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Abstract. In this work, we tackle the problem of assessing the Hilbert space

dimension from the set of correlations obtained when measuring in a nonlocal black box

scheme. The concept of a dimension witness and its recent applications are explored.

We also extend these new ideas to the case of a single local box with measurements at

different times, and provide some examples of dimension criteria for this case.

1. Introduction

Physicists usually try to explain experimental results using models that assume a specific

size for the dimension of the Hilbert Space. Thus, the model itself determines the

dimension of the system. In this work the inverse approach is considered: Can we assess

the dimension without a prior model?

The fundamental motivation for this question is that when physical systems are

described, the dimension of the Hilbert space used in the description usually depends

on approximations, whose validity is confronted with experimental results. In the

approach considered here, correlations obtained can be used for deriving bounds on the

dimension, which will directly evaluate convenience of some approximations and help

us to find an effective model. Besides, in Quantum Information Science the dimension

of the accessible Hilbert space appears to have the character of a resource, and also

is fundamental in some proofs of security of quantum key distribution [1], so it seems

necessary to derive some model independent conditions for the Hilbert space dimension

needed.

In the same spirit, Bell inequalities address the problem of whether some

correlations can be attained by a classical description, and establish conditions which

are model independent. Indeed, Bell inequalities offer us an example of how to gather

information about the system without considering specifically any of the elements of

which it comprises. We can reduce the description of all the devices present in a

certain non-local experiment to two measuring apparatuses, in which one can choose

among a finite number of measurements and obtain a finite number of outcomes for

each measurement. We repeat the experiment many times in order to obtain objects
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P (ab|xy) representing the probabilities of obtaining outcomes a,b for measurements x, y.

Generalized Bell inequalities [2] can be used to build a frontier between classical and

quantum behavior for this scenario, and also limits for the quantum and non-quantum

behavior can be considered studying maximal quantum violation of these inequalities

[3], however, in these cases the Hilbert Space dimension is not considered, or in other

words, they establish the maximal violation without restrictions on the dimension.

The raw idea which supports most of the results in this work is that with higher

dimension in the Hilbert space, greater violations of Bell inequalities can be attained,

so we can set a device-independent frontier among behavior of systems with different

dimensions.

This work is organized into two main sections. In Section 2 we present previous work

done in relation with the characterization of Hilbert space dimension. In particular, we

present the concept of a dimension witness and introduce its most characteristic example

using violation of Bell inequalities. In Section 3 we explore the possibility of applying

this concept to the case of a single local box, performing measurements at different times.

Temporal Bell inequalities are presented and some examples of dimension witnesses are

introduced.

2. Dimension witnesses

2.1. Scenario description

Let us describe the situation by saying that the two parties, Alice and Bob, have access

to a ”black box”. When Alice inputs a number x into the black box, she obtains as output

a measurement outcome a; similarly, when Bob inputs a number y, he receives an output

b. The behavior of the box is characterized by the joint detection probabilities P (ab|xy).
If there is a quantum representation of dimension d for underlying system, Alice and

Bob share a quantum system in a joint state ρ in C
d⊗C

d and inputs correspond with m

possible measurements for each system x, y ∈ {0, 1, ...,m− 1} and v possible outcomes

a, b ∈ {0, 1, ..., v− 1} for each measurement. In that case, the set of probabilities can be

written as

P (ab|xy) = tr(ρMx
a ⊗M

y
b ) (1)

with Mx
a representing the measurement operator acting on C

d corresponding to outcome

a and measurement x. We can consider also linear combinations of elements from the

set of probabilities, usually called correlations:

cxy = P (a = b|xy) − P (a 6= b|xy) (2)

2.2. Definition

We are interested in a criterion able to establish some bounds on the dimension of the

Hilbert space used to explain a given set of probabilities in the scenario described above.

With this spirit the concept of d-dimensional witness is introduced in [4].
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Definition 2.2.1 A d-dimensional witness is a linear combination of the elements

P (ab|xy) described by a tensor M , such that:

M · P =
∑

a,b,x,y

Ma,b,x,yP (ab|xy) ≤ Wd (3)

for all probabilities of the form (1) and ρ in C
d⊗C

d, and such that there exist probabilities

of the form (1) and ρ in C
d+l ⊗ C

d+l for which M · P ≥ Wd

If for a set of inputs and outputs we find a d-dimensional witness, we can perform

experiments, obtain the set of probabilities and calculate the value of the quantity M ·P .

If we obtain a violation of the inequality, we can deduce that there is no d-dimensional

model able to explain our system. It must be remarked that on this definition the value

l does not need to be determined for establishing a dimension witness. We will present

a situation in which the inequality is violated for dimension higher than d, but still

undetermined. In both cases, wether determined or not l, we can only conclude that

the dimension needed is larger than d and we do not obtain an upper bound for the

effective dimension used.

2.3. Previous Tools

Numerous examples of dimension witnesses are presented in references [4, 5, 6, 7],

most of them obtaining a higher violation of two-outcomes m-measurements Bell-type

inequalities for qudits than for qubits. In this work we are presenting in detail the

existence of a dimension witness for the case of m possible measurements and two

outcomes for each measurement. The motivation is that some tools used in the proof

will be interesting for tackling the problem of single local box with measurements at

different times, and also because its simplicity in comparison with complex schemes will

allow us to understand the underlying idea in order to apply it to a new case. Let us

state some lemmas and definitions used in this approach

Definition 2.3.1 The real Grothendieck constant of order n, is the smallest real number

KG(n) such that: for all positive integers and all real r × r matrices M , the inequality

max
a1,...,ar,b1,...,br

∑

i,j

Mijai · bj ≤ KG(n) max
α1,...,αr,β1,...,βr

∑

i,j

Mijαiβj (4)

holds, where the maximum on the left-hand side is taken over all sequences

a1, ..., ar, b1, ..., br of n-dimensional real unit vectors, and the maximum on the right-hand

side is taken over all sequences α1, ..., αr, β1, ..., βr of real numbers in the set {−1,+1}.
The real Grothendieck constant, denoted KG is defined as limn→∞KG(n).

It was Tsirelson [8] who first found a relation between maximal violation of Bell

inequalities and Grothendieck’s inequality. As we will justify in following lemmas,

Hilbert space dimension is related with the order of Grothendieck constant.
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Lemma 2.3.2 [8]. Let us consider correlations of the form (2) such that cxy = ~x · ~y
with ~x, ~y ∈ R

n. These correlations can be implemented with a maximally entangled state

|ψ〉 on C
d ⊗ C

d and observables X, Y acting on C
d if d ≥ 2⌊n/2⌋, such that:

cxy = 〈ψ|X ⊗ Y |ψ〉 (5)

Lemma 2.3.3 [9].Let us consider |ψ〉 on C
d ⊗ C

d, observables X, Y acting on C
d and

quantum correlations cxy = 〈ψ|X ⊗ Y |ψ〉. These correlations can be implemented with

dot product of vectors, cxy = ~x · ~y with ~x, ~y ∈ R
n, if n ≥ 2d2. Moreover, if |ψ〉 is a

maximally entangled state, dot product representation is possible if n ≥ d2 − 1.

2.4. Example of a dimension witness

Let us restrict ourselves to the simplest scenario. Two possible incomes associated with

two measurement operators for Alice, and the same situation for Bob. They share a

pure quantum state (as long as we are dealing with maximal violation of Bell inequalities

there is no lost of generality) thus the set of probabilities can be written as

P (ab|xy) = 〈ψ|Mx
a ⊗M

y
b |ψ〉 (6)

The correlator (2) can be written in terms of observables X and Y with eigenvalues

±1 such that cxy = 〈ψ|X ⊗ Y |ψ〉. Let us consider the following linear function of such

correlators:

I =
∑

i,j=1

Mijcxiyj
(7)

with M verifying the normalization condition
∑

i,j Mijαiβj = 1 with αi, βj ∈ {−1, 1}.
Now we have the necessary elements for combination with the previous lemmas. If

Alice and Bob share a quantum state of dimension two, using lemma 2.3.3 and definition

2.3.1 we have,

max
q2

I ≤ max
a1,...,ar,b1,...,br

∑

i,j

Mijai · bj = KG(3) (8)

with qd representing all the possible quantum strategies, i.e. choice of operators,

state and M , which use a state of dimension d. On the other hand, we can

consider n-dimensional unit vectors with n arbitrarily large. If we consider a quantum

representation with d ≥ 2⌊n/2⌋ applying lemma 2.3.2 we obtain,

max
qd

I ≥ max
a1,...,ar,b1,...,br

∑

i,j

Mijai · bj = KG (9)

Although exact values of the Grothendieck constants are still unknown, it is proven

that KG(3) ≤ KG [10], so equations (8) and (9) constitute a dimension witness.

This type of 2-dimensional witness is extended using a generalized definition of

Grothendieck constant in [11], deriving the following theorem.

Theorem 2.4.1 For any d, there are two-outcome correlations that are finitely

quantum-realizable, but which are not d-quantum-realizable.
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This theorem show us that we can find d-dimension witnesses using only the simplest

strategy that we can construct in a non-local scheme, i.e performing two different

measurements with two possible outcomes for each measurement.

3. Single box dimension

In previous section we have presented the concept of dimension witness and some of its

direct examples. As has been highlighted, dimension witnesses arise from the existence

of Bell-type inequalities, and for their construction a nonlocal box scenario seems to be

necessary. However, as presented in [12] it is possible to construct some Bell inequality

analogues for the single box scenario, with measurement at different times, which defines

the concept of ”Quantum Entanglement in Time”. New work in this thesis is supported

by the idea of extending methods for construction of dimension witness to the case

of single box, using as in previous section, maximal violation of Bell-type inequalities.

In this direction, is worth mentioning the work of Wolf and Perez-Garćıa [13]. They

show how to determine the dimensionality of a quantum system from its dynamics in

a model-independent way. A certain number of conserved quantities are assumed to be

known, and from these data one can derive the dimension of the system. Note that our

approach is very different, in the sense that we only deal with measurement correlations

-always possible to collect- therefore the evolution of the box is not unitary and there

is no place for considering conserved quantities.

Let us introduce first a detailed overview of Quantum Time Entanglement and the

procedure to obtain Bell inequalities in this scheme.

3.1. Temporal correlations scenario

Let us consider a particle in a certain quantum state |ψ〉. At time t1, we choose among m

possible measurements to be performed on the particle, and we obtain an outcome ai
t1

for

i-th measurement choice. The state of the particle is in general modified to the state |ψ′〉
after this measurement. At a latter time t2, we choose among m′ possible measurements

to be performed on the same particle and we obtain another outcome bjt2 . Scenario can

be regarded as two black boxes. We press a button for the choice of measurement and it

produces a certain outcome given an pair of input choices (i, j) ∈ ({1, ...,m}, {1, ...,m′}),
see Fig. (1).

3.2. Temporal Bell inequalities

In quantum mechanics, time and space play a substantially different role. While

spatial coordinates are regarded as quantum-mechanical observables, time acts as an

external parameter in the evolution of the system. With respect to Bell inequalities,

this difference does not play an essential role, due to the fact that spatial coordinate

operators are not necessary for the theoretical implementation of such inequalities.

However, spatially separated quantum systems are associated with the tensor product
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Figure 1. Schematic view of the process for obtaining temporal correlations.

structure which cannot always be separated into spatially separated components, thus

it is from this that the mathematical concept of entanglement arises. Temporally

separated quantum systems live in the same Hilbert space and an analogous tensor

product structure would be meaningless, hence is not possible to consider entanglement

in the same way as in spatially separated system. Despite this, it is worth asking oneself

whether it is possible to construct temporal Bell-type inequalities which are satisfied by

a hidden variable model but violated by Quantum mechanics.

Spatial Bell inequalities are built on a scenario with two spatially-separated

observers, namely Alice and Bob, who perform measurements on their physical state.

Two fundamental assumptions give rise to the existence of such inequalities,

(i) Realism: The measurement results are determined by hidden properties carried by

the physical system and independent of observation.

(ii) Locality in space: Observer measurement results are independent of any

measurement performed by the other spatially separated observer.

The second assumption is ensured for both classical and quantum models by Special

Relativity, therefore violation of Bell inequalities highlight invalidity of Realism [14].

Temporal Bell inequalities can be constructed using the assumption of Realism

and substituting Locality in space for its temporal analogue,

• Locality in time: The result of measurement performed at time t2 is independent

of any measurement performed at some earlier or later time t1.

In this case, there is no such principle that ensures validity of this assumption so

violation of inequalities derived from this cannot be attributed to violation of Realism.

Indeed, we will confirm that quantum mechanics violates Locality in time. Temporal Bell

inequalities implementation has been formally introduced in [15] and has led to strong

criticism and an interesting debate [16] about the possibility of inferring violation of

Realism.
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We shall now review the derivation of the temporal analogue of the CHSH inequality

given in ref. [17]. Consider an observer choosing at time t1 between two observables

~a1 and ~a2 with outcomes in the set {−1, 1}. Let us note predetermined values A1
t1

and A2
t1

for ~a1 and ~a2 respectively. At a later time t2, the observer chooses between

another two observables ~b1 and ~b2 obtaining similarly B1
t2

and B2
t2

in the set {−1, 1}.
Note that Locality in time is assumed in this classical model. Predetermined values of

second measurement are not influenced by first measurement. It is easy to check that

A1
t1
B1

t2
+A1

t1
B2

t2
+A2

t1
B1

t2
−A2

t1
B2

t2
= ±2. If we repeat the experiment many times with

a physical system with the same predetermined values, one obtains the temporal CHSH

inequality

B ≡ |〈A1

t1
B1

t2
〉 + 〈A1

t1
B2

t2
〉 + 〈A2

t1
B1

t2
〉 − 〈A2

t1
B2

t2
〉| ≤ 2 (10)

where 〈·〉 denotes an average over many runs of the experiment. Let us calculate the

maximum value attained for B when measuring on a qubit. The observer performs at

time t1 the measurement of the observable Ât1(~a) = ~a ·~σ and at a later time t2 performs

on the resultant state a measurement of the observable B̂t2(
~b) = ~b · ~σ. An arbitrary

mixed state of a qubit can be written ρ = 1

2
(I + ~r · ~σ) with ~r ∈ R

3 being the Bloch

vector and ~σ the Pauli vector. Projectors associated with outcome k can be also written

P k
~a = 1

2
(I + k~r · ~σ). On the other hand quantum-averaged value can be written as,

〈Ât1(~a)B̂t2(
~b)〉 =

∑

k,l=±1

kl · Tr(ρP k
~a ) · Tr(P k

~aP
l
~b
) (11)

where we use the fact that after the first measurement the state projects onto the

new state P k
~a . We can calculate correlations, obtaining:

〈Ât1(~a)B̂t2(
~b)〉 = ~a ·~b (12)

It is an immediate conclusion that correlations are similar as those obtained in a usual

scheme of two spatially-separated observers sharing a singlet state, independently of the

initial state ρ used. Thus we obtain a violation of the temporal Bell inequality similar

to the violation of Spatial Bell inequality with a maximally entangled state. We shall

calculate it explicitly. Substituting (12) in expression (10) we obtain

BQM = |~a1 · (~b1 + ~b2) + ~a2 · (~b1 − ~b2)| (13)

The maximal violation of such an inequality can be attained for the choice of

measurement settings: ~a1 = 1√
2
(~b1 +~b2) and ~a2 = 1√

2
(~b1 −~b2) and is equal to 2

√
2.

Note also that this scheme does not obey non-signalling stated as
∑

k P (kl|xy) =∑
k P (kl|x′y). In fact,

∑

k

P (kl|Ât1(~a)B̂t2(
~b)) =

1

2
(1 + l(~r · ~a)(~a ·~b)) (14)

which clearly depends on the first measurement.
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3.3. Optimal signalling strategies

We have seen in previous section how the scheme of temporal Bell correlations assume

non-signalling for a hidden variable model. In order to obtain a device-independent

dimension witness, we need to relax this assumption and consider signalling strategies.

We will show the existence of a dimension witness for a more general case, without

imposing Locality in time. The underlying idea is that the information from the

choice of measurement of the first observer has to be recorded in the particle, and

it carries the information to the second observer using some physical dimension for the

implementation of this memory. If we increase the number of possible measurements

performed at t1, a larger dimension is needed for efficient storage of the information,

thus is possible to find strategies that only systems of larger dimension can attain.

Let us consider in a hidden variable model what would be needed for attaining

the maximum algebraic violation 4. Assume that predetermined values in the second

measurement depend on the measurement apparatus selection, such that Bj
t2(i) is the

value for the j -th measurement chosen at t2 when measurement i has been chosen

previously at time t1. With predetermined values:

A1

t1
= 1, A2

t1
= 1, B1

t2
(1) = 1, B2

t2
(1) = 1, B1

t2
(2) = 1, B2

t2
(2) = −1 (15)

we can violate Bell inequality, such that

BS ≡ |〈A1

t1
B1

t2
(1)〉 + 〈A1

t1
B2

t2
(1)〉 + 〈A2

t1
B1

t2
(2)〉 − 〈A2

t1
B2

t2
(2)〉| = 4 (16)

This signalling hidden variable model is inconceivable in the spatially separated boxes

setup, due to the fact that Locality in time is ensured by relativity. In this temporal

scenario, we can attain this violation with a classical bit. Let us consider a particle

carrying a classical bit λ ∈ {−1,+1}. In this hidden variable model, operators are

substituted by deterministic functions of the classical bit. We denote f1(λ) = 1 and

f2(λ) = λ. We can also consider that a flip on the bit can be performed in any of

the boxes which constitute the measuring device. With these elements we perform the

following strategy:

The classical bit is initialized to λ = 1. Let us associate the outcome values

A1
t1
(λ) = f2(λ) = λ and A2

t1
(λ) = f2(λ) = λ. The bit is flipped when second

measurement is performed, thus the bit prepared for a second measurement is either

λ1 = 1 or λ2 = −1 depending on choice (A1
t1

and A2
t1

respectively) of the first

measurement. At latter time t2, we measure on the bit associating B1
t2
(i)(λ) = f1(λ

i)

and B2
t2
(i)(λ) = f2(λ

i). One can easily check that we obtain the same values as in (15),

thus the attained value for the Temporal Bell inequality is 4.

One can expect that analogous strategy can be performed using qubits and

quantum operators, establishing a contradiction with (13). In fact, this strategy can

be performed using another elements that have not been considered in derivation of

(13) but cannot be dismissed in a completely device-independent study. These elements

are the quantum analogue of the bit flipping and the function f1(λ) = 1, respectively

unitary transformations and degenerate measurements [18].
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3.4. Unitary transformations and degenerate measurements

In the case of temporal inequalities we need to consider carefully the effect of unitary

transformations between measurements in different ways and for different reasons.

• Firstly free temporal evolution driven by the Hamiltonian will act on the resulting

states from the first measurement. The evolution operator is independent of the

measurement performed at t1 and would only depend on possible interactions

of the particle with the media between measurements. It is easy to check that this

effect is equivalent to choosing another measurement direction at t2,

〈Ât1(~a)B̂t2(
~b)〉 =

∑

k,l=±1

kl · Tr(ρP k
~a ) · Tr(UP k

~aU
†P l

~b
) =

=
∑

k,l=±1

kl · Tr(ρP k
~a ) · Tr(P k

~aU
†P l

~b
U) =

∑

k,l=±1

kl · Tr(ρP k
~a ) · Tr(P k

~aP
l
~b′
)
(17)

thus the maximal violation would be attained for another pair of operators at t2
but its value would be, as before, 2

√
2.

• The other case in which unitary evolution has to be considered is when the operation

is dependent on the measuring device chosen. We can always understand

this as a rotation performed by the measurement apparatus. If we are dealing with

device-independent strategies we should consider the case in which black boxes can

interact with the state before and after the first measurement.

In the usual non-local boxes scheme these rotations do not need to be considered

in the same way. Local transformations of the state can be understood as another

choice of operators and do not affect measurement results of a distant observer, thus

maximal violation is not effected. Local transformations of the resultant particle

after measurement are not relevant because the particle is discarded.

In the temporal Bell inequalities scheme, transformations of the state before the first

measurement are not relevant due the state-independent form of the correlations

(12) for d = 2. Unitary transformations between measurements dependent on

the measurement chosen at t1 need to be considered in detail. As we can

see from equation (17) the effect is equivalent to choosing another observable

B̂t2(
~b|~a) = U †(~a)(~b · ~σ)U(~a). Unitary transformations on operators can be written

as orthogonal transformations on Bloch vectors as shown in [19], thus equation (13)

transforms to

BQM = |~a1 ·O~a1
(~b1 + ~b2) + ~a2 ·O~a2

(~b1 − ~b2)| (18)

with O being an orthonormal matrix. The maximal violation of such inequality

can be attained for the choice of measurement settings: ~a1 = 1√
2
O~a1

(~b1 +~b2) and

~a2 = 1√
2
O~a2

(~b1 −~b2) and is equal to 2
√

2.

In conclusion, unitary transformations before or after measurements do not affect

violation of Temporal Bell inequalities in the 2-dimensional case.
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• Nevertheless, when we combine this rotations with degenerate measurements,

we can attain maximal algebraic violation with qubits, with an strategy analogous

to the previous one using a classical bit. Consider {| − 1〉, | + 1〉} a basis of C
2, a

measurement operator such that σ̂z|k〉 = k|k〉 and a unitary transformation such

that σ̂x| + 1〉 = | − 1〉. Let us measure the initial state |1〉 with the strategy

Â1
t1

= Â2
t1

= B̂2
t2

= σ̂z and B̂2
t2

= I, and perform the rotation σ̂x after measurement

Â2
t1
. In this case one obtains values as in (15), therefore temporal the CHSH

inequality is violated up to 4.

3.5. A new inequality for a dimension witness

As we have seen, qubits (or classical bits) can maximally violate the temporal analogue

of the CHSH inequality. In order to construct a dimension witness, we present a new

inequality that can be maximally violated by qutrits (or classical trits) but no by qubits

(or classical bits). Consider the expression:

〈Â1

t1
B̂1

t2
〉 + 〈Â1

t1
B̂2

t2
〉 + 〈Â2

t1
B̂1

t2
〉 − 〈Â2

t1
B̂2

t2
〉 + 〈Â1

t1
〉 + 〈Â2

t1
〉 + 〈Â3

t1
〉 − 〈Â3

t1
B̂1

t2
〉 (19)

In this case we choose among three different measurements at time t1 and two different

measurements at time t2. Consider measurements on a qubit (or a classical bit); the

four firsts terms make up temporal CHSH, which is only maximized if on employs

degenerate measurements for B̂1
t2

and rotations (or constant classical functions and flips

in the classical bit case). To attain an algebraic maximization of the expression (19), one

requires that the term 〈Â1
t1
〉+ 〈Â2

t1
〉+ 〈Â3

t1
〉 give an outcome +1 for all possible choices

of measurement at time t1; furthermore, one requires that in the case that Â3
t1

has been

chosen, the outcome of measurement B̂1
t2

be −1, and if Â1
t1

or Â2
t1

have been performed,

the outcome of B̂1
t2

be +1. This is clearly not possible for a degenerate measurement

(or constant function), thus we conclude that qubits (or classical bits) cannot achieve

violation 8 in (19). We present a strategy which attains this maximal violation with a

trit.

Let us consider a particle carrying a classical trit λ ∈ {1, 2, 3}. In this hidden

variable model, operators are substituted by deterministic functions of the classical

trit. We consider two classical functions f1(λ) and f2(λ) such that {f1(1) = 1, f1(2) =

1, f1(3) = −1} and {f2(1) = 1, f2(2) = −1, f2(3) = 1}. We can also consider that a flip

on the trit can be performed in any of the boxes which constitute the measuring device.

With these elements we perform the following strategy:

The classical bit is initialized to λ = 2. Outcome values are associated as

Ai
t1
(λ = 2) = f1(λ = 2) = 1 for i ∈ {1, 2, 3}. The bit is flipped to λ = 1 when

A1
t1

is performed and to λ = 3 when A2
t1

is performed, thus the bit prepared for a second

measurement is either λ1 = 1 or λ2 = 3 or λ3 = 2 depending on choice (A1
t1
, A2

t1
and

A3
t1

respectively) of the first measurement. At a later time t2, we measure on the bit

associating B1
t2
(i)(λ) = f2(λ

i) and B2
t2
(i)(λ) = f1(λ

i). One can carefully check that

we obtain outcomes which attain a value 8 (maximal algebraic violation) for expression

(19).
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4. Conclusions and further work

As presented in the last part of this work, it is possible to construct a way of assessing

the dimension of a single box only from the set of probabilities of obtaining one specific

outcome when measuring certain observables. We have also shown the existence of a

dimension witness in the case of temporally separated measurements using temporal

analogues of Bell inequalities. The effect of unitary transformations as part of the

measurement process has also been remarked upon and used for a strategy which

constitute a dimension witness.

Further work can be developed in this area and certain important questions remain

unsolved. As the CHSH can be maximally violated with both qubits and classical bits,

it does not play the role of a Bell inequality, in the sense that it does not distinguish

between hidden variable models and quantum models for a given dimension. Thus, it is

worth investigating if one can find a gap between such behaviors for a certain dimension.

One can also consider the possibility of inferring from temporal correlations,

whether the particle measured at time t1 is the same that we are measuring at t2,

and what kind of correlations can be attained if a new particle is created after first

measurement.
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[9] A. Aćın, N. Gisin and B. Toner Phys. Rev. A 73, 062105 (2006)

[10] A. M. Davies (unpublished note, 1984) and J. A. Reeds (unpublished note, 1991) showed that

KG ≥ 1.6770 while J. Krivine Adv. Math. 54, 16 (1979) showed that KG(3) ≤ 1.5163.
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