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Abstract

Drawdowns (loss from the last local maximum to the next local minimum)
offer a more natural measure of the financial market dynamics than
fixed time-scale measures. We study the presence of Dragon Kings
corresponding to meaningful outliers in the distribution of drawdowns
at different time scales - from 1-min to daily. Our analysis comprises
nine time series of prices of futures tracking major stock indexes (S&P,
FT-SE, Nikkei), currencies (Yen, DM) and government bonds (Japan, US,
Germany).

We find no empirical evidence of the presence of Dragon-Kings for
high frequency data, 1-min resolution. Nevertheless, for the largest
scales, namely daily, the statistical tests applied demonstrate that the
1% quantile of the largest events of the population of drawdowns belong
to a distribution significantly different from the rest. For the other scales,
the test results are inconclusive. This results suggest that the feedback
mechanisms present in the Dragon-Kings require a certain time to build-
up.
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1
Introduction

Pervasive in our lives, natural systems (e.g. earthquakes) and social
systems (e.g. stock market) exhibit emergent properties originating in the
interconnections and relationships among the mutually interacting parts
that form them. Often, these properties take the form of large events and
have very little in common with the characteristics of the forming parts.

In a Gaussian world, using N.Taleb’s [33] toponym “Mediocristan”,
large events are extremely rare and often neglected as too seldom to be
taken into consideration, albeit they represent huge losses. These extreme
events are quantified by heavy-tailed distributions of event sizes. In the
literature, extreme events are treated from two opposing perspectives.

On the one hand, the concept of extreme events being rather frequent
and resulting from the same organization principles as those generating
other “mediocre” events, they belong to the same statistical distribution,
often modeled as a power law. In this view, a DJIA fall of 50 bp dip belongs
to the same family as the large “Black Monday” plunge and thereby the
originating mechanisms are essentially akin. Inherent to this definition
is the unpredictability of extreme events, since the search for a precursor
is hampered by them sharing all characteristics (but the size) with their
smaller siblings. This view reduces remarkable events to “unknown
unknowables” with little or no human responsibility and more typical of
the result of the “wrath of God”. This vision is embraced by Bak and
co-workers in their formulation of self-organized criticality [3] and by the
so-called “Black Swan” concept popularized by N.A. Taleb [33].

In a shadow of stoic pessimism populated by “Black Swans” a new
concept brings a new light to the problem of prediction. This concept
termed by Sornette and collaborators as genuine “outliers” or even better
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“kings” [13] or “Dragons” [29] seeks life beyond power laws. The concept
of Dragon-Kings compiles instances in different realms suggesting that
extreme events are even “wilder” than predicted by the extrapolation
of the power law distributions in the tail and belong to a statistical
population which is different from the bulk of the distribution of smaller
events. Evidence points out that at the origin of these extreme events
there are transient mechanisms of self-organization. Empirical evidence
of the presence of Dragon-Kings has been found in the Zipf distribution of
city sizes [13, 26], in material rupture processes [27], in epileptic seizures
[21] and most interestingly for our study in the distribution of financial
market drawdowns (runs of losses) [28, 11, 31].

It is now amply accepted that the distribution of asset returns is fat-
tailed. More formally, it has been shown that the tails of the distribution
of returns follows approximately a power law P(return > x) ∼ C/xµ, with
estimates of the ‘tail indexes’ µ falling in the range 2 to 4 [1, 8, 18, 6]. No
trace of Dragon-Kings is apparent in the tail of the distribution.

But this is missing the forest for the trees! Fixed time scale measures
fail to capture transient bursts of dependence that reside at the origin
of large financial crashes. Let us take an example to clarify this claim.
Consider a crash that unravels itself in a period of three successive drops
of 10% each, summing up to a total of 30%. A, 10% market drop that
occurs over one day can be seen in the data of the Nasdaq composite
index to happen on average once every four years. According to this,
how long do we have to wait for a crash such as the one described above
to occur? Such an event has a recurrence of 4 million years! Hence, it
should never be observed in our short available time series. However,
there is ubiquitous evidence of such crashes occurring in the past century.
How is this possible? Common reasoning is based on the assumption
that consecutive drops are independent but this appears not to be always
true. Hence, fixed time-scale measures that chop large crashes into small
independent events will miss the underlying dynamics of the system [7].
Drawdowns will be presented in section 2 as a natural measure to capture
these bursts of dependence.

There is ample empirical evidence of the presence of Dragon-Kings in the
financial world; major indexes, currencies and market capitalization of the
largest companies have been shown to exhibit clear “outlier” drawdowns
[11]. This suggests that outliers constitute a ubiquitous feature of financial
markets, independently of their underlyings.

Nevertheless, to our knowledge, the presence of Dragon-Kings was, at
the time of writing, only tested at daily time scale. That is, drawdowns
were solely composed of daily returns. In this paper we study the
presence of Dragon-Kings in the distribution of drawdowns for different
time scales, ranging from 1-minute up to daily. The research question
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we are empirically seeking to answer is: are Dragon-Kings present at all
time scales? If not, is there a threshold upon which they seem to emerge?
The data sets used in our work are nine time series of prices of futures
tracking major stock indexes (S&P, FT-SE, Nikkei), currencies (Yen, DM)
and government bonds (Japan, US, Germany). These will be presented
in section 3.

It is key to understand that diagnosing DK is a subtle problem that
requires a battery of tools to pile up evidence of their presence. Our
“toolbox” will be explained in section 4.

Section 5 presents the results and discussion and section 6 concludes.
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2
Drawdowns in high-frequency

data

2.1 Introduction
Drawdowns are relevant risk management tools for they present the
cumulative loss that an investment may suffer. That is to say, they
represent the worst case scenario of an investor buying at the local high
and selling at the next minimum.

This chapter is an introduction to the concept of the “drawdown”. This
concept will be presented in its classic form in section 2.2 as a starting
point for our analysis. In section 2.3 this first definition will be extended
to deal with the inherent stronger fluctuations in our high-frequency data.
Section 2.4 and 2.5 motivates the study of drawdowns before other classic
metrics and introduces a theoretical approach to the expected distribution
of drawdowns, respectively.

2.2 The pure drawdowns
In early works by Johansen and Sornette [10] drawdowns were simply
defined as persistent decrease in the price at the close of each successive
trading day (daily close). A drawdown was thus the cumulative loss from
the last maximum to the next minimum. Notice that a drawdown was
always composed of returns of negative sign and its duration is a random
variable.
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This definition is highly exposed to noise and fails to account for the full
intensity of the market cumulative drop. This short-coming is particularly
sensitive for our purpose à cause of the noisy nature of our high-frequency
data.

2.3 The coarse-grained drawdowns
The pure drawdown is terminated by any increase in the price (positive
return) no matter how small. This definition is very sensitive to noise, i.e.,
to random uncorrelated as well as correlated fluctuations in the price. We
now take this definition a step further and present price coarse-grained
drawdowns, more specifically, “ε-drawdowns”.

“ε-drawdowns” as defined by J&S in [12] ignore increases below a
certain magnitude, ε, which would traditionally terminate the drawdown.
Notice that for ε = 0, we obtain the “pure” drawdown. Per contra, for
non-zero ε, we allow the drawdown to progress if the amplitude of the
fluctuations remains below the threshold, ε.

2.3.1 The fixed ε−drawdowns
In the spirit of Johansen and Sornette [12] we extend the definition of
the pure drawdown and introduce a parameter ε that ignores fluctuations
below a certain threshold. This threshold is fixed throughout the time
series and is defined relative to the standard deviation of returns as,

ε = ε0 · σret (2.1)

The threshold is proportional to the standard deviation of the returns
calculated for the entire series, σret. The coefficient ε0 is chosen from the
observation of data.

2.4 Motivation for the study of drawdowns
The distribution of drawdowns captures the way successive drops can
influence each other and construct in this way a persistent process. This
persistence is not measured by the distribution of returns because, by
its very definition, it neglects the relative position of the returns as they
unravel themselves as a function of time by only counting their frequency.
Akin, two point correlation is a mere linear dependency average incapable
of grasping the subtleties of these interdependencies as the examples in
section 2.4.1 and 2.4.2 exhibit.
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2.4.1 A nonlinear model with zero correlation but strong
dependence

To better elucidate the importance of drawdowns in capturing successive
price variations, we propose an example, borrowed from [25, 9] and
studied in depth in [32], which shows how two-point correlation, unlike
drawdowns, washes out important burst of dependence.

Let us consider the process, in which price movements r(t) are
constructed in the following fashion:

r(t) = ε(t) + ε(t − 1)ε(t − 2), (2.2)

where ε(t) is a white noise process with zero mean and unit variance
N(0, 1). The process described by Eq.:2.2 is also a white noise process
since both mean E(r(t) = 0) and two-point correlation E(r(t)r(t′)) for t , t′

are zero. Despite the nonexistence of a serial correlation there is potential
for non-linear predictability since the three point correlation function is
nonzero and equal to 1. That is, E(r(t)r(t−1)r(t−2)) = 1. This implies that
it should be possible to predict in part the next return r(t) already from
the knowledge of the two past returns r(t − 1) and r(t − 2).

Where frequency distribution and two-point correlation have failed, the
distribution of drawdowns will succeed! Following the example, table
2.4.1 presents the value that a price variation r(t) may take corresponding
to ε(t).

ε(t − 2), ε(t − 1), ε(t) → r(t)

+ + + → +2,
+ + − → 0,
+ − + → 0,
+ − − → -2,
− + + → 0,
− + − → -2,
− − + → +2,
− − − → 0,

Tab. 1: Increments in price (r(t)) corresponding to the last three realizations of ε(t), as
defined in Eq.:2.2. (+) means ε(τ) = 1, (-) means ε(τ) = −1.

A close inspection reveals that there is room for prediction if we look
at the distribution of drawdowns. There are no drawdowns of duration
larger than two. Indeed, the worst scenario corresponds to the sequence
for ε: − − + − −. This forms the sequence of price increments: +2,−2,−2
which is interrupted by +2 after ε(t + 1) = +1 either immediately or
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after an undefined sequence of ε = −1. While the drawdowns of the
process ε(t) can in principle be of infinite duration, the drawdowns of
the price cannot. This shows that the structure of the process r(t) defined
by Eq.:2.2 has a clear signature in the distribution of price drawdowns.
This example illustrates how the distribution of drawdowns grasps the
subtle dependencies of the process r(t) described by equation 2.2 better
than two-point correlation or any other fixed time scale measures.

2.4.2 Drawdowns capture serial information
By looking only at daily returns we destroy the information that
daily returns may be correlated at special times, the so-called burst
of dependence. However, variable-time measures (i.e. distribution
of drawdowns) will capture the information of these happening
sequentially.

Let us consider the example of a hypothetical fall of 15% occurring
over five consecutive days with losses of 3% each day. In a Bachelier-
Samuelson [2] world modeled by a Gaussian bell-shaped distribution, the
event of a 3% loss in DJIA occurs once every 1.5 years (P(x>3%)=0.0027),
relatively frequently. However, if we apply elementary probability
theory, under the assumption of independence, to finding out what the
probability of five such events taking place: (0.0027)5 � 1.4 · 10−13 or
which is the same a recurrence time of 27,876 million years, about twice
the age of the universe.

History proves this estimation wrong, with many instances where
such drops occurred. Hence, the flaw in the argument lies on the
assumption of these events being independent, we indeed experience
bursts of dependence. Evidently, drawdowns will keep the information in
the sequence and will not dissect a singular event into several ‘mediocre’
small occurrences. In the words of Sornette [29] “by cutting the mammoth
in pieces, we only observe mice”.

2.5 Expected distribution of drawdowns for in-
dependent price variations

Drawdowns may be composed of negative price returns of similar size
contributing alike, what we call the democratic case, or may be ruled by
a few large losses, the tyrannic regime. This composition is characterized
by the size distribution of the negative returns.

The tyrannic regime will appear when negative returns decay slower
than exponential i.e., belong to the class of sub-exponential distributions
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(such as the power law or stretched exponential), and will lead to the tail
of the distribution of drawdowns asymptotically being the same as the
distribution of the individual price variations.

In contrast, under the null hypothesis of (i) independent and identically
distributed consecutive price returns1 and (ii) pdf of returns no fatter
than exponential, the probability density function of dd is expected to be
exponential. Hence, following [12, 11], the probability P(D) to observe a
drawdown of size D is

P(D) =
p+

p−

∞∑
n=1

∫ 0

−∞

dx1p(x1) · · ·
∫ 0

−∞

dxnp(xn)δ(D −
n∑

j=1

x j) (2.3)

where

p+ = 1 − p− ≡
∫ +∞

0
dxp(x) (2.4)

is the probability to observe a positive return and the term p+/p−
ensures the normalization of P(D). The sum over n in Eq.:2.3 takes into
consideration all n possible lengths that sum up to be a drawdown of
size D. Deriving from this expression we come to the conclusion that,
under the assumptions (i) and (ii), the tail of the drawdown distribution
is generically an exponential function

P(D) =
e
−|D|
D0

D0
(2.5)

where D0 > 0 is the typical amplitude of the drawdown. For
approximately symmetric distributions of daily returns, p+ = p− = 1/2,
the typical drawdown has an amplitude of 4 times the average daily drop.

On the other hand, if we look at the duration of drawdowns, we
also expect them to be exponentially distributed stemming from the
assumed independence of signs of successive returns. The probability
of a drawdown lasting n consecutive price variations is p+pn

−
which can

be rewritten using logarithms as

P(n price variations) = p+ exp(n ln p−) (2.6)

which may be identified as an exponential distribution, thus, the typical
duration is

n0 =
1

ln 1
p−

(2.7)

1The condition of iid returns can be weakened and still lead to an exponentially decaying
pdf of drawdons if the pdf of returns is not fatter than exponential
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Since most markets can be characterized almost symmetrically, the
probability of a loss p− is close to 1/2 leading to a typical drawdown
duration of n0 = 1/ ln 2 ≈ 1.44 consecutive downward price movements2.
Notice that this process is memoryless since the occurrence of an arbitrary
number n of successive negatives does not modify the probability of
the new event, and illustrates the fact that increasing a drawdown by
a time unit, halves its probability of occurrence. Any deviation from
this behavior would indicate traces of correlation and, thus, room for
prediction.

Previous studies [1] suggest that for time scales from 5 min up to
approximately 16 days, the tails of the distributions of returns can be well
described by a power law decay, characterized by an exponent α ≈ 3.
As a consequence, it is reasonable to expect the drawdowns to be ruled
by a tyrannic regime and, hence, its distribution to belong to the sub-
exponential class.

It has been demonstrated that the stretched exponential can provide
any desired approximation to the Pareto distribution [30]. For its
generality and the fact that it has been successfully used as a model
for the distribution of DD for larger scale, the SE emerges as an adequate
preliminary candidate for the distribution of drawdowns.

2An estimate for the typical DD size, Do, can be derived from this expression. Still, this
estimate will lead to smaller results than using expression 2.3 since it restricts the
fluctuations of DD to only their length
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Data

3.1 Description

In this paper we used high-frequency data prepared by Matt Lee as
described in [15]. Our data set consists of nine time series of prices
of futures tracking major stock indexes (S&P, FT-SE, Nikkei), currencies
(Yen, DM) and government bonds (Japan, US, Germany).

Name Data set From to Size

IA German Government Bond 29/09/88 30/09/97 1,059,343

IX FTSE 100 02/01/86 30/09/97 857,479

DM Deutschmark 02/12/74 26/02/99 1,415,007

JY Japanese Yen 03/03/77 26/02/99 1,352,201

SP SP 500 21/04/82 26/02/99 1,664,104

US1 T-Bonds 22/08/77 25/10/79 22,105

US3 T-Bonds 13/02/81 29/01/82 62,672

IJ Japanese Government Bonds 10/07/87 31/07/97 178,971

NK Nikkei 225 25/09/90 26/02/99 135,220

Tab. 2: Data set descriptions including time span and sample size
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3.1.1 Handling of Tick data
Originally tick data, which records every transaction, was smoothed over
1-min time length. Gaps in time due to weekends and evenings were
collapsed assuming a negligible volatility change over the gaps and that
prices do not evolve nearly as fast when not traded. Furthermore, since
several contracts can be traded simultaneously, data was prepared to
ensure that only one price is considered at a time and that the transition
to the next contract is done ‘smoothly’.

3.1.2 Time-scale conversion
A rolling average algorithm was applied to the high-resolution data to
smooth out high-frequency fluctuations and convert into larger scales.
The algorithm uses a non-overlapping window of size corresponding to
the target scale,i.e. 15-min, 1-hour or 1-day.

The algorithm calculates the average price value of the interval
[t[iW], t[(i + 1)W]] where W is the size of the window wich corresponds
to the scale we want to convert the data into.
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Testing for Dragon-Kings:

Methods

4.1 Testing drawdown distributions for Dragon-
Kings

The goal of this study is to present evidence of the existence of the so-called
Dragon-Kings in the distribution of drawdowns at different time scales.
DK in financial markets are extreme events belonging to a different regime
resulting from time dependence that may only appear at special times.
For this purpose, as explained in Chap. 2, classical tools like distribution
of returns or two-point correlation will fail to identify these bursts of
dependence. Actually, testing for DK or more generally for a change of
population in a distribution is a subtle new problem that requires clever
new tools and there is no single methodology. In this section we present
our toolset and methodology to approach the problem.

4.2 Complementary Cumulative Distribution
Function (ccdf) of Drawdowns

Dragon-Kings can be diagnosed sometimes directly, in the form of obvious
“breaks” or “bumps” in the tail of the distribution. We study the
complementary cumulative distribution function (ccdf) of the absolute
value of drawdowns which expresses how often the random variable of
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the DD size is above a particular level. The ccdf is defined as,

Fc(dd) = P(DD > dd) = 1 − F(dd) (4.1)

where F(dd) is the cumulative distribution function of drawdowns. This
function (Fc(dd)) is monotonically decreasing and, since the absolute size
of a DD is necessarily positive, Fc(0) = P(DD > 0) = 1.

The logarithmic plot of the ccdf can be a very powerful tool to give
a first indication of the distribution of drawdowns and, as mentioned
above, suspicious deviations and “bumps” may be symptoms of a change
of regime.

The visual inspection of the distribution provides a fast and useful
tool to classify “unknown” distributions and decide which tests are more
appropriate for each case. A Pareto distribution will appear as a straight
line in the log-log plot and as a convex curve in the log-linear plot [30].
An exponential distribution will appear as a straight line in the log-linear
plot and as a concave curve in the log-log plot.

4.3 T-statistics
Demonstrating that data do indeed follow a power law or an exponential
distribution requires more complex techniques than a log-log or log-
lin plot of the distribution. Indeed, several alternative functions can
present similar forms, thus validating that a given data follows a certain
distribution might not be trivial.

Several statistical tests are available to make a more quantitative study
of the nature of the distribution (Kolmogorov-Smirnov) [6]. Still these
tools only address the question of what is the average representation of
the tail of the PDF (in some range predefined rather arbitrarily) and fail
to test the adequacy of a given model as a function of the depth (quantile)
in the tail of the PDF, [30, 17].

In [22] Pisarenko and Sornette present a new statistical tool (T-statistic)
designed specifically to describe the behavior of the sample tail as
compared with power-like and exponential tails as a function of the lower
threshold u. Specifically, they introduce two statistics: TP(u) and TE(u).
The former, TP(u), asymptotically converges to zero for the power law tail
described by the Pareto distribution: 1 − F(x) = (u/x)b : x ≥ u with arbitrary
power index b. The latter, TE(u), has a similar behavior for the exponential
tail 1 − F(x) = exp(−(x − u)/d) : x ≥ u with arbitrary form parameter d. At
the same time, both statistics deviate from zero for distributions different
from the target one.

Hence, these statistics shall help answer what part of the tail may be
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described by a Pareto (or exponential) distribution and which may not.
Evidence of a different regime will be found if the largest part of the
distribution of drawdowns is well described by either an exponential
or Pareto decay and, upon a certain threshold u, if TE(u) or TP(u) is
correspondingly significantly different from zero.

Implied from the above, this test is strongly parametric, i.e. reliable
results for the diagnosis of DK may only be obtained if, indeed, the
analyzed distribution follows either an exponential or a Pareto behavior.

These statistics and their properties are presented in Appendix B. Also
in the Appendix, TP- and TE- statistics are applied on synthetically
generated data belonging to known distributions to illustrate their
behavior.

4.4 Surrogate data analysis
To further establish the statistical confidence with which we can conclude
that the largest drawdowns are outliers, for each financial time series,
we have reshuffled the return time series 500 times and hence generated
the corresponding 500 synthetic data sets [11, 31]. These data sets will
have exactly the same distribution of returns as each original series, by
definiton. Nevertheless, high order correlations apparently present in the
largest drawdowns are destroyed by the reshuffling. These synthetic data
sets are used to construct drawdown distributions and these are compared
with the DD distribution resulting from the original return series. Hence,
if the original DD distribution does not exhibit a significant departure
from the synthetic data sets, it fails to reject the hypothesis of order of
returns not being paramount in the creation of the observed DD.

Furthermore, this surrogate data analysis of the distribution of
drawdowns has the advantage of being non-parametric, i.e. independent
of the quality of fits with a model. The drawback is that this kind of
bootstrap analysis is “negative”, we use these tests to reject a given null-
hypothesis, not to confirm a given hypothesis.

4.5 Nested hypothesis testing
In the spirit of [11] we propose another test that aims to answer the
question of whether there is a threshold quantile below which the null
stretched exponential hypothesis cannot be rejected and beyond which it
can.

Let us formally introduce the framework of the hypothesis testing.
We consider a drawdown sample X1, . . . ,Xn with a probability density
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function (pdf) p(x|a), where a is some vector corresponding to the set
of parameters in the pdf. This is to say, that the respective cumulative
distribution is

P(x|a) = P(x = 0) exp(−Bxz + Cx2z) (4.2)

where a=(B,C,z). Taking C = 0 we obtain the “pure” stretched exponential
(SE). The generic case of C , 0, corresponds to the introduction of a non-
linear term that represents the curvature or deviation from the straight
line in the log-linear plot of ln P versus xz that would qualify the stretched
exponential as a straight line. This new candidate function will be referred
to as the modified stretched exponential (MSE).

For the purpose of our study we will consider two hypotheses.

• H1: the parametrical set a=(B,C,z) may take any real value in a three
dimensional space I1.

• H0: is the particular case of H1 in which C is fixed to 0, resulting in
a parametrical subset of two dimensions, I0. No need to say, that I0

is a subset contained in I1

Let us denote the maximum likelihood estimator under Hi as Li, where
i = 0, 1

L0 = MAX0[p(X1|a) . . . p(Xn|a)] (4.3)

where ‘MAX0’ is taken over a in the parametric interval I0, and

L1 = MAX1[p(X1|a) . . . p(Xn|a)] (4.4)

where ‘MAX1’ in this case is obtained using the parametric interval I1.
By contruction the likelihood values of L1 ≥ L0 since any additional
parameters cannot but increase the fit to the data. In order to compare
the two likelihood values we use the following ratio,

T = −2 log
L0

L1
(4.5)

which according to the theorem by Wilks [24], as n tends to infinity is
asymptotically distributed as Chi-square with one degree of freedom
(obtained as the difference between the space dimensions of I1 and I0).

To proceed with the hypotheses analysis we will first have to define
the maximum likelihood function corresponding to the ccdf candidates,
namely

PSE(x) = ASE(u) exp(−Bxz) (4.6)

PMSE(x) = AMSE(u) exp(−Bxz + Cx2z) (4.7)
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where ASE(u) = 1
1−exp(−Buz) and AMSE(u) = 1

1−exp(−Buz+Cu2z) were obtained as
normalizing factors in the interval [0,u].

Technically , the maximum likelihood determination of the best
parameters of the two condidate models is done by the minimization
of:

− ln(L1) = −

N∑
i=1

(−lnAMSE(u) − ln(BzXz−1
i − 2zCX2z−1

i ) + BXz
i − CX2z

i ) (4.8)

− ln(L0) = −

N∑
i=1

(−lnASE(u) − ln(BzXz−1
i ) + BXz

i ) (4.9)

with respect to the parameters B, C and z, using the downhill simplex
minimization algorithm [23]. In order to secure that the MLE indeed
retains the parameter values of the global minimization, the downhill
simplex minimization algorithm uses a wide range of start value in the
search, in our case we used 1000 starting values randomly distributed in
the interval [0,5] for each parameter. The next step is to ask whether these
results allow us to reject C=0 for this particular threshold u. This test is
based on the statistics of T (Eq.:4.5) that compares the likelihood values for
both hypotheses (Eq.:4.6,4.7): a large T indicates that L1 is significantly
larger than L0 which implies that the MSE is a much better model for
the distribution than the SE. Conversely, if T is small (by definition it is
always positive), L1 is not much larger than L0 which means that adding
an additional parameter C , 0 does not provide a significantly better fit.
Hence, the pure stretched exponential can be accepted as an adequate
model.

The aim of this test is to show that the empirical ccdf can be described
by the stretched exponential model up to a certain threshold u, beyond
which the null hypothesis of C=0 (the SE model) may be rejected with
a certain significance level. Practically what we would like to observe
is small values of T for a large proportion of the drawdowns (indicating
that adding an additional parameter to the model does not significantly
increase the fit). For the last thresholds, however, we would like to obtain
large T meaning that the null hypothesis can be rejected which is to say
that the curvature in the plot lnP versus xz is significant, hence, qualifying
these last samples as outliers.

This is a very powerful method which allows us to test for significant
departures from our candidate distribution, the stretched exponential.
However, by construction it is a joint test of both the adequacy of the SE
model and the change of regime. Therefore, if tested with a distribution
the “bulk” of which is significantly different from the SE, the ML analysis
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will reject the change of regime, while actually it is the model of the
distribution which is rejected.

4.6 Comparing distributions at different scales
Evidence for outliers and extreme events does not require the existence
of a break in the event size distribution, e.g. a deviation in the tail, and
the possible appearance of a “bump”. Actually, dragon-kings do not
always lead to this diagnostic and, sometimes, their presence can only be
identified in more subtle ways.

L’vov et al. [16] identified the presence of Dragon-King events in the
distribution of turbulent velocity fluctuations relying on the comparison
between distributions of event sizes obtained at different resolution scales.
They have shown that they can collapse the distribution of velocity
fluctuations for different scales only for the small velocity fluctuations.
This suggests that the distributions of velocity fluctuations are composed
of two regions, a part corresponding to the so-called normal scaling and
a domain of extreme events.

Applied to the study of the distribution of DD this translates to
comparing the ccdf of drawdowns at different time scales (1 min, 15
min, 1 hour and 1 day) and rescaling both axes in the logarithmic plots
in an effort to collapse the curves. Provided that we, indeed, observe two
discernable regimes, one that may be collapsed and one that may not, we
will have evidence of the existence of Dragon-Kings.



5
Results and discussion

5.1 Introduction
Our study included nine different data sets that show a broad perspective
of different asset markets, including government bonds, currencies and
stock indexes. In the following section we present a detailed analysis of
the results of applying our methodology in seeking evidence of DK to one
of the data sets. A thorough presentation of all results and the pertinent
discussions may be found in Appendix C.

5.2 German Government Bonds
The complementary cumulative distribution of the ε−drawdowns at
the studied time scales are presented in figures 1 to 4. Fig.:1 and 3
show the logarithmic plots of the distributions of pure drawdowns and
σ/2−drawdowns, respectively. For the 1-min time scale, the distribution
follows a straight line in the logarithmic plot giving first evidence of
a power law behavior of index µε=0 = 2.77 and µε=σ/2 = 2.85 for the
pure and ε = σ/2 cases, respectively. This PL behavior is confirmed
by the TP−statistics in Fig.:9(a) and Fig.:10(a) in which the TP(u) does
not significantly deviate from zero at the tail. Indeed, if we compare the
resulting TP−statistics with the one obtained by applying the TP−statistic
to a synthetically generated PL (Fig.:??) we obtain similar results. The
remaining figures also reveal a consistent convergence at the highest
thresholds towards a PL behavior for the other studied scales. The indexes



20 Chapter 5. Results and discussion

for these cases are of the same order throughout the scales and DD type.
Fig.:2 and Fig.:4 shows the log-lin plots of the distributions of pure

drawdowns and σ/2−drawdowns, respectively. For the scales above 15-
min, the distributions show signs of a convergence to a plain exponential
for the tail. These are qualified by a straight line in the semilog plot.
Nevertheless, the TE−test in Fig.:7 and 8 are not conclusive in this aspect
since the oscillations around zero are too wild to assert or reject the
hypothesis of an exponential behavior at the tail.

The surrogate data analysis reshuffles the return time series 500 times
and generates 500 synthetic data sets. These data sets will, by definition,
have exactly the same distribution of returns as the original series but
any high order correlations and time dependencies will be destroyed.
These synthetic data sets are used to construct drawdown distributions
and these are compared with the DD distribution resulting from the
original return series. Hence, if the original DD distribution does not
exhibit a significant departure from the synthetic data sets, it fails to reject
the hypothesis of order of returns not being paramount in the creation
of the observed DD. In Fig.:5 and Fig.:6 the 500 synthetic drawdown
distributions are plotted together with a 95% confidence interval of a
random realization falling into that interval. Superposed to that, the
original DD distribution is plotted.

We see that for the 1-min scale and σ/2−DD the original distribution
lies inside the 95% confidence interval for the most part, particularly, for
the tail. For the pure drawdown distribution at the 1-min scale, we only
see a significant departure for the the intermediate regime of distribution,
not for the tail. Original distributions for the 15-min, hourly and daily
scale for both types of DD significantly deviate from the synthetically
generated ones for the body of the distribution but converge to barely
border the 95% confidence interval at the tail. The only exception to the
previous statement is the σ/2−DD distribution at the 15-scale for which
the original distribution lies within the 95% confidence interval for the
tail of the distribution. These results suggest that high order correlations
play a significant role in the creation of the observed drawdowns for the
larger scales, beyond 15-min, and more clearly at the intermediate regime
of the distribution. Only for the largest scales, namely hourly and daily,
the largest drawdowns (the ones at the tail) are significantly larger from
the synthetic ones, there is less than a 5% probability of a synthetically
generated drawdown being larger than the original ones.

The nested hypothesis statistical test compares, for each quantile, the fit
of the drawdown distribution with a stretched exponential model (C=0)
versus that of a more sophisticated model that allows for an upward
curvature in the lnP and xz plot (C,0). In Tab.:5.3 we present the
probability that C=0 for each quantile and time scale. This probability
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is calculated considering the T-values that compare the fits (Eq.:4.5)
distributed as a chi-square with one degree of freedom. This test is
strongly parametric and the result are strongly conditioned by the fit to
our candidate distribution.

There is evidence of a change of regime for largest 1% of the 0−DD
at the daily scale. In order to obtain this result we verified that for the
pure drawdowns at the daily scale, for the 80%, 90% and 95% smallest
DD, corresponding to drawdowns smaller than 0.69%, 0.95% and 1.53%,
respectively, the probability of C=0 was larger than 5%. However, for
drawdowns larger than 2.62%, this is the largest 1% events, the hypothesis
of C=0 may be rejected at a 95% confidence level. In other words, the test
shows two population, the first integrated by 99% of the pure-DD at the
daily scale, those smaller than 2.62%, that can be well described by a
stretched exponential (C=0), and the largest 1% that show a significant
upward curvature in the lnP and xz plot (C,0). To support this result
we present Fig.:12(c) and Fig.:12(d). These figures show the SE and MSE
maximum likelihood estimates of the pure drawdown distributions for
the daily scale superposed to the actual distribution. We observe that for
cutoffs above 1% the MSE yields a better fit to the distribution, however,
this does not become significant at a 95% level until larger thresholds.

The nested hypothesis test has been similarly performed for each scale
and drawdown type obtaining the following results:

1. for the hourly scale and pure-DD distribution, the test shows
evidence of two populations, the first integrated by 90% of the
drawdowns and the second by 10%-largest, namely above the 0.32%
threshold.

2. for the daily scale and the σ/2-DD distribution, the test shows of a
change of regime for thresholds above 1.69% (P90).

3. the test results inconclusive for the rest of scales and DD types

As above mentioned, this test is strongly prametric and therefore, its
results also depend on the fit of our candidate distribution. Fig.:12 to
what extend this is key in this test. Results 1 and 2 become questionable
since our best ML estimates fail to capture the real behavior of the tail.

Finally, in the spirit of L’vov et al. [16] we compare the ccdf of
drawdowns at different time scales (from 1-min to daily) and rescale both
axes in the logarithmic plot in an effort to collapse the curves. Provided
that we, indeed, are capable of collapsing the curves and we observe two
differentiated regimes we will have evidence of a change of regime. In
Fig.:11 we show the logarithmic plots of the distribution at all time scales
for both types of ε−DD. On the left side, they are simply superposed
and, on the right side, the axes are normalized to obtain a collapse. The
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collapsing is obtained and the departures at the tail result inconclusive
since they are not pervasive across all scales.

5.3 Discussion
The essential results from our analysis seem to be pervasive in the majority
of datasets under study. These results are:

1. Six out of nine datasets show clear evidence of a power law behavior
of the distribution of ε−drawdowns (both ε = 0 and ε = σ/2) for
high frequency data (1 min scale). The exponents lie in the range
2 ≤ µ ≤ 3. This evidence has been observed in the logarithmic plots
of the distribution in which the distribution describes a straight line
qualifying the PL and, subsequently, tested with the TP−statistics
obtaining values very close to zero.

2. Log linear plots of the distribution of ε−drawdowns at larger scales
(1-hour and 1-day) converge to a straight line in the semilogarithmic
plot qualifying the exponential as an adequate candidate for the tail
of the distribution. However, by applying the TE(u) to validate our
observations, we obtain inconclusive results characterized by wild
but bounded oscillations around zero.

3. The surrogate data test finds no significant deviations of the original
ε−DD distribution from the synthetic distributions for the 1-min
resolution. However, for larger scales (15-min to daily) the original
ε−DD distribution significantly deviates from the synthetically
generated DD distributions. This is particularly obvious for the
intermediate regime of the distribution and, only for the hourly
and daily scales, can the deviations at the tail be considered
significant. This result indicates that high-order correlations and
time dependencies are paramount in the creation of the observed
drawdowns.

4. Nested hypothesis tests our candidate distribution, namely the
stretched exponential, against the modified stretched exponential
which integrates a parameter to capture the upward curvature of
the tail in the lnP versus xz plot. This test is strongly parametric and
therefore is inconclusive if the distribution cannot be approximated
by a stretched exponential in its largest part. This limitation affected
most of our distribution for which the SE was not a good candidate.
Nevertheless, for five of our datasets, for the daily scales we were
able to accept the stretched exponential model for the vast majority
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of drawdowns and rejected it in front of the MSE for the largest
quantiles. Hence, certifying a change of regime.

(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 1: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the German Government Bonds at
different time scales (from 1-min to 1-day).
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 2: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the German Government Bonds at
different time scales (from 1-min to 1-day).
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 3: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the German Government
Bonds at different time scales (from 1-min to 1-day).
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 4: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the German Government Bonds at different
time scales (from 1-min to 1-day).
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 5: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the German Government Bonds time series at different
time scales (from 1-min to 1-day). Plotted are: (x) the 0-DD ccdf of 500 samples of
the reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, namely the interval for which there is 95% probability of a randomly
generated DD with exactly the same return distribution lying within, (o) the 0-
DD ccdf of the time series of the original German Government Bonds dataset.
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 6: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the German Government Bonds time series at different
time scales (from 1-min to 1-day). Plotted are: (x) the σ/2-DD ccdf of 500
samples of the reshuffled return time series, (-) the 95% confidence interval of the
reshuffled realizations, namely the interval for which there is 95% probability of
a randomly generated DD with exactly the same return distribution lying within,
(o) the σ/2-DD ccdf of the time series of the original German Government Bonds
dataset.



5.3. Discussion 29

(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 7: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the German Government Bonds dataset for
each of the studied time scales (from 1-min to 1-day). The two dashed lines
represent plus and minus one standard deviation from the statistic, defined as
Eq.:B.6.
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 8: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the German Government Bonds dataset for
each of the studied time scales (from 1-min to 1-day). The two dashed lines
represent plus and minus one standard deviation from the statistic, defined as
Eq.:B.6.
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(a) German Gov Bonds at 1-min scale (b) German Gov Bonds at 15-min scale

(c) German Gov Bonds at 1-hour scale (d) German Gov Bonds at 1-day scale

Fig. 9: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the German Government Bond dataset for
each of the studied time scales (from 1-min to 1-day). The two dashed lines
represent plus and minus one standard deviation from the statistic, defined as
Eq.:B.3.
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(a) German Gov Bonds at 1-min scale (b) German Gov Bonds at 15-min scale

(c) German Gov Bonds at 1-hour scale (d) German Gov Bonds at 1-day scale

Fig. 10: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the German Government Bond dataset for
each of the studied time scales (from 1-min to 1-day). The two dashed lines
represent plus and minus one standard deviation from the statistic, defined as
Eq.:B.3.
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(a) IA pure-DD, no normalization (b) IA pure-DD, normalized

(c) IA σ/2-DD, no normalization (d) IA σ/2-DD, normalized

Fig. 11: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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(a) IA hourly, pure-DD (log-log) (b) IA hourly, pure-DD (semilog)

(c) IA daily, pure-DD (log-log) (d) IA daily, pure-DD (semilog)

(e) IA daily, σ/2−DD (log-log) (f) IA daily, σ/2−DD (semilog)

Fig. 12: Plotted are the logarithmic and semilogarithmic plots of: (o) the complementary
cumulative distribution of pure drawdowns (ε = 0) for the price of futures on
the German Government Bonds at the hourly and daily scales. The same for
the σ/2−DD at a daily scale. (-) The ML fit of the stretched exponential to the
original distribution. (- -) The ML fit of the modified stretched exponential to the
original distribution.
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ε = 0.0

Scales P80 P90 P95 P99 P99.5

1-min NS NS NS NS NS

15-min NS 0.12% <0.01% <0.01% <0.01%

1-hour 9.78% 0.14% 0.01% <0.01% <0.01%

1-day 45.02% 23.84% 26.93% 1.45% 0.77%

Tab. 3: German Government Bonds, probability that C=0 for each quantile, time scale
and drawdown type. This probability is calculated considering that the T-values
follow a chi-square distribution with one degree of freedom [24]. T-values
(defined as Eq.4.5) result from comparing the two competing candidates (SE
and MSE) at different fraction ‘quantiles’ of the ε-DD belonging to [0,u] for each
of the studied scales. Results are obtained for ε = 0.0. “NS” indicates not
significant as it results from a very poor fit of both candidates distributions,
hence, rendering the test indecisive.

ε = 0.5

Scales P80 P90 P95 P99 P99.5

1-min <0.01% <0.01% NS NS NS

15-min <0.01% <0.01% <0.01% <0.01% <0.01%

1-hour 0.66% 0.03% <0.01% <0.01% <0.01%

1-day 13.36% 1.61% 1.16% 0.42% 0.42%

Tab. 4: German Government Bonds, probability that C=0 for each quantile, time scale
and drawdown type. This probability is calculated considering that the T-values
follow a chi-square distribution with one degree of freedom [24]. T-values
(defined as Eq.4.5) result from comparing the two competing candidates (SE
and MSE) at different fraction ‘quantiles’ of the ε-DD belonging to [0,u] for each
of the studied scales. Results are obtained for ε = 0.5. “NS” indicates not
significant as it results from a very poor fit of both candidates distributions,
hence, rendering the test indecisive.
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6
Conclusions

We started the study with the aim of empirically answering the question
of whether Dragon-Kings were a pervasive idiosyncrasy of the financial
market drawdowns not only across asset types, as it has already been
demonstrated by J&S [11], but also across times scales.

The approach utilized to diagnose the existence of DK consisted in
piling up evidence resulting from statistical tests. One of them, the
“T−statistics” represents the state of the art in testing for the behavior
of the tail of a distribution. Others like the “nested hypothesis test”, the
“surrogate data analysis” or the “collapsing the distribution at different
scales” are tools that were cleverly designed to test for DK at the tail of the
distribution. Finally, “Visual inspection of the ccdf” is the most common
and least quantitative.

Our analysis comprised nine time series of prices of futures tracking
major stock indexes (S&P, FT-SE, Nikkei), currencies (Yen, DM) and
government bonds (Japan, US, Germany) at different time scales ranging
from 1-min to 1-day.

No evidence of a change of regime was found for the smallest time scale,
1-min. The surrogate data analysis was not able to certify the importance
of high-order correlation in the creation of the observed drawdowns and
the TP−test revealed a power like decay in the distribution for most
datasets but was unable to certify a significant departure of this behavior
in the tail that would qualify for different regime. Furthermore, the nested
hypothesis test yielded inconclusive results.

On the other hand, evidence for the existence of Dragon-Kings was
found for the largest time scale, daily. A result that goes hand in
hand with previous results by J&S [28, 11, 31]. Surrogate data analysis
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lead to conclude that the largest market events are to be characterized
by the presence of higher order correlations. Additionally, the nested
hypothesis test confirms our proposed picture of a significant change of
regime between “normal” drawdowns (above 99% of the total data set) to
“anomalous” large drawdowns that we dubbed here “genuine outliers”
corresponding to less than 1% of the total number of events.

For the 15-min and 60-min time scales, the results are less conclusive.
The surrogate data analysis rejects the hypothesis of high-order
correlations being at the origin of the largest observed drawdowns at
the 15-min scale but fails to reject it for the hourly scale. The nested
hypothesis test yields inconclusive results linked to the poor fit of the
data to our candidate distribution.

The fact that no evidence of a change of regime was found for high-
frequency data and that this seems to emerge upon the daily scales suggest
that the positive feedback mechanisms that allegedly lie at the origin
of the largest drawdowns require a certain time to build up and their
results cannot be observed at high levels of granularity. This conclusion
presents an open door to the understanding of this mechanisms such as
the “herding behaviors”.

Notwithstanding the importance of the results presented in this work,
there are still questions that remain unanswered. Here we propose several
lines of work to continue this study:

• To our knowledge the surrogate analysis test was never perfomed
on the intermediate regime of the distribution. For our datasets it
revealed that for scales beyond 15-min, that high-order correlations
and time dependencies are paramount in the creation of the
observed drawdowns both, in the tail and in the intermediate
regime. This is indeed a very important result since it extents the
role of correlations to other sizes and questions the uniqueness of this
quality of the Dragon-Kings. The explanation we propose takes into
consideration the slow decay of the volatily in the financial markets
[5]. In this view, destroying time dependencies would modify the
distribution of the synthetic drawdowns. We, however, encourage
the study of this behavior in other data sets to proof or rebate this
view.

• Drawdowns in high-frequency are more exposed to noise than at
larger scales. We propose a new definition of the ε−drawdown were
ε-threshold is not fixed throughout the sample but dependent on the
absolute size of the ongoing drawdown, namely ε(DDi).

A reverse price movement has a different impact depending on
the size of the DD. This is to say, larger DD are more resilient to
fluctuations than smaller ones. Hence, ε may be defined as:
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ε(DDi) = ε0 ·DDi (6.1)

where DDi is the size of the ongoing DD and ε0 is chosen from the
observation of the data.

• Le Bris [14] has recently proposed a new methodology to adjust
returns to account for the volatility of the market. The parting idea
is that a drop in the market will not have the same impact in a
stable market as for a highly volatile one. This adjustment of the
returns can lead to a more accurate capturing of the crash and have
a significant impact in the study of DK

• Parametric tests are a double-edged sword. On the one side they
provide clear results but on the other side these are always bound
to the adequacy of the model. To circumvent this problem, we need
new non-parametric test of a change of regime.

The problem of testing for different regimes in the tail of a distribution
is still in its adolescence, even more so for intra-day data. We hereby
encourage the new generations to think creatively and create clever new
tools that give a new light to this problem.
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A
Power-Laws

A.1 PL fundamentals
A probability distribution function P(x) exhibiting a power law tail is such
that (further mathematical details on the mathematics of PL can be found
in [30, 20, 19])

P(x) ∝
L(x)
x1+µ

(A.1)

Clearly this distribution diverges as x → 0 so Eq.A.1 cannot for all
x ≥ 0: there must be some lower bound,xmin, and possibly, also, some
large limiting cut-off. The exponent µ (also referred to as the “index”)
characterizes the nature of the tail: for µ < 2, one speaks of “heavy tail”
for which the variance is not theoretically defined. L(x) is a slowly varying
function defined by limx→∞L(tx)/L(x) = 1 for any finite t.

Power laws are scale invariant, this is, for an arbitrary real number
λ, there exists γ such that, P(x) = γP(λx)∀x. This relation means that
the ratio of probability of occurrence of events x1 and x2 depends only
in the relation x1/x2 and not on the actual values. As a consequence, a
power-law distribution will show a straight line in a log-log plot.

A.2 Generating power-law distributed random
numbers

There is a variety of methods available for generating PL-distributed
random numbers. Perhaps the simplest and most elegant method is the
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transformation method [23, 6]. Suppose p(x) is a continuous distribution
with Cumulative Distribution Function like,

P(x) = P(X ≤ x) =

∫
∞

x
p(x′)dx′ = (

x
xmin

)−α+1 (A.2)

from which we wish to draw random reals x ≤ smin. We first generate n
uniformly distributed reals r in the interval 0 ≤ r ≤ 1. The probability
densities p(x) and p(r) are related by

p(x) = p(r)
dr
dx

=
dr
dx

(A.3)

where the second equality follows because p(r) = 1 over the interval 0 to
1. Integrating w.r.t x we find,

P(x) =

∫
∞

x
p(x′)dx′ =

∫ 1

r
dr′ = 1 − r (A.4)

and taking the functional inverse of P as in A.2 we obtain,

x = xmin(1 − r)−1/(α−1) (A.5)

which can be implemented easily in most programming languages.

A.3 Fitting power laws to empirical data
A power-law as described in A.2 is univocally described by the lower-
bound upon which a PL behavior is observed, namely xmin, and the
scaling parameter α. The former can be guessed by close inspection
of the logarithmic plot of the distribution. The latter, however, will be
fitted using the method of maximum likelihood, which gives asymptotically
accurate results [4, 6].

The maximum likelihood estimator (MLE) for the continuous case is
[6],

α̂ = 1 + n[
n∑

i=1

ln
xi

xmin
]−1 (A.6)

where xi, i = 1, . . . ,n are the observed values upon the threshold, xi ≤

xmin. Equation A.6 is equivalent to the Hill estimator, which is known to
be asymptotically normal and consistent (i.e., α̂ → α in the limit of large
n, xmin and n/xmin)
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T-statistics

B.1 TP-statistics

Considering the Pareto distribution F(x), conditioned on the semi-axis
x ≥ u:

F(x) = 1 − (u/x)b, x ≥ u, b > 0. (B.1)

where u is a lower threshold, and b is a power index of the distribution.
In [22] the following statistic TP = TP(x1, . . . , xn) was presented:

TP(u) = [(1/nu)
nu∑

k=1

log(xk/u)]2
− (0.5/nu)

nu∑
k=1

log2(xk/u) (B.2)

where u is the lower threshold of xk. TP tends to zero as n → ∞ for a
sample x1, . . . , xn whose distribution follows Eq.B.1 and at the same time
will deviate from zero for others.

The standard deviation std(TP) of the statistic TP can be estimated by:

n−0.5
u std[2E1 log(xk/u) − 0.5 log2(xk/u)] (B.3)

where E1 can be replaced by (1/nu)
∑nu

k=1 log(xk/u).
A close inspection of Eq.B.3 confirms the suspicion that the further we

go to the higher quantiles, the more we increase the lower threshold u, less
samples conform the statistic resulting in larger confidence intervals and
less reliable results. Hence, statistical significance of the results should
and will be taken into account.
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B.2 TE-statistics
Let us consider the exponential distribution F(x), conditioned on the semi-
axis x ≥ u:

F(x) = 1 − exp(−(x − u)/d), x ≥ u, d > 0. (B.4)

where u is a lower threshold, and d is the form parameter of the
distribution. Also in [22] the statistic TE = TE(x1, . . . , xn) was introduced:

TE(u) = (1/nu)
nu∑

k=1

log2(xk/u − 1) − [(1/nu)
nu∑

k=1

log(xk/u − 1)]2
− π2/6 (B.5)

where u is the lower threshold of xk. TE converges to zero as n → ∞
for a sample x1, . . . , xn whose distribution follows Eq.B.4 and at the same
time will deviate from zero for others.

Let us now, estimate the standard deviation std(TP) of the statistic TE:

n−0.5
u std[log(xk/u − 1) − E log(x/u − 1)]2 (B.6)

where E is the symbol for the mathematical expectation and can be
substituted by its sample analog (1/nu)

∑nu
k=1 log(xk/u − 1).

Akin to the TP statistic, the deeper we move along the u axis, the less
samples conform our static and thus, the poorer the statistic becomes.

B.3 Application of the TP− and TE−statistics to
data sets generated from known distributions

With the aim of showing to which extend are the above described statisti-
cal tools capable of identifying Pareto and Exponential distributions, we
present a series of figures plotting the TP− and TE−statistics as a function
of the lower threshold – this is, TP(u) and TE(u) – on data sets generated
upon known distributions; the pure Pareto and Exponential samples.

B.3.1 Pareto distribution
A Pareto sample of size n = 20, 000 was generated with power index
b = 3 and u = 27.14 as defined in Eq.B.1. Fig.13.a shows its cumulative
distribution which shows the distinguishing sign of the straight line in
the log-log plot.

TP− and TE− are applied to this sample as a function of its lower
threshold u obtaining respectively the plots a) and b) in Fig.14. We see
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that TP−statistic is very close to zero till thresholds u � 7 beyond which
random oscillation become starker. TE−statistic, on the other hand,
presents a clear positive shift that veils under vehement fluctuations.
TP− and TE− statistics presented, respectively, clear signs of Pareto
distribution and rejected the possibility of this data being described by an
exponential distribution.

B.3.2 Exponential distribution
An exponential sample of size n = 20, 000 was generated with form
parameter d = 4 and u = 39.61 as defined in Eq.B.4. Fig.13.b shows
its cumulative distribution. The unmistakable form of an inverse
exponential in the log-log plot points the finger at the exponential
distribution.

TP− and TE− are applied to this sample as a function of its
lower threshold u obtaining respectively the plots a) and b) in Fig.15.
TP−statistic shows a clear positive bias that is reduced with larger
thresholds. This is a clear trait of TP−statistic applied to exponential
samples. More interesting is the TE− statistic that is presents mild
oscillations around the zero line up to thresholds u � 10. Beyond
this point fluctuations become stronger. These results are typical of an
exponential sample confronted with the T−statistics.

(a) dist PL (b) dist EXP

Fig. 13: (a) distribution of a simulated Pareto sample of size n = 20, 000 with power
index b = 3 generated with u = 27.14 as defined in Eq.(B.1).(b) distribution of
a simulated exponential sample of size n = 20, 000 with form parameter d = 4
generated with u = 39.61 as defined in Eq.B.4
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(a) TP−statistic (b) TE−statistic

Fig. 14: (a) TP− statistic as a function of the lower threshold u, applied to a simulated
Pareto sample of size n = 20, 000 with power index b = 3 generated with u = 27.14
as defined in Eq.(B.1). Increasing u decreases the number of data values used
in the calculation of the statistic TP, thus enhancing the fluctuations around 0.
The two dashed lines show plus or minus one standard deviation, estimated as
exposed in the text Eq.B.3. (b) TE− statistic of the same synthetic data

(a) TP−statistic (b) TE−statistic

Fig. 15: (a) TP−statistic as a function of the lower threshold u, applied to a simulated
exponential sample of size n = 20, 000 generated with form parameter d = 4 and
u = 39.61 as defined in Eq.B.4. Increasing u decreases the number of data values
used in the calculation of the statistic TP, thus enhancing the fluctuations around
0. The two dashed lines show plus or minus one standard deviation, estimated
as exposed in the text Eq.B.3. (b) TE−statistic of the same synthetic data



C
Results of the tests

C.1 Introduction
This document compiles all the results obtained from applying the
methods described in Chapter 4 to our data sets. Our approach to
diagnose the existence of Dragon-Kings at different time scales consists
of piling up results from different methods to give sufficient proof of the
existence of such events.

Section C.2 describes the results of the tests classified by data set.
Section C.3 presents the results of each test.

C.2 Analysis of the results

C.2.1 Drawdowns in financial indexes
This section presents the results for three of the world’s major financial
indexes: S&P 500 (US), FTSE 100 (UK), Nikkei 225 (Jap).

C.2.1.1 S&P 500

For small time scales -1-min to 15-min-, Fig.16 and 18 depict a straight line
of the ccdf in a loglog plot for the most part of the distribution, serving
this as a first indication of PL behavior for the bulk of the distribution.
Furthermore, a “bump” in the distribution can be appreciated for the
15-min time scale for DD larger than 3%. TP−statistics reinforces this
first evidence for the minute scale (Fig.88) in which up until u ≈ 5% the
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drawdown distribution can be described as a PL, upon this point we see a
clear deviation from this behavior. For the quarterly scale, the TP−statistic
does not qualify as a PL up until thresholds u ≈ 0.4% and upon u ≈ 3%
the test shows significant departure from that behavior.

For larger time scales, Fig.17 and 19 give primary evidence of an
exponential behavior. In this case the “break” in the distribution is
even more obvious and can be located around 5% and 7% for the hourly
and daily scale respectively. The TE−statistic as a function of the lower
threshold presented in Fig.70 and 71 concur with our previous evidence,
since they show very little departure from zero up until the above
mentioned thresholds, thus, qualifying the exponential as a candidate
for the most part of the distribution and giving evidence of a significant
departure from this behavior for the largest drawdowns. Results of
the Maximum Likelihood test listed in Tab.C.3.6.1 confirm our proposed
picture for the daily scale; the hypotheses of C=0 cannot be rejected for
the first thresholds i.e. the probability of C=0 is as high as 27% for the
80% of the drawdowns. However, for thresholds upon 7% the SE model
can be rejected at the 95% confidence level. Hence, larger drawdowns
that represent about 1% of the sample require a different model as there
is a statistically significant upward curvature. Reshuffling the daily
returns we observe that, for the largest part, the top 1% DD lie above
the 95% confidence interval of the synthetic time series, strengthening
our hypotheses of time dependencies being at the origin of the largest
DD.

C.2.1.2 FT-SE 100

Fig.20 and 22 show the survival function of ε-drawdowns in the price of
futures of the FTSE-100 index for different levels of granularity in the data
- 1-min to 1-day scales- and values of ε corresponding to 0 and 0.5σ as
defined in Sec.2.3. All distribution seem to present a distinct change of
regime at the naked eye.

The results from reshuffling the returns are shown in Fig.54 and Fig.55.
We reject the hypotheses of time dependencies not being at the origin of
the creation of DD at a 95% confidence level for all scales but 1-min.

TE-statistics (Fig.72) show a significant departure from an exponential
behavior for the minutely and quarterly scales. The hourly scale has a
behavior that reminds us of the Stretched Exponential as shown in [22].
The hourly scale cannot be qualified as an exponential but for the interval
0.5 ≤ u ≤ 3%. The TP−statistics are unable to validate the PL model but
for small portions of the distribution.

The nested hypothesis test (see Tab.C.3.6.2) fails to reject the SE
hypotheses for the daily scale. For the hourly scale, the Stretched
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Exponential model is already strongly rejected for thresholds upon 2%
(P90%).

Collapsing all the statistics does not reveal any special behavior at the
tail that would be a syntom of a group of drawdowns belonging to a
different family as it can be seen in Fig.107.

C.2.1.3 Nikkei 225

The distribution of ε−drawdowns obtained for the Nikkei 225 data set
(Fig.25 and Fig.27) do not show obvious evidence of a break in the tail
of the distribution for high-frequency data, namely 1-min and 15-min
scales. However, for hourly and daily scales and ε = 0 the largest three
drawdowns lie above the straight line depicted by the rest of their smaller
siblings. This is not clearly observed for the hourly and daily σ/2−DD
distributions.

Returns for the Nikkei 225 were reshuffled 500 times and the ε−DD
recalculated, this time, extracting any time dependencies. The results
in Fig.56 and 57 show no large deviations of the reshuffled time series
with the original one for the high-frequency data. Nontheless, for larger
time scales, the tail of the original distribution clearly deviates from the
synthetic data, hereby, showing symptoms of the importance of the time
dependencies that presumably lie at the origine of the largest DD in the
tail.

Oscillations of the TE−statics do not allow us to assert nor reject an
exponential model. For the highest quantiles, however, TP−statistics
reveal a convergency towards a PL.

The ML and scale collapsing tests are undecisive, the three largest
events that for the hourly and daily time scales seem appear as a break in
the distribution were not captured by these tests.

C.2.2 Drawdowns in currencies
The following sections study the existence of Dragon-Kings in the
distribution of drawdowns of the price of futures of the Japanese Yen
and the now disappeared Deutschmark.

C.2.2.1 Japanese Yen

Reshuffling the returns of the original dataset eliminates any high order
correlation. Hence, observing that the original DD distribution lies within
the 95% confidence interval does not allow us to reject the hypotheses of
time dependencies being at the origin of the larger DD. This is what we
observe for the Japanese Yen dataset at the minute scale in Fig.58. Par
contre, for all other scales the larger part of the original distribution lies
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significantly above the synthetic distributions giving a first indication of
time dependencies playing a key role in the DD creation.

Fig.29 shows for the quarterly, hourly and daily scale a shape that
resseambles that of a straight line that would qualify the DD-distributions
as an exponential in a semilog plot. In the above mentioned cases a
trained eye can detect a break in the distribution, being specially obvious
for the hourly scale at about 2%. In Fig.76, TE−test concurs with the
naked eye in envisaging a deviation from the exponential behavior for
drawdowns larger than 2% for the hourly and daily scale and at the 1%
threshold for the quarterly scale. The nested hypothesis test applied to
the daily distribution rejects the C=0 hypothesis at a 95% confidence level
for thresholds upon 2.66%, this implies that 90% of the sample is well
described by the SE whereas the 10% largest DD are significantly better
described by the MSE. Furthermore, the collapsing of the distributions at
different scales in figure 109 reveals a special behavior at the tail of the
distribution.

C.2.2.2 Deutschmark

The surrogate data analysis consisting of reshuffling the return time
series destroys any high order correlations. Hence, if the original DD
distribution does not exhibit a significant departure from the synthetic
data sets, it fails to reject the hypotheses of order of returns not being
paramount in the DD distribution. This conclusion can be drawn from
observing Fig.60 for the 1-min and 15-min scales. On the other hand,
distributions for the hourly and daily scale significantly deviate from that
of the synthetic data.

Nested hypothesis test is not conclusive for the hourly scale.
Nevertheless, for the daily scale, the probability of C=0 for 95% of the
sample is 13.7%. The Stretched Exponential hypotheses is only rejected
at a 95% confidence level for DD sizes larger than 6.5%, including in this
latter group 1% of the drawdowns. T-statistcs do not reveal neither a TE
nor a PL behavior for any of the studied scales.

C.2.3 Drawdowns in Government Bonds
This section investigates the presence of DK in the distribution of DD
in the price of futures on the Government Bonds of Japan, the US and
Germany.

C.2.3.1 Japanese Government Bonds

Fig.62 shows the original DD distribution superposed on five hundred
distributions of DD constituted by reshuffling the returns. Only for
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the daily scale lies the original distribution significantly above the
synthetic distributions. There is a negligible probability of a DD of that
size occurring by randomly concatenating returns. This test reject the
hypotheses of order of returns not being a generating mechandism for
the DD and qualifies the existence of DK in the low-frequency scales.

Nested hypothesis test (Tab.C.3.6.6) gives evidence of two a change
of regime in the distribution of DD occurring for drawdowns larger than
1.86% (P99.5), below that, namely 99.5% of the DD, the SE hypothesis (C=0)
cannot be rejected at a 95% confidence level.

In Fig.80, TE−statistics dismiss the possibility of the distribution
behaving as exponential at any scale. TP−statistics, however, show a
convergence to a PL (Fig.98) for all scales.

C.2.3.2 US Treasury Bonds

US Treasury Bonds is composed by two datasets: US1 and US3. A
preliminary observation of Fig.40 and 44 suggests that distribution for
high frequency data converge to a PL-like behavior. This is partially
reinforced by the TP−statistic in Fig.100 where, certain intervals, can
be described by a PL and asserted in Fig.102 in which the PL seems to
describe well the distribution. The TE-test clearly rejects the exponential
hypotheses.

Nested hypothesis test indicates that for the hourly time scale, the
stretched exponential can be accepted to describe 99% of the drawdowns
in the distributions and it is only upon drawdowns larger than 3% that
the upward curvature described by the empirical distribution becomes
significant at a 95% level.

C.2.3.3 German Government Bonds

TP−statistics in Fig.104 gives evidence of a power law behavior of the
distribution of DD for the minute scale. For larger scales, however, the
distribution in Fig.49 can be better described by an exponential, in line
with the results of the TE−test in Fig.86.

In Fig.68, original distributions for the quaterly, hourly and daily scale
clearly deviate from the synthetically generated ones. This tests gives
evidence of time dependencies and high order correlations playing a key
role in the creation of drawdowns. Collapsing the distributions of DD
at different is possible and there is no obvious signature of a different
regime.

The nested hypothesis test (Tab.C.3.6.9) gives evidence of a change
of regime for DD larger than 2.62 % at the daily scale. Below this
threshold (99% of the drawdowns), the distribution is well described
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by a SE exponential. Upon this threshold, the hypothesis of C=0 may be
rejected at a 95% confidence level.
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C.3 Figures
C.3.1 Distributions of ε-DD for different scales
C.3.1.1 SP 500

(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 16: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the SP 500 index at different
time scales -from 1-min to 1-day-.
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(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 17: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the SP 500 index at different
time scales -from 1-min to 1-day-.
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(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 18: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the SP 500 index at different
time scales -from 1-min to 1-day-.
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(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 19: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the SP 500 index at different time scales -from
1-min to 1-day-.
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C.3.1.2 FTSE 100

(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 20: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the FTSE 100 index at different
time scales -from 1-min to 1-day-.
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(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 21: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the FTSE 100 index at different
time scales -from 1-min to 1-day-.
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(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 22: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the FTSE 100 index at
different time scales -from 1-min to 1-day-.
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(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 23: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the FTSE 100 index at different time scales
-from 1-min to 1-day-.
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C.3.1.3 Nikkei 225

(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 24: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Nikkei 225 index at different
time scales -from 1-min to 1-day-.
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(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 25: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Nikkei 225 index at different
time scales -from 1-min to 1-day-.



C.3. Figures 63

(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 26: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the Nikkei 225 index at
different time scales -from 1-min to 1-day-.
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(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 27: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the Nikkei 225 index at different time scales
-from 1-min to 1-day-.
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C.3.1.4 Japanese Yen

(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 28: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Japanese Yen index at different
time scales -from 1-min to 1-day-.
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(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 29: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Japanese Yen index at different
time scales -from 1-min to 1-day-.
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(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 30: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the Japanese Yen index
at different time scales -from 1-min to 1-day-.
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(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 31: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the Japanese Yen index at different time scales
-from 1-min to 1-day-.
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C.3.1.5 Deutschmark

(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 32: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Deutschmark index at different
time scales -from 1-min to 1-day-.
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(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 33: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Deutschmark index at different
time scales -from 1-min to 1-day-.
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(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 34: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the Deutschmark index
at different time scales -from 1-min to 1-day-.



72 Appendix C. Results of the tests

(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 35: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the Deutschmark index at different time
scales -from 1-min to 1-day-.
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C.3.1.6 Japanese Government Bonds

(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 36: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Jap Government Bonds index
at different time scales -from 1-min to 1-day-.
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(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 37: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the Jap Government Bonds index
at different time scales -from 1-min to 1-day-.
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(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 38: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the Jap Government Bonds
index at different time scales -from 1-min to 1-day-.
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(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 39: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the Jap Government Bonds index at different
time scales -from 1-min to 1-day-.



C.3. Figures 77

C.3.1.7 US Treasury Bonds I

(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 40: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the US T-Bonds I index at different
time scales -from 1-min to 1-day-.
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(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 41: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the US T-Bonds I index at different
time scales -from 1-min to 1-day-.
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(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 42: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the US T-Bonds I index
at different time scales -from 1-min to 1-day-.
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(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 43: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the US T-Bonds I index at different time
scales -from 1-min to 1-day-.
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C.3.1.8 US Treasury Bonds III

(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 44: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the US T-Bonds III index at
different time scales -from 1-min to 1-day-.
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(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 45: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the US T-Bonds III index at
different time scales -from 1-min to 1-day-.
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(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 46: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the US T-Bonds III index
at different time scales -from 1-min to 1-day-.
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(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 47: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the US T-Bonds III index at different time
scales -from 1-min to 1-day-.
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C.3.1.9 German Government Bonds

(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 48: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the German Government Bonds
index at different time scales -from 1-min to 1-day-.
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 49: Log-linear plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the price of futures on the German Government Bonds
index at different time scales -from 1-min to 1-day-.
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 50: Logarithmic plots of the complementary cumulative distribution of
ε−drawdowns (ε = 0.5σ) for the price of futures on the German Government
Bonds index at different time scales -from 1-min to 1-day-.
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 51: Log-linear plots of the complementary cumulative distribution of ε−drawdowns
(ε = 0.5σ) for the price of futures on the German Government Bonds index at
different time scales -from 1-min to 1-day-.
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C.3.2 Reshuffling returns
C.3.2.1 SP 500

(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 52: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the SP 500 time series at different time scales -from
1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of the reshuffled
return time series, (-) the 95% confidence interval of the reshuffled realizations,
(o) time series of the original SP 500 dataset.
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(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 53: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the SP 500 time series at different time scales -from
1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500 samples of the reshuffled
return time series, (-) the 95% confidence interval of the reshuffled realizations,
(o) time series of the original SP 500 dataset.
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C.3.2.2 FTSE 100

(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 54: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the FTSE time series at different time scales -from 1-
min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of the reshuffled
return time series, (-) the 95% confidence interval of the reshuffled realizations,
(o) time series of the original FTSE 100 dataset.
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(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 55: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the FTSE 100 time series at different time scales
-from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original FTSE 100 dataset.



C.3. Figures 93

C.3.2.3 Nikkei 225

(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 56: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the Nikkei 225 time series at different time scales -from
1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of the reshuffled
return time series, (-) the 95% confidence interval of the reshuffled realizations,
(o) time series of the original Nikkei 225 dataset.
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(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 57: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the Nikkei 225 time series at different time scales
-from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original Nikkei 225 dataset.
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C.3.2.4 Japanese Yen

(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 58: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the Japanese Yen time series at different time scales
-from 1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original Japanese Yen dataset.
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(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 59: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the Japanese Yen time series at different time scales
-from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original Japanese Yen dataset.
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C.3.2.5 Deutschmark

(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 60: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the Deutschmark time series at different time scales
-from 1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original Deutschmark dataset.
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(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 61: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the Deutschmark time series at different time scales
-from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original Deutschmark dataset. Note: the
σ/2−drawdown dataset was too small to perform the test

.
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C.3.2.6 Japanese Government Bonds

(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 62: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the Jap Government Bonds time series at different time
scales -from 1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of
the reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original Jap Government Bonds dataset.
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(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 63: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the Jap Government Bonds time series at different
time scales -from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500
samples of the reshuffled return time series, (-) the 95% confidence interval of
the reshuffled realizations, (o) time series of the original Jap Government Bonds
dataset.
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C.3.2.7 US Treasury Bonds I

(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 64: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the US T-Bonds I time series at different time scales
-from 1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original US T-Bonds I dataset.
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(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 65: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the US T-Bonds I time series at different time scales
-from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original US T-Bonds I dataset.



C.3. Figures 103

C.3.2.8 US Treasury Bonds III

(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 66: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the US T-Bonds III time series at different time scales
-from 1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original US T-Bonds III dataset.
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(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 67: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the US T-Bonds III time series at different time scales
-from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500 samples of the
reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original US T-Bonds III dataset.
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C.3.2.9 German Government Bonds

(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 68: Logarithmic plots of the complementary cumulative distribution of pure
drawdowns (ε = 0) for the German Government Bonds time series at different
time scales -from 1-min to 1-day-. Plotted are the 0-DD ccdf of: (x) 500 samples of
the reshuffled return time series, (-) the 95% confidence interval of the reshuffled
realizations, (o) time series of the original German Government Bonds dataset.



106 Appendix C. Results of the tests

(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 69: Logarithmic plots of the complementary cumulative distribution of σ/2-
Drawdowns (ε = 0.5σ) for the German Government Bonds time series at different
time scales -from 1-min to 1-day-. Plotted are the σ/2-DD ccdf of: (x) 500
samples of the reshuffled return time series, (-) the 95% confidence interval of
the reshuffled realizations, (o) time series of the original German Government
Bonds dataset.
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C.3.3 TE−statistics tests
C.3.3.1 SP 500

(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 70: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the SP 500 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 71: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the SP 500 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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C.3.3.2 FTSE 100

(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 72: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the FTSE 100 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 73: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the FTSE 100 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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C.3.3.3 Nikkei 225

(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 74: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Nikkei 225 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 75: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the Nikkei 225 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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C.3.3.4 Japanese Yen

(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 76: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Japanese Yen dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 77: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution ofσ/2-drawdowns of the Japanese Yen dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and minus
one standard deviation from the statistic.
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C.3.3.5 Deutschmark

(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 78: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Deutschmark dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 79: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the Deutschmark dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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C.3.3.6 Japanese Government Bonds

(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 80: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Jap Government Bonds dataset for each
of the studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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(a) Jap Government Bonds at 1-min scale (b) Jap Government Bonds at 15-min scale

(c) Jap Government Bonds at 1-hour scale (d) Jap Government Bonds at 1-day scale

Fig. 81: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the Jap Government Bonds dataset for each of
the studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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C.3.3.7 US Treasury Bonds I

(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 82: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the US T-Bonds I dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent plus
and minus one standard deviation from the statistic.
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(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 83: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the US T-Bonds I dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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C.3.3.8 US Treasury Bonds III

(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 84: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the US T-Bonds III dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent plus
and minus one standard deviation from the statistic.
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(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 85: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the US T-Bonds III dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent plus
and minus one standard deviation from the statistic.
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C.3.3.9 German Government Bonds

(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 86: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the German Government Bonds dataset for
each of the studied time scales - from 1-min to 1-day-. The two dashed lines
represent plus and minus one standard deviation from the statistic.
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(a) German Government Bonds at 1-min scale (b) German Government Bonds at 15-min scale

(c) German Government Bonds at 1-hour scale (d) German Government Bonds at 1-day scale

Fig. 87: TE−statistic (Eq.B.5) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the German Government Bonds dataset for
each of the studied time scales - from 1-min to 1-day-. The two dashed lines
represent plus and minus one standard deviation from the statistic.
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C.3.4 TP−statistics tests
C.3.4.1 SP 500

(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 88: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the SP 500 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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(a) SP 500 at 1-min scale (b) SP 500 at 15-min scale

(c) SP 500 at 1-hour scale (d) SP 500 at 1-day scale

Fig. 89: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the SP 500 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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C.3.4.2 FTSE 100

(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 90: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the FTSE 100 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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(a) FTSE 100 at 1-min scale (b) FTSE 100 at 15-min scale

(c) FTSE 100 at 1-hour scale (d) FTSE 100 at 1-day scale

Fig. 91: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the FTSE 100 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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C.3.4.3 Nikkei 225

(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 92: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Nikkei 225 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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(a) Nikkei 225 at 1-min scale (b) Nikkei 225 at 15-min scale

(c) Nikkei 225 at 1-hour scale (d) Nikkei 225 at 1-day scale

Fig. 93: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the Nikkei 225 dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and
minus one standard deviation from the statistic.
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C.3.4.4 Japanese Yen

(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 94: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Japanese Yen dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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(a) Japanese Yen at 1-min scale (b) Japanese Yen at 15-min scale

(c) Japanese Yen at 1-hour scale (d) Japanese Yen at 1-day scale

Fig. 95: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution ofσ/2-drawdowns of the Japanese Yen dataset for each of the studied
time scales - from 1-min to 1-day-. The two dashed lines represent plus and minus
one standard deviation from the statistic.
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C.3.4.5 Deutschmark

(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 96: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Deutschmark dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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(a) Deutschmark at 1-min scale (b) Deutschmark at 15-min scale

(c) Deutschmark at 1-hour scale (d) Deutschmark at 1-day scale

Fig. 97: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the Deutschmark dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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C.3.4.6 Japanese Government Bond

(a) Jap Gov Bonds at 1-min scale (b) Jap Gov Bonds at 15-min scale

(c) Jap Gov Bonds at 1-hour scale (d) Jap Gov Bonds at 1-day scale

Fig. 98: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the Japanese Government Bond dataset for
each of the studied time scales - from 1-min to 1-day-. The two dashed lines
represent plus and minus one standard deviation from the statistic.
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(a) Jap Gov Bonds at 1-min scale (b) Jap Gov Bonds at 15-min scale

(c) Jap Gov Bonds at 1-hour scale (d) Jap Gov Bonds at 1-day scale

Fig. 99: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the Japanese Government Bond dataset for
each of the studied time scales - from 1-min to 1-day-. The two dashed lines
represent plus and minus one standard deviation from the statistic.
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C.3.4.7 US Treasury Bond I

(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 100: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the US T-Bonds I dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent plus
and minus one standard deviation from the statistic.
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(a) US T-Bonds I at 1-min scale (b) US T-Bonds I at 15-min scale

(c) US T-Bonds I at 1-hour scale (d) US T-Bonds I at 1-day scale

Fig. 101: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the US T-Bonds I dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent
plus and minus one standard deviation from the statistic.
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C.3.4.8 US Treasury Bond III

(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 102: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the US T-Bonds III dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent plus
and minus one standard deviation from the statistic.
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(a) US T-Bonds III at 1-min scale (b) US T-Bonds III at 15-min scale

(c) US T-Bonds III at 1-hour scale (d) US T-Bonds III at 1-day scale

Fig. 103: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the US T-Bonds III dataset for each of the
studied time scales - from 1-min to 1-day-. The two dashed lines represent plus
and minus one standard deviation from the statistic.
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C.3.4.9 German Government Bond

(a) German Gov Bonds at 1-min scale (b) German Gov Bonds at 15-min scale

(c) German Gov Bonds at 1-hour scale (d) German Gov Bonds at 1-day scale

Fig. 104: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of pure-drawdowns of the German Government Bond dataset for
each of the studied time scales - from 1-min to 1-day-. The two dashed lines
represent plus and minus one standard deviation from the statistic.
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(a) German Gov Bonds at 1-min scale (b) German Gov Bonds at 15-min scale

(c) German Gov Bonds at 1-hour scale (d) German Gov Bonds at 1-day scale

Fig. 105: TP−statistic (Eq.B.2) as a function of the lower threshold u, applied to the
distribution of σ/2-drawdowns of the German Government Bond dataset for
each of the studied time scales - from 1-min to 1-day-. The two dashed lines
represent plus and minus one standard deviation from the statistic.
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C.3.5 Distributions at different scales
C.3.5.1 SP 500

(a) SP 500 pure-DD, no normalization (b) SP 500 pure-DD, normalized

(c) SP 500 σ/2-DD, no normalization (d) SP 500 σ/2-DD, normalized

Fig. 106: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.2 FTSE 100

(a) FTSE 100 pure-DD, no normalization (b) FTSE 100 pure-DD, normalized

(c) FTSE 100 σ/2-DD, no normalization (d) FTSE 100 σ/2-DD, normalized

Fig. 107: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.3 Nikkei 225

(a) Nikkei 225 pure-DD, no normalization (b) Nikkei 225 pure-DD, normalized

(c) Nikkei 225 σ/2-DD, no normalization (d) Nikkei 225 σ/2-DD, normalized

Fig. 108: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.4 Japanese Yen

(a) JY pure-DD, no normalization (b) JY pure-DD, normalized

(c) JY σ/2-DD, no normalization (d) JY σ/2-DD, normalized

Fig. 109: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.5 Deutschmark

(a) DM pure-DD, no normalization (b) DM pure-DD, normalized

(c) DM σ/2-DD, no normalization (d) DM σ/2-DD, normalized

Fig. 110: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.6 Japanese Government Bonds

(a) IJ pure-DD, no normalization (b) IJ pure-DD, normalized

(c) IJ σ/2-DD, no normalization (d) IJ σ/2-DD, normalized

Fig. 111: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.7 US Treasury Bonds I

(a) US1 pure-DD, no normalization (b) US1 pure-DD, normalized

(c) US1 σ/2-DD, no normalization (d) US1 σ/2-DD, normalized

Fig. 112: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.8 US Treasury Bonds III

(a) US3 pure-DD, no normalization (b) US3 pure-DD, normalized

(c) US3 σ/2-DD, no normalization (d) US3 σ/2-DD, normalized

Fig. 113: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.5.9 German Government Bonds

(a) IA pure-DD, no normalization (b) IA pure-DD, normalized

(c) IA σ/2-DD, no normalization (d) IA σ/2-DD, normalized

Fig. 114: Distributions of ε-drawdown (ε = 0, σ/2) at all studied scales were collapsed to
identify dissident behaviors in the tail. The left panels show the superposed
original distributions and the right panels normalize the ε-DD by their mean.
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C.3.6 Maximum Likelihood Analysis
C.3.6.1 SP 500

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min 2160 0.00 0.00 940.52 1734.12 NA NA NA NA NA

15-min 14.34 48.13 102.05 242.25 299.84 25.99 63.58 92.20 170.94 193.03

1-hour 6.90 15.29 21.64 51.58 56.90 6.57 14.40 23.88 38.02 43.66

1-day 1.22 2.07 2.56 5.50 5.76 1.33 1.93 5.08 6.38 NA

Tab. 5: SP 500, T-values (defined as Eq.4.5) resulting from comparing the two competing
candidates (SE and MSE) at different fraction ‘quantiles’ of the ε-DD belonging
to [0,u] for each of the studied scales. Results for ε-DD are obtained for ε = 0.0
and ε = σ/2. “NA” indicates a very poor fit of both candidates distributions,
hence, rendering the test indecisive. “T=0.00” indicates that the maximization
algorithm found that the additional term “C” does not improve the fit in any
way.
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C.3.6.2 FTSE 100

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min NA NA NA NA 21700 0.03 1.03 2.66 2.07 2.07

15-min 0.00 8.17 0.00 10.64 44.08 4.41 9.75 16.88 28.87 42.57

1-hour 2.45 9.91 20.81 27.03 35.76 5.68 8.38 9.87 22.69 26.28

1-day 0.81 1.51 2.55 2.59 3.22 1.13 1.10 1.87 0.00 0.00

Tab. 6: FTSE 100, T-values (defined as Eq.4.5) resulting from comparing the two
competing candidates (SE and MSE) at different fraction ‘quantiles’ of the ε-DD
belonging to [0,u] for each of the studied scales. Results for ε-DD are obtained
for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit of both candidates
distributions, hence, rendering the test indecisive. “T=0.00” indicates that the
maximization algorithm found that the additional term “C” does not improve
the fit in any way.
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C.3.6.3 Nikkei 225

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min NA 663 611 0.00 0.00 0.18 48.64 151.11 302.18 331.33

15-min 87.70 0.00 45.73 241.84 278.94 7.59 13.14 18.73 27.07 27.82

1-hour 16.34 29.40 36.46 42.79 43.97 1.51 2.18 1.99 1.47 1.94

1-day 0.31 0.47 0.24 0.87 1.35 NA NA NA NA NA

Tab. 7: Nikkei 225, T-values (defined as Eq.4.5) resulting from comparing the two
competing candidates (SE and MSE) at different fraction ‘quantiles’ of the ε-DD
belonging to [0,u] for each of the studied scales. Results for ε-DD are obtained
for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit of both candidates
distributions, hence, rendering the test indecisive. “T=0.00” indicates that the
maximization algorithm found that the additional term “C” does not improve
the fit in any way.
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C.3.6.4 Japanese Yen

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min NA NA NA NA NA NA NA NA NA NA

15-min 11.12 0.47 69.83 305.27 382.69 39.67 79.45 115.95 191.77 209.33

1-hour 10.81 21.35 32.62 48.54 49.08 10.23 14.52 18.27 23.81 31.13

1-day 1.46 2.73 3.73 5.74 4.71 0.03 0.74 1.95 2.60 2.48

Tab. 8: Japanese Yen, T-values (defined as Eq.4.5) resulting from comparing the two
competing candidates (SE and MSE) at different fraction ‘quantiles’ of the ε-DD
belonging to [0,u] for each of the studied scales. Results for ε-DD are obtained
for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit of both candidates
distributions, hence, rendering the test indecisive. “T=0.00” indicates that the
maximization algorithm found that the additional term “C” does not improve
the fit in any way.
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C.3.6.5 Deutschmark

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min NA NA NA NA NA 1.14 0.00 0.67 0.80 0.84

15-min 92.64 0.00 17.21 221.82 292.27 NA NA NA NA NA

1-hour 5.22 13.89 21.22 27.02 29.03 NA NA NA NA NA

1-day 0.75 2.21 3.08 5.49 6.89 NA NA NA NA NA

Tab. 9: Deutschmark, T-values (defined as Eq.4.5) resulting from comparing the two
competing candidates (SE and MSE) at different fraction ‘quantiles’ of the ε-DD
belonging to [0,u] for each of the studied scales. Results for ε-DD are obtained
for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit of both candidates
distributions, hence, rendering the test indecisive. “T=0.00” indicates that the
maximization algorithm found that the additional term “C” does not improve
the fit in any way.
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C.3.6.6 Japanese Government Bonds

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min NA NA NA NA NA 0.00 15.16 89.50 186.06 209.20

15-min NA NA 578.43 0.00 0.00 5.13 12.82 16.38 25.45 26.90

1-hour 0.34 17.70 23.13 33.37 35.91 1.74 2.64 3.96 8.97 9.59

1-day 0.17 0.61 0.63 2.87 4.87 0.49 2.96 3.76 5.15 6.79

Tab. 10: Japanese Government Bonds, T-values (defined as Eq.4.5) resulting from
comparing the two competing candidates (SE and MSE) at different fraction
‘quantiles’ of the ε-DD belonging to [0,u] for each of the studied scales. Results
for ε-DD are obtained for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit
of both candidates distributions, hence, rendering the test indecisive. “T=0.00”
indicates that the maximization algorithm found that the additional term “C”
does not improve the fit in any way.
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C.3.6.7 US Treasury Bonds I

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min 0.00 0.00 185.22 0.00 0.00 18.61 0.00 7.10 39.64 55.44

15-min 16.48 17.49 0.59 0.00 1.45 1.32 3.92 6.42 13.42 20.39

1-hour 0.54 0.68 0.21 3.85 8.67 0.37 0.76 1.55 5.00 5.00

1-day 0.21 0.24 0.67 0.67 0.67 0.00 0.43 0.87 0.87 0.87

Tab. 11: US Treasury Bonds I, T-values (defined as Eq.4.5) resulting from comparing
the two competing candidates (SE and MSE) at different fraction ‘quantiles’ of
the ε-DD belonging to [0,u] for each of the studied scales. Results for ε-DD are
obtained for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit of both candidates
distributions, hence, rendering the test indecisive. “T=0.00” indicates that the
maximization algorithm found that the additional term “C” does not improve
the fit in any way.
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C.3.6.8 US Treasury Bonds III

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min NA 515.45 589.34 0.00 0.00 27.35 53.26 78.66 136.98 170.27

15-min 0.10 0.40 2.41 5.56 8.88 1.11 1.70 1.55 9.65 10.39

1-hour 0.42 2.14 3.42 4.36 3.57 0.66 0.99 1.33 2.19 2.19

1-day 0.12 0.22 0.23 0.23 0.23 NA NA NA NA NA

Tab. 12: US Treasury Bonds III, T-values (defined as Eq.4.5) resulting from comparing
the two competing candidates (SE and MSE) at different fraction ‘quantiles’ of
the ε-DD belonging to [0,u] for each of the studied scales. Results for ε-DD are
obtained for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit of both candidates
distributions, hence, rendering the test indecisive. “T=0.00” indicates that the
maximization algorithm found that the additional term “C” does not improve
the fit in any way.
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C.3.6.9 German Government Bonds

ε = 0.0 ε = σ/2

Scales P80 P90 P95 P99 P99.5 P80 P90 P95 P99 P99.5

1-min NA NA NA NA NA NA NA NA NA NA

15-min 0.00 10.48 65.56 212.27 255.88 28.83 63.95 95.36 156.47 173.79

1-hour 2.74 10.22 15.56 32.41 41.68 7.39 13.34 23.17 35.67 40.84

1-day 0.57 1.39 1.22 5.98 7.10 2.25 5.79 6.37 8.16 8.18

Tab. 13: German Government Bonds, T-values (defined as Eq.4.5) resulting from
comparing the two competing candidates (SE and MSE) at different fraction
‘quantiles’ of the ε-DD belonging to [0,u] for each of the studied scales. Results
for ε-DD are obtained for ε = 0.0 and ε = σ/2. “NA” indicates a very poor fit
of both candidates distributions, hence, rendering the test indecisive. “T=0.00”
indicates that the maximization algorithm found that the additional term “C”
does not improve the fit in any way.
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