

MASTER THESIS

TITLE: Ubicomp: Using iStuff

MASTER DEGREE: Master in Science in Telecommunication
& Management

AUTHOR: Josep Benavent Marco

DIRECTOR: Roc Meseguer

DATE: 8 th June 2010

MASTER THESIS

Ubicomp: Using iStuff

: Master in Science in Telecommunication

Josep Benavent Marco

DIRECTOR: Roc Meseguer Pallarès

: Master in Science in Telecommunication Engineering

Title: Ubicomp: Using iStuff

Author: Josep Benavent Marco

Director: Roc Meseguer Pallarès

Date: 8th June 2010

Overview

Ubiquitous computing, ubicomp, represents a scenario where computer
devices are omnipresent usually with a look like not traditional computers. For
this, is also known with the term “disappearing computer”.

There exists also a close relation between ubicomp and human to computer
interaction. With the appearing of new computer devices spread along the
environment, new interfaces to resolve human to computer interaction.

This master thesis presents a ubiquitous computing scenario that uses iStuff
toolkit as communication path. Nintendo’s WiiRemote, known as wiiMote, is
used as new human to computer device to allow user’s interaction. WiiMote is
communicated with a computer using WiiGee java libraries that incorporates an
iStuff proxy that lets communicating with the scenario. The scenario also
includes a collaborative application, called Collaborative Tetris, to interact with.

The first chapter presents technical concepts and tools: Starting with definitions
of terms ubiquitous computing and human to computer interaction concept and
then the main tools used to develop this master thesis: iStuff toolkit, WiiMote
and WiiGee java libraries

The second chapter describes the start up of mentioned tools and the
description of test scenarios.

Third chapter summarizes the test results of the scenarios: iStuff start up
scenario, communication between iStuff and WiiMote using wiiGee and a
possible ubiquitous computing environment with a collaborative application:
collaborative Tetris.

Finally the conclusions of tests, possible effects over environment in a green
study and personal conclusions are present.

4 Ubicomp:Using iStuff

INDEX

INTRODUCTION .. 1

CHAPTER 1. TECHNICAL CONCEPTS & TOOLS 3

1.1. Ubiquitous computing 3

1.2. Collaborative applications 7

1.3. iStuff Toolkit 8

1.4. Wii Remote 13

1.5. WiiGee Library 14

CHAPTER 2. TECHNICAL IMPLEMENTATION 17

2.1. iStuff java library................................ .. 17

2.2. WiiRemote 18

2.3. WiiGee java libraries 19

2.4. Test scenario 23

CHAPTER 3. TESTS ... 33

3.1. iStuff test results 33

3.2. WiiGee library and iStuff library test results ... 37

3.3. Collaborative application test results 40

CHAPTER 4. CONCLUSIONS .. 44

4.1 Tests conclusions 44

4.2 Green study.................................... .. 46

4.3. Personal conclusions 46

GLOSSARY 47

REFERENCES ... 48

ANNEX 1 .. 49

ANNEX 2 .. 51

ANNEX 3 .. 55

Introduction 1

INTRODUCTION

Nowadays, technology bases its relation with humans in such a way that
computers are still the focus of attention. In other words, you have to learn how
to communicate with the computer using its own peripheral equipment as
keyboard or mouse to success in your work. In a ubiquitous environment is the
technology who, spread along the environment, tries to adapt to user’s
demands. In those environments, small computer devices try to interact with
other small computer devices to facilitate the users’ use of technology. This new
paradigm in which technology tries to disappear from user’s interaction is in
what ubiquitous computing works.

As I introduces before, derives the idea that exists a thin relation between
ubiquitous environments and new human to computer interaction (HCI):
meanwhile technology “disappears” new human centered devices have to
appear to solve the missing gap between the old peripheral equipment,
centered on computer, and the new generation of equipment centered on user’s
attention.

Writing this master thesis I try to introduce myself into the ubiquitous computing
environments and by extension, obtain a first approach into new human to
computer interaction devices. The reason: ubiquitous environment are still in a
premature state and I think the future of technology will go through this kind of
devices and in a short term, we will start to enjoy this in our house’s
environments.

The main objectives proposed are:

- Determine capabilities of wiiGee library for detecting different gestures
and capabilities of iStuff architecture to create a ubiquitous test
environment.

- Creation and integration of an iStuff proxy in wiiGeeGUI.
- Create a ubiquitous test environment in which all the parts can interact

together.

This master thesis is structured in four chapters with the following contents:

Chapter one describes the technical concepts and tools that are used to
develop the master thesis. First a definition of ubiquitous computing is present.
Then a short description of some relevant projects into the ubiquitous
computing environments are done, focusing more attention in iStuff project,
which technology is used later to develop a ubiquitous computing environment.
Also a short introduction to new human to computer interaction paradigm is
done with the description of the term, the description of the Nintendo’s Wii
remote, as a new peripheral equipment as example of a device not centered in
computer, and the description of the software that permits the interaction with
the computer of that device, WiiGee java libraries. You also can find a

2 Ubicomp:Using iStuff

description of collaborative applications, because it is an example of application
where new HCI can be emphasized.

In the second chapter you can find the start up description of iStuff libraries,
WiiGee libraries and how to connect successfully a WiiRemote device to a
computer. Also a description of the proposed tests scenarios can be found to
prove that all is working.

The chapter three summarizes the results of the tests proposed on the second
chapter. The first one shows the success working of istuff library, the next one
the interaction of wiiGee libraries with the iStuff event bus trying to control an
operating system remotely. Finally, a complete scenario in which both libraries
are used to interact with a collaborative application: in this case, a collaborative
Tetris is created to show the final result of the interactivity among all different
parts.

Chapter four presents the conclusions of this master thesis. First specific
conclusions about tests results are picked up and then technology specific
evaluation conclusions. In this chapter you can also find my personal
conclusions about my experience conducting this master thesis and finally, a
green study about the environment impact of this thesis.

Finally some annexes are included with source code that is created or modified
from examples. Annex I includes the source code used in the first test, annex 2
the source code involved in the second test and Annex 3 the source code that is
referred in the third test.

Chapter 1: Technical concepts & tools 3

CHAPTER 1. TECHNICAL CONCEPTS & TOOLS

This chapter is firstly to familiarize the reader with the “ubiquitous computer”
term and related vocabulary used in this thesis and exposes some examples to
facilitate the reader’s understanding. Then the main tools that are used to
develop the project are introduced: iStuff toolkit as a software platform that acts
as an event bus and the Nintendo’s WiiRemote as a human to computer
interface to interact with that bus using the WiiGee java libraries that interprets
WiiRemote gestures.

1.1. Ubiquitous computing:

In this section a first definition of the term is presented. Afterwards a short
introduction to ad-hoc networks and finally some relevant projects are referred
to facilitate the understanding of the explained terms.

1.1.1. Definitions:

The two following paragraphs illustrate by the use of examples the term
“ubiquitous computing”, also known as ubicomp:

Imagine that you make a photo with a new camera. Once is done, this is send
automatically to your personal computer and also tagged and edited with the
time and date that the photo is done. Also, information about your location is
transmitted by the GPS device that is automatically detected near your position
and is also included into the photo tags to obtain a better classification of it. You
only pressed the photo button; all other functions are done automatically.

Once you arrive to your office, you start your session automatically with your
fingerprint in any of the personal computers you can find there. You received by
e-mail a new catalogue from your suppliers and decide to print it. You say:
“Print this document in the nearest printer”. Automatically, the document is sent
and printed in the printer that is at your back without much more effort.

The terms ubiquitous computing is usually related with human-computer
interaction and ad-hoc network terms. First of all, we are going to explain the
meaning of these terms1.

The Oxford English Dictionary [1] defines the “ubiquitous” as:

Present or appearing everywhere, omnipresent.

1 Exists a dilemma about what is ubiquitous and what isn’t. I will try to expose a general idea
about the term and not take into the view all specific definitions.

4 Ubicomp:Using iStuff

Ubiquitous computing refers to a scenario where computers are omnipresent,
and specially related to devices that do not look like traditional computers. The
idea that is behind this term is also well known as the “disappearing computing”.

Frank Stajano, explains the meaning of this idea in the introduction of his book
about security issues in ubiquitous computing environments [2]:

“When we use a computer, the focus is still squarely on the tool rather than on
the task (...) Ubiquitous computing is not so much about having traditional
computers everywhere, but rather about having computing capabilities
everywhere, embedded in the environment in such a way that they can be used
without noticing them. Computing will become ubiquitous when it supports the
user’s activity unobtrusively, instead of being the focus of attention.”

Stajano also includes another explanation and makes a parallelism with the
issues related to electrical motors when they were invented. Initially only one
electrical motor could be found in the factories. Only this motor powered
machines and mechanisms for a wide variety of tasks. Nowadays, the electric
motor leads the daily life of every human and humans are unaware of the
details of how this work and we unconsciously use it. This is a simple example
of a “disappeared” technology that has succeeded in the history.

One of the objectives of ubiquitous computing is to adapt the human-computer
interaction in such way that computers become, as I mentioned, a disappeared
technology. The human-computer interaction (HCI) [9] but, is a multidisciplinary
field in which we can include subjects as, engineering, design, anthropology,
sociology, philosophy, linguistics, artificial intelligence, computer science,
neuroscience or cognitive psychology that studies the relations between people
(the users) and the computers. The goal of HCI is to improve the interactions
between users and computers through developing interfaces (hardware or
software), methods to develop that interfaces and techniques for evaluating
them with the objective of making computers more usable and more receptive
to the user’s needs.

Defined the term ubiquitous computing and the HCI term, there’s still an
important term usually close to the ubiquitous computing term. This is the “ad-
hoc networks” that describe how this particular “computers” can communicate
each-other. We are going to define briefly this concept.

Ad-hoc, by de OED [1], means:

Devoted, appointed, etc…, to or for some particular proposes.

The idea behind the ad-hoc networking is that instead of being a permanent
infrastructural fixture behind the communication devices, each device is capable
of discover and recognize each other’s presence and adapt itself to new
configurations that can appear in the scenario.

Chapter 1: Technical concepts & tools 5

1.1.2. Relevant projects

There exist a high number of projects related with the ubiquitous computing
term and it is not my objective to take into account all of them in this section. All
the following described projects on the following lines, from my point of view,
provide a wide vision on ubiquitous computing and served myself to prepare the
following chapters.

1.1.2.1. Active badge system

This project by ORL/AT&T Labs from Cambridge appeared in early 90’s which
proposed a solution for a location system indoor. The main idea is that a person
could be localized into a building to receive, for example, incoming phone calls
to his actual location [3].

The badge is composed by an infrared transceiver that sends periodically a
unique code, which identifies the person who owns the badge, to a network of
sensors placed around the building.

Fig. 1 Active badge System

The system also includes a user interface to obtain with a great precision the
localization of a person inside the building.

Of course, the project soon obtained other applications like locate shared
equipment, auto select the preferred beverage from a coffee machine for the
person who is near it and also to configure a VNC service to obtain
automatically your desktop in any computer you were in front.

6 Ubicomp:Using iStuff

1.1.2.2. Active bat

Another project by ORL/AT&T Labs from Cambridge that was started in 1995
and consists in a lightweight wearable devices featuring ultrasonic transducers,
a 433Mhz radio transceiver and a long-life battery. Each device includes a
unique identifier that identifies his owner or the object which is tagged to [4].

It was used throughout all the Cambridge Research Group building to precisely
locate people and objects in a 3D environment.

Fig. 2 Active bat example of use

Due to his high resolution (about 5 centimeters) it was used to define virtual
buttons in a 3D environment. For example, as we can see in the previous photo
(Fig.2), an interface was developed to interact with a public scanner can be
implemented with an active bat system.

The system works as if the device was a 3D pointer. Depending on the position
in front of the poster you place it, a related action is taken. When you place the
pointer in front of an image, the position of pointer is processed and the action
predefined on the poster is taken.

1.1.2.3. Oxygen

Oxygen[5] promises to be a world in which computation is available anywhere
and at negligible cost. Is also focused in the human to computer interaction;
nowadays, this interaction is computer based and the idea is evolve to a user
based design2 [6] or human-centered computing [7].

2 User based design is a design philosophy that tries to optimize the users interface avoiding
users to change how they work, rather than force the users to adapt themselves to computer
interface, as nowadays occur.

Chapter 1: Technical concepts & tools 7

This wide project includes a high number of components, as software and
hardware, to obtain a complete solution for ubicomp environments. It includes
speech recognition systems, image processing systems, user localization
systems and sensors to support all these subsystems.

Fig. 3 Oxygen project overview

The components can be classified in the following three kinds of entities:

H21s: handheld devices acting as PDA’S, personal communicators (devices
that includes cell phone functions, radio, pager, email …) and universal remote
control units.

E21s: Computer server embedded in the environment (walls of houses, cars…)
capable of affecting and controlling that environment. For example controlling
lights, air conditioning systems…

N21s: Dynamic networks allowing the previous classes of devices to discover
each other’s services and make useful for them.

1.2. Collaborative applications

Also known as collaborative software or groupware applications, we can define
the term from a general point of view [19]:

“A computer application that allows its users to collaborate with each other”

8 Ubicomp:Using iStuff

There exist also a large number of definitions and usually compared with the
traditional software term, in which users are separated and don’t feel part of a
group. Other take into account not only software components, hardware can be
part of collaborative applications.

As a complete definition we can achieve the following:

Collaborative application is a software and/or hardware application that:

- Interacts with multiple users: It receives input from multiple users and
creates output for multiple users.

- Links these users: It allows some input of some user to influence some
output created for some other user.

Note the output that is generated by users input has not to be immediately in
time and individual; a group of inputs can generate an individual output.

1.3. iStuff Toolkit

Nowadays, the mouse and the keyboard are the predominant input devices for
desktop computers. This desktop computer environment is targeted for one
user, one set of hardware and a single point of focus. In a post desktop,
ubiquitous computing (ubicomp) environments complexity increases: multiple
displays, multiple input devices, multiple applications and multiple concurrent
users.

iStuff toolkit, developed by Rafael Ballagas from Computer Science department
in Stanford University, is developed to support user interface prototyping in
ubiquitous computing environment [9], [10].

This project, from Stanford HCI Group developer around 2002, includes a toolkit
of physical devices and a flexible software infrastructure. The objective of this
project is to simplify the exploration of novel interaction techniques in the post-
desktop era of multiple users, devices, systems and application collaborating in
an interactive environment.

The environment is a TCP java based middleware that allows multiple machines
and applications to exchange information through the Event Heap, a central
server process that receives events from client applications and redistributes
them to the appropriate recipients.

We can distinguish between the two main components of iStuff project: the
event heap and the patch panel.

The Event Heap is a distributed system infrastructure that allows multiple users;
machines and applications where all simultaneously interact as consumers and
generators of system events.

Chapter 1: Technical concepts & tools 9

The Patch Panel is a service that runs in the background and observes the
Event Heap in order to translate events. Every event that is posted to the Event
Heap is a translation candidate. If a mapping is specified for an event, the Patch
Panel will post the corresponding output events to the Event Heap. This
functionality is especially useful for prototyping new input or output devices and
interfacing these devices to different applications.

1.3.1. Architecture

iStuff toolkit environment is developed with the following requirements:

- Flexible, lightweight devices.
- Platform independence and cross-platform capabilities.
- Wireless protocol independence.
- Ease of integration with existing applications.
- Support for multiple simultaneous users.

The iStuff components provide the physical toolkit of wireless input and output
devices, asynchronous communications based on Events and the PatchPanel
intermediary to dynamically re-map events to applications. The architecture can
be summarized in the following Fig.4:

Fig. 4 iStuff architecture overview

iStuff Architecture is based on an Event Heap that acts as an event bus that
receives the events created by an iStuffDevice that have been send by the
iStuffDevice through an iStuff Proxy. Then the Patch Panel dynamically re-maps
those events to another predefined user event and is send again to the Event
Heap. Finally an application or other iStuffDevice Proxy also connected to the
bus to act appropriately to that re-mapped event.

1.3.2. Components

Now, we will describe the iStuff architecture components in detail. The
components of iStuff architecture are the following:

10 Ubicomp:Using iStuff

- Event Heap:

The communication with the different iStuff components is done by event
messages. Producers (that can be proxies or applications directly) post
events to the Event Heap and consumers register to receive events,
specifically the event type and optionally, other criteria based on
matching the content of specific fields. This communication mechanism
allows an easy restarting of any component of the architecture (including
the Event Heap itself).

The main function of Event Heap is permitting the exchange of events
between event consumer and producers, acting as a bus.

- Patch Panel:

The Patch Panel consists of an intermediary application that implements
event mapping, and one or more GUIs that provide a user-accessible
way to configure events.

It acts as an Event Heap client that non-destructively translates events
from one type to another. It listens for all events, translating those that
match its event-mapping configuration. To create a mapping through the
intermediary, the users must generate an event of type
IntermediaryConfigEvent with the appropriate fields that represent the
event to translate and its mapping. When the Event Heap receives a new
IntermediaryConfigEvent, it updates its internal translation look-up
structure.

For example, the simplest event mapping matches only the event type,
generating another type of event from the received. Another common
mapping, matches the event type and a unique ID field, for example, to
discriminate between two same models of input devices.

Patch Panel component also includes a GUI that can be placed in
another machine connected to the Event Heap or in the same machine.
This allows a rapid prototyping of new devices. It presents the user with a
graphical tool for creating event mappings. After the user specifies a
particular event translation, the Patch Panel GUI posts an
IntermediaryConfigEvent to update the Event Heap.

Another highlight point is the possibility of create composite events
establishing intermediate stages using event translations in the Patch
Panel. For instance, an application could be notified if two iButton where
pressed. Patch Panel can create an intermediate stage between the
inputs devices are activated in a short period of time. When both are
finally pressed, the system can create the predefined event and
reinitialize the stages to the initial state.

Chapter 1: Technical concepts & tools 11

Finally, and to facilitate the developer test the environment is provided
with a powerful characteristic; you can compose scripts and load to the
Event Heap using that PatchPannel GUI, to create more complicated
“logic” with the events mapping and configuration.

program Demo;

event Start type Demo {
 string message = "Hola";

}

event Saluda type Demo {
 string message = "Que tal?";
}

initial state Initial {
 on Start {
 send Saluda;
 }
}

On previous lines, as example, you can observe a basic script that
receives a packet type Demo with a string field called “message”
containing the message “Hola”. If the scrip is loaded in the Event Heap,
each time that this defined event is send, a packet type Demo is send
with string filed called message with the value “Que tal?”.

- Proxy:

The iStuff proxy component allows communication between physical
devices through the Event Heap. This proxy is the component that
translates the events from the physical world (for example the pushing of
a button) to the iStuff events environment understandable message: an
event. It also does the inverse action; collect the appropriate events that
“surf” the event Heap and translates it to the attached device with an
understandable iStuffDevice action or message.

The proxy component also provides of independence between the proxy-
iStuff device link technology and the Event Heap. For example, iStuff
device can use FM or X10 technology to connect with the proxy element
and this proxy use Ethernet wired link with the system Patch Panel.

- iStuff Device:

Stanford University research group who developed iStuff toolkit created a
high number of devices with his respective proxy component. These
devices can act as inputs or actuators and thanks to the proxy element,
are independent of link technology. As basic example, some are briefly
described on following line, and in Fig.5 can be seen:

12 Ubicomp:Using iStuff

• iButton: The most basic one. It is implemented using a homemade
circuitry and a garage-door-opener style radio frequency
transmitter. Another example is implemented using commercial
X103 keychain remotes. This is an input device.

• iLight, iBuzzer and iViber: Binary output components or actuators
implemented using homemade circuitry and RF transmitters. They
can provide a visual (iLight), audio (iBuzzer) or a haptic (iVibe)
output.

Fig. 5 iStuff devices

1.3.3. Applications

iStuff was originally designed with iRoom (space used for meetings and
brainstorming/design session in Stanford University) but it could be useful in
Smart Home environments. Task-oriented user interface (interfaces reflecting
the user’s task as opposed to the technical feature for an appliance) is the
highlight point to be useful in Smart Home applications:

- Dynamic, task-based remote controls : By linking the appropriate iStuff
components and using the Patch Panel the user can construct a task-
oriented controller. For example, a PDA can be used as a Universal
Remote Controller.

- Monitoring house state : A display near a user’s home exit door can
show the state of linked iSensors to home devices. For instance, the
state of burglar alarm or if the lights in the bedroom are still on.

- Setting house state : iButton or a similar device can be configured to set
the house state when user leaves it. For example, when the button is

3 [12] Open industry standard for communicating electric devices. Uses power line wiring for
signaling and control. Also a wireless radio based transport protocol is defined.

Chapter 1: Technical concepts & tools 13

pressed the system switch off all the lights or activate the home security
system.

1.4. Wii Remote

The Wii Remote or “WiiMote” is the primary controller for Nintendo’s Wii
console. The main feature of the Wii Remote is its motion sensing capability,
through the use of accelerometer and optical sensor technology. It’s able to use
a Sensor bar to use a pointing functionality. It also includes a rumble that when
activated it will cause the controller to vibrate.

Fig. 6 Wii Remote Controller Overview

The Wii Remote is a one-handed remote control-based design. The body of the
controller measures 148 mm long, 36.2 mm wide and 30.8 mm thick. The
communication with the console device is via short-range Bluetooth radio
protocol, with which it is possible to communicate up to four controllers as far as
10 meters. To use the pointing functionality a Sensor Bar is required and is able
to work up to five meters. His symmetrical design allows it to be user in either
hand and also can be turned horizontally to be used as the classic Nintendo
controllers.

It includes nine buttons: POWER, A, B, -, HOME, +, 1, 2 and the digital path
controller (UP, DOWN, LEFT and RIGHT). We can also find a speaker (low-
quality 21mm piezo-electric speaker used for sound effect during game play
and streamed directly from host) in the center and four leds in the below that
indicate various functions.

14 Ubicomp:Using iStuff

An expansion port can also be found at the button of controller to be used with
extension controller such as “Nunchuk” or a Classical controller.

The power source are two AA class batteries with you can obtain a life cycle of
60 hours using only the accelerometer functions and only 25 hours if you also
use pointing functionality.
The Bluetooth device is model BCM2042 by Broadcom’s manufacturer [20] and
the accelerometer is an ADLX330 chipset from Analog Devices manufacturer
[21].

The rumble, which is implemented as a small motor attached to an off-center
weigh, It can be different implemented using different motors, SEM8728 device
is an example. As the Wii Remote drives at 3.3 VDC and draws 35 mA, other
rumble device complaining these requirements can be used.

Fig. 7 Broadcom BCM2042, Analog Devices ADLX330 and SEM 8782 detail.

1.5. WiiGee Library

Wiigee [14] is an open-source gesture recognition library for accelerometer-
based gestures specifically developed for the Nintendo Wii remote controller. It
is implemented in Java and, thus, is platform-independent. Using a third-party
Bluetooth-library wiigee allows you to define and recognize your own, freely
trained gestures.

Chapter 1: Technical concepts & tools 15

WiiGee library is based on detecting gestures in two or three dimensions. The
gesture term is typically defined as a characteristic pattern of incoming signal
data. Due to Wiimote is always sending information of the accelerometer
behavior; wiiGee defines the start and the end of a gesture by pressing one of
the wiimote’s buttons.

The pipeline that wiigee follow to recognize gestures are explained following
and the fig. 8 show the system components:

Fig. 8 WiiGee system components

First, the vector data is send by wiGee Bluetooth interface to the wiiGee core.
Then these data is processed by the following components [22]:

- Filter: Removes vectors which are below a given threshold of approx.
1.2g (where g is the acceleration gravity) and removes vectors which are
suspected to be duplicated

- Quantizer: Generates a discrete code identifying each gesture. K-mean
algorithm is used, k being the number of clusters in our code-alphabet,
using k=14 a sufficient size for the code alphabet is taken.

- Model: A discrete, left-to-right hidden Markov model. This component
maps a series of codes to a model probability.

- Classifier: Identifies the probability model with the most probable gesture
during a recognition task.

Due to wiiGee don’t specify default tasks and let you to define your own
gestures, two working modes are defined. The following Fig.9 shows the
workflow:

16

- Training: During this mode you record the

recognizes as input commands. A gesture must
times (wiiGee’s developers recommend between 5 or 10
sessions) to allow wiiG
facilitate user’s training mode a training button is defined to enter and exit
training mode.

- Recognition: Once g
up its parameters for the recognition process. Also a Recognition Button
is defined; when it
when released wiiG
GestureEvent containing information about the detected
calculated probability.

 Ubicomp:Using iStuff

Fig. 9 WiiGee workflow

During this mode you record the gestures your application later
recognizes as input commands. A gesture must be performed several

ee’s developers recommend between 5 or 10
sessions) to allow wiiGee learn the gesture ant internally code it. To
facilitate user’s training mode a training button is defined to enter and exit

: Once gestures have been recorded, wiiGee internally sets
up its parameters for the recognition process. Also a Recognition Button
is defined; when it is held down the system “records” your
when released wiiGee tries to identify the gesture and fires

containing information about the detected gesture
calculated probability.

Ubicomp:Using iStuff

your application later
be performed several

ee’s developers recommend between 5 or 10 training
ant internally code it. To

facilitate user’s training mode a training button is defined to enter and exit

ee internally sets
up its parameters for the recognition process. Also a Recognition Button

 movement and
ee tries to identify the gesture and fires a

gesture with its

Chapter 2: Technical implementation 17

CHAPTER 2. Technical implementation

As starting point for this project, we have at one’s disposal the following tools
that are described in detail in the previous chapter:

- iStuff java library.
- Wii remote or WiiMote, used together with
- WiiGee java libraries

In this chapter you can find the start up description of the mentioned parts and
the description of the scenarios that are arranged to test all the parts individually
and in group.

2.1. iStuff java library

iStuff toolkit most recent components can be found on the SVN:
http://svn.berlios.de/svnroot/repos/istuff/trunk

To download it from this repository a SVN client can be used. For example,
TortoiseSVN is a free software that can be found on http://tortoisesvn.tigris.org/.

After downloading the most recent version from the repository, something
similar can be found on your local hard disk:

../istuffToolkit/
 . / Event Heap
 . / Event Logger
 . / Hardware Proxies
 . / installer
 . / Lib
 . / Patch Panel
 . / Patch Panel Manager
 . / ProxyLauncher
 . / ProxyManager
 . / QuartzComposer
 . / Readme.txt
 . / Software Proxies

To start a first demo using the toolkits the following step has to be taken:

1. Start the event Heap that can be found in the Event Heap folder (./Event
Heap /run.bat). This is the core of the system.

2. [Optional] Start the event logger (./Event Logger/run.bat). A very useful
utility to inspection the events that are sent to the event bus.

3. Start the Patch Panel core (./Patch Panel/run.bat). The element that
maintain the relations and mappings between events.

18 Ubicomp:Using iStuff

4. Start the Patch Panel Manager(./Patch Panel Manager/run.bat). This is
the GUI for the patch panel that users can interact to create easily
relations and mappings between events. Also very useful because it
permits to users to load the rules that Patch Panel will follow, a more
efficient way to program it.

If there appear any problem executing the previous steps, the files have to be
recompiled manually or in some cases, if available, using the build.bat file.

After all parts are started, the program TerminalEventSender (./Software
proxies/TerminalEventSender/run.bat) can be used to test the environment.

Terminal Event Sender is a software proxy that permits to send easily events to
event heap throw console interface

The usage is simple:

run.bat <event heap name> <event type> {<field name:value>}*

where the event heap name is the name of the machine where Event Heap is
running, “localhost” in the case of running the event Heap in the same
computer.

2.2. WiiRemote

This section describes how to connect WiiRemote under Windows XP operating
system. Note that a Bluetooth adapter is required.

In our tests, we have used the following USB device to set up a Bluetooth
interface for our computer:

- Kensington Bluetooth USB Adapter 2.0 [16]

We need to install a L2CAP supported Bluetooth stack. WIDECOMM drivers are
selected because are the only one that support L2CAP under Windows OS
environment [18]. The process to install WIDECOMM Bluetooth stack can be
found in [17].

An important detail is that after the WIDECOMM stack is installed following the
procedure described previously; do not use the Windows default Bluetooth
wizard (Fig. 10) because the Bluetooth stack stop working for our java
environment.

Chapter 2: Technical implementation 19

Fig. 10 Windows Bluetooth Wizard. Always click on Cancel.

The Windows XP Bluetooth wizard can be found on the System task bar as the
following figure show (Fig. 11).

Fig. 11 Bluetooth Wizard Icon on Windows XP

2.3. WiiGee java libraries

To start testing WiiGee Library we need the following software:

- WiiGeeDemo GUI [14]
- Java 5.0 or Later (in our case Java 6.0 is used)
- Java 3D [15]
- BlueCove as Bluetooth library (included in WiiGee Demo GUI)
- (optional) Eclipse v. 3.5.1 as software development kit.

Simply, after Java 6.0, Java 3D and Eclipse SDK are installed we have to start
the Eclipse SDK and import the project where WiiGeeDemo GUI (Figure 12) is
extracted from the packaged downloaded file.

To start working with the WiiGeeDemo first we need to add the following
dependences of java3D into the project:

20 Ubicomp:Using iStuff

- j3dcore.jar
- j3dutils.jar
- vecmath.jar

Those libraries can be found in Java3d installation path (in our case,
C:\Archivos de programa\Java\Java3D\1.5.2\lib\ext).

Add the WiiGee libraries that can be found in the WiiGee-demoGUI extracted
directory and modify the image path of the loaded images on the
WiimotePanel.java to adapt to Windows OS path.

Two lines have to be added in the main class (wiigeemain.java). The first one to
avoid Bluetooth windows bug and the second one to detect by default the
WIDECOMM Bluetooth stack by the application, otherwise, Windows
environment will start with Winsock stack, which is not the appropriate because
don’t support L2CAP.

System.setProperty("bluecove.jsr82.psm_minimum_off", "true");
System.setProperty("bluecove.stack.first", "widcomm");

Now we can start to test the WiiGeeDemo GUI. To assure that is correct started
the following messages have to appear on the Log Console:

This is wiigee version 1.5.6 (20090817)
This is wiigee-plugin-wiimote version 1.5.6 (20090817)
BlueCove version 2.1.0 on widcomm
You are using the widcomm Bluetooth stack (Version BWT 5.1.0.1100, DK
6.1.0.1502)
L2CAP supported: true
wiigee: found a supported stack!
loading canvas3d

In the previous log message we have to identify that L2CAP are supported.

Chapter 2: Technical implementation 21

Fig. 12 WiiGee GUI

The first task is to attach the WiiRemote to the Bluetooth WIDECOMM stack.
This can be done using the menu: WiiGee � Autoconnect. Notice that the user
has to press simultaneously the WiiGee 1 & 2 buttons to be detected by our
Bluetooth stack.

If the previous process worked successfully, on the log you can see the
following message:

Starting device inquiry...
Device discovered: 0026596761AB -
Is a Wiimote!
Inquiry completed.
Device discovery completed!
WiimoteStreamer initialized...
WiimoteStreamer running...
Unknown data retrieved.
 A1 30 00
Autocalibration successful!
Enabling ACCELEROMETER...
Enabling ACCELEROMETER...

And in the GUI if you start moving the WiiRemote you can see something
similar to the following figure:

22 Ubicomp:Using iStuff

Fig. 13 WiiGee GUI successfully start up.

By default, “A” button in WiiRemote start the Training Process and B button the
recognition process. Once you have a gesture trained several times
(recommended by library developers to do between 5 and 10 trains) you can
use the HOME button to assign a name to that trained gesture, save it and
continue training new gestures using the same process.

After some gestures are trained, to facilitate the startup and avoid the training
process of the gestures on each start up of the wiiGee program, a gesture set
can be saved using the options “Save Gestureset” (File � Save Gestureset).
Now each time we need to load the previous trained gestures, we can use the
“load Gestureset” option (available on menu File � Load Gestureset).

Note that when we save a gesture a .txt document with the available information
of the gesture is saved on hard disk and when a gesture set is saved a .wgs file
is created that contains the name of the files (avoiding the extension) that
contains each gesture individually. Obviously, the gesture set (file with .wgs
extension) is which we need to load into the WiiGee GUI.

Chapter 2: Technical implementation 23

2.4. Test scenario

This section describes the scenarios created to test firstly iStuff library first
alone and then used together with wiiGee libraries and a wiiMote. The final test
is shown as example of interaction between WiiRemote, attached to wiiGee
libraries. Those components use an iStuff proxy to permit the communication
along the scenario with the collaborative application.

The general objectives of those tests are:

- Determine capabilities of wiiGee library for detecting different gestures
and capabilities of iStuff architecture to create an ubiquitous test
environment.

- Creation and integration of an iStuff proxy in wiiGeeGUI.
- Create a ubiquitous test environment in which all the parts can interact

together.

2.4.1 iStuff library

The objective of this scenario is to test the correct running of the iStuff
architecture by creating a basic Patch Panel rule and send manual events to the
event heap using the Terminal Event Sender program.

To test the iStuff library capabilities the following scenario represented in Fig. 14
is mounted:

ISTUFF PATCH PANEL

WWW

Fig. 14 iStuff alone test scenario

24 Ubicomp:Using iStuff

The first scenario is composed by two PCs, “Istuff” and “Patch Panel” with the
components:

• ISTUFF:
o Hostname: istuff
o IP: 147.83.118.138
o OS: Windows XP
o ISTUFF components: Event heap and Event Logger

• PATCH PANEL:

o Hostname: dac-epsc-1
o IP: 147.83.118.125
o OS: Windows XP
o ISTUFF components: Patch Panel and the software proxy

Terminal Event Sender.

Using Event Logger the events that are sent to the event heap can be
visualized.

The rules that are programmed on the patch panel are the following:

program SimpleDemo;

event saluda type hello {
}

event saludat type helloHi{
}
initial state Initial {
 on saluda{
 send saludat;
}
}

Those simple rules on a received packet type “hello” send an empty packet type
“helloHi”.

The modified code of the TerminalEventSender that is used on this test can be
found on Annex 1.

Chapter 2: Technical implementation 25

2.4.2 WiiGee library and iStuff library

The objective of this section is connecting wiiGee libraries throw a proxy with
the iStuff event bus.

Fist we need to attach the WiiMote to the WiiGee library as is described in
section 2.6. Once is done, a proxy to connect wiiGee to iStuff bus is required.

We have based iStuff proxy on the TerminalEventSender example that iStuff
library includes. The code of the created class (called iStuffProxy.java) can be
found on Annex 2. Remember to add manually iStuff libraries to WiiMote project
for success working. This class connects to iStuff bus on a host called “istuff”
and creates a packet of type WiiEvent with a field called “WiiComand” that
contains the name of the gesture recognized by WiiGee library.

After this, we have to add our proxy into the wiiGee source code. The easiest
way to do it consist in adding a call to “arrenca” method with the name of the
recognized event as a parameter. To do this, gestureRecieved method (can be
found on FrontEnd.java of WiiGee GUI program found on WiiGee libraries) is
modified as follows:

public void gestureReceived(GestureEvent event) {
 IStuffProxy ISP = new IStuffProxy();

 if(event.isValid()) {
 this.gestureField.setBackground(Color.GREEN);
 this.gestureField.setForeground(Color.WHITE);
 this.gestureField.setText("Gesture " +
this.gestureMeanings.elementAt(event.getId()) + " received.");
 //enviar el evento a la xarxa
 ISP.arrenca(this.gestureMeanings.elementAt(event.getId()));

 this.appendToConsole("Gesture
"+this.gestureMeanings.elementAt(event.getId())+" received.");
 } else {
 this.gestureField.setBackground(Color.RED);
 this.gestureField.setForeground(Color.WHITE);
 this.gestureField.setText("No Gesture recognized!");
 this.appendToConsole("No Gesture recognized!");
 }
 }

Highlighted lines indicate the code added. We can observe that first a new
instance of the IStuffProxy is created and then the recognized event name is
transferred to the created iStuffProxy to be sent as a parameter of the field
“WiiComand” into a packet of iStuff architecture.

26 Ubicomp:Using iStuff

The second step consists on creating the rules for iStuff patch panel as follows:

program Demo;

event WiiUp type WiiEvent {
 string WiiCommand = "amunt";
}
event WiiDown type WiiEvent {
 string WiiCommand = "avall";
}
event WiiLeft type WiiEvent {
 string WiiCommand = "esquerra";
}
event WiiRight type WiiEvent {
 string WiiCommand = "dreta";
}
event WiiShake type WiiEvent {
 string WiiCommand = "shake";
}
event WiiCorbe type WiiEvent {
 string WiiCommand = "corbe";
}
event ControlUp type ControlEvent {
 string ControlCommand = "Up";
}
event ControlDown type ControlEvent {
 string ControlCommand = "Down";
}
event ControlLeft type ControlEvent {
 string ControlCommand = "Left";
}
event ControlRight type ControlEvent {
 string ControlCommand = "Right";
}
event ControlWindows type ControlEvent {
 string ControlCommand = "Windows";
}
event ControlExecute type ControlEvent {
 string ControlCommand = "Execute";
}

initial state Initial {
 on WiiUp {
 send ControlUp;
 }
 on WiiDown {
 send ControlDown;
 }

Chapter 2: Technical implementation 27

 on WiiLeft {
 send ControlLeft;
 }
 on WiiRight {
 send ControlRight;
 }
 on WiiShake {
 send ControlWindows;
 }
 on WiiCorbe {
 send ControlExecute;
 }

}

In this script we define the alias for received events and for the event to be sent
into bus. You can distinguish between types “WiiEvent” and “ControlEvent”:

- WiiEvent type is related to the packets sent by the iStuff proxy attached
to the wiiGee component (which recognizes wiiRemote movements).

- ControlEvent is which will be received by another iStuff proxy described

in the following lines and is generated by the patch panel and as a
consequence of receiving a WiiEvent packet.

We also need to determine the rules that patch panel are following: after “initial
state Initial” of the previous example rules are shown. For example on a
WiiDown received event, patch panel will send a ControlDown event and on a
WiiCorbe received event, patch panel will send a ControlWindows event as we
defined.

To complete the scenario, another proxy attached to the bus is created to test
the success working. In this case, the objective is to generate some simple
events to interact with Windows operating system.

The events that are selected to emulate the input keyboard are:

- Move up button
- Move down button
- Move left button
- Move right button
- Windows button
- Intro button

The program created called “ControlledWindows” (source code of
ControlledWindows.java on Annex 2) uses the robot java class to emulate the
keyboard pressed keys.

28 Ubicomp:Using iStuff

Finally the scenario to mount as is shown in the following Fig. 15:

Fig. 15 Scenario 2: Controlled Windows

This second scenario is formed by three machines with the following
characteristics:

• ISTUFF :
o Hostname: istuff
o IP: 147.83.118.126
o ISTUFF components: Event heap and Event Logger
o WiiGee GUI with integrated iStuff proxy.

• PATCH PANEL:

o Hostname: dac-epsc-1
o IP: 147.83.118.125
o ISTUFF components: Patch Panel.

• CONTROLLED WINDOWS:

o Hostname: jose-pc
o IP: 147.83.118.127
o Controlled windows application.

In the next chapter (section 3.2) you can observe the results of this test
scenario.

2.4.3 Collaborative application

There exists a close relation between ubiquitous computer and new human-to-
computer interfaces. The purpose of this section is to create a demonstration of
how new human-to-computer interface, with Wii Remote device as example,

Chapter 2: Technical implementation 29

can interact into a ubiquitous computing environment, iStuff event bus, and
using a collaborative application.

The collaborative application created consists in a modified Tetris adapted for
two players to play simultaneously the same board. This Tetris but uses as
input the generated Wii Remote events sent by WiiGee GUI that integrates an
iStuff proxy (as described on the previous point). The objective of the game is
the same as classical Tetris, do the maximum number of point completing full
lines without spaces; but in this case, you have to cooperate with the other
player to move correctly the pieces on the board to complete the objective.

As in the previous scenario, the first step consists in connecting the wiiGee GUI
to the event Heap using a proxy. The same modified class is used
(FrontEnd.java) to communicate WiiGee GUI and iStuff event heap.

The next step consists in creating the rules that iStuff patch panel will follow to
map the events generated by the WiiGee GUI proxy to events that are
understandable by the Tetris iStuff proxy also connected to the iStuff event
Heap.

The rules that are loaded on patch panel are the following:

program Demo;

event WiiUp type WiiEvent {

string SourceDevice = "ISTUFF";
 string WiiCommand = "amunt";

}
event WiiDown type WiiEvent {
 string SourceDevice = "ISTUFF";
 string WiiCommand = "avall";

}
event WiiLeft type WiiEvent {
 string SourceDevice = "ISTUFF";
 string WiiCommand = "esquerra";
}
event WiiRight type WiiEvent {
 string SourceDevice = "ISTUFF";
 string WiiCommand = "dreta";

}
event ControlUp type ControlEvent {
 string ControlCommand = "Up";
}
event ControlDown type ControlEvent {
 string ControlCommand = "Down";
}
event ControlLeft type ControlEvent {
 string ControlCommand = "Left";
}
event ControlRight type ControlEvent {
 string ControlCommand = "Right";
}

30 Ubicomp:Using iStuff

event WiiUp2 type WiiEvent {
 string SourceDevice = "espc-1";
 string WiiCommand = "amunt";
}
event WiiDown2 type WiiEvent {
 string SourceDevice = "espc-1";
 string WiiCommand = "avall";
}
event WiiLeft2 type WiiEvent {
 string SourceDevice = "espc-1";
 string WiiCommand = "esquerra";
}
event WiiRight2 type WiiEvent {
 string SourceDevice = "dac-espc-1";
 string WiiCommand = "dreta";
}
event ControlUp2 type ControlEvent {
 string ControlCommand = "Up2";
}
event ControlDown2 type ControlEvent {
 string ControlCommand = "Down2";
}
event ControlLeft2 type ControlEvent {
 string ControlCommand = "Left2";
}
event ControlRight2 type ControlEvent {
 string ControlCommand = "Right2";
}
initial state Initial {
 on WiiUp {
 send ControlUp;
 }
 on WiiDown {
 send ControlDown;
 }
 on WiiLeft {
 send ControlLeft;
 }
 on WiiRight {
 send ControlRight;
 }
 on WiiUp2 {
 send ControlUp2;
 }
 on WiiDown2 {
 send ControlDown2;
 }
 on WiiLeft2 {
 send ControlLeft2;
 }
 on WiiRight2 {
 send ControlRight2;
 }

}

In this case, only the normal movements of keyboard are adapted for both
players:

Chapter 2: Technical implementation 31

- Move up button
- Move down button
- Move left button
- Move right button

To distinguish between player one and player two input events we have used
the “SourceDevice” (notice that iStuff software distinguish between majuscule
and minuscule letters) field that is always included in every event send to event
head. In this scenario player one is using the WiiMote that is connected to
“ISTUFF” host and player two the WiiMote connected to “espc-1” host.

Finally, and as last step, we need to create the collaborative application:
A Tetris application that can be found on http://www.percederberg.net is used
(http://www.percederberg.net/software/tetris/tetris-1.2-src.zip) as starting point.

This application is based on the following classes:

- Configuration.java: Provides the static methods for simplifying the
reading of configuration parameters. It also includes some methods for
transforming string values into more useful objects.

- Figure.java: Represents Tetris figures. Each one consists of four
connected squares on seven possible constellations. Each figure can
have to states; attached to a square or not. When is attached, no rotation
or movements of pieces are allowed; when is not, a rotation can be
made.

- Game.java: Controls all events in the game and handles all the game
logics. Also implements the graphical game component.

- SquareBoard.java: Tetris square board. Rectangular board that contains
a grid of colored squares representing the pieces.

- Main.java: Program main class. Set up the frames, listeners and starts
the game

To adapt the obtained code for our purpose, we modified the Game.java
class to instead of one piece, two pieces are created (source code can be
found on Annex 3, Game.java). We also need to modify all the game
handlers to complete the code.

Also keyboard keys are assigned to permit the movement of both players’
pieces into the square board.

At this point, we have a Tetris game for two players but is still an Istuff proxy
required. We have created an Istuff proxy class, called IstuffProxy.java
(source code is available on Annex 3).

The integration of IStuffProxy and the Game is done using an EventListener
Java object that is implemented by the IStuffProxy class. Then a method
that listens to these events is created on Game.java (called

32 Ubicomp:Using iStuff

onReceivedSignal) that implements the right movement of the piece
according to the received message from IStuff event heap.

The following Fig. 16 shows the schematic of the proposed test scenario:

Fig. 16 Collaborative Tetris test scenario.

The scenario is composed by three hosts with the following specs:

• ISTUFF :

o Hostname: istuff
o IP: 147.83.118.126
o ISTUFF components: Event heap and Event Logger
o WiiGeeGui with integrated iStuff proxy. Acts as player 1 in the

collaborative Tetris.

• PATCH PANEL:
o Hostname: espc-1
o IP: 147.83.118.124
o ISTUFF components: Patch Panel.
o WiiGeeGUI with integrated iStuff proxy. Acts as player 2 in the

collaborative Tetris.

• COLLABORATIVE TETRIS:
o Hostname: jose-pc
o IP: 147.83.118.199
o Collaborative Tetris application.

In the following section 3.3 you can find the results of this test scenario.

Chapter 3: Tests 33

CHAPTER 3. Tests

This chapter summarizes the results obtained from the tests that are described
on chapter 2 in section 2.4.

3.1. iStuff test results

Remember in this first scenario, a PC called “Istuff” with the istuff components
“Event Heap” and “Event Logger”, and in the second pc called “dac-epsc-1” the
patch panel (patch panel and patch panel GUI) and the Terminal event sender
are running.

To illustrate how istuff event bus (event Heap) works, in first test only the event
heap, event logger and the Terminal Event Sender are running.

In this case we can observe the following traffic in the net (figure 17):

Fig. 17 Wireshark capture of TCP connection involved on test

Initially, a TCP connection between the two hosts is done. First the “dac-espc-1”
host registers to the event Heap and sends the message. After this it
deregisters from event heap and TCP connection terminates.

34 Ubicomp:Using iStuff

Event logger application captured the only packet that is send to the event heap
(Fig. 18):

Fig. 18 Hello EventType packet

Now, we start patch panel component (and the patch panel manager, which
permits us to visualize programmed rules on patch panel). We load the rules
prepared for this test, and start again the modified Terminal Event Sender and
we can observe the following Fig. 19:

Fig. 19 Event logger capture

Chapter 3: Tests 35

On the first packet sent, (EventType:hello) the second packet is automatically
generated by the patch panel (EventType:helloHi) as we requested with the rule
shown on the previous chapter. In this case the source device of both packets is
the same because Terminal Event Sender and Patch panel are running on the
same host.

If we observe in detail we can appreciate that other values are send (Fig. 20):

Fig. 20 Hello & HelloHi packets in detail

There are other values sent by each element connected to the Event Heap. We
can emphasize:

- Source Application: Identifies the software origin of the packet. In the first
one we can observer that this origin corresponds to
TerminalEventSender, and in the second one this is generated by
iwork.patchpannel.Intermediary

- SourceDevice: Identifies the hardware origin of the packet. In both cases
we can distinguish dac-epsc-1 (it’s the name of the machine where
PatchPannel and TerminalEventSender software are running).

In more detail, those packets are sent using TCP connection between both
hosts as shown in figure 21:

36 Ubicomp:Using iStuff

Fig. 21 Wireshark capture

We can observe that all the fields that are visualized in the previous captures,
are sent into the data fields of TCP packets.

We can describe the flow in more detail:

1. Terminal Event Sender registers to event Heap, sends the “Hello” packet
and then deregisters. Terminal Event Sender program ends.

2. Event Heap receives the Hello packet and is forwarded to the registered
patch panel.

3. Patch panel receives the Hello packet and looks up in its mapping. Finds
out a rule that matches the received packet and forwards the
corresponding packet, called “HelloHi”, to the event Heap.

4. Finally, event Heap forwards the “HelloHi” packet to all others hosts that
are registered to event Heap.

Chapter 3: Tests 37

3.2. WiiGee library and iStuff library test results

This scenario shows how Wiigee library (or the interaction done using a Wii
remote device) is integrated with the iStuff library as a network communication
path. To probe the correct working of the scenario also a proxy attached to the
iStuff bus is created with the objective of control remotely an operating system.
In this case, Windows Vista is the operating system chosen.

To start up this scenario we have to start first the event heap and event logger.
Then we connect the patch panel to the event heap, start the patch panel
manager in which we load the defined rules you can found on section 3.4.2 and
finally we start the “controlledWindows” application.

The following Fig. 22 illustrates the dialog present in the bus between “ISTAFF”
and “dac-espc-1” (event-heap and patch panel):

 Fig. 22 Bus activity during ControlledWindows test

The process that is accomplished in that process is going to be described in
detail:

1. Start event Heap bus.
2. Start event Logger and Event inspector: Both register in even Heap using

a TCP connection that remains open.
3. Start Patch Panel and Patch Panel manager: Also both register to even

Heap using a TCP connection that remains open.

38 Ubicomp:Using iStuff

4. Start WiiGeeGUI: Registers to even Heap with a TCP connection.
Connection remains open.

5. Start ControlledWindows: It registers to the even Heap with a TCP
connection that remains open.

At this point, when an event is sent to the Event Heap bus using the
WiiGeeGUI istuff proxy, we can observe:

1. The event is spread out to other listeners as loggers (event Logger and

Inspector) and to the patch panel.
2. Patch panel receives the event and looks up in rules. If event mapping

exist, acts in agreement with predefined rules. In this case, another event
is sent to the bus. The following figures (Fig.23 and 24) illustrates that
fact:

Fig. 23 Event Logger capture during Controlled Windows Test

Previous Fig. 23 shows the traffic of events into the event heap: we can
differentiate between the event sent by wiiGeeGUI (from SourceDevice:
ISTUFF) and the corresponding event generated by the patch panel rules (from
SourceDevice: dac-espc-1).

The following Fig. 24 shows in more detail two of the packets involved in this
process: the first packet is generated by the wiiGee GUI and the second one is
the generated by the patch panel rules. The first packet with the “WiiCommand”
with post value “circulitos” generates a “ControlCommand” with post value

Chapter 3: Tests 39

“Execute”. Control Command “Execute” on the Controlled Windows software
generates that Java robot simulates the push of “Intro” button.

Fig. 24 Event sent by WiiGeeGUI and response by Patch Panel

40 Ubicomp:Using iStuff

3.3. Collaborative application test results

This scenario simulates a real environment in which ubiquitous computing
component, iStuff event heap, is connecting to a new human centered device,
wiiMote using WiiGee libraries, to interact with a collaborative application: the
collaborative Tetris software.

To configure the scenario fist we have to start all istuff components: event heap
and event logger applications at host “istuff” and, patch panel and patch panel
manager at host “espc-1”. Then we need to load patch panel rules defined in
section 3.4.3 using patch panel manager software. The last step consists in
startup wiigee software and to connect WiiRemote devices at hosts “jose-pc”
and “espc-1” respectively.

The scenario works as following:

1. A user performs a gesture with the WiiRemote device.
2. WiiGee software recognizes (as describes on section 1.6) or not the

gesture.
3. IStuff proxy integrated on WiiGee software sends a packet type

“WiiEvent” containing the name of the recognized gesture to the event
heap.

4. Event heap delivers the packet to patch panel host which captured it.
5. Patch panel looks up in its predefined rules if exists any rule that affects

the received packet. In this case, the packet is mapped to another type of
packet “ControlEvent” following the rules that you can find in section
3.4.3. The new packet “ControlEvent” with the corresponding value
according to the patch panel rules is send again to the event heap.
Notice that according to the patch panel rules a “WiiEvent” packet with
the same message will generate a different output packet according to
the source device that generates the “WiiEvent” packet.

6. Throw the event heap the packet finally arrives to “jose-pc” that contains
iStuff proxy (in collaborative Tetris software) that captures this kind of
packets.

7. The corresponding event is generated internally in collaborative Tetris
software, event listener delivers it to the game and the right Tetris figure
move along the square board.

The following Fig. 25 proves the traffic between all the hosts (captured on host
“istuff”) is done using TCP connections. All packets are always sent to all the
hosts subscribed to event heap.

Chapter 3: Tests 41

Fig. 25 Traffic between the hosts involved on the third test

We are going to observe in more understandable point of view the traffic that
event heap supports using the event logger and event inspector applications;
tools that are present in iStuff toolkit.

Fig. 26 WiiEvent packet generated by WiiGee software on istuff host

The previous Fig. 26 shows a packet send by the iStuff proxy integrated on
WiiGee software that runs on istuff host. This packet is generated when a

42 Ubicomp:Using iStuff

gesture type “amunt” (present on the Wii Comand field name on the “Post
Value” row in Event Inspector window) is recognized by WiiGee software.

Fig. 27 ControlEvent packet (Up) generated by patch panel software on espc-1

host

Previous Fig. 27 shows the packet generated by patch panel on host “espc-1”
as a response on the previous packet shown on figure 26. Event Inspector
details the content of the packet where we can observe that the previous packet
type “WiiComand” with post value “amunt” generated a “ControlCommand”
packet with “Up” value. This type of packet produces that player one figure
move all down in the square board.

The following Fig. 28 shows a same type of packet but now, generated by espc-
1 host with which plays player 2.

We can observe that packet contains the same Event type value because the
version software used is the same as in “istuff” host.

Chapter 3: Tests 43

Fig. 28 WiiEvent packet generated by WiiGee software on espc-1 host

Following Fig. 29 shows a Control Event packet with “Up2” PostValue which in
this case is also generated by patch panel software that runs on espc-1 host.
Notice that in this case post value changed compared with the packet shown in
Fig. 27. This is due to the rules loaded in patch panel; it has detected that in this
case the packet comes from “espc-1” host and not from “istuff” host.

Fig. 29 ControlEvent packet (Up2) generated by patch panel software on espc-

1 host

44 Ubicomp:Using iStuff

CHAPTER 4. Conclusions

This chapter contains the master thesis conclusions. First the test conclusions
are present. Following the green study about the possible impact of studied
technology could produce in the environment, and the personal conclusions I
have obtained carrying out this master thesis.

4.1 Tests conclusions

iStuff toolkit was created to act as a middleware allows interconnection
between a high number of devices that initially, where not created to interact in
an ubiquitous environment. In our case, has permitted successfully the
interconnection between Nintendo Wii Remote devices and software on
different hosts with different operating system.

The first test has shown that iStuff software works successfully according to the
programmer specifications and the basic scenario configuration is correct.

The second test has proved that iStuff proxy created to interact with Event Heap
works successfully and also proved a simple way to interact with an operating
system using a WiiMote device.

The last test represented how to introduce some “intelligence” to the patch
panel’s iStuff toolkit from the differentiation between the source host that
generates a specific packet and another host that generates the same packet
type. Also has shown how to integrate ubiquitous components into an existing
program to become part of “ubiquitous environment”.

We can achieve the following points from iStuff toolkit experience:

- Fast and easy: iStuff toolkit architecture has proved as a fast and easy
environment to develop applications that can interact in a ubiquitous
environment. Only with the creation of a proxy that acts as middleware
between our applications or our hardware devices firmware we can
achieve a ubiquitous device.

- Interoperability: Thanks to the use of Java technology iStuff toolkit is
independent of the operating system. Besides, it would be used in tiny or
small operating systems (such as firmwares) that implement a Java
Virtual Machine on its systems.

- Independent: Using hostname instead of IP addresses permits the
connection between hosts across Internet and independent from static or
dynamic IP addresses. It stands up the point that in ubiquitous
environment network elements are dynamic and can appear or disappear
in the network, fact that using DNS can be solved correctly.

Chapter 4: Conclusions 45

- Multiuser: Different users can interact at same time with iStuff toolkit
independently or together, in a different or in the same task without any
appreciable difference.

- Security: IStuff toolkit doesn’t give any kind of security to the users. All
the TCP packets between the hosts travel “in clear” through the network.
Neither any security check is done when patch panel rules are set up.
Both security fails could permit that a malicious user manages the
network as he pleased.

- Limitations: Java Virtual Machine has become unstable in some
moments due to the suddenly shut down of some iStuff components. In
those cases a reboot of virtual machine was needed.

Another device and related software has been used in this master thesis: the
Nintendo’s Wii Remote. It was plugged into personal computer environment
through WiiGee java libraries. Wii Remote has demonstrated a powerful device
in which new human-to-computer interfaces refers. It could be a starting point,
for example, to bring closer computer technology to elderly population or to
people with a reduced accessibility.

The main limitation we noticed is the gesture recognition procedure: a gesture
that could be easy to reproduce for a person couldn’t be for another person

This is, when a user tries to use WiiRemote with the predefined gestures of
another user, some gesture will be difficult to reproduce. The solution goes
through the individual training of gestures for each user involved. This fact
doesn’t’ represent a hint from the point of view of the software because WiiGee
GUI permits save and load gestures set during execution time.

To sum up, this master thesis has accomplished the proposed goals. It has
proved the capabilities of wiiGee library with some limitations when two
gestures are very similar, it can confuse wiiGee software and recognize a wrong
gesture. Especially you can notice it when saved gestures from one user are
tried to be reproduced by another user.

Also iStuff toolkit has proved as a fast and easy environment to create
ubiquitous test environment. Patch Panel element has demonstrated as a
powerful tool because allows creation of complex mapping between events. An
iStuff proxy has been integrated successfully into wiiGeeGUI allowing us to
create a ubiquitous environment. To complete this environment a collaborative
application has been programmed. That application permits the interaction
between two users and the ubiquitous scenario elements with a common
objective: complete a Tetris game.

46 Ubicomp:Using iStuff

4.2 Green study

The execution of this master thesis did not represent any harmful effect to the
environment excluding the possible responsibilities during the manufacturing
process of the hardware devices used; so this kind of responsibilities are not of
our scope.

4.3. Personal conclusions

When I started this master thesis I realized that ubiquitous computing is one of
the next steps in human to computer interaction refers. This is, don’t learn how
to use computer technology, transform it to technology that learns from users
how they want devices act.

Also exists a related topic not discussed in this master thesis but not less
important. That is the associated anonymity of the users of a ubiquitous
environment. Imagine that undesired user access to your personal ubiquitous
home network; he would know what TV program you are watching, access
perhaps to your personal photos or simply locate yourself inside the building. I
think to try to avoid this kind of problems, future ubiquitous environments will
emphasize security and anonimity related issues.

Personally, I will try to develop my personal career in one of the subjects I
studied during the execution of this mater thesis, ubiquitous computing and/or
new human to computer interfaces. Those subjects are still not present in our
daily live and could be an emerging market. Another interesting point is those
technologies apologizes to facilitate users lives and society‘s well done.

Glossary 47

GLOSSARY

DNS – Domain Name Server

GUI – Graphical User Interface

HCI – Human - Computer Interaction

ID – Identification

L2CAP – Logical Link Control and Adaptation Protocol

OED – Oxford English Dictionary

OS – Operating System

PDA – Personal Digital Assistant

SDK – Software Development Kit

TCP – Transmission Control Protocol

VNC – Virtual Network Computing

48 Ubicomp:Using iStuff

REFERENCES

[1] Oxford University Press. Oxford English Dictionary. Oxford University Press,
2000.

[2] Stajano, Frank. Security for ubiquitous computing, John Willey & Sons, Ltd.
2002

[3] http://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html

[4] http://www.cl.cam.ac.uk/research/dtg/research/wiki/BatSystem

[5] http://oxygen.csail.mit.edu/Overview.html

[6] http://en.wikipedia.org/wiki/User-centered_design

[7] http://en.wikipedia.org/wiki/Human-centered_computing_(discipline)

[8] http://hci.stanford.edu/research/istuff.html

[9] http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

[10] Rafael Ballagas, Meredith Ringel, Maureen Stone, Jan Borchers. iStuff: A
Physical User Interface Toolkit for Ubiquitous Computing Environments

[11] Jan Borchers, Meredith Ringel, Joshua Tyler, and Armando Fox. Stanford
Interactive Workspaces: A Framework for Physical and Graphical User Interface
Prototyping - http://www.cl.cam.ac.uk/research/dtg/research/wiki/BatSystem

[12] http://en.wikipedia.org/wiki/X10_%28industry_standard%29

[13] http://wiibrew.org/wiki/Wiimote

[14] http://www.wiigee.org/

[15] http://java3d.dev.java.net/

[16] http://us.kensington.com/html/9403.html

[17] http://www.taringa.net/posts/downloads/1533488/Como-instalar-
WIDCOMM-drivers-5_1_0_1100.html

[18]
http://markmail.org/message/izwhoja2pma6a3vx#query:wiiremote%20widcom%
20l2cap+page:1+mid:4y5w44e5enbmc7ok+state:results

[19] http://www.cs.unc.edu/~dewan/290/s97/notes/intro/node2.html

[20] http://www.broadcom.com/products/Bluetooth/Bluetooth-RF-Silicon-and-
Software-Solutions/BCM2042

[21] http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf

[22]
http://www.wiigee.org/download_files/gesture_recognition_with_a_wii_controller
-schloemer_poppinga_henze_boll.pdf

Annex1 49

Annex 1

TerminalEventSender.java
import iwork.eheap2.*;
import java.net.*;
import java.util.*;
import java.io.Serializable;

public class TerminalEventSender {
 private EventHeap mEventHeap ;
 public String mMachineName;

 public TerminalEventSender(){
 try{
 String eventHeapName = "istuff" ;
 String eventType = "hello" ;
 List<Object> fieldList = new ArrayList<Object>();
 /**for (int i=2;i<args.length; i++){
 fieldList.add(new FieldValuePair(args [i]));

 }**/
 System. out.println("sending...");
 send(eventHeapName, eventType, fieldList);
 }
 catch (ArrayIndexOutOfBoundsException aexp){
 printUsage();
 }
 }

 public void send(String iEventHeapName, String iEventType, Lis t
iFieldValueList){
 mEventHeap = new EventHeap(iEventHeapName);
 try{
 Event oEvent = new Event(iEventType);
 for (Iterator i=iFieldValueList.iterator();
i.hasNext();){
 FieldValuePair pair = (FieldValuePair)i.next();
 oEvent.setField(pair. mFieldName , pair. mValue ,
FieldValueTypes. FORMAL);
 }
 System. out.println("putting event...");
 mEventHeap .putEvent(oEvent);
 }
 catch (EventHeapException eexp){
 }
 }

 //Integer Number > Float Number > String
 class FieldValuePair{
 String mFieldName ;
 Serializable mValue ;
 public FieldValuePair(String iStringToParse){
 //ffasd:asdda
 //ssasdsdf :
 //"ssdasda asdasd ":
 String[] parts;

50 Ubicomp:Using iStuff

 if (iStringToParse.startsWith("\"")){
 parts = iStringToParse.split("\\\":");
 }
 else{
 parts = iStringToParse.split(":");
 }

 String iFieldName = parts[0].trim();
 if (iFieldName.startsWith("\"")){ //Strip off quotes
 iFieldName =
iFieldName.substring(1,iFieldName.length());
 }

 String iValString = "" ;
 if (parts. length >0){
 iValString= parts[1].trim();
 }

 mFieldName = iFieldName;
 try{
 int intValue =
Integer. parseInt(iValString.trim());
 mValue = new Integer(intValue);
 }
 catch (NumberFormatException niExp){
 try{
 float floatValue =
Float. parseFloat(iValString.trim());
 mValue = new Float(floatValue);
 }
 catch (NumberFormatException nfExp){
 mValue = iValString;
 } //enf try float
 } //end try integer
 }
 }

 public static void main(String[] args)
 {
 TerminalEventSender s;
 s = new TerminalEventSender();

 }

 public static void printUsage(){
 System. out.println("Usage: TerminalEventSender <event heap
name> <event type> {<field name:value>}*");
 System. exit(-1);
 }

}

Annex 2 51

Annex 2

IStuffProxy.java

package wiigeegui ;

import iwork.eheap2.Event;
import iwork.eheap2.EventHeap;
import iwork.eheap2.EventHeapException;
import iwork.eheap2.FieldValueTypes;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class IStuffProxy {
 private EventHeap mEventHeap ;
 public String mMachineName;
 String eventHeapName = "localhost" ;
 String eventType = "WiiEvent" ;
 List<Object> fieldList = new ArrayList<Object>();

 public void arrenca(String command) {
 fieldList .add(new FieldValuePair("WiiCommand:" +command));

 System. out.println("sending...");
 send(eventHeapName , eventType , fieldList);
 }

 public void send(String iEventHeapName, String iEventType,
 List iFieldValueList) {
 mEventHeap = new EventHeap(iEventHeapName);
 try {
 Event oEvent = new Event(iEventType);
 for (Iterator i = iFieldValueList.iterator();
i.hasNext();) {
 FieldValuePair pair = (FieldValuePa ir) i.next();
 oEvent.setField(pair. mFieldName , pair. mValue ,
 FieldValueTypes. FORMAL);
 }
 System. out.println("putting event...");
 mEventHeap .putEvent(oEvent);
 } catch (EventHeapException eexp) {
 }
 }

 // Integer Number > Float Number > String
 class FieldValuePair {
 String mFieldName ;
 Serializable mValue ;

 public FieldValuePair(String iStringToParse) {
 // ffasd:asdda
 // ssasdsdf :

52 Ubicomp:Using iStuff

 // "ssdasda asdasd ":
 String[] parts;
 if (iStringToParse.startsWith("\"")) {
 parts = iStringToParse.split("\\\":");
 } else {
 parts = iStringToParse.split(":");
 }

 String iFieldName = parts[0].trim();
 if (iFieldName.startsWith("\"")) { // Strip off quotes
 iFieldName = iFieldName.substring(1 ,
iFieldName.length());
 }

 String iValString = "" ;
 if (parts. length > 0) {
 iValString = parts[1].trim();
 }

 mFieldName = iFieldName;
 try {
 int intValue = Integer. parseInt(iValString.trim());
 mValue = new Integer(intValue);
 } catch (NumberFormatException niExp) {
 try {
 float floatValue =
Float. parseFloat(iValString.trim());
 mValue = new Float(floatValue);
 } catch (NumberFormatException nfExp) {
 mValue = iValString;
 } // enf try float
 } // end try integer
 }
 }
}

Annex 2 53

ControlledWindows.java
package src ;

import java.awt.AWTException;
import java.awt.Robot;
import java.awt.event.KeyEvent;

import iwork.eheap2.EventHeap;

public class ControledWindows implements Runnable {
 iwork.eheap2.Event templateEvent ;
 EventHeap m_EventHeap ;

 ControledWindows(String server)
 {
 super();
System. out.println ("Trying to connect\n");
 m_EventHeap = new EventHeap(server);
 System. out.println ("Did we connect?");
 try {
 templateEvent = new iwork.eheap2.Event("ControlEvent");
 } catch(Exception ex) { ex.printStackTrace(); }
 //setDaemon(true);
 }

 public void run()
 {
 while(true) {
 try {
 iwork.eheap2.Event e =
m_EventHeap .waitForEvent(templateEvent);
 handleEventHeapEvent(e);
 } catch(Exception ex) { ex.printStackTrace(); }
 }
 }

 public void handleEventHeapEvent(iwork.eheap2.Event e)
 {
 Robot rob = null;
 try {
 rob = new Robot();
 } catch (AWTException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 }

 try {
 String command = e.getPostValueString("ControlCommand");
 System. out.println("command: " + command);
 if (command.equals("Windows")) {
 rob.keyPress(KeyEvent. VK_WINDOWS);
 rob.keyRelease(KeyEvent. VK_WINDOWS);
 } else if (command.equals("Left")) {
 rob.keyPress(KeyEvent. VK_LEFT);
 rob.keyRelease(KeyEvent. VK_LEFT);
 } else if (command.equals("Right")) {
 rob.keyPress(KeyEvent. VK_RIGHT);
 rob.keyRelease(KeyEvent. VK_RIGHT);

54 Ubicomp:Using iStuff

 } else if (command.equals("Up")) {
 rob.keyPress(KeyEvent. VK_UP);
 rob.keyRelease(KeyEvent. VK_UP);
 } else if (command.equals("Down")) {
 rob.keyPress(KeyEvent. VK_DOWN);
 rob.keyRelease(KeyEvent. VK_DOWN);
 } else if (command.equals("Execute")) {
 rob.keyPress(KeyEvent. VK_ENTER);
 rob.keyRelease(KeyEvent. VK_ENTER);
 }

 } catch(Exception ex) { ex.printStackTrace(); }

 }

 public static void main(String [] argv) {
 ControledWindows cw = new ControledWindows("istuff");
 Thread t = new Thread(cw);
 t.start();
 }

Annex 3 55

Annex 3

Game.java
/*
 * @(#)Game.java
 *
 * This work is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Pub lic License as
 * published by the Free Software Foundation; eithe r version 2 of
 * the License, or (at your option) any later versi on.
 *
 * This work is distributed in the hope that it wil l be useful,
 * but WITHOUT ANY WARRANTY; without even the impli ed warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURP OSE. See the
 * GNU General Public License for more details.
 *
 * Copyright (c) 2003 Per Cederberg . All rights reserved.
 */

package net.tetriscollaborative;

import java.awt.Button;
import java.awt.Component;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.Insets;
import java.awt.Label;
import java.awt.Rectangle;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.KeyAdapter;
import java.awt.event.KeyEvent;

/**
 * The Tetris game. This class controls all events in the game and
 * handles all the game logics. The game is started through user
 * interaction with the graphical game component provided by this
 * class.
 *
 * @version 1.2
 * @author Per Cederberg , per@percederberg .net
 */
public class Game extends Object implements
IstuffProxy.ControlListener {

 /**
 * The main square board. This board is used for the game itself.
 */
 private SquareBoard board = null;

 /**
 * The preview square board. This board is used to display a
 * preview of the figures.
 */
 private SquareBoard previewBoard = new SquareBoard(5, 5);

56 Ubicomp:Using iStuff

 /**
 * preview x la peça 2
 */
 private SquareBoard previewBoard2 = new SquareBoard(5, 5);

 /**
 * The figures used on both boards. All figures are reutilized in
 * order to avoid creating new objects while the game is running.
 * Special care has to be taken when the preview figure and the
 * current figure refers to the same object.
 */
 private Figure[] figures = {
 new Figure(Figure. SQUARE_FIGURE),
 new Figure(Figure. LINE_FIGURE),
 new Figure(Figure. S_FIGURE),
 new Figure(Figure. Z_FIGURE),
 new Figure(Figure. RIGHT_ANGLE_FIGURE),
 new Figure(Figure. LEFT_ANGLE_FIGURE),
 new Figure(Figure. TRIANGLE_FIGURE)
 };

 private Figure[] figures2 = {
 new Figure(Figure. SQUARE_FIGURE),
 new Figure(Figure. LINE_FIGURE),
 new Figure(Figure. S_FIGURE),
 new Figure(Figure. Z_FIGURE),
 new Figure(Figure. RIGHT_ANGLE_FIGURE),
 new Figure(Figure. LEFT_ANGLE_FIGURE),
 new Figure(Figure. TRIANGLE_FIGURE)
 };

 /**
 * The graphical game component. This component is created on the
 * first call to getComponent().
 */
 private GamePanel component = null;

 /**
 * The thread that runs the game. When this variable is set to
 * null, the game thread will terminate.
 */
 private GameThread thread = null;

 /**
 * The game level. The level will be increased for every 20 lines
 * removed from the square board.
 */
 private int level = 1;

 /**
 * The current score. The score is increased for every figure that
 * is possible to place on the main board.
 */
 private int score = 0;

 /**
 * The current figure. The figure will be updated when
 */
 private Figure figure = null;

Annex 3 57

 /**
 * figura 2
 */
 private Figure figure2 = null;

 /**
 * The next figure.
 */
 private Figure nextFigure = null;

 private Figure nextFigure2 = null;

 /**
 * The rotation of the next figure.
 */
 private int nextRotation = 0;

 private int nextRotation2 = 0;

 /**
 * The figure preview flag. If this flag is set, the figure
 * will be shown in the figure preview board.
 */
 private boolean preview = true;

 /**
 * The move lock flag. If this flag is set, the current figure
 * cannot be moved. This flag is set when a figure is moved all
 * the way down, and reset when a new figure is displayed.
 */
 private boolean moveLock = false;

 private boolean moveLock2 = false;
 /**
 * Creates a new Tetris game. The square board will be given
 * the default size of 10x20.
 */
 public Game() {
 this(10, 20);
 }

 /**
 * Creates a new Tetris game. The square board will be given
 * the specified size.
 *
 * @param width the width of the square board (in positions)
 * @param height the height of the square board (in positions)
 */
 public Game(int width, int height) {
 board = new SquareBoard(width, height);
 board .setMessage("Press start");
 thread = new GameThread();
 }

 /**
 * Kills the game running thread and makes necessary clean - up.
 * After calling this method, no further methods in this class
 * should be called. Neither should the component returned
 * earlier be trusted upon.
 */
 public void quit() {

58 Ubicomp:Using iStuff

 thread = null;
 }

 /**
 * Returns a new component that draws the game.
 *
 * @return the component that draws the game
 */
 public Component getComponent() {
 if (component == null) {
 component = new GamePanel();
 }
 return component ;
 }

 /**
 * Handles a game start event. Both the main and preview square
 * boards will be reset, and all other game parameters will be
 * reset. Finally the game thread will be launched.
 */
 private void handleStart() {

 // Reset score and figures
 level = 1;
 score = 0;

 figure = null;
 nextFigure = randomFigure();
 nextFigure .rotateRandom();
 nextRotation = nextFigure .getRotation();

 figure2 = null;
 nextFigure2 = randomFigure2();
 nextFigure2 .rotateRandom();
 nextRotation2 = nextFigure2 .getRotation();

 // Reset components
 board .setMessage(null);
 board .clear();
 previewBoard .clear();
 handleLevelModification();
 handleScoreModification();
 component . button .setLabel("Pause");

 // Start game thread
 thread .reset();
 }

 /**
 * Handles a game over event. This will stop the game thread,
 * reset all figures and print a game over message.
 */
 private void handleGameOver() {

 // Stop game thred
 thread .setPaused(true);

 // Reset figures
 if (figure != null) {
 figure .detach();
 }

Annex 3 59

 if (figure2 != null){
 figure2 .detach();
 }
 figure = null;
 figure2 = null;

 if (nextFigure != null) {
 nextFigure .detach();
 }
 if (nextFigure2 != null) {
 nextFigure2 .detach();
 }
 nextFigure = null;
 nextFigure2 = null;

 // Handle components
 board .setMessage("Game Over");
 component . button .setLabel("Start");
 }

 /**
 * Handles a game pause event. This will pause the game thread and
 * print a pause message on the game board.
 */
 private void handlePause() {
 thread .setPaused(true);
 board .setMessage("Paused");
 component . button .setLabel("Resume");
 }

 /**
 * Handles a game resume event. This will resume the game thread
 * and remove any messages on the game board.
 */
 private void handleResume() {
 board .setMessage(null);
 component . button .setLabel("Pause");
 thread .setPaused(false);
 }

 /**
 * Handles a level modification event. This will modify the level
 * label and adjust the thread speed.
 */
 private void handleLevelModification() {
 component . levelLabel .setText("Level: " + level);
 thread .adjustSpeed();
 }

 /**
 * Handle a score modification event. This will modify the score
 * label.
 */
 private void handleScoreModification() {
 component . scoreLabel .setText("Score: " + score);
 }

 /**
 * Handles a figure start event. This will move the next figure
 * to the current figure position, while also creating a new
 * preview figure. If the figure cannot be introduced onto the

60 Ubicomp:Using iStuff

 * game board, a game over event will be launched.
 */
 private void handleFigureStart() {
 int rotation;

 int rotation2;

 moveLock = false;
 moveLock2 = false;

 // Move next figure to current
 figure = nextFigure ;

 rotation = nextRotation ;
 nextFigure = randomFigure();
 nextFigure .rotateRandom();
 nextRotation = nextFigure .getRotation();

 figure2 = nextFigure2 ;
 rotation2 = nextRotation2 ;
 nextFigure2 = randomFigure2();
 nextFigure2 .rotateRandom();
 nextRotation2 = nextFigure2 .getRotation();

 // Handle figure preview
 if (preview) {
 previewBoard .clear();
 nextFigure .attach(previewBoard , true, false);
 nextFigure .detach();
 previewBoard2 .clear();
 nextFigure2 .attach(previewBoard2 , true, false);
 nextFigure2 .detach();
 }

 // Attach figure to game board
 figure .setRotation(rotation);
 if (! figure .attach(board , false, false)) {
 previewBoard .clear();
 figure .attach(previewBoard , true, false);
 figure .detach();
 handleGameOver();
 }
 figure2 .setRotation(rotation2);
 if (! figure2 .attach(board , false, true)) {
 previewBoard2 .clear();
 figure2 .attach(previewBoard2 , true, false);
 figure2 .detach();
 handleGameOver();
 }

 }

 /**
 * Handles a figure landed event. This will check that the figure
 * is completely visible, or a game over event will be launched.
 * After this control, any full lines will be removed. If no full
 * lines could be removed, a figure start event is launched
 * directly.
 */
 private void handleFigureLanded() {

Annex 3 61

 if (! moveLock &&! moveLock2)
 return;

 // Check and detach figure
 if (figure .isAllVisible()&& figure2 .isAllVisible()) {
 score += 10;
 handleScoreModification();

 } else {
 handleGameOver();
 return;
 }

 figure .detach();
 figure = null;
 figure2 .detach();
 figure2 = null;

 // Check for full lines or create new figure
 if (board .hasFullLines()) {
 board .removeFullLines();
 if (level < 9 && board .getRemovedLines() / 20 > level) {
 level = board .getRemovedLines() / 20;
 handleLevelModification();
 }
 } else {
 handleFigureStart();
 }
 }

 /**
 * Handles a timer event. This will normally move the figure down
 * one step, but when a figure has landed or isn't ready other
 * events will be launched. This method is synchronized to avoid
 * race conditions with other asynchronous events (keyboard and
 * mouse).
 */
 private synchronized void handleTimer() {
 if ((figure == null)&&(figure2 ==null)) {
 handleFigureStart();
 } else if (figure .hasLanded()&& figure2 .hasLanded()) {
 moveLock =true;
 moveLock2 =true;
 handleFigureLanded();
 } else {
 figure .moveDown();
 figure2 .moveDown();
 }

 }

 /**
 * Handles a button press event. This will launch different events
 * depending on the state of the game, as the button semantics
 * change as the game changes. This method is synchronized to
 * avoid race conditions with other asynchronous events (timer and
 * keyboard).
 */

62 Ubicomp:Using iStuff

 private synchronized void handleButtonPressed() {
 if (nextFigure == null&&nextFigure2 ==null) {
 handleStart();
 } else if (thread .isPaused()) {
 handleResume();
 } else {
 handlePause();
 }
 }

 /**
 * Handles a keyboard event. This will result in different actions
 * being taken, depending on the key pressed. In some cases, other
 * events will be launched. This method is synchronized to avoid
 * race conditions with other asynchronous events (timer and
 * mouse).
 *
 * @param e the key event
 */
 private synchronized void handleKeyEvent(KeyEvent e) {

 // Handle start, pause and resume
 if (e.getKeyCode() == KeyEvent. VK_P) {
 handleButtonPressed();
 return;
 }

 // Don't proceed if stopped or paused
 if (figure == null || figure2 == null || (moveLock &&moveLock2)
|| thread .isPaused()) {
 return;
 }

 // Handle remaining key events
 switch (e.getKeyCode()) {

 case KeyEvent. VK_LEFT:
 if (! moveLock)
 figure .moveLeft();
 break;

 case KeyEvent. VK_RIGHT:
 if (! moveLock)
 figure .moveRight();
 break;

 case KeyEvent. VK_DOWN:
 if (! moveLock)
 figure .moveAllWayDown();
 moveLock = true;
 break;

 case KeyEvent. VK_UP:
 case KeyEvent. VK_SPACE:
 if (! moveLock){
 if (e.isControlDown()) {
 figure .rotateRandom();
 } else if (e.isShiftDown()) {
 figure .rotateClockwise();

Annex 3 63

 } else {
 figure .rotateCounterClockwise();
 }
 } break;

 //figure2
 case KeyEvent. VK_A:
 if (! moveLock2)
 figure2 .moveLeft();
 break;

 case KeyEvent. VK_D:
 if (! moveLock2)
 figure2 .moveRight();
 break;

 case KeyEvent. VK_W:
 if (! moveLock2)
 figure2 .rotateCounterClockwise();
 break;

 case KeyEvent. VK_S:
 if (! moveLock2)
 figure2 .moveAllWayDown();
 moveLock2 = true;
 break;

 //Controls
 case KeyEvent. VK_T:
 if (level < 9) {
 level ++;
 handleLevelModification();
 }
 break;

 case KeyEvent. VK_N:
 preview = ! preview ;
 if (preview && figure != nextFigure) {
 nextFigure .attach(previewBoard , true, false);
 nextFigure .detach();
 nextFigure2 .attach(previewBoard2 , true, false);
 nextFigure2 .detach();
 } else {
 previewBoard .clear();
 previewBoard2 .clear();
 }
 break;
 }
 }

 /**
 * Returns a random figure. The figures come from the figures
 * array, and will not be initialized.
 *
 * @return a random figure
 */
 private Figure randomFigure() {
 return figures [(int) (Math. random() * figures . length)];
 }

64 Ubicomp:Using iStuff

 private Figure randomFigure2() {
 return figures2 [(int) (Math. random() * figures2 . length)];
 }

 /**
 * The game time thread. This thread makes sure that the timer
 * events are launched appropriately, making the current figure
 * fall. This thread can be reused across games, but should be set
 * to paused state when no game is running.
 */
 private class GameThread extends Thread {

 /**
 * The game pause flag. This flag is set to true while the
 * game should pause.
 */
 private boolean paused = true;

 /**
 * The number of milliseconds to sleep before each automatic
 * move. This number will be lowered as the game progresses.
 */
 private int sleepTime = 500;

 /**
 * Creates a new game thread with default values.
 */
 public GameThread() {
 }

 /**
 * Resets the game thread. This will adjust the speed and
 * start the game thread if not previously started.
 */
 public void reset() {
 adjustSpeed();
 setPaused(false);
 if (!isAlive()) {
 this.start();
 }
 }

 /**
 * Checks if the thread is paused.
 *
 * @return true if the thread is paused, or
 * false otherwise
 */
 public boolean isPaused() {
 return paused ;
 }

 /**
 * Sets the thread pause flag.
 *
 * @param paused the new paused flag value
 */
 public void setPaused(boolean paused) {
 this. paused = paused;
 }

Annex 3 65

 /**
 * Adjusts the game speed according to the current level. The
 * sleeping time is calculated with a function making larger
 * steps initially an smaller as the level increases. A level
 * above ten (10) doesn't have any further effect.
 */
 public void adjustSpeed() {
 sleepTime = 4500 / (level + 5) - 250;
 if (sleepTime < 50) {
 sleepTime = 50;
 }
 }

 /**
 * Runs the game.
 */
 public void run() {
 while (thread == this) {
 // Make the time step
 handleTimer();

 // Sleep for some time
 try {
 Thread. sleep(sleepTime);
 } catch (InterruptedException ignore) {
 // Do nothing
 }

 // Sleep if paused
 while (paused && thread == this) {
 try {
 Thread. sleep(1000);
 } catch (InterruptedException ignore) {
 // Do nothing
 }
 }
 }
 }
 }

 /**
 * A game panel component. Contains all the game components.
 */
 private class GamePanel extends Container {

 /**
 * The component size. If the component has been resized, that
 * will be detected when the paint method executes. If this
 * value is set to null, the component dimensions are unknown.
 */
 private Dimension size = null;

 /**
 * The score label.
 */
 private Label scoreLabel = new Label("Score: 0");

 /**
 * The level label.

66 Ubicomp:Using iStuff

 */
 private Label levelLabel = new Label("Level: 1");

 /**
 * The generic button.
 */
 private Button button = new Button("Start");

 /**
 * Creates a new game panel. All the components will
 * also be added to the panel.
 */
 public GamePanel() {
 super();
 initComponents();
 }

 /**
 * Paints the game component. This method is overridden from
 * the default implementation in order to set the correct
 * background color.
 *
 * @param g the graphics context to use
 */
 public void paint(Graphics g) {
 Rectangle rect = g.getClipBounds();

 if (size == null || ! size .equals(getSize())) {
 size = getSize();
 resizeComponents();
 }
 g.setColor(getBackground());
 g.fillRect(rect. x, rect. y, rect. width , rect. height);
 super.paint(g);
 }

 /**
 * Initializes all the components, and places them in
 * the panel.
 */
 private void initComponents() {
 GridBagConstraints c;

 // Set layout manager and background
 setLayout(new GridBagLayout());
 setBackground(Configuration. getColor("background" ,
"#d4d0c8"));

 // Add game board
 c = new GridBagConstraints();
 c. gridx = 0;
 c. gridy = 0;
 c. gridheight = 5;
 c. weightx = 1.0;
 c. weighty = 1.0;
 c. fill = GridBagConstraints. BOTH;
 this.add(board .getComponent(), c);

 // Add next figure board
 c = new GridBagConstraints();
 c. gridx = 1;

Annex 3 67

 c. gridy = 0;
 c. weightx = 0.2;
 c. weighty = 0.18;
 c. fill = GridBagConstraints. BOTH;
 c. insets = new Insets(15, 15, 0, 15);
 this.add(previewBoard .getComponent(), c);

 // Add next figure board 2
 c = new GridBagConstraints();
 c. gridx = 1;
 c. gridy = 1;
 c. weightx = 0.2;
 c. weighty = 0.18;
 c. fill = GridBagConstraints. BOTH;
 c. insets = new Insets(15, 15, 0, 15);
 this.add(previewBoard2 .getComponent(), c);

 // Add score label
 scoreLabel .setForeground(Configuration. getColor("label" ,

"#000000"));
 scoreLabel .setAlignment(Label. CENTER);
 c = new GridBagConstraints();
 c. gridx = 1;
 c. gridy = 2;
 c. weightx = 0.3;
 c. weighty = 0.05;
 c. anchor = GridBagConstraints. CENTER;
 c. fill = GridBagConstraints. BOTH;
 c. insets = new Insets(0, 15, 0, 15);
 this.add(scoreLabel , c);

 // Add level label
 levelLabel .setForeground(Configuration. getColor("label" ,

"#000000"));
 levelLabel .setAlignment(Label. CENTER);
 c = new GridBagConstraints();
 c. gridx = 1;
 c. gridy = 3;
 c. weightx = 0.3;
 c. weighty = 0.05;
 c. anchor = GridBagConstraints. CENTER;
 c. fill = GridBagConstraints. BOTH;
 c. insets = new Insets(0, 15, 0, 15);
 this.add(levelLabel , c);

 // Add generic button
 button .setBackground(Configuration. getColor("button" ,
"#d4d0c8"));
 c = new GridBagConstraints();
 c. gridx = 1;
 c. gridy = 4;
 c. weightx = 0.3;
 c. weighty = 1.0;
 c. anchor = GridBagConstraints. NORTH;
 c. fill = GridBagConstraints. HORIZONTAL;
 c. insets = new Insets(15, 15, 15, 15);
 this.add(button , c);

 // Add event handling

68 Ubicomp:Using iStuff

 enableEvents(KeyEvent. KEY_EVENT_MASK);
 this.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e) {
 handleKeyEvent(e);
 }
 });
 button .addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleButtonPressed();
 component .requestFocus();
 }
 });
 }

 /**
 * Resizes all the static components, and invalidates the
 * current layout.
 */
 private void resizeComponents() {
 Dimension size = scoreLabel .getSize();
 Font font;
 int unitSize;

 // Calculate the unit size
 size = board .getComponent().getSize();
 size. width /= board .getBoardWidth();
 size. height /= board .getBoardHeight();
 if (size. width > size. height) {
 unitSize = size. height ;
 } else {
 unitSize = size. width ;
 }

 // Adjust font sizes
 font = new Font("SansSerif" ,
 Font. BOLD,
 3 + (int) (unitSize / 1.8));
 scoreLabel .setFont(font);
 levelLabel .setFont(font);
 font = new Font("SansSerif" ,
 Font. PLAIN,
 2 + unitSize / 2);
 button .setFont(font);

 // Invalidate layout
 scoreLabel .invalidate();
 levelLabel .invalidate();
 button .invalidate();
 }
 }

 public void onReceivedSignal(String command) {
 // Don't proceed if stopped or paused
 if (figure == null || figure2 == null || (moveLock &&moveLock2)
|| thread .isPaused()) {
 return;
 }
 if (command.equals("Left")){

 figure .moveLeft();

Annex 3 69

 }
 else if(command.equals("Right")){

 figure .moveRight();
 }
 else if(command.equals("Up")){

 figure .rotateCounterClockwise();
 }
 else if(command.equals("Down")){

 figure .moveAllWayDown();
 moveLock = true;
 }
 }
}

IStuffProxy.java

package net.tetriscollaborative;
import java.util.ArrayList;
import java.util.EventListener;
import java.util.List;

import iwork.eheap2.EventHeap;
import iwork.eheap2.EventHeapException;

public class IstuffProxy implements Runnable{

 //Interface for EventListener
 public static interface ControlListener extends EventListener{
 void onReceivedSignal(String command);
 }
 private List<ControlListener> listeners =new
ArrayList<ControlListener>();
 iwork.eheap2.Event templateEvent ;
 EventHeap m_EventHeap ;

 IstuffProxy(String server)
 {
 super();
 System. out.println ("Trying to connect\n");
 m_EventHeap = new EventHeap(server);
 System. out.println ("Did we connect?");
 try {
 templateEvent = new iwork.eheap2.Event("ControlEvent");
 } catch(Exception ex) { ex.printStackTrace(); }
 //setDaemon(true);
 }
 //Methods to add/remove listeners
 public void addListener(ControlListener listener){
 listeners .add(listener);
 }
 public void removeListener(ControlListener listener){
 listeners .remove(listener);
 }

70 Ubicomp:Using iStuff

 //method launching event
 protected void onReceivedSignal(String command){
 for(ControlListener listener: listeners)
 listener.onReceivedSignal(command);
 }

 public void run()
 {

 while(true) {
 try {
 iwork.eheap2.Event e =
m_EventHeap .waitForEvent(templateEvent);
 handleEventHeapEvent(e);
 } catch(Exception ex) { ex.printStackTrace(); }
 }
 }

 public void handleEventHeapEvent(iwork.eheap2.Event e)
 {
 try {

 String comand=e.getPostValueString("ControlCommand");
 System. out.println(comand);
 onReceivedSignal(comand);

 } catch (EventHeapException e1) {
 e1.printStackTrace();
 }

 }

}

