
TRABAJO FINAL DE CARRERA

TÍTULO DEL TFC : AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

TITULACIÓN: Ingenierı́a Técnica Aeronáutica, especialidad Aeronavegación

AUTOR: Joshua Martı́nez Tristancho

DIRECTOR: Juan López Rubio

SUPERVISOR: Pablo Royo Chic

FECHA: 21 de julio de 2008

Tı́tulo : AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Autor: Joshua Martı́nez Tristancho

Director: Juan López Rubio

Supervisor: Pablo Royo Chic

Fecha: 21 de julio de 2008

Resumen

Este documento muestra los requerimientos y componentes necesarios para integrar en
un mismo escenario, sistemas de avión no tripulados (UAS) y sistemas simulados. A
esto se le llama co-simulación. Un UAS es una serie de sistemas aviónicos tanto a bordo
del avión como en la estación de tierra, que podrı́a incluso despegar, volar una misión y
aterrizar seguro sin la intervención humana.

La capa de abstracción de servicios para el UAS (USAL) son servicios gestionados y
comunicados a través de un programa llamado MAREA (Middleware Architecture for
Remote Embedded Applications) basado en el modelo de publicación/suscripción a
fin de poder mandar datos, eventos y comandos relacionados con servicios del UAS.
La plataforma integrada de simulación de Icarus (ISIS) es una colección de servicios
reusables que comprenden un mı́nimo juego común de los elementos que más se suelen
usar en misiones civiles para aviones no tripulados. Algunos de estos servicios forman
el co-simulador. Este escenario integrado es útil para probar la plataforma antes de que
vuele el avión. El equipo ICARUS ha desarrollado su plataforma orientada a servicios
(SOA) dentro de la cual está el UAS real.

El co-simulador es una arquitectura abierta que podrı́a tener un servicio visor (Visor),
algunos vehı́culos virtuales (Virtual Vehicle) y sistemas virtuales (Virtual System) y
el gestor de virtualidad (Virtuality Manager). Este co-simulador da la capacidad de
prototipado rápido y simulación a la capa de servicios USAL. El prototipado rápido se
consigue a través del uso de estándares y componentes que permiten un rápido diseño
e implementación de nuevas funcionalidades. La simulación se usa para incrementar
la seguridad y reducir el coste de diseño. Cuando se usa esta capa de servicios, una
implementación virtual viene a tener efectos similares que una real. Este UAS es parte
de una misión, la cual lleva una arquitectura orientada a servicios (SOA)

Mi trabajo en este TFC consistió en diseñar e implementar algunas soluciones que
formaron un co-simulador para sistemas de aviones no tripulados. Este co-simulador ha
sido llamado AutoNAV4D93. Hay muchas cosas por añadir al co-simulador las cuales
serán realizadas en un futuro como resultado del trabajo de desarrollo del escenario in-
tegrado ISIS el cual será presentado en la conferencia de exhibición el 9 de enero de 2009.

Palabras clave: Co-simulador, Virtual Vehicle, Virtual System y AutoNAV4D

Title : AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Author: Joshua Martı́nez Tristancho

Director: Juan López Rubio

Supervisor: Pablo Royo Chic

Date: July 21, 2008

Overview

This TFC document shows the requirements and the components needed to integrate in
the same scenario, real Unmanned Aircraft Systems (UAS) and simulated systems. This
is called co-simulation. An UAS is a series of onboard avionics systems and an on ground
platform, which might takeoff, fly a mission and land safe without a human intervention.

UAS Service Abstraction Layer (USAL) is a set of available services running on top
of the UAV system architecture to give support to most types of civil UAS missions.
These services are managed and communicated by a thin software layer called Ar-
chitecture for Remote Embedded Applications (MAREA). This Middleware promotes a
publish/subscribe model for sending and receiving data, events and commands among
the services of the UAS. The Icarus Simulation Integrated Scenario (ISIS) is a collection
of reusable services that comprises a minimum common set of elements that are needed
in most UAV missions. Some of these services conform the co-simulator. This ISIS
integrated scenario is useful to test the platform before the UAS flies. The ICARUS team
has developed his Service Oriented Architecture (SOA) platform where is set the real UAS.

The co-simulator is an Open Architecture. It may have a Visor Service, some Virtual Vehi-
cles and Virtual Services and a Manager of Virtuality. This co-simulator gives capabilities
in fast prototyping and simulation to the UAS Service Abstraction Layer (USAL). Fast
prototyping is reached by the use of standards and components. It allows a fast design
and implementation of new functionalities. Simulation is used for increase safety and
reduce design cost. When a service abstraction layer is used, a virtual implementation
has similar effects like the real ones.

My job for this TFC was to design and to implement some solutions which conform
a co-simulator for Unmanned Aircraft Systems. This co-simulator has been called Au-
toNAV4D93. There are many things to add to the co-simulator and it may be accomplished
in a future as a result of ISIS developing work. The ISIS integrated scenarios will be
presented in the AIAA’09 Meeting and exhibit in 9 of January 2009.

Keywords: Co-simulator, Virtual Vehicle, Virtual System y AutoNAV4D

A Sonia

Quiero agradecer a Dios, a mi iglesia y a mi familia el apoyo recibido durante estos años
de trabajo en el proyecto PANS8168. Sin ellos hubiera sido imposible llegar hasta aquı́.

Agradecer también el incondicional apoyo de los profesores de la EPSC:
Cristina Barrado Muxı́

Dagoberto José Salazar Hernández
Daniel Crespo Artiaga
Enric Pastor Llorens

Enrique Cargı́a-Berro Montilla
Francisco Javier Mora Serrano

F. Xavier Estopà Mulet
Jordi Gutiérrez Cabello
José Luis Andrés Yebra

Juan López Rubio
M. Angélica Reyes Muñoz
Marcos Quı́lez Figuerola

Miguel Valero Garcı́a
Oscar Casas Piedrafita

Pablo Royo Chic
Pilar Gil Pons

Ricard González Cinca
Santiago Torres Gil

Xavier Prats Menéndez
Yuri Koubychine

Y a los miembros del equipo PANS8168 que formaron la MOLECULE:
Ángel Gomáriz

Anabel González
Andrea Jaime

Carles Gonzalez
Carlos Pérez

Christian Schneeberger
Carlos Zamora

Daniel De Miguel
Ignacio Valero
Josep Bonet

Josep Montolio
Juan Martı́nez

Marı́a Teresa Marı́n
Miriam Sánchez

Marı́a Victoria Torres
Sergio Fraile

Sara González
Toni Bardia

Verónica Herrero
Xavier Borrell

Carles, mai t’oblidarem.

CONTENTS

INTRODUCTION . 1

1. Definition, requirements and previous work 3

1.1.. Co-simulation definition . 3

1.2.. Requirement list for the co-simulator . 3

1.3.. Previous work . 4
1.3.1.. Icarus team presentation . 4

1.3.2.. AutoNAV. Four years ago . 5

1.3.3.. Additional uses for the AutoNAV simulator 7

2. Technologies for the co-simulator 9

2.1.. UAV. Unmanned Aerial Vehicles . 9

2.2.. USAL. Abstraction layer . 11
2.2.1.. SOA. Service Oriented Architecture 11

2.2.2.. Services of the USAL . 11

2.3.. MAREA. Middleware . 12
2.3.1.. Middleware description . 12

2.3.2.. Communication Primitives . 13

2.4.. ISIS. Integrated Scenario . 15

2.5.. .NET technology . 16
2.5.1.. .NET definition . 16

2.6.. OpenGL. Graphic libraries . 17
2.6.1.. OpenGL history . 17

2.6.2.. OpenGL standard . 18

3. Scientific bases for the co-simulator 19

3.1.. Quaternions . 19

3.2.. Orbits . 20

3.3.. Keplerian elements . 21

3.4.. Reference systems . 22

3.5.. Datums . 23

3.6.. Geo-positioning . 24

4. AutoNAV4D93. The Co-simulator 25

4.1.. AutoNAV4D93. Architecture . 25
4.1.1.. Co-simulator architecture . 25

4.1.2.. Components and services . 26

4.1.3.. Integrated architecture . 26

4.1.4.. Reusing the old design . 28

4.2.. AutoNAV4D93. User interface . 29
4.2.1.. The Visor as a Service . 29

4.2.2.. The Visor as an User Control . 31

4.2.3.. Commander Service . 31

4.2.4.. Virtuality Manager . 32

4.3.. AutoNAV4D93. Virtual services . 33
4.3.1.. Definition of Virtual Services . 33

4.3.2.. Virtual Vehicle . 33

4.3.3.. Virtual System . 36

4.4.. AutoNAV4D93. Diagrams . 38

5. Future work . 45

5.1.. Conclusions . 45

5.2.. Future improvements for the ISIS integrated scenario 45

5.3.. Pending work for the user interface . 46

BIBLIOGRAPHY . 47

A. Prototyping . 51

A.1..Virtual Vehicle Specification . 51

LIST OF FIGURES

1.1. Intelligent Communications and Avionics for Robust Unmanned aerial Systems. 4
1.2. A screen shoot from the AutoNAV4D version 89. It was our first future prediction

implementation. 5
1.3. 2-amino-triaminopropane molecule was the distribution of PANS8168 project’s

team in 2006. 6
1.4. Pico-satellite developed by alumni from the Castelldefels School of Technology

(EPSC). 7

2.1. Megastar XL120 a giant RC model converted in UAV by Icarus team. 10
2.2. Shadow UAV is 17 feet (5.2 meters) of wingspan by Icarus team. 10
2.3. USAL architecture global view and categories by Pablo Royo. 12
2.4. Data flow between services through MAREA communications primitives. 13
2.5. Icarus Simulation Integrated Scenario by Pablo Royo 15
2.6. .NET framework for Windows and Mono for Linux. 16
2.7. Open Graphics Library. Source http://www.brandsoftheworld.com/ 17

3.1. Reference http://www.navworld.com/navcerebrations/flights.htm Loxodromic path. 20
3.2. Reference http://en.wikipedia.org/wiki/Image:Orbit1.svg Keplerian parameters. . 21
3.3. The three reference systems used in the AutoNAV4D93 22
3.4. Perspective view of the Geoid (Geoid undulations 15000:1). 23

4.1. Five component and services constitute the co-simulator. 26
4.2. Some services and controls as a part of the USAL. 27
4.3. Visor with a planetary view and a local view 30
4.4. An example of Visor as a control inside the Flight Monitor on ground station. . . 31
4.5. Three different reference systems for three purposes: ECEF, NED, VCVF. . . . 35
4.6. An example of Virtual System: a virtual radar service. 36
4.7. Main class diagram for the AutoNAV4D93: Nav4D, MatrixLib and Usal 39
4.8. Class diagram for the Visor . 40
4.9. Class diagram for the Layer add-on and Tracers 41
4.10.Class diagram for the Widgets (I) . 42
4.11.Class diagram for the Widgets (II) and Updaters 43

A.1. Physical plane. Interactions between a Virtual Vehicle and his environment. . . 51
A.2. Cognitive plane. Interactions between a Virtual Vehicle and cognitives services. 52
A.3. Strategic plane. Interactions between a Virtual Vehicle and a Controller. 52

LIST OF TABLES

4.1. Summary of Virtual Vehicle Primitives . 34

1

INTRODUCTION

An Unmanned Aerial Vehicle (UAV) is an airplane without a pilot on board but monitored
on ground by an operator which is the responsible for the mission. This kind of vehicles are
suitable for civil missions and D-cube (Dangerous-Dirty-Dull) operations. UAVs are able to
navigate through non-commercial aviation airspace but future airworthiness may consider
integration of both commercial aviation and Unmanned Aerial Vehicles when those vehi-
cles will be safe enough. So, an UAS is a series of on board avionics systems and an on
ground platform, which might to takeoff, to fly a mission and to land safe without an human
intervention.

There are many options and situations to fly a flight plan depending on mission’s require-
ments but not all options are valid and efficient. In fact, some of them raises risk situations
and even the crash. This is why we need to simulate the entire flight in order to validate
them or find the most efficient flight path. Other important action is to add a variation in the
flight which require a consequence’s analysis for the previous validated flight plan. In this
sense, complete simulation is no feasible due to an expensive or not accurate results.

A co-simulator may be able to put together real systems and simulated systems. The co-
simulator is distributed, so it increases the performance and allows system’s scalability.
There are many flight simulators but not all of them are distributed. Some of them are
able to simulate an airspace with several airplanes navigating together but, not all of them
are able to integrate real airplanes with virtual airplanes even integrate real systems and
simulated systems.

My job for this TFC is to design and to implement some solutions which conform a co-
simulator for Unmanned Aircraft Systems called AutoNAV4D93.

Auto The term Auto is because some level of automatism will be implemented, for exam-
ple, we always will provide a default value for each case, no fault messages will be
showed in case of uncritical wrong commands, etc.

NAV The term NAV is because simulations must be optimized for a navigation model. The
level of detail will be adjusted to this premise. The physic model implementation may
be a basic kinetic model in terms of coordinates, speed direction and time elapsed.

4D The term 4D is for showing a capability of not only works in three-dimensions but
predicts trajectories. This is the concept of: know where it will be and when it will
arrive.

93 The term 93 is because the PANS8168 team develops at least 92 versions. We will
mark this implementation as the 93 version in the AutoNAV simulator line work.

2 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Definition, requirements and previous work 3

CHAPTER 1. DEFINITION, REQUIREMENTS
AND PREVIOUS WORK

1.1.. Co-simulation definition

Co-simulation is a term sometimes used to denote that a simulation is able to validate
more than one thing. For embedded systems, software-hardware co-simulation is used
to validate both the software and the hardware components, and can be used to gain
information about the system before a prototype is actually built. A distributed co-simulator
is formed by a group of components working together, and its modular design depends on
the performance required and the accuracy of the simulation model.

The present co-simulator is a group of components and services integrated in a testbed
platform able to integrate in the same scenario, real Unmanned Aircraft Systems (UAS)
and simulated systems. The co-simulator helps to validate software, hardware and flight
plans before its definitive implementation. This co-simulator is used for testing some UAV’s
missions in order to minimize both the development effort and risk, as well as to provide a
feasible migration of the software from a testbed platform to a real platform.

1.2.. Requirement list for the co-simulator

In this section main requirements for the co-simulator are showed. These requirements
will be explained in more detail in future chapters. This requirement list are as follows:

Embedded support. The co-simulator’s components has to be supported by embedded
systems because is the technology commonly used in civil UAS applications. In this
sense we have found that .NET framework and JAVA are the most easy development
environment to be used.

Multiplatform. We have decided to use .NET framework 2.0 because it is supported by a
multiplatform implementation, several common libraries and an easy translation from
older AutoNAV versions. We will use C# because is an object oriented programming
language usable on .NET framework for this aim.

Distributed. Other important requirement is that the co-simulator must be distributed. It
is a set of separated components easy to be reused with other implementations. It
allows high performance and future scalability.

Open Graphical Libraries. Some specific libraries are required for the co-simulator like
OpenGL. We have found that the freeware Tao Framework [10] is the most adequate
for the co-simulator requirements because it gives support to .NET and Mono de-
velopers. The .NET framework runs in Windows operating systems and the Mono
framework runs in Linux operating systems.

4 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Implemented under a Middleware. The interconnection between co-simulator compo-
nents and services are done by the Middleware Architecture for Remote Embedded
Applications (MAREA) developed by the Icarus team through the communication
primitives of variables, events, remote evocation and file transmission.

Integrated as a service. The co-simulator’s components and services are designed to
be integrated as a part of the UAS Service Abstraction Layer (USAL). The USAL is
a set of available services running on top of the UAV and designed by the Icarus
Team.

1.3.. Previous work

In this section we want to present the previous work which make us possible to design
and to implement the co-simulator for Unmanned Aircraft Systems. You will see that, in
fact, this is a new AutoNAV version integrated in the ISIS Icarus testbed to be explained
later1. This previous work is considered in order to understand how many people have
been involved in many of the concepts used in this co-simulator.

1.3.1.. Icarus team presentation

The Icarus research group is composed by personnel such as researchers from the Com-
puter Architecture Department (DAC) of the Technical University of Catalonia, and belongs
to the Aeronautic and Aerospace Research Group (CRAE) of the UPC.

Figure 1.1: Intelligent Communications and Avionics for Robust Unmanned aerial Sys-
tems.

The research of the ICARUS group is focused on the topic of Unmanned Aerial Vehicles
(UAV). This type of airplanes fly with no humans on board but monitoring on ground is
mandatory. The target of the research are technologies that allow to build low cost UAVs
and to manage then for several civil missions as autonomous as possible[6].

One of the research lines of Unmanned Aircraft System (UAS) is to develop a technol-
ogy testbed able to test and design civil missions. This testbed platform is called Icarus
Simulation Integrated Scenario (ISIS) where it is located the co-simulator AutoNAV4D93.

1See chapter 2.4. for definition

Definition, requirements and previous work 5

1.3.2.. AutoNAV. Four years ago

Personal interest of the author was focused on team work in software development. In this
sense many people were involved around of the AutoNAV4D application from four years
ago to the present day. This history starts in a first course subject called Introducció als
computadors (IC) when one of the class group implements a navigation scheduler project.
This project required a ’shell’ design (console text based implementation). They do, but
also they implement a Windows application in 3D environment with spanish airways, way-
points and a camera which follows an airplane. This work, called AutoNAV, was based
on knowledge gain in others first course subjects like Transport Aéri (TA) and Tecnologia
Aeroespacial (TAe). The teacher Xavier Prats was interested in our work in order to be
used with an Air Procedure Designer Project called RAPIT where Mr. Josep Montolio[9]
and Mr. Carlos González from our team were involved. This was the first PANS8168 team
example of technology transfer to the aeronautical industry. Now we will transfer some of
this technology to the Icarus team.

Figure 1.2: A screen shoot from the AutoNAV4D version 89. It was our first future predic-
tion implementation.

During the summer July’05 the Delegació d’Alumnes del Baix Llobregat (DABL) in collab-
oration with the Escola Politècnica Superior de Castelldefels (EPSC) gave a Java Course
oriented to catch interested personnel in order to build a developer team. Some alumni
worked, as alumni’s association AeroUPC[3], in several university projects like CESNA
cabin project, PANS8168 project, Wind tunnel project and the newly UAV’s team called
ICARUS. Those projects, for two years, was a testbed of young engineers. Some of them
develop the application AutoNAV3D using OpenGL graphic libraries and a basic model of
air traffic navigation simulator. This application was used in practice lessons of the second
course in the subject Gestió de l’Espaci Aeri (GEA) teach by Mr. Xavier Prats Menéndez
and Mr. Lucas Garcı́a Serrano.

The team was structured like a molecule of 2-amino-triaminopropane[7] where the carbon
skeleton (colored yellow in the figure 1.3) is a propane and each radical is formed by an
amino function of three components. Each hydrogen (colored in black) is a specialized

6 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

programmer, each nitrogen (colored in red) is a programmer but also responsible for a
specific subject and each carbon (colored in yellow) is a programmer and also a manager
of two or three subjects. This molecule may change in size in order to adapts his capacity
to the project’s phases. They implement the en-route environment with Spanish airways,
waypoints, airports, radio-aids, etc. Also they implement the designer environment like
CAD designer as learned in the first course subject Expressió Gràfica (EG) and the 3D
Electronic Flight Instruments System (3DEFIS) or the remote console as learned in the
second course subject Tècniques de Computació i Programació (TCP).

Figure 1.3: 2-amino-triaminopropane molecule was the distribution of PANS8168 project’s
team in 2006.

During the summer July’07, some mechanical works are done in the Wind tunnel and
the UAV Shadow by the Icarus team. A rudder servo control surface and a cradle with
three degrees of movement was build for the UAV Shadow, and a panoramic three window
projections in the CESNA cabin. Several simulations are done in this fuselage related to
air traffic management or procedure design. Also we have used two flight simulators; MS
FS2002 and the open source Flight Gear which will be use on 2008 by Icarus team.

Definition, requirements and previous work 7

1.3.3.. Additional uses for the AutoNAV simulator

Last year, the author has been worked on pico-satellites design, showed in the figure 1.4,
as learned in the third course subject Sistemes Espacials (SE), and the prediction of trajec-
tories as learned in the third course subject Tècniques Experimentals d’Aerofı́sica (TEA)
and the subject Model Rocket Workshop (MWR), developing the Interplanetary Navigation
Display (IND) for the new application AutoNAV4D.

Finally as a result of more involved effort with the Computer Architecture Department
(DAC), the author has been worked in collaboration with Mr. Pablo Royo Chic and Mr.
Juan López Rubio in the Icarus Simulation Integrated Scenario (ISIS) testbed platform as
covered by this Treball de Fi de Carrera (TFC) document. We will present some of this
work in the AIAA’09 Meeting and exhibit [17].

Figure 1.4: Pico-satellite developed by alumni from the Castelldefels School of Technology
(EPSC).

8 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Technologies for the co-simulator 9

CHAPTER 2. TECHNOLOGIES FOR THE
CO-SIMULATOR

In this chapter we will introduce some important technologies used in this project in order
to reach a comprehensive understanding for future chapters. These technologies are: The
Unmanned Aerial Vehicles (UAV), The UAS Service Abstraction Layer, the Middleware Ar-
chitecture for Remote Embedded Applications, the Icarus Simulation Integrated Scenario
testbed, the .NET framework and the Open Graphic Libraries.

2.1.. UAV. Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle (UAV) is a non-piloted airplane designed to operate in D-
cube (Dangerous-Dirty-Dull) situations; for example situations in which the utilization of a
traditional airplane could be dangerous, or the environment too rough, or the operation
too repetitive. Focusing on civil applications a wide range of application scenarios do
exist: remote environmental research, pollution assessment and monitoring, fire-fighting
management, security for example border monitoring, agricultural and fishery applications,
oceanography, communication relays for wide-band applications, etc.

UAVs are automatically guided by an embedded system named Flight Control System or
FCS. The goal of a FCS is to guarantee the stable flight of the UAV through a predefined
flight-plan. Many FCS are commercially available today, however no commercial system
exists nowadays that provides support to the actual mission and/or application that the
UAV should perform, what we call the mission management.

Nowadays and after many years of development, UAVs technology is reaching the critical
point in which it can be applied in a civil/commercial scenario. Many types of UAVs exist
today; however the class of mini/micro UAVs is emerging as the valid option if this civil
commercialization scenario is kept in mind. This type of UAV has the same limitations as
most embedded systems: limited space, limited power resources, increasing computation
requirements, complexity of the applications, time to market requirements, etc. All these
stringent requirements are amplified in civil/commercial applications. In that context, the
same platform should be able to implement a large variety of missions and operate with
many types of payload; all of it with little reconfiguration effort and overhead if the system
has to be economically viable. For this reason we believe that the effective application
of UAVs in civil operations requires implementing new hardware/software systems that
provide specific support to automatically control the actual missions to be carried out by
the UAV[4].

10 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Icarus team have some large Unmanned Aerial Vehicle (UAV): The Megastar and the
Shadow.

The Unmanned Aerial Vehicle Megastar showed in figure 2.1 is a giant radio-controlled
trainer manufactured by Protech[13]. It has 94.49 inches (2.4 meters), length 71.65 inches
(1.82 meters) and weight 13.01 lbs (5.9 kilograms). The RC has 4 channels and 4 servos
(Throttle, Elevator, Rudder and Ailerons) and is a steerable tail gear. The power class
is Glow engine 1.5 size (26 cubic centimeters). The transmitter is a 7 channels model
ECLIPSE7. It works in the frequency range from 72 to 73 MHz. It has a receiver and a
servo-amplifier connected to each servo with out a shielded lead.

Figure 2.1: Megastar XL120 a giant RC model converted in UAV by Icarus team.

The UAV Shadow is a push propeller airplane with two tails and two rudders as shows the
figure 2.2. It have 17 feet (5.2 meters) of wingspan. The power-plant is a twin cylinder glow
engine. The autopilot AP04 manufactured by UAV Navigations, is a fully automatic, multi-
waypoint, 3D flight-plan following; having throttle, elevator, rudder and ailerons control.

Figure 2.2: Shadow UAV is 17 feet (5.2 meters) of wingspan by Icarus team.

Technologies for the co-simulator 11

2.2.. USAL. Abstraction layer

The UAS Service Abstraction Layer (USAL), developed by the Icarus team, is a set of
available services running on top of the UAV system architecture to give support to most
types of UAS missions and give facilities to end-users programs in order to access the UAS
payload; reducing ”time to market” when creating a new UAS system and simplifying the
development. The co-simulator’s components and services are suitable to be integrated
as a part of the USAL[17].

2.2.1.. SOA. Service Oriented Architecture

The USAL is Service Oriented Architecture (SOA). Service Oriented Architectures is get-
ting common in several domains. The main goal of SOA is to achieve loose coupling
among interacting components, called services. A service is an unit of work, implemented
and offered by a service provider, to achieve desired final results for a service consumer.
The benefits of this architecture are the increment of interoperability, flexibility and exten-
sibility of the designed system and of their individual services. In the implementation of a
system, we want to be able to reuse existing services. SOA facilitates the services reuse,
while trying to minimize their dependencies by using loosely coupled services. Following
this service oriented vision, we propose the usage of services to represent the different
components and functionalities that conform the complete UAS operation. These services
are managed and communicated by a thin software layer[17].

2.2.2.. Services of the USAL

The USAL is composed by a large set of available services as showed in figure 2.3. Not
all of these services have to be present in every UAS or in every mission. Only those
services required for a given configuration or mission constraints, should be present and/or
activated in the UAS. Available USAL services are classified in four categories:

Flight services: all services in charge of basic UAS flight operations: autopilot, basic
monitoring, contingency management, etc.

Mission services: all services in charge of developing the actual UAS mission.

Payload services: specialized services interfacing with the input/output capabilities pro-
vided by the actual payload carried by the UAS.

Awareness services: all services in charge of the safe operation of the UAS with respect
terrain avoidance and integration with shared airspace.

12 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Figure 2.3: USAL architecture global view and categories by Pablo Royo.

2.3.. MAREA. Middleware

The data flow between USAL components and services are done by the Middleware Ar-
chitecture for Remote Embedded Applications (MAREA). This middleware was developed
by the Icarus team and uses an architecture based on communication primitives showed
in figure 2.4.

2.3.1.. Middleware description

The Middleware Architecture for Remote Embedded Applications (MAREA) is a middleware-
based software systems which consist of a network of cooperating services. MAREA pro-
vides an execution environment with communication channels and common functionalities.
The role of each service is expressed by the action of publish, subscribe, or both simultane-
ously; in that way, the publish-subscribe model eliminates complex network programming
for distributed applications that makes easy to implement an embedded service. This mid-
dleware offers the localization of the other services and manages their discovery in the
network; handles all the transfer chores, message addressing and retransmission, data
delivery, flow control, etc. Also, this middleware handles marshaling and demarshalling
(depending on different hardware platforms that are running a service) like bays where
resources support, as a container, the cooperative services[4].

Service Management. The middleware is responsible for service life’s cycle starting, com-
municating, monitoring, reporting changes and stopping each service.

Resource management. The middleware also centralizes the management of the shared
resources of each computational node such as memory, processors, input/output
devices, etc. A dispatcher may define those resources in a validated option of Line
Replacement Units (LRUs) like engines, avionics bays, etc. The Resources Man-
agement optimizes the needs during the mission due to changes in the number of
radio-links that are available or loses of UAV performances, range or mission time.

Technologies for the co-simulator 13

Figure 2.4: Data flow between services through MAREA communications primitives.

Name management. The services are addressed by name, and the middleware discov-
ers the real location in the network of the named service, it makes very easy to reuse
existing components by just adding new dedicated services to the new requirement.

Network Management. The middleware access the network instead the services, allow-
ing the services to be deployed in different nodes depending on the UAS configura-
tion.

2.3.2.. Communication Primitives

MAREA promotes a publish/subscribe model for sending and receiving data, events and
commands among the services of the UAS. Services that are producing valuable data
publish that information while other services may subscribe them. MAREA takes care of
delivering the information to all subscribers that declare an interest in that topic. Next, we
will describe the used communication primitives, which have been named as Variables,
Events, Remote Invocations and File Transmissions.

Variables. Variables are the transmission of structured, and generally short, information
from a service to one or more services of the distributed system. A Variable may be
sent at regular intervals or each time a substantial change in its value occurs. The
relative expiry of the Variable information allows to send it in a best-effort way. The
system should be able to tolerate the lost of one or more of these data transmissions.
The Variable communication primitive follows the publication subscription paradigm.

Events. Like Variables, Events also follow the publication-subscription paradigm. The
main difference in front of Variables is that Events guarantee the reception of the
sent information to all the subscribed services. The utility of Events is to inform
of punctual and important facts to all the services that care about them. Some

14 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

examples can be error alarms or warnings, indication of arrival at specific points of
the mission, etc.

Remote Invocation. The Remote Invocation is an intuitive way to model one-to-one of in-
teractions between services. Some examples can be the activation and deactivation
of actuators, or calling a service for some form of calculation. Thus, in addition to
Variables and Events, the services can expose a set of functions that other services
can invoke or call remotely.

File Transmission. The File Transmission primitive is used basically to transfer long file-
structured information from a node to another when exists the need to transfer con-
tinuous media with safety. This continuous media includes generated photography
images, configuration files or services program code to be uploaded to the middle-
ware. For example this primitive is used in the thermal camera transmission to the
ground station.

Technologies for the co-simulator 15

2.4.. ISIS. Integrated Scenario

Figure 2.5: Icarus Simulation Integrated Scenario by Pablo Royo

The Icarus Simulation Integrated Scenario (ISIS) [17] is a collection of reusable services
that comprises a minimum common set of elements that could be needed in most UAV
missions. A number of specific services have been identified as ”a must” in any real life
application of UAVs. The idea is to provide an abstraction layer that allows the mission
developer to reuse these components and that provides guiding directives on how the
services should interchange avionics information with each other. The available services
cover an important part of the generic functionalities present in many missions. Therefore,
to adapt our aircraft for a new mission it will be enough to reconfigure the services deployed
in the UAV boards.

As showed in figure 2.5, the aim of ISIS is to minimize both the test development and
validation cost, as well as to provide an easy migration of the software from the testbed
platform to the real flight platform[17]. On ground, we have found the Flight Monitor (FM)
which is intended to be used by the operator. The Flight Plan Manager manages the flight
plan of each UAV for each mission. The Storage Service provide massive information
like cartographic maps or stores the multimedia information produced for the camera’s
mission. In order to control test the UAV’s autopilot, there is the Software In Loop VAS
Interface Adapter (SILVIA) consist of a Virtual Autopilot Service, a Autopilot Gateway and
a connection to the flight simulator Flight Gear. Finally, ISIS incorporates Co-simulator
consisting of a Visor Service, some Virtual Vehicles and Virtual Services and a Manager
of Virtuality used mainly in fast simulations or different epoch1 to the present time. We
have installed a version of the ISIS in the cabin simulator of Escola Politècnica Superior
de Castelldefels (EPSC) called CESNA.

1Epoch means not only a local time but also a different time speed

16 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

2.5.. .NET technology

The co-simulator must be created as a set of separated components to be reused with
other implementations. This concept is called distributed. The C# is the most desired
object oriented programming language. Visual Studio 2005 (Windows) and Mono (Linux)
support this language. The Container is where the service is running. Many embed-
ded containers are available. There are containers where only C are supported, like a
Programmable System on Chip (PSoC) or Field Programmable Gate Array (FPGA). Other
containers commonly used in UAS applications supports the .NET Framework 2.0 in which
we are interested in.

Figure 2.6: .NET framework for Windows and Mono for Linux.

2.5.1.. .NET definition

.NET Framework 2.0 is the Microsoft’s managed code programming model for building ap-
plications that have visually stunning user experiences, similar and secure communication,
and the ability to model a range of business processes. The following information has been
extracted from the Microsoft Developer Network MSDN library [14]. Some design features
are:

Interoperability or interaction between new and older applications require means in order
to access external functionalities like the Invoke COM components.

Common Runtime Engine having an intermediate language (CIL) not interpreted but
compiled just-in-time. This implementation is called Common Language Runtime
(CLR).

Language Independence introduces a Common Type System of all possible datatypes
that supports the exchange of instances of types between programs written in any
of the .NET languages.

Base Class Library (BCL) is a library of functionality available to all languages using the
.NET Framework like file reading, writing, XML documentation manipulation, etc.

Technologies for the co-simulator 17

Security provides a common security model for all applications.

Portability allows theoretically to run in any development platform, also cross-platform
compatible, not only the MS version Visual Studio 2005[12] for Windows, also the
Common Language Intermediate (CLI) specification is open and makes it possible
for third parties entities to create compatible implementations like the Mono[11] for
Linux.

2.6.. OpenGL. Graphic libraries

The co-simulator may show many visual information like level contours, flight path, virtual
flight camera view, etc. For these reasons we may access to the potential of the video card
through the use of Open Graphic libraries (OpenGL). We have found that the freeware
Tao Framework [10] is the most adequate for the co-simulator requirements because is
supported by Visual Studio and Mono developers.

2.6.1.. OpenGL history

In 1992 the OpenGL Architectural Review Board (OpenGL ARB) was established. The
OpenGL ARB is a group of companies that maintain and update the OpenGL standard
and is widely used in scientific visualization, virtual reality (see VRML), Computer Aid De-
sign (CAD), and flight simulation. In 1994 SGI include elements such as a scene-graph
but in 1995, Microsoft released the Direct3D which is the main competitor of OpenGL.
OpenGL 2.1 was released on 2006 and is backward compatible with all prior OpenGL
versions, and incorporates the OpenGL Shading Language (GLSL, also known as slang,
which have pixel buffer objects for efficient image transfers. OpenGL 3.0, formerly known
as the codename Longs Peak will be revealed during the OpenGL BoF at SIGGRAPH
2008[16] and have an asynchronous object creation. About C# implementation of OpenGL
libraries, many versions are done like the CsGL OpenGL/C# library [2] but its development
has essentially stopped. The freeware Tao Framework is a most supported C# implemen-
tation of OpenGL nowadays. The Tao Framework for .NET is a collection of bindings to
facilitate cross-platform media application development utilizing the .NET (Windows) and
Mono (Linux) platforms[10].

Figure 2.7: Open Graphics Library. Source http://www.brandsoftheworld.com/

18 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

2.6.2.. OpenGL standard

OpenGL was developed by Silicon Graphics Inc. (SGI) and is a standard specification
defining a cross-language cross-platform Application Programming Interface (API) for ap-
plications that need 2D and 3D computer graphics. A cross-platform is an interface be-
tween two implementations; in our case is an interface between a software implementation
(our co-simulator) and a hardware implementation (video card). Older video cards do not
support many functions. OpenGL overcame this problem by providing support in software
for features unsupported by hardware. This function allows to any application to use ad-
vanced graphics on relatively low-powered systems. The interface consists of more than
200 different function calls which can be used to draw complex three-dimensional scenes
from simple primitives.

OpenGL hides the complexities of interfacing with different 3D accelerators, by presenting
the programmer with a single, uniform API. Also it hides the different capabilities of hard-
ware platforms, by requiring that all implementations support the full OpenGL feature set
(using software emulation if necessary).

Scientific bases for the co-simulator 19

CHAPTER 3. SCIENTIFIC BASES FOR THE
CO-SIMULATOR

In this chapter we will introduce some important scientific bases used in the co-simulator.
These scientific bases are: Quaternions, Orbits, Keplerian elements, Reference systems,
Datums and Geo-positioning. Some of them are called Addons and are implemented as a
class or structure in the co-simulator source as we see in the chapter 4.4..

3.1.. Quaternions

We have used quaternions for make rotations. Quaternions avoid the problem of “gimbal-
lock”. When we use Euler angles like pitch, roll, yaw there is no movement for the gimbal
angle. Quaternions extend the concept of rotation in three dimensions to rotation in four
dimensions. Instead of rotating an object through a series of successive rotations, quater-
nions allow the programmer to rotate an object through an arbitrary rotation axis and angle.
This is an AutoNAV4D93 add-on called Quaternion.

The quaternions are defined as the ring1:

H = {Q = w+ xi+ y j + zk ∀ w, x, y, z ∈ R} (3.1)

where the addition operation is defined by:

(w+ xi+ y j + zk)+(a+bi+ c j +dk) = (w+a)+(x+b)i+(y+ c) j +(z+d)k (3.2)

and the multiplication operation is defined by:

(w+ xi+ y j + zk)(a+bi+ c j +dk) (3.3)

(wa− xb− yc− zd)+(wb+ax+ yd− zc)i+(wc+ ye+ zb− xd) j +(xd + za+ xc− yb)k
(3.4)

The defining relations are:

i2 = j2 = k2 = i jk =−1 ∀ i, j, k ∈ I (3.5)

Quaternions are attributed to Sir William Rowan Hamilton on the 16th of October 1843.

1A ring is an algebraic structure with addition and multiplication

20 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

3.2.. Orbits

We use the orbit concept in order to follow a straight path over the planet. When you follow
a constant heading, you describe a path called loxodromic path. The shorter path between
too far points over a planet surface is the orthodromic path as showed in figure 3.1. Near
the equator, the paths are closer. This is an AutoNAV4D93 add-on called Orbit.

Figure 3.1: Reference http://www.navworld.com/navcerebrations/flights.htm Loxodromic
path.

Scientific bases for the co-simulator 21

3.3.. Keplerian elements

We define the Keplerian elements as a set of six variables which establish the satellite
trajectory. These elements are showed in figure 3.2. Keplerian elements are implemented
in the AutoNAV4D93 add-on called Orbit. We assume that epoch is known because is the
local time of the satellite.

Figure 3.2: Reference http://en.wikipedia.org/wiki/Image:Orbit1.svg Keplerian parameters.

a0 Orbit’s semimajor axis measured in meters (m).

e0 Orbit’s eccentricity, where 0 is a circle, an ellipse is between 0 and 1, a parabola is
equal to 1 and more than one is a hyperbola. This is a non dimensional factor.

i0 Orbit’s inclination measured in radians (rad).

omega0 Orbit’s ascending node measured in radians (rad).

v0 True anomaly at epoch measured in radians (rad).

W0 Orbit’s argument of periapsis measured in radians (rad).

22 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

3.4.. Reference systems

In the AutoNAV4D93 co-simulator, we have used three different reference system for dif-
ferent purposes.

Figure 3.3: The three reference systems used in the AutoNAV4D93

Earth Centered Earth Fixed The ECEF axis (X, Y, Z) is the planetary reference system.
Using these axis we omit external effects like earth rotating and orbiting. We define
the ECEF axis as an orthogonal vector system, 90 degrees between each axis and
right handed. The Z axis is the earth’s rotation axis. The X axis is pointing to Aries
star in the sky. The Y axis is defined by the vectorial product Y=Z·X. This reference
system is used for geo-positioning any vehicle with Cartesian coordinates. This is an
AutoNAV4D93 add-on called XYZ. There is a version of this reference system called
Latitude Longitude Altitude (LLA) which uses spheric coordinates and depends on
the datum. Spheric coordinates are very often used for Global Positioning System
(GPS). The same coordinates has different projections depending on datum param-
eters. This is an AutoNAV4D93 add-on called LLA. These coordinates are explained
in the chapter 3.6..

North East Down The NED axis (x, y, z) is the center of gravity reference system. Using
these axis we omit external interactions like forces and rotations. The NED axis
is also an orthogonal vector system. The z axis is always pointing to the earth’s
center. The x axis is always pointing to the earth’s north, so the y axis is always
pointing to the East. This reference system is used to define local interactions with
the Vehicles’s center of gravity. There is a version of this reference system called
Euler angles (Pitch, Roll, Yaw) which uses spheric coordinates. We have used this
reference system for compatibility with flight simulators.

Vehicle Centered Vehicle Fixed The VCVF axis (i, j, k) is the Vehicle reference system.
Using these axis we omit internal movements like vehicle’s parts displacements and
rotations. The VCVF axis is also an orthogonal vector system. The i axis is al-
ways pointing to the vehicle’s nose which is normally the flight direction. The j axis
is always pointing to the vehicle’s right side. The k axis is always pointing to the
vehicle’s up side. This reference system is used to define internal movements like
control surface angles or antenna deployment. There is a version of this reference
system called Flight control angles (elevator, aileron, rudder) which uses spheric
coordinates.

Scientific bases for the co-simulator 23

3.5.. Datums

A Datum are the minimum parameters which define an origin of reference for a local area
and a planetary surface. This surface is defined by a mathematical equation in order
to simplify the calculations. This is an AutoNAV4D93 add-on called Datum. A reference
Datum is a known and constant surface. It can be used to describe the location of unknown
points. On Earth, the normal reference datum is sea level. On other planets, such as the
Moon or Mars, the datum could be the average radius of the planet. The real surface
around the entire planet showed in figure 3.4 by the ITC[5] is called Geoid. We have not
used this model for compatibility purposes.

Figure 3.4: Perspective view of the Geoid (Geoid undulations 15000:1).

There is an universal Datum which is used by GPS (Global Positioning System) and also
used by our Virtual Vehicles. This universal Datum is called WGS-84 that means World
Geodetic System defined in the year 1984. Nevertheless, a visualizer may uses a local
Datum in order to show a correct projection in a near to ground view. For example if a
vehicle, which uses the WGS-84 Datum, is located in Barcelona city (Spain), then the
visualizer’s projection will uses the ED-50 Datum.

24 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

3.6.. Geo-positioning

We use Geo-positioning in order to set the vehicle’s position over the planet surface. In
our case, the position over the earth is commonly defined by four ways:

XYZ These parameters are the Cartesian coordinates in the ECEF reference system ex-
plained before. This is an AutoNAV4D93 add-on called XYZ

LLA These parameters are the spheric coordinates in the ECEF reference system also
explained before. LLA means Latitude Longitude Altitude. This is an AutoNAV4D93
add-on called LLA

UTM These parameters are defined inside a geographic grid. UTM means Universal
Transverse Mercator. You can see the “DMA TECHNICAL MANUAL”[1] for more
details. This is an AutoNAV4D93 add-on called UTM

UPS These parameters are defined inside a polar stereographic grid. UPS means Uni-
versal Polar Stereographic. Also you can see the “DMA TECHNICAL MANUAL”[1]
for more details. This is an AutoNAV4D93 add-on called UPS

Every coordinate system has transformations between each other. It is important to un-
derstand that transformations depends on datum parameters. For this reason, everybody
in the AutoNAV4D93 co-simulator uses the WGS84 datum except when we need to visu-
alize information. When we use same coordinates for two different datums there are two
different projections. This is why we use a local datum for each projection.

AutoNAV4D93. The Co-simulator 25

CHAPTER 4. AUTONAV4D93. THE
CO-SIMULATOR

4.1.. AutoNAV4D93. Architecture

We define co-simulation to integrate in a same scenario both, real Unmanned Aircraft
Systems (UAS) and a simulated systems. The co-simulator, called AutoNAV4D93, works
in the same platform as the Icarus’s real UAS does. If the co-simulator AutoNAV4D93
worked alone, it could be just a simulator but if it works inside the UAS Service Abstraction
Layer (USAL)1 it will constitute a powerful tool. Following we will explain how powerful
could be the co-simulator AutoNAV4D93 when it works with the USAL services. Also we
will explain how a co-simulator could be configured as the old AutoNAV simulator in the
chapter 4.1.4..

4.1.1.. Co-simulator architecture

The co-simulator is a set of components and services, added to the UAS Service Abstrac-
tion Layer (USAL), which gives capabilities in fast prototyping and virtuality to the USAL.
Virtuality in this case means that virtual’s effects are similar like the real one.

Fast prototyping is reached by the use of USAL standards and reusable components. It
allows a fast design and implementation of new functionalities. We will see in the
chapter 4.2, some examples of services or components related to the co-simulator
AutoNAV4D93 as a part of the UAS Service Abstraction Layer (USAL).

Virtuality is used for increase safety and reduce design cost. It Increases safety because
we work with virtual services, like the real ones. A virtual UAV allows a safety testing
process because it is not real but, a real UAV in test could be dangerous because it
could crash. The system is designed, implemented and tested before it is definitively
constructed. It reduces design cost because design and test phases are done in the
ISIS integrated scenario instead the real life.

The co-simulator is an Open Architecture. It may have a Visor Service, a Commander,
some Virtual Vehicles and Virtual Services and a Manager of Virtuality. Most of these
services are used in the ISIS integrated scenario showed in the chapter 2.4..

1See chapter 2.2.2. for definition

26 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

4.1.2.. Components and services

The Co-simulator architecture, showed in figure 4.1 is composed by Virtual Vehicles, Vir-
tual Systems and the User Interface:

The Virtual Vehicle (VV) simulates the kinetic behavior of an UAS or mobile element,
depending on the level of detail; simulation model could be modified with a more
accurate results.

The Virtual System (VS) useful for simulate small subsystem, could be associated
to an UAS or mobile element. Is used for cover subsystems under development or
just needed but not implemented.

The User Interface is divided in three components: The Visor Service show a global
vision of the fleet but also could be used as a component inside other service. The
Commander Service is an on build service interface which allow interaction between
the user and services through the visor.

Figure 4.1: Five component and services constitute the co-simulator.

4.1.3.. Integrated architecture

In the co-simulator, some of these components are services and have the capability of
publish and subscribe variables, events, etc. For this reason, these services require a
communication layer called MAREA, explained before2. The co-simulator ’s services use
an USAL standard based on human-standing configuration files. This feature reduces
the source weight because many repeated functions in the USAL are implemented in the
same way. For example: A service can publish and register variables. All they have: the
same source for all USAL services, same definition for public source variables in order
to have an easy initial configuration of each service, etc. As an USAL standard, small
modifications are easy changing just the XML configuration file. Complex modifications
are implemented in the service’s source by a programmer. Specific documentation are
provided inside the source through XML format. Also, some user manuals are available

2See chapter 2.3. for definition

AutoNAV4D93. The Co-simulator 27

in each service, component and add-on. For capacity reasons of this TFC document, we
do not include manuals here. Visual Studio or Mono allows the use of this documentation
when programming. ICARUS team is glad to provide a free copy of the ICARUS Develop-
ment Kit (IDK) on demand. Feel free to contact with ICARUS team for this purpose. As we

Figure 4.2: Some services and controls as a part of the USAL.

discussed before, the co-simulator itself could be useful as a simulator, but there is more
usability when is integrated in the abstraction layer called USAL because could be used
associated to any UAV mission. Reusability are available, for example using the Visor as a
component inside the Flight Monitor which is an USAL’s flight service (see chapter 2.2.2.).
Also, when the co-simulator is used inside the ISIS integrated scenario, fast prototyping
and safety are reached for new mission design. The Visor could be used as a fleet moni-
toring. Virtual Vehicles could be used as a way to predicts the imminent future of the UAV
because is using virtuality, flying some minutes before the real time (see chapter 4.3.2.).
Following we show an USAL’s service list, classified by categories, and some examples of
services or components related to the co-simulator AutoNAV4D93:

Flight services are all services in charge of basic UAS flight operations: autopilot, basic
monitoring, contingency management, etc. As an example, the co-simulator’s Visor
used as a control inside the ISIS’s Flight Manager.

Mission services are all services in charge of developing the actual UAS mission. As an
example, the co-simulator’s Visor service as fleet viewer.

Payload services are specialized services interfacing with the input/output capabilities
provided by the actual payload carried by the UAS. As an example, the co-simulator’s
Virtual System which detects ’hot-spots’ from a real time camera.

Awareness services are all services in charge of the safe operation of the UAS with
respect terrain avoidance and integration with shared airspace. As example, the
co-simulator’s Virtual Vehicle used in order to predicts the future trajectory of a real
UAV.

28 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

4.1.4.. Reusing the old design

Finally, we will explain how a co-simulator could be configured as the old AutoNAV in
order to work alone as a simulator. Nevertheless, AutoNAV simulator details are far from
this TFC document’s scope. You may refer to the PANS8168 main web page for further
details[8].

A main Visor could be configured with a series of drawing layers as the old simulator, which
allows to switch on/off airports, runways, airways, radio-aids, airplanes and vehicles, etc.
Also a Commander could implements several commands as the old AutoNAV through a
text Console and a Tool-Bar. The fleet could be implemented through Virtual Vehicles with
a Flight Plan each one.

Older functionalities may be implemented as a series of Virtual Systems like the Collision’s
detector. Other simplest functionalities could be implemented as a Widgets which it will
explained in following chapters. This new service, called NAV4D, could be started like
other service through the middleware MAREA, but is far from this TFC document’s scope.

AutoNAV4D93. The Co-simulator 29

4.2.. AutoNAV4D93. User interface

We have divided the interaction between a service and an user in three parts: the Com-
mander, the Visor and the Virtual Manager. The Commander is responsible of flow in-
formation from user to services. The Visor is responsible of flow information from service
to user. The Virtuality Manager is responsible of the time to deliver this flow when virtual
elements are in different epoch3.

4.2.1.. The Visor as a Service

The Visor, as a service, is able to shows a global vision of the fleet but also could be reused
as a component inside other service. The Visor represents visual and acoustic information,
in a specific format. We use human-standing XML configuration files in order to allow
an easy user interface design and adaptation to new mission’s requirements. Complex
modifications may be done by adding modular components to the source. For this reason,
source documentation may be provided in order to make feasible this new programmer’s
implementations. These modular components are called Addons.

The Visor is formed by added-on components; grouped together, forms the reusable user
interface. Some add-on standards are accessible for USAL services in order to allow an in-
formation’s interchangeability. In one hand, we have found in the main common needs, for
many UAS civil missions, some similar used displays; these are flight or system informa-
tion monitoring in a popular appearance, image processing as cameras, global positioning
with 3D references, mapping projections for a defined datum4, etc. In the other hand,
interaction with the operator requires an easy control technique, far from this TFC docu-
ment’s scope. You may refer to the GEDIS-UAV guide[15] by Mr. Salvador Lorite for further
details.

The Visor has a point of view, represented by the camera, which is automatically associ-
ated to any vehicle with the same name. This is an AutoNAV4D93 add-on called Camera.
The Camera Manager manages all defined cameras by the Visor ’s configuration XML
file. It could be more than a camera associated to the same vehicle. The Camera Man-
ager allows a multiple scenario’s view with an independent context of view. This is an
AutoNAV4D93 add-on called CameraManager.

We have found that visual process design is drawing layer oriented. Many applications
have the capability of switch visual layers, so drawing layers will group items or functions,
easy to show or hide and easy to interchange between other mission designs. This is
an AutoNAV4D93 add-on called Layer. When a drawing layer changes with a subscribed
variable, his dependence is recorded in a register. When this subscribed variable changes,
only the associated layers are retraced. This is an AutoNAV4D93 add-on called Reg.

We have called Tracers to the elemental trace primitives like Draw, Arc, etc. We have called
Widgets to the instruments or graphics, because they have more complex functions. Some
examples could be a Compass, a HSI (Horizontal Situation Indicator) or a Map. These are

3Epoch means not only a local time but also a different time speed
4A Datum is a set of parameters which defines a local ellipsoid reference

30 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

built by elemental trace primitives and they are able to change the Visor ’s aspect easily
depending on values of some variables subscribed by the Visor ; as is specified in the
Visors configuration XML file. The Tracers primitives introduces known defaults intelligent
constants in case of out of range or incorrect values sending by a registered variable.
Designer not to be worry about both, communication and format, just needs to know which
services variable may be visualized by the Visor. System colors could be defined for some
known Widgets in order to allow the same aspect with drawing Layer ’s independence. This
is an AutoNAV4D93 add-on called ColorNAV.

In Figure 4.3 you can see in the left side, a planetary captured view of a vehicle and his
geo-position. In the right side you can see a local view of a fleet composed by three virtual
vehicles.

Figure 4.3: Visor with a planetary view and a local view

AutoNAV4D93. The Co-simulator 31

4.2.2.. The Visor as an User Control

Other powerful Visor ’s use is when is an User Control. An example of this is the Primary
Flight Display (PFD) showed in figure 4.4. This control (background color in black) is
inside the Flight Monitor. This control manages as the service does, all drawing layers and
variables. The Flight Monitor is a service inside the integrated scenario (ISIS) presented
in chapter 2.4.. This service has been implemented by Borja López who also implemented
some Widgets for this purpose.

Figure 4.4: An example of Visor as a control inside the Flight Monitor on ground station.

4.2.3.. Commander Service

A Commander Service is required in order to separate the visualization process from the
command process, the commander uses Remote Invocation primitives to send commands
to the services. Allow an interaction with the showed widgets to take an action associated
to any UAS visualized by the Visor. These commands, out from the TFC document’scope,
could be:

Words with parameters showed by the Visor ’s console

A button pressed in the Visor ’s toolbar

A mouse click over a Widget showed by the Visor ’s camera

A talking command used on the see-and-avoid5

5The see-and-avoid is a surveillance system for UAS

32 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

4.2.4.. Virtuality Manager

The Virtuality Manager creates or modifies a Virtual Vehicles or Virtual Systems. The Vir-
tuality Manager will be useful when Virtual Vehicles or Virtual Systems work in an acceler-
ated time simulation or a different epoch from the Network’s time. The Virtuality Manager
segregate the traffic information in each service local time. Is important to understand that
the Virtuality Manager may be able to mange information from the same virtual item in
more than an epoch in the same scenario. Virtual components such as Virtual Vehicles
or Virtual Systems may be able to allow the information in any required epoch instantly.
This is because real services only are able to allow the information in the Network’s time
(because they are real, of course). At the moment, only a Visor will be able to show infor-
mation of a future Virtual Vehicle even if the Visor has an associated camera to him with
the same local time. Otherwise this camera will show a different moment of this Virtual
Vehicle. This feature may be used to predicts the future inside a virtual world similar to the
real one. We have tested this feature in the old AutoNAV4D simulator version 89.

These capabilities may be implemented in the Middleware layer to make a more efficient
use of the channel bandwidth. In this aspect, the middleware must add a Virtuality Man-
ager which makes predictions in order to reduce the transmission load and dispatch the
information on time for the local service epoch. Specifications about the Virtuality Manager
is far from the scope of this TFC document.

AutoNAV4D93. The Co-simulator 33

4.3.. AutoNAV4D93. Virtual services

In this chapter we introduce the concept of Virtual Services. Two cases of virtual services
inside the co-simulator are: Virtual Vehicles and Virtual Systems.

4.3.1.. Definition of Virtual Services

Virtual Services are services of the UAS Service Abstraction Layer (USAL). A Virtual Ser-
vices has a function inside the ISIS testbed, but also, as a Virtual it may be predictable.
Because Virtuality Manager could ask about the state of a Virtual Service in any epoch6, It
may be capable of deliver information as a function of time and it may be a fast response.
A prediction tolerance is also considered.

This fast response is reached extending the concept of life’s cycle. Virtual Services have
defined their life’s cycle if is possible. Some times this information depends on other Virtual
Services and it is able to allow quickly and for any epoch. Other times, this information de-
pends on real time services. In this case, information is calculated in the moment but only
in the actual time; Virtuality is reduced to a short period of time covered by the prediction
tolerance. Otherwise, life’s cycle may be partially defined and Virtuality is deprecated. Due
to short capacity of this TFC document, we will not explain Virtuality Services in deeply.

4.3.2.. Virtual Vehicle

A Virtual Vehicle is a virtual service. Virtual Vehicles generate kinetic information for any
epoch, like flight telemetry, but without the existence of a real vehicle. A Virtual Vehicle
could be useful for add vehicles to our mission in order to test them. The Virtual Vehicle
is intended to be used in fast simulations7, capability which is not implemented by most
of the commercial flight simulators. Virtual Vehicles are useful when in addition we want
simulate some mobile services, far than an UAV airplane, like mobile ground antennas on
a truck, or a firefighting walking near a hot spot which needs a radio-coverage, etc.

Virtual Vehicles have the capability of allow instantly the geo-position8 for a required time.
This is possible, because Virtual Vehicles have defined all his life’s cycle before they starts.
If any event is produced over this Virtual Vehicle, it may recalculates his life’s cycle again.
We have called patterns to each vehicle behavior. The life’s cycle is composed through
a list of patterns which starts at an epoch and finished when the next Pattern starts. The
Virtuality Manager uses this capability in order to allow different epoch in the same sce-
nario. For this reason a real vehicle only is able to allow the geo-position in the network’s
epoch. Also, a Virtual Vehicle may have implemented a Virtual Autopilot Layer which al-
lows an standard autopilot to the USAL, but these features are far from the scope of this
TFC document.

6Epoch means not only a local time but also a different time speed
7Accelerated time or different epoch to the network’s epoch
8geo-position: the position over the planet’s surface

34 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Table 4.1: Summary of Virtual Vehicle Primitives

Interaction plane attribute command units

Physical plane
Kinetic posXYZ IllegalXYZmove(x0,y0,z0) meters
Physics cog Move(XYZ) meters

Cognitive plane
Flight Director direction GoTo(tx,ty,tz) meters
Flight Plan waypoint Next(LLA) degrees

Strategic plane
Navigation standbyFP NewFlightPlan(FP) -

4.3.2.1.. Vehicle’s standardized behavior

We have standardized the behavior of any mobile vehicle through a series of functions
and attributes as we summarize in the basic table 4.1. However, refer to especial doc-
umentation in the component’s source. Also you can refer to chapter A.1. for additional
details.

This summarized analysis is divided in three interaction’s planes: The physical plane, the
cognitive plane and the strategic plane. The Virtual Vehicle implements an autopilot based
on a standard flight director and navigation directives but far from this TFC document’s
scope.

Physical plane is used for kinetics, physics and autopilot interactions whit out any deci-
sion. We will not explain more details about these interactions.

Cognitive plane is used for make decisions in order to maintain a safe flight through flight
director and flight plan interactions. We will not explain more details about these
interactions.

Strategic plane is done in order to reach a strategic flow efficiency for a fixed scenario
through navigation and traffic management interactions. We will not explain more
details about these interactions.

AutoNAV4D93. The Co-simulator 35

4.3.2.2.. Vehicle’s reference systems

Real vehicles have only one reference system, but Virtual Vehicles have, for different pur-
poses a dual reference systems plus the vehicle’s reference system. One is to be used for
geo-positioning like every mobile vehicle but in addition we introduce a local reference sys-
tem in order to interact with the environment. Any service could interacts with the Virtual
Vehicle in each plane: In the physical plane through 3D commands, in the cognitive plane
through target commands and finally, in the strategic plane through navigation’s directives.
Refer to chapter A.1. for more details about Virtual Vehicle’s commands.

ECEF The ECEF reference system is fixed to the Earth’s axis rotation and is suitable for
geo-positioning the UAS. Geo-position is protected from any external modification
with an ’Illegal change message’.

NED The NED reference system is attached to the UAV but his Y axis is normal to the
ground surface and is used to introduce local parametric disturbances, to the vehi-
cle’s center of gravity, in the scope to be added to the ECEF geo-position by itself.

VCVF The VCVF is fixed to the vehicle’s fuselage and is used for reference any internal
movement like the control surfaces.

Figure 4.5: Three different reference systems for three purposes: ECEF, NED, VCVF.

36 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

4.3.3.. Virtual System

The Virtual System is a virtual service. A Virtual System simulates the existence of a
small subsystem for any epoch. The Virtual System abstracts the designer from the rest of
the USAL platform in order to solve a singular function, normally associated with an UAS.
USAL platform could be reused from a previous tested missions.

Virtual Systems are useful when we are developing new subsystems. Virtual Systems
allows fast prototyping: no expensive implementations are required because the work is
done directly in the design phase. Simulations are done as real as needed in the aim
of reach the best and faster solution valid for the mission requirements. After of them,
a real implementation is able; interchange between Virtual System and a real system is
transparent to the networks services. Virtual Systems allow an easy configuration way like
human-standing configuration lists like XML format files. This is an standard which is able
for USAL services. A Virtual System as a service, has many source implemented. The
programmer only may add his functions to the Virtual Vehicle Process.

4.3.3.1.. Virtual Radar. An example of Virtual System

We have implemented an example of Virtual System which consist on a radar function.
Figure 4.6 shows a Visor and the MAREA’s console. Inside the Visor, a 3D drawing
Layer shows a conflict between two virtual vehicles. The Radar Service, which is a Virtual
Service, is subscribed to each Virtual Vehicle position. Every two seconds, the Radar
Service calculates distances between vehicles. The Radar Service may publish a variable
as a Resolution Advisory with warnings for each vehicle which is implied in a possible
collision. Any other services like Virtual Vehicles, could subscribe to this variable if they
need a surveillance service.

Figure 4.6: An example of Virtual System: a virtual radar service.

AutoNAV4D93. The Co-simulator 37

4.3.3.2.. Virtual Engine Monitoring. An example of fast prototyping

We present an example of cooperative fast prototyping. It was the Engine Monitoring
designed by Raquel Garcı́a from the ICARUS team. The Engine Monitoring is a par of
the ISIS integrated platform explained before in the chapter 2.4.. We use a Virtual Sys-
tem in order to develop the main functionality: to monitor the engine health. The Engine
Monitoring was subscribed to some kinetics variables like Airspeed, Vertical Speed and
Altitude. Temporally, Engine Monitoring simulates the rpm9 and publish this value through
a registered variable called rpm. This value was showed in a Visor inside a layer called
Electronic Centralized Aircraft Monitor (ECAM). We have developed a dedicated indicator
using a Widget called RPM. Now, platform is adapted to the new service and is easy to
implement a real Engine Monitoring which will acquire the real rpm value instead a simu-
lated one. Also, the ECAM layer could be integrated inside the Flight Monitor using a Visor
as a component instead a dedicated service. This example is showed in chapter 4.2.2..

9rpm: Revolutions per minute

38 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

4.4.. AutoNAV4D93. Diagrams

Figure 4.7: Main class diagram for the AutoNAV4D93: Nav4D, MatrixLib and Usal

AutoNAV4D93. The Co-simulator 39

Figure 4.8: Class diagram for the Visor

40 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Figure 4.9: Class diagram for the Layer add-on and Tracers

AutoNAV4D93. The Co-simulator 41

Figure 4.10: Class diagram for the Widgets (I)

42 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

Figure 4.11: Class diagram for the Widgets (II) and Updaters

Future work 43

CHAPTER 5. FUTURE WORK

5.1.. Conclusions

In this Career Final Work (TFC) we use a lot of knowledge gained through this university
career in this co-simulator. As a result of an ICARUS team collaborative work, using com-
ponents an services together, we are able to improve the ISIS integrated scenario in which
the co-simulator is an important piece of them. Many bugs and faults have been corrected
thanks to this collaborative work. This co-simulator is a large project and this TFC work is
only a piece of the AutoNAV4D93 project. So, many targets to be accomplished in a future
as a result of ISIS developing work.

5.2.. Future improvements for the ISIS integrated scenario

This is a list of some tasks not yet completed:

Virtual Vehicle’s Patterns may be implemented. Virtual Vehicles only make holding
patterns. Also Flight Plans are not yet implemented.

Virtuality Manager is not yet implemented. Only real time is available.

Some improvements for optimizing the network’s channel may be implemented like
Serialization and telemetry trend prediction.

Improvement in the quality of the telemetry reducing the noise of the inaccurate
values.

Test Virtual Vehicles with different epoch in the same scenario.

Test accelerated simulations and the future predictions for Virtual Vehicles.

The XML standardization sometimes uses Reflection. We may consider to use a
closed list of source’s variables.

44 AutoNAV4D. A co-simulator for Unmanned Aircraft Systems

5.3.. Pending work for the user interface

Widgets are powerful if we have a large list of them such as topographic, terrain, high-
ways, etc. In order to make easy to use Layers, some icons are required like Boeing and
Airbus appearance Widgets. Commander is not yet completed. Visor ’s Widgets may be
associated to Commands.

We have implemented only the ICARUS Development Kit (IDK) with a basic version of
MAREA and two simple services, one as a producer and other as a consumer. Other
development kits are required like a Layer Development Kit and a Virtual Development
Kit.

BIBLIOGRAPHY 45

BIBLIOGRAPHY

[1] Stanley O., S. “The universal grids: UTM and UPS”. TECHNICAL MANUAL 8358.2.
Defense mapping agency (Distribution is unlimited). (September, 1989)

[2] http://csgl.sourceforge.net/

C sharp Graphics Library (April, 2003)

[3] http://aeroupc.upc.es/

AeroUPC (July, 2004)

[4] López, J.; Royo, P.; Pastor, E.; Barrado, C.; Santamaria, E. “A Middleware Architec-
ture for Unmanned Aircraft Avionics”. Computer Architecture Dept. Technical Univer-
sity of Catalonia, Spain (August, 2004)

[5] http://kartoweb.itc.nl/geometrics/

International Institute for Geo-Information (ITC), Enschede (March, 2006)

[6] http://icarus.upc.es/

Icarus Group (October, 2006)

[7] http://nix.upc.es/aero/wiki/index.php/MOL%C3%89CULA

MOLECULE (May, 2007)

[8] http://nix.upc.es/aero/wiki/index.php/PANS8168

PANS8168 (August, 2007)

[9] Alvarez, V.; Prats, X.; Soley, S.; Montolio, J. “EGNOS: A big system for small aero-
dromes”. European Navigation Conference 2008. Toulouse: Centre National d’Etudes
Spatials. (May, 2008)

[10] http://www.taoframework.com/

The Tao Framework (May, 2008)

[11] http://www.mono-project.com/Main_Page/
http://www.mono-project.com/Image:Md1.png

Mono (Software) (May, 2008)

[12] http://msdn.microsoft.com/en-gb/vs2005/default.aspx
http://blogs.msdn.com/mikhailarkhipov/

Visual Studio 2005 (May, 2008)

[13] http://www.protech.be/

Protech Air Division (Promodels) (June, 2008)

[14] http://msdn.microsoft.com/en-gb/netframework/default.aspx

.NET Framework Development Center (June, 2008)

[15] Lorite Antezana, S. “DISEÑO DE INTERFACES DE SUPERVISIÓN DE VEHÍCULOS
AÉREOS NO TRIPULADOS”. Master thesis. Technical University of Catalonia (June,
2008)

[16] http://www.siggraph.org/s2008/

Computer graphics and interactive techniques community (August, 2008)

[17] Pablo Royo, Juan López, Joshua Tristancho, Juan Manuel Lema, Borja López, and
Enric Pastor. “Service Oriented Fast Prototyping Environment for UAS Missions”.
AIAA’09 Conference of Guidance, Navigation, and Control. American Institute of
Aeronautics and Astronautics. (August, 2009)

APPENDIX

Prototyping 49

APPENDIX A. PROTOTYPING

A.1.. Virtual Vehicle Specification

Figure A.1: Physical plane. Interactions between a Virtual Vehicle and his environment.

Figure A.2: Cognitive plane. Interactions between a Virtual Vehicle and cognitives ser-
vices.

Figure A.3: Strategic plane. Interactions between a Virtual Vehicle and a Controller.

