUTT tEST FESUILS ..ot ettt 33
3.2. WiiGee library and iStuff library test resSultsS ..o 37
3.3. Collaborative application teSt FeSUILS e 40
CHAPTER 4. CONCLUSIONSot e 44
R =) (oo Tl V1= (o] L 44
A €T =TT g TS (T Y PSERR 46
4.3. Personal CONCIUSIONScciiiiiiiiiiiis ettt nr e e e 46
GLO S S ARY ittt e 47
REFERENCES. 48
ANIN X L e 49
ANINE X 2 e 51

AN X B e 55

Introduction 1

INTRODUCTION

Nowadays, technology bases its relation with humans in such a way that
computers are still the focus of attention. In other words, you have to learn how
to communicate with the computer using its own peripheral equipment as
keyboard or mouse to success in your work. In a ubiquitous environment is the
technology who, spread along the environment, tries to adapt to user’s
demands. In those environments, small computer devices try to interact with
other small computer devices to facilitate the users’ use of technology. This new
paradigm in which technology tries to disappear from user’s interaction is in
what ubiquitous computing works.

As | introduces before, derives the idea that exists a thin relation between
ubiquitous environments and new human to computer interaction (HCI):
meanwhile technology “disappears” new human centered devices have to
appear to solve the missing gap between the old peripheral equipment,
centered on computer, and the new generation of equipment centered on user’s
attention.

Writing this master thesis | try to introduce myself into the ubiquitous computing
environments and by extension, obtain a first approach into new human to
computer interaction devices. The reason: ubiquitous environment are still in a
premature state and | think the future of technology will go through this kind of
devices and in a short term, we will start to enjoy this in our house’s
environments.

The main objectives proposed are:

- Determine capabilities of wiiGee library for detecting different gestures
and capabilities of iStuff architecture to create a ubiquitous test
environment.

- Creation and integration of an iStuff proxy in wiiGeeGUI.

- Create a ubiquitous test environment in which all the parts can interact
together.

This master thesis is structured in four chapters with the following contents:

Chapter one describes the technical concepts and tools that are used to
develop the master thesis. First a definition of ubiquitous computing is present.
Then a short description of some relevant projects into the ubiquitous
computing environments are done, focusing more attention in iStuff project,
which technology is used later to develop a ubiquitous computing environment.
Also a short introduction to new human to computer interaction paradigm is
done with the description of the term, the description of the Nintendo’s Wii
remote, as a new peripheral equipment as example of a device not centered in
computer, and the description of the software that permits the interaction with
the computer of that device, WiiGee java libraries. You also can find a

2 Ubicomp:Using iStuff

description of collaborative applications, because it is an example of application
where new HCI can be emphasized.

In the second chapter you can find the start up description of iStuff libraries,
WiiGee libraries and how to connect successfully a WiiRemote device to a
computer. Also a description of the proposed tests scenarios can be found to
prove that all is working.

The chapter three summarizes the results of the tests proposed on the second
chapter. The first one shows the success working of istuff library, the next one
the interaction of wiiGee libraries with the iStuff event bus trying to control an
operating system remotely. Finally, a complete scenario in which both libraries
are used to interact with a collaborative application: in this case, a collaborative
Tetris is created to show the final result of the interactivity among all different
parts.

Chapter four presents the conclusions of this master thesis. First specific
conclusions about tests results are picked up and then technology specific
evaluation conclusions. In this chapter you can also find my personal
conclusions about my experience conducting this master thesis and finally, a
green study about the environment impact of this thesis.

Finally some annexes are included with source code that is created or modified
from examples. Annex | includes the source code used in the first test, annex 2
the source code involved in the second test and Annex 3 the source code that is
referred in the third test.

Chapter 1: Technical concepts & tools 3

CHAPTER 1. TECHNICAL CONCEPTS & TOOLS

This chapter is firstly to familiarize the reader with the “ubiquitous computer”
term and related vocabulary used in this thesis and exposes some examples to
facilitate the reader's understanding. Then the main tools that are used to
develop the project are introduced: iStuff toolkit as a software platform that acts
as an event bus and the Nintendo’s WiiRemote as a human to computer
interface to interact with that bus using the WiiGee java libraries that interprets
WiiRemote gestures.

1.1. Ubiquitous computing:

In this section a first definition of the term is presented. Afterwards a short
introduction to ad-hoc networks and finally some relevant projects are referred
to facilitate the understanding of the explained terms.

1.1.1. Definitions:

The two following paragraphs illustrate by the use of examples the term
“ubiquitous computing”, also known as ubicomp:

Imagine that you make a photo with a new camera. Once is done, this is send
automatically to your personal computer and also tagged and edited with the
time and date that the photo is done. Also, information about your location is
transmitted by the GPS device that is automatically detected near your position
and is also included into the photo tags to obtain a better classification of it. You
only pressed the photo button; all other functions are done automatically.

Once you arrive to your office, you start your session automatically with your
fingerprint in any of the personal computers you can find there. You received by
e-mail a new catalogue from your suppliers and decide to print it. You say:
“Print this document in the nearest printer”. Automatically, the document is sent
and printed in the printer that is at your back without much more effort.

The terms ubiquitous computing is usually related with human-computer
interaction and ad-hoc network terms. First of all, we are going to explain the
meaning of these terms™.

The Oxford English Dictionary [1] defines the “ubiquitous” as:

Present or appearing everywhere, omnipresent.

! Exists a dilemma about what is ubiquitous and what isn’t. | will try to expose a general idea
about the term and not take into the view all specific definitions.

4 Ubicomp:Using iStuff

Ubiquitous computing refers to a scenario where computers are omnipresent,
and specially related to devices that do not look like traditional computers. The
idea that is behind this term is also well known as the “disappearing computing”.

Frank Stajano, explains the meaning of this idea in the introduction of his book
about security issues in ubiquitous computing environments [2]:

“When we use a computer, the focus is still squarely on the tool rather than on
the task (...) Ubiquitous computing is not so much about having traditional
computers everywhere, but rather about having computing capabilities
everywhere, embedded in the environment in such a way that they can be used
without noticing them. Computing will become ubiquitous when it supports the
user’s activity unobtrusively, instead of being the focus of attention.”

Stajano also includes another explanation and makes a parallelism with the
issues related to electrical motors when they were invented. Initially only one
electrical motor could be found in the factories. Only this motor powered
machines and mechanisms for a wide variety of tasks. Nowadays, the electric
motor leads the daily life of every human and humans are unaware of the
details of how this work and we unconsciously use it. This is a simple example
of a “disappeared” technology that has succeeded in the history.

One of the objectives of ubiquitous computing is to adapt the human-computer
interaction in such way that computers become, as | mentioned, a disappeared
technology. The human-computer interaction (HCI) [9] but, is a multidisciplinary
field in which we can include subjects as, engineering, design, anthropology,
sociology, philosophy, linguistics, artificial intelligence, computer science,
neuroscience or cognitive psychology that studies the relations between people
(the users) and the computers. The goal of HCI is to improve the interactions
between users and computers through developing interfaces (hardware or
software), methods to develop that interfaces and techniques for evaluating
them with the objective of making computers more usable and more receptive
to the user’s needs.

Defined the term ubiquitous computing and the HCI term, there’s still an
important term usually close to the ubiquitous computing term. This is the “ad-
hoc networks” that describe how this particular “computers” can communicate
each-other. We are going to define briefly this concept.

Ad-hoc, by de OED [1], means:

Devoted, appointed, etc..., to or for some particular proposes.
The idea behind the ad-hoc networking is that instead of being a permanent
infrastructural fixture behind the communication devices, each device is capable

of discover and recognize each other's presence and adapt itself to new
configurations that can appear in the scenario.

Chapter 1: Technical concepts & tools 5

1.1.2. Relevant projects

There exist a high number of projects related with the ubiquitous computing
term and it is not my objective to take into account all of them in this section. All
the following described projects on the following lines, from my point of view,
provide a wide vision on ubiquitous computing and served myself to prepare the
following chapters.

1.1.2.1. Active badge system

This project by ORL/AT&T Labs from Cambridge appeared in early 90’s which
proposed a solution for a location system indoor. The main idea is that a person
could be localized into a building to receive, for example, incoming phone calls
to his actual location [3].

The badge is composed by an infrared transceiver that sends periodically a
unique code, which identifies the person who owns the badge, to a network of
sensors placed around the building.

Alan Jones

Chbval Rumed L6

Fig. 1 Active badge System

The system also includes a user interface to obtain with a great precision the
localization of a person inside the building.

Of course, the project soon obtained other applications like locate shared
equipment, auto select the preferred beverage from a coffee machine for the
person who is near it and also to configure a VNC service to obtain
automatically your desktop in any computer you were in front.

6 Ubicomp:Using iStuff

1.1.2.2. Active bat

Another project by ORL/AT&T Labs from Cambridge that was started in 1995
and consists in a lightweight wearable devices featuring ultrasonic transducers,
a 433Mhz radio transceiver and a long-life battery. Each device includes a
unique identifier that identifies his owner or the object which is tagged to [4].

It was used throughout all the Cambridge Research Group building to precisely
locate people and objects in a 3D environment.

Fig. 2 Active bat example of use

Due to his high resolution (about 5 centimeters) it was used to define virtual
buttons in a 3D environment. For example, as we can see in the previous photo
(Fig.2), an interface was developed to interact with a public scanner can be
implemented with an active bat system.

The system works as if the device was a 3D pointer. Depending on the position
in front of the poster you place it, a related action is taken. When you place the
pointer in front of an image, the position of pointer is processed and the action
predefined on the poster is taken.

1.1.2.3. Oxygen

Oxygen[5] promises to be a world in which computation is available anywhere
and at negligible cost. Is also focused in the human to computer interaction;
nowadays, this interaction is computer based and the idea is evolve to a user
based design? [6] or human-centered computing [7].

% User based design is a design philosophy that tries to optimize the users interface avoiding
users to change how they work, rather than force the users to adapt themselves to computer
interface, as nowadays occur.

Chapter 1: Technical concepts & tools

This wide project includes a high number of components, as software and
hardware, to obtain a complete solution for ubicomp environments. It includes
speech recognition systems, image processing systems, user localization

systems and sensors to support all these subsystems.

A

It

Embedded

devices Q

Handheld Devices. actuators, sensors

devices

Fig. 3 Oxygen project overview

The components can be classified in the following three kinds of entities:

H21s: handheld devices acting as PDA'’S, personal communicators (devices
that includes cell phone functions, radio, pager, email ...) and universal remote

control units.

E21s: Computer server embedded in the environment (walls of houses, cars...)
capable of affecting and controlling that environment. For example controlling

lights, air conditioning systems...

N21s: Dynamic networks allowing the previous classes of devices to discover

each other’s services and make useful for them.

1.2. Collaborative applications

Also known as collaborative software or groupware applications, we can define

the term from a general point of view [19]:

“A computer application that allows its users to collaborate with each other”

8 Ubicomp:Using iStuff

There exist also a large number of definitions and usually compared with the
traditional software term, in which users are separated and don’t feel part of a
group. Other take into account not only software components, hardware can be
part of collaborative applications.

As a complete definition we can achieve the following:
Collaborative application is a software and/or hardware application that:

- Interacts with multiple users: It receives input from multiple users and
creates output for multiple users.

- Links these users: It allows some input of some user to influence some
output created for some other user.

Note the output that is generated by users input has not to be immediately in
time and individual; a group of inputs can generate an individual output.

1.3. iStuff Toolkit

Nowadays, the mouse and the keyboard are the predominant input devices for
desktop computers. This desktop computer environment is targeted for one
user, one set of hardware and a single point of focus. In a post desktop,
ubiquitous computing (ubicomp) environments complexity increases: multiple
displays, multiple input devices, multiple applications and multiple concurrent
users.

iStuff toolkit, developed by Rafael Ballagas from Computer Science department
in Stanford University, is developed to support user interface prototyping in
ubiquitous computing environment [9], [10].

This project, from Stanford HCI Group developer around 2002, includes a toolkit
of physical devices and a flexible software infrastructure. The objective of this
project is to simplify the exploration of novel interaction techniques in the post-
desktop era of multiple users, devices, systems and application collaborating in
an interactive environment.

The environment is a TCP java based middleware that allows multiple machines
and applications to exchange information through the Event Heap, a central
server process that receives events from client applications and redistributes
them to the appropriate recipients.

We can distinguish between the two main components of iStuff project: the
event heap and the patch panel.

The Event Heap is a distributed system infrastructure that allows multiple users;
machines and applications where all simultaneously interact as consumers and
generators of system events.

Chapter 1: Technical concepts & tools 9

The Patch Panel is a service that runs in the background and observes the
Event Heap in order to translate events. Every event that is posted to the Event
Heap is a translation candidate. If a mapping is specified for an event, the Patch
Panel will post the corresponding output events to the Event Heap. This
functionality is especially useful for prototyping new input or output devices and
interfacing these devices to different applications.

1.3.1. Architecture

iIStuff toolkit environment is developed with the following requirements:
- Flexible, lightweight devices.

- Platform independence and cross-platform capabilities.
- Wireless protocol independence.

- Ease of integration with existing applications.

- Support for multiple simultaneous users.

The iStuff components provide the physical toolkit of wireless input and output
devices, asynchronous communications based on Events and the PatchPanel
intermediary to dynamically re-map events to applications. The architecture can
be summarized in the following Fig.4:

I . \ =

iStuff Architecture iSuif Device || 2
Wireless connection =

& s

Transceiver ;

Application I PatchPanel Proxy) E

I I I

Event Heap

Fig. 4 iStuff architecture overview

iIStuff Architecture is based on an Event Heap that acts as an event bus that
receives the events created by an iStuffDevice that have been send by the
iIStuffDevice through an iStuff Proxy. Then the Patch Panel dynamically re-maps
those events to another predefined user event and is send again to the Event
Heap. Finally an application or other iStuffDevice Proxy also connected to the
bus to act appropriately to that re-mapped event.

1.3.2. Components

Now, we will describe the iStuff architecture components in detail. The
components of iStuff architecture are the following:

10

Ubicomp:Using iStuff

Event Heap:

The communication with the different iStuff components is done by event
messages. Producers (that can be proxies or applications directly) post
events to the Event Heap and consumers register to receive events,
specifically the event type and optionally, other criteria based on
matching the content of specific fields. This communication mechanism
allows an easy restarting of any component of the architecture (including
the Event Heap itself).

The main function of Event Heap is permitting the exchange of events
between event consumer and producers, acting as a bus.

Patch Panel:

The Patch Panel consists of an intermediary application that implements
event mapping, and one or more GUIs that provide a user-accessible
way to configure events.

It acts as an Event Heap client that non-destructively translates events
from one type to another. It listens for all events, translating those that
match its event-mapping configuration. To create a mapping through the
intermediary, the wusers must generate an event of type
IntermediaryConfigEvent with the appropriate fields that represent the
event to translate and its mapping. When the Event Heap receives a new
IntermediaryConfigEvent, it updates its internal translation look-up
structure.

For example, the simplest event mapping matches only the event type,
generating another type of event from the received. Another common
mapping, matches the event type and a unique ID field, for example, to
discriminate between two same models of input devices.

Patch Panel component also includes a GUI that can be placed in
another machine connected to the Event Heap or in the same machine.
This allows a rapid prototyping of new devices. It presents the user with a
graphical tool for creating event mappings. After the user specifies a
particular event translation, the Patch Panel GUI posts an
IntermediaryConfigEvent to update the Event Heap.

Another highlight point is the possibility of create composite events
establishing intermediate stages using event translations in the Patch
Panel. For instance, an application could be notified if two iButton where
pressed. Patch Panel can create an intermediate stage between the
inputs devices are activated in a short period of time. When both are
finally pressed, the system can create the predefined event and
reinitialize the stages to the initial state.

Chapter 1: Technical concepts & tools 11

Finally, and to facilitate the developer test the environment is provided
with a powerful characteristic; you can compose scripts and load to the
Event Heap using that PatchPannel GUI, to create more complicated
“logic” with the events mapping and configuration.

program Demo;

event Start type Demo {
string message = "Hola";

}

event Saluda type Demo {
string message = "Que tal?";
}

initial state Initial {
on Start {
send Saluda;

}

}

On previous lines, as example, you can observe a basic script that
receives a packet type Demo with a string field called “message”
containing the message “Hola”. If the scrip is loaded in the Event Heap,
each time that this defined event is send, a packet type Demo is send
with string filed called message with the value “Que tal?”.

- Proxy:

The iStuff proxy component allows communication between physical
devices through the Event Heap. This proxy is the component that
translates the events from the physical world (for example the pushing of
a button) to the iStuff events environment understandable message: an
event. It also does the inverse action; collect the appropriate events that
“surf” the event Heap and translates it to the attached device with an
understandable iStuffDevice action or message.

The proxy component also provides of independence between the proxy-
iIStuff device link technology and the Event Heap. For example, iStuff
device can use FM or X10 technology to connect with the proxy element
and this proxy use Ethernet wired link with the system Patch Panel.

- iStuff Device:

Stanford University research group who developed iStuff toolkit created a
high number of devices with his respective proxy component. These
devices can act as inputs or actuators and thanks to the proxy element,
are independent of link technology. As basic example, some are briefly
described on following line, and in Fig.5 can be seen:

12 Ubicomp:Using iStuff

» iButton: The most basic one. It is implemented using a homemade
circuitry and a garage-door-opener style radio frequency
transmitter. Another example is implemented using commercial
X10° keychain remotes. This is an input device.

» iLight, iBuzzer and iViber: Binary output components or actuators
implemented using homemade circuitry and RF transmitters. They
can provide a visual (iLight), audio (iBuzzer) or a haptic (iVibe)
output.

Fig. 5 iStuff devices

1.3.3. Applications

iIStuff was originally designed with iRoom (space used for meetings and
brainstorming/design session in Stanford University) but it could be useful in
Smart Home environments. Task-oriented user interface (interfaces reflecting
the user’'s task as opposed to the technical feature for an appliance) is the
highlight point to be useful in Smart Home applications:

- Dynamic, task-based remote controls : By linking the appropriate iStuff
components and using the Patch Panel the user can construct a task-
oriented controller. For example, a PDA can be used as a Universal
Remote Controller.

- Monitoring house state : A display near a user's home exit door can
show the state of linked iSensors to home devices. For instance, the
state of burglar alarm or if the lights in the bedroom are still on.

- Setting house state : iButton or a similar device can be configured to set
the house state when user leaves it. For example, when the button is

® [12] Open industry standard for communicating electric devices. Uses power line wiring for
signaling and control. Also a wireless radio based transport protocol is defined.

Chapter 1: Technical concepts & tools 13

pressed the system switch off all the lights or activate the home security
system.

1.4. Wii Remote

The Wii Remote or “WiiMote” is the primary controller for Nintendo’'s Wii
console. The main feature of the Wii Remote is its motion sensing capability,
through the use of accelerometer and optical sensor technology. It's able to use
a Sensor bar to use a pointing functionality. It also includes a rumble that when
activated it will cause the controller to vibrate.

.,
=/

Fig. 6 Wii Remote Controller Overview

The Wii Remote is a one-handed remote control-based design. The body of the
controller measures 148 mm long, 36.2 mm wide and 30.8 mm thick. The
communication with the console device is via short-range Bluetooth radio
protocol, with which it is possible to communicate up to four controllers as far as
10 meters. To use the pointing functionality a Sensor Bar is required and is able
to work up to five meters. His symmetrical design allows it to be user in either
hand and also can be turned horizontally to be used as the classic Nintendo
controllers.

It includes nine buttons: POWER, A, B, -, HOME, +, 1, 2 and the digital path
controller (UP, DOWN, LEFT and RIGHT). We can also find a speaker (low-
quality 21mm piezo-electric speaker used for sound effect during game play
and streamed directly from host) in the center and four leds in the below that
indicate various functions.

14 Ubicomp:Using iStuff

An expansion port can also be found at the button of controller to be used with
extension controller such as “Nunchuk” or a Classical controller.

The power source are two AA class batteries with you can obtain a life cycle of
60 hours using only the accelerometer functions and only 25 hours if you also
use pointing functionality.

The Bluetooth device is model BCM2042 by Broadcom’s manufacturer [20] and
the accelerometer is an ADLX330 chipset from Analog Devices manufacturer
[21].

The rumble, which is implemented as a small motor attached to an off-center
weigh, It can be different implemented using different motors, SEM8728 device
is an example. As the Wii Remote drives at 3.3 VDC and draws 35 mA, other
rumble device complaining these requirements can be used.

Fig. 7 Broadcom BCM2042, Analog Devices ADLX330 and SEM 8782 detail.

1.5. WiiGee Library

Wiigee [14] is an open-source gesture recognition library for accelerometer-
based gestures specifically developed for the Nintendo Wii remote controller. It
is implemented in Java and, thus, is platform-independent. Using a third-party
Bluetooth-library wiigee allows you to define and recognize your own, freely
trained gestures.

Chapter 1: Technical concepts & tools 15

WiiGee library is based on detecting gestures in two or three dimensions. The
gesture term is typically defined as a characteristic pattern of incoming signal
data. Due to Wiimote is always sending information of the accelerometer
behavior; wiiGee defines the start and the end of a gesture by pressing one of
the wiimote’s buttons.

The pipeline that wiigee follow to recognize gestures are explained following
and the fig. 8 show the system components:

vectordata = Filter - Quantizer -~ Maodel - Classifier

Fig. 8 WiiGee system components

First, the vector data is send by wiGee Bluetooth interface to the wiiGee core.
Then these data is processed by the following components [22]:

- FEilter: Removes vectors which are below a given threshold of approx.
1.2g (where g is the acceleration gravity) and removes vectors which are
suspected to be duplicated

- Quantizer: Generates a discrete code identifying each gesture. K-mean
algorithm is used, k being the number of clusters in our code-alphabet,
using k=14 a sufficient size for the code alphabet is taken.

- Model: A discrete, left-to-right hidden Markov model. This component
maps a series of codes to a model probability.

- Classifier: Identifies the probability model with the most probable gesture
during a recognition task.

Due to wiiGee don’t specify default tasks and let you to define your own
gestures, two working modes are defined. The following Fig.9 shows the
workflow:

16

Ubicomp:Using iStuff

training recognition

|l 4
e
] N

oy el

\) I {

- ¢ 1 - - > SQUARE
. .
L SCUARS
inended gesture trained gestures performed gesture recognized gesiure

Fig. 9 WiiGee workflow

Training: During this mode you record the gestures your application later
recognizes as input commands. A gesture must be performed several
times (wiiGee’s developers recommend between 5 or 10 training
sessions) to allow wiiGee learn the gesture ant internally code it. To
facilitate user’s training mode a training button is defined to enter and exit
training mode.

Recognition: Once gestures have been recorded, wiiGee internally sets
up its parameters for the recognition process. Also a Recognition Button
is defined; when it is held down the system “records” your movement and
when released wiiGee tries to identify the gesture and fires a
GestureEvent containing information about the detected gesture with its
calculated probability.

Chapter 2: Technical implementation 17

CHAPTER 2. Technical implementation

As starting point for this project, we have at one’s disposal the following tools
that are described in detail in the previous chapter:
- iStuff java library.

- Wii remote or WiiMote, used together with
- WiiGee java libraries

In this chapter you can find the start up description of the mentioned parts and
the description of the scenarios that are arranged to test all the parts individually
and in group.

2.1. IStuff java library

iIStuff toolkit most recent components can be found on the SVN:
http://svn.berlios.de/svnroot/repos/istuff/trunk

To download it from this repository a SVN client can be used. For example,
TortoiseSVN is a free software that can be found on http://tortoisesvn.tigris.org/.

After downloading the most recent version from the repository, something
similar can be found on your local hard disk:

.JistuffToolkit/
. | Event Heap
. | Event Logger
. | Hardware Proxies
.l installer
./ Lib
./ Patch Panel
. [Patch Panel Manager
. / ProxyLauncher
. /| ProxyManager
./ QuartzComposer
./ Readme.txt
. | Software Proxies

To start a first demo using the toolkits the following step has to be taken:

1. Start the event Heap that can be found in the Event Heap folder (./Event
Heap /run.bat). This is the core of the system.

2. [Optional] Start the event logger (./Event Logger/run.bat). A very useful
utility to inspection the events that are sent to the event bus.

3. Start the Patch Panel core (./Patch Panel/run.bat). The element that
maintain the relations and mappings between events.

18 Ubicomp:Using iStuff

4. Start the Patch Panel Manager(./Patch Panel Manager/run.bat). This is
the GUI for the patch panel that users can interact to create easily
relations and mappings between events. Also very useful because it
permits to users to load the rules that Patch Panel will follow, a more
efficient way to program it.

If there appear any problem executing the previous steps, the files have to be
recompiled manually or in some cases, if available, using the build.bat file.

After all parts are started, the program TerminalEventSender (./Software
proxies/TerminalEventSender/run.bat) can be used to test the environment.

Terminal Event Sender is a software proxy that permits to send easily events to
event heap throw console interface

The usage is simple:

run.bat <event heap name> <event type> {<field name:value>}*

where the event heap name is the name of the machine where Event Heap is
running, “localhost” in the case of running the event Heap in the same
computer.

2.2. WiiRemote

This section describes how to connect WiiRemote under Windows XP operating
system. Note that a Bluetooth adapter is required.

In our tests, we have used the following USB device to set up a Bluetooth
interface for our computer:

- Kensington Bluetooth USB Adapter 2.0 [16]

We need to install a L2CAP supported Bluetooth stack. WIDECOMM drivers are
selected because are the only one that support L2ZCAP under Windows OS
environment [18]. The process to install WIDECOMM Bluetooth stack can be
found in [17].

An important detail is that after the WIDECOMM stack is installed following the
procedure described previously; do not use the Windows default Bluetooth
wizard (Fig. 10) because the Bluetooth stack stop working for our java
environment.

Chapter 2: Technical implementation 19

Asistente de configuracion inicial Bluetooth

b Asistente de configuracion inicial
AR Bluetooth

Antez de empezar a utilizar Bluetooth en este equipo, debe
e realizar una configuracian inicial. Ezte azigtente le ayudars a
y - configurar un entarno Bluetaoth basico,

Puede acceder a laz funciones: de Bluetoath de este equipo
a través del icono Bluetooth que aparece en el escritorio o
en la bara de tareaz. El icono también puede aparecer en
laz ubicaciones zsiguientes. Seleccione laz ubicaciones en

o las que desea que aparezca el icono v haga clic en
Siguiente.

[“libaregar el icono al mend |nicic

Agregar el icono al mend Programas

oleer Agregar el icono a Mi PC

< Alras [Siguien!e) l [Cancelar]

Fig. 10 Windows Bluetooth Wizard. Always click on Cancel.

The Windows XP Bluetooth wizard can be found on the System task bar as the
following figure show (Fig. 11).

Fig. 11 Bluetooth Wizard Icon on Windows XP

2.3. WiiGee java libraries

To start testing WiiGee Library we need the following software:

- WiiGeeDemo GUI [14]

- Java 5.0 or Later (in our case Java 6.0 is used)

- Java 3D [15]

- BlueCove as Bluetooth library (included in WiiGee Demo GUI)
- (optional) Eclipse v. 3.5.1 as software development kit.

Simply, after Java 6.0, Java 3D and Eclipse SDK are installed we have to start
the Eclipse SDK and import the project where WiiGeeDemo GUI (Figure 12) is
extracted from the packaged downloaded file.

To start working with the WiiGeeDemo first we need to add the following
dependences of java3D into the project:

20 Ubicomp:Using iStuff

- j3dcore.jar
- j3dutils.jar
- vecmath.jar

Those libraries can be found in Java3d installation path (in our case,
C:\Archivos de programa\Java\Java3D\1.5.2\lib\ext).

Add the WiiGee libraries that can be found in the WiiGee-demoGUI extracted
directory and modify the image path of the loaded images on the
WiimotePanel.java to adapt to Windows OS path.

Two lines have to be added in the main class (wiigeemain.java). The first one to
avoid Bluetooth windows bug and the second one to detect by default the
WIDECOMM Bluetooth stack by the application, otherwise, Windows
environment will start with Winsock stack, which is not the appropriate because
don’t support L2CAP.

System.setProperty("bluecove.jsr82.psm_minimum_off", "true");
System.setProperty("bluecove.stack.first”, "widcomm");

Now we can start to test the WiiGeeDemo GUI. To assure that is correct started
the following messages have to appear on the Log Console:

This is wiigee version 1.5.6 (20090817)

This is wiigee-plugin-wiimote version 1.5.6 (20090817)

BlueCove version 2.1.0 on widcomm

You are using the widcomm Bluetooth stack (Version BWT 5.1.0.1100, DK
6.1.0.1502)

L2CAP supported: true

wiigee: found a supported stack!

loading canvas3d

In the previous log message we have to identify that L2ZCAP are supported.

Chapter 2: Technical implementation 21

2. wiigee Demo-GLUI
Wiimote File. Help
| Gestures | Infrared | Rotation rSetlings |

Acceleration:

o

b=

In Motion Recognition Training

WiiMaote

| Button B pressec

Fig. 12 WiiGee GUI

The first task is to attach the WiiRemote to the Bluetooth WIDECOMM stack.
This can be done using the menu: WiiGee - Autoconnect. Notice that the user
has to press simultaneously the WiiGee 1 & 2 buttons to be detected by our
Bluetooth stack.

If the previous process worked successfully, on the log you can see the
following message:

Starting device inquiry...

Device discovered: 0026596761AB -
Is a Wiimote!

Inquiry completed.

Device discovery completed!
WiimoteStreamer initialized...
WiimoteStreamer running...
Unknown data retrieved.

A1 30 00
Autocalibration successful!

Enabling ACCELEROMETER...
Enabling ACCELEROMETER...

And in the GUI if you start moving the WiiRemote you can see something
similar to the following figure:

22 Ubicomp:Using iStuff

£ wiigee Demo-GUI

Wiimote File Help
[Gestures | Infrared | Rotation | Settings |
Acceleration:

,O \|

B i

g

In Motion Recognition Training

Fig. 13 WiiGee GUI successfully start up.

By default, “A” button in WiiRemote start the Training Process and B button the
recognition process. Once you have a gesture trained several times
(recommended by library developers to do between 5 and 10 trains) you can
use the HOME button to assign a name to that trained gesture, save it and
continue training new gestures using the same process.

After some gestures are trained, to facilitate the startup and avoid the training
process of the gestures on each start up of the wiiGee program, a gesture set
can be saved using the options “Save Gestureset” (File > Save Gestureset).
Now each time we need to load the previous trained gestures, we can use the
“load Gestureset” option (available on menu File > Load Gestureset).

Note that when we save a gesture a .txt document with the available information
of the gesture is saved on hard disk and when a gesture set is saved a .wgs file
is created that contains the name of the files (avoiding the extension) that
contains each gesture individually. Obviously, the gesture set (file with .wgs
extension) is which we need to load into the WiiGee GUI.

Chapter 2: Technical implementation 23

2.4, Test scenario

This section describes the scenarios created to test firstly iStuff library first
alone and then used together with wiiGee libraries and a wiiMote. The final test
is shown as example of interaction between WiiRemote, attached to wiiGee
libraries. Those components use an iStuff proxy to permit the communication
along the scenario with the collaborative application.

The general objectives of those tests are:

- Determine capabilities of wiiGee library for detecting different gestures
and capabilities of iStuff architecture to create an ubiquitous test
environment.

- Creation and integration of an iStuff proxy in wiiGeeGUI.

- Create a ubiquitous test environment in which all the parts can interact
together.

2.4.1 iStuff library

The objective of this scenario is to test the correct running of the iStuff
architecture by creating a basic Patch Panel rule and send manual events to the
event heap using the Terminal Event Sender program.

To test the iStuff library capabilities the following scenario represented in Fig. 14
IS mounted:

ISTUFF PATCH PANEL

|

Fig. 14 iStuff alone test scenario

24 Ubicomp:Using iStuff

The first scenario is composed by two PCs, “Istuff” and “Patch Panel” with the
components:

e ISTUFF:
0 Hostname: istuff
o IP:147.83.118.138
o OS: Windows XP
o ISTUFF components: Event heap and Event Logger

» PATCH PANEL:
0 Hostname: dac-epsc-1
o IP:147.83.118.125
o OS: Windows XP
0 ISTUFF components: Patch Panel and the software proxy
Terminal Event Sender.

Using Event Logger the events that are sent to the event heap can be
visualized.

The rules that are programmed on the patch panel are the following:

program SimpleDemo;

event saluda type hello {

}

event saludat type helloHi{
}
initial state Initial {
on saluda{

send saludat;

}
}

Those simple rules on a received packet type “hello” send an empty packet type
“helloHi".

The modified code of the TerminalEventSender that is used on this test can be
found on Annex 1.

Chapter 2: Technical implementation 25

2.4.2 WiiGee library and iStuff library

The objective of this section is connecting wiiGee libraries throw a proxy with
the iStuff event bus.

Fist we need to attach the WiiMote to the WiiGee library as is described in
section 2.6. Once is done, a proxy to connect wiiGee to iStuff bus is required.

We have based iStuff proxy on the TerminalEventSender example that iStuff
library includes. The code of the created class (called iStuffProxy.java) can be
found on Annex 2. Remember to add manually iStuff libraries to WiiMote project
for success working. This class connects to iStuff bus on a host called “istuff’
and creates a packet of type WiiEvent with a field called “WiiComand” that
contains the name of the gesture recognized by WiiGee library.

After this, we have to add our proxy into the wiiGee source code. The easiest
way to do it consist in adding a call to “arrenca” method with the name of the
recognized event as a parameter. To do this, gestureRecieved method (can be
found on FrontEnd.java of WiiGee GUI program found on WiiGee libraries) is
modified as follows:

public void gestureReceived(GestureEvent event) {
IStuffProxy ISP = new IStuffProxy();

if(event.isValid()) {
this.gestureField.setBackground(Color. GREEN);
this.gestureField.setForeground(Color. WHITE);
this.gestureField.setText("Gesture " +
this.gestureMeanings.elementAt(event.getld()) + " received.");
/lenviar el evento a la xarxa
ISP.arrenca(this.gestureMeanings.elementAt(event.getld()));

this.appendToConsole("Gesture
"+this.gestureMeanings.elementAt(event.getld())+" received.");
} else {
this.gestureField.setBackground(Color.RED);
this.gestureField.setForeground(Color. WHITE);
this.gestureField.setText("No Gesture recognized!");
this.appendToConsole("No Gesture recognized!");

}
}

Highlighted lines indicate the code added. We can observe that first a new
instance of the IStuffProxy is created and then the recognized event name is
transferred to the created iStuffProxy to be sent as a parameter of the field
“WiiComand” into a packet of iStuff architecture.

26 Ubicomp:Using iStuff

The second step consists on creating the rules for iStuff patch panel as follows:

program Demo;

event WiiUp type WiiEvent {
string WiiCommand = "amunt”;
}

event WiiDown type WiiEvent {
string WiiCommand = "avall";
}

event WiiLeft type WiiEvent {
string WiiCommand = "esquerra“;
}

event WiiRight type WiiEvent {
string WiiCommand = "dreta”;
}

event WiiShake type WiiEvent {
string WiiCommand = "shake";
}

event WiiCorbe type WiiEvent {
string WiiCommand = "corbe™;
}

event ControlUp type ControlEvent {
string ControlCommand = "Up";
}

event ControlDown type ControlEvent {
string ControlCommand = "Down";
}

event ControlLeft type ControlEvent {
string ControlCommand = "Left";
}

event ControlRight type ControlEvent {
string ControlCommand = "Right";
}

event ControlWindows type ControlEvent {
string ControlCommand = "Windows";
}

event ControlExecute type ControlEvent {
string ControlCommand = "Execute";
}

initial state Initial {
on WiiUp {
send ControlUp;
}

on WiiDown {
send ControlDown;

Chapter 2: Technical implementation 27

on WiiLeft {

send ControlLeft;
}

on WiiRight {

send ControlRight;
}

on WiiShake {

send ControlWindows;
}

on WiiCorbe {

send ControlExecute;
}

}

In this script we define the alias for received events and for the event to be sent
into bus. You can distinguish between types “WiiEvent” and “ControlEvent”:

- WiiEvent type is related to the packets sent by the iStuff proxy attached
to the wiiGee component (which recognizes wiiRemote movements).

- ControlEvent is which will be received by another iStuff proxy described
in the following lines and is generated by the patch panel and as a
consequence of receiving a WiiEvent packet.

We also need to determine the rules that patch panel are following: after “initial
state Initial” of the previous example rules are shown. For example on a
WiiDown received event, patch panel will send a ControlDown event and on a
WiiCorbe received event, patch panel will send a ControlWindows event as we
defined.

To complete the scenario, another proxy attached to the bus is created to test
the success working. In this case, the objective is to generate some simple
events to interact with Windows operating system.

The events that are selected to emulate the input keyboard are:
- Move up button

- Move down button
- Move left button

- Move right button
- Windows button

- Intro button

The program created called “ControlledWindows” (source code of
ControlledWindows.java on Annex 2) uses the robot java class to emulate the
keyboard pressed keys.

28 Ubicomp:Using iStuff

Finally the scenario to mount as is shown in the following Fig. 15:

ISTUFF PATCH PANEL

|

R
CONTROLLED
WINDOWS

o N

=]

Fig. 15 Scenario 2: Controlled Windows

This second scenario is formed by three machines with the following
characteristics:

* ISTUFF:
0 Hostname: istuff
o IP:147.83.118.126
o ISTUFF components: Event heap and Event Logger
o0 WiiGee GUI with integrated iStuff proxy.

» PATCH PANEL:
0 Hostname: dac-epsc-1
o IP:147.83.118.125
o ISTUFF components: Patch Panel.

* CONTROLLED WINDOWS:
o0 Hostname: jose-pc
o IP:147.83.118.127
o Controlled windows application.

In the next chapter (section 3.2) you can observe the results of this test
scenario.

2.4.3 Collaborative application

There exists a close relation between ubiquitous computer and new human-to-
computer interfaces. The purpose of this section is to create a demonstration of
how new human-to-computer interface, with Wii Remote device as example,

Chapter 2: Technical implementation 29

can interact into a ubiquitous computing environment, iStuff event bus, and
using a collaborative application.

The collaborative application created consists in a modified Tetris adapted for
two players to play simultaneously the same board. This Tetris but uses as
input the generated Wii Remote events sent by WiiGee GUI that integrates an
iIStuff proxy (as described on the previous point). The objective of the game is
the same as classical Tetris, do the maximum number of point completing full
lines without spaces; but in this case, you have to cooperate with the other
player to move correctly the pieces on the board to complete the objective.

As in the previous scenario, the first step consists in connecting the wiiGee GUI
to the event Heap using a proxy. The same modified class is used
(FrontEnd.java) to communicate WiiGee GUI and iStuff event heap.

The next step consists in creating the rules that iStuff patch panel will follow to
map the events generated by the WiiGee GUI proxy to events that are
understandable by the Tetris iStuff proxy also connected to the iStuff event
Heap.

The rules that are loaded on patch panel are the following:

program Demo;

event WiiUp type WiiEvent {
string SourceDevice = "ISTUFF";
string WiiCommand = "amunt";

}
event WiiDown type WiiEvent {

string SourceDevice = "ISTUFF";
string WiiCommand = "avall";

}
event WiiLeft type WiiEvent {

string SourceDevice = "ISTUFF";

string WiiCommand = "esquerra";
}
event WiiRight type WiiEvent {

string SourceDevice = "ISTUFF";

string WiiCommand = "dreta";

}
event ControlUp type ControlEvent {

string ControlCommand = "Up";
}

event ControlDown type ControlEvent {
string ControlCommand = "Down";
}

event ControlLeft type ControlEvent {
string ControlCommand = "Left";
}

event ControlRight type ControlEvent {
string ControlCommand = "Right";
}

30 Ubicomp:Using iStuff

event WiiUp2 type WiiEvent {
string SourceDevice = "espc-1";
string WiiCommand = "amunt";
}
event WiiDown2 type WiiEvent {
string SourceDevice = "espc-1";
string WiiCommand = "avall";

}

event WiiLeft2 type WiiEvent {
string SourceDevice = "espc-1";
string WiiCommand = "esquerra”;

}

event WiiRight2 type WiiEvent {
string SourceDevice = "dac-espc-1";
string WiiCommand = "dreta";

}
event ControlUp2 type ControlEvent {
string ControlCommand = "Up2";

}

event ControlDown2 type ControlEvent {
string ControlCommand = "Down2";
}

event ControlLeft2 type ControlEvent {
string ControlCommand = "Left2";
}

event ControlRight2 type ControlEvent {
string ControlCommand = "Right2";

}
initial state Initial {
on WiiUp {
send ControlUp;
}
on WiiDown {
send ControlDown;
}
on WiiLeft {
send ControlLeft;
}
on WiiRight {
send ControlRight;
}
on Wiilp2 {
send ControlUp2;
}
on WiiDown2 {
send ControlDown2;
}
on WiiLeft2 {
send ControlLeft2;
}
on WiiRight2 {
send ControlRight2;
}
}

In this case, only the normal movements of keyboard are adapted for both
players:

Chapter 2: Technical implementation 31

- Move up button

- Move down button
- Move left button

- Move right button

To distinguish between player one and player two input events we have used
the “SourceDevice” (notice that iStuff software distinguish between majuscule
and minuscule letters) field that is always included in every event send to event
head. In this scenario player one is using the WiiMote that is connected to
“ISTUFF” host and player two the WiiMote connected to “espc-1" host.

Finally, and as last step, we need to create the collaborative application:
A Tetris application that can be found on http://www.percederberg.net is used
(http://www.percederberg.net/software/tetris/tetris-1.2-src.zip) as starting point.

This application is based on the following classes:

- Configuration.java: Provides the static methods for simplifying the
reading of configuration parameters. It also includes some methods for
transforming string values into more useful objects.

- Figure.java: Represents Tetris figures. Each one consists of four
connected squares on seven possible constellations. Each figure can
have to states; attached to a square or not. When is attached, no rotation
or movements of pieces are allowed; when is not, a rotation can be
made.

- Game.java: Controls all events in the game and handles all the game
logics. Also implements the graphical game component.

- SquareBoard.java: Tetris square board. Rectangular board that contains
a grid of colored squares representing the pieces.

- Main.java: Program main class. Set up the frames, listeners and starts
the game

To adapt the obtained code for our purpose, we modified the Game.java
class to instead of one piece, two pieces are created (source code can be
found on Annex 3, Game.java). We also need to modify all the game
handlers to complete the code.

Also keyboard keys are assigned to permit the movement of both players’
pieces into the square board.

At this point, we have a Tetris game for two players but is still an Istuff proxy
required. We have created an Istuff proxy class, called IstuffProxy.java
(source code is available on Annex 3).

The integration of IStuffProxy and the Game is done using an EventListener
Java object that is implemented by the IStuffProxy class. Then a method
that listens to these events is created on Game.java (called

32

Ubicomp:Using iStuff

onReceivedSignal) that implements the right movement of the piece
according to the received message from IStuff event heap.

The following Fig. 16 shows the schematic of the proposed test scenario:

ISTUFF PATCH PANEL
s
COLLABORATIVE

TETRIS

o -

=]

Fig. 16 Collaborative Tetris test scenario.

The scenario is composed by three hosts with the following specs:

* ISTUFF:

o

o
o
o

Hostname: istuff

IP: 147.83.118.126

ISTUFF components: Event heap and Event Logger
WiiGeeGui with integrated iStuff proxy. Acts as player 1 in the
collaborative Tetris.

» PATCH PANEL:

o

0]
0]
0]

Hostname: espc-1

IP: 147.83.118.124

ISTUFF components: Patch Panel.

WiiGeeGUI with integrated iStuff proxy. Acts as player 2 in the
collaborative Tetris.

* COLLABORATIVE TETRIS:

o

o

Hostname: jose-pc
IP: 147.83.118.199

o Collaborative Tetris application.

In the following section 3.3 you can find the results of this test scenario.

Chapter 3: Tests 33

CHAPTER 3. Tests

This chapter summarizes the results obtained from the tests that are described
on chapter 2 in section 2.4.

3.1. iStuff test results

Remember in this first scenario, a PC called “Istuff” with the istuff components
“Event Heap” and “Event Logger”, and in the second pc called “dac-epsc-1” the
patch panel (patch panel and patch panel GUI) and the Terminal event sender
are running.

To illustrate how istuff event bus (event Heap) works, in first test only the event
heap, event logger and the Terminal Event Sender are running.

In this case we can observe the following traffic in the net (figure 17):

1) Intel{R) 82566DC-2 Gigabit Network Connection (Microsoft's Packet Scheduler) : Capturing - Wireshark

Flle Edit Wew o Capture Analyze Statistics Telephony Took Help
BHdoe taFX2E e+ FR|I|EEQAQQD| @EM % B

Filter: |bop stream eq 43 | = Expression... Clear Apply

Mo, - Time: SouUrce Destinaticn Pratocol | Infa
& TP
i TCR
TCR
TCP

92 Win=65044 Len-0
Ack—492 Win=65044 Len 11

147,583,118, ehs >_td pustman
147.83.118.125 ehs > td-postman
4 3 118138 TP cems

ACk=493 Win=65044 L&
21 win=65516 Len=0

Seq=493 4

[Frame 026 (537 bytes on wire, 537 Hy{és céﬁfﬁﬁedj
3 Ethernet II, sSrc: 3com_44:74:c3 (00:0a:5e:44:74:c3), Dst: IntelCor_60:b8:el (00:1c:c0:60:h3:el) -

0010 02 0Ob 03 dd 40 00 B0 D& el &1 93 53 76 7d 93 53 .a.5vk.s
0020 74 8a 04 1% 11 b7 d7 35 ca 56 ae ef ca cl 50 18 S
0030 ff £7 £5 47 00 00 Of 00 08 70 75 74 45 76 B85 &e - putEven
0040 74 00 04 42 53 52 30 00 00 00 00 00 00 00 01 00 T..ESRO.
0050 00 01 ¢& 00 00 00 00 00 00 00 Od 00 09 53 B85 73 ses
0060 73 69 6f 6e 4% 44 00 00 00 Oc 00 03 69 62 74 00 sionID.. int.
0070 00 59 02 ad Sc 02 00 Ob 54 &1 72 &7 65 74 47 72 s Targetcr
0080 6f 75 70 00 00 Q0 Qa 00 06 73 74 72 69 62 67 01 oup..... .string.
0080 04 00 Oh 53 65 71 7% 65 6e 63 65 4e 75 &d 00 0O ...5Seque ncekum.
00a0 00 0c 00 03 6% &2 74 00 00 OO0 00 00 01 02 00 0% LT s
|00h0 45 76 65 62 74 54 F9 70 65 00 00 00 la 00 06 73 EventTyp By s
00cO 74 72 69 6e 67 00 00 00 09 &8 65 &c 6¢c &F 00 00 trin .hello.
|00d0 00 05 68 &5 6C & 6F 00 0Oc 54 €1 72 67 &5 74 44 ?10 -Targetp
00eQ 63 76 69 63 65 00 00 00 0Oa 00 06 73 74 72 B9 de evwce strin
00f0 67 01 04 00 06 53 &F 75 72 63 63 00 00 00 28 00 q 30U rce...).
0l00 06 73 74 72 €% 6e 67 00 00 00 1c 54 65 72 &d 62 .string. .Termi

|0110 6e &1 6C 45 76 B3 Be 74 53 65 6e A4 63 72 5f 37 nalevent Sendar g
10120 38 30 32 32 35 38 39 01 00 10 45 76 63 Ge 74 48 8022589, ..EventH
0130 65 &1 70 56 65 72 73 69 6f Be 00 00 00 OcC 0O 03 eap\/ers"l In o M

0140 69 62 74 00 00 00 00 Q0 02 03 00 Qa 54 69 6d &5 TAEawas wins Time
LoD ad-bf e bY o ey 00100 U000 00408 09 e 7100 Toldve:, o e)
O IntelfR} 825660¢C-2 Gigabit Network Connection .. Packets 1623 Dlsplayed 1z Marked o | Profile; Default

Fig. 17 Wireshark capture of TCP connection involved on test

Initially, a TCP connection between the two hosts is done. First the “dac-espc-1"
host registers to the event Heap and sends the message. After this it
deregisters from event heap and TCP connection terminates.

34 Ubicomp:Using iStuff

Event logger application captured the only packet that is send to the event heap
(Fig. 18):

NEE

File Window Help

Server address: Port: Connect I Disconnect |

| Buffer | LogFile |

Log events to buffer Discard hid

£ Event Inspector |Z| [ﬁ

|__EventType | SourceDevice Field Mame Tpe Postvalue | Ternplate Value
heflo Idac-espc-1 Event Loager Ti... llong 1272467061000 1272467061000 | f=
_|| [EventType string hello hello
|| EventHeapersi. lint z AUTGSET = |
Sequenceblum |int o ; WIRTLAL
SessionlD int 213626356 VIRTUAL
| Source _ |string TerminalEventS... FORMAL
| Sourcefpplicati.. sting TerrninalEventS.. [FORMAL
| Sourcebevice |string dac-espe-1 FORMAL
Target sting FORMAL AUTOSET_OVE.. | =
| Targettpplication string FORMAL AUTOSET _OVE...
A | [TargetDevice |string FORMAL AUTOSET_OVE...
| TarmetGroup string FORMAL AUTOSET_OVE..
| [TargetPerson |string FORMAL AUTOSET OVE..
| imeTolive int 120000 FORMAL | |
Save Events... | Load Events... |/
Clear Events | Export Table... |;5_| Export Table... || Resend Event | |~ |

Connected to Event Heap server version 2 on [T % L]

Fig. 18 Hello EventType packet

Now, we start patch panel component (and the patch panel manager, which
permits us to visualize programmed rules on patch panel). We load the rules
prepared for this test, and start again the modified Terminal Event Sender and
we can observe the following Fig. 19:

£ Event Lopger = |E]r;|
File Window Help
Server address: Port:
Buffer | LogFile |
{¥] Log events to hutfer Discard hidden events Limit buffer to iSUU | events
| EventType | SourceDevice Show Event Type
|[helln dac-espe-1 7 PPMapping
helloHi dac-espe-1 v PP Query
v PPResponse
v SimpleDemao.nitial
v ello
v elloHi
] Fleld Marne I Fleld Tyne
Action |string
ChainEwent int
Event Logger Timestamp long
EventHeapJumps string
EventHeapversion }Lm
2] |EventTyne siring
| [isState Jint
[WappingEventType string
™| MappingSting string
™| Method string
=) MumChunks int
Result object
SeguenceMum int
SessionlD r[m
Source shring
SourcedApplication shring
v SourceDevice string
[Target siring
[l Targetapplication siring
[l [TargetDevice siring
[[TargetGroup string
| TargetPerson string
| [TirneTalLive int
Save Events... | Load Events...
Clear Events | Export Table...

Connected to Event Heap server version 2 on istuff:4535

Fig. 19 Event logger capture

Chapter 3: Tests

On the first packet sent, (EventType:hello) the second packet is automatically
generated by the patch panel (EventType:helloHi) as we requested with the rule
shown on the previous chapter. In this case the source device of both packets is
the same because Terminal Event Sender and Patch panel are running on the

same host.

If we observe in detail we can appreciate that other values are send (Fig. 20):

2. Event Inspector

[Z][E][E £ Fvent Inspector

A=

Field Marne Type Postvalue Termplate Value Field Marme Type PostWalue Template Value
Event Logger Time... long 1270564670610 1270564670610 Event Logger Time... |long 1270564670610 1370564670610
EventType string hello hello EventHeapJurmps [string 1 1
EventHeapiersion int. 2 AUTOSET EveniType string helloHi helloHi
Sequancehlum int. | WIRTLIAL EventHeapWersion |int ¥ AUTOSET
SessionlD int. 1025127651 WIRTLIAL Sequencehlum int 5 VIRTUAL
Source: string TerminalEventSen.. FORMAL SessionlD int FrT495918 IRTLAL
Sourcespplication | string TerminalEventSen.. [FORMAL Souree: string iworkpatchpanelin.. FORMAL
SourceDevice string dac-espe-1 FORMAL Sourcedpplication |string iwork patchpanalin... [FORMAL
Target string FORMAL AUTOSET GVERR SaurceDevice string dac-espe-1 FORMAL
Targetipplication siring FORMAL AUTOSET OVERR. Target string FORMAL AUTOSET OVERR..
TargetDievice string FORMAL AUTOSET _OVERR. Targethpplication string FORMAL AUTOEET _OVERR..
TargetGroup string FORMAL AUTOSET_OVERR. TargetDevice string FORMAL AUTOSET_OVERR...
TargetPerson string FORMAL AUTOEET_OVERR. TargetGroup string. FORMAL AUTOSET_OVERR..

it 120000 FORMAL TargetPerson string FORMAL AUTOSET_OVERR
TimeTolive Int 120000 FORRAL
Export Table... ‘ | Resend Event | | Export Table... | ‘ Resend Event |

Fig. 20 Hello & HelloHi packets in detail

There are other values sent by each element connected to the Event Heap. We
can emphasize:

Source Application: Identifies the software origin of the packet. In the first
one we can observer that this origin corresponds to
TerminalEventSender, and in the second one this is generated by
iwork.patchpannel.Intermediary

SourceDevice: ldentifies the hardware origin of the packet. In both cases
we can distinguish dac-epsc-1 (it's the name of the machine where
PatchPannel and TerminalEventSender software are running).

In more detail, those packets are sent using TCP connection between both
hosts as shown in figure 21:

36 Ubicomp:Using iStuff

I {Untitled) - Wireshark

Ellx_a Edit View Go - Capfure grj.?lyge Statistics Telephqn! lnn!s Help
Bades BCEXEE Qe+ TL/IEE QAP #EB %8

Filter: iip.src==147.83.118.125||ip.d5t==147‘53:118.125 |v Expression... Clear Apply

Ho.

Si

S371515 ;
-373653 147,
-3BBI63 147,
- 3B857E
388893

o= 2
ACK] Seq Ack Win=65535 Len=8
ACK] Seq=1l Ack=% wWin=65527 Len=8
ACK] Seq=92 Ack=9 Win=65527 Len=485

shs » watilapp
TCP watilapp > ehs
TCR watilapp > ehs
ehs > watilapp

Sef=9 Ack=494 win=635042 Len=0
ehs > watilapp

AcCk] Seq=% Ack=494 w 5042 Len=11
ACK B¢ L

-391234 147.83.118.
2.391284 147.83.118.125 147.
2.300584 147.83.118.125 147,
Header Tength: Z0 bytes
® Flags: 0x18 (PSH, AcCK)
window size: 64987
#® Checksum: 0x15a3 [validation disabled]
[SEQ ACk analysis]
= Data (474

ehs 5> veracity ACK] Sen=487 Ack=540 Win-64430 Len=536
L118.138 TP watilapp » ehs [ACK] Seq=495 Ack=21 win=65516 Len=0
L118.138 TCP weracity » ehs [Ack] Seq=54% Ack=1023 win=65335 Len=0 =

|

| Profile: Defaul

Fig. 21 Wireshark capture

We can observe that all the fields that are visualized in the previous captures,
are sent into the data fields of TCP packets.

We can describe the flow in more detail:

1. Terminal Event Sender registers to event Heap, sends the “Hello” packet
and then deregisters. Terminal Event Sender program ends.

2. Event Heap receives the Hello packet and is forwarded to the registered
patch panel.

3. Patch panel receives the Hello packet and looks up in its mapping. Finds
out a rule that matches the received packet and forwards the
corresponding packet, called “HelloHi”, to the event Heap.

4. Finally, event Heap forwards the “HelloHi” packet to all others hosts that
are registered to event Heap.

Chapter 3: Tests 37

3.2. WiiGee library and iStuff library test results

This scenario shows how Wiigee library (or the interaction done using a Wii
remote device) is integrated with the iStuff library as a network communication
path. To probe the correct working of the scenario also a proxy attached to the
IStuff bus is created with the objective of control remotely an operating system.
In this case, Windows Vista is the operating system chosen.

To start up this scenario we have to start first the event heap and event logger.
Then we connect the patch panel to the event heap, start the patch panel
manager in which we load the defined rules you can found on section 3.4.2 and
finally we start the “controlledWindows” application.

The following Fig. 22 illustrates the dialog present in the bus between “ISTAFF”
and “dac-espc-1” (event-heap and patch panel):

¥ (Untitled) - Wireshark E]@E]

Elle Edt Mew Go Capture Anakyze Statistics Telephony Tools Help
Sedee BEXZE e aTi|(IEE QQAF BB O

Filter: (ip.src==147.53.118.12588dp dst==147.83.118.128)|[{ip src==147 63.11f ~ Expression... Clear Apply

Ma. - Time: Source Destination Protocal | Info

31 3.895204 147.83.118.126 147.83.118.125 TCP ehs > mxxrlogin [PSH, ACK] Seq=1l Ack=1 win=64323 Len=537

32 3.896450 147.83.118.125 147.83.118.126 TCP mxxrlogin > ehs [PSH, ACK] Seq=l Ack=538 win=65335 Len=600

33 3,896552 147.83.118.126 147.83.118.125 TCR ehs > mxxrlogin [PSH, ACE] Seq=5338 Ack=610 win=65535 Len=13

34 3.896689 147.83.118.126 147.83.118.125 TCP ehs > mxxrlogin [PSH, ACK] Seq=551 Ack=610 win=65535 Len=596
35 3.8%97059 147.83.118.125 147.83.118.126 TCP mxxrlogin > ehs [ACK] Seq=610 Ack=1147 wWin=564926 Len=0

30 4,.629067 147.83.118.126 147.83.118.125 TCP ghs = mxxrlogin [PSH, aAck] Seq=1147 ack=610 win=65535 Len=537
51 4.630106 147.83.118.125 147.83.118.126 TCP mxxrlogin > ehs [PSH, ACK] Seq=610 Ack=1684 wWin=864389 Len=803
52 4.630207 147.83 118 126 147.83 118 125 TCP ehs > mxxrlogin [PSH, *1684 Ack 1213 W‘m 54932 Lens=. 13
53 4 47.85.118.126 47, 83, 5 2 ghs > mxxrlogin 5H, ACK] -5 L7 54 O 150
54 4630652 147.83 118 125 147.83 118 126 TCP mxxrlogin > ehs [ACK] Seq 1213 Ack 228? W"Irl 65535 Len=0

5.317511 147.83.118.126 147.83.118.125 TCP ghs > mxxrlogin [PSH, Ack] Seq=2287 Ack=1213 Win-64932 Len=537
63 5.318550 147.83.118.125 147.83.118.126 TCP mxxrlogin > ehs [PSH, ACK] Seq=1213 Ack=2824 Win=64998 Len=539
64 5.318655 147.83.118.126 147.83.118.125 TCP ehs > mxxrlogin [PSH, ACk] Seq=2824 Ack=1812 win=64333 Len=13
63 5,318775 147.83.118.126 147.83.118.125 TCP ehs = mxxrlogin [PSH, acCk] Seq=2837 Ack=1812 win=94333 Len=586
66 5.315144 147.83.118.125 147.83.118.126 TCR mxxrlogin > ehs [ACK] Seq 1812 Ack 3423 win= 64399 Len=0 =

0100 Y0 00 00 00 Qa 00 06 73 74 ¥2 69 e 67 01 04 00 P

10110 0Ob 53 65 71 75 65 6e 63 &5 d4e 75 6d 00 00 00 Oc . Sequenc
0120 00 03 6% 62 74 00 00 00 00 00 5c 02 Q0 0C 54 €Ll ISR e
0130 72 67 65 74 44 65 76 68 63 65 00 00 Q00 0Qa 00 06 rgetbevi
10140 73 74 72 69 62 67 01 04 00 06 53 6f 75 72 63 @65 string.. ..Source
|OL50 00 00 00 35 00 06 73 74 72 69 6e 67 Q0 00 00 28 R b P
0160 ©9 77 6F 72 6b 2e 70O 61 74 63 68 70 61 6e 65 6c iwork.pa tchpanel
10170 2e 49 6e 74 65 72 6d 65 64 69 61 72 79 5 31 30 .Interme diary_10
180 31 31 3% 3B 37 37 36 30 01 00 10 45 76 A5 6e 74 11987760 .. Event
10130 48 65 61 70 56 65 72 73 69 6f 62 00 00 00 Oc 00 Heapvers ‘IDn
|0lad 03 69 6e 74 00 00 00 Q0 00 02 03 00 Qe 45 76 65 T e e Eve
101b0 ®e 74 48 65 61 70 4a 75 &d 70 73 00 00 00 12 00 AtHeapJu mps.....
0lcO 06 73 74 72 69 6e 67 00 00 00 01 31 00 00 00 01 SREETADE anh e
101d0 31 00 0% 45 76 65 6e 74 54 79 70 65 00 00 00 28 1..Event Type...({

10le0 00 06 73 74 72 69 6e 67 00 00 00 Oc 43 6f Ge 74 ..stringCont
01fo 72 6f 6C 45 76 65 6e 74 00 00 00 Oc 43 6f Ge 74 rolEventCont
10200 72 6F 6C 45 76 65 6e 74 00 0c 54 61 72 67 65 74 rolEvent ..Target
0210 50 65 72 73 of 62 00 00 00 0a 00 06 73 74 72 69 PEFSOM.. ... stri

0250 B9 63 65 00 00 00 17 00 06 73 74 72 69 Ge 67 00 dce..... string

10260 00 00 0a 64 ©1 63 2d 65 73 70 63 2d 31 01 00 08 ...dac-e spec-1...

0270 54 61 ¥2 67 65 74 00 00 00 0Oa 00 06 73 ¥4 72 69 Target.. stri

10280 6Be 67 O1 04 ng. .

) File ”C:\IDOCUMENII\iosep\CONFIGwi\Temp\ww’ Packsts; 637 Displayed: 135 Marked: Dlﬁroﬁped: o | Profile: Default

Fig. 22 Bus activity during ControlledWindows test

The process that is accomplished in that process is going to be described in
detail:

1. Start event Heap bus.

2. Start event Logger and Event inspector: Both register in even Heap using
a TCP connection that remains open.

3. Start Patch Panel and Patch Panel manager: Also both register to even
Heap using a TCP connection that remains open.

38 Ubicomp:Using iStuff

4. Start WiiGeeGUI: Registers to even Heap with a TCP connection.
Connection remains open.

5. Start ControlledWindows: It registers to the even Heap with a TCP
connection that remains open.

At this point, when an event is sent to the Event Heap bus using the
WiiGeeGUI istuff proxy, we can observe:

1. The event is spread out to other listeners as loggers (event Logger and
Inspector) and to the patch panel.

2. Patch panel receives the event and looks up in rules. If event mapping
exist, acts in agreement with predefined rules. In this case, another event
is sent to the bus. The following figures (Fig.23 and 24) illustrates that
fact:

File Window Help

Server address: Port: Connect Disconnect

[Buffer | LogFile |
[¥] Log events to buffer [¥] Discard hidden events Limit buffer to {500 events
EwventType Sourcelievice Showy Event Type
COAtraIEvEnt CEREE e & ControlEvent
[lEven JETVER : vl Ciemo.lnitial
CantrolEvent dac-espe-1 : Pl FEMapping
WiiEvent ISTUFF 7l FFQuary
CFI.HUEIIEVEHI dac-espc-1 ¥ FPRespanse
WiiEvent ISTUFF i FiEvent
ControlEvent dac-gspc-1
WiiEvent \STUFF R R R R R R RS
ControlEvent dac-aspc-1 : Bhwr Field Marne Field Type
iiiEvent ISTUFF : L Action string
ControlEvent dac-espc-1 i ChainEvent int
WiiEvent ISTUFF i il CantrolCammand string
ControlEvent dac-espe-1 L Event Logger Timestamp long
WiiEvent ISTUFF L EventHeapJumps string
CantrolEvent dac-espe-1 L] EveniHeap¥ersion int
WilEvent ISTUFF 3 EvertType String
ControlEvent dac-espc-1 i L |5 State int
WiiEvent ISTUFF # MappingEventType string
ControlEwent dac-espc-1 i Ll MappingString string
WiiEvent ISTUFF Loail Method string
CantralEvent dac-espe-1 L NumChunks int
WliEvent ISTUFF e Fesult object
CantrolEvent dac-espe-1 [SequenceMum int
WiiEvert ISTUFF i L SessionlD int
CaontrolEvent dac-espc-1 : Source String
WiiEvent ISTUFF i L Sourcefpplication string
ControlEvent dac-espc-1 i SourceDevice string
WilEvent ISTUFF — L Targel string
ControlEvent dac-espc-1 L L Targethpplication string
WilEvent ISTUFF TargetDevice string
ControlEvent |dac-espe-1 -/ L TargetGroup string
i TargetPerson string

Save Events... | Load Events... | =] TimeToLive int

‘ Clear Events | Export Table... ‘ Ll wiiiCommand string

Connected to Event Heap server version 2 on istuff:4535

Fig. 23 Event Logger capture during Controlled Windows Test

Previous Fig. 23 shows the traffic of events into the event heap: we can
differentiate between the event sent by wiiGeeGUI (from SourceDevice:
ISTUFF) and the corresponding event generated by the patch panel rules (from
SourceDevice: dac-espc-1).

The following Fig. 24 shows in more detail two of the packets involved in this
process: the first packet is generated by the wiiGee GUI and the second one is
the generated by the patch panel rules. The first packet with the “WiiCommand”
with post value *“circulitos” generates a “ControlCommand” with post value

Chapter 3: Tests 39

“Execute”. Control Command “Execute” on the Controlled Windows software
generates that Java robot simulates the push of “Intro” button.

Event Inspector.

Field Mame Type FostWalue Template Value

Event Logger Timestamp |long 1274103989937 1274103939937
EventType string WiiiEvent WiiEvent
ViiCormmand string circulitos FORMAL
EventHeapersion int 2 AUTOSET
Sequencerlum int 1 WIRTLIAL
SessionlD int 479887417 WIRTLAL
Source string arg wiigee device Wiimot. . |[FORMAL
SourceApplication =tring org.wiigee device Wiimot.., |FORMAL
SourceDevice string ISTUIFF FORMAL
Targat string FORMAL AUTOSET_OWERRIDEAE. .
TargetApplication string FORMAL AUTOSET_OVERRIDEAE. .
TargetDevice string FORMAL AUTOSET_OVERRIDEAE. .
TargetGroup string FORMAL AUTOSET_OVERRIDEAE..
TargetPerson string FORMAL AUTOSET_OWERRIDEAE. ..
TirmeTalive int 120000 FORMAL

Export Table... ‘ ‘ Resend Bvent

Event Inspector,

Field Mame Type PostWalue Template Value
ControlCammanid string Execute Exgcute
Event Logger Timestamp (long 1274103989937 1274103989937
EventHeapJumps string 1 1
EventType string ControlEvent ControlEvent
EventHeaparsion int 2 AUTOSET
Sequencerum int 117 WIRTLAL
SessionlD int 944951395 WIRTUAL
Source string twork patchpanel Interme... [FORMAL
SourceApplication string iwark patchpanel Interme. . |[FORMAL
SourceDevice string dac-espe-1 FORMAL
Target string FORMAL AUTOSET_OWERRIDEAE...
Targettpplication string FORMAL AUTOSET _OWERRIDEAE. .
TargetDevice string FORMAL AUTOSET_OVERRIDEAE. .
TargetGroup string FORMAL AUTOSET_OVERRIDEAE. .
TargetPerson string FORMAL AUTOSET_OVERRIDEAE..
TimeToLive int 120000 FORMAL
‘ Export Table... ‘ ‘ Resend Event |

Fig. 24 Event sent by WiiGeeGUI and response by Patch Panel

40 Ubicomp:Using iStuff

3.3. Collaborative application test results

This scenario simulates a real environment in which ubiquitous computing
component, iStuff event heap, is connecting to a new human centered device,
wiiMote using WiiGee libraries, to interact with a collaborative application: the
collaborative Tetris software.

To configure the scenario fist we have to start all istuff components: event heap
and event logger applications at host “istuff” and, patch panel and patch panel
manager at host “espc-1". Then we need to load patch panel rules defined in
section 3.4.3 using patch panel manager software. The last step consists in
startup wiigee software and to connect WiiRemote devices at hosts “jose-pc”
and “espc-1” respectively.

The scenario works as following:

=

A user performs a gesture with the WiiRemote device.

WiiGee software recognizes (as describes on section 1.6) or not the

gesture.

3. IStuff proxy integrated on WiiGee software sends a packet type
“WiiEvent” containing the name of the recognized gesture to the event
heap.

4. Event heap delivers the packet to patch panel host which captured it.

5. Patch panel looks up in its predefined rules if exists any rule that affects
the received packet. In this case, the packet is mapped to another type of
packet “ControlEvent” following the rules that you can find in section
3.4.3. The new packet “ControlEvent” with the corresponding value
according to the patch panel rules is send again to the event heap.
Notice that according to the patch panel rules a “WiiEvent” packet with
the same message will generate a different output packet according to
the source device that generates the “WiiEvent” packet.

6. Throw the event heap the packet finally arrives to “jose-pc” that contains
iIStuff proxy (in collaborative Tetris software) that captures this kind of
packets.

7. The corresponding event is generated internally in collaborative Tetris

software, event listener delivers it to the game and the right Tetris figure

move along the square board.

N

The following Fig. 25 proves the traffic between all the hosts (captured on host
“istuff”) is done using TCP connections. All packets are always sent to all the
hosts subscribed to event heap.

Chapter 3: Tests 41

71 captura tetris.pcap - Wireshark
File Edit View Go Captu nalyze Statistics Help

DEBAY CEXES AesDTL Qe b @Dm| d

Filter: | ip.src==147.83.118.126/ip.dst==147.83 118 126&8tcp

+ Expression... Clear Apply

No. . Time
559 34.302452

Info 0
jstel > ehs |PSH, ACK| Seq=14887 Ack=352 Win=64365 Len=554

Protocol
TCP

Destination
147.83.118.126

Source
147.83.118.124

562 34.304023 147.83.118.124 147.83.118. TCP mxxrlogin > ehs [PSH, ACK] 5eq=21017 Ack=40400 Win=64994 Len=600

. 304590
.307795

.83.118.124
.83.118.199

.83.118.
.83.118.

mxxrlogin > ehs [ACK] Seq=21617 Ack=41000 Win=64394 Len=0
56624 > ehs [PSH, ACK] Seq=18647 Ack=21211 Win=64240 Len=533

509705
. 742202

.83.118.124
. 83,118,124

.83.118.
.83.118.

jstel > ehs
jstel > ehs

[Aack] seq=15441 Ack=365 wWin=64352 Len=0
[PSH, ACK] Seq-15441 Ack=365 Win—64352 Len-554

742452
743718

83.118.126
. 83.118.124

ehs > mxxrTogin [FSH, ACK
mxxrlogin > ehs [PSH, ACK]

=41000 ACk=21617 Win=64935 [TCP CHECKSUM INCORRECT.
21617 Ack=41541 Win=65535 Len=600

Len=541

578 34.
579 34.
580 34.

744839
750869
931562

.83.118.124
147.83.118,199
.83.118.124

.83.118.
7.83.118.
.83.118.

mxxrlogin > ehs [ACK] seq=22217 Ack=42141 win=64935 Len=0
56624 > ehs [PSH, ACK] Seq=19180 Ack=21800 win-63651 Len=533
jstel > ehs [ACK] 5eq=15995 Ack=378 Win=64339 Len=0

TP

583 35.217457 147.82.118.124 _83.118. TP jstel > ehs [PSH, ACK] seq=15995 Ack=378 win=64330 Len=553

586 35.219452 147.83.118.124 147.83.118.126 TCP mxxrlogin > ehs [PSH, ACK] 5eq=22217 Ack=42681 Win=64395 Len=600

Ethernet II, Src: IntelCor_60:b8:el (00:1c:c0:60:b8:el), Dst: 3com 44:74:c3 (00:0a:5e:44:74:c3)
Internet Protocol, Src: 147.83.118.126 (147.83.118.126), Dst: 147.83.118.124 (147.83.118.124)
[pata (541 bytes)

oot 0000034:33300000000000000001000002080000033F0000. .~

0040 00 00 02
oo 11 53 6F 75 63 6

m

Packets: 1070 Displayed: 699 Marked: 0 Profile: Default

Fig. 25 Traffic between the hosts involved on the third test

We are going to observe in more understandable point of view the traffic that
event heap supports using the event logger and event inspector applications;
tools that are present in iStuff toolkit.

File Window Help

Server address:

Buffer | LogFile |

[¥] Log events to buffer [v] Discard Event Inspector

EventType

Field Mame

Type

Faostalue

| SourceDevice
1
|

ControlEvent

|espe-1

all

Ewvent Logger ...

long

12748719080,

12748719080,

EventType

string

WiiEvent

WiiEvent

WiiEyent
ControlEvent
WiiEvent
CantralEvent
WiilEvent
ControlEvent
WiiEyent
CantralEvent
WiiEvent
CantralEvent
WiiEyent
ControlEvent
WiiEvent
CantralEvent

lespe-1
espe-1
ISTUFF
espe-1
|espe-1
lespe-1
ISTUFF
espe-1
espe-1
espe-1
ISTUFF
espe-1
ISTUFF
espe-1

Save Events... | Loai Events...

FORMAL
AUTOSET
WIRTUAL
WIRTIIAL

WiiCommand
EventHeapVer...
Seguencenum
SessionlD

string amunt
int B
int i
int 1668888723

Export Table... | | Resend Event

I55tate
MappingEventType
MappingString
Wethod
MumChunks
Result
Seguenceium
SessionlD

Source

int
string
string
string
int
|ohject
|int
|int
|string

| Clear Events | Export Table...

Connected to Event Heap server version 2 on istuff:4535

Fig. 26 WiiEvent packet generated by WiiGee software on istuff host

The previous Fig. 26 shows a packet send by the iStuff proxy integrated on
WiiGee software that runs on istuff host. This packet is generated when a

42 Ubicomp:Using iStuff

gesture type “amunt” (present on the Wii Comand field name on the “Post
Value” row in Event Inspector window) is recognized by WiiGee software.

DREE =
File WWindow Help
Server address: Port: | Connect | Disconnect |
Buffer | LogFile |
[v] Log events to buffer LR = Fvent Inspector D@]rz|
EventType SourceDevice §§ Field Mame Type FostWalue |Template Value |
ControlEvent espe-1 = pacontriicomm. sty Up Up i |
VWiiEvent espe-1 “fl |Event Logger ... [lang 12749719080, 12749719080, {
ContralEvent espe-1 Al [EventHeapdu... |string 1 1 |1 e
VWiiEwent ISTUFF §§ EventType string CantrolEvent |ControlEvent
ControlEvent |espe-1 || EventHeapver. int 2 AUTOSET
ViiEvent espe-1 ol [Benuenceium lint 414 - VIRTUAL =
ControlEvent espe-1
WiiEwent ISTUFF §§ Export Table... | | Resend Event =
ControlEvent aspc-1 i —
WiiEwvent espe-1 L |55tate int
CantrolEvent espe-1 Ll MappingEventType string
WiiEwvent IETUFF s MappingString string
ControlEvent aspc-1 L] Method string [
YWiiEvent ISTUFF [=| L] MumChunks int
CantrolEvent espe-1 - ™ Result abject
L] Sequencelum int
Sawve Events... | Load Events... : Ll SessioniD int
| Clear Events | Export Table... | L Source string =
Connected to Event Heap server version 2 on istuff:4535

Fig. 27 ControlEvent packet (Up) generated by patch panel software on espc-1
host

Previous Fig. 27 shows the packet generated by patch panel on host “espc-1”
as a response on the previous packet shown on figure 26. Event Inspector
details the content of the packet where we can observe that the previous packet
type “WiiComand” with post value “amunt” generated a “ControlCommand”
packet with “Up” value. This type of packet produces that player one figure
move all down in the square board.

The following Fig. 28 shows a same type of packet but now, generated by espc-
1 host with which plays player 2.

We can observe that packet contains the same Event type value because the
version software used is the same as in “istuff” host.

Chapter 3: Tests

43

*— . Event Logger

File Window Help

Server address: Port: | Connect I Disconnect |
Buffer | LogFile |
Log events to huffer Wil = Event Inspector
EventType SourceDevice : Field Mame Type FostValue |Ternplate Yalue| |
ContralEvant eapo «| W |Event Logoer ... |long 12749719074, 112749719074, |&| p——I=
WIiEvent espo- EventType string WiilEvent WiiEwent 1
ControlEvent espe-1 2 e:tring amunt FORMAL 1 -
WilEvent ISTUFF 1int f’ &]Lgr SET
CantralEvent espe-1 o T unca |
WiiEvent espe-1 L ; §a%'34-25'&']FEI"JM_ -
ControlEvent espe-1 :
WiiEvent ISTUFF ; | Export Table... | | Resend Event =
CantralEvent 25pc-1 : e
liEvant espe-1 L |sState int
ControlEvent espe-1 L MappingEventType string
WWiiEvent ISTUFF Ll MappingString string
ControlEvent espe-1 Ll hethod string |
WiiEvent ISTUFF =] Ll MumChunks int
ContralEvent espo-1 - [Result Iobject
i [] SequenceMum int
Save Events... | Load Events... i] SessionD |int
| Clear Events | Export Table... | L Source !string ~|

¥ Connected to Event Heap server version 2 on istuff:4535

Fig. 28 WiiEvent packet generated by WiiGee software on espc-1 host

Following Fig. 29 shows a Control Event packet with “Up2” PostValue which in
this case is also generated by patch panel software that runs on espc-1 host.
Notice that in this case post value changed compared with the packet shown in

Fig. 27. This is due to the rules loaded in patch panel; it has detected that in this

case the packet comes from “espc-1" host and not from “istuff” host.

File Window Help

Server address: -

[Buffer | LogFile |

Port:

| Connect I Disconnect |

v| Log events to huffer el = Ewvent Inspector v =1E3 events
- Event Insp (= B
EventType SourceDevice Field Mame Type PostValue |Template Value |
ControlEvent espc-1 Canitenllamim, . Strig Laz Up2 x| BT
iEvent espe-T Event Lagger .. [long 12749715074, 12745719074, |
ContralEvent espcT EventHeapJu... [string 1 1 | o
m EventType string ControlEvent |[ContralEvent
WiiEvent ISTUFF e - e
CantrolEvent espc-1 Eﬁeahﬂa}%’ﬁ%ﬂ iﬁt 2 M SET
WiliEvent Eaped Sequencehlurm jint 4132 VIRTUAL =
ControlEvent espe-1
WiiEvent ISTUFF | Export Table... | | Resend Event. =
ControlEvent espc-1 —
WiiEvent espe-1 Ll IsState int
ContralEvent eapc-1 L] MappingEventType string
WiiEvent ISTUFF L MappingString string
CantrolEvent espe-1 L Methad =tring EH
WiiEvent ISTUFF L Mumizhunks int
ControlEvent Espc-1 [aal Result lobjgct
L] Sequencehlum lint
Save Events.., | Load Events... = SecsionD fint
| Clear Events | Export Table... L Source !string]

Connected to Event Heap server version 2 on istuff:4535

Fig. 29 ControlEvent packet (Up2) generated by patch panel software on espc-
1 host

44 Ubicomp:Using iStuff

CHAPTER 4. Conclusions

This chapter contains the master thesis conclusions. First the test conclusions
are present. Following the green study about the possible impact of studied
technology could produce in the environment, and the personal conclusions |
have obtained carrying out this master thesis.

4.1 Tests conclusions

iIStuff toolkit was created to act as a middleware allows interconnection
between a high number of devices that initially, where not created to interact in
an ubiquitous environment. In our case, has permitted successfully the
interconnection between Nintendo Wii Remote devices and software on
different hosts with different operating system.

The first test has shown that iStuff software works successfully according to the
programmer specifications and the basic scenario configuration is correct.

The second test has proved that iStuff proxy created to interact with Event Heap
works successfully and also proved a simple way to interact with an operating
system using a WiiMote device.

The last test represented how to introduce some “intelligence” to the patch
panel’'s iStuff toolkit from the differentiation between the source host that
generates a specific packet and another host that generates the same packet
type. Also has shown how to integrate ubiquitous components into an existing
program to become part of “ubiquitous environment”.

We can achieve the following points from iStuff toolkit experience:

- Fast and easy: iStuff toolkit architecture has proved as a fast and easy
environment to develop applications that can interact in a ubiquitous
environment. Only with the creation of a proxy that acts as middleware
between our applications or our hardware devices firmware we can
achieve a ubiquitous device.

- Interoperability: Thanks to the use of Java technology iStuff toolkit is
independent of the operating system. Besides, it would be used in tiny or
small operating systems (such as firmwares) that implement a Java
Virtual Machine on its systems.

- Independent: Using hostname instead of IP addresses permits the
connection between hosts across Internet and independent from static or
dynamic IP addresses. It stands up the point that in ubiquitous
environment network elements are dynamic and can appear or disappear
in the network, fact that using DNS can be solved correctly.

Chapter 4: Conclusions 45

- Multiuser: Different users can interact at same time with iStuff toolkit
independently or together, in a different or in the same task without any
appreciable difference.

- Security: IStuff toolkit doesn’t give any kind of security to the users. All
the TCP packets between the hosts travel “in clear” through the network.
Neither any security check is done when patch panel rules are set up.
Both security fails could permit that a malicious user manages the
network as he pleased.

- Limitations: Java Virtual Machine has become unstable in some
moments due to the suddenly shut down of some iStuff components. In
those cases a reboot of virtual machine was needed.

Another device and related software has been used in this master thesis: the
Nintendo’s Wii Remote. It was plugged into personal computer environment
through WiiGee java libraries. Wii Remote has demonstrated a powerful device
in which new human-to-computer interfaces refers. It could be a starting point,
for example, to bring closer computer technology to elderly population or to
people with a reduced accessibility.

The main limitation we noticed is the gesture recognition procedure: a gesture
that could be easy to reproduce for a person couldn’t be for another person

This is, when a user tries to use WiiRemote with the predefined gestures of
another user, some gesture will be difficult to reproduce. The solution goes
through the individual training of gestures for each user involved. This fact
doesn't’ represent a hint from the point of view of the software because WiiGee
GUI permits save and load gestures set during execution time.

To sum up, this master thesis has accomplished the proposed goals. It has
proved the capabilities of wiiGee library with some limitations when two
gestures are very similar, it can confuse wiiGee software and recognize a wrong
gesture. Especially you can notice it when saved gestures from one user are
tried to be reproduced by another user.

Also iStuff toolkit has proved as a fast and easy environment to create
ubiquitous test environment. Patch Panel element has demonstrated as a
powerful tool because allows creation of complex mapping between events. An
IStuff proxy has been integrated successfully into wiiGeeGUI allowing us to
create a ubiquitous environment. To complete this environment a collaborative
application has been programmed. That application permits the interaction
between two users and the ubiquitous scenario elements with a common
objective: complete a Tetris game.

46 Ubicomp:Using iStuff

4.2 Green study

The execution of this master thesis did not represent any harmful effect to the
environment excluding the possible responsibilities during the manufacturing
process of the hardware devices used; so this kind of responsibilities are not of
our scope.

4.3. Personal conclusions

When | started this master thesis | realized that ubiquitous computing is one of
the next steps in human to computer interaction refers. This is, don’t learn how
to use computer technology, transform it to technology that learns from users
how they want devices act.

Also exists a related topic not discussed in this master thesis but not less
important. That is the associated anonymity of the users of a ubiquitous
environment. Imagine that undesired user access to your personal ubiquitous
home network; he would know what TV program you are watching, access
perhaps to your personal photos or simply locate yourself inside the building. |
think to try to avoid this kind of problems, future ubiquitous environments will
emphasize security and anonimity related issues.

Personally, | will try to develop my personal career in one of the subjects |
studied during the execution of this mater thesis, ubiquitous computing and/or
new human to computer interfaces. Those subjects are still not present in our
daily live and could be an emerging market. Another interesting point is those
technologies apologizes to facilitate users lives and society‘s well done.

Glossary

47

GLOSSARY

DNS — Domain Name Server

GUI — Graphical User Interface

HCI — Human - Computer Interaction

ID — Identification

L2CAP — Logical Link Control and Adaptation Protocol
OED - Oxford English Dictionary

OS - Operating System

PDA — Personal Digital Assistant

SDK — Software Development Kit

TCP — Transmission Control Protocol

VNC - Virtual Network Computing

48 Ubicomp:Using iStuff

REFERENCES

[1] Oxford University Press. Oxford English Dictionary. Oxford University Press,
2000.

[2] Stajano, Frank. Security for ubiquitous computing, John Willey & Sons, Ltd.
2002

[3] http://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html

[4] http://www.cl.cam.ac.uk/research/dtg/research/wiki/BatSystem

[5] http://oxygen.csail.mit.edu/Overview.html

[6] http://en.wikipedia.org/wiki/User-centered_design

[7] http://en.wikipedia.org/wiki/Human-centered_computing_(discipline)
[8] http://hci.stanford.edu/research/istuff.html

[9] http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

[10] Rafael Ballagas, Meredith Ringel, Maureen Stone, Jan Borchers. iStuff: A
Physical User Interface Toolkit for Ubiquitous Computing Environments

[11] Jan Borchers, Meredith Ringel, Joshua Tyler, and Armando Fox. Stanford
Interactive Workspaces: A Framework for Physical and Graphical User Interface
Prototyping - http://www.cl.cam.ac.uk/research/dtg/research/wiki/BatSystem

[12] http://en.wikipedia.org/wiki/X10_%28industry_standard%29
[13] http://wiibrew.org/wiki/Wiimote

[14] http://www.wiigee.org/

[15] http://java3d.dev.java.net/

[16] http://us.kensington.com/htm|/9403.html

[17] http://www.taringa.net/posts/downloads/1533488/Como-instalar-
WIDCOMM-drivers-5 1 0 1100.html

[18]
http://markmail.org/message/izwhoja2pma6a3vx#query:wiiremote%20widcom%
2012cap+page:1+mid:4y5wi44e5enbmc7ok+state:results

[19] http://www.cs.unc.edu/~dewan/290/s97/notes/intro/node2.html

[20] http://www.broadcom.com/products/Bluetooth/Bluetooth-RF-Silicon-and-
Software-Solutions/BCM2042

[21] http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf

[22]
http://www.wiigee.org/download_files/gesture_recognition_with_a_wii_controller
-schloemer_poppinga_henze_boll.pdf

Annex1

Annex 1

TerminalEventSender.java

i mport iwork.eheap2.*;

i mport java.net.*;

i mport java.util.*;

i mport java.io.Serializable;

publ i c cl ass TerminalEventSender {
privat e EventHeap mEventHeap;
publ i c String mMachineName;

publ i ¢ TerminalEventSender(){

try{
String eventHeapName = “istuff" ;
String eventType = "hello"
List<Object> fieldList = new ArrayList<Object>();
[**for (int i=2;i<args.length; i++){
fieldList.add(new FieldvValuePair(args [iD);
}**/
System. out .printin("sending...");

send(eventHeapName, eventType, fieldList);

cat ch (ArraylndexOutOfBoundsException aexp){
print Usage();

}
}
publ i c voi d send(String iEventHeapName, String iEventType, Lis t
iFieldValueList){
mEventHeap = new EventHeap(iEventHeapName);
try{
Event oEvent = new Event(iEventType);
f or (lterator i=iFieldValueList.iterator();
i.hasNext();){
FieldValuePair pair = (FieldValuePair)i.next();
oEvent.setField(pair. mFieldName , pair. mValue ,
FieldVvalueTypes. FORMAL);
}
System. out .printin("putting event...");
mEventHeap .putEvent(oEvent);
cat ch (EventHeapException eexp){
}
}

/linteger Number > Float Number > String
cl ass FieldValuePair{
String mFieldName ;
Serializable mValue ;
publ i ¢ FieldValuePair(String iStringToParse){
[[ffasd:asdda
[/[ssasdsdf
/['ssdasda asdasd "
String[] parts;

50 Ubicomp:Using iStuff

i f (iStringToParse.startsWith("
parts = iStringToParse.split(B\);
}
el se{
parts = iStringToParse.split(),
}
String iFieldName = parts[0].trim();
i f (iIFieldName.startsWith(" /IStrip off quotes
iFieldName =
iFieldName.substring(1,iFieldName.length());
}

String iValString = ;
i f (parts. length >0){
iValString= parts[1].trim();

mFieldName = iFieldName;
try{
i nt intValue =
Integer. par sel nt (iValString.trim());
mValue = new Integer(intValue);

cat ch (NumberFormatException niExp){
try{
f1 oat floatvValue =
Float. par seFl oat (iValString.trim());
mValue = new Float(floatValue);
}

cat ch (NumberFormatException nfExp){
mValue = iValString;
} llenf try float
} /lend try integer

}
}
public static voi d main(String[] args)
{
TerminalEventSender s;
s= new TerminalEventSender();
}
public static void printUsage()}{
System. out .printin("Usage: TerminalEventSender <event heap
name> <event type> {<field name:value>}*");

System. exit (-1);
}

Annex 2

51

Annex 2

IStuffProxy.java

package wiigeegui ;

i mport iwork.eheap2.Event;

i mport iwork.eheap2.EventHeap;

i mport iwork.eheap2.EventHeapException;
i mport iwork.eheap2.FieldValueTypes;

i mport java.io.Serializable;
i mport java.util.ArrayList;

i mport java.util.lterator;

i mport java.util.List;

public cl ass IStuffProxy {
privat e EventHeap mEventHeap;
publ i ¢ String mMachineName;
String eventHeapName = "localhost" ;
String eventType = "WiiEvent" ;
List<Object> fieldList = newArrayList<Object>();

publ i c voi d arrenca(String command) {

fieldList .add(new FieldValuePair("WiiCommand:" +command));

System. out .printin("sending...");
send(eventHeapName , eventType , fieldList);

}

publ i ¢ voi d send(String iEventHeapName, String iEventType,
List iFieldValuelList) {
mEventHeap = new EventHeap(iEventHeapName);
try{
Event oEvent = new Event(iEventType);
f or (lterator i = iFieldValueList.iterator();

i.hasNext();) {
FieldValuePair pair = (FieldValuePa ir) i.next();
oEvent.setField(pair. mFieldName , pair. mValue,
FieldValueTypes. FORMAL);
}

System. out .printin("putting event...");
mEventHeap .putEvent(oEvent);
} cat ch (EventHeapException eexp) {

/I Integer Number > Float Number > String
cl ass FieldValuePair {

String mFieldName ;

Serializable mValue ;

publ i ¢ FieldValuePair(String iStringToParse) {
/I ffasd:asdda
/I ssasdsdf :

52

Ubicomp:Using iStuff

Il "ssdasda asdasd "
String[] parts;
i f (iStringToParse.startsWith(
parts = iStringToParse.split(
} el se{
parts = iStringToParse.split(

}

String iFieldName = parts[0].trim();
i f (iIFieldName.startsWith(
iFieldName = iFieldName.substring(1
iFieldName.length());
}

||\|||l

String iValString = ;
i f (parts. length >0){
iValString = parts[1].trim();
}

mFieldName = iFieldName;
try{
i nt intValue = Integer.
mValue =

AEY
"W)i

")

) { // Strip off quotes

par sel nt (iValString.trim());
new Integer(intValue);

} cat ch (NumberFormatException niExp) {

try{
fl oat floatValue =

par seFl oat (iValString.trim());
mValue =

Float.

new Float(floatValue);

} cat ch (NumberFormatException nfExp) {

mValue = iValString;
/l'enf try float
} /I end try integer

Annex 2

53

ControlledWindows.java

package src_;

i mport java.awt.AWTEXxception;
i mport java.awt.Robot;
i mport java.awt.event.KeyEvent;

i mport iwork.eheap2.EventHeap;

public cl ass ControledWindows i mpl enent s Runnable {
iwork.eheap2.Event templateEvent
EventHeap m_EventHeap ;

ControledWindows(String server)

super ();
System. out .printin ("Trying to connect\n");
m_EventHeap = new EventHeap(server);
System. out .printin ("Did we connect?");
try{
templateEvent = newiwork.eheap2.Event("ControlEvent");
} cat ch(Exception ex) { ex.printStackTrace(); }
/IsetDaemon(true);
}
public void run()
whi | e(true){
try{

iwork.eheap2.Event e =
m_EventHeap .waitForEvent(templateEvent);
handleEventHeapEvent(e);
} cat ch(Exception ex) { ex.printStackTrace(); }
}
}

publ i ¢ voi d handleEventHeapEvent(iwork.eheap2.Event e)

Robot rob = nul | ;
try{
rob = new Robot();
} cat ch (AWTException el) {
Il Auto-generated catch block
el.printStackTrace();

}

try{
String command = e.getPostValueString("ControlCommand");

System. out .printin("command: " + command);
i f (command.equals("Windows")) {
rob.keyPress(KeyEvent. VK_W NDOWS);
rob.keyRelease(KeyEvent. VK_W NDOWS);
} el se i f (command.equals("Left")){
rob.keyPress(KeyEvent. VK_LEFT);
rob.keyRelease(KeyEvent. VK_LEFT);
} el se i f (command.equals("Right")){
rob.keyPress(KeyEvent. VK_RI GHT);
rob.keyRelease(KeyEvent. VK_RI GHT);

54 Ubicomp:Using iStuff

} el se i f (command.equals("Up")){
rob.keyPress(KeyEvent. VK_UP);
rob.keyRelease(KeyEvent. VK_UP);
} el se i f (command.equals("Down")) {
rob.keyPress(KeyEvent. VK_DOWN);
rob.keyRelease(KeyEvent. VK_DOMN);
} el se i f (command.equals("Execute")){
rob.keyPress(KeyEvent. VK_ENTER);
rob.keyRelease(KeyEvent. VK_ENTER);

} cat ch(Exception ex) { ex.printStackTrace(); }

public static voi d main(String [] argv) {
ControledWindows cw = new ControledWindows("istuff");
Thread t = new Thread(cw);
t.start();

}

Annex 3

55

Annex 3

Game.java

/*
* @(#)Game.java

* This work is free software; you can redistribute

* modify it under the terms of the GNU General Pub

* published by the Free Software Foundation; eithe

* the License, or (at your option) any later versi

*

* This work is distributed in the hope that it wil

* but WITHOUT ANY WARRANTY; without even the impli
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURP
* GNU General Public License for more details.

*

* Copyright (c) 2003 Per Cederberg

*/

package net.tetriscollaborative;

java.awt.Button;
java.awt.Component;
java.awt.Container;
java.awt.Dimension;
java.awt.Font;
java.awt.Graphics;
java.awt.GridBagConstraint:
java.awt.GridBagLayout;
java.awt.Insets;
java.awt.Label;
java.awt.Rectangle;
java.awt.event.ActionEvent;
java.awt.event.ActionListener;
java.awt.event.KeyAdapter;
java.awt.event.KeyEvent;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

)

The Tetris controls all
handles all
interaction

* game. This class
*

*

* class.

*

*

*

the game logics.

with the graphical game component

1.2
Per Cederberg ,

@ersion

@ut hor per@percederberg .net

public cl ass Game extends Object
IstuffProxy.ControlListener {

i mpl enent s

/**
* The main square
*/
pri vat e SquareBoard

board. This board

board = nul |;

/**
* The preview square board.
* preview of the figures.

*/

pri vat e SquareBoard

This board

previewBoard =

events
The game is started

is used for

is used to display

it and/or

lic License as
r version 2 of
on.

| be useful,
ed warranty of
OSE. See the

. All rights reserved.

in the game and
through user
provided by this

the game itself.

a

new SquareBoard(5, 5);

56

Ubicomp:Using iStuff

/**
*/
pri

/**

*

preview X la peca 2

vat e SquareBoard previewBoard2 = new SquareBoard(5, 5);

The figures used on both boards. All figures are reutilized in

* order to avoid creating new objects while the game is running.
* Special care has to be taken when the preview figure and the
* current figure refers to the same object.

*/
pri

pri

pri

/**

*/
pri

/**

*/
pr

/**

*
pri

/**

*
pri

vat e Figure][] figures ={
new Figure(Figure. SQUARE_FI GURE),
new Figure(Figure. LI NE_FI GURE),
new Figure(Figure. S_FI GURE),
new Figure(Figure. Z_Fl GURE),
new Figure(Figure. Rl GHT_ANGLE_FI GURE),
new Figure(Figure. LEFT_ANGLE_FI GURE),
new Figure(Figure. TRI ANGLE_FI GURE)
vat e Figure][] figures2 ={

new Figure(Figure. SQUARE_FI GURE),

new Figure(Figure. LI NE_FI GURE),

new Figure(Figure. S_FI GURE),

new Figure(Figure. Z_Fl GURE),

new Figure(Figure. Rl GHT_ANGLE_FI GURE),
new Figure(Figure. LEFT_ANGLE_FI GURE),
new Figure(Figure. TRI ANGLE_FI GURE)

The graphical game component. This component is created on the
first call to getComponent().

vat e GamePanel component = nul | ;

The thread that runs the game. When this variable is set to

null, the game thread will terminate.
vat e GameThread thread = null;
The game level. The level will be increased for every 20 lines

removed from the square board.

vate int level =1,

The current score. The score is increased for every figure that
is possible to place on the main board.

vate int score =0;

The current figure. The figure will be updated when

vat e Figure figure = null;

Annex 3 57
/**
* figura 2
*/
private Figure figure2 = null;
/**
* The next figure.
*/
private Figure nextFigure = null;
private Figure nextFigure2 = null;
/**
* The rotation of the next figure.
*
private int nextRotation =0;
private int nextRotation2 =0;
/**
* The figure preview flag. If this flag is set, the figure
* will be shown in the figure preview board.
*/
private bool ean preview = true;
/**
* The move lock flag. If this flag is set, the current figure

* cannot be moved. This flag is set when a figure is moved all
* the way down, and reset when a new figure is displayed.

*

private bool ean moveLock = fal se;

private bool ean moveLock2 = fal se;

/**
* Creates a new Tetris game. The square board will be given
* the default size of 10x20.
*/
publ i c Game() {
t hi s(10, 20);
}
/**
* Creates a new Tetris game. The square board will be given
* the specified size.
* @ar am width the width of the square board (in positions)
* @ar am height the height of the square board (in positions)
*/
publ i ¢ Game(i nt width, i nt height) {
board = new SquareBoard(width, height);
board .setMessage("Press start");
thread = newGameThread();
}
/**

Kills the game running thread and makes necessary clean - up.
* After calling this method, no further methods in this class

* should be called. Neither should the component returned
* earlier be trusted upon.
*/

public voi d quit() {

58

Ubicomp:Using iStuff

thread = null;

/**

* Returns a new component that draws the game.
*

* @eturn the component that draws the game

*/
publ i ¢ Component getComponent() {
i f (component == null){
component = new GamePanel();
}
return component ;
/**
* Handles a game start event. Both the main and preview square
boards will be reset, and all other game parameters will be
* reset. Finally the game thread will be launched.
*

privat e voi d handleStart() {

/I Reset score and figures

level =1,

score =0;

figure = null;

nextFigure = randomFigure();

nextFigure .rotateRandom();

nextRotation = nextFigure .getRotation();
figure2 = null;

nextFigure2 =randomFigure2();

nextFigure2 .rotateRandom();

nextRotation2 = nextFigure2 .getRotation();

/l Reset components

board .setMessage(nul |);

board .clear();

previewBoard .clear();
handleLevelModification();
handleScoreModification();

component . button .setLabel("Pause");

/I Start game thread
thread .reset();

/**

* Handles a game over event. This will stop the game thread,
* reset all figures and print a game over message.

*/

privat e voi d handleGameOver() {

/I Stop game thred
thread .setPaused(true);

/I Reset figures
if (figure 1= null){
figure .detach();

Annex 3

59

/**

*
pri

/**

*

pri

/**

*
pri

/**

*/
pr

/**

i f (figure2 1= null){
figure2 .detach();

figure = null;
figure2 = null;

i f (nextFigure !'= null){
nextFigure .detach();

i f (nextFigure2 1= null){
nextFigure2 .detach();

nextFigure = null;
nextFigure2 = null;

/[l Handle components
board .setMessage("Game Over");
component . button .setLabel("Start");

Handles a game pause event. This will pause the game thread and
print a pause message on the game board.

vat e voi d handlePause() {

thread .setPaused(true);

board .setMessage("Paused");
component . button .setLabel("Resume");

Handles a game resume event. This will resume the game thread
and remove any messages on the game board.

vat e voi d handleResume() {
board .setMessage(null);
component . button .setLabel("Pause");
thread .setPaused(fal se);

Handles a level modification event. This will modify the level
label and adjust the thread speed.

vat e voi d handleLevelModification() {

component . levelLabel .setText("Level:" + level);
thread .adjustSpeed();

Handle a score modification event. This will modify the score
label.

vat e voi d handleScoreModification() {
component . scoreLabel .setText("Score:" + score);

Handles a figure start event. This will move the next figure

* to the current figure position, while also creating a new
* preview figure. If the figure cannot be introduced onto the

60

Ubicomp:Using iStuff

* game board, a game over event will be launched.
*/
privat e voi d handleFigureStart() {
i nt rotation;

i nt rotation2;

movelLock = fal se;
movelLock2 = fal se;

/I Move next figure to current

figure = nextFigure ;
rotation = nextRotation ;
nextFigure = randomFigure();
nextFigure .rotateRandom();
nextRotation = nextFigure .getRotation();
figure2 = nextFigure2 ;
rotation2 = nextRotation2 ;
nextFigure2 =randomFigure2();
nextFigure2 .rotateRandom();
nextRotation2 = nextFigure2 .getRotation();

/I Handle figure preview

i f (preview){
previewBoard .clear();
nextFigure .attach(previewBoard , true,fal se);
nextFigure .detach();
previewBoard2 .clear();
nextFigure2 .attach(previewBoard2 , true, fal se);
nextFigure2 .detach();

/I Attach figure to game board
figure .setRotation(rotation);
if (! figure .attach(board, false,false)){
previewBoard .clear();
figure .attach(previewBoard , true,fal se);
figure .detach();
handleGameOver();

figure2 .setRotation(rotation2);
if (! figure2 .attach(board, false,true)){
previewBoard2 .clear();
figure2 .attach(previewBoard2 , true, fal se);
figure2 .detach();
handleGameOver();

}

/**
* Handles a figure landed event. This will check that the figure
* is completely visible, or a game over event will be launched.
* After this control, any full lines will be removed. If no full
* lines could be removed, a figure start event is launched
* directly.
*/

privat e voi d handleFigureLanded() {

Annex 3 61

i f (! movelLock &&! movelLock?2)
return;

/I Check and detach figure
i f (figure .isAllVisible()&& figure2 .isAllVisible()) {
score +=10;
handleScoreModification();

} el se{
handleGameOver();
return;

}
figure .detach();
figure = null;
figure2 .detach();
figure2 = null;

/I Check for full lines or create new figure
i f (board .hasFullLines()) {
board .removeFullLines();
if (level <9&& board .getRemovedLines() /20 > level){

level = board .getRemovedLines() / 20;
handleLevelModification();

} el se{
handleFigureStart();
}
}
/**
* Handles a timer event. This will normally move the figure down
* one step, but when a figure has landed or isn't ready other
* events will be launched. This method is synchronized to avoid
* race conditions with other asynchronous events (keyboard and
* mouse).
*
private synchroni zed voi d handleTimer() {
if ((figure == null)&&(figure2 ==null)){
handleFigureStart();
} el se if (figure .hasLanded()&& figure2 .hasLanded()) {
movelock =t r ue;
movelock2 =t r ue;
handleFigureLanded();
} el se{
figure .moveDown();
figure2 .moveDown();
}
}
/**

Handles a button press event. This will launch different events
depending on the state of the game, as the button semantics
change as the game changes. This method is synchronized to
avoid race conditions with other asynchronous events (timer and
keyboard).

* ok ok ok ok

62 Ubicomp:Using iStuff

private synchroni zed voi d handleButtonPressed() {

i f (nextFigure == nul | &&nextFigure2 ==null){
handleStart();
} el se if (thread .isPaused()){
handleResume();
} el se{
handlePause();
}
}
/**
* Handles a keyboard event. This will result in different actions
* being taken, depending on the key pressed. In some cases, other
* events will be launched. This method is synchronized to avoid
* race conditions with other asynchronous events (timer and
* mouse).
*
* @aram e the key event
*
/
private synchroni zed voi d handleKeyEvent(KeyEvent e) {
/[l Handle start, pause and resume
i f (e.getkeyCode() == KeyEvent. VK _P){
handleButtonPressed();
return;
}
// Don't proceed if stopped or paused
if (figure == null || figure2 == null ||](movelLock &&movelock?2)
|| thread .isPaused()) {
return;
}

/l Handle remaining key events
swi t ch (e.getKeyCode()) {

case KeyEvent. VK _LEFT:
i f (! movelLock)
figure .moveLeft();
br eak;

case KeyEvent. VK _RI GHT:
i f (! movelLock)
figure .moveRight();
br eak;

case KeyEvent. VK_DOMN:
i f (! movelLock)
figure .moveAllWayDown();
movelLock = true;
br eak;

case KeyEvent. VK_UP:
case KeyEvent. VK _SPACE:
i f (! movelLock }{
i f (e.isControlDown()) {
figure .rotateRandom();
} el se if (e.isShiftDown()) {
figure .rotateClockwise();

Annex 3

63

} el se{
figure .rotateCounterClockwise();

}
} br eak;

[ffigure2

case KeyEvent. VK_A:
i f (! movelLock2)
figure2 .moveleft();
br eak;

case KeyEvent. VK D
i f (! movelLock?)
figure2 .moveRight();
br eak;

case KeyEvent. VK W
i f (! movelLock2)
figure2 .rotateCounterClockwise();
br eak;

case KeyEvent. VK_S:
i f (! movelLock2)
figure2 .moveAllWayDown();
movelLock2 = true;
br eak;

/[Controls
case KeyEvent. VK T:
if (level <9){
level ++;
handleLevelModification();

}

br eak;

case KeyEvent. VK_N:

preview =! preview ;

i f (preview && figure != nextFigure){
nextFigure .attach(previewBoard , true,fal se);
nextFigure .detach();
nextFigure2 .attach(previewBoard2 , true, fal se);
nextFigure2 .detach();

} el se{

previewBoard .clear();
previewBoard2 .clear();

br eak;

/**

* array, and will not be initialized.
* a random figure
*/
pri vat e Figure randomFigure() {
return figures [(int)(Math. random)* figures .length)J;

* Returns a random figure. The figures come from the figures

64 Ubicomp:Using iStuff

pri vat e Figure randomFigure2() {
return figures2 [(int)(Math. randonm()* figures2 .length)];

}
/**
* The game time thread. This thread makes sure that the timer
* events are launched appropriately, making the current figure
* fall. This thread can be reused across games, but should be set
* to paused state when no game is running.
*

private cl ass GameThread extends Thread {

/**

* The game pause flag. This flag is set to true while the
* game should pause.

*/

private bool ean paused = true;

/**
* The number of milliseconds to sleep before each automatic
* move. This number will be lowered as the game progresses.
*/
private int sleepTime =500;
/**
* Creates a new game thread with default values.
*/
publ i ¢ GameThread() {
}
/**
* Resets the game thread. This will adjust the speed and
* start the game thread if not previously started.
*
public voi d reset() {
adjustSpeed();
setPaused(fal se);
i f (lisAlive()) {
t hi s.start();
}
}
/**
* Checks if the thread is paused.
* @eturn true if the thread is paused, or
* false otherwise
*
publ i ¢ bool ean isPaused() {
return paused;
}

/**
* Sets the thread pause flag.
* @ar am paused the new paused flag value
*/
public voi d setPaused(bool ean paused) {
t hi s. paused = paused,;

Annex 3 65

/**

* Adjusts the game speed according to the current level. The
* sleeping time is calculated with a function making larger
* steps initially an smaller as the level increases. A level
* above ten (10) doesnt have any further effect.

*/

publ i c voi d adjustSpeed() {
sleepTime =4500/ (level +5) - 250;
i f (sleepTime <50)({
sleepTime =50;

}
}
/**
* Runs the game.
*/
public void run(){
whil e (thread == this){
/I Make the time step
handleTimer();
/I Sleep for some time
try {
Thread. sl eep(sleepTime);
} cat ch (InterruptedException ignore) {
/I Do nothing
}
/I Sleep if paused
whi | e (paused && thread == this){
try {
Thread. sl eep(1000);
} cat ch (InterruptedException ignore) {
// Do nothing
}
}
}
}
}
/**
* A game panel component. Contains all the game components.
*
private cl ass GamePanel extends Container {
/**
* The component size. If the component has been resized, that
* will be detected when the paint method executes. If this
* value is set to null, the component dimensions are unknown.
*/
pri vat e Dimension size = null;
/**
* The score label.
*/
privat e Label scoreLabel = newlLabel("Score:0");
/**

* The level label.

66 Ubicomp:Using iStuff

*/
private Label levelLabel = newlLabel("Level:1");

/**

* The generic button.

*

privat e Button button = newButton("Start");

/**
* Creates a new game panel. All the components will
* also be added to the panel.

*/
publ i ¢ GamePanel() {
super ();
initComponents();
}
/**
* Paints the game component. This method is overridden from
* the default implementation in order to set the correct

* background color.
* @aramg the graphics context to use
*
publ i c voi d paint(Graphics g) {
Rectangle rect = g.getClipBounds();

if (size == null ||! size .equals(getSize())) {
size = getSize();
resizeComponents();

}

g.setColor(getBackground());

g.fillRect(rect. X, rect. y,rect. width ,rect. height);
super .paint(g);

}
/**
* Initializes all the components, and places them in
* the panel.
*

privat e voi dinitComponents() {
GridBagConstraints c;

/I Set layout manager and background

setLayout(new GridBagLayout());
setBackground(Configuration. get Col or ("background"
"#d4d0c8"));

/I Add game board
new GridBagConstraints();

gridx =0;

gridy =0;

gridheight =5;

weightx =1.0;

weighty =1.0;

fil = GridBagConstraints. BOTH;
t hi s.add(board .getComponent(), c);

Popo0OO

/I Add next figure board
c= new GridBagConstraints();
C. gridx =1;

Annex 3

67

OO0

gridy =0;
weightx =0.2;
weighty =0.18;
fil = GridBagConstraints. BOTH;
insets = newlnsets(15, 15, 0, 15);
t hi s.add(previewBoard .getComponent(), c);

/I Add next figure board 2

cpoo00oO

"#000000"));

cpooO0OO

"#000000"));

cpooOOOO

"#d4d0c8"));
c=
C.

CO0000

new GridBagConstraints();
gridx =1;
gridy =1;
weightx =0.2;
weighty =0.18;
fil = GridBagConstraints. BOTH;
insets = newlnsets(15, 15, 0, 15);
t hi s.add(previewBoard2 .getComponent(), c);

/I Add score label
scoreLabel .setForeground(Configuration.

scoreLabel .setAlignment(Label. CENTER);
new GridBagConstraints();
gridx =1;
gridy =2;
weightx =0.3;
weighty = 0.05;
anchor = GridBagConstraints. CENTER;
fil = GridBagConstraints. BOTH;
insets = newlnsets(0, 15, 0, 15);
t hi s.add(scoreLabel |, c);

/I Add level label
levelLabel .setForeground(Configuration.

levelLabel .setAlignment(Label. CENTER);
new GridBagConstraints();
gridx =1;
gridy =3;
weightx =0.3;
weighty = 0.05;
anchor = GridBagConstraints. CENTER;
fil = GridBagConstraints. BOTH;
insets = newlnsets(0, 15, 0, 15);
t hi s.add(levelLabel |, c);

/I Add generic button
button .setBackground(Configuration. get Col or ("button”
new GridBagConstraints();
gridx =1;
gridy =4;
weightx 0.3;
weighty 1.0;
anchor = GridBagConstraints. NORTH;
fil = GridBagConstraints. HORI ZONTAL;
insets = newlnsets(15, 15, 15, 15);
t hi s.add(button , c);

/I Add event handling

get Col or ("label"

get Col or ("label"

68 Ubicomp:Using iStuff

enableEvents(KeyEvent. KEY_EVENT _MASK);
t hi s.addKeyListener(new KeyAdapter() {
publ i c voi d keyPressed(KeyEvent e) {

handleKeyEvent(e);
}
D
button .addActionListener(new ActionListener() {
publ i c voi d actionPerformed(ActionEvent e) {
handleButtonPressed();
component .requestFocus();
}
D
}
/**
* Resizes all the static components, and invalidates the
* current layout.
*/
privat e voi d resizeComponents() {
Dimension size = scoreLabel .getSize();
Font font;
i nt unitSize;
/I Calculate the unit size
size = board .getComponent().getSize();
size. width /= board .getBoardWidth();
size. height /= board .getBoardHeight();
i f (size. width >size. height){
unitSize = size. height ;
} el se{
unitSize = size. width ;
}
/I Adjust font sizes
font = new Font("SansSerif"
Font. BOLD,
3+ (i nt) (unitSize / 1.8));
scoreLabel .setFont(font);
levelLabel .setFont(font);
font = new Font("SansSerif"
Font. PLAI N,
2 + unitSize / 2);
button .setFont(font);
/I Invalidate layout
scoreLabel .invalidate();
levelLabel .invalidate();
button .invalidate();
}
}
publ i c voi d onReceivedSignal(String command) {
/I Don't proceed if stopped or paused
if (figure == null || figure2 == null ||](movelLock &&movelock?2)
|| thread .isPaused()) {
return,

i f (command.equals("Left")){

figure .moveLeft();

Annex 3

69

el se i f(command.equals("Right")){
figure .moveRight();

el se if(command.equals("Up"))X{
figure .rotateCounterClockwise();

el se i f(command.equals("Down")X

figure .moveAllwayDown();
movelLock = true;

IStuffProxy.java

package net.tetriscollaborative;
i mport java.util.ArrayList;

i mport java.util.EventListener;
i mport java.util.List;

i mport iwork.eheap2.EventHeap;
i mport iwork.eheap2.EventHeapException;

public cl ass IstuffProxy i mpl enent s Runnable{

/lInterface for EventListener

public static interface ControlListener ext ends EventListener{
voi d onReceivedSignal(String command);
}
pri vat e List<ControlListener> listeners =new
ArrayList<ControlListener>();
iwork.eheap2.Event templateEvent
EventHeap m_EventHeap ;

IstuffProxy(String server)

super ();
System. out .println ("Trying to connect\n"
m_EventHeap = new EventHeap(server);
System. out .println ("Did we connect?");
try{
templateEvent = newiwork.eheap2.Event(
} cat ch(Exception ex) { ex.printStackTrace(); }
/IsetDaemon(true);

/IMethods to add/remove listeners
publ i ¢ voi d addListener(ControlListener listener){
listeners .add(listener);
}

publ i ¢ voi d removeListener(ControlListener listener){
listeners .remove(listener);

"ControlEvent"

);

70 Ubicomp:Using iStuff

/Imethod launching event
prot ect ed voi d onReceivedSignal(String command){
f or (ControlListener listener: listeners)
listener.onReceivedSignal(command);

}
public void run()
{
whi | e(true)
try{

iwork.eheap2.Event e =
m_EventHeap .waitForEvent(templateEvent);
handleEventHeapEvent(e);

} cat ch(Exception ex) { ex.printStackTrace(); }
}
}
publ i ¢ voi d handleEventHeapEvent(iwork.eheap2.Event e)
{
try{

String comand=e.getPostValueString("ControlCommand");
System. out .printin(comand);
onReceivedSignal(comand);

} cat ch (EventHeapException el) {
el.printStackTrace();
}
}

