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1
Introduction

1.1 An Overview on the Conformance and the Refinement
Problem

International enterprise, hospitals, universities, on-line shops, small companies, . . . , all them
involve a huge number of people performing a huge number of processes. These processes have
become more and more complex, and they require a more rigid and close control to avoid errors.
But at the same time they need more flexibility to deal with unexpected situations. For that
reason, during the last decade, many Workflow management systems, such as Staffware or IBM
MQSeries, have appear in order to support business processes. Even other business software,
such as SAP or PeopleSoft, has adopted workflow technology [15].

This workflow technologies require the use of process models, i.e., more or less restrictive
representations of the process, describing its flow, and the possible paths it can take. How to
obtain these models is the main handicap of workflow systems. One possibility is to create them
manually. It is a cost-consuming task that require time and the need of experts in the domain
of the process and the modeling language. However, in the last years, more and more techniques
have come up to build models automatically. These techniques, called Process Mining discovery
approaches, aim to mine a model from the process executions dumped in the system logs. These
logs contain annotations of the transactions and the events produced during the execution of
the processes [46].

Once the model has been obtained (manually or using some discovery technique), a new
requirement comes up: measuring the quality of the model. In other words, quantify the
quality of the model to describe the real processes whose executions are reflected in the logs.
How good is the model describing the process? How much of the process is covered by the
model? Is the model informative enough? Is the model precise enough or it includes more
information than it should do? Is the model general enough to include changes in the process,
or it is too much tied with respect to the examples used to create it? Is the model structure
clear, compact and meaningful, or it contains elements that inflate it and make the model less
understandable? These and other questions are the ones addressed by the Process Conformance
analysis techniques [29].

The use of workflow management concepts and technologies may produce great benefits
for the companies, as long as the models used are correct, i.e., they describe accurately the
processes of the company. However, the use of erroneous models could produce catastrophic
consequences. Even if the model was correct time ago, the processes may change and evolve,
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1. Introduction

turning on the model into an out-of-date reflex of the reality. In such cases, one option is to get
rid of the old model and build a new one from scratch. This task could suppose a huge cost in
terms of money, but also in time. Even using some process discovery algorithm, the results may
not be adequate. On the other hand, an other option could be to use the existing model, and
correct it. This is known as Process Refinement. Refining a model, we obtain a more accurate
model by correcting its errors, or updating it to reflect precisely the current processes.

1.2 Aim of this Work

The goals of this thesis are addressed in two directions: Process Conformance and Process
Refinement.

Concerning about Process Conformance, the aim of this thesis is to propose a new approach
to measure the conformance between a model and a log. In our case, the modeling language
chosen are the Petri Nets. Among all the aspects conforming the conformance analysis, the
technique proposed will focus on Precision, i.e., measure how accurately the model describes
the process, avoiding include more behavior than the one reflected in the log. This new measure
will be based on the effort needed to achieve a completely precise model, as estimator of the
precision. Our approach must be an alternative to solve the efficiency problems related with
the current approaches for similar scenarios, making our approach efficient enough for real
benchmarks. Together with the measure of precision, our approach must provide mechanism to
locate where the precision issues are, identifying effectively the possible points of improvement.
Finally, the approach must be implemented in a tool, making possible to tests the results of
the conformance analysis.

Concerning about Process Refinement, the aim of this thesis is to introduce the results of
the precision analysis as part of the refinement procedure. In particular, two techniques are
proposed to refine the precision of a given model (a Petri Net in our case). The first algorithm
proposed, called Breaking Concurrencies, is based on the idea of remove concurrencies of the
model not reflected in the log, in order to improve the precision. The second proposal of this
thesis is the use of Supervisory Control as a mechanism for precision refinement.

1.3 Organization of the Thesis

This work is organized in chapters as follows:

• In Chapter 2 we introduce the concept of Process Mining, the area where this approach
belongs to, presenting the different perspectives and the existent types of Process Mining,
including Conformance and Refinement. The chapter reviews the state-of-the-art of the
area and the related work previously done. Finally, the chapter includes a deeper review
on the Conformance process, and the aspects composing it.

• In Chapter 3 we introduce the two main elements involved in any Process Mining tech-
nique, the log and the model, and the possible association between them. This chapter
also includes a deeper description of the the modeling language chosen for our approach:
Petri nets. Finally, we present Transition Systems as a needed element to understand the
techniques proposed in this thesis.

• In Chapter 4 we present our approach for Process Conformance. The first sections are
addressed to the performance of the procedure, while the next ones present the resulting
elements of the conformance analysis: the metric (to evaluate the conformance degree) and
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1.3. Organization of the Thesis

the set of Minimal Disconformant Traces (to locate the possible conformance problems).
Finally, in the last section of the chapter we present some extensions and variants of the
main approach, in order to deal with special cases.

• In Chapter 5 we present the implementation of the conformance approach proposed in
this thesis. The first section introduces ProM, the framework of Process Mining used
to implement our approach. In the last section we present ETConformance, the ProM
plug-in that implements the approach.

• In Chapter 6 we detail the experimental results obtained after using our tool in a bench-
marks set.

• In Chapter 7 we present our approaches for Process Refinement. The first section ad-
dresses the Breaking Concurrencies technique, while the second section propose the use
of the Supervisory Control Theory as base for future refinement techniques.

• In Chapter 8 we illustrate the approaches presented in this thesis presenting a complete
case of study.

• Finally, in Chapter 9 we elaborate the conclusions of this thesis and we suggest ideas for
future work.
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2
Process Mining, Process Conformance and Process

Refinement

In this chapter we present Process Mining, i.e., the process management techniques that allow
the analysis of business processes based on logs of their executions. This presentation includes
a complete review of the previous work done in the area, and it details the different perspectives
that could be analyzed using Process Mining techniques (cf. Sec. 2.1.1). In addition, we present
the classification of the Process Mining approaches based on the existence of a-priori model of
the process, and how this is used (cf. Sec. 2.1.2). Among others, this classification includes the
categories of Process Refinement and Process Conformance, final goals of the work presented
in this thesis. The last one, Process Conformance, is presented in detail in Sec. 2.2, including
the four dimensions composing the conformance analysis.

2.1 Process Mining

The world is composed by processes. The examinations or treatments a patient undergoes in a
hospital, or the purchase of some product in a online shop are examples of everyday processes.
Hospitals and shops, international enterprises and small companies, universities and schools, . . .
all them involve people performing processes. For most of them, it is necessary the use of some
information system product in order to support and control this huge number of processes.

There are a wide variety of different products to support processes [15], such as theWorkflow
Management Systems, systems that allow you to define and control the flow of a process.
Recently, other business software, such as Enterprise Resource Planning (ERP) or Customer
Relationship Management (CRM), has adopted workflow technology too. Even Web Services or
Software Configuration Management tools (SCM), can be seen as process-aware systems. But
all these different information systems has one thing in common: they record logs.

The logs recorded by the information systems contains annotations of the events, transac-
tions or exceptions produced during the execution of the processes. In that sense, logs are the
closest reflect of the real processes, i.e., they are not biased by any preconceived idea about the
process, but they only reflect accurately the reality.

The idea of Process Mining techniques are to use this unbiased reflect of the reality (the
logs) to derive models describing the processes [45, 3]. These models can be used to analyze
the processes, detecting possible problems and bottlenecks, or to check how some change would
affect the performance of a process. But these models can be also used for tune, configure or
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2. Process Mining, Process Conformance and Process Refinement

redesign the information systems used to manage the processes. Although the derivation of
a model from a log is the most common scenario, the Process Mining techniques can be also
applied for checking the correctness of an a-priori model with respect to the reality, reflected
in the log1 [29].

Figure 2.1: Diagram of Process Mining. This figure is based on one that can be found in [3].

2.1.1 Perspectives of Process Mining

The main goal of Process Mining is to obtain some information about a process from its track
in a log. However, the kind of information wanted may be different in each particular case. This
is because a process is a complex entity, composed by several aspects called perspectives. In
Process Mining we distinguish three perspectives of a process: process perspective, organizational
perspective and case perspective.

• Process Perspective
The process perspective focuses on the control-flow of the process, i.e., it describes the
sequence of events of the process, how they follow to each others, and the ordering relation
between them. There are several languages for modeling a process control-flow, each one
with its own characteristics that make it more appropriate in some cases than other

1The different classes of Process Mining techniques (Discovery, Conformance, Extension and Refinement) are
discussed in Sec. 2.1.2
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2.1. Process Mining

languages. Some examples of flow modeling languages are the Petri nets (formal and with
a solid research base behind), or the Event-driven Process Chains (intuitive and easy to
understand for non experts). Both languages will be presented in detail in the following
chapters of this thesis. Fig. 2.2 shows an example of control-flow modeled using Petri
nets.

Figure 2.2: Example of Process Perspective. The snapshot shows a Petri net defining the control-flow
of a process. This Petri net has been generated by the α− algorithm.

Most of the algorithms and techniques of Process Mining aim to extract information
about this perspective. An example could be the α − algorithm [46] (and the rest of
the α-series algorithms [13, 55, 53, 54, 54, 23]), the classical Process Mining control-flow
algorithm that aims to extract a process flow model from the log and represent it in
terms of a Petri net. Some other examples of algorithms could be the Genetic Miner [14]
(Process Mining using Genetic Algorithms), the Heuristic Miner [51, 52] (a heuristics-
driven process mining algorithm), Genet [7] and RBMiner [39] (to mine Petri nets from
Transition Systems), or the ILPMiner (also known as Parikh Miner) [47] (that uses
Integer Linear Programming to extract a model). Process Perspective is also the final
goal of this thesis, and all the approaches presented will be focused on the control-flow of
a process instead of other perspectives.

• Organizational Perspective
In organizational case we are not interested in the order of the events, but in the actors
involved in the process. The actor of a process could be the person who has executed an
action (i.e., the originator), the person who has received the results of the action, or any
other people involved in some way. All this information about the actors is annotated in
the log, associating it to each event occurred during the execution of the process. The
algorithms focused on the Organizational Perspective use the actors data in order to
extract and analyze information about the social relations between the performers (i.e.
Social Network), or to group and classify people performing similar tasks in terms of
roles and organizational units. An example of algorithm focused on the organizational
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2. Process Mining, Process Conformance and Process Refinement

perspective is the Social Network Miner [43], where the authors present metrics and
a tool to extract a social network from a log. In [24] these techniques are applied in
order to gain knowledge about the relations between hospital departments in a medical
real scenario. Some other examples of methods for the organizational perspective are the
Organizational Miner, the Role Hierarchy Miner and the Semantic Organizational Miner,
all them implemented as plug-ins of the ProM framework [4]. Fig. 2.3 shows an example
of organizational perspective analysis.

Figure 2.3: Example of Organizational Perspective. The snapshot shows the results of the organiza-
tional analysis performed by Organizational Miner.

• Case Perspective
Sometimes the aim of Process Mining is not to extract information about the control flow
or the actors, but to extract some other specific aspects or properties about the analyzed
process. This is known as the Case Perspective of a process (or it is also called Data
Perspective sometimes). There is a wide range of diverse properties in a process that can
be analyzed, e.g., information about the maximum, minimum and average time of the
actions, or the detection of possible bottlenecks of the process. Most of the algorithms
focus on the case perspective take use of the additional data fields2 associated to the
events in the log, in order to perform its analysis (e.g., the timestamp associated to each
event log). Some examples of Process Mining methods for the Case Perspective are the
Decision Miner [32] (that analyze how data attributes influence the choices made in the
process), or the Performance Sequence Diagram, both implemented in ProM [4]. Fig. 2.4
shows an example of case perspective analysis using the Decision Miner.

2.1.2 Classes of Process Mining
All the techniques in the Process Mining area try to extract information about the real world
analyzing the process annotations in a log. However, depending on this extraction of informa-
tion, its final goal and the elements involved, we can differentiate between classes of Process

2The event log structure and its fields are explained in detail in Sec. 3.1
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Figure 2.4: Example of Case Perspective. The snapshot corresponds to the analysis performed by the
Decision Miner over a Petri net and its event log.

Mining. There are four classes of Process Mining: Discovery, Conformance, Refinement and
Extension.

• Discovery
In this scenario there is a log, reflex of a system, but there is no a-priori model. The aim
of the techniques is to discover a model that describes the reality.

This class of Process Mining is the oldest one, and is the class with more algorithms,
techniques and research behind. Actually, in some cases the terms mining and discovery
could be considered synonyms, making common the use of Process Mining name to refer
the specific Process Mining discovery class. It exists a wide number of discovery techniques
in Process Mining, with a wide variety of methodologies and technologies to perform the
extraction of the model. Some examples of discovery algorithms are: the α-algorithm [46]
(which derive a Petri net describing the behavior observed in the log), Petrify [10], Genet
[7] and RBMiner [39], (using the theory of regions to derive a Petri net), Genetic Miner
[42] (using Genetic Algorithms), ILPMiner [47] (based on Integer Linear Programming),
Heuristics Miner [52] and Fuzzy Miner [19] (heuristics driven process mining algorithms),
Multi-phase Miner [50] (for deriving Event-driven Process Chains), or the FSM Miner [44]
(to extract a Transition System from an event log). All the methods above focus on the
control-flow perspective of the process. However, as it has been seen in Sec. 2.1.1, a
process is composed by some other perspectives. Examples of discovery algorithms for
these other perspectives are the Social Network Miner [43] or the Organizational Miner
(both for the organizational perspective).

• Conformance
Contrary to the Discovery scenario, in the Conformance case it exists a-priori model. The
goal in this case is to check if the reality conforms the model. Conformance analysis
is used to detect, locate and explain discrepancies between the model and the log, and
measuring their severity.
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2. Process Mining, Process Conformance and Process Refinement

One of the most important works on Process Mining Conformance is [33], where the
authors present several metrics to have a complete vision of the conformance between the
reality (reflected in a log) and the model (a Petri net in this case). Notice that one of the
main parts of this thesis, Chapter 4, is focus on Conformance, where we present a new
approach for conformance checking. For that reason, we will dedicate a complete section,
Section 2.2, to the Conformance class, its characteristics and its properties.

• Refinement
In this case there is a-priori model, but this model does not conform the reality, i.e., there
are some inconsistencies between the model and the log. This could happen because the
idea of process the people responsible of building the model have in their heads does not
correspond with what is really going on, or simply because the reality has changed and
the model has become out-of-date. The aim of Process Mining Refinement techniques
is to correct these deviations, refining the model to reflect as accurately as possible the
reality.

Notice that, the whole Chapter 7 of the work presented in this thesis is focused on Process
Mining Refinement, proposing some algorithms to refine disconformant models, using the
results of the conformance analysis techniques proposed in the Chapter 4.

• Extension
The last class of Process Mining is called Extension. In this case there is also an a-
priori model, and the aim of the techniques is to extend this model with extra data or
another perspective. Note that the goal is not to check conformance (as in Process Mining
Conformance) but to enrich the model with the data in the event log.

Examples of Extension techniques are the Decision Miner [32] (that analyzes how data
attributes influence the choices made in the process) or the Performance Analysis with
Petri Nets plug-in (that provides different Key Performance Indicators related to the
execution of the process).

2.2 Process Conformance

Given a model representing a process and a log reflecting the execution of this process, we are
interested in analyzing quality of the model to describe the process (reflected in the log), i.e.,
is the model complying with the specified behavior, and is it done in a suitable way? Although
the conformance between one log and one model could be considered the common scenario
in conformance analysis, another scenario is also possible: the use of conformance analysis to
compare between models, in order to determine which one represents better the behavior of the
log, e.g., to compare the results of different Process Mining discovery approaches.

The final goal of the models is to describe completely the process they are modeling. But
they also aim to describe it precisely, and in a structurally suitable way. In other words, the
modeling of processes is a complex procedure involving several aspects. Conformance analysis
must take into account all these aspects, or dimensions in order to obtain a complete and global
vision of the model quality [29, 30].

There are four dimensions: fitness, precision, generalization and structural. In the following
sections we present these dimensions in detail, providing examples and reviewing the previous
work done to measure each dimension. We will especially focus on precision dimension, the
final goal of the approaches presented in this thesis.
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2.2.1 Fitness Dimension

Most of us, when we think about the quality of a model with respect to a log, we think of
how much of the behavior represented in the log can be captured (reproduced or replayed) by
the model, i.e., whether the reality (reflected in the log) fits the model. This aspect of the
conformance process is called Fitness Dimension, and is perfectly illustrated in the example of
the Fig. 2.5. This example shows the flow of a process modeled using Petri nets (cf. Sec. 3.2.1).
When we compare this model with the first log (a), we observe that model is able to reproduce
all the traces in the log, i.e., the fitness between the model and the log is perfect. However,
when the same model is checked with the log (c), only 2 of the traces can be reproduced in the
model, i.e., the model does not capture all the behavior reflected in the log.

(a) Log 1 (b) Model (c) Log 2

Figure 2.5: Example of Fitness Dimension. The fitness between the log (a) and the model (b) is better
than the fitness between (c) and the same model.

Fitness is not the only dimension of the conformance process (there are three more), but
it is the dimension most direct to see. And therefore, it is addresses by a huge number of
approaches. Most of these approaches are based on the replay of the log on the model. This
is the case of ParsingMeasure (PM) presented in [52]. PM is defined as the number of correct
parsed traces divided by the number of traces in the event log. Similar to PM is the idea of
completeness, presented in [18, 17], where the metric is defined as the percentage of traces in
the log that are compliant with the model (a Workflow Schema in this case).

However, ParsingMeasure metric is a very naive approach that does not take into account
the severity of the non reproducible traces, i.e., is not the same a trace that gets stuck in the last
task during its replay than a trace that gets stuck in each event. Thus, the same authors present
a more advanced metric called ContinuesParsingMeasure (CPM) [52]. This metric replays the
log in a non-blocking way, and returns a measure based on the the number of successfully parsed
events, the missing activities and the hanging activities during the replay. A similar idea is
used in the fitness measure presented in [12]. This metric estimates the fitness between a Petri
net and a log, calculating the number of times a transition that was supposed to be fired was
actually enabled.

A more refined technique is the one used in fitness (f) [33] (and similar to PFcomplete [11]).
This approach estimates the fitness between a Petri net and a log, based on the token game.
The log is replayed in a non-blocking way, i.e., each time a task is not enabled, the missing
tokens are created in order to enable it. At the end, the missing (i.e., artificially created) tokens
are compared with the total number of tockens consumed during the replay, and the remaining
tokens are compared with the produced ones, in order to estimate the degree of fitness.

As in fitness (f) seen above, the metrics proposed in [34, 35] computes the fitness between
a Petri Net and a log. However, in this case, they use the Hidden Markov Models theory to
estimate the fitness.

A different approach to address the fitness dimension is the one proposed in [9] (but it can
also be seen as precision and generalization dimension too). This approach estimates the quality
of a model comparing the distance between the traces in the log and the ones produced by the
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model. The authors propose several metrics to measure this distances such as the Simple String
Distance Metric, the Nonlinear String Distance Metric or the Event type Weighting Metric.

2.2.2 Precision Dimension

To qualify a model as good, fitness is not the only requirement. Apart from capturing all
the traces, a good model must avoid to represent more behavior than the one reflected in the
log, being as close as possible to the reality. The Precision Dimension refers to the behavior
allowed by the model, but never observed in the process executions in the log. A model including
much more behavior than the log would become less informative, losing the power to describe
accurately the process we want to model. The extreme case is the flower model, shown in
Fig. 2.6(b). This model is able to capture all the traces in the log 2.6(a). However, it does not
provide any useful information about the flow of the process reflected in the log. Actually, this
same model is able to capture any possible log involving the tasks A,B,C,D,E,F,G and H.

(a) Log (b) Model

Figure 2.6: Example of Precision Dimension. The model (b) is able to reproduce all the traces in the
log (a), but it describes the process imprecisely, i.e., it allows much more behavior than the one reflected
in the log.

There are different approaches to quantify the Precision Dimension. In [33] the authors
present two metrics to measure the precision of a Petri net with respect to the log. The
first one, called Simple behavioral appropriateness (aB), is based on the idea that an increase
of enabled tasks during the log replay denotes an increase of alternatives and parallelism, and
therefore an increase of the potential behavior reducing the precision. The second metric, called
Advanced behavioral appropriateness (a′B) is based on comparing model and log relations. First,
sometimes precedes and follows relations from log and model perspective are computed. Then,
the relations of the log and the model are compared with each other to find discrepancies,
indicating possible variability in the model behavior not contemplated in the log. The main
problem of this metric is the cost of the model state space exploration needed to derive the
model relations.

A similar scenario is considered in [34, 35], where the precision between a Petri net and a log
is checked. However, in this case, the authors use Hidden Markov Models in order to quantify
the conformance, and a precision metric is provided according to it.

Other approach for measuring precision is Behavioral Precision (BP ) presented in [12]. This
metric is used to compare two Petri nets (a reference and a compared one) on the basis of a log.
Behavioral Precision checks how much behavior is allowed by the compared model that is not
by the reference model. This is done comparing the number of enabled tasks in each model in
every moment of the log. Additionally, this metric takes into account how often a trace occurs
in the log, giving a higher weight to the most common behavior, in contrast to other infrequent
and less important situations. The idea of Behavioral Precision is used in the Genetic Miner
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[14], to compute the precision of a mined model with respect to the reference model.
In Causal Footprint [49] the authors present an approach to check precision (but also gener-

alization) without a log, based on the idea of detecting common erroneous patterns using casual
footprints, i.e., a representation of a set of conditions on the order of activities that holds for
every case of a process. This idea is applied to Petri nets and EPCs, and could be also applied
to other languages as BPEL or UML diagrams.

A different idea is used for the approach presented in [18] and [17], called soundness, and
used for checking the precision of a Workflow Schema with respect to a log. Soudness measures
the percentage of traces that can be generated by the model that are in the log. Finally, in
[6], the authors propose an independent-model approach to compare an event log and a model,
based on the minimal description length principle.

2.2.3 Generalization Dimension

The Generalization Dimension, as the Precision Dimension seen above, refers to how much more
behavior is captured in the model than the one observed in the log. However, in contrast to
Precision, Generalization addresses overly precise models, measuring the overfitting. In Fig. 2.7
we can see an example of low value of generalization. The model of that example represents
each trace of the log in a different path, avoiding any kind of generalization, and overfitting the
given log.

(a) Model (b) Log

Figure 2.7: Example of Generalization Dimension.

Measuring Generalization could be a complicated task, especially when noisy data and
unstructured processes are involved. The abstraction of the less frequent behaviors during the
construction of the model can lead to a loss of fitness and precision. Thus, Generalization must
be seen as a single dimension by itself, and it must be balanced with the other dimensions to
obtain a complete vision of the model quality.

Unlike Fitness and Precision Dimensions, in the literature there are few approaches ad-
dressed to Generalization Dimension. And even less if we consider this dimension alone, be-
cause some of the approaches perform the generalization and precision analysis together (this
the case of Causal Footprint [49] or the process validation of [9], both explained above).

An example of metric addressing exclusively generalization is Behavioral Recall (BR) [12].
This metric is used to compare two models on the basis of a log. Behavioral Recall checks how
much behavior is allowed by the reference model that is not by the other model. This is done
comparing the number of enabled tasks in each model in every moment of the log. Additionally,
this metric takes into account how often a trace occurs in the log, giving a higher weight
to the most common behavior, in contrast to other infrequent and less important situations.
Behavioral Recall is the symmetric measure of the metric Behavioral Precision (BP ) seen adobe,
and it is also used in the Genetic Miner [14], to compute the generalization of a mined model
with respect to the reference model.
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2.2.4 Structural Dimension
Finally, the last dimension considered in the conformance analysis is the Structural Dimension.
Given a model describing a process, we want this model to be as understandable, meaningful
and compact as possible. Understandable, meaningful and compact are subjective terms, and
their meaning depend on the final purpose of the model and the modeling language used.
For instance, the two models in Fig. 2.8 could be a good example to illustrate the Structural
Dimension for the Petri net case. Both models express the same behavior. However, the model
of (b) contains some elements that inflate its structure, e.g., it contains a redundant place that
does not modify the behavior of the net, or some duplicate tasks representing the same step in
the process and preventing to identify this step as unique (and not as two different activities).

(a) Model 1

(b) Model 2

Figure 2.8: Example of Structural Dimension. Both models describe the same behavior. However, the
structure of (b) is worst, i.e., it contains some elements that "inflate" the structure unnecessarily.

There are some examples of metrics and approaches addressed to measure the Structural
Dimension. In [33] the authors presents two metrics for the Petri net case: Simple Structural
Appropriateness (aS) and Advanced Structural Appropriateness (a′S). The aS metric uses the
number of different transition labels (two duplicate tasks share the same label) and compare
it with the model size to estimate the structural accuracy of the model. However, that metric
can only be used as a comparative means for models exhibiting equivalent behavior because it
is only based in the model size. To check the structural accuracy independently of the model
behavior, the same authors propose a′S , a more advanced metric that uses, as estimator, the
verification of structural patterns or guidelines, such as the set of redundant invisible tasks or
the set of alternative duplicate tasks.

In [14], the authors present two metrics, called Structural Precision(SP ) and Structural
Recall(SR), in order to check the structural conformance between a reference model and a
mined model. Both metrics are based on quantifying how many connections have the models
in common: SP counts how many causality relations has the mined model that are not in the
reference model, and SR works the other way around. A similar idea is applied in precision
and recall [28], in this case for comparing two Workflow graphs. Precision indicates the ratio
of correctly identified edges over the total number of generated edges, and recall is the ratio
of correctly identified edges over the total number of edges in the reference workflow graph.
Finally, the metrics Duplicates Precision (DP ) and Duplicates Recall (DR) [11] are similar to
SP and SR, but quantifying how many duplicate tasks have in common the mined and the
reference model.
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3
Logs and Models

In this section we introduce the main elements involved in any Process Mining technique: the
log (Sec. 3.1) and the model (Sec. 3.2). In Section 3.3 we introduce the mapping between these
two elements in order to perform a conformance analysis. Finally, in Sec. 3.4 we present the
Transition Systems, a component used later in the algorithms presented in this thesis.

3.1 Event Log

The event log [45] (also known as workflow log or simply log) is the main element of the Process
Mining techniques. These logs contain information about the events and processes occurred in
the system, and can be used to mine a model, to extend a existent one, or to measure its quality.
Nowadays, any software system used for supporting processes (such as ERP1 or WFM2 systems)
record this information in some form. For Process Mining purposes, the events recorded in the
logs must satisfy that:

• each event refers to a task (i.e., a well-defined step in the process)

• each event refers to a case (i.e., a process instance)

• the events are totally ordered

Apart from that, the log might also include some other information, e.g., the timestamp of
each event, the performer of each action, or some additional data. In addition, the log might
contain the type of each event, e.g., start event (the beginning of an action), complete event
(the end of an action), scheduled event (an action scheduled to be performed), etc. Table 3.1
shows an example of event log with some of this information.

The format used by each system to store the logs is usually different. The absence of a
common format makes difficult to share and exchange logs among tools, increasing the cost of
Process Mining analysis. For that reason, in 2003, a new format was proposed to become a
standard for event logs: the Mining XML (or MXML) [45]. MXML is based on XML [1], and
can be used to store any of the information related to the events and processes 3. MXML is

1Enterprise Resource Management systems
2Workflow Management systems
3For more details, the XML Schema of MXML format can be seen in [2].
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Case Task Type Performer Timestamp
. . . . . . . . . . . . . . .
1 Check Availability complete George 2010/09/04 17:13
2 Check Availability complete Alex 2010/09/04 17:14
3 Check Availability complete Dolores 2010/09/04 17:17
3 Ship Order complete Dolores 2010/09/04 17:21
1 Purchase Material complete George 2010/09/04 17:22
2 Ship Order complete Alex 2010/09/04 17:24
4 Check Availability complete Emily 2010/09/04 17:33
2 Send Bill complete Alex 2010/09/04 17:36
2 Check Payment complete Alex 2010/09/04 17:38
4 Ship Order complete Emily 2010/09/04 17:44
1 Register Purchase complete George 2010/09/04 17:50
3 Check Payment complete Dolores 2010/09/04 17:52
. . . . . . . . . . . . . . .

Table 3.1: Example of Event log.

the format supported by most of the Process Mining analysis tools, such as ProM [4], the most
important framework in the Process Mining area. It also exists a tool, called ProM Import [5],
able to convert from almost any log format into MXML. Fig. 3.1 shows an example of event
log fragment in MXML format.

For the purpose of the work presented in this thesis, not all the information contained in the
log is needed. Only the one concerning about the control flow perspective, i.e., the task and the
case of each event, and the order between events. Therefore, we can simplify the representation
of the logs as it is shown in Fig. 3.2. In this simplification, each task is represented with a
capital letter (e.g., A for Check Availability). Moreover, each line of the log (called trace)
represents sequence of events grouped by case exhibiting the same event sequence. The number
at the beginning of each trace denotes the number of instances combined together in that trace
(the absence of number represents 1). It is important to remark that this simplification and
this aggregation of the log can be done because only the control flow perspective is considered
here. In case of considering other perspectives, the additional data stored in the log would
play a more important role (such as performer in social networks perspective, or timestamp in
performance analysis perspective).

A formal definition of trace and event log for that simplification can be found in Def. 3.1.

Definition 3.1 (Trace, Event Log) Let T be the set of tasks, and let P(S) denote the pow-
erset over S, i.e., the set of possible subsets of elements of S. A trace σ is defined as σ ∈ T ∗.
And an event log is a set of traces, i.e., EL ∈ P(T ∗).

Finally, notice that the event log might contain sensitive information concerning the users
of the system, such as its name or the time spent performing an action. The management
of this information is usually regulated by law, and its use for analyzing aspects such as the
performance of the employees could become a crime. Therefore, techniques to anonymize the
event log could be a necessary action to take before starting any Process Mining analysis.
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Figure 3.1: Fragment of Event Log in MXML Format. The fragment corresponds to exampleLog
available in [4]. In MXML format, each event is represented by the tag AuditTrailEntry, and the task
associated with that event is identified by the tag WorkflowModelElement.

Figure 3.2: Example of Event Log Simplified.

3.2 Model

The model (also called process model) is the other important element of all Process Mining
techniques. A model is an abstracted representation that describes how a process really works.
It can also describe the people or the organizations involved in the performance of the process.
The model is used to analyze the process, gaining insight in it, and making easier to take
decisions concerning about the process.

A process model could be the result of a Process Mining technique (Discovery in this case),
or the result of a manual design, i.e., a group of designers with deep knowledge of the modeling
language and the process itself construct a detailed model that describes accurately the reality.
On the other hand, it could exist an a-priori model (designed or discovered), and the aim of the
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Process Mining is to extend it (Extension), to measure its quality (Conformance) or to correct
it (Refinement). These last two scenarios are the ones considered in this thesis.

There are a wide variety of modeling languages, and the decision of choosing one or another
depends on many factors. One of these factors is the perspective, i.e., there are different model-
ing languages for the different perspectives. For example, the use of Petri nets or Event-driven
Process Chain (EPC) for control flow perspective, or Social Networks Graphs for organizational
perspective. Some of the other factors that influence the choice of a language are the formalism
required, the visual representation of the model, or the existing tools for design and analyze
the chosen modeling language.

In the following section we introduce and describe the modeling language chosen for the
approach proposed in this thesis: Petri nets.

3.2.1 Petri Nets

The use of Petri nets [26, 27] for process flow modeling is common in Process Mining, and the list
of miners designed to discover Petri nets from event logs is long [48]. Petri nets provides a formal
semantic, a solid mathematical base, and a graphical notation, making them appropriate for
modeling processes. Moreover, ProM [4] framework provides a wide range of tools for converting
other modeling languages into Petri Nets. Note that, although the approach presented in this
paper is based on Petri Nets, the idea can also be applied to other modeling language with
executable semantics.

In the remaining of this section we present a formal definition for Petri nets, an some of the
terminology used in Petri net theory.

Definition 3.2 (Petri Net [26]) A Petri Net (PN) is a tuple (P, T,W,m0) where P and T
represent finite sets of places and transitions, respectively, with P ∩ T = ∅. In addition, the
relation W : (P × T ) ∪ (T × P )→ N defines the weighted flow relation. A marking is defined
as a mapping P → N. m0 is the initial marking, i.e. defines the initial state of the system.

A transition t ∈ T is enabled in a marking m iff ∀p ∈ P : m(p) ≥ W (p, t). An enabled
transition can be fired resulting in a new marking m′ such that ∀p : m′(p) = m(p)−W (p, t) +
W (t, p). A marking m′ is reachable from m if there is a sequence of firings σ = t1t2 . . . tn
that transforms m into m′, denoted by m[σ〉m′. A sequence of transitions σ = t1t2 . . . tn is a
feasible sequence if m0[σ〉m, for some marking m. When a sequence σ is a feasible sequence of
PN, we say that the Petri net PN is able to reproduce (or replay) the trace σ. The sequences
t1t2t5 and t1t2t7 are examples of traces reproducible and non reproducible for the Petri net 3.3
respectively. We define the language of a Petri net L(PN) as the set of all feasible sequences.
The set of reachable markings from m0 is denoted by [m0〉, and form a graph called reachability
graph. A PN is said to be k-bounded or simply bounded if ∀p : m′(p) does not exceed a number
k for any reachable marking m′ from m0. If no such number exists, it is said to be unbounded.
Fig. 3.3 shows an example of Petri nets graphical representation, indicating each of its elements.

3.3 Mapping between Model and Log

The first step in order to perform any action involving both model and log is to establish a
relation between both objects, i.e., the events of the event log and the transitions of the Petri
net must be mapped. The association relation presented in this section is similar to the one
proposed in [31]. The mapping should be performed by a domain expert, with knowledge
about the analyzed process, the log and the model, in order to associate correctly events and
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Figure 3.3: Elements of a Petri net: Transitions, Places and Tokens (the number of tokens indicates
the number associated with that place in the current marking).

transitions. Depending on relation between elements we can distinguish the following types of
associations:

• Ordinary tasks
The most simple and common relation between events and transitions: the 1-to-1 map-
ping, i.e., each event in the log is associated with only one transition in the Petri net. In
this case, the transition is labeled with the name of the event.

• Duplicate tasks
In this case, two or more transitions in the model are associated with the same event of
the log. All transitions belonging to a duplicate tasks relations are labeled with the same
event name. However, from a strictly model point of view they remain being differentiable
elements of the model with its own position in the Petri net. The reverse case (i.e., one
transition associated to multiple events) may happen if the execution of the process is
recorded at a more fine-grained level, e.g., start and end annotations at the beginning and
ending of the task execution. However, as it was mention before, we abstract from this
fine-grained information considering only complete actions, maintaining the approach as
general as possible.

• Invisible tasks
A transition in the model is associated with no event in the log, i.e., actions of the process
with no track in the log. The reasons for this lack of relation may be different, e.g.,
unrecordable steps in the process (phone calls, meetings, ...), introduced artificially in the
model for routing purposes, relaxation of the models (we only focus in the log of a part
of the model, non concerning about rest of the model), or as a result of some discovery
algorithm (e.g., Genetic Miner [42]). The transitions belonging to this relation are not
labeled, and they are represented as black filled rectangles.

• Non modeled tasks
This relation refers to the events of the log not related with any transition in the model.
For the purposes of this work we assume that the log can be preprocessed, removing this
type of events before starting the analysis.

The techniques presented in this paper cover all the scenarios above. Note that, for the
sake of clarity, in this thesis we will refer to task, event or transition indistinctly, whenever no
mistake is possible.
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Figure 3.4: Mapping Relations between Petri nets and Event Logs: Ordinary tasks, Duplicate Tasks
and Invisible Tasks.

3.4 Transitions Systems
The last formal model presented in this chapter are transition systems. Transitions Systems are
widely used in Process Mining, because their flexibility allows to represent other models and
they properties, such as the sequence of events reflected in a log, or the possible behavior of a
Petri net. Actually, sometimes are the transition systems themselves the ones that are used as
input of some Process Mining algorithm. An example of that is Genet [7], a tool that allows the
derivation of a general Petri net from a transition system representation of a system. In other
cases the transitions systems are the results (or outputs) of the algorithms, as in [44], where
the authors propose methods to derive a transition system from an event log. However, in the
work presented in this thesis the transition systems will not be used as inputs or outputs, but
as intermediate elements to develop the algorithms proposed.

Definition 3.3 (Transition system) A transition system (or TS) is a tuple (S, T,A, sin),
where S is a set of states, T is an alphabet of actions, A ⊆ S × T × S is a set of (labeled)
transitions, and sin ∈ S is the initial state.

We will use s e→ s′ as a shortcut for (s, e, s′) ∈ A, and the transitive closure of this relation
will be denoted by ∗→. The language of a transition system TS, L(TS), is the set of traces
feasible from the initial state.

20



4
Process Conformance Approach

In this chapter we present our approach for checking precision between a Petri net and an
Event log. In Sec. 4.1 we explain the general idea of the approach, its motivations, the route
map of the procedure, and we compare it with similar approaches. In Sec. 4.2 and Sec. 4.3
the procedure to check the precision is explained in detail. In Sec. 4.4 and Sec. 4.5 we present
the two elements resulting of the precision analysis: the ETC Precision metric and the set of
Minimal Disconformant Traces. Finally, in Sec. 4.6 some special cases, variants and extensions
are considered1.

4.1 General Idea and Approach Route Map

The aim of this chapter is to propose an approach to measure precision between Event Logs and
Petri nets. The most similar work with this same purpose is [33], by A. Rozinat and W.M.P.
van der Aalst. In that work, the authors present several metrics and methods to measure
the different dimensions of the conformance between logs and Petri nets. In particular, they
present a metric for quantifying precision called a′B . For computing this metric, first we need
to build the Precedes Relation and the Follows Relation between tasks, for both model and log
perspective. These relations can only take the values of Always, Sometimes and Never. Then,
we compare the relations of the model and the log, counting the Sometimes relations of the
model that does not appear in the log. These discrepancies may point out precision problems
(some variability of behavior in the model not reflected in the log) and are used to compute
the metric a′B (cf. Fig. 4.1). The problem of this approach is that to build the relations from
a model perspective, we need to analyze the possible executions sequences of the model, i.e.,
we need to explore the state space of the model. Because the state space of a model can grow
exponentially, state-based techniques may be problematic for real case scenarios.

The purpose of this chapter is to present a new technique for measuring precision in Petri
nets that does not require the exhaustive exploration of the model state space. This approach
can be summarized as follows: given a model and a log, the behavior of the model restricted
to the log is computed (dark gray part of Fig.4.2). The border between the log’s and model’s
behavior defines crucial points where the model deviates from the log. We call these situations
escaping edges. By quantifying these edges and their frequency, we aim at providing an accurate
measurement of the precision dimension. Moreover, the escaping edges denote inconsistencies

1Most of the ideas of this chapter appear also in the paper [25].
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Figure 4.1: "Follows" relations derived from model and log perspectives in order to calculate the a′B
metric. The only discrepancy in this case correspond with the task G. The "Precedes" relations would
be computed similarly. This figure was obtained from [33].

that might be treated in the process refinement phase.

Figure 4.2: Diagram of Log-based traversal of Model Behavior. This traversal does not explore all the
model behaviors (light gray), only the part associated with the log behavior (dark gray). The Escaping
Edges denote the points where the model behavior deviates from the log behavior.

Some of the characteristics of this new approach are the following:

A fresh look at precision
We aim at providing a precision metric that estimates the effort needed to obtain an accurate
model, focusing on the discrepancies detected. This contrasts with the existing approaches for
precision that only provide discrepancies in the event relations [33]. The key concept of the
approach is that of Escaping Edges, i.e., the situations were the model allows more behavior
than the log, thus exhibiting less precision. We base our measure on the relation between the
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number and frequency of escaping edges with respect to model’s behavior restricted to the log.
Hence, the more the model deviates from the log, the less precise is its precision value. It is
important to stress the fact that a model can have few escaping edges (thus exhibiting good
precision) but with underlying behavior substantially bigger than the log: it is not the aim of
this work to compare sizes between the model and the log, but providing an estimation of the
efforts required to improve the model to precisely describe the log.

Efficiency
In contrast to other approaches that require a complete exploration of both the model and the
log behavior [33], our approach performs a log-based traversal of the model behavior, i.e., the
model exploration is restricted to the observed log’s behavior. As a consequence, the compu-
tational requirements are bounded to the log size, thus being independent of the whole model
underlying behavior. This might be crucial for models obtained from a mining algorithm or
real case scenarios that may have an underlying behavior of intractable size.

Fine Localization
Our approach works directly with the behavior of the model, and not with the model itself. As
results, we get a deeper view of the precision, being able to locate the exact moment and place
of the precision issues. On this regard, the methods presented in this chapter output also the
exact points of discrepancy, i.e., the traces where the model starts to deviate from the log. This
accurate localization may be a good starting point for correcting and refining the model.

The procedure of checking the precision of a system using this approach can be divided in
several stages. Figure 4.3 shows the route map of the procedure. In the first stage, some state
information is obtained from both the model and the log, in order to obtain a common domain
between log and model behaviors (Section 4.2). Once this is done, we use this information
to perform the log-based traversal of the model behavior(Section 4.3). Finally, we use the
information recollected during the traversal to generate and output two results: the first one,
called ETC Precision (etcP ), is a metric that quantifies the level of precision of the system
(Section 4.4); the second one, called Minimal Disconformant Traces (MDT), is an element
designed to point out with exactitude the origins of the precision issues (Section 4.5).

Figure 4.3: Route Map of the Precision Approach.

During the precision checking presented in this section, we assume that every trace in the
log is possible in the model, i.e., the model overapproximates the log, being 1 the fitness value
of the system. This is the scenario shown in Fig.4.2. The reverse case, i.e., a model more
specific than the log, indicates not a precision problem but a fitness problem. In Section 4.6.3,
we discuss how to adapt the technique to deal with non-fitting models. In addition, for the
sake of clarity and understanding, during the first part of the section we will assume the most
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simple mapping between transitions of the Petri net and events of the Event log., i.e., without
invisible or duplicate tasks. In Section 4.6.1 we extend the general approach to include these
special cases, and we analyze the consequences of this extension.

The Running Example
During this chapter, in order to illustrate each one of the steps performed by the approach,
we will use the example shown in Fig. 4.4 as a running example. This example is based
on the ones used in [33]. The figure represents a banking system scenario. In particular,
it reflects the typical process of liability insurance claim in a bank. The example is
composed by the log and the model of the process. The log, shown in Fig. 4.4(b), reflects
four executions of the liability process, each one represented as a trace of the log. Note
that, for the sake of clarity, each task of the log is represented by a capital letter, e.g., A
represents the Set Checkpoint task, and so on. On the other, Fig. 4.4(a) shows the model
representing the control flow of the liability process (a Petri net in our case). Note that,
although the log represents a plausible situation, the control flow shown in the model
is not realistic, i.e., the Consult Expert task should be executed exactly once (we are
assuming it make no sense to consult an expert more than one time). This loop reflects
an extra behavior allowed by the model but not reflected in the reality represented by
the log, i.e., a precision issue. We will use this issue to illustrate the precision checking
performed by the approach presented in this thesis. The detection and localization of
this inconsistence may seem obvious in this small scenario, but may be not for larger and
realistic cases, including complex processes and a huge number of tasks.

(a) Model (b) Log

Figure 4.4: Running example to illustrate the conformance approach. The example contains a Petri
net modeling the control-flow of a banking process, and a log with four executions of this process.

4.2 Log States and Model States

In order to perform a log-based exploration of the model behavior, it is necessary to find
a common comparable domain between log and model, i.e., a domain where the situations
reflected in the model and the ones reflected in the log could be mapped. For performing such
task state information must be derived from both objects: model and log.

In the log side, state information can be obtained using the method presented in [44]. Given
a position in the log, this method proposed three parameters to define the current state: time,
horizon and representation. The time parameter defines which group of tasks are used to define
the current state, i.e., the past (the tasks before the current position), the future (the tasks
after the current point), or both (past and future together). The Fig. 4.5 shows examples for
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the past and the future configuration. The second parameter is the horizon, i.e., the number
of tasks considered to derive the state information. This parameter could be a number (the
n tasks closer the the position are the ones that are considered), or could be ∞ (no horizon
considered). Fig. 4.5 shows examples of two different horizons, and the tasks considered in each
case. The last parameter, the representation, defines how the state information is represented:
as a sequence (the order of the tasks used to define the state matters), as a set (the order does
not matters), or as a multiset (it considers the number of times of each task, ignoring their
order). For instance, if sequence option is selected, states defined by chains "AB" and "BA"
are different states; however, choosing "set" configuration, both will refer to the same state (the
one defined by the set containing A and B).

Figure 4.5: Example of the parameters used to derive state information from a running example log.
The example shows the tasks considered to define the state in two configurations: Past with no Horizon,
and Future with Horizon 3.

In our case, the use of the past, sequence and infinite horizon settings allows to derive a
behavioral representation of the log (a transition system) with the same language. The states
of that transition system (or automaton) will be the sates of the log.

Definition 4.1 (Prefix automaton, Log states) Given an event log EL, let TS = (S, T,A, s0)
be the transition system derived by the method presented in [44] using the past, sequence and
infinite settings. We call this transition system prefix automaton. The set S will be denoted
as the set of states of EL. Given a trace σi = t1 . . . t|σi| ∈ EL, sij ∈ S denotes the state in TS
corresponding to the prefix t1 . . . tj−1, for 0 ≤ j ≤ |σi|+ 1.

Following with the running example, Fig. 4.6 shows the prefix automaton derived from the
log of Fig. 4.4(b). The states of the transition system compose the states of that log, and each
state corresponds to prefixes of the traces in the log. For instance, the state 13 corresponds to
the prefix ACG appearing in third and forth traces.

Figure 4.6: Prefix automaton derived from the log of Fig. 4.4(b) using the past, no horizon and se-
quence configuration. The number inside correspond to the identifier of the state. The states composing
this automaton correspond with the states of the log. For instance, the state 13 correspond to the state
defined by the prefix "ACG" that appears two times in the log.

In the model side, a Petri net in our case, state information can be obtained straightforwardly
computing the set of possible markings of the net. However, due to the well-known space-
explosion problem, Petri nets can exhibit a large or even infinite behavior, making this approach
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impractical for these instances. Instead, the approach presented in this paper only computes
those reachable markings of the net for which there is at least one state in the log mapped. Let
us define formally the mapping:

Definition 4.2 (Mapping between Log States and Petri net States) Let EL be a log and
PN = (P, T,W,m0) a Petri net, and consider the prefix automaton TS = (S, T,A, s0) from EL.
A marking m is mapped to the state s ∈ S, denoted by m ( s, if there exists a trace σ such
that s0

σ→ s in TS and m0[σ〉m.

Following with the running example, Fig. 4.7 shows the mapping between the log states and
the model states. For instance, the marking of the state with prefix AB is the one that contains
one token in the place p2, one in p4 and zero in the others. Note that, the same marking can
be associated with different log states, i.e., the marking does not define the states, the prefix
does (in Section 4.6.2 we discuss the option of define the states as markings). Due to this
mapping, the Petri net traversal can be controlled to reach only markings for which there is a
corresponding mapped state in the log, bounding the exploration.

(a) Mapping (b) Markings

Figure 4.7: Mapping between Log States and Model States. The marking associated to each log state
corresponds to the marking reached after replaying in the model the state prefix. The table indicates the
tokens associates to each marking, e.g., "p2,p3" indicates one token in place p2, one in p3, and zero
in the other places.

4.3 Log-based Traversal of the Model’s Behavior

Once the log states and the model states have been defined, and the mapping between them
has been established, the log-based traversal of the model’s behavior can be performed. This
exploration makes possible to compare the behavior of the model and the log, detecting the
discrepancies existing between them, and obtaining a conformance result for the pair.

In order to detect the discrepancies between model behavior and log behavior, first it is
necessary to define the concepts of allowed tasks (behavior allowed by the model in a given
moment) and reflected tasks (all the behavior that really happen, and therefore is reflected in
the log). A formal definition of these two concepts is the following:

Definition 4.3 (Allowed Tasks and Reflected Tasks) Let s be a state of the prefix au-
tomaton TS = (S, T,A, s0) from EL, and let PN = (P, T,W,m0) be a Petri net. We define
AT (s) = {t ∈ T | m( s ∧ m[t〉m′} and RT (s) = {t ∈ T | s

t→ s′)} as the set of allowed and
reflected tasks in s.
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Figure 4.8 reflects the table of Allowed Tasks and Reflected Tasks for the running example of
Fig. 4.4. For instance, state 2 (with prefix A) has two Allowed tasks, B and C. Both correspond
with the enabled transitions of the model for the marking m1 (only one token in p1) associated
with that state. Moreover, both B and C tasks are reflected from that state in different traces:
prefix AB appear in the first trace, and AC in the others. Therefore, both AB and AC are
behaviors reflected in the log. Since we are assuming fitness value one of the model with respect
to the log, clearly RT (s) ⊆ AT (s) for every state s of TS, i.e. the model overapproximates the
log.

Figure 4.8: Table with the Results of the Traversal for the Running Example. The table includes: the
state, the prefix associated to the state, the marking associated with the state,and the set of Allowed
Tasks, Reflected Tasks and Escaping Edges of the state.

Once the concept of allowed tasks and reflected tasks has been defined, the discrepancies
between behaviors (called escaping edges) can be defined too.

Definition 4.4 (Escaping Edges) Let s be a state of the prefix automaton TS = (S, T,A, s0)
from EL, and PN = (P, T,W,m0) a Petri net. The Escaping Edges (EE) of s is defined as
EE(s) = AT (s) \RT (s).

The table with the Escaping Edges for the running example of Fig. 4.4 can be seen in
Fig. 4.8. An example of escaping edge of this example could be H for the state 7 (with the AC
prefix associated). In this case, the model allows the execution of H in this state, whereas this
is not reflected in the log (the prefix ACH does not appear in any trace). It is important to
stress that the tasks reflected of a state s are the ones that appear in any of the traces that
contain s. For instance, the state 2 of the running example (prefix A) has two allowed tasks
in the model (B and C) but given that both are reflected in the log (in different traces), no
escaping edge arise from that state.

After defining the discrepancies between behaviors, an algorithm to collect all them is pre-
sented in Algorithm 1. This algorithm explores all the states of the log, computing the allowed
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and reflected tasks of each of them. With this two sets calculated, the algorithm compute the
escaping edges of the state and store them for future conformance analysis.

Input: EL: Event Log ; PN: Petri Net

foreach State s in EL do
RT := outEdges (s) ;
σ := prefix (s,EL) ;
mark := fire (σ,PN) ; // Fire σ and get the reached marking
AT := enable (mark,PN) ; // Get the enable transitions of mark
EE := AT \ RT ; // Allowed tasks minus Reflected Tasks
register (s,EE) ;

end
Algorithm 1: Compute Escaping Edges Algorithm

4.4 Evaluating the Precision
As it has been seen before, the escaping edges are a good indicator for measuring the precision of
the model behavior compared to the behavior reflected in the log. For that reason, we propose
a metric to take into account these escaping edges and their frequency. This metric also allows
us to compare between models to know which one captures better the behavior reflected of a
log. Let us formalize the metric:

Metric 4.1 (ETC Precision) Let EL = {σ1, . . . , σ|EL|} and PN = (P, T,W,m0) be a log and
a Petri net, respectively. For each trace σi (1 ≤ i ≤ |EL|), state sij (1 ≤ j ≤ |σi|+ 1) denotes
the j − th state of σi (see Def. 4.1). The metric is defined as follows:

etcP (EL,PN) = 1−
∑|EL|
i=1

∑|σi|+1
j=1 |EE(sij)|∑|EL|

i=1

∑|σi|+1
j=1 |AT (sij)|

By dividing the set of escaping edges by the set of allowed tasks in the model, the metric
evaluates the amount of overapproximation in each trace. The metric value for the running
example in Fig. 4.4 is

1− 0 + 3 + 3 + 2

6 + 12 + 13 + 12
= 0.81

where every i-th summand of the numerator/denominator is processing the penalizations for
the escaping edges of trace σi, e.g., in trace σ4 (ACGHDFA) of the log there are 2 escaping
edges and 12 allowed tasks.

Note that, for all sij , |EE(sij)| ≤ |AT (sij)|, and therefore the values returned by etcP are
distributed between 0 and 1. The more escaping edges, the lower value will be provided (even
closer to 0 in the worst case). On the other hand, more precision between model and log, greater
value of etcP is returned, being 1 if there are no inconsistencies.

Notice that, to achieve a value of 1 it is not necessary to have one and only one enabled task
at each point of the trace (like in aB [33]). This is because the metric does not depend on the
idea of more enabled tasks, more behavior, but in the concept behavior allowed vs reflected itself.
Therefore, the metric value can be 1 even if the whole behavior of the model is distributed in
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two or more different traces. This idea is illustrated perfectly in the example of Fig. 4.9. In
this example there is a model with two possible paths: the upper path composed by A,B,C and
F, and the lower path composed by A,D,E, and F. In addition, we consider the log in (a) that
reflect the execution of each one of the possible paths (each path in a different trace). Given
the notions of conformance and precision seen so far, it can be said that the model describes
precisely the reality reflected in the log (there is no extra behavior, only the one really executed).
And therefore, the etcP value should be 1. And in fact, it is. This is because the decision of etcP
is made globally, i.e., the computation of the escaping edges is done globally after processing
the whole set of traces, and not only considering the current trace.

(a) Log (b) Model

Figure 4.9: Example of the global nature of etcP . It evaluates the precision in a global way, i.e., can
return 1 even if the whole behavior of the model is distributed in two or more different traces.

One of the strong points of this metric is the use of the trace frequency for computing the
precision degree. There is no sampling process to the log: each trace in the log is used without
mattering if there are more traces in the log equal to this one, or this is unique. The most
common and appropriate traces that appear more times in the log are counted more times by
the metric. Therefore, they will contribute with higher weight to the formula.

Another characteristic of the metric proposed in this section is the structural independence
of the metric with respect to the analyzed model, i.e., it quantifies only the precision without
being affected by the structural elements of the model. In other words, two models with different
structure but with the same precision with respect to a log would have the same etcP value.
This is because the metric only focuses on the underlying behavior of the model, and not on
the model itself. Figure 4.10 exemplifies this structural independence. It shows two models,
(a) and (c), with the same behavior but different structure: (a) contains an invisible task, and
(c) contains a duplicated task. However, the behaviors of the two models are the same, and
therefore, the precision is the same with respect to the log (b). As a result, the etcP value of
both pairs model-log is the same (1 in this case).

For being useful and complete, a metric must be able to locate those parts in the analyzed
object that lack certain measured properties. This is a crucial requirement in conformance
analysis, due to the fact that providing the discrepancy points we are making possible to identify
the potential points of model enhancement. This is done in the approach of this thesis through
the escaping edges, identified by their marking and the task used to escape from the reflected
behavior in the log. However, given the importance of the localizability in conformance, we go
a step further and in the next section we present a technique to collect the traces leading to
these situations, called Minimal Disconformant Traces.

4.5 Locating the Precision Problems
As it has been pointed out previously, given a log and a model, we are not only interested in
quantifying, but also in locating the precision discrepancies between them. One of the possible
ways to identify this discrepancies are the minimal disconformant traces, i.e., minimal traces
that lead to a situation where the model starts to deviate from the log. This kind of traces are
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(a) Model 1 (b) Log

(c) Model 2

Figure 4.10: Example of the Structural Independence of etcP . Both models has different structure but
the same behavior. Therefore, etcP should be (and it is) equal. In particular, the value is 1 with respect
to the log in (b).

specially useful to identify the origin of the possible problems in the model. A formal definition
of these traces is presented in Def. 4.5.

Definition 4.5 (Minimal Disconformant Traces) Let EL and PN = (P, T,W,m0) be a log
and a Petri net, respectively. Let Pref(EL) be the set of all prefixes for the traces in EL. We
define the Minimal Disconformant Traces (MDT) as the set of traces σ = σ′t such that m0[σ〉M ,
σ′ ∈ Pref(EL) and σ /∈ Pref(EL).

Given a log and a model, it is not necessary to compute the MDT from scratch. We can use
the escaping edges computed in the precision analysis to build them. Algorithm 2 shows how
to generate the MDT using the EE : for each log state s with a escaping edge, the sequence to
reach s is obtained (the prefix of the state s) and it is concatenated with the escaping edge.

Input: EL: Event Log
Output: M : Minimal Disconformant Traces

foreach State s in EL do

foreach Task t in EE(s) do

σ := prefix (s,EL); // Get the prefix of the state s
σ := σ · t ; // Concatenate
addTrace (σ, M) ; // Register σ as an MDT

end
end
return M

Algorithm 2: Compute MDT Algorithm

Lemma 4.1 claims that the computed traces correspond to the Minimal Disconformant
Traces defined above, ensuring the minimality criterion on the derived traces.

Lemma 4.1 Algorithm 2 computes the Minimal Disconformant Traces.

30



4.6. Variants, Extensions and Special Cases

Proof: Let M the set of traces computed by the Algorithm 2 and MDT the set of traces that
satisfy Definition 4.5. To prove M = MDT, we will prove M ⊆ MDT and then
MDT ⊆M .

Let σ = σ′t be any trace of M . By construction σ′ is a prefix of the log. However, given
the formation of RT and EE in Algorithm 1, σ is not a prefix of the log. Furthermore, σ′ is
a feasible sequence of the model because it is a prefix of the log, and all traces in the log are
compliant with the model (since we assume fitness value one). In addition, by construction of
AT and EE , σ is a feasible sequence by the model too. Therefore, σ ∈ MDT.

Now, let σ = σ′t be any trace of MDT. σ′ is a prefix of the log. According to Definition 4.1,
it must be defined a log state s after the sequence σ′. The task t must be in the AT of s,
because σ is a feasible sequence of the model. But t must not appear in RT because σ is not a
prefix of the log. By construction of RT , t is a Escaping Edge. Therefore, σ ∈M . �

Following with the running example, Fig. 4.11 shows the MDT for the running example
model and log. The MDT traces shown are result of the unseen behavior produced by the loop
of G: an element of the model that allows to execute as many G as it is wanted, or even to
skip without executing G. These behaviors are not reflected in the log, and therefore, there are
MDT addressed to them.

Figure 4.11: Minimal Disconformant Traces for the Running Example. All them are produced by the
G loop: a loop that allows to execute as many G as we want, or even to skip the execution of G (these
are behaviors not reflected in the log).

Note that, not all the situations pointed out by some MDT are errors of the model. Some
of them may represent meaningful abstractions of the model, in order to have a more general
vision of the analyzed process. On the other hand, other MDT traces may represent precision
mismatches of a bad-designed or out-of-date model. For that reason, the analysis performed
over the set of MDT should be done by an expert in the process domain.

Notice also that MDT are not more than a set of traces, and hence, they can be considered
as an event log. Therefore, some of the Process Mining techniques applicable to event logs can
be used for MDT too. For instance, the analysis of the tasks frequency to figure out which tasks
are the most problematic, or the use of some Process Mining discovery algorithms to derive a
model (e.g. a Petri net) that represents all that problematic behavior that makes the model
imprecise. A part from the MDT study and analysis itself, MDT are a good starting point for
the Process Refinement. In other words, the information reflected in the MDT set can be used
to correct, update or/and improve the model, being this new model more precise with respect
to the log. The Process Refinement topic and the use of MDT for that purpose are explained
in detail in Chapter 7 of this thesis.

4.6 Variants, Extensions and Special Cases
In this section we go a step further and we consider the precision conformance for cases different
than the general one presented in the previous section. In particular, in Section 4.6.1 we analyze
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the case where invisible and duplicate tasks are involved in the mapping between Logs and Petri
nets. In Section 4.6.2 we consider a variant of the general approach that uses the markings to
define the log states (and not the prefixes). In Section 4.6.3 we propose how to deal with non
fitting models (models than does not cover the log). Finally, in Section 4.6.4 we consider the
extension of the approach for other models rather than Petri nets.

4.6.1 Dealing with Invisible and Duplicate Tasks
During the presentation of the conformance approach we have been assuming the most sim-
ple mapping between log events and petri net transitions, i.e., each event is associated with
only one transition, and all transitions has some event associated. However, this is a really
strong assumption to make, specially in real scenarios, where is frequent to have more complex
mappings, i.e., invisible tasks and duplicate tasks2.

In some occasions, the inclusion of invisible or duplicate tasks does not alter the precision
analysis methodology presented in previous section. For instance, some of the illustrative
examples introduced to present the conformance analysis approach (e.g., the running example)
contained invisible or duplicate tasks, but without affecting the analysis process. However,
in other occasions the introduction of these kind of tasks makes necessary a revision of the
conformance analysis method. In the following sections we illustrate the problems originated
by the invisible and duplicate tasks, and we propose techniques to deal with them.

Invisible Tasks

The precision analysis method presented in the chapter of the thesis determines how to associate
markings to log states (Sec. 4.2), and how to determine which actions are enable in the current
moment (Sec. 4.3), in order to measure the precision of the model. When the mapping between
log events and Petri net transitions is simple, determine all this is straightforward.

Actually, it could be also straightforward in some cases involving invisible tasks. This is the
case of the example shown in Fig. 4.12. Given the position 1 of the trace in (b), it is easy to
see that the only visible action allowed in this point is B (executing the invisible task first).
In addition, in position 2, when we try to determine the marking associate to that position
replaying in the model the prefix of that state (AB), the presence of an invisible tasks does not
affect the result, i.e., there is only one possible way to reach this sequence of tasks.

(a) Model (b) Trace

Figure 4.12: Example of a non problematic scenario involving Invisible Tasks.

However, there are cases where the presence of invisible tasks may affect the analysis, making
the precision measure unpredictable. This is the case of the example shown in Fig. 4.13.
Consider the situation reflected in the figure. Which are the enable visible actions in the
position 1 of the trace? Is it only B because there are a good sequence of invisibles (Inv2) that
only enables C? Or is it B and C because these are the visible tasks enabled considering all the
possible sequence of invisible tasks? And if we consider the position 2 of the trace, the thing gets
worse. Which sequence of tasks should we fire in order to determine the marking associate to
this position? A-Inv1-C or A-Inv2-C? Choosing the first sequence, B will be enabled. However,

2The mapping between log events and Petri net transitions has been presented in Sec. 3.3
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no tasks will be enabled if we choose A-Inv2-C. Summing up, the introduction of invisible tasks
may produce indeterminism. This is a non trivial problem that can only be handled using
heuristics and local explorations, producing results not 100% guaranteed from a global point of
view.

(a) Model (b) Trace

Figure 4.13: Example of Indeterminism produced by Invisible Tasks. Because invisible transitions
have no event associated, we cannot choose determinately which one to fire only examining the log.

In this thesis we propose the use of the Invisible Coverability Graph, in order the to help
handling these situations. Invisible Coverability Graph (ICG) is a variant of the classic Cover-
ability Graph (CG) [26], a graph with markings in the vertex, tasks in the edges, that explores
approximately the reachability of a Petri net, but avoiding the infinite state space subsuming
different finite markings in an infinite ω −marking. The difference between CG and ICG is
that ICG only consider invisible tasks as edges of the graph. Notice that, although the use of
coverability techniques can be problematic with respect to computational complexity for the
general case, is not a strong assumption to consider reasonably small the number of invisible
tasks involved. Building the ICG from a given marking, we obtain an approximate exploration
of the possible sequence of invisibles and the reached markings. Fig. 4.14 shows the ICG for
the example in Fig.4.13.

Figure 4.14: Example of Invisible Coverability Graph. The digits in the vertexes correspond to the
markings associated with each vertex, i.e., the number of tokens in p0,p1,p2 and p3, for that marking.
The edges of the ICG only include invisible tasks.

The Invisible Coverability Graph can be use as helping element to apply heuristics and
"best effort" strategies in order to try to answer the questions produced by the indeterminism
of the invisible tasks. For instance, in order to determine the allowed tasks we can consider the
union of all the tasks that are enable in some marking of the ICG (B and C in the example of
Fig. 4.13). In addition, in order to choose which sequence of invisibles fire in the prefix replay
we can apply different "best effort" strategies. For instance, we can restrict our conformance
analysis to cases where there is only one possible marking reached after replaying the prefix. An
other example, proposed in [33], could be consider lazy the invisible tasks, i.e., firing invisible
tasks are only considered if the task to be replayed is not enabled without firing invisibles. In
[33] it is also proposed the heuristic of the shortest sequence of invisibles, i.e., always choose the
shortest sequence of invisibles than enable the task, based on the idea of avoiding the possible
side effects between tasks produced by the firing of invisible tasks.
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Duplicate Tasks

As the Invisible case, the Duplicate case could be also problematic. This is not always the
case. There are situations where the inclusion of duplicate tasks does not disturb the precision
analysis. For instance, the running example shown in Fig. 4.4 includes the duplicate task A,
but this task does not produce any problem. This is because both transitions of the Petri net
associated with A are never enabled at the same time.

However, there are other situations where the presence of duplicate tasks could be a problem.
Fig. 4.15 shows an example of these kind of situations. Consider this example. Given the
position 1 of the trace, which transition should we choose to replay the prefix AB: Dup1 or
Dup2? Again, as in the invisible case, we have a case of indeterminism, that can only be
handled with heuristics, e.g., look ahead in the log, and use the next tasks in order to choose
between duplicate tasks. In this case, given that the next task is C, the transition chosen would
be Dup1.

(a) Model (b) Trace

Figure 4.15: Example of Indeterminism produced by Duplicate Tasks. Because both transitions have
the same event associated, we cannot choose determinately which one to fire only examining the log.

4.6.2 Log States as Markings

In this section we present a variant of the general approach concerning about the derivation of
the log states. In the general approach seen so far the log states are defined as prefixes of the
log (cf. Def. 4.1). Two trace points with different prefix represent two different states. In the
variant, this is no longer the case. Instead of that, the element used to identify states are the
markings, i.e. two trace points reaching the same marking correspond to the same state. With
this approach we reduce the number of log states, and we achieve a more high-level vision of
the precision, e.g., several old states with the same marking associated are now abstracted as
a unique new state representing all them.

However, the use of this abstraction produces loss of information. In this particular case we
lose the exact moment when the tasks are executed, and therefore losing also accuracy detecting
precision problems.

This loss of information can be seen clearly in the example of Figure 4.16. In this example
we compare both precision approaches: the general one with prefixes, and the variant with
markings as states. Using the general approach we detect two escaping edges, pointing out the
extra behavior allowed by the loop and not reflected in the log (skip B or execute more than
one B). On the other hand, using the variant approach (where each reached marking define a
state), we do not detect any escaping edge. This is because behind a marking we are subsuming
several moments, losing the power to distinguish in what moment a task has been executed.
For instance, in this example, we are losing all hints about the extra behavior allowed by the
loop (and not reflected in the log).

The level of abstraction provided by the variant may be interesting in some cases, e.g., when
we want to abstract from the extra behavior allowed by a loop in the model. However, we must
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(a) Log (b) Model

(c) Prefix Approach

(d) Markings Approach

Figure 4.16: Comparison between the Prefix Approach (the general approach) and the Markings Ap-
proach (the variant). In this variant, each marking reached in the model defines a different state. With
this approach we lose information about the exact moment where the actions have been executed because
several moments are subsumed in the same marking (the same state). In this example we are losing the
information about the extra behavior allowed by the loop but not reflected in the log.

use this variant carefully, controlling what exact information we are abstracting, and avoiding
to lose sight of real precision problems of the model.

4.6.3 Non-fitting Models

In the approach presented so far, we made the assumption that the model was able to replay
all the traces in the log, i.e., the fitness value was one. However, this requirement could be
difficult to satisfy in some cases, specially in large an real scenarios. The inclusion in the log
of non replayable traces may interfere in the precision computation, i.e., the fitness dimension
(how much behavior of the observed behavior is captured by the model) is correlated with the
precision dimension (how precise is the behavior of the model with respect to the observed
behavior in the log). For that reason, similar to [31], we recommend to perform a two phases
conformance analysis.

In the first phase the fitness of the system is analyzed, ensuring the replayability of the
traces in the log. This analysis of the fitness dimension can be performed using some of the
Process Mining techniques. One of the most used technique is the token game, presented in
[33]. In this method, every trace of the log is tried to be replayed in the log, creating artificial
tokens in order to make enable tasks that should to be enable (but they are not). At the end,
the artificial tokens and the remaining tokens (indicating a non properly ending of the process
execution) are considered mismatches, and they are used to measure the fitness.

Together to this and other fitness methods, we present a new fitness technique based on
the basic idea used for the precision approach. Symmetric to the Escaping Edges (used to
identify the points where the model deviate from the log), we can define the Log Escaping
Edges (LEE), i.e., the points where the log deviates from the model. All this points could be
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computed, analyzed and evaluated, providing a measure of fitness (instead of precision, in this
case). Fig. 4.17 compares the Escaping Edges and Log Escaping Edges.

Figure 4.17: Comparison between Escaping Edges and Log Escaping Edges

During the second phase, the fitting log is used to compute the precision of the system,
using the approach seen in this chapter. Once the analysis is performed, the results may be
combined with the fitness results (and other dimensions) to achieve a more complete vision of
the system conformance.

4.6.4 Other models

The work of this thesis is based on Petri nets as formal language for modeling. However,
the main idea of the approach presented can be generalized to be applied to other workflow
modeling languages with a suitable semantic. One possibility may be the EPC.

Event-driven Process Chains (EPC) [37] is a graphical process description language, intuitive
and easy to understand. The EPC is a widespread process modeling technique because of the
success of products such as SAP R/3 and ARIS. EPC uses a chain of elements to define the
workflow of a process. An event-driven process chain may contain the following elements:

• Functions
A Function is an activity or task which needs to be executed. It is represented as rounded
rectangle.

• Events
Events describe the situation before and/or after a function is executed. It is represented
as hexagon. In general, an EPC diagram must start with an event and end with an event.

• Logical Connectors
Logical Connectors are used to describe the flow of the process, connecting events and
functions. There are three types of connectors: ∨ (and), XOR (exclusive or) and ∧ (or).

Figure 4.18 exemplifies the application of the precision conformance approach to processes
modeled using Event-driven Process Chains. The process (reflected in the log (b)) represents
the management of an incidence: first we open the incidence and then we solve it. Finally,
once the incidence is solved, we register it in the data base and we close it. The EPC in (a)
models that process. However it does imprecisely: after open an incidence, the model allows to
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register the incidence, but this behavior is never observed in the log. Therefore, the execution
of the register action just after open the incidence may be considered as an Escaping Edge, and
"open-register" the Minimal Disconformant Trace pointing to it.

(a) EPC (b) Log

Figure 4.18: Example of Precision Approach applied to Event-Driven Process Chains (EPC). The
model described for the EPC in (a) does not describe precisely the process reflected in the log (b), i.e.,
after executing the action open incidence the model allows to execute the task register incidence, but
this behavior was never reflected in the log. Therefore, the execution of register just after open the
incidence may be considered as an Escaping Edge.

Nevertheless, some times this other modeling languages can be converted or mapped into
Petri nets, making them appropriate for using Petri nets analysis methods with them (including
the approach presented in this thesis). For example, in [41] the author present a technique to
map some Event-driven Process Chains into Petri nets. Some of this conversions between
models are implemented in the ProM framework [4], one of the most flexible tool in the Process
Mining area (it is seen in more detail in the implementation chapter of this thesis).
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5
Implementation

In this chapter we present the implementation of the precision conformance approach presented
in Chapter 4. The approach has been implemented as a ProM framework plug-in under the
name of ETConformance. Therefore, this chapter is divided in two parts: the first one (Sec. 5.1)
has the objective of presenting the framework ProM. The second one (Sec. 5.2) presents the
plug-in ETConformance itself.

5.1 ProM
ProM [4] is a generic open-source framework for implementing process mining tools in a stan-
dard environment. ProM is a project by the Process Mining Group [3], and it has been issued
under the Common Public License (CPL) license. The tool is composed by plug-ins, each
one implementing a different approach of the Process Mining area. There are more than 230
plug-ins such as:

• Discovery Plug-ins
Some of the most important Process Mining discovery miners are implemented in ProM.
For instance, there are plug-ins implementing the Alpha algorithm [46], the Genetic Miner
[14], the Heuristic Miner [52], Fuzzy Miner [19], or the Parikh Miner [47]. This wide vari-
ety of miners makes interesting the implementation in ProM of our conformance approach,
in order to compare the quality of the models mined using different techniques. A part
from control-flow perspective, ProM also includes plug-ins for the other perspectives, such
as the Social Network Miner [43] or the Organizational Miner.

• Analysis Plug-ins
ProM includes several plug-ins for analyzing and verifying models and logs. This cate-
gory includes the Process Mining Conformance approaches. The implementation of our
approach in ProM makes possible to compare its conformance results with other confor-
mance approaches such as Conformance Checker [33] or the Minimal Description Length
analysis plug-in [6]. ProM also includes other analysis plug-in such as Performance Anal-
ysis with Petri Net or the Dotted Chart Analysis plug-in.

• Input Output Plug-ins
One of the strong points of ProM is the possibility to work with different modeling lan-
guages. There are plug-ins to deal with Petri nets, EPCs, YAWLs, BPEL, etc. There
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are also plug-ins for converting between formats, e.g. from Petri nets to YAWLs, or from
YAWL to ETC. This opens the door to input a model in some format, convert it to Petri
nets, and then apply the approach proposed in this thesis.

• Other Plug-ins
Finally, ProM also includes other plug-ins such as log filters, or plug-ins to support the
step-by-step redesign of process models.

Recently, a new version of ProM has been developed. The release of this new version, called
ProM 6, is expected in the Bussiness Process Management (BPM) conference on September
2010.

5.2 ETConformance Plug-in

The conformance approach presented in this thesis has been implemented as a ProM 6 plug-in.
This plug-in is called ETConformance, and it is included in the official plug-in repository of
ProM.

The use of ETConformance is really intuitive. First, an Event Log and a Petri Net must
be imported to ProM. This can be done using the Import tab. Once the two main elements
of the conformance analysis are been imported, we use them as inputs of the ETConformance
plug-in. The plug-in requires also the initial marking of the Petri net (cf Fig. 5.1).

Figure 5.1: Initial Dialog of ETConformance plug-in. The plug-in requires a log, and a Petri net with
its initial marking. It outputs the conformance analysis results, and the set of Minimal Disconformant
Traces (MDT).

Before start, the ETConformance check the existence of a mapping between the Event Log
and the Petri Net. If this is not the case, the ProM will show a dialog to create this mapping,
i.e., selecting the event associated to each transition of the Petri net (cf Fig. 5.2). On the left
we will have the list of the Petri Net Transitions, and on the right we could select the Log Event
corresponding to it (or INVISIBLE if the transition is not reflected in the log)

40



5.2. ETConformance Plug-in

Figure 5.2: Mapping Dialog of ETConformance. This dialog helps to associate events in the event log
with transitions in the Petri net.

Once the mapping has been done, ETConformance will ask if we want to compute the set of
Minimal Disconformant Traces (MDT) or not (cf. Fig. 5.3). If we uncheck the box, the analysis
will consume less time and memory, but we will have only the number of MDTs and not the
MDT traces themselves.

Figure 5.3: Option Dialog of ETConformance. This dialog is used to choose the settings of the plug-in.
In the current version, the only option available is too compute or not the MDT set.

After finishing the analysis, the ETConformance plug-in will output the results (cf. Fig. 5.4).
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These results include the value of the ETC Precision Metric (etcP ), and the number of traces
of the log used to compute the metric (only the ones that can be replayed in the Petri Net).
Moreover, the results include the number of existing MDTs.

Figure 5.4: Results of ETConformance. This results screen includes the value for the etcP metric,
the number of traces used in the precision analysis, and the number of MDT.

Finally, if the MDT check box has been checked, the plug-in will output a log including all
the MDT traces (cf. Fig. 5.5). The format of this log is the same as the format used for Event
Logs in ProM, and therefore, it can be used as input for other ProM plug-ins.
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Figure 5.5: Inspection of MDT. The format of the MDT is the same as the rest of logs in ProM.
Therefore, the same tools to inspect the logs in ProM can be used to analyze the MDTs.
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6
Experimental Results

The precision conformance technique presented in Chapter 4, implemented as the ETConfor-
mance plug-in within ProM 6, has been evaluated on existing public-domain benchmarks [3].
The purpose of the experiments is:

• Justify the existence of a new metric to evaluate precision, i.e. demonstrate the novelty
of the concept when compared to previous approaches.

• Show the capacity of the technique to handle large specifications.

Table 6.1 shows a comparison of the technique presented in this thesis with the technique
presented in [33], implemented in ProM 5.2 as the Conformance Checker. The rows in the
table represent benchmarks with small size (few traces and small Petri net). The names are
shortened, e.g., GFA5 represents GroupedFollowsA5. We report the results of checking precision
for both conformance checkers in columns under a′B and etcP , respectively, for the small Petri
nets obtained by the ILPMiner [47] which derived Petri nets with fitness value one. For the case
of our checker, we additionally provide the number of minimal disconformant traces (|MDT|).
We do not report CPU times since checking precision in both approaches took less than one
second for each benchmark.

From Table 6.1 one can see that when the model describes precisely the log, both metrics
provide the maximum value. Moreover, when the model is not a precise description of the
log, only three benchmarks provide opposite results (GFBN2, GFl2l, GFl2lSkip). For instance, for
the GFl2lSkip benchmark, a′B is providing a significant lower value: this is because the model
contains an optional loop that is always traversed in the log. This variability is highly penalized
by simply observing the tasks relations. On the other hand, metric etcP will only penalize the
few situations where the escaping edges appear in the log.

Larger benchmarks for which Conformance Checker cannot handle are provided in Table 6.2.
For these benchmarks, we report the results (precision value, number of MDT and CPU time
in seconds) for the models obtained by the ILPMiner [47] and the RBMiner [39]. These are two
miner that guarantee fitness value one. For each one of the aN benchmarks, N represents the
number of tasks in the log, while the _1 and _5 suffixes denote its size: 100 and 900 traces,
respectively. The t32 has 200 (_1) and 1800 (_5) traces. The pair of CPU times reported
denote the computation of etcP without or with the collection of MDT (in parenthesis). Also,
we provide the results of the most permissive models, i.e., models with only the transitions but
without arcs or places (MT ). These models allow any behavior and thus, they have a low etcP
value, as expected.
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Benchmark a′B etcP |MDT| Benchmark a′B etcP |MDT|

GFA6NTC 1.00 1.00 0 GFl2lOpt 1.00 0.85 7
GFA7 1.00 1.00 0 GFAL2 0.86 0.90 391
GFA8 1.00 1.00 0 GFDrivers 0.78 0.89 2
GFA12 1.00 1.00 0 GFBN3 0.71 0.88 181
GFChoice 1.00 1.00 0 GFBN2 0.59 0.96 19
GFBN1 1.00 1.00 0 GFA5 0.50 0.57 35
GFParallel5 1.00 0.99 11 GFl2l 0.47 0.75 11
GFAL1 1.00 0.88 251 GFl2lSkip 0.30 0.74 10

Table 6.1: Comparative table between a′B and etcP for small benchmarks.

MT ILPMiner RBMiner

Benchmark |TS| etcP |P | |T | etcP |MDT| CPU |P | |T | etcP |MDT| CPU

a22f0n00_1 1309 0.06 19 22 0.63 1490 0(0) 19 22 0.63 1490 0(0)
a22f0n00_5 9867 0.07 19 22 0.73 9654 0(3) 19 22 0.73 9654 0(4)
a32f0n00_1 2011 0.04 31 32 0.52 2945 0(0) 32 32 0.52 2944 0(1)
a32f0n00_5 16921 0.05 31 32 0.59 22750 2(10) 31 32 0.59 22750 2(11)
a42f0n00_1 2865 0.03 44 42 0.35 7761 0(2) 52 42 0.37 7228 0(2)
a42f0n00_5 24366 0.04 44 42 0.42 60042 5(28) 46 42 0.42 60040 6(29)
t32f0n00_1 7717 0.03 30 33 0.37 15064 1(15) 31 33 0.37 15062 1(12)
t32f0n00_5 64829 0.04 30 33 0.39 125429 9(154) 30 33 0.39 125429 8(160)

Table 6.2: Experimental Results Table for etcP with Large Benchmarks.

A first conclusion on Table 6.2 is the capability of handling large benchmarks in reasonable
CPU time, even for the prototype implementation carried out. A second conclusion is the loss
of precision of the metric with respect to the increase of abstraction in the mined models: as
soon as the number of tasks increases, the miners tend to derive models less precise to account
for the complex relations between different tasks. Often, these miners derive models with a
high degree of concurrency, thus accepting a potentially exponential number of traces which
might not correspond to the real number of traces in the log.

Finally, three charts are provided: the relation between the log size with respect to the
CPU time, the etcP value and the number of MDTs are shown in Fig. 6.1. For these charts,
we selected different log sizes for different types of benchmarks (a22f0, a22f5, a32f0,a32f5 for
the two bottom charts, a42f0, t32f5 and t32f9 for the top chart). For the two bottom charts,
we used the Petri nets derived by the ILPMiner to perform the conformance analysis on each
log, whereas we use a single Petri net for the top chart to evaluate the CPU time (without
collecting MDTs) on different logs, illustrating the linear dependence of our technique on the
log size. The chart on top clearly shows the linear relation between log size and CPU time for
these experiments, which is expected by the technique presented in Chapter 4. The two charts
on bottom of the figure show: in the left one, since for the a22/a32 benchmarks the models
derived are very similar independently of the log, the more traces are included more traces
describing the common behavior are found. On the other hand, the inclusion of more traces
contributes to the incorporation of more MDTs, as it is shown in the right chart at the bottom.
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7
Process Refinement Approach

Checking the correctness between two objects has always associated a point of view, i.e., which
of the two elements is the correct one, being the other element the one containing all the
inconsistencies. In Process Mining, the precision checking, and conformance analysis in general,
is not an exception. Depending on which point of view we choose (log or model), we distinguish
between model perspective and log perspective.

In model perspective, the model is considered to be correct, and therefore, all process must
satisfy this model. The model may be developed by experts in the area (e.g., banks, shop
management, . . . ), knowing by their expertise how the process should be. Or it could be
also the result of laws and regulations, concerning about the requirements that the processes
in that area must satisfy (e.g., the model describing the driving license application process,
whose requirements, periods and terms are regulated by the law). In all these cases, the model
is considered to be prescriptive, and any conformance inconsistence found must be corrected
changing how the processes are executed in the real world, in order to adjust them to the model.

On the other hand, we can consider the log perspective as point of view. In this case, the log
is considered to be correct because it is the direct reflex of how the process are being executed.
Hence, the model is then used in a descriptive manner, i.e., it describes the real world and its
processes.

The use of models reflecting the reality is a powerful tool for the people in charge to make the
decisions in the system. It gives a schematic vision of the process, providing also a mechanism to
analyze the processes, detecting possible problems and bottlenecks, and giving the opportunity
to see how the changes could affect the system. However, all these advantages have a strong
dependence in the correctness of the model in the moment of taking the decisions. The use of
an incorrect model (or a model out-of-date not reflecting the current reality) to manage and
control the business processes could have catastrophic consequences in terms of time, money
and even juridical responsibilities.

If a model is incorrect or out-of-date, we can discard it, and derive a new model (like the
one that takes an other picture of the reality). However, this decision may suppose a huge cost,
especially if the model has to be create manually by experts in the area. Even using some of
the Process Mining discovery techniques, the results may be not accurate to the reality. Hence,
instead of creating a new model from scratch, it could be more interesting to correct the old
one, making it a more accurate representation of the reality, i.e., Refinement.

This chapter of the thesis is based in this process refinement. In particular, we focus on the
use of the precision conformance results (cf. Minimal Disconformant Traces) in order to restrict
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the model, increasing the precision and obtaining a more accurate model. In the following
sections we propose two techniques for precision refinement called Breaking concurrencies and
Supervisory Control Refinement.

7.1 Breaking Concurrencies

As it was explained in the previous section, the aim of precision refinement is to refine the model,
restricting its behavior, and correcting its precision discrepancies. There are a wide variety of
causes for these discrepancies, and they change from one scenario to another. However, it exists
a common situation that repeats in several scenarios and causes imprecisions: the concurrencies.

The concurrency between tasks describes the situation where a set of tasks are enabled, and
can be executed in any order. If this situation is reflected in the model but not in the log,
it produces an imprecision, i.e., the model describes more behavior than the one reflected in
the log. The main idea of the breaking concurrencies technique proposed in this section is to
restrict this extra behavior introducing a new constraint in the model. In our case, being Petri
nets the modeling language chosen, this constraint is a new place between concurrent tasks in
the model, breaking this concurrency and making the tasks being sequential, reflecting more
accurately the behavior of the log.

Simple Motivational Example
In Fig. 7.1 we show a simple example to motivate and illustrate the general idea of the
approach presented in this section. This figure contains the initial model (Fig. (a)) and
event log (Fig. (b)) of a system. After performing the precision conformance analysis
we detect that this model does not reflect precisely the behavior of the log, i.e., the etcP
metric in this system is 0.8 (different than one), and therefore the Minimal Disconformant
Traces set is not empty (shown in Fig. (c)). After analyzing the Petri net we detect that
it models a concurrent behavior between B and C. However, analyzing the event log
we detect a sequential behavior between B and C, being that the cause of the precision
discrepancy. To correct this imprecision, we introduce a new place in the model between
tasks B and C, making them sequential (Fig. (d)). After checking the precision and
fitness of this new model we realize that it describes completely precisely the log without
losing its fitness (i.e., all traces accepted by the old model are accepted by the new model
too). Finally, we remove the redundant places (i.e., removing them does not modify the
behavior), simplifying the structure of the model (Fig. (e)).

In the following sections we will present in detail each part of the approach: in Sec. 7.1.1 we
present the methods to obtain the concurrency relations from Petri Nets. In Sec. 7.1.2 we do
the same for the event log. Finally, in Sec. 7.1.3 we propose the complete algorithm to correct
precision discrepancies using the precision analysis results and the concurrency information.
For the technique presented in this section we assume the most general Petri net / Event log
mapping, focusing on the cases without invisible or duplicate tasks.

7.1.1 Model Concurrencies

In a Petri net, two transitions are considered concurrent if they can occur concurrently from
some reachable marking of the net, i.e., if there is a reachable marking that enables both
transitions and firing one does not disable the execution of the other. A formalization of this
concept can be found in Def. 7.1.
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(a) Model (b) Log

(c) MDT (d) Refined Model (e) Final Model

Figure 7.1: Motivational Example for the Breaking Concurrencies Approach. The example is composed
by a model (a), a log (b), and the Minimal Disconformant Traces (c) resulting from checking the
precision between them . The model resulting after breaking the concurrency between B and C is shown
in (d). In (e) the final refined model after removing the redundant places is presented.

Definition 7.1 (Concurrency relation (for transitions)) Let PN = (P, T,W,m0) be a Petri
net. Given t ∈ T , we define the marking mt of PN as the marking that puts W (p, t) tokens
for every input place p of t, and no tokens elsewhere. The concurrency relation (restricted to
transitions) ‖⊆ T × T contains the pairs (t1, t2) such that m ≥ mt1 +mt2 for some marking
m ∈ [m0〉.

(a)

B ‖ C
B ‖ E
C ‖ D
D ‖ E

(b)

Figure 7.2: Example of Model Concurrencies. The model analyzed is shown in (a), and the list of
relations is shown in (b).

Fig. 7.2(b) shows the concurrent relations for the model in 7.2(a). Computing the relations
for this simple example is easy, but in the general case the cost of computing this relation is
huge, needing the complete exploration of the state space, even existing the possibility of having
infinite reachable markings in case of unbounded Petri nets. For that reason we propose an
alternative best effort strategy based on the structural concurrency relation, first presented in
[21]. The idea is to use an alternative relation (the structural concurrency relation in this case)
that overapproximates the concurrency relation, but that can be computed in polynomial time.

In order to present the structural concurrency relation, first we need to generalize the defi-
nition of concurrency relation seen in Def. 7.1, to extend it for concurrency between nodes (i.e.,
Transitions and Places) of the Petri net.
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Definition 7.2 (Concurrency relation (for nodes)) Let PN = (P, T,W,m0) be a Petri
net, and let X = P ∪ T be the set of nodes. Given x ∈ X, we define the marking mx of
PN as: (i) if x is a place, then mx is the marking that puts one token on x and no tokens
elsewhere; (ii) if x is a transition, then mx is the marking that puts tokens for every input place
p of t, and no tokens elsewhere. The concurrency relation ‖⊆ X×X contains the pairs (x1, x2)
such that m ≥ mx1

+mx2
for some marking m ∈ [m0〉.

Definition 7.3 (Structural concurrency relation [21]) Let PN = (P, T,W,m0) be a Petri
net, and let X = P ∪ T be the set of nodes. The structural concurrency relation ‖S⊆ X ×X is
the smallest symmetric relation such that:

i. for all places p, p′, if m0 ≥ mp +mp′ , then (p, p′) ∈ ‖S

ii. for all transitions t, if ( •t× •t) \ idP ⊆ ‖S, then (t• × t•) \ idP ⊆ ‖S, where idP denotes
the identity relation on the places of P .

iii. for all nodes x and for all transitions t, if {x}× •t ⊆ ‖S, then (x, t) ∈ ‖S and {x}×t• ⊆ ‖S.

The next step is to prove that Structural concurrency relation is an overapproximation of
the concurrency relation. This is done in Theorem 7.1, where it is claimed that the structural
concurrency relation is a subset of the concurrency relation (in the specific Petri net class of
live and bounded free-choice STGs, both sets are even equal). The proof of the theorem can be
found in [22].

Theorem 7.1 ([22]) For general Petri nets, ‖ ⊆ ‖S. For live and bounded free-choice STGs,
‖ = ‖S.

In contrast to concurrency relation case, there is a polynomial algorithm to compute the
structural concurrency relation of a Petri Net (Algorithm 3). This algorithm corresponds to
the one presented in [16] (a corrected version of the algorithm previously presented in [22]). If
subset R ⊆ X×X is encoded as a two dimensional bitarray, the algorithm needs O(|X|2) space
and O(|P |2 · |T | · |X|) time1.

7.1.2 Log Concurrencies

The second part of the procedure of breaking concurrencies is to detect concurrencies in the
log. Actually, derive the concurrency relations of the log is not the main goal of this part of the
procedure. Instead, we are interested in detecting the lack of concurrency between tasks, i.e.,
this absence of concurrency in the log together with the presence of concurrency in the model
points out a precision problem in the system, where the model allows more behavior that the
one reflected in the log.

In the literature exists different approaches to derive event relations from an event log. In
[46], the authors present some log-based ordering relations, such as a → b (referred as direct
causal relation, a ‖ b (suggesting potential parallelism), or a#b (indicating possible conflict). In
[53] this list of ordering relations is modified and extended to include some other relations such
as a / b (corresponding to XOR-Split) and a . b (corresponding to XOR-Join). Alternatively, in
[8], the authors present a technique for detecting concurrency information based on probabilistic
analysis of the event traces.

1It is possible to give a faster algorithm for free-choice models. This new algorithm runs in O(|X|2) space
and O(|P | · |X|2) time, and can be seen in [16] too.
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7.1. Breaking Concurrencies

Input: Petri Net: PN = (P, T,W,m0)
Output: Structural Concurrency Relation: R ⊆ X ×X
R := {(p, p′) | m0 ≥ mp +mp′} ∪ (

⋃
t∈T (t• × t•) \ idP );

E := R;

while E 6= ∅ do
select(x, p) ∈ E; E := E \ {(x, p)};
for every t ∈ p• do

if {x} × •t ⊆ R then
Aux := ({x} × t•) ∪ (t• × {x}) ∪ {(x, t), (t, x)} ;
E := E ∪ ((Aux ∩ (X × P )) \R);
R := R ∪Aux ;

end
end

end
Algorithm 3: Structural Concurrency Relation Algorithm (Kovalyov & Esparza) [16]

The approach proposed in this section is based on the Firing Causalities relation. This
relation not only provides us information about the lack of concurrency, but also the information
needed to determine the number of tokens of the new place introduced to break the model
concurrency (this is explained in detail latter in this section). In order to present the concept
of Firing Causalities, first we need to introduce the concept of Firing Causalities Matrix.

Definition 7.4 (Firing Causality Matrix) Let EL be an event log, n the number of tasks in
EL, and Pref(EL) the set of all prefixes for traces in EL. Let #(σ, t) be the number of occurrences
of task t in the trace σ. We define the Firing Causality Matrix M ∈ Nn×n such that M(i, j) =
max{#(σ, ti)−#(σ, tj) | σ ∈ Pref(EL)}.

Definition 7.5 (Firing Causality) LetM be the Firing Causality Matrix of the event log EL.
There is a firing causality between task ti and tj if M(i, j) > 0 and M(j, i) = 0.

(a) Log (b) Firing Causalities

Figure 7.3: Example of Firing Causality Matrix. The figure shows the Firing Causality Matrix (b)
for the log in (a).

Fig. 7.3(b) shows the Firing Causality Matrix of the log in (a). The use of the firing
causalities of the log as a guide for adding new places to the model is fitness preserving with

53



7. Process Refinement Approach

respect to the log, i.e., any trace in the log able to be replayed in the original model, can still
be reproduce in the new model. This is claimed and proved in Lemma 7.1.

Lemma 7.1 Let EL and PN be an Event Log and a Petri net respectively. Let PN′ be the same
Petri net with a new empty place from to to td. If there is a firing causality between to and td,
then the fitness of PN with respect to EL is the same as the fitness of PN’ with respect to EL.

Proof: We assume the existence of a trace σ reproducible in PN but not in PN’. Given that
the only new restriction added to PN’ with respect to PN is the new empty input place p for
td, it is straightforward to see that the problem can only come from the impossibility of firing
td during the replay of σ because this new place. In other words, there is a moment m during
the replay of σ where td should be fired, but p has no tokens in that moment, making td not
enabled. Let σm the sequence of fired events of σ until the moment m. Given that the only
task that puts tokens in p is to and the only one that removes tokens is td, for being p empty in
the moment m, the number of occurrences of to in σm must be lower or equal than the number
of occurrences of to in σm. However, by definition of firing causality between to and td, this
situation is impossible. In conclusion, the existence of σ is a contradiction. �

On the other hand, the addition of a new place guided by the firing causalities may result
in a increase of the precision, making the model a more accurate reflection of the log behavior.
This is because, with the new place between a task t1 and a task t2, we are disabling t2 until t1
is executed, limiting the behavior of the model, and being more according with the log behavior.
The motivational example shown in Fig. 7.4 illustrates clearly this precision improvement, i.e.,
while the model in (b) has some fitness issues, the model in (c) describes the process with
complete precision.

(a) Log (b) Model (c) Refined Model

Figure 7.4: Example of Breaking Concurrencies Precision Improvement. The refined model (c) de-
scribes more precisely the log (a) than (b) without losing fitness.

Notice that, we can go a step further and use the Firing Causalities and the Firing Causalities
Matrix in a more general way in order to introduce places. In particular, including tokens for the
new places in the initial marking of the model, we can break concurrencies between tasks without
a pure firing causality relation. Fig. 7.5 illustrates this case. In this simple example, according
to Definition 7.5, there is no firing causality between B and L, because M(B,L) = 1 > 0 but
M(L,B) = 1 6= 0. However, adding a new place between B and L, and setting to 1 (according
to M(L,B)) the number of tokens in the initial marking for this new place, we can increase the
precision of the system from 0.90 to 0.95, without losing fitness.

7.1.3 Breaking Concurrency Approach
In the previous sections we have presented some possible methods to obtain relation informa-
tion from Event Logs and Petri Nets. In this section we propose an algorithm that uses this
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7.1. Breaking Concurrencies

(a) Log (b) Model (c) Refined Model

Figure 7.5: Example of Breaking Concurrencies with Initial Tokens. In this example, adding a new
place with 1 initial token (c) we improve the precision of (a) and (b), without losing fitness.

information to refine a given Petri Net.

Input: EL: Event Log ; PN: Petri Net

Cf := computeConformance (EL,PN) ;
Rl := computeLogRelations (EL) ;

while finishConditionReached () do
Rm := computeModelRelations (PN) ;
PN’ := breakConcurrency (PN,Rl,Rm,Cf ) ;
Cf := computeConformance (EL,PN’) ;
PN := selectModel (PN’,PN,Cf ) ;

end

postProcessing (PN) ;
Algorithm 4: Breaking Concurrencies Algorithm

computeConformance
At the beginning of the algorithm, the conformance between the original model and the
event log is checked in order to have a starting point for the model refinement. This
conformance checking includes fitness and precision measurements, together with other
conformance elements such as the Minimal Disconformant Traces (cf. Sec. 4.5). The sec-
ond time computeConformance appears in the algorithm, is for checking the conformance
of the new model.

computeLogRelations
The computation of the log relations is done only once, at the beginning of the algorithm,
because the log does not change in all the refinement process. The procedures for detecting
tasks relations from an event log have been explained in the Section 7.1.2.

computeModelRelations
Unlikely log relations, model relations must be computed each time the model is modified.
If the model is small enough, the exact concurrency relation can be computed. However,
for large models the structural concurrency relation should be computed. Both relations
has been explained in Section 7.1.1.

breakConcurrency
This is the function that choose where to put the new place, in order to break the concur-
rency. This decision is made according to the log and model relations, but also accord-
ing to the information provided by the conformance results and the other conformance
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elements (e.g., prioritize a place that removes some of the most frequent minimal discon-
formant traces). This function also checks that the chosen place is valid (e.g., there is no
other place with the same input and output transitions).

selectModel
The objective of this function is to choose between the new model (with the new place) or
the original one. The main criterion for selection one model or the other is the precision
conformance result, i.e., it makes no sense to choose a more complex model if the precision
has not change. Notice that, because the model relations are an overapproximation, we do
not have any guarantee about the adequacy of the place inserted. In addition, the selection
of a model instead of the other can be done taking into account other conformance criteria,
e.g., not choosing a model that decrease the Structural conformance dimension.

finishConditionReached
The loop of the algorithm is executed until some finishing conditions are reached, e.g.,
the precision of the refined model is perfect, or all the possible points to add a new place
has been explored. There are also other conditions based on the user criteria, such as
limiting the number of new places added to the original model, or the maximum number
of tokens needed for any new place (in case of using non pure firing causalities).

postProcessing
Finally, when the algorithm has finish with the refinement process, the resulting model
can be post-processed, e.g., to remove the possible redundant places (i.e., removing do
not modify the behavior of the net) appeared after adding new places [38].

In the remaining of this section we present an example (cf. Fig. 7.6) to illustrate the
approach presented. Given the log in Fig. 7.6(a) and the model in Fig. 7.6(b), we perform the
precision conformance analysis and we realize that the model does not describe precisely the
process, i.e., it has some precision issues reflecting the existence of 2 Minimal Disconformant
Traces (cf. Fig. (c)). Therefore, we decide to apply the Breaking Concurrencies algorithm in
order to improve this precision. First, the log relations are computed (cf. Fig. 7.3). Then, the
model concurrencies are computed (cf. Fig. 7.2). Then, we decide to break the concurrency
between B and C (a concurrency of the model not reflected in the log) adding a new place, and
trying to tackle the Minimal Disconformant Traces AC. We check the conformance of the new
model (cf. (d)), and we realize that the precision has improved, but it is not completely precise
yet (now there is only one MDT: "ABCE"). Therefore, we decide to continue refining this new
model. Among the concurrencies of the new model, we select the one between D and E (not
present in the log). Introducing a new place and checking the conformance of the new model
(cf. (e)) we see that the model is now completely precise (there are no MDTs), finishing with
the refinement process. The last step is to remove the redundant places that have appeared (cf.
(f)).

7.2 Supervisory Control Refinement

There are situations where the refinement of the model to increase its precision can not be
done simply adding a new place between tasks. These cases need a more complex refinement
process, that may involve several tasks and several possible scenarios. Figure 7.7 shows a simple
example of one of these possible situations.

The model shown in the figure has some precision issues with respect to the log, as it is
reflected in the set of minimal disconformant traces of Fig. (c). The model allows the execution
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(a) Log (b) Model (c) MDT

(d) Refined Model 1 (e) Refined Model 2

(f) Final Model

Figure 7.6: Complete Example of the Breaking Concurrencies Approach. The example is composed by
a log (a), a model (b), and the Minimal Disconformant Traces (c) resulting from checking the precision
between them. First, the model is refined to break the concurrency btween B and C (d). Then, the
model is refined again to break the concurrency between D and E (e). The final model, after removing
the redundant places is shown in (f).

(a) Log (b) Model (c) MDT

Figure 7.7: Example of imprecision motivating the use of Supervisory Control Refinement.

of C before firing A or B, but this is a behavior not reflected in the log. However, the breaking
concurrencies technique presented in the previous section can not be applied in this case, i.e.,
the addition of a place between tasks A and C would produce a decrease on fitness, not being
able to reproduce the trace SBCAZ any more (similar for the case between B and C). For that
reason, in this section we propose the use of the the Supervisory Control Theory to create a
more complex refinement element, called supervisor, in order to restrict the model, increasing
the precision, and being then a more accurate reflex of the log.

In Supervisory Control [20], a supervisor is a Discrete-event system (DES)2 that controls
an other DES (the model represented as a Petri net in our case), called the plant. The compo-
sition of supervisor and plant is called the closed loop. The goal of the supervisor is to ensure
that some plant requirements are satisfied. In our case, these requirements concern about the
precision, and the avoidance of precision discrepancies between the model and the log. A su-
pervisor restricts the Petri net plant by restricting the set of enabled transitions. This is done

2Systems with dynamics driven by the occurrence of events, such as Petri nets and automatons.
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dynamically, based on the execution of events observed in the plant. Fig. 7.8 shows a diagram
of the Supervisory Control Architecture.

Figure 7.8: Architecture of Supervisory Control

Following with the previous example, we use the Supervisory Control framework to derive a
supervisor for controlling the precision, without losing fitness. In this case, the supervisor will
be a Petri net too. Fig. 7.9(a). shows a possible supervisor, designed to control the precision
problem pointed by the only minimal disconformant trace (SC). Fig. 7.9(b) shows the closed
loop, once the plant and the supervisor has been composed. The conformance analysis applied
to the new refined model determines that both precision and fitness are perfect, i.e., the model
describes precisely the log without loosing fitness.

(a) Supervisor (b) Closed Loop

Figure 7.9: Example of Supervisory Control Refinement. Fig. (a) shows a possible supervisor, and
Fig. (b) shows the closed loop, once the supervisor and the plant has been composed.

The example show above is a simple example with only one minimal disconformant trace,
used to illustrate and motivate the application of Supervisory Control strategies. However, in
real case scenarios, the number of minimal disconformant traces could be huge, being difficult
to use them directly to generate the supervisors. For that reason, could be necessary some pre-
processing of the MDTs, abstracting and deriving some rules pointing out the precision issue
we want to solve (e.g., the extra behavior generated by an specific loop), and then generating a
supervisory to cover these rules. Fig. 7.10 illustrates this scenario. An example of this kind of
situations could be the extra behavior allowed by a loop in the model, and not reflected in the
log. This extra behavior of the loop would be reflected in a large number of MDTs. Abstracting
from the MDT we can derive a rule focus on the loop, and cover this rule with a supervisor
that controls the loop.

The Supervisory Control Theory [20] is a wide area, where a lot has been accomplished
already. Different techniques has been used for deriving supervisors, e.g., the use of the Theory
of Regions for generate Petri net supervisors, presented in [40]. Supervisory Control has been
applied for a lot of purposes, e.g., the prevention of deadlock for flexible manufacturing systems
[40]. It has also been applied in the Process Mining area, e.g., in [36] the authors propose a
supervisory control service architecture to support end users of flexible Process-Aware Informa-
tion Systems during process execution. Therefore, the application of Supervisory Control for
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Figure 7.10: Scenario for the use of MDT in the Supervisory Control Refinement process.

Process Refinement requires a whole complete research study, and consequently, this section
should be seen as the first stone of the process, pointing out the direction for future research
work efforts.

59



7. Process Refinement Approach

60



8
Case Study

This chapter presents a complete case study, i.e., a complete and real-like example illustrating
the application of the procedures and approaches presented in this thesis.

In this case study we analyze the process called Application. This process correspond to the
process of handing in an application form in a university context. The application procedure
can be done on-line or in person. In addition, there are incidences than need to be solve before
continue with the application procedure.

The university uses a software product to manage the application process. In order to
control processes, this software requires a control-flow model (a Petri net in this case) of each
process describing the possible paths it can take. This flow information is used to enable or
disable possible actions in the software according to the actual situation of the application
process, reducing errors and time, and facilitating the work of the university staff.

Our objective, shown in this case study, is to check the precision of the model used by the
software with respect to the application process. In case of not been precise enough, we are
interested in refining the model in order to obtain a more accurate model.

In order to perform the conformance checking, first we need a realistic reflex of the process.
As in all Process Mining techniques, we use the Event Logs as an unbiased and accurate
representation of the process. In this case, the software used by the university to control
the application process registers any event or action happened in the system related with the
process. The list of events that can be appear in the logs is the followings: New Application,
Submission in Person, On-lin Submission, Open Incidence, Send Notification, Edit Profile,
Register Incidence, Close Incidence, View Profile, and Close Application.

The next step in order to perform a conformance analysis is to map the events in the log and
the transitions in the Petri net model. The mapping in this case is is quite straightforward (cf.
Fig. 8.1). There is only two remarkable situations. The first one is that the action View Profile
is a Non Modeled Task, i.e, it represents an action that can be done in any moment without
affecting any aspect of the process, and therefore it does not correspond with a step of the
application procedure. For that reason the log is pre-processed, removing all the occurrences
of that event. The second remarkable situation concerns about the application done in person.
When a student choose this option, the application must be signed in person, in front of the
university staff. This step is not detected by the system, because is done manually. However,
given that the signing is compulsory, the model must include this step. This is done defining
the action as an Invisible Task. The model, the log, and the mapping between them can be
seen in Fig. 8.1.
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(a) Model (b) Log

Figure 8.1: Model and Log of the Case Study, and the Mapping between them.

Once the mapping between model and log is done, the next step is to begin the conformance
analysis. The first thing to be check is the fitness. In this case, there is complete fitness between
log and model, i.e., the model is able to reproduce any trace in the log. This result is expected
given that the software uses the model in order to enable or disable possible actions, and
consequently, the order of the events in the log is strong tied with respect to the model.

After ensuring the fitness of the system, we continue with the precision conformance analysis.
This step is perform using the approach presented in Sec. 4. Figure 8.2(a) shows the details of
the log-based traversal of the model behavior.

After performing the conformance analysis, we obtain two results. The first one is the value
of the ETC Precision metric. In this case, the value returned is 0.83, indicating a high precision
level of the model, but not completely. The second result is the set of Minimal Disconformant
Traces locating where are the precision problems. In this case, there are three MDTs (cf.
Fig. 8.2(b)) pointing directly to the three Escaping Edges in the system. Analyzing the set of
MDT we realize that all the precision issues are produced by the management of incidences in
the application procedure. In particular:

• The Minimal Disconformant Traces "ADEGFHD" refers to the possibility of detecting
several incidences in the same application. This is a behavior allowed by the model but not
reflected in the log. However, after consulting with an expert in the application domain,
we decide that this is a possibility that must exist: the absence of several incidences can
be result of a excellent work of the university staff, but there is no guarantee that this
situation does not occur in the future.

• The other two MDT refer to the part of the application process where the incidence is
managed. It seems this part is not accurate with the reality, and we decide to refine the
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(a) Traversal Details (b) MDT

Figure 8.2: Details of the Log-Based Traversal of the Case Study Model Behavior.This Figure include
also the MDT detected during the precision analysis.

model to improve the precision.

The approach used to refine the precision of the model is the Breaking Concurrencies tech-
nique, seen in Section 7.1. The first step of this technique is to compute the log and the
model relations in order to decide the possible concurrencies to break. Fig. 8.3 shows the Firing
Causality Matrix for the log perspective. For the model perspective, we detect the concurrencies
E-G and F-G.

Figure 8.3: Firing Causality Matrix for the log in Case Study.

After analyzing the possible concurrencies to be broken, we decide not to tackle the F-
G concurrency. This concurrent behavior is not reflected in the log. However, this is not
produced for not being concurrent steps in the process, but for the time needed to perform each
task. Edit Profile is a time-consuming task that require the participation of a university staff
person to correct the profile. On the other hand, the task Send Notification is an instantaneous
action performed in background by the own software. Therefore, it is compressible not to find
concurrency between both tasks, but they should be done concurrently because there is no
relation between the notification and the profile editing.

Hence, we decide to tackle the F-G concurrency, allowed by the model but not reflected in
the log. To do that, we introduce a new place from G to F, as it is shown in Fig. 8.4(a). After
checking the conformance of the new model, we realize that the precision has improved (the

63



8. Case Study

etcP value of the new model is 0.89), and therefore there are less MDT (the trace ADEF is no
longer in the set). Thus, we decide to choose the new model instead of the old one.

(a) Refined Model (b) Final Model

Figure 8.4: Refined and Final Model of the Case Study. Figure (a) shows the refined model, after
breaking the concurrency between F and G. Figure (b) shows the post-processed version of the refined
model after removing the redundant place between G and H.

Finally, after finishing the refinement process, we decide to post-process the model in order
to remove the redundant place between G and H. The final refined model can be seen in
Fig. 8.4(b).

This new model describes more precisely than the old one the process Application. Moreover,
the precison issues has been analyzed during the precision conformance procedure, and all them
correspond to accepted generalizations of the model.
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9
Conclusions and Future Work

This work presents an approach to analysis the conformance between a model and a log.
In particular, the approach presented is addressed to check the precision of a Petri net
with respect to a log. The technique is based on the effort needed to obtain a completely
precise model as an estimator for precision. By only focusing on the underlying behavior of
the Petri net that is reflected in the log, the technique avoids the potential state explosion
that might arise when dealing with large and highly concurrent nets.

The technique provides a metric, called ETC Precision (etcP ), to quantify the degree
of precision. The technique is also enriched with the computation of the Minimal Dis-
conformant Traces (MDT), a set of traces used to identify the exact points where the
model behavior begins to deviate from de log behaviors, denoting a precision problem.
The Minimal Disconformant Traces may be also the starting point for refine the model
to better represent the log.

The precision analysis approach has been implemented as a plug-in within ProM 6, a open-
source framework for implementing process mining tools in a standard environment. This
implementation has been used to perform precision analysis in a wide set of benchmarks,
obtaining promising experimental results, especially for large benchmarks (intractable by
the current approaches).

Together with the conformance approach, this thesis has included approaches for the
refinement of models, in order to achieve a more accurate model of the reality. These
techniques are especially focus on fixing the precision issues of the model, using the
precision analysis results obtained by the conformance approach presented in this thesis.

One technique presented for refining precision, called Breaking Concurrencies, addresses
the problem of the precision issues produced by concurrencies in the model allowing a be-
havior not reflected in the log. The approach presented tries to locate these concurrencies
and break them, introducing a new constraint to restrict this extra behavior, improving
the precision.

Finally, this thesis has proposed the use of the Supervisory Control Theory as a mechanism
to correct and refine conformance problems. In particular, this work propose the use of the
Minimal Disconformance Traces obtained in the precision analysis, in order to refine the
precision of the model. The application of Supervisory Control seems to be a promising
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area for process refinement, addressing the problem in a more global way, and being
able to detect and correct problems than other approach cannot. For that reason, the
future efforts should be focus on this direction, studying and elaborating techniques to
build supervisors for controlling the precision of a model, but also other conformance
dimensions.
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