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Abstract. The control and stability of the carrier-envelope phase of few-cycle pulses

are crucial issues in attoscience. This project reports on a novel few-cycle mid-infrared

source based on optical parametric chirped pulse amplification with 100 kHz repeti-

tion rate at a wavelength of 3.2µm and a pulse duration of 67 fs. Due to the design

of the source it is supposed to be intrinsically passively carrier-envelope phase stable.

This assumption is proved experimentally with a new scheme to access the information

about the carrier-envelope phase. Compared to the f−2f scheme, which is widely used,

this new scheme has the advantage of monitoring the carrier-envelope phase without

using the main signal of the source.

Keywords: Attoscience, optical parametric chirped pulse amplification, carrier-

envelope phase, mid-infrared source

1. Introduction

The focus of the thesis is the apparatus to characterize the carrier-envelope phase (CEP)

stability of a new mid-infrared source. The key features of this source are: Mid-infrared

wavelengths, ultra-short pulses, high repetition rate and CEP stability.

1.1. Mid-infrared wavelengths and ultra-short pulses

Using an ultrafast source, which means pulse durations in the range of tenths of

femtoseconds, opened new possibilities in the strong field physics as well as in classical

experiments. A short pulse duration is accompanied by a broad bandwidth of the

spectrum due the Fourier relation between time and frequency. A broad bandwidth

centered in the mid-infrared is very useful for spectroscopy, as it coincides with the

vibrational transitions of important molecules. The range of applications is large,

for example breath monitoring for detecting cancer [1], identification of bio-marker

molecules [2] and the detection of explosives.

Additionally, high harmonic generation(HHG) with mid-infrared pulses provide an

ionization process which is clearly in the tunneling regime and make the modeling
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much closer to reality, because it’s not an intermediate process between tunneling and

multiphoton absorption, as in the near-infrared range [3].

1.2. High repetition rates

Most experiments involving a low cross-section interaction require a high number of

shots to be achieved. A high repetition rate system affords to reduce the requirement

on the long term stability of the system as the signal to noise ratio(S/N) is favored.

1.3. CEP stability

A few-cycle pulse can be represented as

E(t) = E0(t) cos(ωt+ φce) (1)

Here E0(t) is the slow varying envelope of the pulse and the last part of the equation

is the fast varying carrier. The envelope E0(t) can be expressed as E0(t) = A0 cos
2(πt

τ
)

with t ∈ [− τ
2
, τ
2
]. The carrier envelope phase is the difference in phase of highest peak

of the electric field versus the peak of the envelope. The difference in phase between

carrier and envelope is described by φce. If the CEP is stable, then φce is constant from

shot to shot.

The different positions between carrier and envelope are caused by dispersion, through

difference of group velocity and phase velocity and by nonlinear effects [4]. Usually

each pulse of a laser has slightly different CEP because it changes each round trip

in the cavity through distortions. Figure 1 illustrates a few-cycle pulse with different

CEPs. CEP stability is essential for many experiments, for example the measurement of

double-ionization [6]. The stability of the CEP is also very important for the generation

of single attosecond pulses. Furthermore the performance for HHG is better with longer

wavelengths, because the generated wavelength is proportional to the inverse of the

squared wavelength of the femtosecond pulse [3]. The main goal of the thesis is to

measure the CEP stability of this novel mid-infrared source.

Figure 1. The figures a) and b) illustrate the effect of a carrier envelope phase on a

few-cycle pulse. The black line shows the envelope and the red line the carrier.
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2. The mid-infrared source

First a CEP stable pulse in the mid-infrared is generated with difference frequency

generation (DFG). After the DFG the mid-infrared pulse is stretched and then

amplified in optical parametric amplification stages (optical parametric chirped pulse

amplification). Finally the down-chirped mid-infrared pulse is compressed to a pulse

duration close to the Fourier-transform limit.

2.1. The difference frequency generation

The DFG has three advantages. First it provides access to the wavelengths in the

infrared. Second a CEP stable pulse is achieved, as explained below. And finally the

DFG provides a broad bandwidth to support short pulses. The source for the DFG is

a fiber laser system(Toptica FFS) which has two outputs and both have their origin in

the same oscillator. After amplification and compression, both outputs deliver a pulse

with energy of 2.4nJ and a pulse duration of 75 fs at a central frequency of 1.55µm

and 100MHz repetition rate. One of the outputs is sent through a highly nonlinear

fiber (HNLF),which spreads the wavelengths from 1µm to 2.3µm. The spectrum

between 1µm and 1.150µm from the stretched pulse is compressed again to obtain

a pulse duration of 45 fs and a pulse energy of 0.17nJ . The difference frequency of the

two phase-coherent pulses is generated in a periodically poled lithium niobate (PPNL)

crystal resulting in an idler beam in the mid-infrared which is centered at 3.2µm with

a power of 1.5mW at 100MHz and a bandwidth of 400nm.

The CEP stability of the idler is achieved by considering the following facts. The phases

of the pulse with two arms of the fiber laser can be described as ψ1 = φ1 + φceosc(t) and

ψ2 = φ2 + φceosc(t) with φ1 and φ2 as constants and φceosc(t) is the non-constant carrier-

envelope phase from the original pulse in the oscillator which is the source for both

arms. The phase ψi for the idler generated in the DFG is

ψi = −π
2

+ ψ1 − ψ2 = −π
2

+ φ1 + φceosc(t)− (φ2 + φceosc(t)) (2)

The resulting phase of this idler is therefore

ψi = −π
2

+ φ1 − φ2 (3)

In equation 3 all remaining parts of the phase are constants, hence the CEP of the idler

is constant and this source is passively CEP stable.

2.2. Amplification of the idler

The idler pulse of the DFG is first stretched in a 5 cm long piece of Sapphire which is

negatively dispersive. Thus blue and red components of the beam travel with different

phase velocities and the idler pulse gets stretched in time. After this, the idler is

amplified in three successive optical parametric amplifier (OPA) stages. Like the DFG,

the optical parametric amplification is a three-wave-mixing process. In the crystal the
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idler∗ beam overlaps with a strong pump beam, which has a shorter wavelength than

the idler beam. In the three-wave-mixing photons from the pump are converted into

idler photons. This process is called parametric amplification. At the same time a signal

beam is created with a photon energy which is the difference between the photon energy

of the idler and photon energy of the pump.

Moreover the phase of the idler is not affected by this process, as it is described in the

following phase equations:

ψp = const, ψs = −π
2

+ φp − φi, ψi = −π
2

+ φp − φs
With ψp,ψs and ψi the phases of pump, signal and idler

The pump for the OPA stages is a Nd:YVO4 laser (HyperRapid from Lumera Laser

GmbH). The main characteristics are a central wavelength at 1.064µm, repetition rate

of 100 kHz at an average power of 40W and pulse duration of 8 ps. Important for the

OPA operation is the good beam profile of the pump, which has a M2 ≈ 1.2 for the used

laser and the power stability which has pulse to pulse fluctuations < 0.4% and < 0.1%

RMS over 15 hours [5].

For the first stage a pump power of 2.1W is used and leads to a gain-factor of 8x103 for

the seed (which is the idler wave of the DFG). After the first stage the seed pulse has a

bandwidth of 200nm and a pulse energy of 80nJ .

The pump power for the second stage is 5.1W which leads to a further pulse energy

amplification to 1.2µJ with a bandwidth of 250nm which corresponds to a gain factor

of 40.

At the last stage the pump power is 20W . The result is an amplified idler beam with a

maximum pulse energy of 10µJ . If the setup is optimized for a large bandwidth instead

of high pulse energies then the bandwidth of the amplified mid-infrared beam is 350nm

FWHM with a pulse energy of 7.5µJ at 100 kHz. The gain factor for the third stage is

10.

For the amplification the idler and pump must overlap temporally and spatially very

well to get a high gain. Spatial overlap is achieved by focusing both beams in the

crystal. Temporal overlap is achieved by delay lines and electronical synchronization

that adjusts the length of the cavity of the pump laser to match it to a multiple of the

repetition rate of fiber laser (A solution from Menlo Systems GmbH).

Using OPA instead of storage-gain media has several advantages. First, there is no

heat deposition in the amplifiers because the amplification is a parametric process

in which only the waves interact with each other. There is no gain medium, like in

normal amplifiers, which needs to be cooled. Usually the heat removal in storage-gain

media limits the repetition rate. Second, a large bandwidth can be amplified in OPA ,

which is very important to generate short pulses. Usually phase-match conditions are

only given for a single wavelength λ0. Although there is a phase-mismatch for other

wavelengths a certain bandwidth around the center wavelength λ0 is also amplified which

is the bandwidth acceptance angle. The bandwidth acceptance angle gives information

∗ in contradiction to the usual nomenclature, the amplified beam in the OPA will be called idler,

because it is the idler signal of the DFG
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how much bandwidth is amplified and is usually characterized as the full-width-half-

maximum (FWHM) of the gain profile.

The most important advantage of this OPA is that the CEP of the amplified beam stays

constant in time.

Osc.
HNLF

DFG

OPA1

OPA2

OPA3

Lumera HyperRaid

Toptica FFS

Sync.

Stretcher

Compressor

1550 nm
75 fs
240mW

1050 nm
45 fs
17 mW

3200 nm
1.5 mW

15 pJ @
100 MHz

80 nJ @
100 kHz

1.2 μJ @
100 kHz

5.5 μJ
@100 kHz

3.8 μJ
67 fs
@100 kHz

1064 nm
8 ps, 100 kHz
40 W

2.1 W
@ 100 kHz

5.1 W
@ 100 kHz

20 W
@ 100 kHz

Figure 2. The complete OPCPA system.(Osc. = Oscillator, PCF = photonic crystal

fiber, HNLF = highly nonlinear fiber)

2.3. Compression

Typically for an OPCPA system the amplified pulsed must be compressed because the

temporal duration of the pulse is long after several stages of stretching and amplifying.

This is reached with a Martinez-type stretcher/compressor and a deformable mirror

in the Fourier plane. The deformable mirror optimizes the spectral phase shape and

therefore the pulse duration is minimized, close to the Fourier-transform limit.

The deformable mirror is controlled by a computer with a genetic algorithm and a

feedback loop to find an optimal shape of the mirror.
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3. Measurement of the carrier envelope phase stability

The relative and measurement of the carrier-envelope phase is possible with different

schemes. For this work two different setups were used to access the information about

the CEP stability. The first one is the so called f−2f method, which is usually used

and the second one describes a new, self developed scheme, which exploits the nature

of the optical parametric amplification to measure the CEP.

3.1. The f−2f method

The f−2f method is based on spectral interferometry [8]. A white light supercontinuum

interferes with a a second-harmonic signal which is generated from a certain bandwidth

of the supercontinuum itself.

That means that from a supercontinuum, which is generated by HNLF, the blue

components interfere with the the second harmonic of the red components of the

same supercontinuum. Both signals are intrinsic delayed in time due to the nature of

dispersion and the different phase velocities. Taking again the expression for a few-cycle

pulse (equation 1) then the detected signal with a spectrometer is given by [8]

I(ω) = Isc(ω) + Ish(ω) + 2
√

(Isc(ω) · Ish(ω)) cos(ωτd + φce +
π

2
) (4)

with φce as the CEP and τ as the temporally delayed between blue component(Isc)

and the SHG of the red component(Ish). The observed spectrum on a spectrometer is

superposed by fringes. The frequency of these fringes is given by the time delay τd and

the position of the fringes by the CEP. Thus, if the CEP changes then moving fringes

are observed on the spectrometer.

HNF NLC Spec.

SHG

a) b) c)

Figure 3. The basic setup for a f−2f measurement of the CEP.

a) The input few-cycle pulse is send through a highly nonlinear fiber (HNF). b) The

generated white light supercontinuum is send through a nonlinear crystal(NLC) to

generate the second harmonic. c) The second harmonic of the red component interferes

with the blue component of the supercontinuum on a spectrometer (Spec.).
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The implementation of the f−2f setup for the OPCPA system needs some modifications,

because optics and measurement devices for a wavelength of 3.2µm are rare or not

available. Figure 4 shows the setup for the CEP measurement. First the second

harmonic of the 3.2µm beam is generated in Silver Thiogallate (AgGaS2) crystal. The

SHG only doubles the phase, which is constant in time. Therefore it doesn’t affect a

relative measurement. After the second harmonic is splitted into two beams with a

polarizing beam splitter (PBS) and a half-wave plate to control the ratio. One beam is

going through a photonic crystal fiber (PCF) to generate a white light supercontinuum.

The other beam is sent through a β-barium borate (BBO) to generate again a second

harmonic, which is therefore the 4th harmonic of the initial beam with 3.2µm and

carries four times the phase of this initial beam. Both beams are overlapped on a

spectrometer (Ocean Optics HR 4000). In order to observe the fringes, like described

above, there must be a temporal delay τd 6= 0 between the two beams to achieve the

spectral interferometry. On the other side there is an upper limit for τd, because the

visibility of fringes with high frequency is limited by the reduction of the spectrometer

(R = 0.2nm). Figure 5a) shows the two spectra after the PCF, respectively the BBO

crystal. Approximately a bandwidth of 20nm spectrally overlap. To resolve four fringes,

which are easy to observe in this bandwidth, a time delay of τd ≈ 200 fs is necessary.

Figure 5b) illustrates this issue for different values of the CEP and τd for a normalized

spectrum.

3.2. New scheme to access the CEP

This scheme uses the fact that after the amplification in the OPAs not only the idler

(3.2µm) is left, there is also a residual pump beam and the signal beam (1.595µm)

left as pictured in figure 6. Usually both are not used. Considering the phase of both

carefully the result is following.

The signal beam results from the DFG of the idler beam and pump beam. Therefore

the phase of the signal is

φs = −π
2

+ φp − φi (5)

The goal is to make a beating between the signal beam and pump beam. The electric

field of the beating can be expressed as

Eb(t) = A · cos(ωb · t+ φb) (6)

where ωb is the beating frequency and φb the phase of the beating signal.

The phase of the beating phase is determined by

φb = φp − φs = φb − (φp − φi −
π

2
) = φi +

π

2
(7)

We can see that the beating signal of idler and pump gives directly the information

about the CEP.

It must be considered that both beams must spectrally overlap for a beating signal.

This is achieved by broadening the signal in a photonic crystal fiber (PCF) to generate
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AgGaS2
3200nm
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Delay

λ/2 

Pol. 1600nm
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to spectrometer

1600nm
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Figure 4. Complete scheme for measuring the CEP with the f−2f method. (PBS =

polarizing beam splitter, Pol. = polarizer, PCF = photonic crystal fiber)
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Figure 5. a) Spectrum of the white light super continuum(red) and the 4th

harmonic(blue). b) Illustration of the fringes in the bandwidth of interest for

different values of the CEP and τd. Blue line: φCE = π, τd = 200 fs, red line:

φCE = 0,τd = 200 fs, black line: φCE = 0,τd = 0.5 ps

a supercontinuum.

The beating signal is detected by an avalanche photodiode, which is connected to a

Radio frequency analyzer (RFA). A relative change of the CEP can be easily observed
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on the RFA. The bandwidth of the signal on the RFA gives information about the

bandwidth of frequency of the beated signal, which is determined by the beam with the

lower bandwidth. This is the pump beam with approximately ∆λ = 0.2nm. And the

CEP is represented by the amplitude of the signal detected on the RFA.

OPA3
idler

pump

idler

 
signal with phase:

pump with phase:  p

s= p−i−

2

pump signal idler
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Figure 6. Complete scheme for measuring the CEP with the new scheme. (PD =

Photodiode, PCF = photonic crystal fiber)

4. Conclusion

Two different setups to measure the carrier-envelope phase stability have been proposed.

Both setups were implemented and built in the lab, but until the presentation of this

project no measurement of the CEP stability was accomplished yet. The measurements

are still being performed, due to time constraints and unexpected delays with equipment.

Additionally there are difficulties with the experimental realization. The main problem

with the f−2f method is to find the right time delay τd. The time delay must be set

with great precision to achieve a slow frequency of the fringes, because only ≈ 20nm are

overlapping which corresponds to 100 points on the spectrometer. The difficulties with

the new scheme result from the fact, that the residual pump and the signal overlap after

the third OPA. The pump is ≈ 40 times stronger than the signal beam. They have to be

separated, because only the signal beam has to be sent through the PCF. This is done

by using filters and mirrors with special coatings. Although appropriate optics elements
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are used the power of the signal drops about 75%. This low power accompanied by a

long pulse duration of picoseconds, because the signal beam is not compressed, makes it

difficult to couple the light into the PCF and observe the broadening of the bandwidth.

A problem for both methods is that the OPCPA system is very sensitive to the pointing

of the beams, which affects the stability of the output power. The beam pointing can be

easily disturbed by air streams and vibrations. The generation of a supercontinuum in

the PCF usually only adds a constant phase, which doesn’t disturb the stability of the

CEP in time. In the case the intensity is not constant, then the added phase is also not

constant in time, because it depends directly on the intensity. Thus, it is probable that

the PCF introduces a CEP instability which would result in a decrease of visibility in

the fringes observed in the spectrometer. Considering the high repetition rate (100 kHz)

and the integration time of the spectrometer(4ms), then great care should be taken in

boxing every part of the system and avoid any possible vibration to be able to observe

the fringes.
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