Eliminació de microcontaminants orgànics d'aigües residuals mitjançant processos de sorció

Pàg. 1

SUMARI

ANNEX A. ELS EFLUENTS INDUSTRIALS	7
A.1. Caracterització dels efluents industrials	7
A.2. Classificació dels efluents industrials	10
A.3. Principals contaminants de les aigües residuals	11
ANNEX B. I EGISI ACIÓ D'AIGÜES AUTONÒMICA. ESTATAL I EUROPEA	13
B.1. Legislació autonòmica	13
B.2. Legislació estatal	13
B.3. Legislació europea	14
ANNEX C. ESTUDI TEÒRIC DELS PROCESSOS DE SORCIÓ	17
C.1. El procés d'intercanvi iònic	17
C.1.1. Definició i cinètica del procés	17
C.1.2. Paràmetres característics dels intercanviadors iònics	18
C.1.3. Classificació dels intercanviadors iònics	19
C.1.4. Aplicacions industrials dels intercanviadors iònics	24
C.2. El procés d'adsorció	24
C.2.1. Història de l'adsorció	24
C.2.2. Definició	24
C.2.3. Tipus d'adsorció	25
C.2.4. Factors que afecten a l'adsorció	25
C.2.5. Adsorbents	28
C.3. Tècniques de treball	38
C.3.1. Sistemes en discontinu (batch)	39
C.3.2. Sistemes en continu (columna)	39
ANNEX D. CÀLCUL DEL COEFICIENT DE TRANSFERÈNCIA DE MASSA SEG	ONS EL
MUDEL DE WILSON & GEANKOPLIS	41
ANNEX E. CREACIÓ D'EINES DE CÀLCUL DE PARÀMETRES D'EQUILIBRI I C	INÈTICS
	43

ANNEX F. APLICACIÓ DE LES EINES DE CÀLCUL4	17
F.1. Resultats obtinguts a l'aplicar la macro per al càlcul de les isotermes d'adsorció4	17
F.1.1. Resultats per al NaNS amb MN2004	17
F.1.2. Resultats per a l'AR14 amb MN2004	18
F.1.3. Resultats per a l'AR14 amb MN3004	19
F.1.4. Resultats per al fenol amb Aurix5	50
F.2. Resultats obtinguts en el càlcul de l'isoterma de Redlich – Peterson5	51
F.2.1. Resultats per al NaNS amb MN2005	51
F.2.2. Resultats per a l'AR14 amb MN2005	52
F.2.3. Resultats per a l'AR14 amb MN3005	54
F.2.4. Resultats per al fenol amb Aurix5	56
F.3. Resultats obtinguts a l'aplicar la macro en entorn Excel per al càlcul dels paràmetre	s
cinètics mitjançant els models HPDM i SPM5	58
F.3.1. Resultats per al fluoroantè amb la resina MN2005	58
F.3.2. Resultats per a l'antracè amb la resina MN2006	30
F.3.3. Resultats per al naftalè amb carbó actiu6	51
F.3.4. Resultats per a l'acetonaftalè amb carbó actiu6	33

ANNEX G. METODOLOGIA EXPERIMENTAL	65
G.1. Estudis d'equilibri	65
G.2. Obtenció de rectes de calibrat pel fenol	65
G.3. Estudis de cinètica amb el model HPDM i SPM	68

ÍNDEX DE FIGURES

Fig. A.1. Classificació de les indústries segons les característiques dels seu	s abocaments
Fig. C.1. Sintesi dei copolimer estire – diviniibenze	20
Fig. C.2. Resina catiònica (part superior imatge) i resina aniònica (part inferi	or)23
Fig.C.3. Representació esquemàtica dels principals grups superficials que en el carbó	es poden trobar
Fig.C.4. Representació esquemàtica del caràcter àcid d'alguns grups oxig	genats (carboxils,
hidroxils i lactones) i del caràcter bàsic dels electrons deslocalitzats del pla	bassal i de grups
oxigenats (tipus pirona, tipus quinona i tipus cromè)	31
Fig. C.5. Fotografia de zeolitas	35
Fig. C.6. Estructura laminar de l'argila	
Fig. C.7. Columna d'adsorció de carbó actiu granular	
Fig. E.1. Pantalla d'inici per al cas de la macro genèrica	
Fig. E.2. Pantalla d'inici per al cas de la macro específica per UV-VIS	
Fig. E.3. Pantalla d'inici per al cas de la macro cinètica	45
Fig. F.1. Isoterma de Redlich - Peterson per al NaNS amb MN200	51
Fig. F.2. q experimental i q calculada versus C_{eq} per al cas del NaNS amb M	IN200 52
Fig. F.3. Isoterma de Redlich - Peterson per a l'AR14 amb MN200	53
Fig. F.4. q experimental i q calculada versus C_{eq} per a l'AR14 amb MN200	54
Fig. F.5. Isoterma de Redlich - Peterson per a l'AR14 amb MN300	55
Fig. F.6. q experimental i q calculada versus C_{eq} per al cas de l'AR14 amb M	1N300 56
Fig. F.7. Isoterma de Redlich – Peterson per al fenol amb resina Aurix	57
Fig. F.8. q experimental i q calculada versus C_{eq} per al fenol amb la resina A	vurix 58
Fig. G.1. Recta de calibrat per al fenol a pH 11 i λ = 234 nm	
Fig. G.2. Recta de calibrat per al fenol a pH 11 i λ = 290 nm	67
Fig. G.3. Recta de calibrat per al fenol a pH 3 i λ = 210 nm	68
Fig. G.4. Recta de calibrat per al fenol a pH 3 i λ = 270 nm	

ÍNDEX DE TAULES

Taula A.1. Caracterització dels efluents industrials7
Taula A.2. Principals contaminants de les aigües residuals11
Taula C.1. Tècniques utilitzades per a la regeneració del carbó actiu
Taula F.1. Dades necessàries per a l'obtenció de les isotermes del NaNS amb MN200 calculades per la macro
Taula F.2. q calculada per la macro a partir de les equacions obtingudes per a cada isotermaper al cas del NaNS amb MN20047
Taula F.3. Dades necessàries per a l'obtenció de les isotermes de l'AR14 amb MN200 calculades per la macro
Taula F.4. q calculada per a la macro a partir de les equacions obtingudes per a cadaisoterma per al cas de l'AR14 amb MN20048
Taula F.5. Dades necessàries per a l'obtenció de les isotermes de l'AR14 amb MN300 calculades per la macro 49
Taula F.6. q calculada per a la macro a partir de les equacions obtingudes per a cada isoterma per al cas de l'AR14 amb MN300
Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix
 Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix
Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix
Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix
Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix 50 Taula F.8. q calculada per a la macro a partir de les equacions obtingudes per a cada isoterma per al cas del fenol amb la resina Aurix 50 Taula F.9. Resultats de la isoterma de Redlich – Peterson per al NaNS amb MN200 51 Taula F.10. q calculada a partir de l'equació de la isoterma obtinguda per al NaNS amb MN200 52 Taula F.11. Resultats de la isoterma de Redlich – Peterson per l'AR14 amb MN200
Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix
Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix
Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix

Taula F.16. q calculada a partir de l'equació de la isoterma obtinguda per al fenol amb la resina Aurix
Taula F.17. Resultats obtinguts aplicant les equacions del model HPDM per al fluoroantèamb MN20058
Taula F.18. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model HPDM per al fluoroantè amb MN200
Taula F.19. Resultats obtinguts aplicant les equacions del model SPM per al fluoroantè ambMN20059
Taula F.20. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per al fluoroantè amb MN200
Taula F.21. Resultats obtinguts aplicant les equacions del model HPDM per a l'antracè amb MN200
Taula F.22. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model HPDM per a l'antracè amb MN200
Taula F.23. Resultats obtinguts aplicant les equacions del model SPM per a l'antracè amb MN200
Taula F.24. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per a l'antracè amb MN20061
Taula F.25. Resultats obtinguts aplicant les equacions del model HPDM per al naftalè amb carbó actiu
Taula E 26. Pondent, ordenada a l'origen i cooficient de difusió efectiu obtingute nel cas del
model HPDM per al naftalè amb carbó actiu
Taula F.20. Pendent, ordenada a rongen recencient de difusio electid obtinguts per cas del model HPDM per al naftalè amb carbó actiu 62 Taula F.27. Resultats obtinguts aplicant les equacions del model SPM per al naftalè amb carbó actiu 62
Taula F.20. Pendent, ordenada a rongen recencient de difusio electid obtinguts per cas del model HPDM per al naftalè amb carbó actiu 62 Taula F.27. Resultats obtinguts aplicant les equacions del model SPM per al naftalè amb carbó actiu 62 Taula F.28. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per al naftalè amb carbó actiu 63
Taula F.20. Pendent, ordenada a rongen recencient de difusio electid obtinguts per cas del model HPDM per al naftalè amb carbó actiu 62 Taula F.27. Resultats obtinguts aplicant les equacions del model SPM per al naftalè amb carbó actiu 62 Taula F.28. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per al naftalè amb carbó actiu 63 Taula F.29. Resultats obtinguts aplicant les equacions del model HPDM per a l'acetonaftalè amb carbó actiu 63
Taula F.20. Pendent, ordenada a Pongen recencient de difusió efectiu obtinguts per cas del model HPDM per al naftalè amb carbó actiu 62 Taula F.27. Resultats obtinguts aplicant les equacions del model SPM per al naftalè amb carbó actiu 62 Taula F.28. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per al naftalè amb carbó actiu 63 Taula F.29. Resultats obtinguts aplicant les equacions del model HPDM per a l'acetonaftalè amb carbó actiu 63 Taula F.30. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model HPDM per a l'acetonaftalè amb carbó actiu 63 Taula F.30. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model HPDM per a l'acetonaftalè amb carbó actiu 63

Taula F.32. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas	3 del
model SPM per a l'acetonaftalè amb carbó actiu	.64
Taula G.1. Mesures d'absorbància pel fenol a pH = 11	.66
Taula G.2. Mesures d'absorbància per al fenol a pH = 3	.67

ANNEX A. ELS EFLUENTS INDUSTRIALS

A.1. Caracterització dels efluents industrials

	CARACTERÍSTIQUES DELS EFLUENTS							
TIPUS	Unitats	Q	DBO	DQO	SS	Altres	Altres	Altres
INDÚSTRIA		(m³/u)	(kg/u)	(kg/u)	(kg/u)	1(kg/u)	2(kg(u)	3(kg/u)
Aliments						l		
Escorxadors	Tones	5,3	6,4		5,2			
Sacrifici aus	1000	12	11,9	22,4	12,7			
	aus							
Derivats de la	Tones	2	5,3		2,2			
llet	de llet							
Enllaunat de	Tones	10	12,5	4,3				
fruites i vegetals								
Refinat d'oli	Tones	57,5	12,9	21	16,4			
vegetal								
Molins	Tones	1,1		1,6				
Refinat de sucre	Tones	28,6	2,6		3,9			
Begudes								
Destil·lació	Ton	50	220		257	pH 4,5		
alcohol						- 9		
Cervesa (sense	m ³	8	7,5		14,5			
malta)								
Cervesa (amb	m ³	10	8,6		14,7			
malta)								
Vi	m ³	4,8	0,26					
Gasoses	Ton	7,1	2,2		5,4	pH 4,5		
						– 12		
Tèxtils								
Llana	Ton	537	87	347	43	pH 2 –		
						12		
Cotó	Ton	317	155		70	pH 8 –		
						12		
Nylon	Ton	125	45	78	30			
Acrílic	Ton	210	125	216	87			

Poliéster	Ton	100	185	320	95			
Adoberia			<u> </u>		<u> </u>			
Adoberia	Ton	35	89	258	138	Cr 3,5	S ₇	pH 1 –
								13
Fusta								
Agregats	1000 m ²	4,1		7,3	1,1	Fen		
						0,5		
Paper			I		I			
Kraft	Ton	61,3	31		18			
Molins	Ton	54		8	23	pH 4,5		
						- 9		
Molins amb	Ton	22		6,4	15,2			
recuperació								
aigua								
Químics industria	als		L		L		<u> </u>	
Àcid sulfúric	Ton	1,62				pН		
						baix		
Ciclohexà,	Ton	8,3	0,11	2				
etilbenzè, clorur								
de vinil, BTX								
Metanol,	Ton	12,7	63	193				
acetona, metil								
amina, butadiè,								
acetilè, etilè,								
propilè								
Àcid acètic,	Ton	12,6	136	2500				
aniloina,								
etilenglicol,								
fenol, acrilats								
Tints orgànics	Ton	450	136	2500		pH 4,5		
						- 9		
Sabons i deterge	nts			I	I		<u> </u>	
Sabons	Ton	2,5	10,4	10	8,5	pH 4,5		
						- 9		
Detergents	Ton	9	0,4	1,2	0,7			
Glicerina	Ton	10	20	40	4			

Detergents	Ton		1,8	7,9	0,3			
líquids								
Cua animal	Ton	457	580	1420	1920			
Llantes	Ton	37		0,78	1	pH 4,5		
						- 9		
No metàl·lics			1			•		
Ceràmiques	Ton	No						
Vidre	Ton	45,9		4,6	0,7			
Ciment procés	Ton	5,1	No					
sec								
Metàl·lics								
Electrodomèstics	Ton de	55	19,3	82	8,3			
	làmina							
Electroplatejat	Ton	1400 -	- 1815			Cu, Ni,	pН	CN
	d'ànodes					Zn	extrem	
	Cu, Ni,							
	Zn							
Recobriments	To	n d'ànod	es Cu, N	li, Zn, Cr		Cu, Ni,	pН	CN
electrolítics						Zn, Cr	extrem	

Taula A.1. Caracterització dels efluents industrials [www.minambiente.gov.co/]

A.2. Classificació de les indústries segons les característiques dels seus abocaments

Fig. A.1. Classificació de les indústries segons les característiques dels seus abocaments [www.minambiente.gov.co/]

A.3. Principals contaminants de les aigües residuals

	Cations: alcalins, alcalinoterris, metalls pesants				
CONTAMINANTS INORGANICS	Anions: clorurs, sulfurs, nitrats, nitrits i cianurs				
	Nutrients: compostos de nitrogen i fòsfor				
	Detergents				
CONTAMINANTS ORGÀNICS	Compostos orgànics halogenats				
	Compostos fenòlics				
	Hidrocarburs aromàtics policíclics (HAP)				
	Dioxines				
	Colorants				

Taula A.2. Principals contaminants de les aigües residuals

ANNEX B. LEGISLACIÓ D'AIGÜES AUTONÒMICA, ESTATAL I EUROPEA

B.1. Legislació autonòmica

A nivell autonòmic, la *Llei 5/1981*, del 4 de juny, tracta sobre l'evacuació i el tractament d'aigües residuals, i té per objectiu garantir una actuació coordinada i eficaç en matèria d'obres i serveis d'evacuació, tractament i recuperació de les aigües residuals en el territori de Catalunya. Aquesta llei ha estat desplegada posteriorment per altres decrets, i ha estat modificada parcialment per la *Llei 17/1987*, del 13 de juliol, reguladora de l'Administració Hidràulica de Catalunya. En relació a les dues lleis anteriors, es troba el Decret Legislatiu 3/2003, del 4 de novembre, pel qual s'aprova el Text refós de la legislació en matèria d'aigües de Catalunya. Aquesta Llei té per objectiu ordenar les competències de la Generalitat i les dels ens locals en matèria d'aigües i obres hidràuliques, regular, en l'àmbit d'aquestes competències, l'organització i el funcionament de l'Administració hidràulica a Catalunya, mitjançant una actuació descentralitzadora, coordinadora i integradora que ha de comprendre la preservació, la protecció i la millora del medi, i establir un nou règim de planificació i economicofinancer del cicle hidrològic.

A Catalunya, la llei que està en vigor pel que fa a mesures de regularització d'abocaments d'aigües residuals és el *Decret 83/1996*, del 5 de març. Aquest Decret té per objectiu la regulació del procediment aplicable per a l'obtenció per part dels titulars d'abocaments d'aigües residuals, de l'autorització prevista en la normativa sectorial aplicable i de l'establiment de normes d'adaptació de caràcter transitori. Aquest Decret dóna a les empreses una autorització d'abocament provisional per regular els seus abocaments. Les empreses han de presentar abans, però, un Pla de Descontaminació Gradual (PDG), que consisteix en un projecte subscrit per un tècnic en el qual s'indiquen els tractaments i mesures per a aquesta descontaminació. Aquest projecte inclou els terminis necessaris, les fases d'execució i també els costos previstos.

B.2. Legislació estatal

A nivell espanyol, la normativa que regula les aigües residuals és el *Reial Decret 2116/1998*, del 2 d'octubre, el qual modifica el *Reial Decret 509/1996* de desenvolupament del *Reial Decret – llei 11/1995*, que estableix les normes aplicables pel tractament d'aigües residuals urbanes.

El *Reial Decret – llei 11/1995*, del 28 de desembre, estableix les normes aplicables al tractament de les aigües residuals urbanes, i incorpora a l'ordenament intern aquells preceptes de la *Directiva 91/271/CEE* sobre tractament de les aigües residuals urbanes, que requereix una norma de rang legal.

D'altra banda, el *Reial Decret 509/1996*, del 15 de març, que desenvolupa l'anterior Reial Decret – llei, completa la incorporació de la Directiva anterior, al determinar els requisits tècnics que haurien de complir els sistemes col·lectors dels abocaments procedents d'instal·lacions secundàries i aquells que vagin a realitzar-se en zones sensibles. També regula el tractament previ dels abocaments de les aigües residuals industrials quan aquests es realitzen a sistemes de col·lectors o a instal·lacions de depuració d'aigües residuals urbanes.

Pel que fa a aigües potables, la legislació actual que estableix els criteris sanitaris de la qualitat de l'aigua de consum humà és el *Reial Decret 140/2003*, del 7 de febrer. Aquest Decret té per objectiu establir els criteris que permetin el seu subministrament des de la captació fins a l'aixeta del consumidor i el control d'aquestes, garantint la seva salubritat, qualitat i neteja, amb la finalitat de protegir la salut de les persones dels efectes adversos derivats de qualsevol tipus de contaminació de les aigües.

B.3. Legislació europea

La qualitat de les aigües superficials per aigua potable està regulada per la *Directiva* 75/440/CEE, del 16 de juny, la qual es refereix als requisits als quals s'haurà d'ajustar la qualitat de les aigües continentals superficials utilitzades o destinades a ser utilitzades en la producció d'aigua potable, després de l'aplicació de tractaments apropiats.

La *Directiva 76/464/CEE*, del 4 de maig, tracta la contaminació causada per l'abocament de substàncies perilloses abocades al medi aquàtic de la comunitat.

La *Directiva 80/68/CEE*, del 17 de desembre, parla de la protecció de les aigües subterrànies per contaminació de determinades substàncies perilloses, i té per objectiu prevenir la contaminació de les aigües subterrànies per unes substàncies en concret, i reduir o eliminar, en la mesura del possible, les conseqüències de la seva contaminació actual.

La *Directiva 80/778/CEE*, del 15 de juliol, tracta la qualitat de l'aigua destinada al consum humà, és a dir, totes les aigües utilitzades amb aquesta finalitat, ja sigui en el seu estat original, ja sigui després del tractament corresponent.

La llei que regula el tractament d'aigües residuals urbanes a nivell europeu és la *Directiva 91/271/CEE*, del 21 de maig de 1991, que està posteriorment modificada per la *Directiva 98/15/CE*, el 27 de febrer de 1998. Aquestes directives tenen com objectiu la recollida, tractament i abocament de les aigües residuals urbanes i el tractament i l'abocament de les aigües residuals procedents de determinats sectors industrials, per tal de protegir el medi ambient dels efectes negatius dels abocaments d'aquestes aigües residuals.

Finalment, també hi ha vigent la *Directiva 2000/60/CE*, del 23 d'octubre, per la qual s'estableix un marc comunitari d'actuació en l'àmbit de política d'aigües.

ANNEX C. ESTUDI TEÒRIC DELS PROCESSOS DE SORCIÓ

C.1. El procés d'intercanvi iònic

C.1.1. Definició i cinètica del procés

Es coneix com intercanvi iònic una reacció química en la qual els ions lliures mòbils d'un sòlid (intercanviador de ions) es canvien per diferents ions de càrrega similar de la dissolució. L'intercanviador ha de tenir una estructura de malla oberta, que pot ser orgànica o inorgànica, que retingui sobre sí els ions i que permeti el pas a través seu d'altres ions [Coulson, 1974].

El procés d'intercanvi iònic es produeix quan es posa en contacte l'intercanviador i el medi en el qual es dóna l'intercanvi. Normalment es treballa amb un intercanviador iònic sòlid i una solució aquosa. Per a poder-se realitzar l'intercanvi és necessari que l'intercanviador estigui ionitzat i que només un d'aquests ions sigui soluble, per tal de poder-se intercanviar. La reacció d'intercanvi iònic és reversible, per això s'ha de representar com un procés d'equilibri. Aquesta reacció es pot escriure de la manera següent:

$$(M^+X^-)_s + Y^- \leftrightarrow (M^+Y^-)_s + X^-$$
 (Reac. C.1)

On M^+X^- és l'intercanviador iònic, X^- el ió soluble i Y^- el ió en dissolució.

A mesura que la dissolució passa a través de l'intercanviador, els ions presents en aquesta dissolució desplacen als que estaven originàriament en els llocs actius. Evidentment, perquè es produeixi l'intercanvi iònic, els ions han de moure's de la dissolució a l'intercanviador i viceversa. Aquest moviment es coneix com a procés de *difusió*. La difusió es produeix entre zones de diferents concentracions de ions, anant aquests de la banda més concentrada a la menys concentrada, fins que les concentracions s'igualen.

Pel què fa a la *cinètica de la reacció*, els processos d'intercanvi iònic acostumen a ser lents, ja que són reaccions heterogènies on intervenen processos de difusió. La Reacció C.1 consta de les etapes següents:

 Difusió de Y⁻ de la massa de la solució fins a la superfície de l'intercanviador, donantse la substitució de ions que han difós des de la capa superficial de la solució fins a l'interior del sòlid.

- 2. Difusió de Y⁻ dins del sòlid fins a entrar en contacte amb X⁻.
- 3. Intercanvi de Y⁻ i X⁻ en la zona de contacte.
- 4. Difusió de X⁻ dins del sòlid cap a la seva superfície.
- 5. Difusió de X⁻ a través de la capa superficial de la solució fins a l'interior de la solució.

L'etapa 3 acostuma a donar-se molt ràpidament i, per tant, les velocitats del procés d'intercanvi iònic es defineixen com dos processos de difusió: en el sòlid i en la capa superficial de la solució que envolta la partícula. Així doncs, quan es decideixen les equacions cinètiques que defineixen el procés, s'ha de tenir en compte si l'etapa controlant és la difusió en la capa líquida o en el sòlid.

La cinètica de la reacció d'intercanvi iònic està governada per varis factors: la concentració de la solució a tractar, el grau d'entrecreuament de l'adsorbent, la grandària dels ions, la grandària dels porus de l'intercanviador, la grandària de l'esfera, la valència dels ions, la temperatura, la forma iònica dels llocs d'intercanvi i la fortalesa d'aquests llocs.

Com més alta és la concentració de la solució tractada, més s'accelera la velocitat de la reacció. D'altra banda, el grau d'entrecreuament de l'adsorbent determina la porositat d'aquest i, en conseqüència, la mobilitat iònica dins les esferes de material adsorbent. La grandària dels ions i dels porus de l'intercanviador és un altre factor a tenir en compte, així com la grandària de les esferes, ja que com més petites siguin més curta serà la via de difusió que presentin fins als llocs actius de la part interior d'aquestes. Cal tenir en compte també que els intercanviadors tenen una major afinitat cap als ions de major valència, pel que la predominança d'aquests ions pot causar una major velocitat de reacció. D'altra banda, una major temperatura pot accelerar les reaccions químiques. La reacció d'intercanvi és, com ja hem dit, un procés de difusió, fet pel qual la taxa de difusió en el lloc d'intercanvi iònic és un altre factor important. A més, la fortalesa del lloc d'intercanvi, ja sigui fort o dèbilment àcid o bàsic, també afecta a la taxa de reacció.

C.1.2. Paràmetres característics dels intercanviadors iònics

Els tres paràmetres que s'utilitzen per a caracteritzar els intercanviadors iònics són la capacitat específica teòrica, la capacitat d'intercanvi i la selectivitat.

Capacitat específica teòrica

Es defineix com el nombre màxim de llocs actius de l'intercanviador per gram d'aquest.

Capacitat d'intercanvi

Es denomina així a la quantitat de ions que una resina pot intercanviar en determinades condicions experimentals. Depèn del tipus de grup actiu i del grau d'entrecreuament de la matriu i s'expressa en equivalents per litre de resina, o per gram (Un equivalent és el pes molecular en grams del compost dividit per la seva càrrega elèctrica).

Selectivitat

És la propietat dels intercanviadors iònics per la qual un intercanviador mostra major afinitat per un ió que per un altre. La selectivitat depèn de les interaccions electrostàtiques que s'estableixen entre el ió i l'intercanviador, de la formació d'enllaços amb els llocs actius, de l'estructura dels porus i de l'elasticitat de l'intercanviador. La selectivitat d'una resina per un ió determinat es mesura amb el coeficient de selectivitat, que es calcula segons l'Equació C.1:

$$k_s = \frac{m_A}{m_B}$$
 (Eq. C.1)

On m_A i m_B són la sensibilitat de calibrat de les espècies A i B respectivament. L'espècie A correspon al ió que es vol intercanviar, mentre que la B és una interferència [Skoog, 1992].

C.1.3. Classificació dels intercanviadors iònics

Els intercanviadors iònics formen un grup de materials molt heterogeni, i l'única característica que tenen en comú és que contenen una càrrega elèctrica fixa capaç d'enllaçar a ions en càrrega oposada. Es classifiquen en dos grups: els intercanviadors orgànics i els inorgànics.

a) Intercanviadors iònics inorgànics

N'hi ha de dos tipus: naturals i sintètics. Els naturals són aluminosilicats com zeolites, argiles minerals i feldespats. Els sintètics es poden dividir generalment en òxids metàl·lics hidratats, sals insolubles d'heteropoliàcids, sals complexes basades en hexacioanoferrats insolubles, sals insolubles de metalls polivalents i zeolites sintètiques.

b) Intercanviadors iònics orgànics

Els intercanviadors iònics orgànics poden ser resines orgàniques naturals, resines orgàniques sintètiques o resines impregnades.

Les resines impregnades consten d'un suport polimèric que s'impregna amb una dissolució orgànica que conté a un extractant selectiu a un metall en concret. Aquestes resines tenen l'inconvenient de pèrdua de dissolvent durant el seu ús.

Les resines orgàniques naturals i sintètiques es comenten més àmpliament a continuació.

c) Resines d'intercanvi iònic

Les resines són el material més habitual en les aplicacions d'intercanvi iònic en la indústria. Tal i com ja s'ha comentat, les resines d'intercanvi iònic poden ser naturals o sintètiques.

A la naturalesa existeixen varis polímers que actuen com a intercanviadors iònics, com poden ser la cel·lulosa, l'àcid algínic, la xitina, el xitosan , el dextrà o l'agarosa. Actualment, però, la major part de les resines utilitzades en la indústria són sintètiques.

Les resines sintètiques d'intercanvi iònic consisteixen en una estructura polimèrica tridimensional insoluble reticulada per l'acció d'un agent entrecreuant i derivatitzada amb grups inorgànics que actuen com a grups funcionals, que són els que li proporcionen propietats d'intercanvi iònic. La càrrega que presenten els ions solubles que s'adhereixen és igual però de signe contrari a la càrrega que està en la xarxa. Aquests ions solubles només poden ser eliminats quan un nombre de ions equivalent i carregats de forma similar els substitueix, mitjançant el mecanisme ja comentat a l'Apartat C.1.1.

Síntesis de resines sintètiques

La major part dels materials d'esferes d'intercanvi iònic es fabriquen utilitzant un procés de polimerització per suspensió, que utilitza estirè i divinilbenzè, degut a la seva bona resistència química i física i a la seva estabilitat en tot el rang de pH i a la temperatura. A la Figura C.1 es pot observar com a partir d'estirè i divinilbenzè, s'obté el copolímer estirè - divinilbenzè.

Fig. C.1. Síntesi del copolímer estirè - divinilbenzè

L'estirè i el divinilbenzè, ambdós líquids inicialment, es col·loquen en un reactor químic amb més o menys la mateixa quantitat d'aigua, juntament amb un agent flotador per a mantenir la dispersió. El reactor químic té un agitador que comença a mesclar la solució i l'estirè i el divinilbenzè comencen a formar grans glòbuls de material. A l'augmentar-se la velocitat d'agitació, els glòbuls es divideixen en gotetes més petites. En aquest moment s'inicia la reacció de polimerització addicionant un agent entrecreuant com pot ser el peròxid de benzoïl, el qual fa que les molècules d'estirè - divinilbenzè formin les esferes petites de plàstic que resulten [www.mtas.es/insht].

Ara bé, l'esfera de poliestirè - divinilbenzè necessita ser activada químicament per a funcionar com a material d'intercanvi iònic. Els grups activats són lligats per a proporcionar-li funcionalitat química a l'esfera. Les resines catiòniques fortes es formen tractant a les esferes amb àcid sulfúric concentrat (sulfonació), per a formar grups sulfònic - àcids permanents, de càrrega negativa, a través de les esferes. Les resines aniòniques fortes s'activen en un procés de dos passos que consisteix en una clorometilació seguida de l'aminació. Aquest procés comença amb el mateix material estirè - divinilbenzè que s'utilitza per a les resines catiòniques, però en aquest cas la quantitat utilitzada de divinilbenzè és inferior per a permetre així una esfera més porosa. El primer pas de la reacció és la lligació d'un grup de clorometil a cadascun dels anells de benzè en l'estructura de l'esfera. Aquest material plàstic intermedi clorometilitzat ha de reaccionar amb una amina en un procés conegut com aminació. El tipus d'amina utilitzada determina la funcionalitat de la resina. Algunes amines comunament utilitzades són la dimetiletanolamina o la trimetilamina [www.mtas.es/insht].

Classificació

Les resines no només es classifiquen en funció de la seva naturalesa, sinó que també poden classificar-se de dues maneres més: en funció de la seva estructura de xarxa polimèrica i en funció del tipus de grup funcional.

Segons *l'estructura de la seva xarxa*, les resines d'intercanvi iònic poden ser resines microporoses, resines macroporoses i resines isoporoses.

Resines microporoses

Aquestes resines tenen una grandària de porus relativament petita i es poden anomenar també resines de tipus gel. Una característica molt important és que s'inflen en major o menor mesura en funció del percentatge d'agent entrecreuant utilitzat durant la

polimerització i del dissolvent en el que es troba la resina. Per exemple, una resina amb baixa proporció de divinilbenzè s'inflarà molt en dissolució aquosa, la qual cosa permetrà la difusió de ions de major grandària.

Resines macroporoses

També anomenades macroreticulars. Durant la seva síntesi a partir dels seus monòmers, s'utilitza un co-solvent que actua interposant-se entre les cadenes polimèriques creant grans superfícies internes. Aquest dissolvent s'elimina al final del procés. Les perles tenen una relació àrea/volum major que les resines tipus gel, fet que els confereix major capacitat d'intercanvi. L'estructura macroreticular afavoreix la difusió dels ions, millorant per tant la cinètica d'intercanvi.

Resines isoporoses

Es caracteritzen per tenir una grandària de porus uniforme, i en conseqüència un augment la permeabilitat dels ions en l'interior de la xarxa. Són resines de regeneració eficient, d'alta capacitat i de cost més baix que les resines macroporoses.

D'altra banda, segons el grup funcional les resines d'intercanvi iònic poden ser:

Resines catiòniques d'àcid fort

Aquestes resines, que intercanvien cations, es produeixen per sulfonació del polímer amb àcid sulfúric. El grup funcional és l'àcid sulfònic, -SO₃H. Aquests intercanviadors catiònics funcionen a qualsevol pH i divideixen totes les sals, però necessiten una gran quantitat de regenerant.

• Resines catiòniques d'àcid dèbil

El grup funcional és un àcid carboxílic –COOH, present en un dels components del copolímer, principalment l'àcid acrílic o metacrílic. Aquestes resines presenten menor capacitat d'intercanvi, treballen amb fluxos menors i no són funcionals a pH baix. A més a més, presenten un elevat inflament i contracció, fet que fa augmentar les pèrdues de càrrega o provocar ruptures en el recipient que les conté. Alguns dels seus principals avantatges són la seva elevada eficiència, ja que és regenerada amb gairebé el 100% de la quantitat estequiomètrica d'àcid, comparat amb el 200% o 300% requerit per a les catiòniques d'àcid fort, i la seva econòmica regeneració mitjançant l'àcid de rebuig procedent de les d'àcid fort.

• Resines aniòniques de base forta

Aquestes resines, que intercanvien anions, s'obtenen a partir de la reacció de copolímers d'estirè - divinilbenzè clorometilats amb amines terciàries. El grup funcional és una sal d'amoni quaternari, R_4N^+ . Aquests intercanviadors aniònics necessiten una gran quantitat de regenerant, normalment hidròxid sòdic (NaOH).

• Resines aniòniques de base dèbil

Resines funcionalitzades amb grups d'amina primària, -NH₂, secundària, -NHR, i terciària, -NR₂. Solen aplicar-se a la sorció d'àcids forts amb bona capacitat, però la seva cinètica és lenta. Es tracta d'un tipus de resina molt eficient, requereix menys sosa per a la seva regeneració i no es pot utilitzar a pH alts, ja que pot patir problemes d'oxidació o embrutiment.

A la Figura C.2 es pot observar una fotografia de les resines catiòniques i aniòniques.

Fig. C.2. Resina catiònica (part superior imatge) i resina aniònica (part inferior). [www.webs.ono.com/desmineralizadores/tipos.html]

Resines quelatants

En aquestes resines el grup funcional té les propietats d'un reactiu específic, ja que forma quelats selectivament amb alguns ions metàl·lics. Els àtoms més freqüents són el sofre, el nitrogen, l'oxigen i el fòsfor, que formen enllaços de coordinació amb els metalls. Els seus avantatges sobre els altres és la selectivitat que mostren cap a metalls de transició i que el caràcter d'àcid dèbil del grup funcional facilita la regeneració de la resina amb un àcid mineral. No obstant, són poc utilitzades en la indústria pel seu cost elevat i per tenir una cinètica d'absorció més lenta [www.tecnociencia.es/especiales/intercambio_ionico/].

C.1.4. Aplicacions industrials dels intercanviadors iònics

Els intercanviadors iònics tenen un ampli ventall d'aplicacions en la indústria actual, com per exemple en tractaments d'aigües (eliminació de la seva duresa, alcalinitat, matèria orgànica, nitrats, ió aniònic i desionització), tractament de residus nuclears, indústria alimentària, indústria farmacèutica, indústria tèxtil, ceràmica, catàlisis, agricultura o hidrometal·lúrgia.

C.2. El procés d'adsorció

C.2.1. Història de l'adsorció

L'adsorció és una tècnica relativament nova en comparació amb altres processos de tractament d'aigües. Va ser l'any 1773, quan Karl Wilhelm Scheele va realitzar per primera vegada estudis sobre les propietats adsorbents del carbó actiu en gasos; l'any 1777 Fontana va realitzar els mateixos estudis de manera independent. Lownitz, al 1785, va observar per primera vegada el fenomen de l'adsorció en solucions, i cinc anys després ho va aplicar per a la decoloració del sucre durant el seu refinat.

Degut a les grans necessitats que antigament hi havia per a tenir una major qualitat de les aigües residuals tractades, es van realitzar nombrosos estudis sobre l'adsorció, bàsicament per eliminar olors i sabors. Al llarg dels anys, la indústria ha anat evolucionant, i també ho han fet els objectius de tractament d'aigües, centrant-se cada cop més en l'eliminació de components orgànics que podrien ser cancerígens.

C.2.2. Definició

L'adsorció és un fenomen fisicoquímic que pot ser definit com l'acumulació d'un determinat compost a la superfície o interfase entre dues fases. Aquestes fases poden ser qualsevol de les següents combinacions: líquid - líquid, líquid - sòlid, gas - líquid i gas - sòlid. La fase que adsorbeix s'anomena *adsorbent* i qualsevol substància que sigui adsorbida s'anomena *adsorbat* [Noll, 1992]. En el cas del tractament d'aigües l'adsorció es produeix quan les impureses de l'aigua s'acumulen en la interfase sòlid - líquid.

L'adsorció es produeix degut a forces d'atracció que fan que l'adsorbat es desplaci de la solució a la superfície sòlida de l'adsorbent. Termodinàmicament, es pot dir que l'adsorbat té menys energia lliure quan està a la superfície del sòlid que quan està a la solució. Per tant,

tenint en compte la Segona Llei de la Termodinàmica, l'adsorbat tendirà a desplaçar-se de la solució a la superfície sòlida.

C.2.3. Tipus d'adsorció

En funció de la força que intervé en el procés d'adsorció, aquesta es pot classificar en:

a) Adsorció física

Es parla d'*adsorció física* quan les forces intermoleculars entre les molècules del fluid i els àtoms superficials són dèbils, generalment forces de Van der Waals. Aquesta unió acostuma a ser reversible degut a canvis en paràmetres tals com la concentració, la pressió o la temperatura.

b) Adsorció química

Per altra banda, es diu que l'adsorció és *química* si durant el procés les molècules del fluid íntegres o desdoblades en àtoms o radicals intercanvien o comparteixen electrons amb les molècules o àtoms superficials. Això fa que aquesta adsorció sigui irreversible.

L'adsorció física és el procés que es produeix més freqüentment en l'eliminació dels constituents d'una aigua residual per carbó actiu [Metcalf-Eddy, 1977].

C.2.4. Factors que afecten a l'adsorció

L'adsorció es pot veure afectada per diversos factors. Primerament, cal tenir en compte les *propietats de l'adsorbat*: grups funcionals, geometria o ramificacions, polaritat, hidrofobicitat, moment dipolar, pes molecular i mida, i solubilitat en l'aigua. En segon lloc, cal considerar les *condicions de la dissolució*: pH, temperatura, concentració d'adsorbat, força iònica i soluts competitius. Finalment cal fixar-se també en la *naturalesa de l'adsorbent*: àrea superficial, distribució i mida dels porus, distribució dels grups funcionals i contingut en cendres.

Dels factors anomenats anteriorment cal destacar els detallats a continuació.

• Superfície específica

L'adsorció és un fenomen superficial, per tant, com més gran sigui la superfície de l'adsorbent, major serà el grau d'adsorció. La quantitat adsorbida per unitat de pes d'adsorbent sòlid és tant més gran com més finament dividit estigui i més porós sigui el sòlid;

és per això que els adsorbents utilitzats són sòlids molt porosos amb un gran desenvolupament superficial.

• Naturalesa de l'adsorbat

Dins de la naturalesa de l'adsorbat es poden distingir diversos aspectes importants, que són la solubilitat de l'adsorbat, la presència de grups funcionals i la naturalesa iònica.

La solubilitat de l'adsorbat que s'adsorbeix des d'una dissolució influeix notablement en l'equilibri d'adsorció. D'acord amb la denominada *regla de Lundelius*, el grau d'adsorció d'un solut serà tant més gran com menys soluble sigui en el dissolvent des del qual té lloc l'adsorció. La solubilitat està relacionada amb l'estructura del solut; s'observa que en sèries homòlogues de compostos orgànics el grau d'adsorció augmenta amb la longitud de la cadena. No obstant, cal destacar que en el cas d'adsorbents molt microporosos la major part de la superfície específica es troba en porus de petit diàmetre que només és accessible a molècules de mida petita, i per tant, només aquestes es podran adsorbir sobre la mateixa.

Per altra banda també és de gran importància la presència de grups funcionals que poden interaccionar amb altres grups polars de l'adsorbent donant lloc a l'adsorció específica.

Per últim, cal tenir en compte la naturalesa iònica. La major part dels compostos presents a les aigües residuals són fàcilment ionitzables. Aquest factor és de gran importància, ja que el carbó porta associada habitualment una càrrega superficial negativa.

• pH

El pH de la dissolució on es produeix l'adsorció influeix en aquesta per varies causes. Degut al fet que els ions hidroni i hidroxil s'adsorbeixen de manera bastant forta, l'adsorció d'altres ions està afectada fortament pel pH de la dissolució. A més a més, el pH afecta al grau de ionització dels compostos àcids o bàsics, el qual és un factor determinant per a l'adsorció.

En general, el grau d'adsorció dels contaminants orgànics típics de l'aigua augmenta al disminuir el pH. En molts casos això és degut a la neutralització de càrregues negatives a la superfície del carbó actiu, degut a l'augment de la concentració de protons, reduint-se així l'impediment de la difusió i fent-se accessible més superfície del mateix. De totes maneres, aquest efecte pot variar segons el tipus de carbó, degut a què les càrregues elèctriques superficials del carbó actiu depenen de les matèries primeres utilitzades i de la tècnica d'activació aplicada.

• Naturalesa de l'adsorbent

La naturalesa fisicoquímica de l'adsorbent pot influir notablement a la velocitat i capacitat d'adsorció del mateix. La naturalesa i característiques dels adsorbents més utilitzats són descrites més detalladament a l'Apartat C.2.5.

• Naturalesa del dissolvent

La naturalesa del dissolvent és un factor important a tenir en compte per diversos motius. Per una banda, cal tenir en compte la naturalesa química del dissolvent. Aquesta influeix en les interaccions amb l'adsorbent i amb el solut, tant en la dissolució (solubilitat) com en la fase adsorbida. El grau d'adsorció d'un adsorbat varia segons el dissolvent en què es troba dissolt.

Per altra banda, cal considerar la tensió superficial del dissolvent, la qual influeix en el contacte sòlid - líquid.

• Temperatura

El fenomen d'adsorció és normalment exotèrmic i, per tant, el grau d'adsorció sol augmentar al disminuir la temperatura. Les variacions d'entalpia en l'adsorció solen ser de l'ordre de les corresponents a reaccions de condensació o de cristal·lització. Així doncs, petites variacions de temperatura no alteren apreciablement el fenomen d'adsorció. A la pràctica doncs, sempre que es pot, es procura realitzar l'adsorció a temperatura ambient, per estalviar energia.

Competència entre adsorbats

Generalment, els processos industrials de purificació impliquen l'adsorció de mescles multicomponents. La presència de diversos adsorbats fa que es produeixin fenòmens de competència que alteren fortament les capacitats d'adsorció respectives de cada espècie individual. La inhibició de la capacitat d'adsorció es produirà sempre que:

- L'adsorció es redueixi a una única o poques capes moleculars.
- Les afinitats d'adsorció dels soluts no difereixin en diversos ordres de magnitud.

- No existeixi una interacció específica entre els soluts que comporti un augment de l'adsorció. Les dades generals de la bibliografia indiquen que en general, cada solut competeix d'alguna manera amb l'adsorció dels altres.

C.2.5. Adsorbents

La selecció d'un bon adsorbent és un pas essencial per tal que l'adsorció sigui un mètode de tractament viable. Els adsorbents que més s'utilitzen actualment són el carbó actiu, els adsorbents polimèrics sintètics (resines), els tamisos moleculars (zeolites) i les argiles. Les propietats a tenir en compte a l'hora d'escollir un adsorbent són bàsicament quatre: la capacitat d'adsorció, el seu potencial de regeneració, el seu cost i la vida d'aquest.

a) Carbó actiu

Característiques

El carbó actiu és l'adsorbent més àmpliament utilitzat en el tractament per sorció de les aigües, especialment de les residuals.

Aquest adsorbent és una forma amorfa del carboni amb una estructura microcristal·lina de tipus grafític, preparat mitjançant la carbonització de substàncies orgàniques d'origen primordialment biològic. El terme actiu fa referència al desenvolupament d'una gran porositat i superfície específica mitjançant un procés d'activació, que determina les característiques del producte final [Marijuan de Santiago, 1988].

La superfície específica, així com també la distribució de mides dels porus d'un carbó actiu, són dues propietats que afecten notablement a la capacitat de l'adsorbent i a la cinètica d'adsorció; per tant, caldrà tenir-les en compte a l'hora d'escollir el tipus de carbó actiu.

Els porus es produeixen durant l'activació del carbó, i són els que proporcionen al carbó les seves propietats adsorbents. Una bona activació fa que es formi un nombre elevat de porus i, conseqüentment, una elevada superfície específica, obtenint com a resultat una elevada capacitat d'adsorció. Existeix una gran varietat de mides de porus i segons quina és la seva funció, aquests es poden classificar en porus d'adsorció o porus de transport.

Els *porus d'adsorció* són espais entre plaques grafítiques amb una separació d'entre una i cinc vegades el diàmetre de la molècula que es retindrà. En aquests porus, ambdues plaques de carbó estan suficientment a prop com per exercir atracció sobre l'adsorbat i retenir-lo amb major força.

Els *porus de transport* són més grans que els d'adsorció i tenen un rang de grandàries molt ampli. En aquests, només una placa atrau a l'adsorbat de manera que ho fa amb una força menor, la qual fins i tot pot ser insuficient per a retenir-lo. Actuen com a camins de difusió pels que circula la molècula cap als porus d'adsorció en el que hi ha una atracció major. Per tant, tot i tenir poca influència en la capacitat del carbó actiu, sí que afecten a la cinètica d'adsorció.

La IUPAC (*International Union of Pure and Applied Chemists*), fa una altra classificació basada en el diàmetre dels porus:

- Microporus (diàmetre menor a 2 nm).
- Mesoporus (diàmetre entre 2 i 50 nm).
- Macroporus (diàmetre major a 50 nm, normalment de 200 a 2000 nm).

Els microporus tenen una grandària adequada per a retenir molècules petites, que aproximadament corresponen a compostos més volàtils que l'aigua, com olors, gustos i alguns solvents. Per altra banda, els macroporus atrapen molècules grans, com són les substàncies dels àcids húmic i flúvic que es generen quan la matèria orgànica es descompon. Els mesoporus són els adequats per a molècules de mida intermèdia.

La naturalesa química del carbó actiu també juga un paper molt important en les seves propietats adsorbents. El carbó actiu té una estructura formada per àtoms de carboni amb valència insaturada i, a més a més, grups funcionals tals com oxigen i nitrogen, els quals fan que la superfície del carbó es torni químicament reactiva, de manera que afecta de manera notable a les seves propietats adsorbents.

Importància de la química superficial dels carbons actius

La superfície dels carbons, en particular els àtoms de carbó de les vores dels plans bassals, poden trobar-se combinats en major o menor proporció amb altres àtoms diferents al carboni (heteroàtoms), donant lloc a diferents grups superficials. Per altra banda, els àtoms de carboni dels plans bassals, posseeixen orbitals π que contenen electrons més o menys deslocalitzats dins d'aquests plans. La presència o absència dels grups superficials, així com el major o menor grau de deslocalització dels electrons π afecta a les interaccions del carbó amb altres elements o compostos. [www.incar.csic.es]. A la Figura C.3 es pot observar quins són els grups superficials més típics.

Fig.C.3. Representació esquemàtica dels principals grups superficials que es poden trobar en el carbó [www.incar.csic.es]

Un aspecte important de la química superficial d'un carbó actiu és la seva naturalesa amfòtera, és a dir, que en la superfície del carbó coexisteixen grups superficials de caràcter àcid i grups superficials de caràcter bàsic. El fet que un carbó sigui globalment àcid o bàsic dependrà tant de la concentració d'aquests grups com de la força com a àcid o base dels mateixos. En els medis bàsics, els grups àcids tendeixen a alliberar protons, mentre que els grups bàsics tendeixen a captar-lo quan el medi és àcid. D'aquesta manera poden aparèixer càrregues positives o negatives a la superfície del carbó.

En resum, si el carbó té una càrrega neta negativa serà preferible per adsorbir cations, mentre que si presenta una càrrega neta positiva ho serà per adsorbir anions. Si es té en compte que modificar el pH dels efluents contaminants no sempre és senzill, és preferible optimitzar la química superficial del carbó actiu tenint en compte els criteris anteriors perquè l'adsorció sigui màxima. A la Figura C.4 es pot veure una representació esquemàtica del caràcter àcid i bàsic d'alguns grups oxigenats.

Fig.C.4. Representació esquemàtica del caràcter àcid d'alguns grups oxigenats (carboxils, hidroxils i lactones) i del caràcter bàsic dels electrons deslocalitzats del pla bassal i de grups oxigenats (tipus pirona, tipus quinona i tipus cromè)

Algunes aplicacions típiques del carbó actiu són per eliminar impureses que causen color, olor i gust a l'aigua potable, pel tractament terciari d'aigües residuals, pel tractament d'aigües en processos industrials, pel tractament d'emissions atmosfèriques, per la purificació d'aire i gasos i per decoloració de vins, sucs i vinagres.

Producció

El carbó actiu es pot obtenir a partir de matèries primeres d'origen molt divers, com poden ser el carbó, la fusta, els residus del petroli i residus de la indústria paperera o del plàstic.

El procés de producció es basa principalment en els dos passos següents:

- La matèria primera (fusta o carbó) s'escalfa fins a la incandescència per tal que s'eliminin els hidrocarburs presents en aquesta, però amb una aportació d'aire insuficient per a mantenir la combustió.
- El carbó s'activa exposant-lo a un gas oxidant a elevada temperatura (800–1000°C); aquest gas desenvolupa una estructura porosa en el carbó natural creant així una gran superfície interna.

En referència al procés d'activació del carbó, cal tenir present que, si la temperatura a la qual es realitza l'activació del carbó és inferior als 800°C la velocitat de reacció és massa lenta, de manera que el procés passa a ser poc econòmic; per altra banda, si es superen els 1000°C la reacció és corrosiva, reduint la mida de la partícula i fent que l'interior sigui inactiu.

Les propietats de la superfície resultant són funció del material inicial utilitzat i del procediment exacte de preparació, de manera que són moltes les variacions possibles. Pel que fa a la mida del porus desenvolupat durant l'activació té importància en l'adsorció de la fase vapor però no generalment en la fase líquida [Metcalf – Eddy, 1994].

Regeneració

El gran avantatge des del punt de vista econòmic de la utilització del carbó actiu com a adsorbent és la possibilitat de regenerar-lo un cop aquest ha assolit la seva capacitat d'adsorció màxima. Les tecnologies més àmpliament utilitzades per a la regeneració del carbó actiu són la regeneració tèrmica, la regeneració biològica i l'extracció amb dissolvents. A la Taula C.1 es mostra un resum d'aquestes tres tècniques.

PROCÉS	DESCRIPCIÓ	AVANTATGES	INCONVENIENTS	REFERÈNCIA
	S'escalfa amb	- Per a fase gas	- Cost elevat	
	aigua un	iliquida	- Elevades	
	corrent de	- Espècies	temperatures: no	Ruthven, 1984
TERMIC	gas en un	fortament	pot ser in situ	
	forn múltiple	adsorbides	- No és útil en	
	de xemeneia	- Recuperació	cicles ràpids	
	típic a una T	de substàncies	-Pèrdua de	
	entre 850 –	d'alta	capacitat	
	1000°C	concentració		
			 L'activitat 	
	El carbó actiu	 Major temps 	biològica sense	
BIOLOGIC	conté	de vida del	control comporta	Scholz i Martin,
	bacteries en	carbó actiu	una sobreproducció	1997
	els seus	 Major eficàcia 	de biomassa, i és	
	macroporus	en la reducció	necessaria una	
		de matèria	gran desinfecció	
		orgànica	posterior	
EXTRACCIÓ	Desplaçamen		- No hi ha	
	t de la	 Cicles ràpids 	destrucció del	Duthyon 1094
AIVID	substància	- Només hi ha	contaminants	Ruuiven, 1904
DISSOLVENT	adsorbida	pèrdua de	 Elecció difícil del 	
	mitjançant	capcitat en els	dissolvent	
	una corrent	primers cicles	- Dissolvents: són	
	líquida o		cars i solen ser	
	gasosa		nocius	

Taula C.1. Tècniques utilitzades per a la regeneració del carbó actiu [Sotelo, J.L]

D'aquestes, la més utilitzada és la regeneració tèrmica, la qual es pot realitzar amb dos sistemes diferents: en forns de múltiples etapes i en forns d'infrarrojos. El més comú és utilitzar el forn de múltiples etapes [Marijuan de Santiago, 1988].

• Regeneració en forns de múltiples etapes

En els forns de múltiples etapes, l'adsorbent se sotmet a condicions similars a les d'activació original. El carbó s'escalfa fins a temperatures properes als 1000°C en una atmosfera aire - vapor (reactivació tèrmica amb baixa concentració d'oxigen per evitar que s'inflami el carbó) per cremar el monòxid de carboni i l'hidrogen produït per la reacció de reactivació. Es recupera del 90 al 95% de material, amb una capacitat d'adsorció una mica inferior a la del carbó nou.

Reaccions necessàries per a la regeneració:

$$\begin{array}{ll} C(s) + CO_2(g) \rightarrow 2CO_2(g) & (Reac. C.2) \\ C(s) + H_2O(g) \rightarrow H_2(g) + CO(g) & (Reac. C.3) \end{array}$$

A temperatures superiors als 760°C, aquestes dues reaccions són endotèrmiques, de manera que les reaccions són fàcils de controlar si es controla l'aportació de calor.

El monòxid de carboni pot reaccionar amb el vapor d'aigua donant:

$$CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$$
(Reac. C.4) $K_{eq} = 1,0 (T=870^{\circ}C)$ (Eq. C.2) $K_{eq} = 0,7 (T=980^{\circ}C)$ (Eq. C.3)

Per altra banda, cal minimitzar l'oxidació directa del carbó a CO₂ controlant la concentració d'oxigen al reactor:

$$3/2 O_2(g) + 2C(s) \rightarrow CO_2(g) + CO(g)$$
 (Reac. C.5)

A diferència de les Reaccions 4.2 i 4.3, la Reacció 4.5 és exotèrmica, i al ser portadora de calor, és auto promotora i difícil de controlar. D'aquesta manera, l'oxigen és més propens a atacar la superfície de base del carbó actiu, alterant la distribució del volum del porus i incrementant la pèrdua de carbó actiu.

• Regeneració en forns infrarojos

Els forns d'infrarojos són similars als de múltiples etapes, però amb un control rigorós de les condicions d'operació mitjançant un subministrament energètic en forma de radiació

infraroja. És important comentar que aquests forns permeten la regeneració del carbó actiu en pols.

En aquest tipus de forns, bàsicament són quatre els paràmetres que es controlen: el perfil de temperatures al llarg del forn, el temps de residència del carbó en el mateix, la concentració d'oxigen en la fase gasosa i l'espessor de la capa de carbó en el seu interior. Amb aquest control exhaustiu de les condicions d'operació s'aconsegueix una excel·lent recuperació de les propietats de l'adsorbent, minimitzant també les pèrdues d'aquest i les despeses d'operació.

Finalment, comentar que també podem trobar forns rotatoris o forns de llit fluiditzat.

Carbó actiu granular (CAG) i Carbó actiu en pols (CAP)

Després de l'activació, el carbó pot separar-se, o preparar-se en diferents grandàries, amb diferents capacitats d'adsorció. Els dos més habituals són granular i en pols. El diàmetre del carbó en pols és generalment inferior a 0,1 mm, normalment és habitual trobar CAP amb un diàmetre d'entre 10 i 50 µm, mentre que el carbó granular té un diàmetre superior a 0,1 mm, variant normalment entre els 0,2 i 1,7 mm [Metcalf – Eddy,1994]. Encara que les propietats i els mecanismes d'adsorció són essencialment els mateixos per ambdós carbons, les aplicacions tècniques són bastant diferents. El carbó actiu granular s'utilitza en el cas d'operar en columna, mentre que el carbó actiu en pols és adequat en el cas de treballar en un sistema en batch.

Un inconvenient que té el CAP és que la metodologia per a la seva regeneració no està ben definida. De totes maneres, és molt probable que quan es solucionin els problemes sobre la regeneració del CAP, el seu ús augmenti notablement, ja que aquest té certs avantatges respecte el CAG. Aquests avantatges són els següents:

- Els carbons actius en pols són, aproximadament, de dues a tres vegades més econòmics que els carbons granulars.
- El CAP pot dosificar-se en excés, en cas de puntes de contaminació més elevades. Per a utilitzar-lo, només cal realitzar una petita inversió.
- La cinètica d'adsorció és ràpida, ja que la seva superfície és directament accessible.
- El carbó actiu en pols afavoreix la decantació dels flòculs ja que els fa més espessos.

Tecnologies en desenvolupament per a l'adsorció amb carbó actiu

Com ja hem comentat anteriorment, les formes més habituals d'utilitzar el carbó actiu per al tractament d'aigua és granular o bé en pols. De totes maneres, durant els últims anys s'han estat investigant altres formes d'utilitzar-lo que permetin reduir el cost de tractament. Dos exemples són les fibres de carbó actiu [Basquet i Cloirec, 1997] i les membranes obtingudes amb aquest material [Sakoda i col, 1996].

Les fibres de carbó actiu s'obtenen mitjançant la piròlisi de fibres materials polimèriques com el poliacrilonitril, la cel·lulosa i les resines fenòliques, així com a partir de residus pesats del petroli. Aquestes fibres es disposen en forma de teixit abans del procés d'activació. Les seves característiques més significatives són que presenten una elevada velocitat d'adsorció, superior a la del carbó granular, i a més, la disposició dels seus macroporus a la superfície de la fibra permet una menor resistència a la transferència externa.

Les membranes de carbó actiu s'obtenen a partir de pel·lícules de polímers com polivinilalcohols i el policlorur de vinildè, suportades sobre materials ceràmics. El procés de tractament mitjançant aquest tipus de membranes permet realitzar en una única etapa el procés d'adsorció del contaminant i la filtració de l'efluent. De totes maneres, aquesta tècnica es troba en fase experimental i és necessari millorar el procés d'activació de la membrana per superar l'eficàcia del carbó actiu granular [Sakoda i col, 1996].

b) Zeolites (tamisos moleculars)

Les zeolites constitueixen un ampli grup de materials minerals de la família dels aluminosilicats hidratats, que al deshidratar-se desenvolupen en el cristall una estructura porosa amb un diàmetre de porus d'entre 3 i 10 Å. Algunes es troben a la naturalesa, però la majoria són sintetitzades al laboratori. El seu origen pot trobar-se bàsicament en l'erosió de roques, en dipòsits sedimentaris i en origen volcànic. A la Figura C.5 s'observa una fotografia de zeolites.

Fig. C.5. Fotografia de zeolites

La fórmula general de les zeolites és la següent:

$$C_{x/n} \left[\left(AlO_2 \right)_x \left(SiO_2 \right)_y \right] z H_2 O$$

On C és un catió intercanviable de valència n; x, y, n i z són nombres enters, amb y \ge x; z és el nombre de molècules d'aigua per unitat estructural cristal·lina.

Les zeolites són molt útils en algunes ocasions, ja que tenen una estructura tridimensional rígida i de dimensions exactes en la que només hi caben molècules d'una mida determinada, les més grans no s'adsorbeixen.

Si el contingut d'aigua d'una zeolita s'elimina escalfant a uns 300°C i en el buit, aquesta es deshidrata, donant lloc a un bon agent adsorbent, sobretot de petites molècules, i especialment d'aigua. La mida de les molècules a adsorbir depèn del diàmetre de les cavitats de la zeolita, per tant, escollint una zeolita d'una mida de porus adequada, el procés d'adsorció pot ser molt selectiu.

El rendiment de l'adsorció amb zeolites depèn dels següents factors: naturalesa de les espècies a adsorbir, temperatura, concentració de les espècies a adsorbir, característiques estructurals de la zeolita i dissolvent que contingui l'adsorbat (normalment és aigua, però també es pot produir l'adsorció en dissolvents orgànics).

Les zeolites adsorbents s'obtenen, en general, cristal·litzant gels alumínic - sílics en un medi fortament bàsic que conté els components químics (Si, Al i Na) necessaris. De totes, les més utilitzades són les anomenades 4A i 13X, especialment per a l'adsorció en fase gasosa [Marijuan de Santiago, 1988].

Totes les zeolites són considerades tamisos moleculars, i aquests tamisos són materials que poden adsorbir selectivament en funció de la seva mida. Per exemple, els tamisos moleculars de porus petits (3-4 Å) s'utilitzen generalment en l'adsorció de gasos, com per exemple l'amoníac, el diòxid de sofre, etc. Mentre que els que tenen un porus més gran (5-10 Å), són utilitzats en la separació de n-parafines, d'isoparafines, aromàtics d'hidrocarburs superiors, etc. Cal comentar però, que els termes zeolita i tamís molecular no es poden utilitzar com a sinònims, ja que no per força un tamís molecular ha de ser una zeolita.

Finalment, cal destacar que les zeolites s'utilitzen bàsicament en l'adsorció en fase gasosa i, normalment, presenten capacitats d'adsorció menors que el carbó actiu o les resines.

c) Argiles

Les argiles són aluminosilicats, formats per alúmina (Al₂O₃) i sílice (SiO₂), que contenen aigua enllaçada químicament. Tenen una àmplia gamma de característiques físiques, composicions químiques i estructures; les impureses comunes inclouen compostos (normalment òxids) de bari, calci, sodi, potassi, ferro i matèria orgànica. Les seves estructures cristal·lines són complicades, i una característica comuna és l'estructura en capes [Callister, 1997].

Les argiles comercials serveixen com a matèria primera industrial i figuren entre els recursos minerals més importants, tant pel volum explotat com pel valor de la producció. Un 90% de la producció es dedica preferentment a la fabricació de materials de construcció i només un 10% es dedica a altres indústries. Les argiles utilitzades en la construcció s'anomenen *argiles ceràmiques* i estan compostes per dos o més minerals de l'argila, generalment il·lita i esmectita, amb importants quantitats d'altres minerals. Al segon tipus se l'anomena *argiles especials*, estan constituïdes predominantment per un sol tipus d'argila i les seves propietats depenen essencialment de les característiques d'aquest mineral. Les argiles especials es poden dividir en caolines i argiles caoliníferes (amb un baix poder d'adsorció), bentonites, sepiolita i paligorskita [Grim i Guven, 1978; Galan, 1990a; Galan, 1990b; Doval et al., 1991].

Argiles especials

• Bentonites

Les bentonites són un grup de minerals argilosos formats bàsicament per esmectites, que són aluminosilicats laminars bidimensionals. Les esmectites tenen una elevada superfície específica, la qual els hi confereix una gran capacitat d'adsorció i absorció. Gràcies a aquesta propietat, s'utilitzen en decoloració i clarificació de diversos materials i en processos industrials de purificació d'aigües que continguin diferents tipus d'olis industrials i altres contaminants. [Doval, 1990].

La seva estructura bàsica està formada per dues capes de tetraedres de Si^{4+} i una capa octaèdrica de M=Al³⁺, Mg²⁺ o Fe^{2+,3+}, tal com mostra la Figura C.6.

Fig. C.6. Estructura laminar de l'argila [Tuesta, 2005]

• Paligorskita i sepiolita

Les sepiolites i paligorskita són argiles amb un contingut d'aquests minerals superior al 50%. Tot i tenir una superfície teòrica d'uns 900 m²/g, la superfície accessible és molt inferior [Newman i Brown, 1987; Kendall, 1996]. Les argiles amb paligorskita o sepiolita com a minerals majoritaris són molt escasses. Ambdues són fibroses amb una elevada àrea superficial deguda a la petita grandària de partícula i a la seva porositat estructural. La seva estructura peculiar els hi dóna una enorme capacitat d'adsorció, per la qual cosa són eficaces com a decolorants i adsorbents.

Les aplicacions de les argiles especials són conseqüència de les seves propietats reològiques, tixotropia, elevada superfície específica, baixa capacitat de canvi i, sobretot, del seu elevat poder adsorbent. Degut a això, les principals aplicacions d'aquestes argiles estan relacionades amb la seva capacitat d'adsorbir diverses substàncies en l'espai interlaminar (bentonites) o en els canals estructurals (sepiolita i paligorskita). [Odom, 1984; Galan, 1990a, Galan, 1990b, Doval et al, 1991, Alther, 2003; Álvarez-Ayuso i García-Sánchez, 2003].

C.3. Tècniques generals de treball

El tractament d'una dissolució, tant si es realitza per intercanvi iònic, com si es realitza per adsorció, es pot produir mitjançant dues configuracions diferents, que són en discontinu i en columna.

C.3.1. Sistemes en discontinu (batch)

El tractament d'aigües residuals en sistemes en batch es realitza en recipients oberts a l'aire lliure. Aquesta operació es sol dur a terme posant en contacte en un tanc agitat la dissolució que conté el sòlid a eliminar amb una massa coneguda d'adsorbent o bé d'intercanviador de ions, que normalment es troba en suspensió a la dissolució. Un cop transcorregut el temps de contacte necessari per tal que s'arribi a l'equilibri, s'analitza la fase aquosa.

C.3.2. Sistemes en continu (columna)

En els sistemes continus es fa passar l'aigua residual a través d'una columna farcida amb un llit de material adsorbent amb un temps de residència suficient per tal que es pugui assolir el grau d'adsorció desitjat. Una columna típica per al tractament d'aigües amb carbó actiu, és la que mostra la Figura C.7:

Figura C.7. Columna d'adsorció de carbó actiu granular [Metcalf – Eddy,1994]

ANNEX D. ESTIMACIÓ DEL VALOR DE k_f A PARTIR DE LA CORRELACIÓ DE WILSON – GEANKOPLIS

Equació de Wilson – Geankoplis:

$$Sh = \left(\frac{1,09}{\varepsilon}\right)Sc^{1/3} \operatorname{Re}^{1/3}$$
 (0,0015 < Re < 55) (Eq. D.1)

On:

$$Sh = \frac{k_f d_p}{D_M}$$
(Eq. D.2)

$$Sc = \frac{\eta}{\rho D_M}$$
(Eq. D.3)

$$\operatorname{Re} = \frac{u_0 d_p \rho}{\eta} \tag{Eq. D.4}$$

Per tant, per tal de poder estimar el coeficient de transferència de massa (k_f), cal conèixer:

ε: porositat;

d_p: diàmetre de la partícula;

D_M: difusivitat molecular ⁽¹⁾;

µ: viscositat del solvent (viscositat de l'aigua);

p: densitat del solvent (densitat de l'aigua);

u₀: velocitat del fluid (es pot calcular amb el cabal i diàmetre de la columna).

⁽¹⁾ La difusivitat molecular es calcula amb l'expressió següent:

$$D_{M} = D_{AB} = \frac{7.4.10^{-8} (\psi_{B} M_{B})^{1/2} T}{\mu_{AB} v_{bA}^{0.6}}$$
(Eq. D.5)

On:

D_{AB}: difusivitat del solut A en el dissolvent B (difusivitat de l'AR14 en l'aigua);

ψ_B: és un paràmetre d'associació pel dissolvent;

M_B: pes molecular del dissolvent B (pes molecular de l'aigua);

T: temperatura;

 $\mu_{AB:}$ viscositat;

 v_{bA} : volum molar del solut A a la seva temperatura normal d'ebullició.

ANNEX E. CREACIÓ D'EINES DE CÀLCUL DE PARÀMETRES D'EQUILIBRI I CINÈTICS

E.1. Isotermes d'equilibri

A continuació es mostren les pantalles d'Excel per al cas de la macro genèrica i específica creades per a l'obtenció de les isotermes d'adsorció. D'aquesta manera es pot veure quines són les dades necessàries i on s'han d'introduir.

🛛 Microsoft Excel - Càlcul d'isotermes d'adsrorció								
:2	Archivo Edición Ver	Insertar Eormato H	erramientas Datos Ven	tana <u>?</u>			Escriba una pregunta	8×
	💕 🔒 🖪 🖂 🖂	🛍 🖹 - 🔊 - 🔐	😣 Σ - 🧎 🛄 🕡	2 Arial	- 10 - N K	S = = = =	🦉 € 👍 🖂 - 🔇	» - <u>A</u> - 💾
	D1 -	fx						
	A	В	C	D	E	F	G	
1	CÀLCUL DE LES ISO	TERMES D'ADSORCI	Ó (cas genèric)					Ť
2								
3	Dadaa na	oppàring						
5	Daues ne	cessaries						
6	Massa adsorbent (g)							
7	Volum solució (L)							
8								
9	Lo (ppm)	Ceq (ppm)						
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
23								
24								
25								
26								
27								
20								
30								
31								
32								
33								~
H.	🕞 🕨 🕅 macro genèrio	ca∕ macro específica µ	(Hoja3 /		<			>
Listo	Listo MAYÚS							

Fig. E.1. Pantalla d'inici per al cas de la macro genèrica

	dicrosoft	: Excel - Câlo	cul d'isotermes d'adsro	rció					
- P	Archivo	Edición Ver	r <u>I</u> nsertar Eormato <u>H</u>	erramientas Da <u>t</u> os Ve <u>n</u>	tana <u>?</u>			Escriba una pregunta	8 ×
1	📔 🚽	🔒 🔒 🖂	🚉 🖺 🛛 🖉 🕞 🖓	😫 Σ - 🧎 🛄 🕝	🚆 Arial	- 10 - N K	S = = = =	🧐 € ≢ 🖽 •	🕭 - <u>A</u> - 🚆
	E1	-	fx						
		A	В	C	D	E	F	G	
1	CÀLCUL	L DE LES IS	<mark>otermes d'Adsorci</mark>	Ó (cas específic UV-V	IS)				ī
2									
3									
4			Dades necessáries						
5	Massa	doorbont (a	A						
7	Walum o	nasorbent (g	ļ						
8	Volums	Solucio (L)							
9		Recta	de calibrat						
10	Penden	t							
11	Ordena	da origen							
12		j							
13									=
14	Absorb	ància 1 (ua)	Absorbància 2 (ua)	Factor de dilució					
15									
16									
17									
18									
19									
20									
21									
22									
22									_ _
23									
24									
26									
27									
28									
29									
30	1								
31									
32									
33									~
24	сь нА	macro genèri	ra \ macro específica /	Hoja3 /		<			
Liebe									

Fig. E.2. Pantalla d'inici per al cas de la macro específica per UV-VIS

E.2. Cinètica d'adsorció

Igual que s'ha mostrat pel cas de l'equilibri, a continuació es troba quina és la pantalla inicial a l'Excel per al cas del càlcul dels paràmetres cinètics.

× 1	Microsoft Excel - Càlcı	ul de D i k amb els m	odels HPDM i SPM					
:2	Archivo Edición Ver	Insertar Eormato j	derramientas Datos	Ve <u>n</u> tana <u>?</u>			Escriba una pre	egunta 🔻 🗕 🗗 💙
En	📔 🔒 🔒 🎒	🛍 🖺 - 🖉 - 뎖	δ 🔍 Σ - 🐙 🛍	🕢 💾 Arial	- 10 - N	(<i>K</i> S ≣ ≣ ≡		A -
_	F1 v	f _x	2.123	<u> </u>				
	Δ.	B	C	D	F	F	G	н
1	CÀLCUL DEL COEFIC	CIENT DE DIFUSIÓ E	FECTIU MITJANCAN	T ELS MODELS HPI			, , , , , , , , , , , , , , , , , , ,	<u> </u>
2								
3	Dades n	ecessaries						
4								
5	Massa adsorbent (g)							
6	Volum solució (L)							
7	Radi partícula (m)							
8	Co (ppm)							
9	Lso = Lo (ppm)							
11	C (ppm)							
12	coof Estaguiomòtric							
13	coel. Lotequiometric							
14	Temps (s)	C (ppm)						
15		- 4-17						
16								
17								
18								
19								-
20								
21								
22								
23								
24			-					
20								
27								
28								
29								
30								
31								
32								
33								
34								
35	🕞 🖂 Càlcul De i kf	/Hoja2 /Hoja3 /			<			
Liek-								
LISCO								

Fig. E.3. Pantalla d'inici per al cas de la macro cinètica

ANNEX F. APLICACIÓ DE LES EINES DE CÀLCUL

F.1. Resultats obtinguts a l'aplicar la macro per al càlcul de les isotermes d'adsorció

F.1.1. Resultats per al NaNS amb MN200

Els resultats obtinguts a l'aplicar la macro genèrica per al càlcul d'isotermes d'equilibri amb les dades del NaNS es mostren a la Taula F.1 i F.2:

Isoterma de	de Langmuir Isoterma		Freundlich	Isoterma	de Temkin
1/C _{eq}	1/q	Ln C _{eq}	In q	In C _{eq}	q
-	-	-	-	-	0
0,01652	0,31938	4,1032	1,1414	4,1032	3,1310
0,01047	0,23897	4,5591	1,4314	4,5591	4,1845
0,00665	0,19599	5,0126	1,6297	5,0126	5,1023
0,00482	0,15900	5,3345	1,8389	5,3345	6,2894
0,00331	0,13193	5,7116	2,0255	5,7116	7,5798
0,00236	0,10739	6,0480	2,2313	6,0480	9,3116
0,00224	0,10760	6,1033	2,2294	6,1033	9,2939
0,00159	0,09673	6,4463	2,3359	6,4463	10,3386
0,00107	0,08918	6,8415	2,4171	6,8415	11,2133

Taula F.1. Dades necessàries per a l'obtenció de les isotermes del NaNS amb MN200 calculades per la macro

C _{eq} (ppm)	q calculada	q calculada	q calculada	q
	Langmuir	Freundlich	Temkin	experimental
0	-	-	-	-
60,5342	3,0464	3,3355	2,7317	3,1310
95,5020	4,2245	4,1641	4,1741	4,1845
150,2892	5,5883	5,1922	5,6086	5,1023
207,3647	6,6126	6,0727	6,6270	6,2894
302,3474	7,7944	7,2959	7,8200	7,5798
423,2651	8,7722	8,5937	8,8844	9,3116
447,3414	8,9228	8,8282	9,0594	9,2939

630,3835	9,7801	10,4318	10,1446	10,3386
935,8755	10,5919	12,6437	11,3947	11,2133

Taula F.2. q calculada per la macro a partir de les equacions obtingudes per a cada isoterma per al cas del NaNS amb MN200

F.1.2. Resultats per a l'AR14 amb MN200

Els resultats obtinguts a l'aplicar la macro genèrica per al càlcul d'isotermes d'equilibri amb les dades de l'AR14 amb MN200 es mostren a la Taula F.3 i F.4:

Isoterma de Langmuir		lsoterma de	e Freundlich	Isoterma de Temkin		
1/C _{eq}	1/q	In C _{eq}	ln q	In C _{eq}	q	
1,0130	0,1507	-0,0129	1,8922	-0,0129	6,6338	
0,3935	0,0755	0,9326	2,5839	0,9326	13,2486	
0,3017	0,0503	1,1983	2,9902	1,1983	19,8895	
0,1529	0,0378	1,8778	3,2752	1,8778	26,4487	
0,0522	0,0306	2,9529	3,4872	2,9529	32,6946	
0,0190	0,0261	3,9650	3,6440	3,9650	38,2427	
0,0140	0,0226	4,2719	3,7905	4,2719	44,2780	

Taula F.3. Dades necessàries per a l'obtenció de les isotermes de l'AR14 amb MN200 calculades per la macro

C _{eq} (ppm)	q calculada	q calculada	q calculada	q
	Langmuir	Freundlich	Temkin	experimental
0,987	6,6815	9,1455	8,0129	6,6338
2,541	14,0991	13,5770	15,6759	13,2486
3,315	16,8766	15,1715	17,8296	19,8895
6,539	24,7876	20,1534	23,3368	26,4487
19,161	36,3124	31,5833	32,0499	32,6946
52,720	42,8885	48,2102	40,2527	38,2427
71,659	440935	54,8074	42,7402	44,2780

Taula F.4. q calculada per a la macro a partir de les equacions obtingudes per a cada isoterma per al cas de l'AR14 amb MN200

F.1.3. Resultats per a l'AR14 amb MN300

lsoterma d	e Langmuir	Isoterma de	e Freundlich	Isoterma de Temkin		
1/C _{eq}	1/q	In C _{eq}	In q	In C _{eq}	q	
2,6690	0,1503	-0,9817	1,8952	-0,9817	6,6542	
1,2870	0,0751	-0,2523	2,5883	-0,2523	13,3074	
0,6988	0,0376	0,3584	3,2816	0,3584	26,6190	
0,3064	0,0251	1,1828	3,6862	1,1828	39,8912	
0,2131	0,0188	1,5460	3,9736	1,5460	53,1769	
0,1465	0,0151	1,9209	4,1963	1,9209	66,4391	
0,1407	0,0201	1,9609	3,9073	1,9609	49,7631	
0,0681	0,0151	2,6865	4,1923	2,6865	66,1773	
0,0345	0,0121	3,3678	4,4112	3,3678	82,3662	
0,0135	0,0103	4,3067	4,5801	4,3067	97,5267	

Els resultats obtinguts a l'aplicar la macro genèrica per al càlcul d'isotermes d'equilibri amb les dades de l'AR14 amb MN300 es mostren a la Taula F.5 i F.6:

Taula F.5. Dades necessàries per a l'obtenció de les isotermes de l'AR14 amb MN300 calculades per la macro

C _{eq} (ppm)	q calculada	q calculada	q calculada	q
	Langmuir	Freundlich	Temkin	experimental
0,375	7,2068	15,0269	2,4449	6,6542
0,777	13,8860	20,1537	15,7668	13,3074
1,431	22,9293	25,7679	26,9191	26,6190
3,263	40,5482	35,9063	41,9761	39,8912
4,693	49,6150	41,5574	48,6094	53,1769
6,827	59,0414	48,3262	55,4575	66,4391
7,106	60,0230	49,1094	56,1870	49,7631
14,680	76,0249	65,7627	69,4388	66,1773
29,014	86,7431	86,5080	81,8819	82,3662
74,198	95,1050	126,2299	99,0304	97,5267

Taula F.6. q calculada per a la macro a partir de les equacions obtingudes per a cada isoterma per al cas de l'AR14 amb MN300

F.1.4. Resultats per al fenol amb Aurix

Els resultats obtinguts a l'aplicar la macro genèrica per al càlcul d'isotermes d'equilibri amb les dades del fenol es mostren a la Taula F.7 i F.8:

Isoterma d	e Langmuir	Isoterma de	e Freundlich	Isoterma	de Temkin
1/C _{eq}	1/q	In C _{eq}	In q	In C _{eq}	q
0,5745	5,1634	0,5542	-1,6416	0,5542	0,1937
0,3312	1,4739	1,1049	-0,3879	1,1049	0,6785
0,1305	0,5387	2,0366	0,6186	2,0366	1,8563
0,0644	0,2774	2,7433	1,2823	2,7433	3,6051
0,0264	0,1630	3,6358	1,8141	3,6358	6,1354
0,0303	0,2377	3,4954	1,4369	3,4954	4,2076
0,0048	0,0522	5,3365	2,9527	5,3365	19,1582
0,0034	0,0335	5,6932	3,3948	5,6932	29,8101
0,0021	0,0355	6,1860	3,3392	6,1860	28,1962
0,0015	0,0334	6,5095	3,3991	6,5095	29,9367

Taula F.7. Resultats obtinguts per la macro dels diferents paràmetres necessaris per a l'obtenció de les isotermes de Langmuir, Freundlich i Temkin pel fenol amb la resina Aurix

C _{eq} (ppm)	q calculada	q calculada	q calculada	q
	Langmuir	Freundlich	Temkin	experimental
1,7405	0,4002	0,6109	-8,4933	0,1937
3,0190	0,6875	0,8991	-5,0240	0,6785
7,6646	1,6873	1,7290	0,8449	1,8563
15,5380	3,2378	2,8392	5,2965	3,6051
37,9304	6,8611	5,3115	10,9183	6,1354
32,9620	6,1422	4,8131	10,0339	4,2076
207,7848	18,7860	17,5233	21,6318	19,1582
296,8354	21,2616	22,5078	23,8785	29,8101
485,9177	24,1513	31,8097	26,9832	28,1962
671,5190	25,6648	39,9176	29,0210	29,9367

Taula F.8. q calculada per a la macro a partir de les equacions obtingudes per a cada isoterma per al cas del fenol amb la resina Aurix

F.2. Resultats obtinguts en el càlcul de l'isoterma de Redlich – Peterson

F.2.1. Resultats per al NaNS amb MN200

Els resultats obtinguts tenint en compte que el valor òptim del paràmetre a_R de l'equació de Redlich - Peterson és 11, són els següents:

C _{eq}	q _{eq}	a _R *(C _{eq} /q _{eq} -1)	In (a _R *(C _{eq} /q _{eq} -1))	In C _{eq}
0	0	-	-	-
60,5342	3,131	211,6721	5,3550	4,1032
95,502	4,1845	250,0508	5,5217	4,5591
150,2892	5,1023	323,0071	5,7777	5,0126
207,3647	6,2894	361,6756	5,8907	5,3345
302,3474	7,5798	437,7743	6,0817	5,7116
423,2651	9,3116	499,0125	6,2126	6,0480
447,3414	9,2939	528,4608	6,2700	6,1033
630,3835	10,3386	669,7116	6,5068	6,4463
935,8755	11,2133	917,0732	6,8212	6,8415

Taula F.9. Resultats de la isoterma de Redlich – Peterson per al NaNS amb MN200

Fig. F.1. Isoterma de Redlich - Peterson per al NaNS amb MN200

C _{eq}	q calculada	q experimental
0	-	-
60,5342	3,1458	3,131
95,502	4,2012	4,1845
150,2892	5,1181	5,1023
207,3647	6,3068	6,2894
302,3474	7,5971	7,5798
423,2651	9,3303	9,3116
447,3414	9,3115	9,2939
630,3835	10,3540	10,3386
935,8755	11,2255	11,2133

Taula F.10. q calculada a partir de l'equació de la isoterma obtinguda per al NaNS amb MN200

Fig. F.2. q experimental i q calculada versus C_{eq} per al cas del NaNS amb MN200

F.2.2. Resultats per a l'AR14 amb MN200

Tenint en compte que el valor òptim per al paràmetre a_R és 22, els resultats obtinguts són els que es mostren a continuació:

C _{eq}	q _{eq}	a _R *(C _{eq} /q _{eq} -1)	In (a _R *(C _{eq} /q _{eq} -1))	In C _{eq}
0,987	6,6338	2,2732	0,8212	-0,0131
2,541	13,2486	3,2195	1,1692	0,9326
3,315	19,8895	2,6668	0,9809	1,1985
6,539	26,4487	4,4391	1,4905	1,8778
19,161	32,6946	11,8933	2,4760	2,9529
52,72	38,2427	29,3284	3,3786	3,9650
71,659	44,278	34,6045	3,5440	4,2719

Taula F.11. Resultats de la isoterma de Redlich – Peterson per l'AR14 amb MN200

Fig. F.3. Isoterma de Redlich - Peterson per a l'AR14 amb MN200

C _{eq}	q calculada	q experimental
0,987	9,5520	6,6338
2,541	17,3638	13,2486
3,315	27,3478	19,8895
6,539	32,4068	26,4487
19,161	35,4436	32,6946
52,72	39,5466	38,2427
71,659	45,5575	44,278

Taula F.12. q calculada a partir de l'equació de la isoterma obtinguda per a l'AR14 amb MN200

Fig. F.4. q experimental i q calculada versus C_{eq} per a l'AR14 amb MN200

F.2.3. Resultats per a l'AR14 amb MN300

En aquest cas, el paràmetre a_R té un valor òptim igual a 20.

C _{eq}	q _{eq}	a _R *(C _{eq} /q _{eq} -1)	In (a _R *(C _{eq} /q _{eq} -1))	In C _{eq}
0,375	6,6542	0,1271	-2,0627	-0,9808
0,777	13,3074	0,1678	-1,7852	-0,2523
1,431	26,619	0,0752	-2,5880	0,3584
3,263	39,8912	0,6359	-0,4526	1,1826
4,693	53,1769	0,7651	-0,2678	1,5461
6,827	66,4391	1,0551	0,0536	1,9209
7,106	49,7631	1,8559	0,6184	1,9609
14,68	66,1773	3,4366	1,2345	2,6865
29,014	82,3662	6,0451	1,7993	3,3678
74,198	97,5267	14,2159	2,6544	4,3067

Taula F.13. Resultats de la isoterma de Redlich – Peterson per l'AR14 amb MN300

Fig. F.5. Isoterma de Redlich - Peterson per a l'AR14 amb MN300

C _{eq}	q calculada	q experimental
0,375	7,0303	6,6542
0,777	13,6336	13,3074
1,431	22,7195	26,619
3,263	40,8138	39,8912
4,693	50,3055	53,1769
6,827	60,2551	66,4391
7,106	61,2983	49,7631
14,68	78,2671	66,1773
29,014	89,4245	82,3662
74,198	97,4981	97,5267

Taula F.14. q calculada a partir de l'equació de la isoterma obtinguda per a l'AR14 amb MN300

Fig. F.6. q experimental i q calculada versus C_{eq} per al cas de l'AR14 amb MN300

F.2.4. Resultats per al fenol amb Aurix

Tenint en compte que a_R és 54, els resultats obtinguts han estat els següents:

C _{eq}	q _{eq}	$a_R^*(C_{eq}/q_{eq}-1)$	In (a _R *(C _{eq} /q _{eq} -1))	In C _{eq}
1,7405	0,1937	484,2194	-	-
3,019	0,6785	239,2741	5,4776	1,1049
7,6646	1,8563	221,9642	5,4025	2,0366
15,538	3,6051	231,7403	5,4456	2,7433
37,9304	6,1354	332,8399	5,8077	3,6358
32,962	4,2076	422,0317	6,0451	3,4954
207,7848	19,1582	584,6698	6,3710	5,3365
296,8354	29,8101	536,7074	6,2855	5,6932
485,9177	28,1962	929,6061	6,8348	6,1860
671,519	29,9367	1210,2900	7,0986	6,5095

Taula F.15. Resultats de la isoterma de Redlich – Peterson per al fenol amb Aurix

Fig. F.7. Isoterma de Redlich - Peterson per al fenol amb la resina Aurix

C _{eq}	q calculada	q experimental
0,375	7,0303	6,6542
0,777	13,6336	13,3074
1,431	22,7195	26,619
3,263	40,8138	39,8912
4,693	50,3055	53,1769
6,827	60,2551	66,4391
7,106	61,2983	49,7631
14,68	78,2671	66,1773
29,014	89,4245	82,3662
74,198	97,4981	97,5267

Taula F.16. q calculada a partir de l'equació de la isoterma obtinguda per al fenol amb la resina Aurix

Fig. F.8. q experimental i q calculada versus C_{eq} per al fenol amb la resina Aurix

F.3. Resultats obtinguts a l'aplicar la macro en entorn Excel per al càlcul dels paràmetres cinètics mitjançant els models HPDM i SPM

F.3.1. Resultats per al fluoroantè amb la resina MN200

MODEL HPDM

Temps (s)	(-) In (1 - X^2)	(-) In (1 - X)
0	0	0
300	0,0007	-0,0269
1200	0,0091	0,0998
2400	0,1370	0,4429
3600	0,3489	0,7824
4800	0,6766	1,2079
6000	0,9962	1,5808
7200	1,2972	1,9137
9000	1,9465	2,6019
10800	2,6568	3,3320
12600	-	-

14400	1,8387	2,4895
16200	-	-

Taula F.17. Resultats obtinguts aplicant les equacions del model HPDM per al fluoroantè amb MN200

(-) ln (1 - X^2)		(-) In (1 - X)	
Pendent	0,0002	Pendent	0,0002
Ordenada origen	-0,0991	Ordenada origen	0,0315
D _e	5,8332E-13	D _e	1,9651E-08

Taula F.18. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model HPDM per al fluoroantè amb MN200

MODEL SPM

Temps (s)	X	[3-3(1-X)^(2/3)-2X]	[1 - (1-X)^(1/3)]
0	0	0	0
300	-0,0272	0,0002	-0,0090
1200	0,0950	0,0031	0,0327
2400	0,3578	0,0513	0,1372
3600	0,5427	0,1339	0,2296
4800	0,7012	0,2568	0,3315
6000	0,7942	0,3658	0,4096
7200	0,8525	0,4575	0,4716
9000	0,9259	0,6189	0,5799
10800	0,9643	0,7460	0,6707
12600	1,0001	-	1,0440
14400	0,9170	0,5953	0,5639
16200	1	1	1

Taula F.19. Resultats obtinguts aplicant les equacions del model SPM per al fluoroantè amb MN200

X		[3-3(1-X)^(2/3)-2X]		[1 - (1-X)^(1/3)]	
Pendent	6,3798E-05	Pendent	5,9079E-05	Pendent	6,0285E-05
Ordenada origen	0,1906	Ordenada origen	-0,0498	Ordenada origen	0,0097
k _f	5,3165E-09	D _e	6,1540E-13	k _f	2,0584E-09

Taula F.20. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per al fluoroantè amb MN200

F.3.2. Resultats per a l'antracè amb la resina MN200

MODEL HPDM

Temps (s)	(-) In (1 - X^2)	(-) In (1 - X)
0	0	0
360	0,0400	0,2206
1200	0,2185	0,5852
2400	0,6557	1,1825
3600	1,1261	1,7261
5400	1,9827	2,6395
7200	2,7574	3,4343
8400	3,4193	4,1042
9600	4,7657	5,4568
10800	-	-
12000	5,4386	6,1307
13200	5,3477	6,0397
14640	-	-

Taula F.21. Resultats obtinguts aplicant les equacions del model HPDM per a l'antracè amb MN200

(-) ln (1 - X^	2)	(-) In (1 - X	
Pendent	0,0005	Pendent	0,0005
Ordenada origen	-0,2689	Ordenada origen	0,0181
D _e	1,4347E-12	D _e	4,1193E-08

Taula F.22. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas delmodel HPDM per a l'antracè amb MN200

MODEL SPM

Temps (s)	X	[3-3(1-X)^(2/3)-2X]	[1 - (1-X)^(1/3)]
0	0	0	0
360	0,1980	0,0144	0,0709
1200	0,4430	0,0831	0,1772
2400	0,6935	0,2492	0,3258
3600	0,8220	0,4067	0,4375
5400	0,9286	0,6265	0,5851
7200	0,9678	0,7606	0,6817
8400	0,9835	0,8385	0,7454
9600	0,9957	0,9296	0,8378
10800	1,0053	-	1,1742
12000	0,9978	0,9540	0,8704
13200	0,9976	0,9513	0,8664
14640	1	1	1

Taula F.23. Resultats obtinguts aplicant les equacions del model SPM per a l'antracè amb MN200

X		[3-3(1-X)^(2/3)-2X]		[1 - (1-X)^(1/3)]	
Pendent	5,5885E-05	Pendent	7,3391E-05	Pendent	6,8739E-05
Ordenada origen	0,3900	Ordenada origen	0,0665	Ordenada origen	0,1283
k _f	4,6571E-09	D _e	7,6449E-13	k _f	1,7185E-08

Taula F.24. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per a l'antracè amb MN20

F.3.3. Resultats per al naftalè amb carbó actiu

MODEL HPDM

Temps (s)	(-) ln (1 - X^2)	(-) ln (1 - X)
0	0	0
300	0,0065	0,0837
1500	0,0034	0,0604

2400	0,0439	0,2323
3600	0,1095	0,3888
4800	0,2038	0,5610
6000	0,2943	0,7030
7200	0,3935	0,8449
8400	0,5327	1,0290
9600	0,9099	1,4825
10800	1,4293	2,0564
12000	2,2732	2,9395
13200	-	-

Taula F.25. Resultats obtinguts aplicant les equacions del model HPDM per al naftalè amb carbó actiu

(-) ln (1 - X^	2)	(-) in (1 - X	
Pendent	0,0001	Pendent	0,0002
Ordenada origen	-0,3083	Ordenada origen	-0,2650
D _e	1,6943E-11	D _e	1,0182E-07

Taula F.26. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model HPDM per al naftalè amb carbó actiu

MODEL SPM

Temps (s)	X	[3-3(1-X)^(2/3)-2X]	[1 - (1-X)^(1/3)]
0	0	0	0
300	0,0803	0,0022	0,0275
1500	0,0586	0,0012	0,0199
2400	0,2073	0,0158	0,0745
3600	0,3221	0,0407	0,1215
4800	0,4293	0,0773	0,1705
6000	0,5049	0,1127	0,2089
7200	0,5704	0,1512	0,2454
8400	0,6426	0,2040	0,2904
9600	0,7729	0,3376	0,3899
10800	0,8721	0,4942	0,4961

12000	0,9471	0,6831	0,6246
13200	1	1	1

Taula F.27. Resultats obtinguts aplicant les equacions del model SPM per al naftalè amb carbó actiu

X		[3-3(1-X)^(2/3)-2X]		[1 - (1-X)^(1/3)]	
Pendent	7,691E-05	Pendent	6,1993E-05	Pendent	5,9264E-05
Ordenada origen	0,0208	Ordenada origen	-0,1405	Ordenada origen	-0,0815
k _f	3,8455E-08	D _e	2,3248E-11	κ _f	8,8896E-08

Taula F.28. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per al naftalè amb carbó actiu

F.3.4. Resultats per a l'acetonaftalè amb carbó actiu

MODEL HPDM

Temps (s)	(-) In (1 - X^2)	(-) In (1 - X)
0	0	0
300	0,0038	-0,0600
1200	0,0192	0,1483
2400	0,0548	0,2626
3600	0,1362	0,4413
4800	0,2530	0,6402
5400	0,3722	0,8153
9360	1,1343	1,7351
10200	0,9870	1,5704
11400	2,3984	3,0680
12600	2,1770	2,8405
13800	2,5194	3,1917
15000	-	-

Taula F.29. Resultats obtinguts aplicant les equacions del model HPDM per a l'acetonaftalè amb carbó actiu

(-) ln (1 - X^	2)	(-) ln (1 - X	
Pendent	0,0002	Pendent	0,0002
Ordenada origen	-0,3319	Ordenada origen	-0,2701
D _e	2,1318E-11	D _e	1,1921E-07

Taula F.30. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model HPDM per a l'acetonaftalè amb carbó actiu

MODEL SPM

Temps (s)	X	[3-3(1-X)^(2/3)-2X]	[1 - (1-X)^(1/3)]
0	0	0	0
300	-0,0618	0,0012	-0,0202
1200	0,1378	0,0068	0,0482
2400	0,2310	0,0199	0,0838
3600	0,3568	0,0510	0,1368
4800	0,4728	0,0966	0,1922
5400	0,5575	0,1429	0,2380
9360	0,8236	0,4092	0,4392
10200	0,7920	0,3629	0,4075
11400	0,9535	0,7050	0,6404
12600	0,9416	0,6652	0,6120
13800	0,9589	0,7249	0,6549
15000	1	1	1

Taula F.31. Resultats obtinguts aplicant les equacions del model SPM per a l'acetonaftalè amb carbó actiu

X		[3-3(1-X)^(2/3)-2X]		[1 - (1-X)^(1/3)]	
Pendent	7,0834E-05	Pendent	6,2241E-05	Pendent	5,6805E-05
Ordenada origen	0,0603	Ordenada origen	-0,1092	Ordenada origen	-0,0525
k _f	3,5417E-08	D _e	2,3340E-11	k _f	8,5207E-08

Taula F.32. Pendent, ordenada a l'origen i coeficient de difusió efectiu obtinguts pel cas del model SPM per a l'acetonaftalè amb carbó actiu

ANNEX G. METODOLOGIA EXPERIMENTAL

G.1. Estudis d'equilibri

Per a l'obtenció de les dades experimentals necessàries per als estudis d'equilibri, es realitzen experiments en batch. El procediment experimental a seguir es detalla a continuació:

- Es preparen un cert nombre de dissolucions de diferents concentracions d'adsorbat. Per exemple, se'n poden preparar deu de concentració que oscil·li entre els 2 i 1000 ppm;
- Es pesen els grams d'adsorbent desitjats i es posa aquesta quantitat escollida a deu tubs d'assaig, un per a cada una de les dissolucions anteriors, i posteriorment s'afegeixen 20 ml de cada dissolució a cadascun dels tubs;
- S'agiten els tubs fins arribar a l'equilibri (mínim 3 hores);
- Es mesura el pH de cada tub;
- Es passen els patrons per l'espectrofotòmetre UV-VIS i s'obtenen els senyals d'absorbància corresponents.

G.2. Obtenció de les rectes de calibrat pel fenol

El procediment seguit per a l'elaboració de les rectes de calibrat és el següent:

- Es prepara una dissolució de 1000 ppm de fenol al pH corresponent en un matràs aforat de 250ml;
- A partir de la dissolució de 1000 ppm, se'n prepara una de 200 ppm en un matràs aforat de 250 ml;
- Es realitzen les alíquotes corresponents en funció del pH mesurat. Pel cas de pH=11, s'han realitzat alíquotes de 0,2, 0,5, 1, 2, 5, 10, 20, 25 i 50 ppm. Pel cas de pH=3, s'han realitzat alíquotes de 5, 10, 20, 25 , 50 i 70 ppm;
- S'han passat els patrons per l'espectrofotòmetre UV-VIS i s'han obtingut els senyals corresponents.

Els resultats d'absorbància obtinguts han estat els següents:

	Concentració	Absorbància	Absorbància
	(ppm)	(λ=234 nm)	(λ=290 nm)
Blanc	0	0,00030	0,00030
P1	0,2	-	0,00537
P2	0,5	-	0,01298
P3	1	-	0,02625
P4	2	-	0,02582
P5	5	0,39375	0,10256
P6	10	1,09658	0,28355
P7	20	1,87805	0,49504
P8	25	2,81978 (1)	0,76863
P9	50	3,10204	-

pH = 11:

Taula G.1. Mesures d'absorbància pel fenol a pH = 11

⁽¹⁾ Aquest valor no es té en compte a l'hora de realitzar la regressió, ja que és molt elevat i està fora l'interval de linealitat.

Fig. G.1. Recta de calibrat per al fenol a pH 11 i λ = 234 nm

pH = 3:

Fig. G.2. Recta de calibrat per al fenol a pH 11 i λ = 290 nm

	Concentració (ppm)	Absorbància (λ=210 nm)	Absorbància (λ=270 nm)
Blanc	0	-0,00008	0,00004
P1	5	0,31802	0,06293
P2	10	0,62042	0,15572
P3	20	1,24779	0,31906
P4	25	1,82692	0,47507
P5	50	-	0,78125
P6	70	-	1,10270

Taula G.2. Mesures d'absorbància per al fenol a pH = 3

Fig. G.3. Recta de calibrat per al fenol a pH 3 i λ = 210 nm

Fig. G.4. Recta de calibrat per al fenol a pH 3 i λ = 270 nm

G.3. Estudis de cinètica amb el model HPDM i SPM

El procediment seguit per a l'obtenció de dades cinètiques ha estat el següent:

- Es preparen 500 ml d'una dissolució d'una certa concentració inicial d'adsorbat en medi neutre;

- S'engega l'espectrofotòmetre en el mode cinètic, un cop es té el blanc, i es fa passar la dissolució preparada per tot el circuit fins que l'aparell n'ha fet una mesura;

- Es pesa la quantitat d'adsorbent desitjada i s'introdueix al vas de precipitats que conté la dissolució d'adsorbat en agitació contínua;

- Un cop ha finalitzat el temps de control, es procedeix al procés de descàrrega.

