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Abstract

MVD (Multiview Video plus Depth) data consists of two components: color
video and depth maps sequences. Depth maps represent the spatial arrange-
ment (or three dimensional geometry) of the scene. The MVD representation
is used for rendering virtual views in FVV (Free Viewpoint Video) and for
3DTV (3-dimensional TeleVision) applications. Distortions of the silhouettes
of objects in the depth maps are a problem when rendering a stereo video
pair. This Master thesis presents a system to improve the depth component
of MVD . For this purpose, it introduces a new method called correlation
histograms for analyzing the two components of depth-enhanced 3D video
representations with special emphasis on the improved depth component.

This document gives a description of this new method and presents an anal-
ysis of six di�erent MVD data sets with di�erent features. Moreover, a mod-
ular and �exible system for improving depth maps is introduced. The idea
behind is to use the color video component for extracting edges of the scene
and to re-shape the depth component according to the edge information.
The mentioned system basically describes a framework. Hence, it is capable
to admit changes on speci�c tasks if the concrete target is respected. After
the improvement process, the MVD data is analyzed again via correlation
histograms in order to obtain characteristics of the depth improvement.

The achieved results show that correlation histograms are a good method
for analyzing the impact of processing MVD data. It is also con�rmed that
the presented system is modular and �exible, as it works with three di�er-
ent degrees of change, introducing modi�cations in depth maps, according
to the input characteristics. Hence, this system can be used as a framework
for depth map improvement. The results show that contours with 1-pixel
width jittering in depth maps have been correctly re-shaped. Additionally,
constant background and foreground areas of depth maps have also been im-
proved according to the degree of change, attaining better results in terms of
temporal consistency. However, future work can focus on unresolved prob-
lems, such as jittering with more than one pixel width or by making the
system more dynamic.
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Foreword

One of Avatar's curiosities: James Cameron, the �lm director, wrote the screenplay 15 years
before �lming. Nevertheless, he did not want to start with this huge project until the technology
was totally powerful to develope it.

Berlin, 15.02.2010
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Chapter 1

Introduction

Despite 90% of the population pro�t from stereopsis, only two-dimensional signals have been
historically represented by displays. Since the beginnings of the 20th century many attempts
have been made to demonstrate the outstanding possibilities of stereopsis in several 3D dis-
plays, but these never achieved the same success than 2D screens. However some 3D productions
attained a certain success [2]. Everyone agrees on the fact that The Power of Love -directed
by Nat G. Deverich and Harry K. Fairall- was the �rst full-length 3D �lm shown to paying
audience, presented at the Ambassador Hotel Theater in Los Angeles in 1922. Some years be-
fore, the Lumière brothers presented the �rst moving 3D pictures based on the Wheatstone
stereoscope at the 1903's World Fair (an entertainment device of the end of the 19th century).
To understand how they implemented the stereoscope, some principles of the human visual
perception [3] need to be introduced �rst.

The binocular disparity, also called horizontal or retinal disparity, is the di�erence in image
location of an object or a scene seen by both eyes, due to the horizontal distance between of
left and right eye. In computer vision, disparity refers to the same di�erence but captured by
two cameras instead of two eyes. Taking into account that the eye can be modeled as an optical
sensor, the detection of the same object in di�erent positions leads to the perception of depth.
This human visual capability is known as stereovision and is presented graphically in �gure
1.1.
Another visual phenomenon worth mentioning is the parallax. Regarding a scene consisting
of an object and a background, the apparent displacement of this object viewed along two
di�erent perspectives (or lines of sight) is the aforesaid parallax. In other words, the object
viewed from a perspective appears in front of a certain part of the background and viewed
from the other perspective the same object appears located in front of a di�erent part of the
background. Parallax is measured by the angle (or the semi-angle) formed by these two lines of
sight. Thus, closer objects have more parallax (bigger angle) than farther ones (smaller angle).
Therefore, parallax is useful to assign relative distances between objects and background.
Joining both concepts, when having disparity with two images, objects that do not change their
position while being seen from two di�erent perspectives will be considered as background.
Oppositely, those objects that will su�er a displacement relative to this background, will have,
in their magnitude, di�erent parallax. This e�ect will make the objects to stand out more or
less, depending on their parallax . As an example, the object in �gure 1.1 stands out in front
of the white square by combining both views.
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Figure 1.1: Two monoscopic viewpoints (A and B) capture the object in front of di�erent
positions of the background. For A, the object appears to be in front of the
blue square and for B, the same object appears to be in front of the red
square. Figure taken from Wikipedia encyclopedia.

What Sir Charles Wheatstone built was an arrangement of lenses combined with two pictures
of the same object, taken from two di�erent perspectives. Consequently, separating each pho-
tography for each eye made the object stand out of the background, and thus providing a 3D
impression1. Applying this phenomenon to a device, a display must show a compound of two
shifted and overlapped images that are representing the same scene. One of these images has
to be �ltered for each eye, requiring the help of a certain instrument. This method was �rst
implemented with the so-called anaglyph. Here, a color mask (one red and the other cyan)
is added to each image and later, those images are superimposed by additive light. The in-
strument are glasses with color �lters (red and cyan), where each glass �lters the image with
its corresponding added color. This allows to percieve the two views separately. In 1952 M.L.
Gunzberg and Arch Oboler released the �rst color stereoscopic feature, called Bwana Devil.
The importance of mentioning this �lm is because it was the �rst one that used a polarized
system, which means that the superimposed images are polarized orthogonally (e.g. linear: one
vertically and the other horizontally; circular: clockwise and counterclockwise). In this system
the glasses are polarization �lters of the same basis (linear or circular), permitting each glass to
pass the opposite polarized light. After discovering this technique, producers started creating
contents for polarized systems [2].

Both techniques, polarization and anaglyph, are still relevant today. However they were almost
forgotten by the general public until the invention of the Imax 3D. It was at the Vancouver's
Expo (1986) where Colin Low brought the three-dimensional experience back to the public
with the �lm Transitions. Thanks to the Imax experience, general public began to be more
interested in the new format of the "seventh art". Meanwhile, 3D productions, videogames
business and cartoons started creating their models based on 3D techniques as well.

It is important to remark that all these techniques have been developed according to display's
constraints. The recent years, worldwide research activities were started with the aim of de-
veloping standards, technologies and production facilities for 3D television (3DTV) and Free
Viewpoint Video (FVV). In a �rst approach, these activities were based on the concept of
an end-to-end stereoscopic processing chain (capturing, transmission and display). Here, each
view of the stereo pair was treated separately as a unique video stream. Viewing conditions

1"Biography of Sir Charles Wheatstone", http://www.acmi.net.au/AIC/WHEATSTONE_BIO.html
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and human visual factors had to be taken into account by the camera man during recording,
what made 3D productions complicated. Conclusions derived into the need of separating cap-
turing and display geometry by using new methods and 3D video processing tools, yielding
to a common, global, �exible and scalable data model that supports the various display types
and technologies. This is the Multiview Video plus Depth (MVD) representation. It can be
achieved by estimating depth information from the given Multiview Video set from the record-
ing process (meaning 2 or more views) and to use this depth information to create a virtual
stereo pair at the receiver side. The depth information is basically the disparity of a pair of
images, describing the scene geometry.

In 1998, the European PANORAMA project was one of the �rst activities on demonstrating
the potential of such a depth-based processing approach for stereo adaptation. Meanwhile, the
European project ATTEST took this concept and applied it to the requirements of a complete
3DTV processing chain. In this system, the images are transmitted with depth maps providing
depth values for each pixel. In general terms, it is broadly accepted that the MVD representa-
tion is the groundwork for future 3DTV systems, because it can be built on the existing Digital
Video Broadcasting TV infrastructure. Meanwhile, the Motion Picture Expert Group (MPEG)
is devoting e�ort on these tasks and is investigating the needs for standardization in 3D [4].

Regarding 3D contents, recent productions, such as the latter �lm Avatar - directed by James
Cameron and winner of three Oscar awards -, attest success. Some other big productions, such
as Alice in Wonderland - directed by Tim Burton -, are coming to the big screen in a near
future. Moreover, �rst experiments on broadcasting stereoscopic 3D are realized succesfully.
This �rst approach of providing 3D content to the broad public is not based on the MVD
representation. However, progress of technologies based on MVD is expected in a near future
and thus improving the quality of the 3D experience plus supporting advanced applications.

Accordingly, the work presented here will focus on a system using the MVD representation. The
goal of this project is to improve the MVD data obtained by a multiple camera arrangement
and which �nal use would be for a multiview display. In general, depth information estimated
from real scences presents distorted silhouettes of the objects in the scene. This is an annoying
e�ect while rendering a virtual view, because pixels around the edge, ones belonging to the
background and others to the foreground, are mistakenly recalculated, yielding to a false dis-
parity. Hence, pixels from the background stand out as if they would belong to the foreground
and vice versa. With the aim to avoid this distorting e�ect, edge information from the video
data is taken into account for reshaping depth maps' silhouettes.
This work is organized as follows: Chapter 2 describes the MVD representation, how is it ob-
tained, its advantages and de�ciencies and the MVD representation from the point of view of
an entire 3D processing chain. Chapter 3 presents a comparative statistical analysis of the two
components of the MVD representation, introducing analysis methods that are well suited for
highlighting the di�erence between video and depth data. Chapter 4 presents an algorithm for
improving the MVD data minimizing the aforementioned de�ciencies. In this chapter, visual
changes produced by the algorithm are presented. Results of the improved depth maps by ap-
plying the new tools introduced in Chapter 3 can be found in chapter 5. Finally, conclusions
are drawn in chapter 6.
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Chapter 2

Multiview Video plus Depth

The human visual system pro�ts from stereopsis to create the depth perception. The brain uses
binocular disparity to extract depth information from the two-dimensional images captured by
both retinas. Thus, objects are percieved as sets of colors, shapes, textures (those three directly
related to the objects' properties) and depths (related to scene's geometry). In a discretized
model of the human perception it is also possible to represent a scene by setting a color and a
depth value to each pixel, hence representing objects in the scene. Carrying out this idea, the
feeling of depth can be achieved with a proper display that renders disparate views to each eye
thanks to the depth information. More sophisticated displays need various viewpoints to allow
the 3D experience to more than one viewer. While 3DTV allows the impression of depth of
the observed scene, FVV permits the interactive selection of viewpoint and direction within a
certain operating range. In order to understand the MVD representation better, an overview
of these technologies is given �rst.

FVV provides an experience similar to being in a live show. The capability that allows the user
to inspect the scene from several points of view is close to watch, for example, a live concert.
This representation o�ers the same functionality as the one known from 3D computer graphics.
Unlike virtual world, real scenes are captured with an array of cameras for FVV. Thus, the
multiple camera signals are processed and tranformed to a single scene representation that per-
mits for rendering intermediate views, i.e. selection of arbitrary perspectives and/or directions.
Several scene representation formats for FVV are often classi�ed between two extremes [5].
One extreme is the classical 3D computer graphics representation, where the scene geometry is
typically described on the basis of 3D wire-frames and meshes. Objects are reproduced using
geometric 3D surfaces with an associated texture mapped onto them. The other extreme, usu-
ally called Image Based Rendering (IBR), does not use any 3D geometry at all. Here, virtual
intermediate views are generated from available real views by interpolation. A technique called
Depth Image Based Rendering (DIBR) realizes a solution in between these two extremes. In
this case, virtual intermediate views are generated from real views by interpolation from color
images and associated per-pixel depth information [6]. In conclusion, DIBR uses scene's geom-
etry information while IBR does not. The main advantage DIBR is the high quality of virtual
view synthesis, while avoiding a complex 3D reconstruction. However, it implies dense sampling
of the real world with many original views, which generates large amounts of data. Between
these two extremes one can �nd other methods that combine both techniques. As an example,
a method can use 3D mesh models (from the �rst extreme) and view-dependent mapping of
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multiple textures as acquired from real cameras (from the second extreme). It provides a high
quality of rendered views and a bigger viewing zone [1], but for the price of requiring a certain
number of cameras, processors and processing time.

Figure 2.1: Virtual camera �ight, rendered views at 3 di�erent times from 3 di�erent
viewpoints. Illustration courtesy of [1].

As previously commented, 3DTV allows the viewer to have the feeling of depth by providing
two views, one for each eye. It has also been seen that there are several 3D displays and there-
fore di�erent 3D processing algorithms. For example, in the case of autostereoscopic displays
two virtual views are rendered (one slightly left and one slightly right from the original view)
from the color video and associated depth information. Moreover, the rendering process is done
at the receiver side, making the structure �exible. Thus, the viewer can adjust the depth im-
pression, such as brightness or color balancing in a classical 2D TV set [1].

Figure 2.2: Illustrative example of depth impression created by a 3D display

This chapter gives an overview of what do the depth maps represent exactly, how they are
computed, and their advantages and de�ciencies in section 2.1. Subsequently, the MVD rep-
resentation from the standpoint of a generic 3D video processing chain, regarding recording,
transmission and display processes will be described in section 2.2.

2.1 Representation

MVD is a highly �exible 3D representation and, as its name suggests, is a compound of several
viewpoints of a scene and each persepective has a color video data plus additional depth in-
formation that represents the scene's geometry. On one hand, the Multiview Video is recorded
with a multi-camera system. On the other hand, the Depth is estimated with an algorithm
whose goal is to generate a depth map for each camera. Such a depth estimation algorithm [4]
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can be divided in four main modules: the �rst is for recti�cation, the second applies disparity
matching, the third is for depth map creation and �nally a de-recti�cation module. In order to
provide a better understanding of depth maps, an overview of these blocks is presented in the
following.

Figure 2.3: Multiview Video plus Depth representation consisting of a set of 2D color
video views and their associated depth data

Prior, it would be good to de�ne the main camera features. The focal length of a camera is the
distance between the lens plane and its convergence point (see �gure 2.4(a)). Referring to a
pinhole camera, it is the distance of the hole and the left side of the box (see �gure 2.4(b)). For
cameras with lens, the hole is �lled with a lens. Hence, the light sensor must be placed on the
side of the box to capture the light difracted by the lens. Furthermore, the distance between

lenses is the space between the centers of the two lenses. Finally, the distance between cameras

or baseline (see �gure 2.5) is the interval between a camera and its next within an array of
cameras (or multi-baseline system).

(a) Lense and focal length (b) Pinhole camera

Figure 2.4: Scheme of a simple pinhole camera. The light passes through a small hole in
the middle of the box and is captured in the left side by a �lm or a sensor.
(a) is taken from Wikipedia encyclopedia.

In a �rst step, the recti�cation module works with pairs of adjacent cameras. The recti�cation
process needs the camera parameters because it is based on a rotation of the stereo pair of cam-
eras. The main advantage of this step is that this transformation can be done independently of
the depth structure of the scene; just with camera paremeters is enough. This module delivers
a recti�ed camera pair with parallel optical axes, where point correspondences between the two
camera images always lie on the same scan line (see �gure 2.5). Consequently, the search cor-
respondences can be limited to the horizontal direction, what eases the subsequent processing.
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Hence, it provides a uni�ed data structure (the data is independent of the set-up of arbitrary
views) and makes the 3D processing �exible. However, there is some loss of information as
well. Working in pairs of images leads to have twice data recti�cation for each camera (from
camera i to adjacent cameras i + 1 and i − 1), except for the camera borders (cameras 1 and
N). Thus, this block will render N − 1 recti�ed image pairs. I.e. a multi-basline system with
3 cameras would lead to 2 image pairs (one for the pair [cam0, cam1] and another one for the
pair [cam1,cam2]).
After recti�cation, a disparity matching is employed to each recti�ed pair of views. One solution
for this goal is a fast hybrid-recursive-matching algorithm [7]. It delivers extremly smooth and
temporally consistent disparity maps, which means highly redundant information and no ran-
dom noise due to its recursive structure. This algorithm is applied twice to each image pair, once
from the left to right view and vice versa. However, this algorithm causes mismatches in critical
image areas. These mismatches are detected with a con�dence interval, which is obtained by
calculating the cross-correlation. This criterion uses a threshold to distinguish between good
and false detections, which can be caused by ambiguities in correlation analysis and by oc-
cluded areas. The �rst cause is due to multiple point correspondences found by the matcher.
The second cause is due to non-existent point correspondences and consequently they cannot be
matched. Then, the rejected disparity values are recomputed by utilizing segmentation-based
interpolation, including two techniques: color clustering and change detection. The operators
selected for the interpolation are di�erent, depending on segment size and motion content.
Hence, a new disparity map is obtained and another consistency check is applied, which will
only detect the occluded areas.
Once having the disparity maps well computed, the depth maps are calculated by using the
following relation:

ZMi,j(ui,j ,vi,j) =
Fi,jBi,j

|DMi,j(ui,j ,vi,j) + hi,j − hj,i|
(2.1)

Here, u and v are the point coordinates and ZMi,j(ui,j ,vi,j) is the depth map of views i, j.
The baseline is represented by Bi,j and Fi,j is the focal length. Finally, DMi,j(ui,j ,vi,j) is the
disparity map and hi,j , hj,i are the sensor-shift o�sets from the recti�cation step. Note, that
Fi,j is usually set to Fi,j = (Fi +Fj)/2 during recti�cation. Next, ZMi,j(ui,j ,vi,j) is derecti�ed
and merged to a single depth map, associated to camera i. Thus, depth maps will correspond to
original non-recti�ed views, which can be easily achieved by the inverse operations used in the
recti�cation step. Cameras 1 and N are directly set to their nearest depth map, while the other
views are obtained by averaging their neighbors. For the occluded areas, data is taken from
one to the other. Otherwise, data is available from both views and therefore simply averaged.
Optionally, each single depth map can be smoothed with a 2D Gaussian low-pass �lter, as
done in the ATTEST project [8]. It is useful when cameras are relatively close to each other
and therefore the size of the occluded areas is small. However, it is a problem for crucial depth
information, such as edges, because they become blurred and not sharp as they should be.

Technically, the depth range of the scene has to be limited to the znear and zfar planes (see 2.3).
Thus, the range [znear, zfar] is quantized to the 8-bit range [0, dmax−1]1. Figure 2.5 exempli�es
the inverse quantization, which has the advantage of quantizing the foreground more accurately
than the background.

1Note: hereafter, the background will be related to lower depth values and, consequently, the foreground will
mean higher depth values
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Figure 2.5: Relation between 3D scene, multi-camera geometry and 2D depth maps.
Point correspondences converge into the same depth plane. Inverse quanti-
zation is applied in order to adapt better to human depth perception.

As mentioned before, the main problem while computing the depth maps are occluded areas,
where data is not available from both views. Figure 2.5 illustrates two occluded areas, one for
each camera. For the left camera, a purple-colored triangle behind the object represents an area
that just the right camera can capture. Vice versa, the red-colored triangle is the occluded area
for the right camera. However, the algorithm is robust enough to complete the whole depth
map and to give a consisten output (meaning no empty patches of data). Appart of this fact, if
the image is smoothed, like done in the ATTEST project, then all depth transitions at object
borders are degraded. However, for rendering it is extremely important to keep all contours
in the right position. Hence, this work will focus on adjusting the object borders of the depth
maps according to the color information. For this purpose, an edge detector will be needed
and, moreover, an algorithm capable to re�t the silhouettes of the depth maps according to
the edge information.

Another problem not solved in the depth map representation is the non-homogeneity in the
background areas. Some sequences, like Breakdancers or Ballet (see Figure 2.6), present a stair-
e�ect in background regions instead of a smooth depth change. This will cause strong visual
discomfort while rendering because the objects will not be well placed according to the scene's
geometry.

In conclusion, the multiview video plus depth representation is a way to describe a scene, giving
several points of view and, for each view, its color information and a depth map associated
(tipically with 8 bits per pixel). For coding, the video is usually sent in a YUV format (in the
allowed formats 4:4:4, 4:2:2 or 4:2:0) and the depth is sent as a simple luminance channel in a
YUV 4:0:0 format [8].



10 Chapter 2. Multiview Video plus Depth

(a) Color from camera 0 at frame 8 (b) Depth data of camera 0 at frame 8

Figure 2.6: Non-homogeneity in the background. Most of the evidence marked at the top
of the image.

2.2 The MVD processing chain

The future of 3D systems must be focused on a model such as current TV broadcasting,
which consists of three main modules: recording, transmission and display. Moreover, something
important to highlight is that 3D systems will have to regard all the display possibilities,
because nowadays they can take pro�t of an all-digital content processing chain. All things
considered, 3D algorithms can be easily added to the existing pipeline (recording, transmission
and display) without modifying the other processes. Thus, it allows for emerging oportunities
in 3D processing, including anti-aliasing, compression and image-enhancement. The following
sub-sections show how MVD data is acquired, how is transmitted and how it is displayed on
the di�erent 3D display systems.

2.2.1 Recording

Cameras have improved signi�cantly in the recent years leading to high quality recording. Hav-
ing a look at the recent history of 3D, all productions have been made o�-line, being storaged
and not transmitted and utilizing post-processing tools. Nevertheless, in 2010, �rst capturing
and broadcasting tests have been succesfully done. In the case of capturing the scene, there
are several options of recorders, depending on the �nal use of the data. Thus, the main models
of recording to obtain depth maps or MVD data are presented: the camera array set and the
3D-Camera based on the fringe projector technique [9].

Multi-camera array

This technique is based on traditional 2D Cameras arranged in a speci�c way. In the case of
just two cameras it will render a stereoscopic vision, but having a higher order leads to the
multiview video representation. Usually, cameras are positioned on a circumference arch, but
they can also be placed in a linear segment. The number of cameras ranges from two to about
1282, while in practical systems typically 2-8 cameras are used.

2"The Stanford Multi-camera Array", http://graphics.stanford.edu/projects/array/
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This kind of set-ups have three main problems, due to the use of di�erent devices. The �rst one
is synchronization. At the moment that cameras start recording the scene, all of them must be
synchronized with the same master clock. Thus, in a synchronized multi-camera array system,
the frame F of a camera X represents the same time instant t as any other camera Y . Another
problem is the adjustment of color balancing. All cameras must be calibrated in color, meaning
that all cameras must capture and deliver the same tonality for the same recorded color pat-
tern. I.e. a good pattern is the chroma key color pattern -usually green or blue- for compositing
two di�erent images together. The third aspect to be aware of is the geometrical camera cal-
ibration [10]. This is highly important for the recti�cation step when computing depth maps
(see section 2.1) and for rendering the stereo video pair. Otherwise, the rotation step would not
align correctly the optical axes and consequently depth maps would not be well computed. To
calibrate the array, an algorithm computes the "pixel error" regarding all cameras (instead of
calibrating each camera individually). To achieve this, the algorithm calculates the di�erence
between the observed images of 3D points and what is predicted by the current estimate of
model parameters3. In summary, it is necessary to have all cameras synchronized to ensure time
correspondences. It is important to have all cameras calibrated with the same color balancing
for, i.e. point correspondences when computing depth maps. Finally, is crucial to have correct
calibration parameters for recti�cation and de-recti�cation steps when computing depth maps.
The main bene�t of this technique is that it renders various points of view, but it carries the
inconvenience of a high amount of data to be transmitted. Loosely speaking, if N is the order of
the array (or number of cameras), the data to be transmited will be N times a monoscopic view
(a 2D camera). To solve this problem compression is needed, for which temporal and spatial
redudancy can be exploited.
Once having a Multiview Video set, an algorithm (as the explained in section 2.1) is used
to compute the Depth Maps. Hence, MVD data can be obtained from a multi-array camera
system plus the mentioned algorithm.

3D camera based on fringe projection

The fringe projection technique has its origins in topography. It was presented by Rowe and
Welford in 1967 and the basic idea is to project a fringe pattern on an object and view it from
another point of view. Here, the projector and the camera are just separated by a distance
comparable to the human eyes' distance (around 50mm). Thus, typical problems such as shad-
owing can be avoided. Moreover, it is well adapted to the human perception. However, this
device has a more similar behaviour to a scan rather than to a traditional camera (it needs
at least 4s to obtain a depth map from the scene). Some application �elds for this type of
devide are capturing depth inside small rooms or from a whole 3D scene, a mobile subsystem
for scalable topometry (such as a cube where the camera can move in by the three directions
X, Y and Z) and augmented reality. Some advantages of this camera are high brightness, large
depth of focus and compact design.
In order to obtain MVD data, this camera needs a color video camera that records the same
scene (in the case of having just one camera based on fringe projection). The distance between
the color video camera and the fringe detector must be considered as well. Moreover, the color
video camera have to acquire the scene when there is no light pattern from the fringe projec-
tion. Otherwise, the color camera would capture the scene plus the additive light of the fringe
projection.

3"Robust Multi-camera Calibration", http://www-graphics.stanford.edu/ vaibhav/projects/calib-cs205/
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Figure 2.7: Schematic representation of the fringe projection

Some other devices that are not based on traditional camera systems are depth sensors. By
combining color video capture (with a normal camera) with depth acquisition (with a depth
sensor) and with an appropiated synchonization module, a MVD data representation can be
obtained. Another kind of camera is the so-called stereoscopic video movie camera "3D-CAM".
The reader can be referred to [11] for more documentation on this �eld.

2.2.2 Transmission

In terms of telecommunications, transmission is the process of sending and receiving an ana-
logue or digital signal over a capable medium (point-to-point or point-to-multipoint), either
wired or wireless. Related to TV systems, historically data has been sent as an analogue signal,
in a wireless medium of a point-to-multipoint infrastructure (also called broadcast or multi-
cast). The �rst big change that the TV system had, was with the transmission of color video
signals instead of just the luminance channel. In the recent years, due to the use of satellite com-
munications, TV signals have migrated to the digital format, and also terrestrial emissions with
the implantation of the Digital Terrestrial Television (hereafter DTT). Soon, TV channels will
succeed with the third big change of TV transmissions, o�ering to the public the 3D experience.

Recently, TV broadcaster SkySports made history o�ering the 3D experience with the Pre-
mier Leagues' football match Manchester United vs. Arsenal 4. The reviews pointed out that
people really enjoyed the experience, indicating a good acceptance for the global public. Over
the next days, this company will open a new channel broadcasting 3D contents. Also another
broadcaster, ESPN, foresees to broadcast a total of 25 matches of the upcoming FIFA Wolrd
Cup 2010 in South Africa.
They chose to use a stereoscopic system, based on polarized screens and with the need of polar-
ized glasses. The codec used was MPEG-4 and the stereoscopic encode format was side-by-side
compressed within a 1080i25 frame5. According to the mentioned broadcaster's speci�cations,
this system uses Linear or Horizontal line based encoding (not Quincux based).

O�ering 3D contents for live events introduce a point of analysis: given the current TV sys-
4As a curiosity, Manchester's supporters said that Manchester United also made history because they won

3D-to-1. http://www.skysports.com/story/0,19528,11096_5889013,00.html
5"BSkyB 3D technical speci�cation for PlanoStereocopic (3D) program content",

http://introducingsky3d.sky.com/a/bskyb-3d-tech-spec/
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tem (where several parameters and procedures are de�ned), it is necessary to adapt the new
amounts of data to this context. Technically, the standard used for this purpose is the worldwide
known MPEG-2 (also known as ITU-T H.262) [12]. It is also present in the DTT and satellite
transmission, although this last one is migrating to MPEG-4 [13] because of the increase of
contents with High-De�nition TV (HDTV) resolution. What these codecs o�er is a high quality
video representation within the existing digital transmission capacities due to diversi�cation of
network types and their characteristic formatting and loss/error robustness requirements. The
most typical codec of the ITU-T recommendations is the H.264/AVC standard [14] and gives
an approach to several networks with di�erent applications (storaging, broadcasting, stream-
ing or video telephony). It is important to remark that in all the ITU-T and ISO/IEC video
coding standards the scope of video coding standardization is the decoder, allowing freedom
to optimize implementations for speci�c applications.

It will be seen in section 2.2.3 that some applications and display systems need to receive di�er-
ent points of view to represent 3DTV or FVV. In FVV the 3DVO, a 3D objects that represents
the 3D geometry and the texture of an object, is also supported by MPEG-4. Thus, it is possi-
ble to be decoded with an appropiate MPEG-4 player, although more re�ned representations
cannot be included in this format. To solve it, an update of the computer graphics part of
MPEG-4 called Animated Framework eXtension (henceforth AFX) was added [1]. Then, FVV
can be now easily transmitted with the standard MPEG-4 AFX. On the other hand, in stereo-
3DTV the sender has to transmit the color information of an stereo video pair. However, with
depth enhanced 3DTV (3DTV-MVD) the sender just has to give the color information (for
an RGB space uncompressed data it means 3 bytes) plus a depth value (just 1 byte) for each
view instead of wasting bandwidth transmitting two color components (3 bytes plus 3 bytes)
per view. Thus, with appropiate algorithms the receiver can render the two views allowing the
user the 3D experience. In a �rst approach, it was thought to use H.264/AVC, but afterwards
it was seen that a speci�c Multiview Video Coding (hereafter MVC) presents better results
for multiview video (but not for video plus depth). The basic idea is to exploit the temporal
redundance (as in H.264/AVC) but also the spatial one (not considered with H.264/AVC and
hence called simulcast). Anyway, in the ATTEST programm the transmission overhead for the
depth information was between 10%-20%6 compared to a conventional 2D broadcasting [4].
Note that in order to achieve this solution the camera parameters (intrinsic and extrinsic, such
as the focal length or the baseline) are essential and must be transmitted (see section 2.1) as
auxiliar information.

For more information on 3D representation and coding refer to [15].

2.2.3 Displays

As it has been previously introduced, from parallax stereograms (early 20th century), through
polarized 3D and personal 3D cameras (1950s), holography (1960s and 1970s), to 3D �lms by
IMAX (1980s and 1990s) and digital (nowadays), advances in optics, electronic and processing
algorithms have resulted in signi�cant improvements in 3D quality and visual comfort, increas-
ing the bene�t while decreasing the cost. At present, technology has led to �ve main di�erent

6These quantities were achieved under very speci�c circumstances. 30%-40% are more realistic for practical
systems.
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3D display technologies: stereoscopic, autostereoscopic, multiview, holographic and volumetric
displays. However, not all these technologies bene�t from the MVD representation. According
to the number of views needed in a MVD data representation, the principles of how the displays
work and their intrinsic problems are introduced [2].

Stereoscopic

Also called glasses-based, stereoscopic systems are widely-used because they can provide the
3D experience at a relative low cost. Moreover, these technologies can be easily applied to
large-scale electronic 3D displays. Nevertheless, glasses-based methods were the �rst ones that
allowed people to have the 3D experience.

• Anaglyph
The visual light corresponds to the range (370,730)nm and the most simple division in
two bands yields two segments: (370,550)nm and (550,730)nm (see Figure 2.8). Thanks
to color introduction in printing and photography these subsets can be used for a mech-
anism for left/rigth channel separation. This is the basis for anaglyph [16]. As shown in
�gure 2.8(b), the blue �lter curve covers the blue and a part of the green bands, and the
red response �lter allows passing the other part of the green band and obviously the red
one.

(a) Anaglyph glasses (b) Band-pass light �lters

Figure 2.8: Anaglyph �lters. (a) Scheme of Anaglyph glasses and display, and (b) Qual-
itative representation of blue (left) and red (right) band-pass �lters.

One of the advantages of anaglyph is that it is the most printer-compatible 3D system.
Because of this, any electronic device capable at representing color or printed material,
such as �lm or paper, permits the three-dimensional representation. Another important
point is the price to produce the glasses. It is the least expensive and the most known for
the public. On the other hand, this technique has some de�cencies. First of all, each eye
does not percieve the same spectrum range due to �ltering. Secondly, and also the most
common in all 3D displays, is the crosstalk between channels; it is inherent that perfect
separation of the channels is impossible, adding cross information one to the other. Fi-
nally, the limited color representation capability.
However, some improvements could be done. As a primary idea, lenses re�ned with more
frequency selectivity can improve color perception. But the most signi�cant improvement
is due to signal processing by optimizing the output (anaglyph images) under its nature
constraints (absorption curves of the lenses, spectral density functions of the display pri-
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maries and colorimetric features of the human visual system). This solution is proposed
by Dubois [17] and basically is, in terms of transmission, a kind of equalization to avoid
discoloration.

• Multi-band �lters

The main trouble of anaglyph is derived from the fact that each eye captures the light
in a single band (it is splited into two bands), a matter that does not allow full color
perception and introduces color rivalry between eyes. Thus, this technique divides the
spectrum range into two complementary sets of wavelengths, giving a red, green and blue
(henceforth RGB) perception to each eye7. In Figure 2.9 can be seen that a set of three
band-pass �lters corresponds to the right eye and the other set to the left. The bene�t
of using this separation, is that human eye can not distinguish di�erent compositions of
the same color, but in order to achieve this phenomenom there must be an accurate color
representation and no visual discomforts.

Nevertheless, as it happens to every technology, there are inconvenients as well. Because
of the use of complementary �lters, more crosstalk is present. Depending on the accuracy
of the �lters it can be minimized, as explained before, with some signal processing. Also
these glasses contribute to typical colorimetry problems, always present at any display.
Finally, note that this technique is relatively new and consequently more expensive than
traditional anaglyph or polarized glasses.

Figure 2.9: Complementary sets of wavelengths according to RGB space for right (red)
and left (blue) views.

• Light Polarization
In the way of resolving full-color representation troubles of anaglyph systems [16], po-
larized glasses permit to see the whole color gamut. In that case, lenses are polarized
orthogonally (see Figure 2.10 as example). Besides, a non-depolarizing screen is needed
to ensure that polarization is maintained during projection.
However, the perfect calibration of this orthogonality is practically impossible, leading to

7In the RGB space, red, green and blue channels are orthogonal, thus all colors can be represented as a
combination of the basis' vectors.
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crosstalk. Moreover, if linear polarization is used, rotation causes more crosstalk; the more
the viewer moves (rotates) his head, the more optical distortion is present. Therefore, it is
inconvenient to be totally aligned with the screen if linear polarization is utilized. Anyway,
this fact can be facilely solved using circular polarization, due to their invariance against
rotation. Nevertheless, it increases the cost of manufacturing as circular polarization
glasses are more expensive than linear ones. By the side of the projector, other features
are required. Due to light blocking by �lters, projectors have to increase their brightness.
Second, the alignement of the two projectors must be carefully attended. This can be mit-
igated by using only one projector at double refresh rate and with a dynamic modulator
polarity switching in synchronism with interleaved images. This solution can be adopted
by TV sets, inasmuch as they just use a source of emitting light. Notwithstanding, these
solutions do not erase all the problems, because crosstalk is always present. Note that
using circular polarization makes the crosstalk to have a shift-invariant behaviour, while
using linear polarization makes the problem almost insolvable. In order to minimize the
crosstalk, signal processing solutions are needed. Furthermore, by increasing the bright-
ness not all colors will have the same gain, because of the �lter response.

(a) Linear Polarization (b) Circular Polarization

Figure 2.10: Scheme of Polarized glasses. Lenses block the orientation marked. (a) Linear
polarization, and (b) Circular polarization

• Light shuttering
Instead of using light polarization, a mechanism that blocks light is applied by fast
switching glasses (working in synchronism with the screen), that become transparent
when the intended image is displayed and opaque when the view is not the desired. Hence,
this mechanism requires a display working at double refresh rate (at least). I.e., if the
normal refresh rate is 60Hz it must work at 120Hz (as said, at least). The main bene�ts of
this technique are full Cathode Ray Tube (CRT) color gamut, full CRT spatial resolution.
Though, the synchronism based method carries some disadvantages, such as expensive
cost of Liquid-crystal shutters (LCS) manufacturing or the omnipresent optical crosstalk
in these glasses-based systems. However, the crosstalk in CRT/LCS compound system
has not the same nature as, for example, light polarization. It is produced by screen
phosphor persistence, LCS extinction characteristics (the afterglow of one image into
the another) and LCS asynchronism (also called timing errors). Once more, the solution
proposed to reduce the crosstalk is somehow an equalization, doing a pre-distortion of
the image. Afterwards, with the display's lacks, the system is able to recover the original
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image.

As it has been seen, each model has its bene�ts and inconveniences. It is also important to
mention that each technology is based on the de�ciencies of the previous and thus it tries to
yield what the previous cannot o�er by their nature. On table 2.1 bene�ts and advantages of
each method are summarized.

Technique Bene�ts Disadvantages

Anaglyph Least expensive Color rivalry & no full color perception
Applicable to any color image Optical crosstalk

Multi-band �lters Full-color representation More expensive
Optical crosstalk

Light Polarization Less expensive Non-depolarizing screen needed
Full-color representation Crosstalk

Light Shuttering Full CRT color gamut Most expensive
Full CRT spatial resolution Crosstalk

Table 2.1: Summary of bene�ts and disadvantages of stereoscopic displays, with special
regard to crosstalk and color perception.

Autostereoscopic

Potential technical problems such as projector missalignment or viewing discommodity along
with public discomfort (the need to wear glasses and cost and care of them) led to a glasses-free
model for the 3D experience. Since the beginnings of the 20th century, techniques were based
on spatial multiplexing of right and left images interacting with a light-directing mechanism
capable to exhibit each view to the viewer's eyes. The most well-known multiplexing techniques
are the parallax barrier displays and the microlens displays. Here the main characteristics of
both methods are presented.

• Parallax-barrier displays
This technique involves an arrangement of opaque slits distributed and spaced horizon-
tally, placed close to a pixel-addressable screen, such as a Liquid Crystal Display (here-
after LCD) or plasma (see 2.11(a)). Hence, if this slit's layer is carefully aligned with
pixel distribution, each slit contributes as an approximate pin-hole projector, rendering
two di�erent perspectives to the viewer's eyes.

• Microlens displays

Also just called lenticulars, a layer of narrow and thin semicylindrical microlenses is set
in front of the screen at approximately one focal length. Thus, light passes through these
lenses and it is directed towards the viewer's eyes (see 2.11(b)). If the lenses are precisely
aligned with pixel columns, the viewer (standing at the correct distance) will be able
to have the 3D experience. However, lens aberrations reduce contrast of images from
adjacent pixels and cause optical crosstalk.

Therefore, by addressing (parallax-barrier) or de�ecting (lenticulars) the light to some points
of the space creates the viewing zone and, as it suggests, is the subset of the space where the
right eye percieves the right image and the left sees the left image. The size and shape of the
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(a) Parallax barrier (b) Lenticular

Figure 2.11: Scheme of Stereoscopic glasses-free displays and their viewing zone. (a)
Parallax-barrier and, (b) Lenticular displays. Consider that each set labeled
as R (right) or L(left) is a RGB pixel representation.

viewing zone is directly related to the geometry of the technique. For example, taking into
account the coordinates reference from �gure 2.11, the viewing zone is invariant on the Y axis
but not on the X and the Z axis. Then, watching the screen out of the viewing zone could
cause the depth-inverted e�ect, where right eye sees left image and vice versa. This may cause
visual discomfort because correct (called orthoscopic) and inverted (pseudoscopic) view zones
are adjacent, also considered as optical crosstalk. Table 2.2 summarizes the possible combina-
tions of percieved images 8. By using these techniques, both present a reduction to the half of
horizontal spatial resolution, delivering half of the information shown in the screen to the left
and the other half to the right eye. Thus, both images have to be horizontally sub-sampled and
consequently a half-band horizontal lowpass �lter must be supplied in order to avoid aliasing.

Right eye Left eye Theoretical result

Right Left Correct 3D experience
Left Right Inverted depth perception
Right Right Approximately 2D view of right data
Left Left Approximately 2D view of left data

Table 2.2: Possible combinations of percieved images and their theoretical results

Introducing band guards with no pixel information between left and right views is the most
common method to mimize crosstalk. However, it reduces the viewing zone and a new set of
combinations should be added to table 2.2. Simply consider that it may deliver black image
data to the eyes.

8The position of left and right is suposed to be adjacent, otherwise the result is not correct.
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Finally, note that these techniques are applicable for LCD or plasma screens, but not for CRT
displays, as the light patterns on a CRT screen su�er from jitter, which it is not accepted by
the viewer.

Multiview

The two stereoscopic techniques introduced previously, present the views independent of the
viewer's position, a fact that can lead to confusion about the shape of an object. In other
words, if the viewer changes the point of view the shape of an object does not. Thus, it is
a good improvement to allow the viewer to have motion parallax, which is a complement to
stereopsis that models better the human visual system. The way to implement this idea is based
on displaying several viewpoints of the scene. This method has two variants: active multiview
displays, where the position of the viewer is tracked for rendering the according view of the
scene; and passive multiview displays, where regardless the viewers' position several (ideally
all) the views of the scene are displayed.

• Active Multiview

As it has been commented, that the display provides two images by tracking the viewer's
location. The optical mechanism could be one of those previously described. Though, this
method has one inconvenience: due to head tracking, practical systems are restricetd to a
single user, which is a weakness considering television systems. Another fact worth men-
tioning is that depending on the motion pattern of a viewer's head temporally irregular
view multiplexing takes place. Fortunately, this problem can be solved with a temporal
antialiasing �lter.

• Passive Multiview

The main motivation to do one more step is to support multiple viewers and to avoid
head tracking. By presenting several points of view at the same time, this problem can be
solved. The light is then directed to di�erent viewing zones, at the expense of reducing
spatial resolution. If a viewer is in a correct distance to the screen he can have the real
FVV experience. In terms of advance, it is a huge progress to have motion parallax, to
support multiple viewers and to eliminate glasses for users' comfort. The passive mul-
tiview displays use lenticular systems to di�ract the light and they provide horizontal
parallax only, meaning that viewers can move from side to side, but not vertically. The
full-parallax displays are currently weak, because the pixel density of LCD and plasma
displays is not high enough. Moreover, the number of viewers is restricted according to
the order of the horizontal and spatial resolution. In other words, the spatial resolution
gets divided by a factor of N viewers. This causes an annoying imbalance if the number
of viewers is great, but can be solved by slanting the lenses. It resolves the sub-sampling
and pixels appear distributted more uniformly. Nevertheless, it introduces a problem of
alisasing because of irregular sub-sampling.

Another method worth mentioning is the projectional multiview display. It is based on multiple
projectors combined with optics that shape individual view zones. Like the other techniques,
the fact of showing multiple views makes this technology susceptible to aliasing artifacts. The
most common kind of aliasing is the so-called interperspective. It occurs when the spatial
frequency of a displayed 3D point in a scene is higher than the display's resolution. Visually,
it splits a continous blurred part of the image into fragments and can be prevented during
recording or corrected while editing.
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Figure 2.12: Outline of a mutliview display with 4 possible points of view and their
viewing zones

The in�uence of the MVD representation in the display module can be analyzed in accordance
with the number of views needed. In the case of the displays previously introduced, the stereo-
scopic and the autostereoscopic systems just need one view (meaning one video component and
its per-pixel depth information), while the multiview systems need at least one perspective (in
the case of the passive multiview, more than one video plus depth views). For the �rst subset
(one view), the MVD is not totally exploited. Rendering the second view from video plus depth
will always show artifacts, because no information for �lling the disocclusions is available. By
using two views, it leads to a better quality, because the second video plus depth view can
be used to �ll disoclusions with real information. Nevertheless, it is also interesting from the
standpoint of transmitting, inasmuch as the overall of data transmitted is less than the two
video signals (left and right). In both cases, the rendered views will be a pair compound by the
original view and a virtual one, which is obtained by shifting the original view (to the right or
to the left, depending on the original view). For the other subset (more than one view needed)
the MVD is used to render two images (left and right) for each viewpoint. It should be clear
that this process of rendering must be done at the reciever side, thus, in 3DTV, the display
will create the virtual views through the color information and its depth map associated.

For a global scope of display technologies the lecture of [2] is honestly recommended.
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Chapter 3

Analysis of MVD

Multiview video plus depth (MVD) data consists of color video plus depth sequences of one
to N views. Color component is typically captured with a mutli-camera array system (as seen
in section 2.2.1). Depth component is obtained from color video set with an algorithm that at
least needs two views (as presented in section 2.1). As depth maps represent the scene geome-
try, their features di�er from color video data. The main motivation of this chapter is to show
the most signi�cant di�erences between color video and its associated depth map.

To show statistical features of the given data set, known analysis techniques will be used in
this chapter, such as the one-dimensional histogram (section 3.1) and the spectrum of an image
(section 3.2). However, other analysis tools are recquired to obtain insights into similarities and
di�erencies between color and depth components. Therefore, a new method called Correlation
Histogram is introduced to illustrate the main characteristics of the so-called depth maps (sec-
tion 3.3). This method is also useful to distinguish between color and depth characteristics.
The results of this method will be shown and discussed in section 3.4. Finally, the Correlation
Histogram method will later be used to test the output of the solution proposed in Chapter 4.

3.1 Histogram

A histogram of a grey-level image is a discrete one-dimensional function that shows the amount
of occurrences of its grey values. In the case of this work, the range of grey values is [0, 255],
corresponding to 1 byte per pixel. Formally, a histogram is described as:

H(rk) = nk (3.1)

where rk is the kth grey level and nk the number of pixels with grey level rk. Thus, a his-
togram will have 256 bins H(rk). Generally, a histogram is normalized by dividing each bin by
the total number of pixels of the image (N). A constant image will have the same value rk for
all its pixels, what means in a normalized histogram, H(rk) = 1 and H(rl) = 0 for l ∈ [0, 255]
and 6= k. Loosely speaking, it gives an intuitive distribution of probabilities of grey occurences
in the given image. It must be considered that, for a sequence, if the scene does not change,
this distribution is fairly approximated. Otherwise, actions with the camera (like a panning, a
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zoom in/out or directly a change of the scene) will introduce a lot of changes in the scene. The
description of the used MVD data set can be found in the Appendix.

Histograms of color images representing real scenes typically shows soft transitions from one
value to the next (see �gure 3.1). Real images contain several various textures, with di�erent
color tonalities. Textures are associated to the physical object's properties. Formally, texture is
de�ned as the spatial variation in pixel intensities. Hence, for smooth textures (which are the
most common, i.e. clear sky, human skin, etc.) the variation of one pixel to its neighbors will
not di�er in exceed, while for rough textures pixel intensities will di�er more. Mathematically,
if texture is modeled with a sine function, smooth textures have a lower amplitude than rough
ones.

On the other hand, depth maps can vary according to the way in which they have been ob-
tained. Moreover, in the case of disparity maps not the whole range of values is used, and
therefore there will be a higher concentration in particular values. However, the shape of a his-
togram of a depth map (or a disparity map) reveals more information of the scene's geometry
than the color image (see �gure 3.1). Easily explained, the input of the color histogram is the
luminance channel, showing how the luminance is distributed in the scene. On the other hand,
the input of a depth histogram is grey values whose are directly related to the scene's geometry
(see �gure 2.5). Consequently, the background and the foreground can be e�ortlessly identi�ed
in a depth histogram.

Figure 3.1: Example of two histograms, corresponding to �rst frame of camera 0 of ballet
sequence. Color component (left) and depth component (right).

One of the reasons to use image histograms is because some characteristics, like the range of
values that is being used in the representation, are easy to exbtract. It also permits to extract
statistical values, like percentiles, or other ones for concrete algorithms and processes [18].
Unfortunately, despite histograms are really good at showing global features of images, they
are not able to manifest local e�ects. Moreover, histograms are not capable to show the intrinsic
relations of the image (i.e. edge transitions). For this reason and according to this work's scope,
a tool which brings qualitative features will be needed.
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3.2 Spectrum

The spectrum of a signal (or function) refers to a certain range of frequencies. To determine this
range of frequencies, the Fourier transformation is applied to the signal. This transformation
reveals periodicities in a function (or signal). In more detail, the output of this transformation
is a sum of sine and/or cosine functions of di�erent frequencies of the spectrum, each multiplied
by a coe�cient or weighing function (this sum takes the name of Fourier series for the �rst
case and Fourier transform for the second one). The Fourier transform is used in numerous
branches in mathematics, science and engineering. Speci�cally, in signal processing it is one of
the most powerful tools for analyzing and processing. Therefore, in image processing it is also
used because images can be interpreted as signals. Although the scope of this section is not
to explain the mathematics of this operator in detail, some basies need to be introduced �rst.
Thus, the one-dimensional Fourier transformation (F (u)) and its inverse are de�ned as:

F (u) =

∫ ∞
−∞

f(x) · e−j2πxudx (3.2)

f(x) =

∫ ∞
−∞

F (u) · ej2πxudu (3.3)

Where j is the imaginary number
√

(−1). Extending these formulae to the two-dimensional
case (f(x,y)) leads to:

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) · e−j2π(ux+vy)dxdy (3.4)

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v) · ej2π(ux+vy)dudv (3.5)

According to image processing interests, the discrete version of the 2D Fourier transform and
its inverse is needed. For a discrete two-dimensional function, f [m,n] with m in the range
[0,M − 1] and n in the range [0, N − 1], the pair of equations is:

DFT [k, l] =
1√
MN

M−1∑
m=0

N−1∑
n=0

f [m,n] · e−j2π(
km
M

+ ln
N
) (3.6)

IDFT [m,n] =
1√
MN

M−1∑
k=0

N−1∑
l=0

DFT [k, l] · ej2π(
km
M

+ ln
N
) (3.7)

with k and l in the ranges [0,M − 1] and [0, N − 1], respectively. Consequently, the output is
a "map of frequencies" with the same resolution as the original image. However, in all those
cases the transformation is from the real to the complex domain (f : R −→ C) and therefore
the complex output can be represented with a sum of the real and the imaginary parts, or
with a complex vector which has a modulus and a phase. Here the modulus will be used to
represent the spectrum. The modulus reveals frequency components, although the main and
most important information of the image is "stored" in the phase [19], but its representation
is totally chaotic.

The modulus representation is a 3D plot, but it can be represented with a 2D image with
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resolution M ×N . The content of this image is F (u, v) and, as similarly done in topography,
the mentioned value is mapped with a color palette. Another change to enhance the modulus
representation is the shift of the image in horizontal and vertical direction, which can be
achieved due to exponential properties:

F{f(x, y) · (−1)(x+y)} = F (u−M/2,v −N/2) (3.8)

F{·} represents the Fourier transformation of the content in between brackets. Particularly,
F (0, 0) is the energy (or mean value) of the modulus image. Once the shift is done, this point
is moved from the corner to the center of the image. Thus, low frequencies are located in the
center of the representation and high frequencies in the corners. Finally, the last processing
step done for a better representation is a logarithmic scaling:

Mod = log(1 + |F (u, v)|) (3.9)

Hence, high values (usually low frequencies) are scaled in a lower range and facilitates the
contrast with low values (usually high frequencies). The reason to add 1 to the modulus before
applying the logarithmic scaling lies into computer's exigencies (if |F (u, v)| = 0 the logarithm
returns −∞, what it is not possible to represent).
Now that the representation is de�ned, it is interesting to predict what can be seen in a spec-
trum. Abovementioned, the modulus representation is a "map of frequencies" of the image.
Thus, rough textures and edges, whose are both high frequencies, can be identi�ed in the cor-
ners of the frequency domain (see �gure 3.2). Here, variations are manifested as edges as well,
but oriented perpendicularly to the edges of the image domain (because it is the direction in
which intensity changes).

Figure 3.2: Example of spectrum representation in a greyscale. Edge transitions and
rough textures are located out of the center of the representation (red mark),
while constant regions are easily detected in the center of the spectrum (green
mark).

Spectrum analysis is good at disclosing scene's geometry from color images. However, the
texture in terms of high frequency, acts like additive noise and leads to vague interpretations.
Unlike the histogram, the spectrum is able to reveal intrinsic features of the image, but it is not
consistent enough to conclude if, afterwards, an image has been changed or not. With respect
to analysis and processing of MVD the task therefore is to �nd a tool capable to reveal general
features (as the histogram can) and also able to reveal intrinsic characteristics (as the spectrum
does), separating the nature of high frequencies (rough textures and edges).



3.3 Correlation Histogram 25

3.3 Correlation Histogram

In order to show similarities and di�erences between color and depth components of MVD, a
well-suited method, called correlation histogram, is presented. As its name suggests, this tool
shows the correlation between pixels. Moreover, it represents a two-dimensional histogram, that
gives an idea of how the correlated information is distributed.

Unlike classical histograms, correlation histograms use an array of bins H(k, l). Here, each
bin represents the number of speci�c pixel pair combinations with grey values k and l. As an
example, if the bin H(22, 33) = 102, the image being analyzed contains 102 pixel pairs with
values k = 22 and l = 33. As the statistical analysis covers the video luminance or the depth
information, both with 8 bits per pixel, an array of 256x256 bins is necessary. Figure 3.3 illus-
trates the two types of correlation histograms (called spatial and temporal) used for analyzing
the video and the depth component of the MVD sequences. Note, that references taken are
orthogonals (the scalar product of these three vectors is equal to 0) as it is represented in �gure
3.3.

Figure 3.3: Two types of pixel relations used for correlation histograms: spatial (red and
orange) and temporal (green)

To represent the correlation histogram a 3D plot would be needed. However, as it is similarly
done with the spectrum representation, an image of 256x256 pixels is enough (one pixel corre-
sponds to one bin). Then each value H(k, l) is represented by a pixel with an intensity value
according to a color map. Again, a logarithmic scaling is done in order to show a better contrast
between the most and the least repeated values:

H
′
(k, l) = log(1 +H(k, l)) (3.10)

In the following two sections, these two types of correlation histogram are described in detail:
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3.3.1 Spatial correlation histogram

In the case of spatial correlation histogram two orthogonal references are chosen (see Figure
3.3). This leads to two independent correlation histograms, one for "horizontal" and one for
"vertical" correlation, which are de�ned as:

Hv
s (k, l) = nsv (3.11)

Hh
s (k, l) = nsh (3.12)

with nsv the number of pairs of pixels with I(u, v, t) having the grey value k and I(u, v − 1, t)
having the grey value l and u and v being the coordinates of image I at time instant t. Simi-
larly, in equation 3.12, nsh is the number of pairs of pixels with I(u, v, t) having the grey value
k and I(u− 1, v, t) having the grey value l. Once the image is analyzed, the resulting vertical
and horizontal spatial correlation histograms are averaged in order to obtain a uni�ed data
representation:

Hs(k, l) =
Hv
s (k, l) +Hh

s (k, l)

2
= ns (3.13)

Note that, the �rst row and the �rst column of an input image have no vertical and horizontal
references, respectively, and are therefore not taking into account for analysis.

The chosen combination of pixel pairs (one above and one left) can be discussed. The main
reason of this combination is due to that it reveals intensity changes in both directions. In this
case, both references are orthogonals and by combining both in a same representation it is en-
sured that step pixel transitions in any direction are detected. Moreover, both pixel references
are at the minimum euclidean distance regarding spatial variations (i.e. by chosing diagonal
references the distance between pixels being analyzed is

√
2). Another possibility would be to

join both orthogonal references into a unique spatial correlation histogram. Hence, the corre-
lation histogram would be:

Hs(k, l) = ns (3.14)

in which ns is the number of pairs of pixels with I(u, v, t) having the grey value k and 1/2[I(u−
1, v,t) + I(u, v − 1, t)] having the grey value l (see �gure 3.4(a)). However, this idea do not
represent the exact pixel transition in the output. As an example, a vertical transition with
I(u, v, t) = 100, I(u − 1, v, t) = 50 and I(u, v − 1, t) = 100 results k = 100 and l = 75 (see
�gure 3.5). Therefore, the transition from value 50 to value 100 is represented in the output
with a point located in coordinates (100, 75).

Finally, another discarded combination is to set the "coding-neighborhood" as the second
element (l) of the pair (see �gure 3.4(c)):

Hcod
s (k, l) = nsc (3.15)

with nsc the pair of pixels with I(u, v, t) having the grey value k and 1/4[I(u−1, v, t)+I(u, v−
1, t) + I(u− 1, v− 1, t) + I(u+ 1, v− 1, t)] having the grey value l. This combination introduces
a new concept of diagonal pixels. However, this method has the problem that averages more
adjacent pixels than the elected one. Taking four adjacent pixels distorts intensity changes.
Following the example presented in �gure 3.5, here k = 100 and l = 80. Hence, values are not
mapped in the output according to pixels transitions (as it occurs with equation 3.14).
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(a) (b) (c)

Figure 3.4: Di�erent combinations for a spatial correlation histogram

Figure 3.5: Example of a pixel and 5 pixel neighbors. Black marked pixel corresponds to
k element of the pair.

As aforesaid, histogram analysis lacks of intrinsic relations between pixels. Additionally, a spec-
trum does not map rough textures and edges in di�erent parts of the modulus representation.
In contrast to that, the spatial correlation histogram has the ability to show intensity changes
from a pixel to its previous ones (in both orthogonal directions), which means, edges in the
scene can be well detected. With the aim to allow for a better understanding of the output,
some examples are presented in 3.6.

Four synthetic images are used to investigate the spatial correlation histogram output. All have
a resolution of 100x100 pixels and their values are in the range [0, 100], leading to a correlation
histogram with 100x100 bins1.
The �rst and the most simple case is an image with a constant value of 25, as shown in �gure
3.6(a). As there is no spatial pixel variation (I(u, v, t) = I(u−1, v, t) and I(u, v, t) = I(u, v−1, t)
∀u, v), the output is Hs(k, k) = 100 × 100 = 10000 i� k = 25 and equal to zero for any other
case.
Similarly, for the step function image in �gure 3.6(b) the output has red points along the diag-
onal (consequence of constant regions with di�erent values) and blue points below it, resulting
from horizontal edges (i.e. from 0 to 20, from 20 to 40, etc.). In the case of having softer tran-
sitions that keep constant in one direction, they are again mapped onto the diagonal, while
grey changes are located closer to this line. In particular, �gure 3.6(c) shows the result of a
horizontal gradient image (with a range of [26, 75]) where maximal pixel variations are of one
pixel di�erence and therefore a line is located one pixel below the diagonal2.

1For a better printed version visualization, �gures had been re-scaled to the range [100,200]
2Problems at displaying could not distinguish a yellow line (diagonal) and a green line (line below the

diagonal)
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(a) Constant image (b) Grey-step image

(c) Gradient image (d) Sinusoid image

Figure 3.6: Examples of four spatial correlation histograms applied to basic images (con-
stant (a), grey-step (b), gradient (c) and sinusoid (d)).

Finally, a horizontal sinusoid presents no changes in vertical direction, which leads to diagonal
values di�erent to 0. and the horizontal variations are represented by values above and below
the diagonal.

In accordance with the given de�nition of the pair of pixels and the presented examples, the
spatial correlation histogram representation can be di�erentiated in the following groups (see
�gure 3.7):

1. Diagonal. In this part of the output the pairs of values are similar. That means that soft
textures are represented along and around the one-pixel-width diagonal line. Flat regions
are located here in the case of depth maps.

2. Quadrant I. This subset is the one corresponding to low values. On one hand they will
mean dark regions (color) and on the other one background areas (depth).

3. Quadrant IV. Dual to the quadrant I, high values belong to this part. Bright luminance
values (color) are located here and foreground regions (depth) or objects will be here
represented.

4. Quadrants II and III. Both quadrants are set in the same group because both represent
the interaction of low and high values (and vice versa). In the case of color component it
means rough textures while for the depth it means interaction between foreground and
background (Quadrant II) and vice versa (Quadrant III).

Due to the orthogonal references taken, edges oriented in any direction can be detected by a
spatial correlation histogram. As a kind of histogram, it is good at showing how the information
is distributed (in this case, the correlation of the pair of pixels). Notwithstanding, this tool does
not represent the edges orientation. It is able to reveal changes of grey intensities but not the
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Figure 3.7: Generic output of a Correlation Histogram with four quadrants plus a diag-
onal region.

direction of them nor their location in the scene. Consequently, this tool is non-injective (several
di�erent inputs can lead to a same output), although in practice would be nearly impossible
to �nd a pair of natural sequences with the same output.

3.3.2 Temporal correlation histogram

Unlike the spatial correlation histogram, where pixels pairs belong to the same image, the
temporal correlation histogram needs two frames to be computed. Formally, it is de�ned as:

Ht(k, l) = nt (3.16)

with nt is the number of pairs of pixels with I(u, v, t) having the grey value k and I(u, v, t− 1)
having the grey value l and u and v being the spatial coordinates for each frame (see �gure
3.3). Note, that the �rst frame lacks of a previous reference and is therefore not taken into
account for analysis. Thus, if a sequence has F frames, F − 1 temporal correlation histograms
can be computed from them.

The motivation to chose this combination is because it is the closest temporal dependency. In
a discreet domain, it is the minimum euclidean distance regarding temporal dependency.
Another context for a possible use of this tool is with coded sequences. The intention would
be to analyze the di�erences between frames in the order they are transmitted, instead of the
order they are represented. A good test would be with a sequence encoded with an IPPP3

structure, where temporal references are in one direction. Hence, the result of such temporal
correlation histogram would show the degree of change between pairs of images that have been
used for predicting.

Spectrum analysis is good in detecting constant areas, but it does not give a clear idea of
their consistency. In contrast, temporal correlation histograms can be used for detecting static
regions of a sequence and determine if they are consistent or not. With the aim to allow for a
better understanding of the output, some examples are presented in �gure 3.8.

3In this sequence frames are coded in the Intra mode (I) and Predicted mode (P)
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(a) Diagonal movement

(b) Depth movement

Figure 3.8: Examples of two di�erent temporal correlation histograms. From left to right,
frame at instant t−1, frame at instant t and temporal correlation histograms
outputs. (a) represents a diagonal movement (constant depth value). (b)
represents a depth movement (variation in the Z coordinate).

Both �gures represent the output of a temporal correlation histogram for synthetic image
pairs. The total range of grey values is [0, 100] and therefore the resolution of the correlation
histogram is 100x100 bins (one bin per pixel). For both examples at instant t− 1, a box (with
value 70 and a size of 30x30) is centered in a 100x100 pixel resolution scene with a vertical
gradient in the range [26, 75].
For the �rst case, the box is displaced from the center to the top-right corner (changing its U
and V coordinates) but remaining at the same depth (thus, depth values belonging to the box
keep constant). The output shows the overlapped regions, where the diagonal corresponds to
the coincidence of the background and a quarter of the box with itself, and the other two lines
are the interaction of the box and the background.
For the second one, the box size and depth value are increased, representing the movement
from a farther to a closer position (with depth value is 95). Looking at the output, those values
that correspond to superimposed pixels that keep constant in time (only the background) can
be seen in the diagonal. The vertical line (x = 95) correspond to the area of the box that is
covering the background and the red point is the overlap of the box with itself, what means
Ht(95, 70) = 30× 30 = 900.

Note, that for a temporal correlation histogram, a sequence with no motion means that
I(u, v, t) = I(u, v, t − 1) and therefore Ht(k, l) = 0 if k 6= l and Ht(k, k) = nt with k in
the range of grey values of the given image I. In this case, all values are concentrated to the
diagonal. In both examples in �gure 3.8 the background is temporally consistent, as low values
keep on the diagonal and are not dispersed.
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In summary, the temporal correlation histogram output can be divided in the following groups
(see �gure 3.7):

1. Diagonal. It contains the values which did not change, meaning constant values (all those
I(u, v, t) = I(u, v, t − 1)). Thus, constant foreground and background is represented by
this line (depth) and also those regions that do not have a change of luminance (color).

2. Quadrant I. Subset corresponding to low values. Here the temporal variation of the back-
ground in depth maps is identi�ed. In the case of color component, changes in pixels of
low luminance are here.

3. Quadrant IV. Subset corresponding to high values, what means temporal variations of
the foreground. Similarly to quadrant I, changes of bright pixels are represented here for
color component.

4. Quadrants II and III. According to depth maps, it is the interaction between background
and foreground. Objects comming from the back to the front of the scene (by varying,
at least, the z component) belong to quadrant II, while objects moving from the front
to the back belong to quadrant III. Note, that e�ects of moving objects in horizontal or
vertical direction can not be predicted, as it depends on background's content. On the
other hand, pixels that change from dark to bright values correspond to quadrant III and
pixels that change from bright to dark values are located in quadrant II.

As aforesaid, this tool is useful for detecting temporal consistency. In the case of depth maps,
temporal correlation histograms can be used for analyzing background and foreground regions.
Note, that this analysis must be done for certainly static background and foreground. Other-
wise, some false detections could be comitted. It means that the data that is being analyzed
must be known when analyzing background and foreground areas (basically if there is motion
or not in those regions). All sequences used in this work present a static background in general.
However, constant areas (in a spatial sense) like the �oor or the background present sharp
changes of depth intensities, when these changes should be ideally a static gradient of a grey
level range (see Ballet or Breakdancers sequences). Moreover, even if these changes of depth
intensities are sharp, they must be static areas (in a temporal sense) as there is no motion in
the background and the �oor. As it happens with the spatial case, this tool is also non-injective.

3.4 Analysis results

A total set of six MVD sequences (see Appendix), with �ve natural sequences and one synthetic,
have been analyzed. Depth maps of natural sequences are obtained from color information with
di�erent methods. However, they present the inherent imprecissions which are typical of the
estimating algorithms. Hence, the synthetic sequence will be used as reference because it con-
tains ground truth depth information. All results are equalized regarding di�erent resolutions,
number of cameras and number of frames of the test data sets. Table 3.1 summarizes these
data set properties:
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Sequence Type Num Cameras Num Frames Resolution

Ballet Color 8 100 1024x768
Depth 8 100 1024x768

Book Color 3 100 1024x768
Depth 3 100 1024x768

Breakdancers Color 8 100 1024x768
Depth 8 100 1024x768

Horse Color 2 140 1920x1080
Depth 1 140 1920x1080

Newspaper Color 2 200 1024x768
Depth 2 200 1024x768

Synthetic Color 11 250 1024x768
Depth 11 250 1024x768

Table 3.1: Summary of the properties of the test data set.

In this section, 3 of 6 MVD sequences have been chosen for analyzing. These three sequences
are the Breakdancers, the Horse and the Synthetic. As previously mentioned, the Synthetic is
taken because it is a reference due to ground truth depth data. Breakdancers and Ballet have
been computed with the same algorithm and therefore it is interesting to take one of them for
analyzing (Breakdancers shows more characteristics than the Ballet set). The Horse sequence
presents features that are totally di�erent to the rest of sequences and it is also the only one
with di�erent resolution. Hence, the chosen sequences are diverse by presenting di�erent num-
ber of frames, cameras and resolutions.

The methods explained in this chapter have been used to analyze the data set summarized in
the table above. In order to show statistical di�erences between color and depth information of
the MVD representation, the histogram analysis is the �rst one applied and discussed in 3.4.1.
Then, the spectrum can be found in 3.4.2. Finally, the new correlation histogram method is
used to analyze the data set and the spatial as well as temporal results are discussed in 3.4.3.

3.4.1 Histogram

First, histogram results for video and depth are analyzed in order obtain insights into similar-
ities and di�erences of the color and depth characteristics. As mentioned in section 3.1, this
method is useful to reveal statistical features of the given data set. Hence, histograms are good
for showing general features, such as the range4 of values and their distribution. Figure 3.9
shows the histograms obtained for the 3 of the 6 MVD sequences, distinguishing between color
and depth.

Having a quick look at the results con�rmes that color component (left) have smoother curve
pro�les than depth maps (right). This di�erence can also be recognized in the rest of sequences
(see A.3). What is more, there is no strong correlation between color and depth histograms of
the same sequence. Consequently, regarding the approximated distribution of probabilities, it is

4The range is de�ned as the interval composed by the �rst and the last bins of a histogram that are di�erent
to zero.
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(a) Color Breakdancers (b) Depth Breakdancers

(c) Color Horse (d) Depth Horse

(e) Color Synthetic (f) Depth Synthetic

Figure 3.9: Histograms of 3 of the 6 MVD sequences, corresponding to color and depth.

not bene�cial to extrapolate values from one component to the other, con�rming their di�erent
nature. It is attested that a value of one component (i.e. color) cannot be extrapolated from the
other (i.e. depth) because both values di�er on their representation (luminance is incorrelated
with scene geometry representation).

Now analyzing color and depth components separately, the presented sequences almost use the
whole range for the color. Specially for the horse and the synthetic sets, some bright values are
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not being used. The shape of the histogram, or the approximated distribution of probabilities,
are also di�erent between them. Breakdancers present a high concentration in dark values (from
0 to 128 approximately) distributed in three main bell shaped regions with diverse visible peaks.
As an example, this range of values correspond to dark clothes or the wall of the background.
The Horse sequence also presents three main bell shaped regions which are concentrated in
the range from 0 to around 144, but just the �rst one has more than one peak. In this case,
this range of values mainly correspond to the �gure of the animal. By contrast, the Synthetic
data set presents four main bells plus four sharp peaks (located at around values 0, 8, 12 and
236). Here is di�cult to identify the source of these regions because this sequence uses a big
set of colors. However, luminance values in this sequence are more homogeneous by covering
the range [11, 236] and having a median value of 94, while for the Horse and the Breakdancers
the median is lower (80 for the �rst and 45 for the second). For these two sequences, the 95%
of the values covers the ranges [0, 110] (Breakdancers) and [0, 129] (Horse). All these statistics
can be found in percentile tables A.1 and A.2.
For the rest of the sequences, Ballet sequence presents a bigger concentration in the middle
values with two main regions, with more than 85% for the main bell shaped, while the other
two (Book and Newspaper) are using almost the whole range with a more uniformly distributed
probability of occurence, which is ranging between 0.2% and 0.4%.

Regarding the depth component, �ve of the six provided depth maps use the whole range of
values, which is not the case for the Horse sequence, which uses a small dynamic range (ap-
proximately [90, 157]). As afore mentioned, this data set uses a di�erent estimating algorithm
than the Breakdancers. In this sequence is easy to di�erentiate between foreground (�gure of
the animal and bottom of the image) and the rest. Having a look at the histogram, the biggest
peak corresponds to the horse and the part of grass that is closer to the camera (bottom of
the image). The Breakdancers sequence presents a high concentration in low and middle val-
ues with sharp peaks, representing a 80% for the range [0, 150] (see table A.2). This range of
values correspond to background areas (wall and young men standing up). From this value
to the brightest, values tend to be distributed uniformly. Contrary, the Synthetic sequence
accumulates almost 50% of the distribution in the interval [144, 192] with sharp peaks. Low
and middle values have a broad range but they are not distributed uniformly as Breakdancers
bright values. A good measure to highlight the "concentration" of values regarding the used
range is presented:

η =
Π(95)−Π(5)

range
(3.17)

where Π(x) is the percentile x of the histogram and assuming the term "concentration" as
the 90% of the values, excluding a 5% of the low and a 5% of the high values. Hence, the
concentration of these 3 sequences is summarized in the following table:

Sequence Π(5) Π(95) Range η

Breakdancers 54 200 226 0.646
Horse 105 137 67 0.478
Synthetic 26 187 237 0.679

Table 3.2: Concentration of used depth values
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It is worth mentioning that although the Horse set uses a small dynamic range, its concentration
does not di�er in exceed from the other two sequences. As depth maps give an idea of the scene
geometry, their essential target is to be an accurate representation for the algorithm that
renders the stereo color video pair. In summary, the quality of the depth map does not depend
on its range of values if the information is well used later and provides a good rendered stereo
pair.
The other 3 MVD sequences have a concentration of 0.728, 0.705 and 0.617 (for Ballet, Book and
Newspaper) which are similar to the Breakdancers and the Synthetic sequences. However, note
that, for Book and Newspaper sets certain available values are not being used, what prevents to
relate the idea of "utilization" of available values with the afore de�ned term "concentration".

3.4.2 Spectrum

While histogram analysis is good for deriving statistical characteristics, the spectrum repre-
sentation allows to observe some intrinsic dependencies. The main goal of analyzing from the
standpoint of frequency domain is to highlight similarities between edges present in the color
component and edges from silhouettes in the depth component. As mentioned in section 3.2,
just the modulus is taken into account for the analysis, as it is impossible to derive conclusions
from the phase. According to the modulus representation technique explained in section 3.2,
�gure 3.10 shows the modulus of both components of 3 MVD sequences.

First of all, Breakdancers and Synthetic sequences have the same resolution while the resolu-
tion of the Horse sequence is bigger (see table 3.1). For both sequences, there is coincidence of
line directions present in color and depth outputs, although it is clearer for Breakdancers than
the synthetic one. However, for the Horse set, it is really di�cult to attest similarities between
color and depth spectrums. For the remaining sequences, whose modulus representation can be
found in A.4, there is also coincidence of line patterns between color and depth components.
Note, that there is no exact match of direction and intensity of line patterns in color and depth
outputs, though it gives an intuitive idea of spatial variations. While depth maps present a
high concentration of low frequencies, color tends to have a spreader frequency range (color
video has more texture than depth maps).

Having a look at the color video spectrum of the MVD sequences, the Synthetic set presents
non-linear patterns, unlike it happens to the rest of the data. It also has weak lines, but what
makes it di�erent to the rest are the spirals around low frequencies. These spirals are due to
elliptical and round shapes in the scene (such as the tables, or the railtracks on the �oor, or
the texture of the couch and courtains). In this sequence, low frequencies in both directions
(vertical and horizontal) are distributed similarly. However, a high frequency response can be
seen for constant values regarding horizontal variation (|F (0, fy)| with fy ∈ [0, 767] is high).
In the same way, the Horse sequence presents a high amount of frequency response for fx = 0,
indicating that intensity changes occur in the vertical direction (i.e, the beginning of the trees,
changing from grass to forest). Nevertheless, it has the widest frequency range. On the other
hand, the Breakdancers sequence has a high concentration of low frequencies and a horizontal
variation bigger than the vertical one. The dominating line corresponds to the transition of
the stairs and the railing (variation in pixel intensities through the normal vector of this line).
Oppositely, Ballet has more variation in the vertical direction than the horizontal one. The
other two sequences, Book and Newspaper, have a wide range of low and middle frequencies.
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(a) Color Breakdancers (b) Depth Breakdancers

(c) Color Horse (d) Depth Horse

(e) Color Synthetic (f) Depth Synthetic

Figure 3.10: Modulus representation of 3 of the 6 MVD sequences, corresponding to
color and depth.

Nevertheless, just Newspaper has less presence of high frequencies with a frayed shape on both
corners.

As previously said, depth maps lack rough texture and consequently their spectrum has less high
frequencies. This fact can be seen in the depth spectra of Breakdancers and Horse sequences,
where high frequencies are not present. In the case of the Horse set, is worth mentioning that
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the amount area with no frequency (grey) is related to the dynamic range of the depth map.
In other words, the wider the dynamic range, the more possibilities of high frequencies. As
an example, if the dynamic range is low, the amplitude of the sinusoid will be low, although
its frequency would be high. However, the spectrum of the synthetic sequence reveals high
frequency components. The cause of these high frequencies can be related with gradient areas,
like the �oor, whose Fourier series results an in�nite sum of sinusoids.

The remaining two sequences, Book and Newspaper, have less high frequency components than
the ballet. For this last one, |F (0, fy)| and |F (fx, 0)| are both high, meaning constant regions
regarding vertical and horizontal variations.

3.4.3 Correlation Histograms

Both presented methods, spatial and temporal correlation histograms, are �nally used to show
the main di�erences between color and depth components of MVD. The pairs of pixels that have
been analyzed are the ones explained in subsections 3.3.1 and 3.3.2. As previously explained,
spectrum analysis does not illustrate strong correlations between edges present in depth and
color components. Moreover, it is di�cult to decide, if the spectrum of an unknown input
belongs to depth or to color component. Some general features of color and depth modulus
representation have been highlighted. Nevertheless, these features are not relevant enough to
analyze the MVD sequences in more detail that will be used subsequently.

First, spatial correlation histograms are analyzed for both MVD components and in a next
step temporal corration histograms. Breakdancers, Horse and Synthetic outputs of the afore-
said spatial correlation histogram tool are illustrated in Figure 3.11. Note, that bins far from
the diagonal represent sharp and bins near the diagonal represent �at pixel transitions, respec-
tively. Looking at the results, color outputs show the typical and well-known characteristics
with a more compact distribution along the diagonal, which is directly related to soft textures.
On the other hand, depth results are considerably di�erent, as depth correlation histograms are
much more frayed with isolated areas, hence representing sharp edges between foreground and
background objects. It is con�rmed again that for the color MVD component, values change
softly from a pixel to its neighbours, while depth has high pixel transitions. What is more, wide
bell shaped regions in histogram outputs are represented as wide areas around the diagonal and
sharp peaks are represented as thin areas around the diagonal with high values (tending to red).

Considering both components separately, the color output of the MVD set presents a generic
pattern for all natural sequences with a high concentration around the diagonal, while the
Synthetic sequence has a wider and more frayed shape around the diagonal.
Related to histograms again, the dynamic range of the sequence can be seen here as well. Spe-
cially for the Horse and the Synthetic ones, the luminance gamut is perfectly delimited by a
corner with a "saturation" value, which is the upper extreme of the interval.
The remaining sequences, which can be seen in A.5, present the described characteristics. Note,
that the range of values is practically the maximum for the Book and Newspaper sequences,
but not for the Ballet, as it was also commented in subsection 3.4.1.
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(a) Color Breakdancers (b) Depth Breakdancers

(c) Color Horse (d) Depth Horse

(e) Color Synthetic (f) Depth Synthetic

Figure 3.11: Spatial Correlation Histograms of 3 MVD sequences, corresponding to color
and depth.



3.4 Analysis results 39

Refering to the examples in �gure 3.6, depth maps should present characteristics comparable to
the constant and the grey-step images (�gures 3.6(a) and 3.6(b)). Hypothetically, spatial corre-
lation histograms should present a high density of values along the diagonal and its surrounding
bins (due to gradient regions as well) and some clear vertical and horizontal "lines" caused by
having edges in the scene. This is the case for the Synthetic sequence describing the suposed be-
havior perfectly. However, the results of natural sequences, like the Breakdancers or the Horse,
are frayed with isolated areas. Remember that the desired ouput are linear patterns. Here, the
inherent errors and imprecisions of depth estimation are relevant. Nevertheless, it is important
to highlight the symmetries around the diagonal in all cases (due to entire shapes in front of
the background). As an example, steep pixel transitions from background to foreground (left
to right or bottom-up) lead to points in the second quadrant and transitions from foreground
to background lead to points in the third quadrant. Mathematically, it can be understood as
Hs(k, l) = nA, where k and l are the grey values of foreground and background, respectively.
In the other sense, it would be Hs(l, k) = nB where k and l represent the afore mentioned
grey values. Note, that it is di�cult to have nA = nB regarding all sequences, because of a
non-constant background and distorted silhouettes. As a comment, take notice of the range of
values that are being used for depth maps, a statistic that can be subtracted directly with this
tool instead of using a complementary histogram.
The rest of the sequences (�gure A.5) also show the described characteristics. However, Book
and Newspaper sequences do not use some available values (as it was highlighted in subsection
3.4.1) and do not give a clear idea of line patterns and/or areas (because of their discontinuities
in values).

Finally, temporal correlation histograms are used to analyze the MVD data set. As explained
in subsection 3.3.2, the taken pair of pixels is a frame and its preceeding. Figure 3.12 illustrates
the output of this tool for Breakdancers, Horse and Synthetic sequences. Spatial correlation
histograms for color component present more compact distribution along the diagonal than
temporal correlation histograms. However, the Synthetic sequence is an exception: it has wide
areas around the diagonal in both outputs. This is due to the presence of a big set of colors. In
the case of depth component, the characteristic di�erences are essentially the same. Temporal
correlation histograms tend to have wider regions and less isolated patches.

Basically, the characteristic di�erences are the same as for the spatial correlation histograms.
As it could be foreseen, temporal correlation histograms for the color component have a major
concentration along the diagonal and its surrounding. For the depth component a straight diag-
onal line with no distortion in the �rst quadrant might be expected. As explained in subsection
3.3.2 and according to the sequence description in the appendix, background is suposed to be
static. Having a look at �gure 3.12, this behavior can be observed for the Synthetic sequence,
but not for the natural ones. Again, the static background is not well estimated and therefore
depth maps have temporal inconsistencies. Note, that in both cases there is a high level of
symmetry relative to the diagonal.

Analyzing the outputs per component, temporal correlation histograms for the color component
have some common characteristics. As previously said, values tend to be concentrated along
and around the diagonal. On the other hand, sequences with more motion (i.e. Breakdancers)
than others (i.e. Synthetic) present wider areas with more intensity. Nevertheless, the Horse
sequence (slow motion) presents a wide result. Remember that this sequence is the only one
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(a) Color Breakdancers (b) Depth Breakdancers

(c) Color Horse (d) Depth Horse

(e) Color Synthetic (f) Depth Synthetic

Figure 3.12: Temporal Correlation Histograms of 3 MVD sequences, corresponding to
color and depth.
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that has been recorded outdoor. Therefore, e�ects like the wind can vary rough textures in a
temporal sense (i.e. the grass or the hair of the horse). In this case, a pixel that belongs to
a rough textured area can get di�erent values due to external causes. Consequently, temporal
correlation histogram gives an intuitive idea of the grade of motion of the sequence. Note, that
if a sequence has external causes, like �ickering, or changes in the ambient light, these e�ects
will have therefore an impact in the temporal correlation histogram output.

As aforementioned, the correlation histogram of natural sequences is more frayed and presents
continuous patches, instead of linear patterns and isolated (or less frayed) areas. It is impo-
rant to highlight that symmetries regarding the diagonal are present again. This fact can be
described locally by having objects appearing and disappearing. Ideally and refering to a local
e�ect, an object (i.e. a �rst frame) that moves (second frame) and goes back to the initial po-
sition (third frame), causes an analysis such that references for �rst histogram are I(u, v, t− 2)
and I(u, v, t− 1), and I(u, v, t− 1) and I(u, v, t) for the second. Thus, bin values of both out-
puts are the same if one of them swaps its axis (because I(u, v, t − 2) = I(u, v, t)). However,
this e�ect cannot be interpreted in a global context, but rather gives an instinctive idea of the
amount of symmetry expected. Therefore, exact symmetries cannot be expected.

Comparing the Synthetic output with the natural sequences exposes that temporal consistency
is a problem with depth estimation algorithms. As previously commented, the �rst quadrant
shows the amount of temporal variation of low values (background). Ideally, when having
a static background, and as it happens to the Synthetic sequence, the desired output is a
straigth line, meaning no temporal variation of those values that compound the background.
Nevertheless, this �rst quadrant for natural sequences is unfortunately covered by a region and
not a line. What is more, in the case of the Breakdancers sequence, this area is really big,
revealing a high temporal inconsistency.
For the remaining sequences, it is worth mentioning that temporal consistency can be also
seen, despite the non-use of available values.
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Chapter 4

Improvement of MVD

It is well-known that image processing is aiming at two di�erent, external and internal, targets:
the �rst one is directly oriented to human perception by making up and improving pictorial
information, and the second one focuses on data storage, coding and transmission [20]. In the
�eld of 3D video with depth-enhanced representations, depth maps are used to represent the
third spatial dimension. They typically utilize just 1 byte per pixel for the depth information,
what is good for transmitting (less data on the channel than transmitting a stereo video pair).
Although image processing contributed a lot to improve the visual perception, there is still
a lack of extracting high quality depth information from a given data set (see Figure 4.1).
Instead of improving algorithms that create depth maps, the main goal of the color video edge
extraction method is to use the color information to, somehow, reconstruct the exact pro�le of
silhouettes present in the scene, as these are the determining factor for the quality of rendered
views. To carry out this idea, it is needed to have a tool to extract the edges from the video
data, a processing tool to match this information with depth values and a reconstructor sub-
system to reshape the depth map according to the new pro�les.

Figure 4.1: Sample of Color plus Depth representation of Breakdancers sequence. Rep-
resentative defective depth pro�le comparing to color edge.

In accordance with the hierarchy of MPEG codecs, the implemented system works with 4
di�erent layers. Figure 4.2 shows these layers from top to bottom: a sequence (layer 1) is
composed by groups of images (layer 2). Each image (layer 3) is formmed by squared
blocks (layer 4) which consists of a certain number of pixels (minimal image information). It
has been designed in a way that a superior layer can use intrinsic operations of a lower layer,
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but not vice versa. Thus, the algorithm receives two input sequences (video and depth) and
delivers one ouput (processed depth). The main processing pipeline takes the two components
and reads in frame by frame. Matching this abstraction with the system hierarchy, it leads to
2 di�erent subsets working in di�erent layers: the Color Edge Detection subsystem working at
the 3rd layer and the Depth Map Fitting subsystem operating at the 3rd and 4th layer.

Figure 4.2: Scheme of the hierarchical top to bottom layers. Each layer is composed by
the layer below

This chapter is organized as follows: section 4.1 gives an overview of the aforementioned subsets
and a detailed explanation of their corresponding submodules. Section 4.2 presents a study
of the correlation between extracted edges from color and depth. Results are presented and
discussed in section 4.3 according to the system structure and its con�guration options.

4.1 Extraction of color edges for depth map improvement

Having a look at the block diagram of the system presented in Figure 4.3, two independent
main modules and their working layers can be distinguished. In general terms, the �rst subset
is in charge of preparing the edge information (E) from the color component (C). The second
subsystem, also in the 3rd layer, smooths the depth map (Db). Furthermore, but now in the
4th layer, it elaborates a list of suitable blocks to be processed. Blocks that are not taken into
account for processing are intended to be background or smoothly textured foreground. One
must consider that the ground truth is the depth map itself, and consequently if a block of
the depth map is not suitable to be improved it should be skipped instead of wasting time on
computing something not improvable. Later, this criterion to establish the possibility of a block
to be improved will be concretized. Then, this second subset �nds blocks (Bi) of di�erent sizes,
which are divided by an edge and thus separating two regions. Depth values that are computed
by a reconstructor module are set to each region. Finally, the last task of this subsystem is to
compose a new depth map (DE), getting on one hand the improved blocks (Bi) and on the
other hand the blurred depth blocks (the corresponding blocks in Db according to the list of
suitable blocks).

Due to multiple modules and submodules composing the system, several con�guration options
are available. In order to evaluate the impact due to input parameters and/or the chosen
criterions of some submodules on the output, three working options have been de�ned and
tested for the whole subsystem. These options have only in�uence on the second module. Next,
the complete system and its modules are presented.
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Figure 4.3: Schematic diagram of the system working in the third layer (green) and in
the fourth layer (red). Thick arrows represent intput/output images, the thin
one input/output blocks and the discontinuity one metadata (the list).

4.1.1 Edge Extraction

The main question regarding the extraction of the edge mask is: which edge detector among
the various existing solutions is better adapted to this process requirements?. To answer this
question, some history of edge detectors is presented.

Since the beginning of the 1970s, some specialists on image processing started to research fo-
cusing on edge detectors. In terms of image processing an edge corresponds to a discontinuity
in the intensity surface. Therefore, a tool labeled as edge detector must serve to simplify the
analysis of images by reducing the amount of data to be processed, while preserving useful
structural information about object contours.

Localization and robustness with respect to noise are some of the objectives of edge detectors.
Several methods have been developed with the aim of achieving these objectives. Some of these
proposed methods are simple derivatives [21], [22], optimality criteria [23], curve �tting [24],
junction restoring [25], [26] or linear operators [27]. In general terms, one could divide the
di�erent edge detectors in three groups: the �rst uses an intensity gradient of the image, the
second performs a post-processing algorithm based on recovering scene topology and the third
compares di�erent �ttings. They all have in common a certain pre-processing step; an image,
from the signal processing point of view, is composed by the sum of information plus additive
Gaussian noise. Thus, a �ltering step to reduce the noise, which normally would be a Gaussian
operator, is needed. The main reason to use a Gaussian �lter is because it is computationally
inexpensive. However, the size of the Gaussian kernel must be set as an external parameter.
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Over the years, algorithms became more complex than a simple derivative. The fact of having
a decision criteria in a part of the algorithm requires the systems to introduce more external
parameters, in some of them called thresholds or scales, depending on the functionality of each
one. This matter can be easily solved by just setting a constant value to each external pa-
rameter, but this would lead to sub-optimal results, because sequences di�er in characteristics
(amount of motion, texture, etc.).

Arriving at this point, the question of which edge detector should be used is posed again. The
most obvious answer would be "the best one", but some other requirements must be consid-
ered. One of this requirements is the ease to �nd public source code. While sur�ng the net, the
most popular and casted detector is the Canny. It is also implemented in the OpenCV project,
which library has been used to develop this project.
Furthermore, a study from 1996 reveal that Canny and Nalwa-Binford edge detectors are the
best ones [28]. Nalwa-Binford has the advantage that setting external parameters to a constant
value does not a�ect to results quality as it happens for other edge detectors. However, Canny
presents better results when parameters are chosen adaptively. In addition, it is found that
Canny's thresholds could be set dynamically [18]. Considering all these points, the Canny edge
detector is the elected one to be used in the presented system.

Now that the core component of this subsystem is clari�ed, the other submodules will be
introduced. Figure 4.1.1 shows the scheme of the edge detection subset:

Figure 4.4: Scheme of the edge detection subsystem. The Color image (C) is blurred (Cb)
for a better output (E) of the Adaptive Canny Edge Detector submodule.

As it can be seen, these two aligned processes are necessary for extracting the edge mask. Next,
it is explained how these submodules work:

• Pre-processing
As aforementioned, the main motivation is to reduce rough texture while preserving
contours. It means that it is interesting to smooth spatial variation in pixel intensities
(texture), when these intensities are lower than a high spatial variation in pixel intensities
(edge). Although reducing texture is important for the next submodule (it will prevent
false edge-detections), most important issue here is to keep up the edges. This trade-o�
could have been achieved by using a bilateral �lter [29]. However, it needs more external
parameters that depend on the texture of the image. Consequently, a texture pre-analysis
would be needed in order to set the values properly. However, texture analysis is not the
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target of this work. Moreover, bilateral �lter works better with CIE Lab color represen-
tation.
From a signal standpoint, an image is compound by useful data and random noise. Thus,
the best way to reduce the noise is with a low-pass �lter, tpically with a Gaussian shape.
Moreover, the computational cost of implementation of this �lter is not expensive. Con-
sequently, it saves a lot of computational cost for further steps. A Gaussian smoothing
from the OpenCV library is used and the kernel size required for the Gaussian �lter is
set to a constant value. The values accepted by the function are odd numbers and the
value is set individually for each sequence.

• Canny Algorithm

Thanks to the OpenCV project it was not necessary to implement the Canny algorithm.
Even so, its functionality must be explained. According to Canny's publication [23], the
edge detector is composed of 4 steps. First of all, the input image is smoothed with a
Gaussian �lter to reduce noise. This task is already done by the previous submodule.
Then it �nds the image gradient to detect regions with high spatial derivates (here an
aperture size for the Sobel derivative operator is required). The third step is the so-
called nonmaximum suppression. It tracks along the regions gathered in the previous
step and suppresses all those pixels that are not at the local maximum of the gradient
direction. Finally, it again tracks along those remaining pixels and applies a Hystheresis

Thresholding. If a value is below the lower threshold (TL) then it is rejected. The value
will be accepted as an edge point if it is above the high threshold (TH) and if the value is
between the TL and TH , it is labeled as edge i� it is connected (with a path) to a value
over TH .
After testing several inputs for the Canny edge detector it has been found that the best
input is the luminance channel (Y). The theoretical justi�cation is very simple. Using just
one color channel would exclude some relevant color information for edge detection. It is
also sub-optimal to use the 3 RGB channels by combining them with boolean operations
(e.g. if R == G == B ⇒ output = 1, or e.g. if (R+G+B)/3 > 50% ⇒ output = 1).
Another possibility, also sub-optimal, could be to average the 3 channels, resulting in a
non-standard luminance. The reason why all these possibilities are sub-optimal is that
they do not consider the nature of the light and how the human eye absorves it [30].
Therefore, the input for the Canny algorithm module will be the standard luminance
de�ned as:

Y = 0.299 ·R+ 0.587 ·G+ 0.114 ·B (4.1)

with R, G and B in the range [0,255]. It would also be interesting to cite some discarded
options for the input of the Canny algorithm module. It has been seen that, in general,
edge detectors do not work good on dark image areas. Having in mind the nonmaximum
suppression of the algorithm, one evaluated option was to use subdivisions of the images
as input for the edge detector, making the edge detector to work better in darker parts
of the image. Unfortunately this idea did not improve the Canny output.
Nevertheless, the main inconvenience of the Canny algorithm is the need of three exter-
nal parameters. Two external parameters are the low and high thresholds TL and TH ,
respectively. In order to have a dynamic behavior and an independent treatment for each
image, thresholds for the Canny algorithm are de�ned addaptative for each image. The
main reason is that for the same scene there is not always the same ambient light in
each frame and consequently the sharpness of some edges could be distorted. Basically,
a histogram of the spatial derivatives is included between the second and third steps ex-
plained above (as it is similarly presented in [18]). As explained in section 3.1, histograms
show, how the information is distributed. Hence, it is a good tool, as reveals the amount
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of "strong" spatial derivatives. Hence, these spatial derivatives will always be succesful
detected. Vice versa, using a histogram for spatial derivatives is good because reveals the
"weak" ones. Therefore, the histogram will help to erase a lot of noise. Speci�cally, the
histogram is computed with 64 bins. Then, thresholds are chosen according to a rule: TL
is the bin (later scaled from [0,63] to [0,255]), which is equal or higher than the 80% of
the image resolution. TH is set to 2.5 times the �rst threshold. The values for the �rst
threshold and the ratio are arbitrary, but after several tests it was proven that they were
most suitables for the given data set. There are also some recommendations, like in [31],
that suggest a ratio high:low between 2:1 and 3:1. By setting the proposed values, this
rule is accomplished and it is ensured that TL and TH are in the range [0,255]. Further,
the aperture size parameter is directly set to 3, as higher values do not give satisfactory
outputs.

The output of this module is a binary image with the same resolution as the input. This binary
image is one of the two inputs for the next processing step. However, the edge mask presents
some imperfections. As aforesaid, edge detections are preferred over missing structural edge
information. Consequently, there can be texture areas, not totally smoothed, that are repre-
sented as edges (see Figure 4.5). Then, the next module will have to detect these false cases and
try to remove as many as possible. Further investigations could focus on preserving the correct
location of the edges while smoothing high textured areas. The use of a bilateral �lter is a good
option. In order to set parmeters dynamically, a texture analysis must be done. Nevertheless,
there is also some other inevitable cases where dark areas present false edge detections.

Figure 4.5: Canny output for Horse sequence. Grass (rough texture) is detected as edge
information.
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4.1.2 Depth enhancement due to edge information

This subsystem is in charge of extracting a list of blocks from the depth maps, which are capa-
ble to be processed and to use the edge mask obtained from the color information to improve
the silhouettes of the scene. To achieve this improvement, the depth map �tting subsystem
treats each suitable block independently. For this purpose, each block is analyzed in order to
detect if it contains two (and only two) regions of pixels divided by one (and only one) edge
line. Here, a region must contain at least one pixel and the edge line does not belong to any
region. If this is not the case, the block is splitted in a quadtree structure and the subblocks are
consequently analyzed again, as if they were a normal block, but the number of pixels being a
quarter part of the original one. If the block presents two regions, then the subsystem re-�ts
the depth map according to the region information obtained from the color. Once those parts
of the images, that are suitable to be improved, are processed, the new depth map is built.
Figure 4.6 illustrates the 4 submodules and their working layers can easily be di�erentiated:

Figure 4.6: Block diagram of the depth map �tting subset and according working layers:
the green area corresponds to the image layer and the red one to the block
layer.

The reason for creating such a list in this subsystem is to improve all blocks according to
their characteristics. Hence, for e�ectively improving blocks, an order of di�erent actions will
be set. Here, the �rst open question appears: how to distinguish between types of blocks. The
improvement step and the rebuild process are the core of this subset. The functionality of each
module is detailed below together with their working options, if available:

• List of suitable blocks
First of all, it is important to de�ne what should be understood as a suitable block to be
processed. In this context, a depth block can either contain a homogeneous part of the
image, like the foreground or the background, or contain a non-homogeneous region, like
an interaction between the foreground and the background. Hence, there is a distinction
between homogeneous and non-homogeneous blocks, where the �rst group contains those
not suitable to be processed by the algorithm module. The other group, where an edge (or
more than one) is present, contains those quali�ed to be processed. In terms of processing,
the homogeneous blocks will present a sharp histogram, with the main characteristic of
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a low variance. Contrary, the other set might yield a less uniform histogram, resulting
in a higher variance. Mathematically and regarding to computation time, the calculus of
the variance is a good method to have a threshold for di�erentiating types of blocks. For
this, the common formulae of the mean value (4.2) and the variance (4.3) are:

x̄ =
1

N
·
N−1∑
i=0

xi xi ∈ Bj (4.2)

σ2 =
1

N
·
N−1∑
i=0

(xi − x̄)2 xi ∈ Bj (4.3)

with N being the number of pixels of the current block and xi the grey value of a pixel
that belongs to block Bj .
In the processing chain, the variance is �rst computed and then compared to a constant
threshold. If the variance is higher than the threshold (dispersion of values), this block
will be considered as suitable to be processed. Otherwise it will be skipped for the fol-
lowing submodules.

Three di�erent options are used for setting up the parameters in this module. In Option1
and Option2 the threshold is set to a constant value. For the �rst option, the algorithm
is launched for eleven values (from 20 to 30 in steps of 1), in order to evaluate the dif-
ferences in terms of statistics (number of processed blocks, discarded, etc.) when chosing
a constant threshold. For the second, the algorithm is launched just once but according
to the optimal threshold of the given sequence. This optimal threshold is obtained from
the correlation between color edges and depth maps presented in section 4.2.

However, another option to distinguish between suitable and non-suitable blocks for pro-
cessing is simply the edge detection itself. In this case, the input of the system is the edge
mask. Here, blocks with no edge are labeled as non-suitable. Otherwise, if just a single
pixel of a block has an edge value, the block is labeled as suitable. This is the criterion
used in Option3.

• Algorithm
This part of the process is the core of the complete system. The main motivation of
this work (improving the silhouettes of the depth maps) is basically implemented in this
block. Thus, the goal of this submodule is to deliver an improved depth block to the next.
As one can imagine, this is extremely optimistic and hence not always this improvement
will be achieved, in which case the block will not su�er any alteration.
This module is a recursive algorithm based on a quadtree structure. It means that, the
algorithm generates four calls to itself by changing some input parameters. This operation
starts with the "maximum block layer size", a constant parameter that depends on the
resolution of the frame. According to another constant parameter ("number of allowed
recalls"), this process of re-calling itself by dividing the block in quarters can be done
three times. A block can be subdivided and a recursive function can be executed for
each of these subblocks. As an example, if a block (which size is 64) is subdivided, the
algorithm recalls itself four times (for blocks which size is 32). For each subblock, this
operation is repeated if is needed. This operation can be done up to three times, meaning
that the smallest block size in this example is 8.
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In order to provide a deeper insight to the procedure of this module, Figure 4.7 illustrates
the processing structure:

Figure 4.7: Scheme of Algorithm module. It needs 3 inputs, 2 are in the 3rd Layer (E and
D) plus metadata (List). It delivers blocks (4th Layer) plus labels (Metadata).

Before explaining all submodules in detail, some de�nitions are previously needed.

1. Neighborhood
In the case of pixel domain, a neighborhood of a pixel is the number of pixels
inmediately close to it. I.e., a 4-pixel neighborhood are the upper, lower, left and
right pixels of the current one.

2. Maximum distance allowed

Positions are indexed with natural numbers in a discreet domain. In the case of image
processing, pixels of an image are usually indexed with two coordinates, namely u
and v. Thus, the maximum distance allowed is de�ned as the euclidean distance
between a pair of pixels. I.e., for a 8-pixel neighborhood the maximum distance
allowed is

√
1 + 1 =

√
2.

3. Connectivity
Condition of a pair of pixels such that their distance is below or equal to the maxi-
mum distance allowed.

4. Initial and end sets of points

Set of points which are connected. All points must belong to one of the 4 borders
of the block. Each point must be connected, at least, with another point of the set.
Initial (Ini) and end (End) sets of points are a part of an edge in a block. They are
unconnected, meaning Ini

⋂
End = ∅ (see green pixels in �gure 4.8).

5. Path
Set of points which are connected. The Path must connect the Ini and the End
set. Because of that, any point of the set can not belong to a border, meaning
Ini

⋂
Path = ∅ and End

⋂
Path = ∅ (see white pixels in �gure 4.8).

6. Isolated line

Set of connected points such that they have no connection to a Ini, End or Path
set.
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This algorithm works with an 8-pixel neighborhood, resulting in a maximum distance
allowed of

√
2. Next, submodules are explained according to the de�nitions.

� Removing useless edge detections
At the end of section 4.1.1 the imperfection of detecting the edges is mentioned.
However, those regions with high texture in color component are not considered,
if they represent foreground or background (low variance) in depth maps. Taking
into account the information from the list of suitable blocks, it is useless to process
blocks that are not going to be improved and therefore some computation time will
be saved. Thus, this submodule, that has the edge mask as input, deletes small edges
in blocks i� these blocks are labeled as suitable blocks1. In terms of signal process-
ing the noise is being reduced while information is being preserved in this submodule.

� Removing isolated edge pixels
This submodule erases edge pixels that are located on block borders (x = 0, y = 0,
x = bs − 1 and y = bs − 1) and do not have another edge pixel within maximum
distance allowed. Note, that on block borders, the neighborhood has three pixels
less than a normal 8-pixel neighborhood for regular positions, except corners that
have 5 pixels less (although the maximum distance allowed in both cases is still

√
2).

This process avoids having Ini or End sets of points with just one element and no
connection to a path.

� Crossing lines
Once having the block with less possible noise, the crossing lines submodule is in
charge of �nding a unique line that crosses the block. It means, that there is one
and only one Ini and End sets, and that they are connected by a unique Path. This
Path must contain the total number of pixels. Therefore, blocks that presents lines
with branches (see �gure 4.8) are discarded. This process follows three elementary
steps: the �rst is to check if there are a valid Ini and End set; the second is to
verify if a path that connects both sets exists; the third one checks the absence of an
isolated line. This submodule produces three metadata outputs, what are labels for
the current block. The "Ok" label is set to a block that passes these three checks.
The "Skip" label is for those blocks that do not contain any edge pixel. As it can
be foreseen, just the �rst check is the one able to set "Skip" for a block (if Ini = ∅
and End = ∅). The last label, the "Error", is for those blocks that do not pass all
three checks.

Figure 4.8: Example of a correct path (left) and an incorrect path with a branch (right).
In both cases Ini and End sets are marked with green

1Note, that this submodule is not part of the recursion and therefore is applied once to each block of the
suitable blocks list.
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� Quadtree and recursion
If a block is marked with the "Error" label, this submodule splits the current block
into four new blocks, whith half the side length of the parent block. However, co-
ordinates must be recomputed according to each child block. Then the recursive
function is re-called for each child, and the core algorithm (except the Removing
useless edge detections submodule) is applied again. According to the constant pa-
rameter "number of allowed recalls", a suitable block can be splitted up to 3 times.
I.e. if a suitable block has 40x40 pixel, the algortihm can re-call up to blocks with
5x5 pixel.

� Re-�tting
The input of this submodule is a block composed by two regions, which are sep-
arated by a line. The readjustment process must be done over depth transitions,
what in color edge detection means over the edge line detected. The typical problem
that depth maps present in contour areas is some jittering over the desired pro�le
(see �gures 4.9(a) and 4.9(b)). Normally the width of this jittering is one pixel, but
in some cases it is more than one (and therefore a noisy contour). It is reasonable,
to create an "unknown" area around the edge (from the edge mask) to, afterwards,
reconstruct the correct pro�le according to color information. The easiest way to
implement this idea is by doing a dilation (see �gure 4.9(c)) of the line with a cross
structuring element (one pixel above, one below, one right, one left). Thus, the un-
known area is a 3-pixel wide line. Then, the block gets divided in three di�erent
regions, namely A, B and Line. For regions A and B, values from the depth map are
directly copied to the reconstructed depth block (�gure 4.9(d)). The reason to copy
values directly is because the output should be as similar to the input as possible,
but with reshaped contours and with smoothed �at areas where no edge is present.
Hence, the depth information is preserved for regions A and B. In order to avoid
miss-reconstructions, the variance of region A and region B are computed to ensure
�at regions. If region A and/or B are not �at (high depth transitions), then the block
is discarded and consequently not improved. Here, the threshold used to discrimi-
nate is the same as the one used in the List of suitable blocks module for Option1
or Option2. Mathematically, if σ2A < Th and σ2B < Th, then the block is accepted.
Finally, the Line region is reconstruced as it is illustrated in �gure 4.9(e). To achieve
this, pixels adjacent to region A that belong to the Line region are computed by av-
eraging pixels from A considering a 4-pixel neighborhood (note, that the maximum
number of pixels to average is 3). I.e., in a vertical line, pixels of the left side of the
Line region will take the left adjacent pixel (because this is the only pixel that not
belongs to the Line region in a 4-pixel neighborhood). The same is done for pixels
adjacent to B. Once adjacent pixels to A and B are computed, they are labeled as
part of A or B region, according to their adjacency. The last step is to set correct
values for the pixels of the real edge line. Similarly done with a 4-pixel neighbor-
hood, the maximum value of the 4 neighbors (regarding only to those that belong to
region A or B, as line region are unknown values) is the selected value to be set (see
�gure 4.9(f)). Once it is done, the block can be regarded as improved (�gure 4.9(g)).

Despite the fact that this submodule has several subsets, it is totally independent of the
working option. It works purely as a set of actions/operations independent of the criteria
to decide if a block is suitable or not, or the way a block is smoothed or not. Therefore,
it makes the structure robust, as it does not change its procedure.
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(a) Edge in a
Block

(b) Original
Depth

(c) (d) (e) (f) (g)

Figure 4.9: Scheme of Re-�tting submodule.

• Depth blurring

In order to solve the background problem presented in section 2.1, it is thought to use a
�lter to blur the depth image. Thus, all those blocks labeled as background or foreground
could feature the mentioned problem and can be improved with a rough smoothing. This
smoothing is implemented, with a Gaussian �lter again, which kernel size is 9. Another
option, that was discarded, was to use a Median smoothing �lter. The main problem
of using this �lter is that the output presents a block-e�ect, which is a problem for the
rendering process (it may cause e�ects like having boxes standing out of the background
while it should be �at). However, the Median �lter showed good local results, but for the
global goal of this process a continuous blur is preferred. Note that this process uses a
Gaussian �lter and, as previously explained, it is fast and easy to implement.
In Option1 a smoothed depth map is created in order to provide improved depth inforam-
tion for the depth composer (for those blocks labeled as not suitable to be processed). A
hierarchycal smooth is thought for the other working options in order to provide improved
depth information for those blocks that have been labeled as "Skip" in the previous sub-
module. Thus, a set of four smoothed depth maps with a Gaussian �lter is prepared for
the depth composer submodule, whose kernel sizes are 9, 7, 5 and 3 (three more smoothed
depth maps according to the constant parameter that allow the reinvokation of the Al-
gorithm submodule).

• Depth Composer

This submodule is intended to embed the solutions provided by the Algorithm and the
Depth blurring submodules. Working in the Block Layer, the Depth Composer assem-
bles the output with all the output blocks of the Algorithm submodule. Then, all those
blocks that might correspond to the background or the foreground, are taken from the
Depth blurring submodule's output. Thanks to the List of suitable Blocks, these remain-
ing blocks which not belong to this list are labeled as background or foreground and
therefore they complete the improved depth map. Hence, the output of the whole system
has an improved background and foreground, and silhouettes which correspond better to
the real scene.
In Option1, when composing the new depth map, all those blocks that have been labeled
as not suitable are taken from the smoothed depth map (with a Gaussian kernel of 9).
However, the "Skip" blocks from the Algorithm submodule are copied directly from the
original depth map, without any change. As it can be seen, this is a less forcing working
option. On the other hand, Option2 and Option3 have the same behavior as Option1,



4.1 Extraction of color edges for depth map improvement 55

but the "Skip" blocks are copied accordingly to their block size and their corresponding
smoothed depth map. Table 4.1 summarizes the relations:

Number of pixels per block Kernel size
Max_block_size2 9
Max_block_size2/4 7
Max_block_size2/16 5
Max_block_size2/64 3

Table 4.1: Relation of kernel size and block size

As it has been mentioned in the description of the modules, three di�erent working options
have been chosen. The modules that depend on these options are the Suitable Blocks, the
Depth Blurring and the Composer. In summary, the �rst one elaborates a list of suitable
blocks according to variance criteria (Option1 and Option2) or according to edge presence
(Option3). The second module uses a single smoothed regular background and foreground for
non-suitable blocks in Option1 or a hierarchycal smoothed regular background and foreground
for "Skipped" blocks in Option2 and Option3. Finally, the Composer copies original depth val-
ues for "Skipped" blocks in Option1 or takes the corresponding smoothed block by the Depth
Blurring module accordingly to its hierarchy in Option2 and Option3. Table 4.2 organizes those
set-ups by working option:

List of suitable blocks Depth blurring Depth composer

Option1 Calculus of variance Single depth blur No change if "Skip" la-
bel

Option2 Calculus of variance Hierarchical depth blurring Depth values from hier-
archical smoothing

Option3 Edge criteria Hierarchical depth blurring Depth values from hier-
archical smoothing

Table 4.2: Working options and the corresponding block's set-up.

Similarly as the Color Edge Detection subset, this subsystem has inherent problems. Analyzing
each module, the List of suitable blocks and the Composer modules do not introduce any
problem. However, the Algorithm is based on some criterias that can be discussed. On the one
hand, the Removing isolated edge pixels submodule acts without considering the possibility of
deleting a real edge. One reason for this is the use of a �xed grid, meaning non-shiftable. Then,
a pixel belonging to a border of a block could be, i.e., the peak or the end of a curve of the
adjacent block. Therefore, the edge information is being slightly distorted. However, there is a
trade-o� between preserving the edge information entirely or, in contrast, deform it a bit and
bene�t of the behavior of the algorithm. Conclusions have led to the second option. On the
other hand, the Re-�tting submodule is based in a blind faith in one pixel-width jittering of the
depth maps. This jittering is measured from the edge that is in the edge mask to the farther
depth value of the corresponding depth transition (it is equal to 2 in the example presented in
4.9). In that case, the dilation takes no e�ect for providing the "unknown" area (look at top and
bottom pixels that keep invariant in �gure 4.9), because the high jittering remains invariant
(the one pixel-width jittering is corrected). In order to set a correct "unknown" area, it would
be possible to compute the area between the real color edge and the depth transition. In this
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case, larger scale jittering would also be covered. Finally, the Depth blurring submodule might
be too aggressive with a big kernel size. This becomes a problem afterwards, when composing
�nal depth maps. In such a case, background would be distorted by blurred values comming
from an edge transition. Further investigations could focus on �nding a �lter that smoothes the
blocks roughly and that is aware of high depth transitions in order to avoid mixing background
and foreground values.

4.2 Correlation between edges in color video and depth maps

All this work is based on the correlation between depth transitions and silhouettes extracted
from the color component. It has been explained previously that a block or region with depth
transitions means high variance. If this block is analyzed with a histogram, it leads to isolated
regions of values, such as �gure 4.10 illustrates.

Figure 4.10: Example of a block with high variance. On top right a zoom of the
marked block and its corresponding histogram, with grey values accumu-
lated around 4 di�erent mean values.

A histogram with this kind of distribution leads to a high variance, revealing a correlation be-
tween depth transitions and a statistical parameter, namely the variance. Taking into account
that depth maps are the signal for describing the 3D geometry of the scene, it is reasonable
to match the following conditions: if a block or region has a high variance then the edge mask
should also contain an edge (because it represents structural information of the scene); if a
block or region of a depth map has a low variance (�at regions), then the edge mask might
contain an edge or not (because of rough texture detected as an edge, as it happens with the
Horse sequence). These two conditions lead to a third one that should always be satis�ed: it is
not possible to have a depth block or region with high variance and no edge in the correspond-
ing edge mask. Hence, two conclusions can be extracted. The �rst is that depth maps might
be inexact. The second one is the weakness of the edge detection at yielding the edge mask.
However, after several tests, it has been veri�ed that edge mask contain the whole structural
information plus noise caused by rough textures.
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In that sense, this study of correlation between edges and variance of depth maps reveals
non-homogeneous regions when no edge is detected. Loosely speaking, it highlights irregular
background regions of depth maps. Specially Ballet or Breakdancers sequences contain such
regions, where instead of having a gradient of grey values in background areas (because they are
�at and not irregular), depth maps show a kind of wavy and step line regions (see A.1(b) and
A.1(f)). This is one of the inherent problems of depth maps estimated from natural sequences.

This correlation study intends to justify the di�erence between the working options. As afore-
mentioned, they are organized from the passive to the active sets of actions. The �rst and
the second option have the same number of suitable blocks, because their criteria is the same.
Nevertheless, the third option has more suitable blocks due to more blocks with edges than
blocks with a variance higher than the selected threshold. This correlation is also useful to
select the threshold for the List of suitable blocks and the Algorithm modules.

In order to verify that the aforesaid third condition is accomplished, the correlation between
high variance and extracted edges is analyzed. To achieve this, two one-dimensional arrays
are created, namely Vd and Em. Vd contains the variance (�oating point values) of blocks
that corresponds to their 3rd subblock layer (16x16 or 10x10 pixels depending on sequence's
resolution). I.e., Vd[0] = 37 means that the top-left block of the depth frame has a variance of
37. The other array, Ed, contains boolean values, being true if an edge pixel is found in the
corresponding block or false when there is no edge pixel. Then, a third one-dimensional array
is generated (RV,E), which elements are:

RV,E [k] = Vd[k] · Em[k] (4.4)

where Em is the logical negation of vector Em, meaning true (equal to 1 in terms of a value)
for no edge found and false (equal to 0 in terms of a value) for an edge found. Consequently,
the resulting array contains two di�erent types of elements. One set of elements is the variance
of those blocks that do not contain an edge. The other set is equal to zero. Ideally, all those
elements di�erent to zero should be low values (meaning depth �at regions).

Hence, all sequences have been analyzed in order to derive an appropiate threshold for each
sequence. First, Vd and Em have been computed for each frame. Then, they have been merged
into a single Vd and Em one-dimensional arrays regarding to number of frames of each sequence.
For the case of Em, if an element is higher than the half of the number of frames, is set to
1. It means that there is an edge in a certain block for more than the 50% of the frames.
Oppositely, if an element of the array is lower than the half of the number of frames it is set
to 0. Consequently, it leads to a boolean vector and equation 4.4 can be applied. Once RV,E
is obtained, another one-dimensional array is created, namely AccR. This array contains the
number of elements of RV,E which are higher than a certain value (remember that these values
refer to variances). I.e. AccR[30] = 18 means that there are 18 elements of RV,E with a value
(variance) higher than 30. Consequently, the plot of this new array is monotonically decreasing
and the �rst element contains the total number of blocks that have been analyzed for each
sequence. Figure 4.11 shows the plot of AccR for all sequences. The plots have been normalized
with respect to the to number of analyzed blocks. For the Horse sequence, the number of blocks
that have been analyzed is 20736 and 3072 for the remaining �ve sequences.
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Figure 4.11: Plot of AccR array for each sequence. X axis is the absolute variance k used
to compare and Y axis is the relative AccR[k] (accumulated values of RV,E).

The results presented in �gure 4.11 show the predicted behavior with AccR[0] = 1 and
lim
n→∞

AccR[n] = 0. AccR contains 100 elements for all sequences. As an example, for Break-

dancers AccR[30] = 0.05 means that there are 5% of blocks analyzed that have a variance
higher than 30 and no edge pixel. Values in between decrease monotically. For low thresholds,
sequences present very disparate values. The Synthetic sequence exempli�es that with AccR[1]
that has a bit more than a 5% of 3072 blocks with a variance higher than 1 for blocks with
no edge pixel in the edge mask. Oppositely, Book has almost a 57% of blocks with a variance
higher than 1 and no edge in the edge mask. As justi�ed in Chapter 3, the synthetic sequence
has ground truth depth information and, therefore, might present better results that the other
ones.
Having a look at the graphic, the Synthetic and the Horse sequences have very low accumulated
values for variances higher than 20. The Horse sequence shows this behavior due to the small
range of used values (referring to section 3.4.1, the Horse sequence uses only 67 grey values for
the depth map). Hence, the smaller the range, the lower the probabilities to have high variance.
The other sequences present di�erent characteristics. Analyzing the variance interval [20, 30],
Newspaper keeps practically constant at about 10% of blocks, while Book decreases by almost
5% (from 12% to 7% of blocks approximately). The Breakdancers sequence has a similar de-
creasing pro�le as Book, while Ballet is more or less in between the lower (Newspaper) and
the higher variation (Book). Due to di�erent behavior of the data set in this interval, the �rst
working option is launched for these eleven thresholds, from 20 to 30.
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Unlike Option1, where all sequences are launched with the same thresholds, Option2 and
Option3 use di�erent thresholds depending on each sequence. In this case, the criterion is
regarding the Y axis. The idea behind is to accept a certain number of blocks. Hence, AccR
is this certain number of blocks, namely tolerance. To achieve that, two di�erent tolerances
(degree of acceptance) are chosen in order to evaluate di�erent behavior. Those values are set
to 10% and 5% of the blocks. Table 4.3 summarizes the correspondence between tolerance and
variance thresholds for each sequence.

Tolerance

Sequence 10 % 5 %

Ballet 18 39
Book 23 33
Breakdancers 18 30
Horse 1 3
Newspaper 12 69
Synthetic 1 2

Table 4.3: Summary of correspondences between variance and tolerances (number of
blocks with variance and no edge).

As it can be seen in this table, values really di�er for each tolerance. In this case, it makes
sense to set a �xed tolerance, what leads to a particular variance threshold for each sequence.
Hence, Option2 and Option3 are launched twice per sequence, one for a tolerance of a 10% and
another one with a tolerance of 5%.

4.3 Improvement results

The same MVD data sets as used in Chapter 3 have been tested with this system. Again, the
Synthetic sequence is the ground truth depth information, as edges in the scene match perfectly
with 3D scene's geometry. Thus, the output when applying the system should be equal to the
input. In order to have equalized results, �rst 25 frames of each sequence have been tested. As
sequences present di�erent features (see Appendix for a description), it is ensured that the �rst
25 frames contain the described motion. However, due to format constraints (the data analyzed
is video and the presented work is printed format), in this section the �rst frame of �rst camera
of each sequence is selected for comparing with original sets (they are in the Appendix).

The system has some �xed parameters, independent of which working option is chosen. Fol-
lowing the module's description presented in section 4.1, the �rst external parameter is the
aperture size of the Gaussian smoothing applied to the color component. As aforesaid, it varies
depending on each sequence. For Ballet, Book and Newspaper sequences this value is 3. The
aperture size is 5 for the Synthetic and Breakdancers. For the sequence with most texture, the
Horse, this value is equal to 11. The second constant parameter for the same subsystem is the
aperture size required by the Adaptive Canny Edge Detector. Despite the smoothing module,
this value is the same for all sequences and is set to 3. For the next subsystem, the Depth Map
Fitting, two more parameters are needed. The �rst one is the "maximum block layer size" and
the other is the "number of allowed recalls". The �rst one is equal to 64 and the second one,
as previously introduced in section 4.1.2, is set to 3. Both are used to set the biggest block size
correctly with respect to the input resolution. Sequences with a resolution of 1024 × 768 are
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Sequence Smoothing Edge det. Recalls Block sizes

Ballet, Book and Newspaper 3 3 3 {64,32,16,8}
Breakdancers and Synthetic 5 3 3 {64,32,16,8}
Horse 11 3 3 {40,20,10,5}

Table 4.4: Global parameters for all sequences and all working options

divisible by 64 (in width and height), and therefore the maximum block size is 64. However, for
the Horse sequence, which resolution is 1920× 1080, the height is not divisible by 64. In order
to avoid this con�ict, the system computes the biggest block size automathically depending on
"the number of allowed recalls". In the case of the Horse sequence, the biggest block size that
�ts to its resolution is 40. Table 4.4 sums up these values for all sequences.

Next, the results are analyzed according to the selected working option. Note, that due to large
image resolutions, detail pictures of the results are shown.

Option1 is launched 11 times with di�erent variance thresholds covering the range [20, 30].
The Depth blurring module prepares just one smoothed depth map for non-suitable blocks. In
this case, the aperture size required for the smoothing process is set to 9. For �gure 4.12, two
selected thresholds are chosen for highlighting the results. According to the graphic in �gure
4.11, the selected thresholds are 20 and 30, as they present the maximum variation.

4 di�erent samples of result images for 3 MVD sequences (Breakdancers, Horse and Synthetic)
are shown in �gure 4.12. The structure of this �gure is the same for each sequence. On top-left
the original depth sample of the sequence. On bottom-left the edge mask with dilated lines
and the labeled regions with two di�erent grey levels. Note, that for similar blocks with a
line crossing vertically, left region could have a di�erent grey level than right region. It is a
mere criteria to make regions visible. On top-right the output when chosing a threshold of 20.
Finally, on bottom-right, the output for a threshold of 30.

Looking at the presented results, some improvements and some changes can be seen. First,
Breakdancers sequence present good results at re-�tting silhouettes. As an example, the arm
of the dancer has less jittering than the original for both outputs. It also happens to Horse
sequence, although most of the jittering is wider than 1 pixel. In this case, most of the silhouete
remains with a noisy contour, as it is explained at the end of section 4.1.2. It is worth mention-
ing, that in all cases, the re-�tted contours have the same shape, although the thresholds are
di�erent. This is due to the low variance (of depth values) of each region in blocks containing
an edge and therefore the variance of each region is always below the threshold.
In both sequences a part of the background is smoothed. Particularly, Synthetic reveals some
changes, although the desired response would be an invariant behavior. For both outputs of this
sequence, the silhouette of the courtains is smoothed with the wall, and the result is a blurred
pro�le in this region. Another interesting e�ect is a grey angle on top-left of old woman's head.
It is easy to understand how a shape like that could appear in this part of the image. This angle
corresponds to a bottom-right corner of a block that was labeled as non-suitable (because its
variance is below the variance threshold). Thus, it appears in both outputs. Consequently, when
composing the new depth map, the composer takes the corresponding block of the smoothed
depth map. By using a bigger aperture size, more values are included in the average. Hence,
foreground values (old woman) are mixed with values of the background (wall). Finally, note
that the contour of the armchair is a bit distorted, caused by the re-�tting process (this process
sets the maximum value of the 4-pixel neighborhood to each pixel for the Line region).
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(a) Original and Mask (th20) for Breakdancers (b) Outputs for th20 and th30

(c) Original and Mask (th20) for Horse (d) Outputs for th20 and th30

(e) Original and Mask (th20) for Synthetic (f) Outputs for th20 and th30

Figure 4.12: Results for Breakdancers, Horse and Synthetic chosing Option1. (a), (c),
(e) are original depth maps and their mask with regions marked before re-
�tting. (b), (d), (f) are results for variance threshold 20 (up) and 30 (down).
Results are post-processed by changing brightness and contrast for a better
visualization.
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Option2 is launched twice with di�erent thresholds for each sequence and according to a �xed
tolerance (see section 4.2). Unlike Option1, the Depth Blurring module prepares four di�erent
smoothed depth maps, namely hierarchical depth smoothing, whose kernel sizes are 9, 7, 5 and
3. Then, the Composer module takes the corresponding block from the smoothed depth map
according to the relation between block size and kernel size (as presented in table 4.1) for those
blocks that have not been improved. Figure 4.13 again presents result details for Breakdancers,
Horse and Synthetic MVD sequences.

First, note that the Horse and the Synthetic sequences use low thresholds (1 and 3 for the Horse
and 1 and 2 for the Synthetic). This has a certain impact on background areas, because just
those blocks that have a very low variance are selected as non-suitable blocks. Consequently,
less background and/or foreground areas are smoothed. In this case, it improves some strange
e�ects (the corner over the old woman's head), that occured for the Synthetic sequence. Look-
ing at �gure 4.13, silhouettes are equally re-shaped as done for Option1. In this sense, the
re-�tting process is independent of the selected option , but not the smoothing process. Due
to printed format constraints, the e�ects of using the hierarchical depth blur are not visible
enough.
As occured for Option1, the results of the Synthetic sequence has some changes respect to
the orginal input. First, some contours are a bit shifted due to the re-�tting process. Hence,
contours of the output do not exactly match with the input. On the other hand, less back-
ground and foreground areas are smoothed. However, due to the use of a hierarchical depth
smoothing, some "skipped" blocks are visible in the output. Specially, in the case of the Horse
sequence both outputs present a blurred contour at the horseback. To a minor degree, this also
happens to the Synthetic sequence, such as the armchair contour, speci�cally at the top-left
of it. Here an 8 × 8 block contains no edge information and consequently the composer takes
the corresponding block of the blurred depth map (with a kernel size equal to 3). However, the
aim of a hierachical depth blur is to smooth background areas and not depth transitions. In
this case, due to an undetected color edge, the system fails at composing the �nal depth map.
It is therefore proven that Option2 modi�es depth maps more than Option1.

Finally, Option3 uses the same parameters as Option2 but it lists blocks as suitable by edge
criteria. Figure 4.14 shows the results.

Unlike Option2, this con�guration analyzes all blocks that have edge information, ignoring the
quantity of variance of depth values. Thus, the masks shown have more marked regions than in
Option1 and Option2. By using the same thresholds as for Option2, outputs are highly similar.
Just that blocks that are listed as suitable for Option3 but not for Option2 are re-�tted. As
an example of this, the pelvis of Breakdancers results (�gure 4.14(b)) is re-�tted (in Option2
this part is smoothed). However, blocks that are listed as suitable for Option3 present a low
variance and probably they belong to very �at regions. Hence, changes are not that signi�cant
in those areas.
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(a) Original and Mask (th18) for Breakdancers (b) Outputs for th18 and th30

(c) Original and Mask (th1) for Horse (d) Outputs for th1 and th3

(e) Original and Mask (th1) for Synthetic (f) Outputs for th1 and th2

Figure 4.13: Results for Breakdancers, Horse and Synthetic chosing Option2. (a), (c),
(e) are original depth maps and their mask with regions marked before
re-�tting. (b), (d), (f) are results for tolerance 10 (up) and 5 (down). Re-
sults are post-processed by changing brightness and contrast for a better
visualization.
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(a) Original and Mask (th18) for Breakdancers (b) Outputs for th18 and th30

(c) Original and Mask (th1) for Horse (d) Outputs for th1 and th3

(e) Original and Mask (th1) for Synthetic (f) Outputs for th1 and th2

Figure 4.14: Results for Breakdancers, Horse and Synthetic chosing Option3. (a), (c),
(e) are original depth maps and their mask with regions marked before
re-�tting. (b), (d), (f) are results for tolerance 10 (up) and 5 (down). Re-
sults are post-processed by changing brightness and contrast for a better
visualization.
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Chapter 5

Results

For this chapter the six MVD data sets have been analyzed after applying the improvement
algorithm presented in chapter 4. The synthetic sequence is again the ground truth depth in-
formation, as it presents consistent results when using correlation histograms. Moreover, the
output should be invariant when the input is the synthetic sequence. On one hand, results in
chapter 3 analyze the six MVD sequences with correlation histograms (and also with histogram
and spectrum techniques), highlighting di�erences between color and depth components, and
between temporal and spatial references. On the other hand, chapter 4 presents qualitative
results of improved depth component. Consequently, it is reasonable to use the new methods
introduced in chapter 3 to analyze the output of the system presented in chapter 4. The results
are organized according to the three working options described in chapter 4. For each working
option, temporal and spatial correlation histograms are presented in order to evaluate changes
in the output of the system. The selected pair of pixels is the same as for th results in chapter
3. Therefore, de�nitions given in section 3.3 will be used to describe the outputs.

As done in chapter 3, results are equalized regarding the di�erent resolutions, number of cam-
eras and just for �rst 25 frames of the given data sets. Three selected sequences (Breakdancers,
Horse and Synthetic) are chosen to be analyzed. The results of these sequences can be found
in this chapter. The results of the other data set (Ballet, Book and Newspaper) can be found
in the Appendix.

1. Option1

As mentioned in chapter 4, this option is the one of the three options that modi�es
the content of the depth maps less than the other two options. In this case, the overall
content of improved depth maps is pretty similar to the original input. Therefore, the
spatial and temporal correlation histograms of the output of Option1 are expected to be
pretty similar to original depth maps. Next, outputs of spatial correlation histogram are
presented and later the ones for temporal correlation histogram.

Figure 5.1 shows the spatial correlation histogram for outputs of Option1. Left column of
images corresponds to threshold 20 and the right one to threshold 30. First, it would be
interesting to mention some particular characteristics of this option. The main di�erence
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(a) Breakdancers at th20 (b) Breakdancers at th30

(c) Horse at th20 (d) Horse at th30

(e) Synthetic at th20 (f) Synthetic at th30

Figure 5.1: Spatial Correlation Histograms for Breakdancers, Horse and Synthetic se-
quences after improvement with Option1 and thresholds at 20 and 30.
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between depth map outputs with th20 and th30 is the number of non-suitable blocks
(�at blocks, meaning background and foreground) that consequently are smoothed with
a Gaussian �lter. Loosely speaking, the higher the threshold, the higher the number of
smoothed background/foreground blocks. Hence, smoothed blocks will get new values
slightly di�erent to the original. Another characteristic is that silhouettes that have been
improved have a 1 pixel-width jittering. Therefore, due to algorithm's behavior, just val-
ues around the contour have been modi�ed, representing a low number of adjusted pixel.
According to this explanation, the diagonal and quadrants I and IV are regions that
show more changes in the correlation histograms in �gure 5.1. In contrast, lines describ-
ing depth transitions (quadrants II and III) keep almost invariant regarding to original
outputs. A proof of that is the Breakdancers sequence. Comparing th30 and th20, there
is less presence of single spots in quadrant I due to the �ltering. To a minor degree it also
happens in quadrant IV, but due to printed format it may not be visible enough. The
Horse sequence also illustrates this e�ect (�gures 5.1(c) and 5.1(d)). In this case, values
around the diagonal region in th30 are more concentrated than in th20. Furthermore,
some single spots in quadrants I and IV also desappear, getting absorbed by their closest
patch region. Synthetic keeps almost invariant, although it has been seen in chapter 4
that the Synthetic sequence also su�ers some change. However, the impact of the im-
provement process with the synthetic reveals low changes for this sequence. Therefore,
the improvement of depth maps with Option1 has a very good invariant behavior when
applying it to ground truth depth information.
For the remaining sequences (see �gure A.7), Ballet sequence presents similar characteris-
tics as described for breakdancers. However, Book and Newspaper show some interesting
e�ects. Both sequences present a original spatial correlation histogram with single spots
due to the non-use of available depth values. When applying the �lter to their depth
component, their values change. This e�ect can be easily identi�ed with the continuity
around the diagonal region as it has been previously foreseen. Some continuous linear
patterns describing depth transitions (instead of discreet linear patterns) also appear in
both outputs. As previously described, th30 outputs have more smoothed depth blocks
and consequently their region around the one-pixel diagonal is bigger than for th20.

Temporal correlation histograms for Breakdancers, Horse and Synthetic sequences are
shown in �gure 5.2. As commented in chapter 3, temporal correlation histograms should
present a straight diagonal line with no distortion in quadrant I. However, natural se-
quences did not present this characteristic. Quadrant I in Breakdancers and Horse se-
quences present a patch region instead of the desired line. With the same argument as for
spatial correlation histograms, outputs with th30 have more smoothed areas than outputs
with th20. Hence, values tend to be more accumulated in the diagonal for outputs with
th30 than th20. This is the case for all sequences. However, the synthetic presents results
that are practically identical. Just quadrant I is modi�ed from th20 to th30, having a
less concentrated area around the 1-pixel width diagonal for th20. Note, that �rst 25
frames of this sequence present more motion in the background than in the foreground.
Therefore, a patch region appears in quadrant I around the diagonal line.
Figures in the Appendix (A.8) show akin characteristics as the afore described for Book
and Newspaper. Here, the appearance of linear patterns representing interaction between
the background and the foreground is more visible. Th30 also shows more concentration
around the diagonal than th20, which is consistent with the other results.
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(a) Breakdancers at th20 (b) Breakdancers at th30

(c) Horse at th20 (d) Horse at th30

(e) Synthetic at th20 (f) Synthetic at th30

Figure 5.2: Temporal Correlation Histograms for Breakdancers, Horse and Synthetic se-
quences after improvement with Option1 and thresholds at 20 and 30.
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2. Option2

The general description of spatial correlation histograms done in Option1 is also useful for
Option2. Nevertheless, the output should be interpreted a bit di�erent. As Option1 just
smoothes the non-suitable blocks, Option2 uses the hierarchical depth blur for "skipped"
blocks. Hence, more blocks are smoothed, leading to a more di�erent output than the one
obtained with Option1. This implies that spatial and temporal correlation histograms are
more di�erent, by concentrating more values in the diagonal region. Figure 5.3 shows the
results for spatial correlation histograms. The Horse sequence is the one that illustrates
the commented e�ects best. For a tolerance of 10% (for the Horse equivalent to a thresh-
old equal to 1), the top of the diagonal presents a wider region. However, for a tolerance
of 5% (equivalent to a threshold equal to 3), this area presents a sharp line, meaning
that values of the foreground have been smoothed. Changes are also visible in Break-
dancers' results, specially in quadrant I. In this sequence, the output for a tolerance of
5% (threshold 30) presents less single spots than choosing a tolerance of 10% (threshold
18). However, what is worth mentioning, is the region above the diagonal. In Option1
as well as the original, Breakdancers' output lacks some values above the diagonal (see
5.1(a) or 5.1(b)). In Option2, this region is �lled with blue values (according to the color
map of the representation), resulting from the hierarchical blur. As tolerance 5% is equiv-
alent to threshold 30, changes from 5.1(b) to 5.3(b) are uniquely caused by choosing the
hierarchical smoothing. Due to the small di�erence in threshold values for synthetic se-
quence (a tolerance of 5% corresponds to th2 and the 10% to th1), its outputs are almost
identical. Nevertheless, it should be mentioned that values around the diagonal are a bit
more dispersed than the original.
The remaining sequences, that can be found in the Appendix (A.9), present similar re-
sults. Ballet sequence, as it occured with Option1, has a similar behavior as Breakdancers.
A region with no correlated values above the diagonal (in Option1) is �lled with a blue
area for this working option. As said, this is due to the use of hierarchical depth smooth-
ing. This e�ect can be also seen in Book and Newspaper, where a wider area around the
diagonal is present, especially in quadrant IV.

In the case of temporal correlation histograms (�gure 5.4), di�erences between choosing a
tolerance of 10% or 5% are less than for the spatial. Having a look at Breakdancers, only
some single spots are di�erent. The whole outputs are highly alike, which also applies to
the Synthetic. However, the Horse sequence present the same e�ect as described for the
spatial correlation histograms output. Again, the area at the top of the diagonal is bigger
for a tolerance of 10% than for a tolerance of 5%. The reason is the same: the use of the
hierarchical depth smoothing.
Compared to Option1, values from quadrant I tend to be more concentrated in the diago-
nal. However, this region is still too big to ensure temporal consistency in the background,
e.g. for Breakdancers. The algorithm working with this option has improved depth maps,
but the desired shape is still di�erent to the synthetic one. The Horse sequence also
presents better results for this option, where values are more concentrated around the
diagonal and lines are a bit sharper. This sequence presents very low motion and hence
frames should be highly correlated. Consequently, depth maps should be correlated as
well and, in terms of temporal correlation histograms, a sharp diagonal (with a huge
concentration of values in it) and some sharp lines would appear in the output of this
sequence, as it is the case for the synthetic sequence. However, the output of tempo-
ral correlation histogram for the original set does not present this characteristic. After
applying the algorithm, the output of the 2D Histogram is more similar to the desired
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(a) Breakdancers at tol10 (b) Breakdancers at tol5

(c) Horse at tol10 (d) Horse at tol5

(e) Synthetic at tol10 (f) Synthetic at tol5

Figure 5.3: Spatial Correlation Histograms for Breakdancers, Horse and Synthetic se-
quences after improvement with Option2 and tolerances 10 and 5.
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than the original one (see 3.12(d)). Finally, the synthetic presents better results than in
Option1. The diagonal at quadrant I is tighter than in Option1, and therefore it is more
consistent in a temporal sense.
In Book an Newspaper (see A.10), the region around the diagonal is wider in both cases
for a tolerance of 5% than for 10%. As it happened with Option1, a higher variance, leads
to a higher number of smoothed blocks. Hence, regions are wider but values are more con-
centrated in the diagonal. Finally, the output for ballet sequence almost keeps invariant.
As it was previously said, it has a similar behavior as the breakdancers sequence.
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(a) Breakdancers at tol10 (b) Breakdancers at tol5

(c) Horse at tol10 (d) Horse at tol5

(e) Synthetic at tol10 (f) Synthetic at tol5

Figure 5.4: Temporal Correlation Histograms for Breakdancers, Horse and Synthetic se-
quences after improvement with Option2 and tolerances 10 and 5.
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3. Option3

As explained in chapter 4, the di�erence between Option2 and Option3 is the List of
suitable blocks. For the �rst case, the calculus of the variance is the method used to
threshold between suitable and non-suitable blocks to be processed. For the second, this
list is created according to edge information, by setting the suitable label to all those
block whose corresponding block in the edge mask contains edge information. Otherwise,
if the block of the edge mask does not contain any edge pixel, it is set as a non-suitable
block. Hence, the main di�erence between Option2 and Option3 is the number of suitable
blocks. Thus, Option3 has more or at least an equal number of suitable blocks than Op-
tion2. This behavior is already justi�ed in section 4.2. In general terms, less blocks will
be smoothed, but more of them will be re-�tted. A proof of this is the Horse sequence.
With this working option the top of the diagonal region keeps invariant for both toler-
ances, while in Option2 the top got smoothed. As less blocks are smoothed, values are
less accumulated to the diagonal. What can be seen again, is the in�uence of the hierar-
chical depth smoothing. For Breakdancers sequence, the blank patch above the diagonal
is �lled with blue values. Thus, it is demonstrated that during the process subblocks are
smoothed according to the external variance threshold. Synthetic sequence presents no
change from tolerance 10% to 5%, and, on top of that, the output is also invariant from
Option2 to Option3.
The explanation done in Option2 for the rest of sequences (see �gure A.11) is also valid
for this working option. Here, Ballet has a similar behavior as the Breakdancers sequence
(referring to this option, obviously). On the other hand, Book and Newspaper sequences
present a wider area around the diagonal due to the smoothing of some blocks.

Figure 5.6 shows the results for temporal correlation histograms. Looking at the presented
outputs, no change between choosing a tolerance of 10% or 5% can be seen. In fact, it
means that much less foreground and/or background regions have been smoothed. Hence,
results of Option3 should be more similar to the original temporal correlation histograms
than the outputs of Option2.
An interesting sequence to analyze is Book. As it happens to all sequences, the di�erence
from choosing a tolerance or another in this option is little. However, it is interesting
to see the di�erence between choosing Option2 and Option3. In Option2, this sequence
presented values that are concentrated around the diagonal in quadrant I (see �gure
A.12(d) and A.12(c)). Nevertheless, due to less smoothing, values are more dispersed in
this region, being more similar to the original than to Option2.

Three di�erent working options have been presented in chapter 4 and have been analyzed here
according to the introduced tools in chapter 3. Basically, changes at the outputs are more
visible when a certain number of blocks has been smoothed. As the re-�tting process tries to
preserve depth information by modifying depth transitions, re-shaped blocks do not a�ect to
the correlation histograms output as much as smoothed blocks do. Hence, the algorithm acts
more or less aggressive depending on the chosen criterias.
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(a) Breakdancers at tol10 (b) Breakdancers at tol5

(c) Horse at tol10 (d) Horse at tol5

(e) Synthetic at tol10 (f) Synthetic at tol5

Figure 5.5: Spatial Correlation Histograms for Breakdancers, Horse and Synthetic se-
quences after improvement with Option3 and tolerances 10 and 5.
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(a) Breakdancers at tol10 (b) Breakdancers at tol5

(c) Horse at tol10 (d) Horse at tol5

(e) Synthetic at tol10 (f) Synthetic at tol5

Figure 5.6: Temporal Correlation Histograms for Breakdancers, Horse and Synthetic se-
quences after improvement with Option2 and tolerances 10 and 5.
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Chapter 6

Summary and Conclusions

This work presented a framework for improving MVD data, obtained by a multi-camera system
and �nally used for a multiview display. MVD data is a compound of color video plus per-pixel
depth information. Depth maps are obtained by estimating them from the color information
with di�erent methods. However, they present some errors and imprecissions. The existence of
these errors is problematic when using the depth information to render a stereo video pair, and
results in a misplacing of the content of the scene when rendered. Hence, this project aims at
improving these errors.

This work starts by describing MVD data. Once MVD data is described, it is analyzed in order
to obtain insight into similarities and di�erences of the color and depth characteristics. For
this, known methods, as histogram analyis and spectrum of an image, are used to analyze six
MVD sequences (�ve natural sequences and a synthetic one). Moreover, a new method called
correlation histograms is introduced. It has been shown that for spatial as well as temporal
correlation histograms, color and depth components have considerably di�erent characteris-
tics, as video represents the color texture and depth the geometry of the scene. Hence, spatial
correlation histogram outputs for color present a continuous region around the diagonal. Ap-
plying this method to the depth, outputs show high concentration on and around the diagonal,
resulting from �at regions, and additional frayed and discrete areas, resulting from depth tran-
sitions. By using the temporal correlation histogram, outputs of the color component present
once again continuous regions around the diagonal. As already pointed out, they could be
a qualitative measure of the degree of motion in a scene. By applying it to depth maps, it
was observed that they lack temporal consistency in background and foreground areas when
compared to the characteristics of the synthetic data (used as ground truth depth information).

The aforementioned errors that cause abnormal visual e�ects are of two types. The �rst is
the non-correspondence of depth transitions with silhouettes present in the color component.
The second is the temporal inconsistency, as previously introduced. In order to address both
errors, a system based on color edge detection for depth map re-�tting is designed. The main
properties of this system are modularity and �exibility. Firstly, it is modular in that, it is a
compound of sets and subsets which have speci�c targets. Secondly, it is �exible in that it
accepts di�erent con�guring options, and allows modules to be implemented in another way if
their target is respected. As a result, the same system can be designed di�erently, but following
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the same processing chain.

The system is divided in two subsystems. The �rst is the Color Edge Detection that is in
charge of yielding an edge mask to the subsequent subsystem. The Color Edge Detection is
composed of two modules. The �rst is a smoothing �lter which avoids a high number of wrong
miss-detections. The second is an adaptive Canny edge detector. As explained in section 4.1.1,
the �rst module is very important, as false edge detections are preferred over missing structual
information. The system presented is implemented with a Gaussian �lter which external pa-
rameter is set depending on the input. However, it can be improved with a Bilateral �lter. The
disadvantage of this kind of �lter is that it needs more external parameters. In order to give
dynamic behavior to the system, a texture pre-analysis is proposed. This step can be achieved
by analyzing the spectra of the image or by computing a statistical parameter from the spatial
correlation histogram. Future investigations can put e�ort on �nding a parameter (instead of
a pattern) representative of the amount of texture in an image.
The second subsystem, the Depth Map Fitting, reshapes the silhouettes by using the edge
information extracted by the �rst subsystem. Here, silhouettes with 1 pixel-width jittering are
improved. This width (1 pixel) covers the majority of the jittering present in the data set.
Additionally, a solution for any kind of jittering is proposed. This solution is based on �nding
the region between edges from color video and edges obtained from depth transitions. Hence,
all depth transitions are adapted to color silhouettes. Moreover, this subsystem also smoothes
plain blocks that are intended to be background and/or foreground. To determine which blocks
will be smoothed, three di�erent working options have been de�ned. Two of them are based
on a variance criterion, while the third is based on the presence of edge information. The eval-
uation presented in this work reveals high correlation between edges in color video and depth
maps. Blocks labeled as background or foreground also have a di�erent treatment depending
on the working option. The �rst option copies values of the original depth map directly. This
criteria avoids distorting the input to a minor degree. The second and the third option use a
hierarchical depth smoothing for these background or foreground blocks, meaning low variance
for the second option and edge information for the third option.

Each working option showed di�erent characteristics in the output. For the �rst, more blocks
were labeled as background or foreground by setting a high threshold. Therefore, some depth
edges were blurred by applying a rough smoothing and consequently the representation of the
3D geometry of the scene worsered, because edges in depth maps must be sharp instead of
smooth transitions. Consequently, the variance threshold can not be set as a constant pareme-
ter for any sequence. On the other hand, the non use of a hierarchical depth smoothing distorts
the input to a minor degree. It can be a good solution for sequences showing low temporal vari-
ations in background and foreground regions (i.e. the Horse sequence). In contrast, sequences
that require improvements on these regions (i.e. Ballet and Breakdancers) would need more
than a rough smoothing. Therefore, it is crucial to �nd a combination that satis�es the trade-o�
between re-shaping contours and improving background and foreground areas.
In order to improve sequences with temporal inconsistency in the background and foreground
regions, Option2 is based on a hierarchical depth smoothing. By applying this criterion, more
blocks labeled as foreground or background during the process are smoothed as well, which
roughness depends on the size of the block. Hence, it can be concluded that this option modi�es
the input more than the �rst one. Moreover, this option is also based on the variance criterion.
However, variance thresholds are set depending on each input sequence (taken from the study
presented in section 4.2). The values that have been used resulted in similar thresholds for 3
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sequences (Ballet, Book and Breakdancers) as the thresholds taken in Option1. Nevertheless,
the values used for testing Option2 for the other 3 sequences (Horse, Newspaper and Synthetic)
were di�erent as from those Option1. This implies that more blocks were taken into account for
processing and therefore less background and foreground blocks have been smoothed. In this
case, it is a good progress, as Synthetic and Horse are preferred to have less smoothed back-
ground and foreground areas (because they do not show signi�cant temporal inconsistencies)
than Ballet or Breakdancers (background and foreground areas must be improved). Conse-
quently, the aforementioned trade-o� is achieved by setting the variance threshold depending
on the input of the image.
Finally, Option3 is based on edge information for deciding if a block belongs to a background
or foreground area or not. This criteria is based on the color component, instead of the variance
method, or in other words, the depth component. As Already justi�ed, this option processes
more blocks than the other two, meaning that this option focuses more on re-shaping the
depth contours than improving background and foreground regions. For a good behavior of
this working option, it is very important to have an edge mask with structural information
about object contours and (ideally) no false edge detections (mainly due to rough textures).
To ensure this, the sequences were �ltered with a Gaussian �lter, for which the aperture size
was set depending on each sequence. Hence, each sequence presented a good edge mask for
this working option. Therefore, this option is a very good solution for labeling background and
foreground blocks if the edge mask is robust against false edge detections. Otherwise, textured
regions are treated as edges and consequently the corresponding depth blocks are processed
instead of being smoothed. On the other hand, the hierarchical depth smoothing criteria is
preserved and therefore it acts on blocks labeled as background or foreground as in the second
option. Consequently, the trade-o� is once again achieved.

These options lead to the conclusion that the choice of the working option will always depend
on the data to be improved according to the aforementioned trade-o�. From these three op-
tions, the third one presented best results from the six sequences with di�erent characteristics.
This criteria relies more on color component (100% true information) than on depth component
(which are errorneous and imprecise). The challenge that this option proposes is to �nd a good
mechanism for obtaining a robust edge mask. If this mechanism is not found, the second option
attains to the system's target, as edges from color video are highly correlated with depth maps.

Results from evaluating the six MVD sequences using the system, reveal that this new tool is
good for evaluating the quality of the new depth maps and the impact of changes. On the other
hand, qualitative results are shown in order to highlight the success of the presented system. In
summary, the presented analysis techniques describe the MVD data and the system improves
the depth component of MVD.
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Appendix A

Appendix

Explanation of the MVD sequences

The used data set is a total of 6 MVD sequences, �ve natural and one synthetic. In order
to describe the motion in those sequences, a brief explanation of them is presented, instead
of attaching all frames. Ballet sequence (�gures A.1(a) and A.1(b)) is a indoor scene with a
person at the foreground who keeps static and the ballet dancer that creates more motion. In
Book Arrival set (�gures A.1(c) and A.1(d)), the person who is sitting �rst stands up to shake
his hand with a man who comes into the scene. The other dancers sequence, the Breakdancers
(�gures A.1(e) and A.1(f)), presents four young men standing up, with little motion, watching
a �fth one who is breakdancing and, therefore, presenting fast motion. The only sequence that
is outdoor is Horse (�gures A.2(a) and A.2(b)) where the animal does not move signi�cantly.
The last natural sequence Newspaper (�gures A.2(c) and A.2(d)), shows two young persons
reading a newspaper who welcome a third person (who creates more motion), but without
standing up. Finally, the synthetic sequence (�gures A.2(e) and A.2(f)) is a computer graphics
rendered sequence where an old woman is sitting totally static and the motion created in the
scene is done by the �oating balls, moving from the background to the foreground and some
objects moving on the �oor.
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(a) Color Ballet (b) Depth Ballet

(c) Color Book (d) Depth Book

(e) Color Breakdancers (f) Depth Breakdancers

Figure A.1: First frames of color and associated per-pixel depth maps corresponding to
�rst camera of MVD sequences.
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(a) Color Horse (b) Depth Horse

(c) Color Newspaper (d) Depth Newspaper

(e) Color Synthetic (f) Depth Synthtetic

Figure A.2: First frames of color and associated per-pixel depth maps corresponding to
�rst camera of MVD sequences.
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Percentiles of color and depth components (section 3.4.1):

Percentiles

Sequence 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ballet 42 76 95 101 105 107 110 112 115 118 121 124 127 130 134 137 141 145 152 253
Book 22 26 30 34 38 42 46 50 55 61 76 93 112 136 164 185 206 221 239 256
Breakdancers 20 26 29 32 35 37 38 40 42 45 51 57 63 68 74 82 92 101 110 256
Horse 8 16 24 31 39 48 58 67 74 80 85 89 94 98 102 107 112 119 129 215
Newspaper 8 17 28 39 53 66 80 92 104 116 129 147 164 177 187 199 211 221 229 243
Synthetic 11 24 32 40 45 49 57 67 79 94 111 130 151 178 193 201 208 215 223 236

Table A.1: Summary of percentiles taken in intervals of 5 for color component of all MVD
sequences

Percentiles

Sequence 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ballet 44 47 51 54 57 61 66 71 79 91 101 110 120 132 149 163 179 198 213 256
Book 39 46 52 52 58 65 68 78 90 103 113 119 122 129 135 148 160 180 211 256
Breakdancers 54 78 86 89 91 95 98 103 108 111 114 119 123 128 135 150 168 183 200 256
Horse 105 106 108 112 115 117 120 122 124 126 129 131 132 133 134 135 135 136 137 157
Newspaper 30 37 37 37 45 45 52 67 81 92 96 99 103 110 118 125 136 147 154 201
Synthetic 26 34 39 46 57 70 82 113 126 144 153 156 159 162 166 171 176 182 187 237

Table A.2: Summary of percentiles taken in intervals of 5 for depth component of all
MVD sequences.

Sequence Π(5) Π(95) Range η

Ballet 44 213 232 0.728
Book 39 211 244 0.705
Newspaper 30 154 201 0.617

Table A.3: Concentration of used depth values
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Histogram outputs (section 3.4.1)

(a) Color Ballet (b) Depth Ballet

(c) Color Book (d) Depth Book

(e) Color Newspaper (f) Depth Newspaper

Figure A.3: Histograms of the other 3 MVD sequences, corresponding to color and depth.
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Spectrum outputs (section 3.4.2)

(a) Color Ballet (b) Depth Ballet

(c) Color Book (d) Depth Book

(e) Color Newspaper (f) Depth Newspaper

Figure A.4: Modulus representation of the other 3 MVD sequences, corresponding to
color and depth.
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Spatial Correlation Histogram Outputs (3.4.3):

(a) Color Ballet (b) Depth Ballet

(c) Color Book (d) Depth Book

(e) Color Newspaper (f) Depth Newspaper

Figure A.5: Spatial Correlation Histograms of the other 3 MVD sequences, correspond-
ing to color and depth.
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Temporal Correlation Histogram Outputs (3.4.3):

(a) Color Ballet (b) Depth Ballet

(c) Color Book (d) Depth Book

(e) Color Newspaper (f) Depth Newspaper

Figure A.6: Temporal Correlation Histograms of the other 3 MVD sequences, corre-
sponding to color and depth.
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Spatial Correlation Histogram Outputs for Option1

(a) Ballet at th20 (b) Ballet at th30

(c) Book at th20 (d) Book at th30

(e) Newspaper at th20 (f) Newspaper at th30

Figure A.7: Spatial Correlation Histograms for Ballet, Book and Newspaper sequences
after improvement with Option1 and thresholds at 20 and 30.
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Temporal Correlation Histogram Outputs for Option1

(a) Ballet at th20 (b) Ballet at th30

(c) Book at th20 (d) Book at th30

(e) Newspaper at th20 (f) Newspaper at th30

Figure A.8: Temporal Correlation Histograms for Ballet, Book and Newspaper sequences
after improvement with Option1 and thresholds at 20 and 30.
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Spatial Correlation Histogram Outputs for Option2

(a) Ballet at tol10 (b) Ballet at tol5

(c) Book at tol10 (d) Book at tol5

(e) Newspaper at tol10 (f) Newspaper at tol5

Figure A.9: Spatial Correlation Histograms for Ballet, Book and Newspaper sequences
after improvement with Option2 and tolerances 10 and 5.
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Temporal Correlation Histogram Outputs for Option2

(a) Ballet at tol10 (b) Ballet at tol5

(c) Book at tol10 (d) Book at tol5

(e) Newspaper at tol10 (f) Newspaper at tol5

Figure A.10: Temporal Correlation Histograms for Ballet, Book and Newspaper se-
quences after improvement with Option2 and tolerances 10 and 5.
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Spatial Correlation Histogram Outputs for Option3

(a) Ballet at tol10 (b) Ballet at tol5

(c) Book at tol10 (d) Book at tol5

(e) Newspaper at tol10 (f) Newspaper at tol5

Figure A.11: Spatial Correlation Histograms for Ballet, Book and Newspaper sequences
after improvement with Option3 and tolerances 10 and 5.
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Temporal Correlation Histogram Outputs for Option3

(a) Ballet at tol10 (b) Ballet at tol5

(c) Book at tol10 (d) Book at tol5

(e) Newspaper at tol10 (f) Newspaper at tol5

Figure A.12: Temporal Correlation Histograms for Ballet, Book and Newspaper se-
quences after improvement with Option3 and tolerances 10 and 5.
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