Mesures de regularitat per a polígons convexos

Projecte Final de Carrera

Enginyeria en Informàtica

Facultat d'Informàtica de Barcelona

Universitat Politècnica de Catalunya

Alumne: Ramon Chalmeta Ugas Directora: Vera Sacristán Adinolfi Departament: Matemàtica Aplicada II Data: Juny de 2010

AGRAÏMENTS

En primer lloc, m'agradaria agrair profundament a la meva directora la Vera Sacristán per haver-me donat l'oportunitat de desenvolupar aquest projecte, permetent-me, així, treballar amb ella, la qual cosa m'ha dut a aprendre infinitat de coses de temes molt diversos inimaginables per mi al iniciar el projecte. A més, li vull agrair molt especialment la seva dedicació, paciència i entusiasme durant tot el desenvolupament del projecte i la seva predisposició en tot moment per ajudar-me en allò que necessités.

En segon lloc, vull agrair a la Maria Saumell perquè sense la seva tesis de Master aquest projecte no hauria existit. Així mateix, també vull agrair-li la seva predisposició, des del primer dia, a resoldre'm qualsevol dubte sobre els seus algoritmes i tota la feina realitzada, previa al meu projecte. A més, vull agrair la seva total col·laboració en la part de normalitzacions de les mesures, així com la de'n Ferran Hurtado, el qual en aquest apartat ens ajudat aportant els seus coneixements allà on els nostres no arribaven.

No puc deixar d'agrair a tota la meva família el suport que m'han donat en tots els aspectes, no només durant el projecte sinó durant tot el meu període de formació, el qual m'ha permès poder arribar a completar aquest projecte. A més, els he d'agrair la paciència que han tingut durant tot el període del projecte per no tenir-me en compte els meus aïllaments quan algun aspecte del projecte no tirava endavant i el meu cap sols donava voltes sobre aquell problema.

Finalment, vull agrair als meus companys d'universitat Christian Amenós, Rubén Codina i David Rojo per haver-me aconsellat en aspectes tècnics quan els ho he requerit i perquè en nombroses ocasions m'han deixat disposar del seu temps per explicar-los algun problema del projecte. Molts cops, aquesta reflexió en veu alta m'ha permès veure la solució al problema.

Índex

1	Intr	oducció	1
	1.1	Antecedents i motivació	1
	1.2	Tasques dutes a termes en aquest projecte	5
2	Des	cripció dels algoritmes	7
	2.1	Mesura 1: Relació àrea/perímetre $\ldots \ldots \ldots \ldots \ldots \ldots$	8
	2.2	Mesura 2: Minimització del desplaçament màxim	9
	2.3	Mesura 3: Minimització de la suma dels desplaçaments $\ \ . \ .$	13
	2.4	Mesura 4: Distància a la representació $2n$ -dimensional	14
	2.5	Mesura 5: Circumscripció per un polígon regular	14
	2.6	Mesura 6: Inscripció per un polígon regular	15
	2.7	Mesura 7: Relació inscrit/circumscrit	16
	2.8	Mesura 8: Minimització de la porció angular més petita	16
	2.9	Mesura 9: Maximització de la porció angular més gran	19
	2.10	Mesura 10: Maximització de la diferència entre porcions an-	
		gulars	19
	2.11	Mesura 11: Minimització del triangle més gran	20
	2.12	Mesura 12: Maximització del triangle més petit	21
	2.13	Mesura 13: Minimització de la diferència entre triangles	22
	2.14	Conclusions	22
3	Nor	malització de les mesures	25
	3.1	Mesura 1: Relació àrea/perímetre $\ldots \ldots \ldots \ldots \ldots$	26
	3.2	Mesura 2: Minimització del desplaçament màxim	27
	3.3	Mesura 3: Minimització de la suma de desplaçaments	30
	3.4	Mesura 4: Distància a la representació 2n-dimensional	31
	3.5	Mesura 5: Circumscripció per un polígon regular	33
	3.6	Mesura 6: Inscripció per un polígon regular	34
	3.7	Mesura 7: Relació inscrti/circumscrit	35
	3.8	Mesura 8: Minimització de la porció angular més petita	37
	3.9	Mesura 9: Maximització de la porció angular més gran	38
	3.10	Mesura 10: Maximització de la diferència entre porcions an-	
		gulars	39

	3.11	Mesura 11: Minimització del triangle més gran 40						
	3.12	Mesura 12: Maximització del triangle més petit 42						
	3.13	Mesura 13: Minimització de la diferència entre triangles \ldots 43						
	3.14	Conclusions						
4	Diss	seny del software 45						
	4.1	Arquitectura del sistema						
		4.1.1 Capa de presentació						
		4.1.2 Capa de domini						
		4.1.3 Capa de dades						
		4.1.4 Controladors						
	4.2	Tecnologia						
5	Ma	nual d'usuari 63						
	5.1	Vista General						
	5.2	Inserir polígon						
		5.2.1 Per ratolí						
		5.2.2 Per fitxer						
	5.3	Visualitzar mesures						
	5.4	Modificar el polígon						
		5.4.1 Moure vèrtex						
		5.4.2 Inserir vèrtex \ldots 70						
		5.4.3 Suprimir vèrtex						
	5.5	Modes d'interacció						
		5.5.1 Nou polígon						
		5.5.2 Zoom						
		5.5.3 Pan						
		5.5.4 Modificar polígon $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 74$						
	5.6	Altres interaccions						
		5.6.1 Desfer/Refer $\ldots \ldots 75$						
		5.6.2 Configurar costats μ_5 , μ_6 i μ_7						
		5.6.3 Nou polígon						
		5.6.4 Desar polígon $\dots \dots \dots$						
6	Experimentació 79							
	6.1	Disseny dels experiments						
	6.2	Construcció dels experiments						
	6.3	Anàlisi dels experiments						
		6.3.1 Comportament de les mesures						
		6.3.2 Experiments amb nombre de costats diferent 91						
	6.4	Conclusions						

iv

ÍNDEX

7 Gestió del projecte					
	7.1	Paràmetres del projecte	93		
	7.2	Abast del projecte	94		
	7.3	Riscos del projecte	94		
	7.4	Planificació del projecte	96		
	7.5	Pressupost del projecte	98		
8	8 Conclusions				
Bibliografia 1					
A	A Format dels fitxers de sortida/entrada				
В	Resultats dels experiments				
\mathbf{C}	C Resultats dels experiments μ_5 , μ_6 i μ_7				

v

ÍNDEX

vi

Capítol 1

Introducció

1.1 Antecedents i motivació

Un tema que ha estat d'ampli interès al llarg de la historia de la humanitat ha estat sens dubte els polígons regulars. Són diversos els fets i documents que podríem ressaltar, per exemple ja apareix un mètode per a la construcció del pentàgon regular amb regle i compàs en els Elements d'Euclides, obra que fou escrita al voltant de l'any 300aC. També podríem referir-nos a Gauss, que estigué tan orgullós d'haver trobat la construcció del polígon regular de disset costats que va demanar que fos gravada a la seva tomba. Probablement aquest interès per als polígons regulars ha estat degut a que aquests es poden observar en molts àmbits de la natura. Per exemple, dins l'àmbit animal podem observar multiples formes de polígons regulars (Figura 1.1), també podem observar que les formes regulars es poden manifestar dins l'àmbit vegetal (Figura 1.2) i fins i tot, dins l'àmbit mineral podem destacar-ne les formes geomètriques que es creen (Figura 1.3).

Figura 1.1: Esquerra: estrella de mar pentagonal. Dreta: Rusc d'abelles de formes hexagonals.

Aquest l'interès sobre polígons equilàters i equiangles ha portat als humans a utilitzar les formes regulars en diversos objectes de la vida quotidiana: senyals de trànsit (Figura 1.4), mobiliari (Figura 1.5), gots (Figura 1.6), productes alimentaris(Figura 1.7), objectes quotidians (Figura 1.8), monedes

Figura 1.2: Esquerra: poma tallada horitzontalment, on es reflexa la forma pentagonal en la distribució de les llavors. Dreta: flor Caltha de forma pentagonal.

Figura 1.3: Esquerra: columnes hexagonals de basalt que es formen durant el refredament de la lava. Dreta: cristalls de quars amb formes de prismes de base regular.

(Figura 1.9)... Fins i tot les formes regulars han estat utilitzades com elements decoratius en l'arquitectura (Figura 1.10) o en la manera de dissenyar els edificis (Figura 1.11). Per aquest motiu, en els darrers anys s'han desenvolupat diferents mètodes (vegeu-ne algun a [1] i [2]) amb l'objectiu de detectar polígons regulars en diferents imatges (per exemple, un senyal de perill en una panoràmica d'una carretera). El que es va plantejar la Maria Saumell (veieu [3] i també [4]) va ser, no obstant, diferent: donat un polígon convex qualsevol, va voler associar-hi paràmetres que li permetessin saber si aquest polígon té una forma semblant a la d'algun polígon regular, és a dir, si és molt o poc regular.

L'objectiu del projecte que hem dut a terme és fer un pas més i portar la teoria a la pràctica, és a dir, implementar les mesures descrites per la Maria Saumell per així poder verificar-les, així com concloure quines mesures són més eficients per diferents tipus de polígons convexos.

A més de l'interès de completar la tasca realitzada per la Maria Saumell hi ha, si més no, tres possibles àmbits d'aplicació d'aquesta investigació, que són la metrologia, l'automàtica i la generació de malles en el mètode dels

Figura 1.4: Esquerra: Senyal de STOP octogonal. Dreta: Senyal de perill triangular.

Figura 1.5: Esquerra: una taula hexagonal. Dreta: una làmapara pentagonal.

Figura 1.6: Esquerra: Un got amb la base hexagonal. Dreta: Un got amb un enneagon com a base.

elements finits. La metrologia estudia, entre d'altres coses, les mides dels objectes. Sovint es fabriquen peces mecàniques que passen un control de qualitat que consisteix a verificar que no es desvien massa d'allò desitjable a través de la comprovació que compleixen certes propietats; si el que es pretén és que aquestes peces siguin gairebé regulars, les mesures que proposem poden ser tests per al seu control de qualitat. Pel que fa l'automàtica, ja hem esmentat abans la problemàtica de la detecció de polígons regulars en objectes i escenes. Finalment, en el mètode dels elements finits es fan discretitzacions del domini del problema i es calculen integrals sobre cada

Figura 1.7: Esquerra: Un pastís en forma hexagonal. Dreta: caixa de xocolatines en forma hexagonal.

Figura 1.8: Esquerra: Joc d'eines amb diverses formes regulars. Dreta: Rellotge de cuina piramidal amb base quadrada.

Figura 1.9: Monedes en forma heptagonal.

regió. Com que aquestes integrals es fan per quadratures, prèviament es realitza una transformació isoperimètrica per passar de la regió original a un polígon regular del mateix nombre de costats, i aquesta transformació es deteriora si els dos polígons tenen formes molt diferents. És clar, doncs, que les nostres mesures de regularitat poden esdevenir una eina útil per al càlcul d'índexs de qualitat per a les malles.

Figura 1.10: Disseny d'un element decoratiu compost d'un hexàgon central envoltat de quadrats, triangles equilàters, i rombes.

Figura 1.11: Edifici del Departament de Defensa dels Estats Units d'Amèrica, conegut com Pentàgon.

1.2 Tasques dutes a termes en aquest projecte

La Maria Saumell a [3] va centrar el seu estudi en tres blocs. Un primer bloc on va estudiar mesures que analitzen la regularitat dels polígons atenent a les longituds dels seus costats i les amplituds dels seus angles. Un segons bloc on l'estudi es va centrar en mesures que comparen els polígons donats amb els polígons regulars inscrit i circumscrit més ajustats. Finalment, el darrer bloc es va centrar en mesures que analitzen la regularitat dels polígons en funció de la seva simetria radial.

Amb l'objectiu principal de portar a una fase experimental els algoritmes descrits a [3] s'ha dut a terme la implementació d'aquests algorismes. Per a cada un dels algoritmes s'ha fet una elecció de la millor alternativa per dur a terme la implementació, tenint en compte que l'objectiu principal era poder experimentar amb tots ells i, per tant, era necessari obtenir resultats vàlids per tal de poder extreure conclusions fiables sobre els resultats. Els algoritmes i la seva implementació es descriuen al Capítol 2 d'aquesta memòria.

Amb la finalitat de poder disposar de mesures amb les quals podem saber com de regulars són els polígons i amb les quals es pugin comparar els diferents algorismes, i per tant, poder extreure conclusions comparatives entre les diferents mesures, s'ha dut a terme un tasca teòrica recollida en el Capítol 3 que ha consistit en obtenir, a partir dels càlculs dels algoritmes, unes mesures de regularitat normalitzades. Aquesta tasca s'ha considerat de gran importància degut a que, tot i disposar d'uns algoritmes satisfactoris, si la manera de realitzar l'avaluació de la mesura no és apropiada es poden convertir els algoritmes en totalment inoperatius.

En el Capítol 4 es descriu com s'ha desenvolupat el software (inclòs en el CD adjunt aquesta memòria) per tal de dur a terme les experimentacions de les mesures. El software s'ha dissenyat amb una arquitectura de tres capes en el qual s'ha desenvolupat una interfície encarada a ser intuïtiva, fàcil d'utilitzar i orientada a poder visualitzar els resultats fàcilment. A més, s'ha facilitat la introducció dels polígons avaluar i l'obtenció dels resultats de les mesures. El Capítol 5 conté un manual d'usuari per tal de que qualsevol usuari sàpiga com realitzar totes les funcionalitats del software dutes a terme.

Per tal de complir els objectius principals del projecte s'ha dut a terme un ampli conjunt d'experiments de diferents tipologies, els quals es detallant en el Capítol 6. Els resultats experimentals es recullen als Annexos B i C.

En el Capítol 7 hem descrit com vam caracteritzar i planificar el projecte, al seu inici, i fins a quin punt les previsions realitzades van estar encertades o no i com hem gestionat els imprevistos al llarg del desenvolupament del projecte per tal de complir els objectius proposats.

Finalment, en el Capítol 8 s'hi exposen les conclusions extretes sobre el treball dut a terme.

La memoria es completa amb referències bibliogràfiques i un annex on es mostra un model de fitxer d'entrada/sortida de dades de l'aplicació.

Capítol 2

Descripció dels algoritmes

En aquest capítol es descriuen les diverses mesures de regularitat implementades en aquest projecte. Per a cadascuna d'elles, s'exposen de manera molt esquemàtica les qüestions més teòriques, ja que aquestes es troben estudiades amb detall a [3], i la discussió es centra en les qüestions d'implementació.

En total hem implementat tretze mesures, basades en les diverses propietats que caracteritzen els polígons regulars i els diferencien de la resta de polígons convexos. Aquestes característiques de la regularitat són de diversa naturalesa. En primer lloc, es troben les mesures que analitzen la regularitat dels polígons atenent a les longituds dels seus costats i les amplituds dels seus angles. En segon lloc, hi tenim les mesures que comparen els polígons donats amb els polígons regulars inscrit i circumscrit més ajustats. Finalment, considerem les mesures que analitzen la regularitat dels polígons en funció de la seva simetria radial.

En el primer bloc d'algorismes, l'objectiu és mesurar fins a quin punt les longituds dels costats i les amplituds dels angles del polígon corresponen a les d'un polígon regular (és a dir, són iguals). Amb aquesta finalitat, hem implementat quatre mesures diferents.

Una propietat que caracteritza els polígons regulars en termes de les longituds dels seus costats és la relació de la suma d'aquests (perímetre) amb l'àrea del polígon. La mesura 1 explota aquesta característica.

Les mesures 2 i 3 estan íntimament relacionades. Consisteixen a deformar primer els angles del polígon, sense modificar-ne les longituds dels costats, fins a situar tots els seus vèrtexs a una circumferència. A continuació, es modifiquen les posicions dels vèrtexs al llarg de la circumferència, fins a formar un polígon regular. Es tracta, aleshores, de mesurar quina és la deformació mínima necessària per a dur a terme aquest procés. Pel que fa a la primera fase, la solució és única: existeix una única circumferència en la qual inscriure un polígon si la seqüència de les longituds dels seus costats està donada [3]. Pel que fa a la segona fase, la minimització del desplaçament angular dels vèrtexs al llarg de la circumferència es pot plantejar en termes de minimització del desplaçament màxim (mesura 2) o en termes de minimització de la suma de desplaçaments (mesura 3).

Finalment, la mesura 4 calcula fins a quin punt les longituds dels costats i l'amplitud dels angles d'un *n*-gon disten de ser regulars en termes de distància en un espai 2n-dimensional, on cada *n*-gon es representa per un punt $\left(\frac{l_1}{\sum_{i=1}^{n} l_i}, \ldots, \frac{l_n}{\sum_{i=1}^{n} l_i}, \alpha_1, \ldots, \alpha_n\right)$ i els *n*-gons regulars formen la recta $x_1 = \cdots = x_n, \alpha_1 = \cdots = \alpha_n = \pi - 2\pi/n.$

En el segon bloc de mesures, l'objectiu és comparar el polígon donat, P, amb els polígons regulars inscrit i circumscrit més ajustats, és a dir, amb el polígon regular inscrit a P més gran i el polígon regular circumscrit a P més petit. Les mesures 5, 6 i 7 comparen les mides (àrees o radis, segons resulta més adient en cada cas) dels polígons resultants.

Finalment, el tercer bloc de mesures estudia la simetria radial dels polígons per a avaluar-ne la regularitat. En primer lloc s'analitza la millor descomposició angular del polígon en porcions equiangulars. Per això, s'utilitza el baricentre del polígon i l'objectiu és obtenir porcions tan diferents com sigui possible. Això es pot aconseguir de diverses maneres: la mesura 8 minimitza l'àrea de la porció més petita, la mesura 9 maximitza l'àrea de la porció més gran i la mesura 10 maximitza la diferència entre les porcions d'àrea més gran i més petita. En segon lloc, s'estudia l'existència d'un centre de simetria del polígon o, més exactament, es calcula el punt del polígon que equilibra tant com sigui possible les àrees dels triangles que forma amb els costats del polígon. De nou, es consideren tres formes d'optimtzació: la mesura 11 minimitza el triangle més gran, la mesura 12 maximitza el més petit i la mesura 13 minimitza la diferència entre el més gran i el més petit.

Totes aquestes mesures van ser proposades per M. Saumell a la seva tesi de màster [3], on descriu detalladament els algoritmes per a calcular-les, en demostra la correcció i n'estudia la complexitat asimptòtica, tot oferint, en molts dels casos, estratègies alternatives o millorant la complexitat dels algoritmes quan és possible. En aquesta memòria, ens limitem a descriure cada algoritme breument (remetem el lector a [3] si està interessat en conèixer més detalls de caràcter teòric) i ens concentrem en descriure les qüestions relatives a la seva implementació, objecte d'aquest treball.

La resta d'aquest capítol està estructurada en tretze apartats, cada un dels quals es dedica a una de les mesures.

2.1 Mesura 1: Relació àrea/perímetre

La mesura 1 té com objectiu esbrinar la relació entre l'àrea i el perímetre del polígon i les d'un polígon regular del mateix nombre de costats. Més concretament, com es proposa a [3], es comparen l'àrea del polígon P i l'àrea del polígon regular R que comparteix amb P el nombre de costats i el perímetre. És sabut que, de tots els n-gons de mateix perímetre, el regular és el

que maximitza l'àrea. Per això el quocient anterior es contempla com una possible mesura de la regularitat del polígon P. Convé destacar aquí que es podien haver utilitzat altres relacions anàlogues, com per exemple, la relació entre els perímetres de P i R de la mateixa àrea, o la relació entre els radis dels polígons regulars que comparteixen àrea i perímetre amb P respectivament. Ara bé, hem pogut demostrar que aquestes mesures alternatives coincideixen amb la primera, que hem optat per implementar.

En aquest algorisme el primer pas consisteix a calcular el perímetre i l'àrea de P. Un cop conegut el perímetre l, i donat que P i R comparteixen nombre de costats, podem calcular la longitud del costat de R $(l_R = \frac{l}{n})$. Finalment, hem de calcular l'àrea de R, que queda determinada per les longituds dels costats i el nombre de costats del polígon, concretament $area_R = \frac{l_R^2 n}{\tan(\pi/n)}$.

2.2 Mesura 2: Minimització del desplaçament màxim

Aquesta mesura té per objectiu establir fins a quin punt les longituds dels costats i les amplituds dels angles del polígon corresponen a les d'un polígon regular, és a dir, són iguals. El procediment consisteix a deformar primer els angles del polígon, sense modificar-ne les longituds dels costats, fins a situar tots els seus vèrtexs a una circumferència. A continuació, s'alteren les posicions dels vèrtexs al llarg de la circumferència, fins assolir la posició regular. Es tracta, en aquest cas, de fer-ho de manera que es minimitzi el desplaçament màxim.

En la primera fase, donat el polígon P, el problema consisteix a cercar el polígon P' inscrit a una circumferència i amb la mateixa seqüència de longituds dels costats.

Tal com es demostra a [3], P' sempre existeix i és únic, i el radi de la circumferència en què s'inscriu es calcula de manera diferent segons si P' conté o no el centre de la circumferència al seu interior. Aquest fet queda caracteritzat en funció de les longituds dels costats de la manera següent. El centre de la circumferència és interior al polígon P' si, i només si, $\sum_{i=1}^{n} 2 \arcsin \frac{l_i}{l_1} \ge 2\pi$. En aquest cas, el radi de la circumferència, r, és l'única solució de l'equació $\sum_{i=1}^{n} 2 \arcsin \frac{l_i}{2r} = 2\pi$, on l_1, \ldots, l_n són les longituds dels costats i la longitud l_1 és la longitud del costat més llarg de P. Altrament, és l'única solució de l'equació $\sum_{i=1}^{n} 2 \arcsin \frac{l_i}{2r} = \arctan \frac{l_i}{2r}$. En aquest $\sum_{i=1}^{n} 2 \arcsin \frac{l_i}{2r} = 1$

$$\max\left(\frac{l_1}{2}, \frac{\sum_{i=1}^n l_i/2n}{\sin(\pi/n)}\right) \le r \le \frac{\sum_{i=1}^n l_i}{4}$$

. En el segon,

$$\max\left(\frac{l_1}{2}, \frac{\sum_{i=1}^n l_i/2n}{\sin(\pi/n)}\right) \le r$$

Un cop hem distingit el tipus d'inscripció de P', s'ha de resoldre l'equació pertinent per trobar el radi. Per resoldre l'equació, ja sigui en un cas o en l'altre, hem utilitzat el mètode de la bisecció. Per aplicar aquest mètode es necessita disposar de fites superior i inferior del radi, fet garantit en el primer cas però no en el segon. Per trobar aquesta segona fita hem aplicat un procediment iteratiu, iniciant la cerca en la fita inferior i multiplicant successivament per dos el candidat a fita superior, fins a trobar un candidat de diferent signe que la fita inferior, el qual ens serveix de fita superior. Aquest procés fa créixer el candidat a fita superior de forma exponencial, de manera que o bé es troba la fita o bé s'acaba la capacitat dels nombres en temps raonable. Un cop calculades les fites, el mètode de la bisecció consisteix a avaluar la funció al punt mig de l'interval per així reduir-lo a la meitat a cada iteració. En la nostra implementació, l'algoritme acaba quan tenim un error tolerable, que hem establert com a 10^{-10} , o un total de 10000 iteracions.

Una opció per accelerar la cerca del radi és la utilització del mètode de Newton [5]. El mètode de Newton presenta unes condicions que s'han de complir perquè sigui un mètode eficient. En concret són tres punts de conflicte que afecten en aquest cas: on iniciar la cerca, quan finalitza la cerca i finalment que existeixi i sigui calculable la derivada en l'interval de cerca. El primer el solucionem perquè en ambdós casos tenim fites, i per tant, podem iniciar la cerca dins l'interval de solució. El segon punt el solucionem com en el cas de la bisecció fixant una tolerància i un nombre d'iteracions màxim. Finalment, el darrer punt és el que no té solució, i per tant, fa el mètode no adient. Concretament el problema recau en què hi ha punts on l'expressió de la derivada conté l'arrel d'un nombre negatiu per tant, no té una solució real. Tanmateix, en totes les execucions del programa que hem dut a terme hem pogut constatar que el mètode de la bisecció troba sempre la solució amb prou exactitud i en un temps inapreciable.

Un cop trobat el radi de la circumferència que permet inscriure P', el pas següent consisteix a calcular els vèrtexs del polígon P'. Comencem fixant un primer vèrtex a partir del qual calculem els restants. Per fixar el primer vèrtex, centrem la circumferència de radi r en l'origen de coordenades i el primer vèrtex en el punt (r, 0). A partir d'aquest primer vèrtex els vèrtexs restants es calculen amb la utilització de les funcions sinus i cosinus de l'angle que es forma entre dos vèrtexs consecutius i el centre de la circumferència. Concretament, cada vèrtex de P' es calcula com $p_i = (r \cos(\alpha_i + \alpha_{i+1}), r \sin(\alpha_i + \alpha_{i+1}))$, on el cosinus i el sinus es calculen a partir de les longituds dels costats, les quals són conegudes, concretament sin $\alpha_i = \frac{l_i/2}{r}$ i cos $\alpha_i = \sqrt{1 - \sin^2 \alpha_i}$.

10

A la mateixa circumferència del polígon P' hi hem d'inscriure el polígon regular R del mateix nombre de costats que P. El vèrtexs del polígon R també es calculen utilitzant les funcions sinus i cosinus entre dos vèrtexs consecutius i el centre de la circumferència. Concretament cada vèrtex de R es calcula com $r_i = (r \cos ((i-1)\frac{2\pi}{n}), r \sin ((i-1)\frac{2\pi}{n})).$

D'aquesta manera hem solucionat la primera fase de l'algoritme i coneixem els polígons P' i R, així com el radi de la circumferència circumscrita. En la segona fase de l'algoritme el problema que se'ns planteja és cercar la posició que minimitza el desplaçament màxim entre els vèrtexs més llunyans angularment de P' i R.

Tal com es demostra a [3], la funció distància angular d_1 entre el parell de vèrtexs corresponents p_1 de P' i r_1 de R, és

$$d_1(t) = \begin{cases} t, & t \in [0,\pi];\\ 2\pi - t, & t \in [\pi, 2\pi]. \end{cases}$$

El paràmetre t indica la posició (angular) de P' a la circumferència. Anàlogament la funció d_i , distància angular entre els vèrtexs p_i i r_i , pot adoptar tres expressions diferents en funció de la posició relativa dels vèrtexs p_i i r_i . Concretament:

1. Si r_i coincideix amb p_i ,

$$d_i(t) = \begin{cases} t, & t \in [0, \pi]; \\ 2\pi - t, & t \in [\pi, 2\pi]. \end{cases}$$

2. Si p_i està avançat en sentit horari respecte r_i en un angle α ,

$$d_i(t) = \begin{cases} \alpha - t, & t \in [0, \alpha];\\ t - \alpha, & t \in [\alpha, \pi + \alpha];\\ 2\pi - (t - \alpha), & t \in [\pi + \alpha, 2\pi]. \end{cases}$$

3. Si p_i està endarrerit en sentit horari respecte r_i en un angle α ,

$$d_{i}(t) = \begin{cases} t + \alpha, & t \in [0, \pi - \alpha]; \\ 2\pi - (t + \alpha), & t \in [\pi - \alpha, 2\pi - \alpha]; \\ t - 2\pi + \alpha, & t \in [2\pi - \alpha, 2\pi]. \end{cases}$$

El pas següent, doncs, és calcular les funcions i emmagatzemar-les d'una manera eficient. En primer lloc, hem de cercar la posició relativa inicial entre vèrtexs. Aquesta posició relativa es troba resolent el determinant format pel vèrtex r_1 , el centre de la circumferència i el vèrtex p_i , si el vèrtex p_i està en la semicercle superior de la circumferència, o el determinant format pel vèrtex r_1 , el vèrtex p_i i el centre de la circumferència, si el vèrtex p_i està en el semicercle inferior. En funció del signe del determinant sabem si està avançat, endarrerit o en la mateixa posició. Concretament, si el resultat del determinant és positiu el vèrtex r_i està avançat respecte el p_i , si és zero és que estan en la mateixa posició i, finalment, si és negatiu està endarrerit.

Un cop coneguda la posició relativa entre els parells de vèrtexs, sabem quina de funció tenen associada, i per tant, sols queda emmagatzemar la funció corresponent a cada parell de vèrtexs. En tractar-se de funcions lineals sols necessitem emmagatzemar els punts on hi ha un canvi de pendent de la poligonal, el punt inicial i el punt final. En concret, els punts a emmagatzemar en cada cas són:

- 1. Si r_i coincideix amb p_i , s'emmagatzemen $p_0 = (0,0), p_1 = (\pi,\pi)$ i $p_2 = (2\pi, 0).$
- 2. Si p_i està avançat respecte r_i en un angle α , s'emmagatzemen $p_0 = (0, \alpha), p_1 = (\alpha, 0), p_2 = (2\pi + \alpha, \pi)$ i $p_3 = (2\pi, \alpha)$.
- 3. Si p_i està endarrerit respecte r_i en un angle α , s'emmagatzemen $p_0 = (0, \alpha), p_1 = (\pi \alpha, \pi), p_2 = (2\pi \alpha, 0)$ i $p_3 = (2\pi, \alpha)$.

Un cop tenim les funcions que ens donen les distàncies entre vèrtexs en cada posició de P' a la circumferència, l'objectiu és trobar la posició que minimitza la distància màxima. Una manera de resoldre aquest problema, tal com es descriu a [3], consisteix a calcular el mínim de l'envolupant superior de totes les funcions d_i mitjançant un algoritme de dividir per vèncer, en temps $\Theta(n \log n)$.

En aquest algoritme la divisió no té cap requeriment especial: s'agrupen d'una banda la primera meitat de les funcions d_i , en l'ordre indicat pels subíndex, per exemple, i d'altra banda les funcions restants. La fusió es fa per escombrat, de 0 a 2π , de les dues poligonals. Els esdeveniments de l'escombrat són tots els punts emmagatzemats d'ambdues poligonals (coneguts a priori) i tots els punts de tall (que es van esbrinant a mesura que avança l'algoritme). Concretament en primera instància es determina quin dels dos vèrtexs inicials és el superior i es selecciona com a inicial de l'envolupant superior construïda fins al moment. A partir d'aquí es mira l'evolució definida pels segments actius de les funcions. En concret, es comprova si es tallen o no els segments actius i quin tipus de tall es produeix entre ells. En funció dels tipus de tall produïts s'activa el nou segment i s'afegeixen els punts corresponents a l'envolupant superior. Així és va procedint fins que s'ha acabat de recórrer una (o les dues) funcions i finalment es procedeix a afegir els punts restants en cas convenient.

Per calcular els talls hem implementat una funció que avalua la posició relativa entre dos segments, tenint en compte que les rectes avaluades són translacions unes de les altres i que, per tant, els segments tenen sempre els mateixos pendents. La seva posició relativa es determina mitjançant els quatre determinants dels vèrtexs formats per la combinació de dos vèrtexs d'un segment i un vèrtex de l'altre i, en el cas que hi hagin punts colineals queda definida per la posició relativa entre els vèrtexs. Un cop hem obtingut l'envolupant superior de totes les funcions d_i , els punts candidats a solució són els extrems i els punts de canvi de pendent, que justament són els que hem emmagatzemat. Per tant, s'ha de cercar entre tots aquests punts quin té l'ordenada mínima i aquest serà el punt que minimitza el desplaçament màxim entre vèrtexs de P' i R, entre totes les possibles posicions del polígon P' al llarg de la circumferència.

2.3 Mesura 3: Minimització de la suma dels desplaçaments

Tal com hem explicat en la introducció d'aquest capítol, les mesures 2 i 3 estan íntimament relacionades. Aquesta mesura, igual que la segona mesura, té per objectiu establir fins a quin punt les longituds dels costats i les amplituds dels angles del polígon corresponen a les d'un polígon regular, és a dir, són iguals. El procediment consisteixen a deformar primer els angles del polígon, sense modificar-ne les longituds dels costats, fins a situar tots els seus vèrtexs a una circumferència (igual que en la mesura 2). A continuació, s'alteren les posicions dels vèrtexs al llarg de la circumferència, acostant-se al màxim un polígon regular. Es tracta, en aquest cas, de fer-ho de manera que es minimitzi la suma de desplaçaments.

El problema que se'ns planteja en la primera fase d'aquest algoritme és el mateix que en l'algoritme de la mesura 2, i per tant, es resol procedint de la mateixa manera que hem explicat a la Secció 2.2.

En la segona fase de l'algoritme, es tracta de cercar la posició òptima al llarg de la circumferència de tal manera que es minimitzi la suma de distàncies angulars entre cada parell de vèrtexs corresponents de P' i R. Com en l'algoritme de la mesura 2, el primer pas és calcular les funcions que defineixen les distàncies entre vèrtexs, i aquest problema es resol procedint tal i com hem descrit en la Secció 2.2.

Un cop definides les funcions distància entre vèrtexs, es tracta de minimitzar la suma de desplaçaments. Aquest problema, tal com es descriu a [3], es resol calculant la funció suma de totes les funcions d_i i, llavors, calculant el seu mínim. De nou, el problema es pot resoldre en temps $\Theta(n \log n)$ utilitzant un algoritme de dividir per vèncer.

L'algorismes és anàleg al cas de la mesura 2: la divisió es fa trivialment i la fusió mitjançant un algoritme d'escombrat on els esdeveniments són els mateixos. En aquest cas, però, a cada esdeveniment cal sumar el valor de les dues funcions en lloc d'emmagatzemar el més gran.

Per últim, un cop tenim la funció suma hem de cercar el seu mínim. Per resoldre aquest problema avaluem els possibles candidats a solució que són, de nou, els punts inicial i final i els punts on es produeix un canvi de pendent (produït pel canvi de pendent de les funcions d_i o pel tall de dos segments) i entre aquests obtenim el que té ordenada més petita. En aquest punt tenim la posició que minimitza la suma de les distàncies entre tots els parells de vèrtexs de P' i R.

2.4 Mesura 4: Distància a la representació 2*n*-dimensional

La mesura 4, la darrera centrada en les longituds i els angles, calcula en quina mesura les longituds dels costats i l'amplitud dels angles d'un *n*-gon disten de ser regulars en termes de distància en un espai 2n-dimensional, on cada *n*-gon es representa per un punt $X = \left(\frac{l_1}{\sum_{i=1}^n l_i}, \ldots, \frac{l_n}{\sum_{i=1}^n l_i}, \varphi_1, \ldots, \varphi_n\right)$, on l_1, \ldots, l_n són les longituds dels seus costats i $\alpha_i, \ldots, \alpha_n$ les amplituds dels seus angles interiors. En aquest espai, els *n*-gons regulars formen la recta r

$$(x_1,\ldots,x_{2n}) = (0,\ldots,0,\pi - 2\pi/n,\ldots,\pi - 2\pi/n) + \lambda(1,\ldots,1,0,\ldots,0).$$

Es tracta, doncs de calcular la distància entre X i r. Com a mesura de distància entre la recta i el punt hem utilitzat la distància L_1 . Probablement, hauria estat més convenient utilitzar L_2 , però les dificultats inherents a aquesta mesura ens han obligat a desistir en aquest intent.

El primer pas consisteix a calcular els coeficients del punt que representa el polígon P, és a dir, calcular les longituds i els angles de P.

El segon pas és calcular el valor de λ que determina el punt de la recta més proper al punt X en la distància L_1 . El valor de λ que compleix aquest requeriment s'assoleix a la mediana de les longituds dels costats. Per a calcular-ho, hem ordenat els valors de les longituds i hem seleccionat el valor mig.

Finalment, hem calculat la distància L_1 entre el punt definit per P i el punt de la recta més proper a X.

2.5 Mesura 5: Circumscripció per un polígon regular

La mesura 5 inicia el bloc de mesures on s'avalua la regularitat estudiant com de propers estan el polígon P i el polígon regular R de qualsevol nombre de costats el màxim d'ajustat a ell. Concretament en la mesura 5 hem comparat P amb el polígon regular més petit de m costats que conté a P.

L'algorisme que hem utilitzat per la resolució d'aquest problema és el proposat a [6] i [7]. Donat un *n*-gon P i un nombre natural $m \ge 3$, es tracta de trobar el *m*-gon regular R més petit circumscrit a P. En concret, donat un *m*-gon regular R' l'algorisme troba el polígon P' amb les mateixes proporcions que P més gran inscrit a R'. Un cop trobada l'afinitat entre P i P' s'aplica l'afinitat inversa per trobar R a partir de R'.

El primer pas de l'algorisme, donat un *m*-gon regular R' que contingui l'origen, consisteix a calcular els coeficients de les rectes $a_jx + b_jy = 1$ que suporten cada costat de R'. Per realitzar aquest càlcul utilitzem els vèrtexs de R', de tal manera que els coeficients de la recta $a_jx + b_jy = 1$ que suporta el costat $r_j r_{j+1}$ de R es calculen com $a_j = -A_j/C_j$ i $b_j = -B_j/C_j$, on $A_j = v_2, B_j = v_1$ i $C = v_1r_j^y - v_2r_j^x$, i on $v_1 = r_{j+1}^x - r_j^x$ i $v_2 = r_{j+1}^y - r_j^y$. Perquè cada vèrtex $p_i = (x_i, y_i)$ de P' estigui contingut en R' ha de complir la inequació $a_jx_i + b_jy_i \leq 1$ per a tot j. Amb aquestes restriccions, es tracta de maximitzar la mida de P', mitjançant una semblança.

Aquesta afinitat està definida per una translació de vector (u, v), una rotació d'angle θ i una homotècia de raó ρ , que s'identifica per la quaterna (s, t, u, v), on $s = \rho \cos \theta$ i $t = \rho \sin \theta$. Es tracta, doncs, de maximitzar ρ (de fet, $s^2 + t^2$) amb les restriccions

$$L_{i,j}: (a_j x_i + b_j y_i)s + (-a_j y_i + b_j x_i)t + a_j u + b_j v \le 1.$$

Per això hem utilitzat un programa desenvolupat per Komei Fukuda [8] que calcula els vèrtex d'un políedre convex de dimensió n a partir dels semiespais que es defineixen. Per a poder-lo integrar a l'algorisme hem modificat i adaptat el codi del programa per tal de convertir-lo en una llibreria, i d'aquesta manera poder fer les crides a les funcions necessaries. Per realitzar la crida a la llibreria s'han construït les matrius que defineixen el sistema d'inequacions de tal manera que segueixi la convenció descrita en la documentació del programa.

Un cop trobades les solucions del sistema d'inequacions, és a dir, els vèrtexs del políedre, el següent pas ha estar trobar la solució que maximitza P' és a dir, el vèrtex que maximitza P' és la solució que maximitza la funció $s^2 + t^2 = \rho^2$. Per tant, recorrent el conjunt de solucions i avaluant aquesta funció obtenim la solució desitjada.

Com ha darrer pas de l'algorisme hem calculat els vèrtexs de R, a partir de R' mitjançant l'afinitat inversa a la definida per (s, t, u, v).

2.6 Mesura 6: Inscripció per un polígon regular

Aquesta mesura avalua la regularitat del polígon P des d'un mateix punt de vista que la mesura 5. En concret, en la mesura 6 comparem P amb el m-gon regular més gran contingut a P.

La resolució d'aquest problema segueix el mateix algoritme que la mesura 5 amb algunes petites modificacions. En primer lloc, el polígon exterior és P i, per tant, les rectes sobre els costats s'han de construir sobre P. Per poder utilitzar el mètode descrit en la Secció 2.5 el polígon P ha de contenir l'origen, per tant, primer hem de fer una translació de P.

Un cop realitzat aquest primer pas, els passos a seguir per l'algorisme són els mateixos que els descrits en la mesura 5 però intercanviant els papers dels polígons P i R.

2.7 Mesura 7: Relació inscrit/circumscrit

La mesura 7 és la darrera que utilitza com a criteri de mesura la relació entre P i els polígons regulars més ajustats a P. En concret, en aquesta mesura comparem el polígon regular R_c més petit circumscrit a P i el polígon regular R_i més gran inscrit a P.

Aquest algorisme consisteix en calcular R_c i R_i , els quals es calculen tal com hem descrit a la Secció 2.5 i a la Secció 2.6 respectivament.

2.8 Mesura 8: Minimització de la porció angular més petita

Amb aquesta mesura s'inicia el darrer bloc de mesures, en què el criteri de regularitat està marcat per la simetria radial. Més concretament, amb aquesta mesura 8 s'inicia el bloc de mesures que avaluen la simetria radial quant a la seva distribució equiangular. En la mesura 8 l'objectiu és subdividir el polígon P en n parts equiangulars de tal manera que minimitzem la porció més petita.

Tal com es proposa a [3], l'algorisme consisteix en dividir el polígon amb un feix de *n* semirectes t_i , i = 1, ..., n amb origen en el baricentre del polígon i pendents $\tan(2\pi/n)$, i = 1, ..., n respectivament i calcular les funcions que defineixen l'àrea de cada porció de *P* en funció de l'angle del feix. Un cop calculades les funcions mitjançant un algorisme de dividir per vèncer, es tracta de calcular la posició del feix que minimitza la porció més petita. Aquesta posició està determinada per un angle φ .

L'algorisme que hem implementat consta de dues fases. Una primera fase a on es calculen les funcions que determinen l'àrea de cada porció en cada posició angular del feix, i una segona on, a partir de les funcions, es calcula la posició del feix que minimitza la porció mínima.

En primer lloc, requerim que el polígon no consti de costats verticals. En cas de tenir costats verticals, se li aplica una rotació de tal manera que es garanteixi que al fer el gir no es produeixi cap nou costat vertical. Per garantir aquest fet és suficient calcular l'angle inferior del costat vertical dret del polígon i el costat adjacent, i l'angle superior del costat vertical esquerra i el costat adjacent, i fer un gir antihorari de la meitat de l'angle més gran dels dos.

Un cop garantit que P no té costats verticals, el pas següent és calcular el baricentre del polígon. Un cop calculat el baricentre del polígon traslladem el polígon de tal manera que el baricentre estigui situat a l'origen de coordenades.

A continuació introduïm certa notació perquè sigui més comprensibles l'explicació de l'algorisme. Definim *b* com el baricentre del polígon, α_k l'angle que forma el vector bp_k amb l'horitzontal, $d_k = d(b, p_k)$ i $y = m_k x + n_k$ l'equació de la recta que conté el costat e_k del polígon P, de vèrtexs p_k i p_{k+1} .

Els càlculs de α_k i d_k són immediats, i $m_k = -v_2/v_1$, $n_k = (v_1 p_k^y) - (v_2 p_k^x)/v_1$, on $v_1 = p_{k+1}^x - p_k^x$ i $v_2 = p_{k+1}^y - p_k^y$. El pas següent és calcular les funcions que defineixen l'àrea de cada porció

El pas següent és calcular les funcions que defineixen l'àrea de cada porció de P. Tal com es demostra a [3], es pot definir una funció $a_1(\varphi), \varphi \in [0, 2\pi)$ com l'àrea de P delimitada per les semirectes t_1 i t_2 quan t_1 forma un angle φ amb l'horitzontal. En funció de si t_1 i t_2 tallen o no el mateix costat de P, es calcula la funció a_1 d'una manera o d'una altra. Més concretament, si t_1 i t_2 tallen costats diferents, la funció a_1 es pot calcular com

$$a_1(\varphi) = a_{11}(\varphi) + a_{12}(\varphi) + a_{13}(\varphi)$$

on

$$a_{11}(\varphi) = \frac{A_1 \tan(\varphi) + B_1}{C_1 \tan(\varphi) + D_1},$$

$$a_{12}(\varphi) = \frac{A'_2 \tan(\varphi + 2\pi/n) + B'_2}{C'_2 \tan(\varphi + 2\pi/n) + D'_2},$$

$$a_{13}(\varphi) = K.$$

En aquestes expressions si i és el costat que talla t_1 i j el costat que talla t_2 , aleshores

$$A_{1} = -d_{i}n_{i-1}\cos\alpha_{i}, B_{1} = -d_{i}n_{i-1}\sin\alpha_{i}, C_{1} = 2, D_{1} = -2m_{i-1}, A_{2} = d_{j}n_{j}\cos\alpha_{j} + d_{j}n_{j}\cos\alpha_{j}\tan(2\pi/n), B_{2} = d_{j}n_{j}\cos\alpha_{j}\tan(2\pi/n) - d_{j}n_{j}\cos\alpha_{j}, C_{2} = 2 + 2m_{j}\tan(2\pi/n), D_{2} = 2\tan(2\pi/n) - 2m_{j}i K = \sum_{q=i+1}^{j} \arg(b, p_{i}, p_{q}).$$

En canvi, si t_1 i t_2 tallen el mateix costat, la funció $a_1(\varphi)$ es pot expressar com

$$a_1(\varphi) = \frac{A_3 \tan^2(\varphi) + B_3 \tan(\varphi) + C_3}{D_3 \tan^2(\varphi) + E_3 \tan(\varphi) + F_3},$$

on, si i és el costat que talla t_1 i t_2 , aleshores

$$A_{3} = C_{3} = n_{i}^{2} \tan(2\pi/n),$$

$$B_{3} = 0,$$

$$D_{3} = 2 + 2 \tan(2\pi/n)m_{i},$$

$$E_{3} = 2 \tan(2\pi/n) - 4m_{i} - 2m_{i}^{2} \tan(2\pi/n)i$$

$$F_{3} = 2m_{i}^{2} - 2m_{i} \tan(2\pi/n).$$

Per calcular el punt de tall $Q(\varphi)$ entre t_1 i el costat *i* i el punt de tall $R(\varphi)$ entre t_2 i el costat *i* utilitzem la formula següent:

$$Q(\varphi) = \left(\frac{n_i}{\tan(\varphi) - m_i}, \frac{n_i}{\tan(\varphi) - m_i} \tan(\varphi)\right).$$
$$R(\varphi) = \left(\frac{n_j}{\tan(\varphi + 2\pi/n) - m_j}, \frac{n_j}{\tan(\varphi + 2\pi/n) - m_j} \tan(\varphi + 2\pi/n)\right).$$

Per realitzar el càlcul de la funció $a_1(\varphi)$ hem implementat un algoritme d'escombrat angular on iniciem el recorregut angular amb l'angle $\varphi = 0$ i ens aturem quan $\varphi = 2\pi$. Els esdeveniments de l'escombrat són els valors angulars per als quals qualsevol de les semirectes t_1 o t_2 del feix passa per algun dels vèrtexs de P. A cada esdeveniment, es produeix una modificació de la fórmula de còmput de la funció $a_1(\varphi)$.

Seguint la notació de [3] hem definit les funcions $a_i(\varphi)$, $i \in 2, ..., n$, $\varphi \in [0, 2\pi)$ com l'àrea de la porció de P delimitada per les semirectes t_i i t_{i+1} quan t_1 forma un angle φ amb l'horitzontal. Les funcions $a_i(\varphi)$ són translacions de $a_1(\varphi)$. Concretament,

$$a_1(\varphi) = a_1\left(\varphi + \frac{2\pi}{n}(i-1)\right), i \in \{2, \dots, n\}.$$

Un cop construïdes totes les funcions àrea corresponents als sectors angulars del feix, la segona fase de l'algoritme consisteix a calcular l'angle que minimitza la porció angular més petita. Gràcies a la simetria del feix, podem considerar les *n* funcions $a_i(\varphi)$, $i \in \{1, \ldots, n\}$ en l'interval $[0, 2\pi/n]$, calcularne l'envolupant inferior mitjançant un algoritme de dividir per vèncer i trobar el punt que minimitza l'envolupant.

L'algorisme de dividir per vèncer per calcular l'envolupant inferior té una primera fase de divisió que no té cap dificultat, on es divideixen les funcions pel seu subíndex enviant la primera meitat a una banda i la resta a l'altra. La fusió es du a terme mitjançant un algorisme d'escombrat en l'interval $[0, 2\pi/n]$ on les parades són produïdes per l'inici i el final de cada tram de les funcions a fusionar i pels punts de tall entre les funcions. A cada parada es decideix quina funció és la mínima.

Per cercar els punts de tall entre les funcions s'ha de resoldre l'equació formada per l'igualació de les expressions de les funcions $a_i(\varphi)$ en aquell interval. Donat que són funcions en tan φ del tipus quocients de dos polinomis de grau dos, com a molt, l'equació resultant és de grau quatre. Per resoldre aquestes equacions hem implementat una classe que resol equacions polinòmiques des de grau 1 fins a grau 4.

Per resoldre les de grau 1 i grau 2 s'han utilitzat les fórmules de resolució conegudes x = -b/a i $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Sabem que els polinomis de grau tres, sempre tenen al menys una arrel (això es dedueix trivialment del teorema de Bolzano). Per a decidir si un determinat polinomi cúbic en té més i quantes, hem aplicat el teorema de Rolle. Així doncs, hem derivat el polinomi i hem calculat les arrels del polinomi de grau dos resultant. Un cop trobades,

18

hem calculat el signe del polinomi en aquest punts. Un cop determinat el nombre d'arrels, les arrels es calculen pel mètode de la bisecció (explicat en la Secció 2.2), dins els intervals determinats pel teorema de Rolle. Si el polinomi és de grau quatre, hem aplicat un mètode similar: usem el teorema de Rolle per determinar el nombre d'arrels i un interval on es troba cada arrel (entre dues arrels de la derivada) i apliquem el mètode de la bisecció a cada interval.

Finalment, el darrer pas de l'algoritme consisteix a calcular el mínim de l'envolupant inferior. Els candidats a mínim són els extrems de cada interval de la funció, els mínims locals i els punts $\pi/2$ i $3\pi/2$. Per calcular els mínims locals hem calculat la derivada de la funció i hem resolt l'equació plantejada al igualar la derivada a 0. Finalment, hem recorregut tots els candidats i ens hem quedat amb el punt d'ordenada mínima, el qual és el punt que minimitza la porció angular més petita.

2.9 Mesura 9: Maximització de la porció angular més gran

La mesura 9 està molt relacionada amb la mesura 8. En concret, en aquest cas l'objectiu és subdividir el polígon P en n parts equiangulars de tal manera que maximitzem la porció més gran.

Com en la mesura 8, l'algorisme consta de dues fases. La primera fase coincideix amb la de l'algorisme de la mesura 8, i es resol de la manera que hem explicat a la Secció 2.8. La segona fase consisteix, donades les funcions, a calcular la posició del feix que maximitza l'àrea de la porció més gran.

En aquesta segona fase, tot i que el paràmetre a optimitzar és diferent que el de la mesura 8, la manera de procedir és molt similar. La diferència és que en la mesura 9 cerquem l'envolupant superior de les funcions $a_i(\varphi)$. L'algorisme per calcular l'envolupant superior és el mateix utilitzat en la mesura 8, però on en cada parada del escombrat en comptes de procedir a quedar-nos amb la funció mínima, ens quedem sempre amb la funció màxima.

Un cop calculada l'envolupant superior, els candidats a màxim són els extrems de cada interval de la funció, els màxims locals i els punts $\pi/2$ i $3\pi/2$. L'algoritme, com en el cas de la mesura 8, calcula tots els punts singulars. Finalment avaluem tots els candidats i ens quedem amb el punt d'ordenada màxima, que serà el punt que maximitza la porció angular més gran.

2.10 Mesura 10: Maximització de la diferència entre porcions angulars

La mesura 10 és la darrera de les mesures que té com a criteri la distribució equiangular. En concret, en aquest cas l'objectiu és subdividir el polígon P

en n parts equiangulars de tal manera que maximitzem la diferència entre la porció angular més gran i la porció angular més petita.

Com per a les mesures 8 i 9, l'algorisme consta de dues fases. La primera fase coincideix amb les dels algorismes de les mesures 8 i 9, i es resol de la manera que hem explicat a la Secció 2.8. La segona fase consisteix a calcular la posició (o posicions) del feix que maximitza la diferència entre la porció angular més petita i la porció angular més gran a partir de les funcions àrea.

Per trobar la posició que maximitza la diferència entre la porció angular més gran i la porció angular més petita el primer pas és calcular l'envolupant superior i inferior de les funcions $a_i(\varphi)$. En les seccions 2.8 i 2.9 hem explicat com fer-ho.

Trobar el punt (o punts) que maximitza la diferència entre la porció angular més gran i la porció angular més petita significa calcular el màxim de la funció diferència entre l'envolupant superior i la inferior. Una vegada més, els candidats a màxim són els plantejats a les mesures 8 i 9, és a dir, els extrems de cada interval de la funció, tant de l'envolupant superior com els de l'inferior, els màxims locals (de la funció diferència) i els punts $\pi/2$ i $3\pi/2$. L'únic que canvia és la manera de calcular els màxims locals que es resol amb el mateix mètode però aplicat a la funció diferència de les envolupants.

Finalment, recorrem els possibles candidats, els avaluem sobre la funció diferència de les envolupants, i ens quedem el punt (o punts) d'ordenada màxima, que és el punt (o punts) que maximitza la diferència entre la porció angular més gran i la porció angular més petita.

2.11 Mesura 11: Minimització del triangle més gran

La mesura 11 és la primera mesura del darrer bloc, que també explora la simetria radial dels polígons. En aquest cas es tracta de calcular el centre, en un cert sentit, del polígon. Més exactament, es calcula el punt del polígon que equilibra a tant com sigui possibles les àrees dels triangles que forma amb els costats del polígon. Aquest centre de fet pot ser un punt o tot un segment de punts, en cas de ser un segment es retorna el segment complet. En el cas de en la mesura 11 calculem aquest centre de manera que minimitzem l'àrea del triangle més gran.

Tal com es proposa a [3], aquest problema es pot resoldre plantejant-lo com un problema de programació lineal. Es situa el polígon en el pla z = 0i, per a cada costat del polígon, e_i , col·loquem un pla π_i que passi pel costat i que formi un angle α_i amb el pla z = 0 de tal manera que $\tan(\alpha_i) = \frac{l_i}{2}$. Donat un punt q de l'interior o de la frontera del polígon i un costat e_i , la distància d de q a l_i coincideix amb la coordenada z del punt de π_i la projecció del qual sobre el pla xy és q. Així minimitzar $\max_{i \in 1,...,n}$ àrea (Δqp_ip_{i+1}), correspon a prendre, per a cada π_i , el semiespai superior que defineix, afegirhi els n semiespais de frontera vertical sobre els n costats del polígon que el contenen, i calcular el punt amb coordenada z mínima de la intersecció de tots aquest semiespais.

El primer pas de l'algorisme consisteix a calcular els plans vertical i inclinat determinats per cada costat $p_i p_{i+1}$ de P. Per realitzar el càlcul dels plans hem utilitzat la seva forma implícita $n_x(x-p_i^x)+n_y(y-p_i^y)+n_z(z-p_i^z)=0$, on n és el vector normal al pla i, en el cas dels verticals, $n_z = 0$. Per calcular el vector normal al pla, el primer pas que hem implementat és construir un vector r definit com el vector de p_i a p_{i+1} , hem calculat el vector v perpendicular a r amb coordenada z = 0 i sentit cap a l'interior del polígon. Finalment, hem calculat el vector $w = (v_x, v_y, z)$, on $z = \tan(\alpha ||v||)$, on $\tan \alpha = l_i/2$ on l_i és la longitud del costat i. Finalment, hem calculat el vector $n = r \wedge w$.

El pas següent és determinar quin dels dos semiespais definits per cada pla conté el polígon. Per això, considerem un punt auxiliar interior al polígon i avaluem en l'equació del pla en el punt i en funció del seu signe ens quedem amb el semiespai adient.

Un cop calculades les inequacions, hem de resoldre el sistema d'inequacions plantejat, tot minimitzant la coordenada z. Per resoldre aquest problema hem utilitzat la llibreria esmentada a la Secció 2.5, que ens permet resoldre el sistema d'inequacions pel mètode dual-simplex.

Finalment, un cop tenim un dels punts que minimitza l'àrea del triangle més gran q hem de comprovar si és únic o forma part d'un segment s de punts que minimitzen l'àrea del triangle més gran. El punt serà únic si el nombre de triangles d'àrea màxima és com a mínim tres. En cas contrari pot ser un punt o un segment, en cas de ser un segment hem demostrar que els costats suportats en el polígon dels triangles més grans són paral·lels. Per calcular el segment s (el qual pot ser reduït solament a un punt) hem calculat el segment s' (el qual conté s) que passa pel punt q, és paral·lel al costat d'un dels dos triangles d'àrea superior i els extrems estan situats a la frontera del polígon. Per reduir el segment s' a s anem calculant per cada triangle del polígon el punt de la recta que conté el segment s' pel qual l'àrea del triangle es igual l'àrea del triangle més gran respecte q, i en cas convenient reduïm un dels extrems del segment s' fins al nou punt trobat.

2.12 Mesura 12: Maximització del triangle més petit

La mesura 12 avalua novament el polígon des del punt de vista de la seva simetria radial, tot calculant el punt (o punts) del polígon que equilibra a tant com sigui possible les àrees dels triangles que forma amb els costats del polígon. En la mesura 12 el centre a calcular és el que maximitza l'àrea del triangle més petit. El mètode implementat per resoldre aquest problema és el mateix que hem implementat per la mesura 11 (veieu a la Secció 2.11) amb la diferència que en aquest cas considerem els semiespais inferiors dels plans en comptes dels superiors, i es la maximitza la coordenada z en lloc de minimitzar-la.

2.13 Mesura 13: Minimització de la diferència entre triangles

La mesura 13 és la darrera mesura implementada, i la darrera del segon bloc de simetria radial on es calcula el punt del polígon que equilibra a tant com sigui possible les àrees dels triangles que forma amb els costats del polígon. Concretament, en la mesura 13 el centre (o centres) a calcular és el punt que minimitza la diferència entre el triangle d'àrea més gran i el d'àrea més petita.

Novament, i tal com es proposa [3], el problema es resol plantejant un problema de programació lineal. Primer calculem els plans π_i de cada costat tal i com hem explicat en la Secció 2.11 (per cada costat, el pla vertical que el conté, i el pla que el conté i forma un angle $\frac{\pi}{4}$ amb l'horitzontal). Un cop calculats els plans π_i , definim π_i^+ com el semiespai superior definit per π_i i π_i^- com el semiespai inferior definit per π_i . En el cas dels plans verticals, es considera sempre el semiespai que conté el polígon. L'objectiu del problema és minimitzar la distància vertical entre $\bigcap_i \pi_i^+$ i $\bigcap_i \pi_i^-$. Si anomenem haquesta distància vertical, es tracta de minimitzar h restringit a:

> $a_i x + b_i y + c_i z + d_i \le 0, \ i = 1, \dots, n;$ $a_i x + b_i y + c_i (z + h) + d_i > 0, \ i = 1, \dots, n.$

Un cop més, aquest problema el resolem amb la llibreria utilitzada en la Secció 2.5, la qual ens retorna el punt que soluciona el sistema minimitzant h. Aquest punt calculat és el centre que minimitza la diferència entre triangles, però com en les mesures 11 i 12 novament el centre pot ser únic o pot no serho. Com en les mesures 11 i 12 calculem el segment s' que conté el segment s (el qual pot ser reduït a un sol punt i que conté el centres que minimitzen la diferència entre el triangle d'àrea més gran i el d'àrea més petita). A partir de s' procedint de forma anàleg al cas de les mesures 11 i 12 calculem s.

2.14 Conclusions

Al llarg d'aquest capítol hem descrit les mesures de regularitat que hem implementat en el projecte.

En total es tracta de tretze mesures, però hem vist com algunes mesures es podien agrupar en blocs. Cada bloc de mesures comparteix un mateix criteri general d'avaluació de la regularitat. A més, en diverses ocasions les mesures d'un mateix bloc comparteixen algunes fases de l'algorisme implementat.

Un altre aspecte a destacar és que en implementar les 13 mesures basades en les propostes de [3], hem hagut de realitzar càlculs no exactes i, per tant, al passar de la teoria a la pràctica s'han introduït errors d'aproximació. Per exemple, en les mesures 2 i 3 a l'hora de calcular el radi o en les mesures 8, 9 i 10 a l'hora de resoldre les equacions o trobar les arrels de les derivades de les funcions. En cada cas hem fixat una tolerància per a l'error per tenir una implementació que, tot i tenir aproximacions, fos prou bona i, per tant, ens donés uns resultats satisfactoris.

Un punt en el que no ens hem centrat en excés és l'eficiència dels algorismes. D'aquesta manera, per exemple, en les mesures 2 i 3 s'hauria pogut implementar un mètode numèric que accelerés el càlcul del radi de les circumferències on inscriure P'. Un altre punt on l'eficiència s'ha deixat relativament de banda ha estat en les mesures 5, 6 i 7 on el càlcul dels polígons inscrit i circumscrit s'ha realitzat utilitzant una llibreria que implementa un algorisme la complexitat del qual creix exponencialment en el nombre d'inequacions. A més, tal com s'explica a [3], s'hauria pogut implementar un mòdul que reduís el nombre d'inequacions tot eliminant inequacions que aporten informació redundant. Aquesta ha estat una decisió conscient i justificada per dos motius fonamentals: d'un banda, el fet de considerar totalment prioritari l'objectiu d'implementar totes les mesures per poder fer experiments comparatius entre els resultats de totes elles; d'altre banda, el fet que el comportament asimptòtic dels algorismes, en aquest cas, no és rellevant, donat que els polígons als quals és raonable pressuposar que s'aplicaran aquestes mesures de regularitat en qualsevol aplicació realista mai no tindran un nombre gaire elevat de costats (vegeu el Capítol 6). Cal dir, però, que, tot i no ser una prioritat, en alguns casos hem implementat mètodes eficients, com en el cas d'envolupants en les mesures 2, 3, 8, 9 i 10, on s'han implementat algorismes de dividir per vèncer, o en el cas de les mesures 11, 12 i 13, on hem implementat algorismes de programació lineal.

Finalment, no s'ha de perdre de vista que les implementacions realitzades tenen com objectiu la utilització d'aquests algorismes per treure conclusions experimentals sobre les mesures proposades a nivell teòric a [3]. Això fa que el fet més valorat en les implementacions sigui la seva correctessa front la seva eficiència.

Capítol 3

Normalització de les mesures

En el capítol anterior hem descrit el funcionament de cadascun dels tretze algoritmes implementats. En aquest capítol estudiem com, a partir dels algoritmes descrits en el capítol anterior, obtenim una mesura que ens digui com està de proper a ser regular un polígon i que, a més, permeti comparar els resultats de les diverses mesures sobre un mateix polígon.

Comencem establint les propietats que han de complir les mesures perquè siguin útils a l'hora d'avaluar la regularitat dels polígons. Per fer aquesta definició ens basem en les propietats proposades a [9] per a mesurar la convexitat dels polígons. Concretament, les quatre propietats següents:

- i) La mesura de regularitat d'un polígon és un nombre dins l'interval (0,1].
- ii) La mesura de regularitat d'un polígon és 1 si, i només si, el polígon és regular.
- iii) Existeixen polígons per als quals la mesura de regularitat és arbitràriament propera a 0.
- iv) La mesura de regularitat és manté invariant per semblances.

La combinació d'aquestes propietats fa que la mesura sigui útil en primera instància perquè permet saber com de regulars són els polígons i, en segona instància, perquè permet comparar les mesures entre els diferents algorismes.

Concretament, la primera propietat permet comparar totes les mesures independentment de l'algorisme que estiguem aplicant perquè totes tenen una mateixa escala entre 0 i 1.

La segona propietat permet saber quan un polígon és exactament regular, i aquesta propietat combinada amb la primera permet saber com de proper o llunyà està de ser regular (si el valor és més proper a 1, el polígon és més regular, si és més proper a 0, més irregular). Observem que el fet que una mesura no pugui donar mai 0, per la propietat 1, ens indica que no podem definir cap polígon com el polígon "irregular", i amb l'ajut de la propietat iii) que sempre podrem trobar un polígon que sigui més proper a 0 i, per tant, més irregular que l'anterior.

La propietat tres garanteix que existeixen polígons propers a 0, i que per tant, la mesura realment es mourà en tot l'interval de 0 a 1. Aquest fet ens garanteix que les mesures tenen realment la mateixa escala, impedint fer una comparació entre mesures desequilibrada.

Finalment, la quarta i darrera propietat ens permet garantir que l'important realment és la forma del polígon, amb independència de la seva posició al pla i de la seva escala.

Així, doncs, sols considerem mesures de regularitat que satisfacin aquestes quatre propietats.

Definició 3.1 Una mesura s'anomena normalitzada si, i només si, satisfà les propietats i)-iv).

L'objectiu d'aquest capítol és construir una mesura de regularitat normalitzada a partir de la informació que ens proporciona cada algorisme. Així doncs, per a cada algoritme proposarem una mesura que recull la informació obtinguda pel procés d'optimizació corresponent i demostrarem que satisfà les quatre propietats anteriors. Quan s'escaigui, farem paleses les dificultats sorgides a l'hora de satisfer alguna de les propietats. Un objectiu lateral d'aquest capítol és transmetre la idea que la creació d'una mesura ben normalitzada és tan important com el fet de disposar d'un bon algorisme, i que la mala combinació d'un amb l'altre fa que una mesura pugui ser ineficaç.

3.1 Mesura 1: Relació àrea/perímetre

En aquesta secció proposem una mesura associada a l'algorisme descrit a la Secció 2.1 de tal manera que sigui normalitzada. La mesura que proposem avalua la relació entre les àrees de P i R.

Concretament la mesura proposada per a l'algoritme de relació àrea/perímetre és:

$$\mu_1(P) = \frac{\operatorname{àrea}(P)}{\operatorname{àrea}(R)}$$

Teorema 3.2 La mesura μ_1 és una mesura normalitzada.

Demostració: Primer demostrarem que μ_1 compleix la propietat *i*). Com que d'entre tots els polígons amb el mateix perímetre el regular és el que té més àrea, 0 < area(P) <= area(R), per tant, $\mu_1 \in (0, 1]$.

En segon lloc demostrarem que μ_1 compleix la propietat *ii*). Si el polígon P és regular, com que P té el mateix nombre de costats i el mateix perímetre que R, el polígon P i R són el mateix i, per tant, tenen la mateixa àrea. En conseqüència $\mu_1 = 1$. Recíprocament, si $\mu_1 = 1$, aleshores les àrees de P

i R han de ser la mateixa i, donat que comparteixen nombre de costats i perímetre P = R i, per tant, P és regular.

Per demostrar la propietat *iii*) exposem com es pot construir un polígon P de n costats de manera que $\mu_1(P)$ sigui un nombre tan proper a zero com es desitgi. Construïm el polígon P allargat amb àrea quasi nul·la i amb el perímetre arbitràriament gran. D'aquesta manera fem l'àrea de R tan gran com es vulgui i, per tant, μ_1 arbitràriament propera a 0.

Finalment, demostrem que es satisfà la propietat iv). Si Q és un polígon semblant a P, i la raó de la semblança és r, aleshores perímetre (Q) = r perimetre (P) i àrea $(Q) = r^2$ àrea (P). Si R_p (respectivament, R_q) és el polígon regular tal que perímetre $(R_p) =$ perímetre (P) (respectivament, perímetre $(R_q) =$ perímetre (Q)), aleshores

$$\frac{\operatorname{àrea}(Q)}{\operatorname{àrea}(R_q)} = \frac{r^2 \operatorname{àrea}(P)}{r^2 \operatorname{àrea}(R_p)} = \frac{\operatorname{àrea}(P)}{\operatorname{àrea}(R_p)}.$$

Per tant, μ_1 és invariant per semblances.

3.2 Mesura 2: Minimització del desplaçament màxim

En aquesta secció presentem una mesura associada a l'algorisme descrit a la Secció 2.2 de tal manera que sigui una mesura normalitzada, i a la vegada avaluï els diferents paràmetres calculats per l'algorisme. En concret, proposem una mesura que avaluï en primer lloc el pas del polígon a la circumferència, i en segon lloc, el desplaçament màxim dels vèrtexs al llarg de la circumferència.

En primer lloc, introduïm alguns termes de notació, per fer comprensible la lectura d'aquesta secció. La funció $\alpha(\cdot, \cdot)$ és la diferència màxima en valor absolut, entre angles corresponents del polígon original, P, i el polígon inscrit a la circumferència, P'. La funció $d(\cdot, \cdot)$ és la distància angular entre el parell de vèrtexs més llunyans de P' i R.

La proposta de mesura d'aquesta secció està extreta de [4] i l'aportació d'aquesta secció és la demostració que es tracta d'una mesura normalitzada.

Concretament la mesura proposada per a l'algoritme de minimització del desplaçament màxim és:

$$\mu_2(P) = \mu_2^1 \mu_2^2$$

1

on

$$\mu_2^1 = \frac{\pi - \alpha(P, P')}{\pi},$$

$$\mu_2^2 = \frac{\pi - \frac{\pi}{n} - d(P', R)}{\pi - \frac{\pi}{n}}.$$

Primer de tot, volem destacar que aquesta mesura avalua les dues fases del algoritme. En primer lloc, μ_2^1 mesura com hem deformat els angles del polígon P, per tal de que és mantingui la seqüència de longituds de costats en construir el polígon P' inscrit a la circumferència. En segon lloc, μ_2^2 avalua el desplaçament màxim produït entre els vèrtexs més llunyans de P' i R. És per aquest motiu que aquesta mesura és apropiada amb l'algoritme proposat.

El segon pas és demostrar que, a més, és una mesura normalitzada.

Teorema 3.3 La mesura μ_2 és una mesura normalitzada.

Demostració: En primer lloc, demostrarem que μ_2 compleix la propietat i), és a dir, $\mu_2 \in (0, 1]$. L'angle α és la diferència màxima entre angles corresponents dels polígons P i P', els quals són convexos. Per tant, $\alpha(P, P') \in [0, \pi)$. El fet que el valor π no es pugui assolir es deu a què P' és inscrit a la circumferència. Per tant, $\mu_2^1 \in (0, 1]$.

D'altra banda, $\mu_2^2 \in (0, 1]$ perquè $d(P', R) \in [0, \pi - \pi/n)$. Més concretament, d(P', R) val 0 quan P' i R coincideixen. Podria semblar que, en els pitjors dels casos, d(P', R) pot arribar a valer π , tanmateix és fàcil demostrar que en aquest cas sempre és possible una petita rotació de P' que disminueixi el valor de d(P', R). Això permet demostrar que d(P', R) val $\pi - \pi/n - \epsilon$ en el pitjor dels casos, que s'il·lustra a la Figura 3.1, on P' té dos vèrtexs, p_i i p_{i+1} , separats per una distància angular ϵ associats als vèrtexs r_i i r_{i+1} de R, respectivament. Així, doncs, $\mu_2 = \mu_2^1 \mu_2^2 \in (0, 1]$

Figura 3.1: Posició de P' que maximitza el desplaçament angular d(P', R)

Demostrarem ara la propietat *ii*). Si el polígon P és regular, aleshores està inscrit a una circumferència, i P = P'. Així, $\alpha(P, P') = 0$ i $\mu_2^1 = 1$. Ara bé, com que P' és regular, P' = R i, per tant, d(P', R) = 0, de manera que $\mu_2^2 = 1$. En conseqüència, $\mu_2 = \mu_2^2 \mu_2^2 = 1$. Recíprocament, si $\mu_2 = 1$, aleshores la propietat *i*) garanteix que $\mu_2^1 = \mu_2^2 = 1$. Com que $\mu_2^1 = 1$, resulta $\alpha(P, P') = 0$ la qual cosa significa que les seqüències d'angles de P i de P' coincideixen. Com que la seqüència de longituds de costats d'ambdós polígons és la mateixa, resulta que P i P' han de ser el mateix. D'altra banda, com que $\mu_2^2 = 1$, aleshores d(P', R) = 0, és a dir, P' = R. En definitiva, P = P' = R i P és regular.

3.2. MESURA 2: MINIMITZACIÓ DEL DESPLAÇAMENT MÀXIM 29

Per demostrar la propietat *iii*) exposem com es pot construir un polígon P de n costats de manera que $\mu_2(P)$ sigui un nombre tan proper a zero com es desitgi. La construcció s'il·lustra a la Figura 3.2. Si n = 4, es considera el quadrilàter $p_1p_2p_3p_4$. Cal notar que l'angle p_3 es pot fer tan petit com es vulgui (el controla δ) i els costats p_2p_3 i p_3p_4 es poden fer tan petits com es vulguin (els controla ϵ) de forma independent. Si n > 4, es poden afegir vèrtexs al polígon, ben a prop de p_4 i p_2 . Aleshores, μ_2^1 es pot fer arbitràriament petit perquè l'angle δ , que és arbitràriament proper a zero, esdevé arbitràriament proper a π en passar de P a P'. Si μ_2^1 és arbitràriament proper a 0 com que μ_2^2 està fitada en l'interval (0, 1], ens ho garanteix la propietat i), llavors, μ_2 és arbitràriament proper a 0.

Figura 3.2: Construcció d'un polígon que fa arbitràriament proper a 0 el valor de μ_2 .

La construcció anterior no és vàlida per a n = 3. El motiu és que tot triangle està inscrit a una circumferència. En altres paraules, si P és un triangle, aleshores P = P' i $\mu_2^1 = 1$. En aquest cas, però, és possible construir polígons per als quals μ_2^2 prengui valors arbitràriament petits. Per això, sols cal considerar triangles $p_1p_2p_3$ tals que p_2 sigui arbitràriament obtusangle i els costats p_1p_2 i p_2p_3 siguin arbitràriament petits. Per tant, en cas de n = 3també es pot fer arbitràriament petit el valor de μ_2 .

Finalment, demostrem que es satisfà la propietat iv). Cal tenir en compte que les semblances mantenen inalterats els angles, mentre escalen en la mateixa proporció tots els costats del polígon. Per tant, si Q és la imatge del polígon P per una semblança, aleshores Q' necessàriament és la imatge de P' per la mateixa semblança. Així, doncs, $\alpha(P, P') = \alpha(Q, Q')$ i, per tant, $\mu_2^1(P) = \mu_2^1(Q)$. D'altra banda, els polígons regulars R_p i R_q associats a Pi a Q, respectivament, tenen el mateix nombre de costats i sols es difereixen en un factor d'escala. Com que $d(P', R_p)$ i $d(Q', R_q)$ mesuren distàncies angulars, i aquestes són insensibles a l'escala, $d(P', R_p) = d(Q', R_q)$ i, per tant, $\mu_2^2(P) = \mu_2^2(Q)$. En conseqüència, $\mu_2(P) = \mu_2(Q)$.

3.3 Mesura 3: Minimització de la suma de desplaçaments

En aquesta secció proposem una mesura associada a l'algorisme descrit en la Secció 2.3 de tal manera que sigui una mesura normalitzada, i a la vegada avaluï els diferents paràmetres calculats per l'algorisme. En concret, proposem una mesura que avaluï en primer lloc el pas del polígon a la circumferència, de la mateixa manera que en la mesura 1, i en segon lloc, la suma de desplaçaments dels vèrtexs al llarg de la circumferència.

Amb la mateixa notació que a la secció anterior la mesura proposada per a l'algoritme de minimització de la suma de desplaçaments és:

$$\mu_3(P) = \mu_3^1 \mu_3^2$$

on

$$\mu_3^1 = \frac{\pi - \alpha(P, P')}{\pi},$$

$$\mu_3^2(P) = \begin{cases} 1 - \frac{2\sum_{i=1}^n d(p_i, r_i)}{n\pi}, \text{ si } n \text{ és parell}, \\ 1 - \frac{2n\sum_{i=1}^n d(p_i, r_i)}{(n^2 - 1)\pi}, \text{ si } n \text{ és senar.} \end{cases}$$

Teorema 3.4 La mesura μ_3 és una mesura normalitzada.

Demostració: A la Secció 3.2 ja hem demostrar les propietats que ens interessen per a μ_3^1 . Ens centrarem, doncs, a μ_3^2 . En primer lloc, comprovem que $\mu_3^2 \in (0,1]$, si n és parell llavors existeix un diàmetre del cercle que deixa n/2 vèrtexs de P' a l'esquerra del diàmetre i n/2 a la dreta. Podem assumir, sense perduda de generalitat, que el diàmetre és vertical i p_1 és el vèrtexs superior a la esquerra del diàmetre. Considerem R' una rotació de R en que dos costats són horitzontals i r_1 és el vèrtexs superior a l'esquerra del diàmetre. Llavors, provem que $\sum_{i=1}^n d(p'_i, r'_i) < n\pi/2$. Donat que $\sum_{i=1}^n d(p_i, r_i) \leq \sum_{i=1}^n d(p'_i, r'_i)$ implica que $\sum_{i=1}^n d(p_i, r_i) < n\pi/2$.

L'observació clau es que, si i < n/4, llavors:

$$d(p'_i, r'_i) + d(p'_{n/2-i+1}, r'_{n/2-i+1}) < \pi$$

i

$$d(p'_{n/2+i}, r'_{n/2+i}) + d(p'_{n-i+1}, r'_{n-i+1}) < \pi.$$

Ho podem verificar fàcilment per mitja de l'anàlisi dels casos il·lustrats a la Figura 3.3. Si n/2 és senar, llavors, $d(p'_{\frac{n+2}{4}}, r'_{\frac{n+2}{4}}) + d(p'_{\frac{3n+2}{4}}, r'_{\frac{3n+2}{4}}) < \pi$. Per tant, $\sum_{i=1}^{n} d(p_i, r_i) < n\pi/2$.

Demostrarem ara la propietat *ii*). Si el polígon P és regular, aleshores està inscrit a una circumferència, i P = P'. Així, $\alpha(P, P') = 0$ i $\mu_3^1 = 1$. Ara bé, com que P' és regular, P' = R i, per tant, $d(p_j, r_j) = 0 \,\forall j \in \{1, \ldots, n\}$, de manera que $\mu_3^2 = 1$. En conseqüència, $\mu_3 = \mu_3^1 \mu_3^2 = 1$. Recíprocament,

Figura 3.3: Anàlisi dels casos per la prova de $d(p'_i, r'_i) + d(p'_{n/2-i+1}, r'_{n/2-i+1}) < \pi$, per $i \le n/4$.

si $\mu_3 = 1$, aleshores la propietat *i*) garanteix que $\mu_3^1 = \mu_3^2 = 1$. Com que $\mu_3^1 = 1$, resulta $\alpha(P, P') = 0$ la qual cosa significa que les seqüències d'angles de *P* i de *P'* coincideixen. Com que la seqüència de longituds de costats d'ambdós polígons és la mateixa, resulta que *P* i *P'* han de ser el mateix. D'altra banda, com que $\mu_3^2 = 1$, aleshores $d(p_j, r_j) = 0 \ \forall j \in \{1, \ldots, n\}$, és a dir, P' = R. En definitiva, P = P' = R i *P* és regular.

Per demostrar la propietat *iii*) sols cal considerar la mateixa construcció que per a la mesura μ_2 , il·lustrada a la Figura 3.2. En aquest cas, μ_3^2 està fitada en l'interval (0, 1], ens ho garanteix la propietat *i*) i el terme μ_3^1 es pot fer arbitràriament petit, per tant, μ_3 es pot fer arbitràriament petit.

Finalment, la propietat iv) es satisfan per motius anàlegs del Teorema 3.3.

3.4 Mesura 4: Distància a la representació 2*n*-dimensional

En aquesta secció proposem una mesura normalitzada associada a l'algorisme descrit a la Secció 2.4 La mesura que proposem avalua fins a quin punt tant les longituds dels costats com els angles del polígon disten de ser iguals.

Concretament la mesura proposada per a l'algoritme de distància a la representació 2n-dimensional és:

$$\mu_4(P) = \begin{cases} 1 - \frac{d(p,r)}{\frac{1}{2} + \frac{4\pi}{3}}, \text{ si } n = 3\\ 1 - \frac{d(p,r)}{1 + (4 - \frac{8}{n})\pi}, \text{ si } n \ge 4 \end{cases}$$

on p és el punt de \mathbb{R}^{2n} que representa el polígon P i r la recta dels *n*gons regulars. Concretament, si les longituds dels costats del polígon P són l_1, \ldots, l_n i els seus angles interiors són $\alpha_1, \ldots, \alpha_n$, aleshores

$$p = (u_1, \ldots, u_n, \alpha_1, \ldots, \alpha_n) \in \mathbb{R}^{2n},$$

on $u_i = \frac{l_i}{\sum_{i=1}^n l_i}$. A més, anomenem $p_l = (u_1, \dots, u_n) \in \mathbb{R}^n$ i $p_\alpha = (\alpha_1, \dots, \alpha_n) \in$

Teorema 3.5 La mesura μ_4 és una mesura normalitzada.

Demostració: En primer lloc, demostrarem que μ_4 compleix la propietat *i*). Per tal que μ_4 pertanyi a l'interval (0,1] cal que $0 \le d(p,r) < 1 + (4-\frac{8}{n})\pi$ si $n \ge 4$ i la desigualtat $0 \le d(p,r) < \frac{1}{2} + \frac{4\pi}{3}$ si n = 3. La primera desigualtat, en ambdós casos, és òbvia. Per demostrar les segones, considerarem per separat p_l i p_{α} . Més concretament, demostrarem que $d(p_l, r_l) < 1/2$ si n = 3, $d(p_l, r_l) < 1$ si $n \ge 4$ i $d(p_\alpha, r_\alpha) < (4 - \frac{8}{n})\pi$, on d s'ha d'entendre definida a \mathbb{R}^{n} .

Pel que fa a les longituds dels costats, $p_l = (u_1, \ldots, u_n)$ amb $u_i = \frac{l_i}{\sum_{i=1}^n l_i}$ i la recta r_l té l'equació $(x_1, \ldots, x_n) = \lambda(1, \ldots, 1)$. El punt $0 = (0, \ldots, 0)$ pertany, doncs, a r_l i $d(p_l, 0) = 1$. Per tant, $d(p_l, r_l) \leq 1$. Ara bé, la igualtat no es pot donar mai, com veurem immediatament. Sigui $\epsilon > 0$ tal que $\epsilon < u_i \ \forall i \in \{1, \ldots, n\}$. Que aquest ϵ existeix és evident, altrament P tindria costats de longitud nul·la. Sigui $q = (\epsilon, \ldots, \epsilon)$. Aleshores

$$d(p,q) = \sum_{i=1}^{n} (u_i - \epsilon) < \sum_{i=1}^{n} u_i = 1.$$

Com que $q \in r$, obtenim $d(p, r) \leq d(p, q) < 1$.

Si n = 3 podem reduir aquest límit. Fixem, $u_1 = \frac{l_1}{\sum_{i=1}^3 l_i}$, $u_2 = \frac{l_2}{\sum_{i=1}^3 l_i}$ i $u_3 = \frac{l_3}{\sum_{i=1}^3 l_i}$. Sense perdre generalitat, assumim que $u_1 \le u_2 \le u_3$. Llavors $d(p_l, r_l) = d(p_l, (u_2, u_2, u_2) = (u_2 - u_1) + (u_3 - u_2) = u_3 - u_1 < u_3$. El limit es desprén de la desigualtat del triangle i el fet de que $u_1 + u_2 + u_3 = 1$.

Pel que fa a les amplituds dels angles interiors, $p_{\alpha} = (\alpha_1, \ldots, \alpha_n)$ i la recta r_{α} té equació $(x_1, \ldots, x_n) = \left(\frac{\pi(n-2)}{n}, \ldots, \frac{\pi(n-2)}{n}\right)$. Per tant,

$$d(p_{\alpha}, r_{\alpha}) = \sum_{i=1}^{n} \left| \alpha_i - \frac{\pi(n-2)}{n} \right| = \sum_{i=1}^{n} \left| \alpha_i - \sum_{i=1}^{n} \frac{\alpha_i}{n} \right|.$$

És sabut que donats $x_1, \ldots, x_n \in \mathbb{R}$ la manera de maximitza $\sum_{i=1}^n |x_i - m|$ on $m = \frac{x_1 + \dots + x_n}{m}$, és allunyar tant com sigui possible els x_i de m, de la forma més equilibrada possible. Com que $\alpha_i \in (0, \pi]$ i el nombre d'angles propers a zero sols poden ser dos (i la resta han de ser propers a π), queda $\sum_{i=1}^{n} |\alpha_i - \frac{\pi(n-2)}{n}| = 2(\frac{\pi(n-2)}{n} - \epsilon) + (n-2)(\pi - \frac{\pi(n-2)}{n} - \epsilon) = (\frac{2(n-2)}{n} + \frac{2(n-2)}{n})\pi - n\epsilon = (4 - \frac{8}{n})\pi - n\epsilon$ Així, doncs, $d(p_l, r_l) < 1$ i $d(p_\alpha, r_\alpha) < (4 - \frac{8}{n})\pi$, de manera que d(p, r) < 1

 $1 + \left(4 - \frac{8}{n}\right)\pi.$

La propietat ii) és immediata: el polígon P és regular si, i només si, el punt p pertany a la recta r, és a dir, si, i només si, d(p, r) = 0, que correspon idènticament amb $\mu_4 = 1$.

3.5. MESURA 5: CIRCUMSCRIPCIÓ PER UN POLÍGON REGULAR 33

Per demostrar la propietat iii) si n < 4 podem construir un polígon P_{ε} que tingui dos angles quasi nuls i tota la resta quasi plans, de manera que $P_{\varepsilon}^{\alpha} = (\epsilon, \pi - \epsilon, \dots, \pi - \epsilon, \epsilon, \pi - \epsilon, \dots, \pi - \epsilon, \epsilon)$, amb ϵ tan petita com es desitgi. Pel que fa a les longituds dels costats fem dos costats oposats de longitud quasi igual a 1/2, i la resta pràcticament nuls, $P_{\varepsilon}^{l} = (\epsilon, \dots, \epsilon, \frac{1-n\epsilon}{2}, \epsilon, \dots, \epsilon, \frac{1-n\epsilon}{2})$ (Figura 3.4a). Aleshores, $d(P_{\varepsilon}^{\alpha}, r_{\alpha}) = (4-\frac{8}{n})\pi - n\epsilon$, que es pot fer tan propera a $(4-\frac{8}{n})\pi$ com es vulgui. Per altra banda, $d(P_{\varepsilon}^{l}, r_{l}) = 2(\frac{1-n\epsilon}{2} - \epsilon) = 1 - (n+2)\epsilon$, que es pot aproximar a 1 tant com es vulgui. Si n = 3 podem construir un triangle T_{ε} on una aresta té longitud 1/2 i els dos angles adjacents d'amplitud ε i ε^{2} (Figura 3.4b). En aquest cas $d(T_{\varepsilon}^{l}, r_{l}) = \frac{1}{2} - \frac{\sin\varepsilon^{2}}{2\sin(\pi-\varepsilon-\varepsilon^{2})}$ i $d(T_{\varepsilon}^{\varphi}, r_{\varphi}) = \frac{4\pi}{3} - 2\varepsilon(\varepsilon + 1)$.

Figura 3.4: Polígons P_{ε} i T_{ε} els quals permeten apropar arbitràriament μ_4 a 0.

Finalment, demostrem que es satisfà la propietat iv). Cal tenir en compte que les semblances mantenen inalterats els angles, i per tant, $d(p_{\alpha}, r_{\alpha})$ es manté invariant. Per altra banda, $d(p_l, r_l)$ tampoc no s'altera perquè hem normalitzat p_l en fer $u_i = \frac{l_i}{\sum_{i=1}^{n} l_i}$.

3.5 Mesura 5: Circumscripció per un polígon regular

En aquesta secció proposem una mesura associada a l'algorisme descrit a la Secció 2.5 de manera que sigui una mesura normalitzada, que consisteix a comparar les àrees del polígon P i del polígon regular més petit que el conté, R_c .

Concretament la mesura proposada per a l'algoritme de circumscripció per un polígon regular és:

$$\mu_5(P) = \frac{\operatorname{àrea}(P)}{\operatorname{àrea}(R_c)}$$

Teorema 3.6 La mesura μ_5 és una mesura normalitzada si n = m i compleix les propietats i), iii) i iv) en cas que $n \neq m$.

Demostració: En primer lloc, demostrarem que μ_5 compleix la propietat *i*). Perquè $\mu_5 \in (0, 1]$, s'ha de complir que àrea (P) <àrea (R_c) la qual cosa és certa perquè R_c és un polígon circumscrit a P. L'interval és obert en 0 perquè tots els polígons que considerem tenen àrea estrictament positiva.

En segon lloc, demostrarem que μ_5 compleix la propietat ii) quan n = m. Si P és regular, el polígon regular R_c més petit que el circumscriu és el mateix P, per tant, com que $P \subseteq R_c$, es té àrea (P) =àrea (R_c) . En conseqüència, $\mu_5 = 1$. Recíprocament, si $\mu_5 = 1$, aleshores àrea (P) = àrea (R_c) , és a dir, $P = R_c$. Per tant, P és regular. La propietat ii) no es compleix per a $n \neq m$ perquè si P és regular però de diferent nombre de costats que R_c , el polígon regular R_c més petit que el conté no coincideix amb P i, per tant, àrea (P) < àrea (R_c) . En conseqüència $\mu_5 < 1$.

Per demostrar la propietat *iii*) podem construir un polígon que tingui dos angles quasi nuls a cada extrem i tota la resta quasi plans (vegeu en la Figura 3.5). D'aquesta manera l'àrea de P pot fer-se arbitràriament petita mentre que el polígon regular més petit que el conté manté l'àrea fixa. En conseqüència, podem fer μ_5 arbitràriament propera a 0.

Figura 3.5: Construcció d'un polígon que permet apropar arbitràriament μ_5 a 0.

Finalment, satisfà la propietat iv), ja que si Q és semblant a P aleshores els polígons regulars circumscrits a P i Q també són semblants, i la raó de semblança, r, és la mateixa. Per tant,

$$\mu_5(Q) = \frac{\operatorname{àrea}(Q)}{\operatorname{area}(R_c^Q)} = \frac{r^2 \operatorname{àrea}(P)}{r^2 \operatorname{area}(R_c^P)} = \mu_5(P).$$

3.6 Mesura 6: Inscripció per un polígon regular

En aquesta secció proposem una mesura associada a l'algorisme descrit a la Secció 2.6 de manera que sigui una mesura normalitzada, com en el cas anterior, es tracta d'avaluar la relació entre les àrees del polígon P i del polígon regular més gran R_i dels continguts a P. Concretament la mesura proposada per a l'algoritme d'inscripció per un polígon regular és:

$$\mu_6(P) = \frac{\operatorname{àrea}(R_i)}{\operatorname{àrea}(P)}$$

Teorema 3.7 La mesura μ_6 és una mesura normalitzada si n = m i compleix les propietats i), iii) i iv) en cas que $n \neq m$.

Demostració: En primer lloc, demostrarem que μ_6 compleix la propietat *i*). Perquè $\mu_6 \in (0, 1]$, s'ha de complir que àrea $(P) > àrea (R_i)$ la qual cosa és certa perquè R_i és un polígon inscrit a *P*. L'interval és obert en el 0 perquè tots els polígons que considerem tenen àrea no nul·la i, per tant, qualsevol inscrit maximal té àrea no nul·la.

En segon lloc, demostrarem que μ_6 compleix la propietat ii) quan n = m. Si P és regular, el polígon regular R_i més gran inclòs a P és el mateix P, per tant, àrea (P) = àrea (R_i) . En conseqüència, $\mu_6 = 1$. Recíprocament, si $\mu_6 = 1$, aleshores àrea (P) = àrea (R_i) , i, com que $R_i \subseteq P$, obtenim $P = R_i$. Per tant, P és regular. La propietat ii) no es compleix per a $n \neq m$ perquè si P és regular però de diferent nombre de costats que R_i , el polígon regular R_i més gran inclòs a P no és el mateix P i, per tant, àrea (P) < àrea (R_i) . En conseqüència $\mu_6 < 1$.

Per demostrar la propietat iii) podem construir un polígon que tingui dos angles quasi nuls a cada extrem i tota la resta quasi plans com en el cas anterior (Figura 3.5). D'aquesta manera és possible estrènyer P a voluntat, sense alterar-ne l'àrea, allargant la longitud dels seus costats adequadament. En fer-ho l'àrea de R_i esdevé arbitràriament propera a 0.

Figura 3.6: Construcció d'un polígon que permet apropar arbitràriament μ_6 a 0.

Finalment, la demostració de la propieta
tiv)és anàloga a la del Teorema 3.6 $\hfill \Box$

3.7 Mesura 7: Relació inscrti/circumscrit

En aquesta secció proposem una mesura associada a l'algorisme descrit a la Secció 2.7 de manera que sigui una mesura normalitzada. A diferència dels dos casos anteriors proposem avaluar la relació entre els radis del polígon regular R_c més petit circumscrit a P i del regular R_i més gran inscrit a P.

Concretament la mesura proposada per a l'algoritme de relació inscrti/circumscrit és:

$$\mu_7(P) = \frac{\operatorname{radi}(R_i)}{\operatorname{radi}(R_c)}$$

Teorema 3.8 La mesura μ_7 és una mesura normalitzada si n = m i compleix les propietats i), iii) i iv) en cas que $n \neq m$.

Demostració: En primer lloc, demostrarem que μ_7 compleix la propietat *i*). Perquè $\mu_7 \in (0, 1]$, s'ha de complir que radi $(R_c) > àrea(R_i)$ la qual cosa és certa perquè R_i és un polígon inscrit a P i R_c un polígon circumscrit a P. L'interval és obert en 0 pel motiu ja esmentat en les seccions 3.5 i 3.6: els polígons considerats sempre tenen àrea no nul·la.

En segon lloc, demostrarem que μ_7 compleix la propietat ii) en que n = m. Si P és regular, el polígon regular R_i més gran inscrit a P és P i el polígon regular més petit circumscrita a P també és P, per tant, $R_i = R_c = P$ i radi $(R_i) = \text{radi}(R_c)$. En conseqüència, $\mu_7 = 1$. Recíprocament, si $\mu_7 = 1$, aleshores radi $(R_c) = \text{radi}(R_i)$, és a dir, $R_c = R_i = P$. Per tant, P és regular. La propietat ii) no es compleix per a $n \neq m$ perquè si P és regular però de diferent nombre de costats que R_i i R_c , el polígon regular R_i més gran inscrit i el polígon regular R_c més petit circumscrit no coincideixen amb P i, per tant, radi $(R_c) < \text{radi}(R_i)$. En conseqüència $\mu_7 < 1$.

La propietat iii) es demostra amb la mateixa construcció que per als Teoremes 3.6 i 3.7 (Figura 3.7).

Figura 3.7: Construcció d'un polígon que permet apropar arbitràriament μ_7 a 0.

Així mateix, la valides
a de la propietativ)es dedueix dels Teoremes 3.6 i 3.7.
 $\hfill\square$

Convé esmentar què, en aquest cas, hem preferit comparar els radis dels polígons en lloc de les àrees. El motiu és que la comparació entre àrees no

és més que el quadrat de μ_7 :

$$\frac{\operatorname{àrea}\left(R_{i}\right)}{\operatorname{àrea}\left(R_{c}\right)} = \frac{n \cos \frac{\pi}{n} \sin \frac{\pi}{n} radi^{2}(R_{i})}{n \cos \frac{\pi}{n} \sin \frac{\pi}{n} radi^{2}(R_{c})} = \left[\frac{radi(R_{i})}{radi(R_{c})}\right]^{2} = \left[\mu_{7}(P)\right]^{2}$$

Fetes les experimentacions pertinents, ens ha semblat que elevar al quadrat μ_7 dona lloc a resultats molt propers a zero amb massa facilitat. Per això hem preferit la mesura que proposem.

3.8 Mesura 8: Minimització de la porció angular més petita

En aquesta secció proposem una mesura normalitzada associada a l'algorisme descrit a la Secció 2.8, consistent a comparar l'àrea de la porció angular més petita amb l'àrea de P.

Concretament la mesura proposada per a l'algoritme de minimització de la porció angular més petita és:

$$\mu_8(P) = \frac{n \ a_{min}}{\text{area}\left(P\right)}$$

on a_{min} és l'àrea de la porció més petita de P trobada per l'algoritme.

Teorema 3.9 La mesura μ_8 és una mesura normalitzada.

Demostració: En primer lloc, demostrarem que μ_8 compleix la propietat i). Perquè $\mu_8 \in (0, 1]$ s'ha de complir que $n \ a_{min} \leq \text{area}(P)$. Com que a_{min} és la porció d'area més petita de P si $n \ a_{min} > \text{area}(P)$ voldria dir que al dividir P en n parts i sumar les parts més petites obtenim més àrea que P, contradicció. El interval obert en 0 el tenim garantit pel fet que el baricentre mai no es troba a la frontera del polígon i, per tant, l'àrea entre dues semirectes és estrictament positiva.

En segon lloc, demostrarem que μ_8 compleix la propietat *ii*). Si *P* és regular, al dividir el polígon en *n* porcions delimitades amb *n* semirectes amb origen al baricentre del polígon i amb angle entre semirectes igual a $\frac{2\pi}{n}$, obtenim que totes les porcions són iguals, i més concretament, cada porció és la *n*-enèsima part de l'àrea de *P*. Per tant, *n* $a_{min} = \text{area}(P)$. En conseqüència, $\mu_8 = 1$. Recíprocament, si $\mu_8 = 1$, aleshores *n* $a_{min} =$ area (*P*), per tant, totes les porcions angulars són iguals, això comporta que els vèrtexs de *P* han d'estar equiespaiats angularment. Si no ho estiguessin, aleshores en algun moment una de les porcions definida per les semirectes tallaria l'interior d'un costat de *P*, i es impossible que això doni lloc a àrea constant. Finalment, si tots els vèrtexs estan equiespaiats angularment, ja sols queda demostrar que els angles interiors de P (ens els vèrtexs) són tots iguals. Però és que si no ho fossin, de nou, les àrees no serien constants, per tant, P és regular.

Per demostrar la propietat iii) podem construir un polígon com el de la Figura 3.8 on apropant el (els dos) vèrtex central al costat oposat es pot fer arbitràriament petita l'àrea de la porció més petita, mentre que l'àrea de P es pot mantenir fixa allargant P en la mateixa proporcio que en disminuïm la seva amplada.

Figura 3.8: Construcció d'un polígon que permet apropar arbitràriament μ_8 a 0.

Finalment, es satisfà la propietat iv) perquè el quocient entre les àrees és invariant per semblances.

3.9 Mesura 9: Maximització de la porció angular més gran

En aquesta secció proposem una mesura normalitzada associada a l'algorisme descrit a la Secció 2.9, consistent a comparar l'àrea de la porció angular més gran amb l'àrea de P.

Concretament la mesura proposada per a l'algoritme de maximització de la porció angular més gran és:

$$\mu_9(P) = \frac{5\text{area}\,(P) - 9a_{max}}{(5n - 9)\ a_{max}}$$

on a_{max} és la l'àrea de la porció d'area més gran de P trobada per l'algoritme.

Teorema 3.10 La mesura μ_9 és una mesura normalitzada.

Demostració: En primer lloc, demostrarem que μ_9 compleix la propietat i). Perquè $\mu_9 \in (0,1]$ s'ha de complir que $\frac{\operatorname{area}(P)}{n} \leq a_{max} < \frac{5 \operatorname{area}(P)}{9}$. La primera desigualtat es compleix perquè sinó la porció més gran seria més gran que la *n*-enèsima part de *P*, i la segona, perquè es sabut que qualsevol recta que passa pel centre de masses del polígon (el baricentre del polígon) divideix el polígon en dues porcions tals que l'àrea de la més petita sempre és més gran o igual a 4/9 de l'àrea del polígon i l'àrea de la més gran és més petita o igual a 5/9 de l'àrea del polígon. Com que la porció angular d'àrea

38

 a_{max} està inclosa en un d'aquest semiplans, la seva àrea no pot ser més gran de 5/9 de l'àrea del polígon.

En segon lloc, demostrarem que μ_9 compleix la propietat *ii*). Si *P* és regular, les *n* porcions angulars de *P* són iguals i, més concretament, cada porció és la *n*-enèsima part de l'àrea de *P*. Aleshores $\mu_9 = 1$. Recíprocament, si $\mu_9 = 1$, aleshores vol dir que $a_{max} = \text{area}(P)/n$ i totes les porcions angulars tenen la mateixa àrea. És més, si la màxima és $\frac{1}{n}$, totes són $\frac{1}{n}$ perquè altrament nu sumaria ljàrea de P. Un raonament anàleg al de la demostració del Teorema 3.9 completa la demostració.

La propietat *iii*) la podem garantir construint un triangle com el de la Figura 3.9 en la qual la línia horitzontal que creua el centre de massa del triangle divideix el triangle en 4/9 de l'àrea a un costat i 5/9 a l'altre degut a que la línia és paral·lela a una aresta del triangle (Vegeu a [10]). Per tant, l'àrea de la regió del triangle delimitada per les semirectes t_i i t_{i+1} es pot fer arbitràriament propera a 5/9. Per generar un polígon de més de tres costats que faci μ_9 arbitràriament propera a 0, solament cal anar afegint els vèrtexs a la frontera del triangle construint un polígon molt similar al triangle. Finalment, es satisfà la propietat *iv*) perquè les semblances no

Figura 3.9: Construcció d'un polígon que permet apropar arbitràriament μ_9 a 0.

alteren la porció entre les àrees dels polígons.

3.10 Mesura 10: Maximització de la diferència entre porcions angulars

En aquesta secció proposem una mesura normalitzada associada a l'algorisme descrit a la Secció 2.10 que compari les àrees de les porció angulars més petita i més gran quan es maximitza la diferència entre ambdues.

Concretament la mesura proposada per a l'algoritme de maximització de la diferència entre porcions angulars és:

$$\mu_{10}(P) = \frac{a_{min}}{a_{max}}$$

on a_{min} i a_{max} son les porcions d'àrees de P més petita i més gran trobades per l'algorisme en maximitzar la diferència entre ambdues i que maximitza el quocient. **Teorema 3.11** La mesura μ_{10} és una mesura normalitzada.

Demostració: En primer lloc, demostrarem que μ_{10} compleix la propietat *i*). Perquè $\mu_{10} \in (0, 1]$ s'ha de complir que $a_{min} \leq a_{max}$. Aquesta desigualtat és certa per la pròpia definició de a_{min} i a_{max} . La mesura μ_{10} mai pot ser 0 perquè els polígons considerats sempre tenen àrea no nul·la, i el baricentre del polígon mai no es troba a la frontera.

En segon lloc, demostrarem que μ_{10} compleix la propietat *ii*). Si *P* és regular, les *n* porcions angulars de *P* són iguals, i més concretament, cada porció és la *n*-enèsima part de l'àrea de *P*. Aleshores $\mu_{10} = 1$. Recíprocament, si $\mu_{10} = 1$, aleshores vol dir que $a_{min} = a_{max}$. Per tant, totes les funcions a_{max} són constants. Això comporta que els vèrtexs de *P* han d'estar equiespaiats angularment per un raonament anàleg al dels Teoremes 3.9 i 3.10.

Per demostrar la propietat iii) podem construir un polígon com el de la figura 3.8.

Finalment, la propietat iv) es satisfà perquè les semblances no alteren les proporcions entre les àrees.

3.11 Mesura 11: Minimització del triangle més gran

En aquesta secció proposem una mesura normalitzada associada a l'algorisme descrit a la Secció 2.11. En concret, proposem una mesura que per una banda tingui en compte la distància entre el centre i els vèrtexs del polígon i per una altra banda compari els angles entre els costats i el centre de simetria de P.

Concretament la mesura proposada per a l'algoritme de minimització del triangle més gran és:

$$\mu_{11}(P) = \sqrt{\mu_{11}^1 \mu_{11}^2}$$

on $\mu_{11}^1 = \frac{d_{min}}{d_{max}}, d_{min} = \min\{d(q, p_i) | d(q, p_i) \neq 0, i = 1, \dots, n\}, d_{max} = \max\{d(q, p_i) | i = 1, \dots, n\}, \mu_{11}^2 = \frac{\alpha_{min}}{\alpha_{max}}, \alpha_{min} = \min\{\angle p_i q p_{i+1} | i = 1, \dots, n\}, \alpha_{max} = \max\{\angle p_i q p_{i+1} | i = 1, \dots, n\}.$

Teorema 3.12 La mesura μ_{11} és una mesura normalitzada.

Demostració: En primer lloc, demostrarem que μ_{11} compleix la propietat *i*). Com que $\mu_{11} = \mu_{11}^1 \mu_{11}^2$, comprovem que tant μ_{11}^1 com μ_{11}^2 pertanyen a l'interval (0,1]. Com que $0 < d_{min} \leq d_{max}$, es té $\mu_{11}^1 \in (0,1]$ i com que $0 < \alpha_{min} \leq \alpha_{max}$ és té $\mu_{11}^1 \in (0,1]$.

Demostrarem ara que es compleix la propietat ii). Si el polígon P és regular, situant el centre en el baricentre del polígon tindrem que tots els

angles i les distàncies són iguals, i per tant, $\mu_{11}^1 = \mu_{11}^2 = \mu_{11} = 1$. Per demostrar el recíproc comencem considerant que el centre q no és troba en un vèrtex de P. Llavors, P és un polígon amb un punt interior equidistant de tots els seus vèrtexs i veu tots els seus costat amb el mateix angle. Per tant P és regular. Com ara demostrarem, la mesura no pot ser 1 si el centre q es troba en un vèrtex de P. Suposem que és pot donar el cas i el centre qes troba en un vèrtex p_i . Per tant, totes les distàncies $d(p_i, p_i)$ $(i \neq j)$ són iguals, i també ho són tots els angles $\angle p_i p_j p_{i+1}$ $(i \neq j-1, j)$. Cal destacar que els triangles d'àrea màxima són $\triangle p_j p_i p_{i+1}$ per $i \neq j-1, j$, mentre que els triangles d'àrea mínima són $\triangle p_j p_{j-1} p_j$ i $\triangle p_j p_j p_{j+1}$. Sigui l una línia que passa per p_j i deixa P a un costat i q sigui un punt interior de P a distància ϵ de p_i (per un valor petit de ϵ) i tal que el segment $p_i q$ sigui perpendicular a l (per exemple Figura 3.10). No és díficil argumentar que, si $i \neq j-1, j$ llavors àrea $(\triangle p_j p_i p_{i+1}) >$ àrea $(\triangle q p_i p_{i+1}), i, si i \in \{j-1, j\},$ llavors, àrea $(\triangle p_i p_i p_{i+1}) <$ àrea $(\triangle q p_i p_{i+1})$. Contradicció i, per tant, la mesura no pot valer 0 i el centre estar en un vèrtex de P.

Figura 3.10: No és possible que la mesura valgui 1 i el centre es trobi en un vèrtex p_i de P.

Per demostrar la propietat iii) exposem com es pot construir un polígon P de n costats de manera que μ_{11} sigui un nombre tan proper a zero com es desitgi. Mostrarem com construir un polígon que faci arbitràriament proper a zero μ_{11} a causa del primer o el segon paràmetre. Per fer arbitràriament proper a zero el primer paràmetre construïm un triangle com el de la Figura 3.11, on $d_m in$ es pot fer tant petita com es vulgui apropant el vèrtex central al costat oposat i $d_m in$ tan gran com es vulgui allargant el costat més llarg. Si $n \ge 4$ s'afegeixen vèrtexs al triangle de forma simètrica. Aquesta configuració fa arbitràriament propera a zero μ_{11}^1 , mentre μ_{11}^2 es manté fitada a (0, 1].

També es pot fer arbitràriament proper a zero μ_{11}^2 , suposem que *n* és

Figura 3.11: Construcció dels polígons per als quals μ_{11}^1 és arbitràriament proper a 0.

multiple de 4 (els altres casos és pot tractar de forma similar). Agafem un quadrat i reemplacem cada un dels seus vèrtexs per n = 4 punts que estan molt propers uns dels altres i forment una cadena convexa de manera que la distància entre punts consecutius és sempre la mateixa. Degut a la simetria del polígon, el centre coincideix amb el centre del quadrat original. Si p_i , p_{i+1} són punts consecutius en una de les quatre cadenes, l'angle $\angle p_i q p_{i+1}$ és pot fer tant petit com és vulgui.

Finalment, demostrem que es satisfà la propietat iv). Aquesta mesura avalua quocients entre distàncies en el primer paràmetre i entre angles en el segon paràmetre, el primer queda escalat en la mateixa proporció i el segon no és veu alterat, per tant, al fer el quocient la mesura queda invariant per escalats.

3.12 Mesura 12: Maximització del triangle més petit

En aquesta secció proposem una mesura normalitzada associada a l'algorisme descrit a la Secció 2.12 que, per una banda, tingui en compte la distància entre el centre i els vèrtexs del polígon i, per una altra banda, compari els angles entre els costats i el centre de simetria de P.

Concretament la mesura proposada per a l'algoritme de maximització del triangle més petit és:

$$\mu_{12}(P) = \sqrt{\mu_{12}^1 \mu_{12}^2}$$

on $\mu_{12}^1 = \frac{d_{min}}{d_{max}}, \ d_{min} = \min\{d(q, p_i) | d(q, p_i) \neq 0, i = 1, \dots, n\}, \ d_{max} = \max\{d(q, p_i) | i = 1, \dots, n\}, \ \mu_{12}^2 = \frac{\alpha_{min}}{\alpha_{max}}, \ \alpha_{min} = \min\{\angle p_i q p_{i+1} | i = 1, \dots, n\}, \ \alpha_{max} = \max\{\angle p_i q p_{i+1} | i = 1, \dots, n\}.$

Teorema 3.13 La mesura μ_{12} és una mesura normalitzada.

Demostració:La demostració és anàleg a la demostració de la mesura 11 realitzada en la Secció 3.11 $\hfill \Box$

3.13 Mesura 13: Minimització de la diferència entre triangles

En aquesta secció proposem una mesura normalitzada associada a l'algorisme descrit a la Secció 2.13 que, per una banda, té en compte la distància entre el centre i els vèrtexs del polígon i, per una altra banda, compara els angles entre els costats i el centre de simetria de P.

Concretament la mesura proposada per a l'algoritme de minimització de la diferència entre triangles és:

$$\mu_{13}(P) = \sqrt{\mu_{13}^1 \mu_{13}^2}$$

on: $\mu_{13}^1 = \frac{d_{min}}{d_{max}}, d_{min} = \min\{d(q, p_i) | d(q, p_i) \neq 0, i = 1, \dots, n\}, d_{max} = \max\{d(q, p_i) | i = 1, \dots, n\}, \mu_{13}^2 = \frac{\alpha_{min}}{\alpha_{max}}, \alpha_{min} = \min\{\angle p_i q p_{i+1} | i = 1, \dots, n\}, \alpha_{max} = \max\{\angle p_i q p_{i+1} | i = 1, \dots, n\}.$

Teorema 3.14 La mesura μ_{13} és una mesura normalitzada.

Demostració:La demostració és anàleg a la de
 la mesura 11 (Teorema 3.12). $\hfill\square$

3.14 Conclusions

Al llarg d'aquest capítol hem proposat mesures de regularitat normalitzades que hem associat a cada algorisme implementat (descrits en el Capítol 2) en el projecte. A cada secció hem vist com la mesura proposada reflecteix la informació obtinguda per cada un dels algorismes. A continuació hem demostrat que les mesures proposades són mesures normalitzades.

En total hem proposat un total de 13 mesures a cada una de les quals hem dedicat una secció del Capítol 2 per explicar-ne l'algorisme i una d'aquest capítol per explicar-ne la seva normalització. Hem vist com algunes mesures es poden agrupar perquè comparteixen criteris d'avaluació de la regularitat i, fins i tot, comparteixen paràmetres avaluats. Així doncs, les mesures 11, 12 i 13, així com les mesures 8, 9 i 10, comparteixen el criteri de regularitat subjacent que, en tots dos casos, està relacionat amb la simetria central dels polígons regulars. Les mesures 2 i 3, com les mesures 11, 12 i 13, comparteixen, a més, el primer paràmetre de normalització.

Volem destacar que a cada mesura hem inclòs tots els paràmetres avaluats en els algoritmes. Així les mesures no perden informació respecte l'algorisme implementat. A la mesura 1, l'afirmació és òbvia. En les mesures 2 i 3 s'han avaluat dos paràmetres. El primer avalua la diferència entre els angles dels polígons abans i després de situar els vèrtexs a la circumferència i el segon paràmetre les distàncies angulars entre vèrtexs optimitzant en cada cas el paràmetre corresponent. A la mesura 4, tot i no tenir dos paràmetre explícits separats, s'ha mesurat per una banda la distància respecte les longituds regulars, i per una altra, la distància respecte dels angles regulars. A totes les mesures restants a excepció de les tres darreres, s'han comparat, a través de les àrees, els objectes construïts pels algoritmes (polígons regulars inscrit i circumscrit, porcions angulars mínima i màxima) amb el que resultaria idealment si el polígon fos regular. Finalment, a les mesures 11, 12 i 13 s'ha utilitzat el centre trobat per l'algorisme per mesura les distancies i els angles entre els vèrtex i el centre.

Finalment, destaquem que en tots els casos hem proposat mesures normalitzades. Aquest fet és molt important perquè ens garanteix que són mesures amb les quals podem saber com de regulars són els polígons i, en segona instància perquè ens permet comparar els diferents algorismes, i per tant, poder extreure conclusions comparatives entre les diferents mesures. Tot i així en les mesures 5, 6 i 7 en fer-les servir cal tenir present que si es compara un *n*-gon *P* amb un *m*-gon regular, les mesures 5, 6 i 7 no retornaran el valor 1, per molt, que *P* sigui regular, si $n \neq m$. Aquest comportament és, al nostre entendre, el més desitjable, però cal que qui utilitzi les nostres mesures en sigui conscient.

En resum, hem aconseguit tenir bones mesures per a tots els algoritmes proposats.

Capítol 4

Disseny del software

L'objectiu final d'aquest projecte no és disposar d'un software d'extrema qualitat per al seu ús repetit o massiu, sinó comprovar la dificultat de la implementació de les mesures proposades i, sobre tot, comprovar els seus resultats i comparar-los. Tanmateix, hem volgut que el software complís un mínim de criteris de qualitat, d'aquesta manera s'ha buscat l'equilibri amb l'esforç necessari per realitzar-lo. És per això que ens certs aspectes s'ha prescindit de realitzar un gran disseny sempre dins uns marges adequats, tenint a més, en compte les necessitats inherents al tipus d'algoritmes a implementar.

Els aspectes que més s'han valorat en el disseny realitzat han estat la fiabilitat, la modularitat, la facilitat d'ús i la reparabilitat. Aquests aspectes s'han considerat claus degut a l'objectiu del projecte d'experimentar les mesures proposades a [3] i extreure conclusions sobre elles. La fiabilitat s'ha prioritzat perquè si els resultats no fossin fiables les conclusions extretes no serien vàlides. L'aspecte de modularitat i la reparabilitat és de gran importància pel fet de ser un projecte de recerca on s'hi poden haver d'introduir noves mesures o modificacions a les mesures i, per tant, es fan necessaries aquestes característiques en previsió de canvis en el software. Finalment, el factor de facilitat d'ús és bàsic per a poder utilitzar el software de forma còmoda durant el desenvolupament dels experiments.

Altres factors com la compatibilitat, l'eficiència o la portabilitat han passat a segon terme donat que el funcionament del software és de temps limitat i d'ús restringit, destinat tan sols a dur a terme les experimentacions i l'extracció de conclusion sobre les mesures. Per tant, aquests són factors, que tot i que els hem tingut en compte, en cap cas s'han posat esforços en optimitzar-los.

Aquest capítol descriu l'arquitectura del software desenvolupat i la tecnologia utilitzada, els quals s'han decidit tenint en compte els factors esmentats.

4.1 Arquitectura del sistema

Donat que el sistema a desenvolupar és un sistema de certa dimensió, requereix ésser descomposat en grups de subtasques, de tal manera que cada grup de subtasques estigui a un nivell determinat d'abstracció. A més, els serveis a implementar tenen certa complexitat, i cal subdividir-los en serveis intermedis. Aquest fet de requerir una certa subdivisió en les tasques, juntament amb la necessitat d'evitar que, si és produeix algun canvi en la implementació dels serveis intermedis, aquests no es propaguin al llarg de tot el sistema i, finalment, la conveniència de fer una reutilització dels serveis intermedis en diferents tasques justifica l'organització del sistema en una arquitectura en capes.

Concretament, s'ha utilitzat una arquitectura de tres capes: presentació, domini i dades. L'usuari interacciona amb el sistema a través de la capa de presentació, i aquesta interacciona amb la resta de capes per tal de dur a terme les accions desitjades per l'usuari. La capa de domini es centra en desenvolupar les funcionalitats del sistema. Finalment, la capa de dades es la responsable de la interacció amb els fitxers del sistema.

Figura 4.1: Esquema de l'arquitectura de tres capes utilitzada.

Totes tres capes s'han dissenyat de manera que totes tinguin independència de les altres i, per tant, sigui possible el canvi de qualsevol d'elles sense que les altres es vegin afectades pel canvi. Tot i així, hi ha hagut un parell de classes que s'ha decidit fer-les comunes a totes les capes, trencant en aquest punt la independència: la classe Punt i la classe Polígon. Aquest fet es justifica per dues raons, una perquè és fortament improbable que hom vulgui canviar la forma de representar un polígon i un punt, degut a que són elements matemàtics molt ben definits, és poc probable el canvi en aquestes classes. El segon argument que sustenta aquesta decisió és que tenir aquestes classe com a tipus de dades bàsic facilita molt el desenvolupament del software perquè permet un ús molt més còmode de les dades que representen un punt i un polígon, dades que són contínuament utilitzades. Concretament, el format del punt s'ha definit com dos doubles que contenen les coordenades x i y i el format del polígon, com un vector de punts ordenat en sentit horari o antihorari.

4.1.1 Capa de presentació

La capa de presentació és la capa amb la qual l'usuari du a terme tota la interacció amb el software, és a dir, és la responsable de detectar les peticions de l'usuari i de transmetre la informació a la resta de capes per poder dur a terme les accions sol·licitades i, finalment, de presentar els resultats a l'usuari.

En la capa de presentació s'ha tingut molt present l'objectiu del projecte d'experimentar amb les mesures, i no de tenir un software d'utilització continuada i, per tant, amb poques probabilitats de voler fer millores a la interfície i si, en tot cas, de desenvolupar una interfície nova. És per això que s'han centrat els esforços d'aquesta capa en fer una interfície intuïtiva, fàcil d'utilitzar i orientada a poder introduir i visualitzar les dades de forma senzilla, i s'ha posat en segon terme aspectes del disseny que portin a realitzar una interfície reutilitzable, amb facilitat de mantenibilitat i eficient.

La interacció entre la capa de presentació i l'usuari és dur a terme mitjançant el ratolí i, en alguns casos, el teclat però evitant la memorització de tecles per part de l'usuari. D'aquesta manera és garanteix que sigui còmode d'utilitzar per l'usuari. L'usuari té el control en tot moment, però el sistema manté la consistència de les dades i, per tant, controla totes les dades introduïdes per l'usuari i, en cas de ser inconsistents, no s'executa l'acció i li mostrem un avís de l'error succeït (veure l'exemple a la Figura 4.2). Finalment, perquè l'usuari pugui rectificar en les accions realitzades si comet alguna errada s'ha plantejat un sistema de per a refer o desfer les accions dutes a terme.

Figura 4.2: Exemple de finestra d'avís d'error.

Concretament, les interaccions previstes per a l'usuari amb la capa de presentació són:

- 1. Introduir polígon per teclat.
- 2. Càlcul de les mesures.

- 3. Visualització dels resultats de les mesures.
- 4. Modificació del polígon.

Moure vèrtex. Inserir vèrtex. Suprimir vèrtex.

- 5. Zoom.
- 6. Pan.
- 7. Desfer acció.
- 8. Refer acció.
- 9. Configurar costats de mesures 5, 6 i 7.
- 10. Nou polígon.
- 11. Obrir polígon.
- 12. Desar polígon.

Per tal de poder satisfer tots els objectius, s'ha dissenyat la vista general de l'interfície amb un menu i 4 botons per gestionar les diferents accions, i dues seccions de visualització: una on es mostren els resultats textuals de les mesures i l'altre on s'en mostren els resultats gràfics. Això s'il·lustra a la Figura 4.3.

C PFC	- *
Arxiu Edita Configura Visualitza Ajuda	
	Nou polígon Zoom Modifica polígon Pan
	Mesura 1 0.957356 Mesura 2 0.733695
	Mesura 3 0,725471 Mesura 4 0,778229
	Mesura 5 0,776920 Mesura 6 0,796078
	Mesura 7 0,786441 Mesura 8 0,765792
	Mesura 9 0,779010 Mesura 10 0,658100
	Mesura 11 0,514105 Mesura 12 0,473942
	Mesura 13 0,514105

Figura 4.3: Vista general de la interfície.

Per a cada mesura es poden visualitzar un conjunt de dades i un conjunt d'elements gràfics. Concretament, les vistes de cada mesura són les que es presenten a les Figures 4.4 a 4.16:

Figura 4.4: Visualització de la mesura 1, on es pot veure en blau el polígon original, P i en vermell els polígons regulars de mateixa àrea i mateix perímetre que P.

Figura 4.5: Visualització de la mesura 2, on es pot veure en blau el polígon original, P, en verd el polígon inscrit a la circumferència, P', en vermell el polígon regular, R, la circumferència, i els vèrtexs mes llunyans angularment de P' i R.

Figura 4.6: Visualització de la mesura 3, on es pot veure en blau el polígon original, P, en verd el polígon inscrit a la circumferència en posició òptima, P', en vermell el polígon regular, R, la circumferència, i dos vèrtexs associats de P' i R.

Figura 4.7: Visualització de la mesura 4, on es pot veure en blau el polígon original, P, i en vermell el polígon regular més proper a P a l'espai 2n-dimensional.

Figura 4.8: Visualització de la mesura 5, on es pot veure en blau el polígon original, P, i en vermell el polígon regular més petit circumscrit a P.

Figura 4.9: Visualització de la mesura 6, on es pot veure en blau el polígon original, P, i en vermell el polígon regular més gran inscrit a P.

Figura 4.10: Visualització de la mesura 7, on es pot veure en blau el polígon original, P, i en vermell el polígon regular més gran inscrit a P i el polígon regular més petit circumscrit a P.

Figura 4.11: Visualització de la mesura 8, on es pot veure en blau el polígon original, P, en negre el feix de simetria en la posició que minimitza l'àrea de la porció més petita i en taronja la porció més petita.

Figura 4.12: Visualització de la mesura 9, on es pot veure en blau el polígon original, P, en negre el feix de simetria en la posició que maximitza l'àrea de la porció més gran i en lila la porció més gran.

Figura 4.13: Visualització de la mesura 10, on es pot veure en blau el polígon original, P, en negre el feix de simetria en la posició que maximitza la diferència d'àrees entre la porció més petita i la porció més gran, en taronja la porció més petita i en lila la porció més gran.

Figura 4.14: Visualització de la mesura 11, on es pot veure en blau el polígon original, P, en negre els segments que uneixen el centre amb els vèrtexs (el més llarg i el més curt en groc i verd, respectivament) de tal manera que es minimitzi l'àrea del triangle més gran, i en lila els triangles d'àrea més gran.

Figura 4.15: Visualització de la mesura 12, on es pot veure en blau el polígon original, P, en negre els segments que uneixen el centre amb els vèrtexs (el més llarg i el més curt en groc i verd respectivament) de tal manera que es maximitza l'àrea del triangle més petit, i en taronja els triangles d'àrea més petita.

Figura 4.16: Visualització de la mesura 13, on es pot veure en blau el polígon original, P, en negre els segments que uneixen el centre amb els vèrtexs (el més llarg i el més curt en groc i verd, respectivament) de tal manera que es minimitzi la diferència entre l'àrea del triangle més gran i l'area del triangle més petit, en taronja els triangles d'àrea més petita i en lila els triangles d'àrea més gran.

Finalment, convé destacar que la capa d'interfície gestiona la informació del polígon en tot moment i que, quan es produeix un esdeveniment que altera el polígon, es realitza una interacció amb la capa de domini (transparent a l'usuari) per tal de calcular totes les mesures sobre el nou polígon i recollir el resultats per mostrar-los a l'usuari.

4.1.2 Capa de domini

A la capa de domini on és duen a terme les funcionalitats del sistema, més concretament, on es realitzen els càlculs de les mesures. En el disseny d'aquesta capa s'ha donat molta importància a la independència de cada funcionalitat. Així, si mai es decideix fer algun canvi en alguna funcionalitat o alguna nova incorporació, no es generaran problemes a la resta de la capa. Tot i així, donada la relació entre les funcionalitats, són moltes les classes compartides entre elles.

A continuació, es detallen les funcionalitats implementades, de les quals es fa una breu descripció de cadascuna i s'il·lustra el model conceptual de cada funcionalitat (per simplicitat, mostrem el model conceptual per funcionalitats) del qual se'n fa una breu descripció.

Totes les funcionalitats tenen com a precondició que el polígon a avaluar, P, és convex i no té dos vèrtexs en un mateix punt.

1. Mesura 1: Relació àrea/perímetre

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de relació àrea/perímetre i s'utilitza la mesura de

4.1. ARQUITECTURA DEL SISTEMA

regularitat proposada a 2.1. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 1.

El diagrama de classes del model conceptual es pot veure a la Figura 4.17.

Figura 4.17: Diagrama de classes de la funcionalitat associada a la mesura 1.

Descripció del model: El model consta de tres classes. La classe alg_are_per conté l'estructura de l'algoritme i les classes calculs-_poligon i construccio_poligon realitzen càlculs parcials.

2. Mesura 2: Minimització del desplaçament màxim

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de minimització del desplaçament màxim i s'utilitza la mesura de regularitat proposada a 2.2. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 1.

El diagrama de classes del model conceptual es pot veure a la Figura 4.18.

Figura 4.18: Diagrama de classes de la funcionalitat associada a la mesura 2.

Descripció del model: El model consta de sis classes, de les quals tres (alg_min_des_max, radi i cerca_pos_reg) s'encarreguen de la gestió de l'algorisme i les altres tres (distancia, calculs_poligon i construccio_poligon) s'encarreguen de gestionar càlculs parcials de l'algoritme. Concretament, la classe $alg_min_des_max$ s'encarrega de l'estructura de l'algorisme, la classe radi s'encarrega de cercar el radi de la circumferència per inscriure P i la classe $cerca_pos_reg$ de trobar la posició regular, és a dir, la que minimitza el desplaçament màxim. Cadascuna de les classes de càlculs parcials s'encarrega d'uns càlculs concrets: la classe distancia s'encarrega de càlculs relacionats amb distàncies, calculs_poligon s'encarrega de càlculs relacionats amb els polígons i construccio_poligon de la construcció dels polígons necessaris.

3. Mesura 3: Minimització de la suma de desplaçaments

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de minimització de la suma de desplaçaments s'utilitza la mesura de regularitat proposada a 2.3. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 3.

Descripció del model: Com per a la mesura anterior, el model consta de sis classes de les quals tres (alg_min_suma, radi i cerca_pos_reg) s'encarreguen de la gestió de l'algorisme i les altres tres (distancia, calculs_poligon i construccio_poligon) s'encarreguen de gestionar càlculs parcials de l'algoritme.

4. Mesura 4: Distància a la representació 2n-dimensional

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de distància a la representació 2n-dimensional i s'utilitza la mesura de regularitat proposada a 2.4. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 4.

El diagrama de classes del model conceptual es pot veure a la Figura 4.19.

Figura 4.19: Diagrama de classes de la funcionalitat associada a la mesura 4.

Descripció del model: El model consta de quatre classes. La classe alg_punt_recta conté l'estructura de l'algoritme i les classes

distància, calculs_poligon i construccio_poligon realitzen càlculs parcials.

5. Mesura 5: Circumscripció per un polígon regular

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de circumscripció per un polígon regular i s'utilitza la mesura de regularitat proposada a 2.5. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 5.

El diagrama de classes del model conceptual es pot veure a la Figura 4.20.

Figura 4.20: Diagrama de classes de la funcionalitat associada a la mesura 5.

Descripció del model: El model consta de quatre classes. La classe alg_inscricpcio conté l'estructura de l'algoritme, la classe llibreria_cdd calcula el polígon regular circumscrit en base als paràmetres subministrats per alg_inscripcio i les classes calculs_poligon i construccio_poligon duen a terme càlculs parcials.

6. Mesura 6: Inscripció per un polígon regular

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de inscripció per un polígon regular i s'utilitza la mesura de regularitat proposada a 2.6. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 6.

Descripció del model: El model consta de quatre classes anàlogament a les del cas anterior. La classe alg_circumscripcio conté l'estructura de l'algoritme, la classe llibreria_cdd calcula el polígon regular inscrit en base als paràmetre subministrats per alg_inscripcio i les classes calculs_poligoni construccio_poligon fan càlculs parcials.

7. Mesura 7: Relació inscrit/circumscrit

Descripció: S'avalua la regularitat del polígon utilitzant la comparació del polígon regular inscrit i el regular circumscrit i s'utilitza la mesura de regularitat proposada a 2.7. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 7.

Descripció del model: Com en els dos casos anteriors, el model consta de tres classes. La classe alg_inscricpcio_circumscripcio conté l'estructura de l'algoritme, la classe calculs_poligon realitza càlculs dels polígons i la classe construccio_poligon construeix polígons intermedis.

8. Mesura 8: Minimització de la porció angular més petita

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de minimització de la porció angular més petita i s'utilitza la mesura de regularitat proposada a 2.8. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 8.

El diagrama de classes del model conceptual es pot veure a la Figura 4.21.

Figura 4.21: Diagrama de classes de la funcionalitat associada a la mesura 8.

Descripció del model: El model consta de quatre classes, on la classe de *alg_dis_equi_min_petit* conté l'estructura de l'algoritme, la classe *calculs_poligon* realitzar càlculs parcials del polígon, la classe *equacio* resol equacions de fins a 4 grau i la class *funcio_quo_tan* representa funcions de quocients de tangents.

9. Mesura 9: Maximització de la porció angular més gran

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de maximització de la porció angular més gran i s'utilitza la mesura de regularitat proposada a 2.9. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 9.

Descripció del model: Com en el cas anterior, el model consta de quatre classes:alg_dis_equi_max_gran, calculs_poligon, equacio i funcio_quo_tan.

10. Mesura 10: Maximització de la diferència entre porcions angulars

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de maximització de la diferència entre porcions angulars i s'utilitza la mesura de regularitat proposada a 2.10. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 10.

Descripció del model: Anàleg als dos anteriors.

11. Mesura 11: Minimització del triangle més gran

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de minimització del triangle més gran i s'utilitza la mesura de regularitat proposada a 2.11. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 11.

El diagrama de classes del model conceptual es pot veure a la Figura 4.22.

Figura 4.22: Diagrama de classes de la funcionalitat associada a la mesura 11.

Descripció del model: El model consta de quatre classes, on la classe alg_centre_areal_min_gran conté l'estructura de l'algoritme i la classe llibreria_cdd calcula el centre areal a partir dels paràmetres proporcionats per la classe anterior. Les classes calculs_poligon i construccio_poligon realitzen càlculs parcials de l'algoritme.

12. Mesura 12: Maximització del triangle més petit

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de maximització del triangle més petit i s'utilitza la mesura de regularitat proposada a 2.12. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 12.

Descripció del model: El model consta de quatre classes anàlogues a les de la mesura anterior, calculs_poligon, llibreria_cdd, alg_centre_areal_max_petit i construccio_poligon.

13. Mesura 13: Minimització de la diferència entre triangles

Descripció: S'avalua la regularitat del polígon utilitzant l'algorisme proposat a [3] de minimització de la diferència entre el triangle més gran i el més petit i s'utilitza la mesura de regularitat proposada a 2.13. A més, es calculen les figures a visualitzar descrites a 4.1.1 per a la mesura 13. Descripció del model: Anàleg als dos anteriors.

4.1.3 Capa de dades

La gestió de dades del sistema s'ha implementat mitjançant fitxers de dades. Concretament, el sistema permet introduir polígons i guardar els polígons amb les dades de cada mesura avaluada. Aquesta acció es realitza mitjançant fitxers en primer lloc per la seva simplicitat de gestió i en segon lloc perquè d'aquesta manera es facilitava l'ús dels fitxers per part de l'usuari fora de l'entorn del software.

Els fitxers són de text (extensió .txt) i s'ha establert un format d'entrada del polígon i un format de sortida del polígon. L'elecció d'aquest tipus de fitxer es deu a què és fàcilment editable i fàcil de llegir per altres entorns. Per això no s'ha integrat al software la funcionalitat d'edició.

El format d'entrada del fitxer és el següent: cada vèrtex del polígon ocupa una línia i, a cada línia, hi apareixen les coordenades x i y del vèrtex separades per un espai. Els vèrtexs han d'estar ordenats en sentit horari o antihorari. Per separar les xifres decimals de les enteres s'ha emparat el punt.

Exemple de fitxer d'entrada:

- 0 0.533483
- 0.412906 0.563155
- 0.156786 1

Per tal de facilitar l'ús del software, el format del fitxer de sortida és compatible amb el del fitxer d'entrada. D'aquesta manera, un cop guardat un fitxer, es pot reproduir el mateix polígon de sortida com a polígon d'entrada. Ara bé, el fitxer de sortida conté, a més, la informació referent al polígon i la informació referent a cadascuna de les mesures. En llegir un fitxer de sortida, el sistema es limita a llegir els vèrtexs del polígon, tot ignorant la resta del contingut del fitxer. Es pot veure un exemple de format del fitxer a l'annex A).

Per tal d'independitzar el procés de entrada de dades del de sortida de dades, és a dir, el procés de lectura d'un polígon i el procés de desar un polígon amb les mesures, s'han creat una classe "reader" i una classe "write".

4.1.4 Controladors

La interacció entre capes s'ha resolt mitjançant controladors. D'aquesta manera es manté la independència entre capes, cap capa no connecta directament amb les altres capes i, en cas de canviar alguna de les capes, les altres capes es poden mantenir totalment inalterades.

Concretament, s'han utilitzat controladors de tipus transaccional. S'ha optat per aquest tipus de controlador per, d'aquesta manera, independitzar totes les tasques del sistema entre elles. Així, en cas de modificar o fins i tot

4.2. TECNOLOGIA

suprimir alguna funcionalitat, el canvi serà totalment transparent als altres esdeveniments del sistema.

A cada controlador s'hi han definit els seus paràmetres d'entrada i de sortida. En el moment de l'esdeveniment s'executa l'acció i ells accedeixen a la resta de capes per tal de realitzar les operacions necessaries. Un cop realitzada l'acció s'emmagatzema els resultats en el controlador per tal de ser consultats en els moments necessaris. D'aquesta manera la informació en tot moment es manté en els controladors i les capes accedeixen a ells per a obtenir la informació quan els i és necessària.

4.2 Tecnologia

Donat que el software no té per objectiu de dur-lo a explotació sinó utilitzarlo per fer un estudi pràctic de les mesures, aquest s'ha desenvolupat per a ser utilitzat en un entorn Linux, per la comoditat oferta per aquest sistema operatiu a l'hora d'integrar llibreries i, per tant, tenir un grau superior de compatibilitat entre diferents elements.

Com que el disseny del software està orientat a tenir un fort component en la capa de domini i un sistema de dades força simple, s'ha optat per desenvolupar el software amb el llenguatge C++ donada la seva orientació a objectes, la seva facilitat a l'hora de poder crear les estructures de dades pròpies per emmagatzemar la informació i perquè disposa d'un ventall molt ampli de classes ja implementades, molt útils per desenvolupar el software [11]. A més, són moltes les llibreries desenvolupades en aquest llenguatge que són fàcilment integrables. Alguns exemples utilitzats durant el desenvolupament del projecte han estat la utilització de la classe math per a operacions matemàtiques, la utilització de les llibreries de streaming per tal de realitzar les lectures i escriptures dels paràmetres d'entrada i sortida de dades o la llibreria integrada en la implementació de les mesures 5, 6 i 7.

L'elecció del llenguatge C++ també es deu a què disposa de moltes llibreries de suport gràfic, les quals faciliten el desenvolupament de la interfície. Concretament, en el desenvolupament de la part gràfica del projecte s'han utilitzat les llibreries de QT4 [12] orientades a desenvolupar interfícies simples, intuïtives i de fàcil ús per l'usuari. A més, faciliten la tasca de programació. QT4 és compatible amb l'ús de la llibreria OpengGL, que s'ha utilitzat per dur a terme les representacions gràfiques de les figures geomètriques.

Capítol 5

Manual d'usuari

Aquest capítol és un manual amb la finalitat de que qualsevol usuari que vulgui utilitzar l'aplicació conegui les funcionalitats que es poden dur a terme i com dur-les a terme. A cada secció es detalla què aporta cada funcionalitat en concret i com dur-la a terme.

5.1 Vista General

En aquesta secció es mostra la vista general de l'aplicació i es descriu cadascuna de les parts que té la interfície. Com es veu a la Figura 5.1 hi ha cinc zones d'interacció amb la interfície.

Figura 5.1: Vista general de l'aplicació.

A la part superior de la imatge (número 1) podem veure el menu que permet seleccionar les accions a dur a terme. A la part central esquerra (número 2) es troba el quadre d'interacció gràfica que permet modificar els polígons i visualitzar els elements gràfics. A la part superior dreta (número 3) l'usuari disposa d'un botó de selecció de 4 modes d'interacció (nou polígon, zoom, pan o modificar polígon). A la part dreta central (número 4) 13 quadres de text mostren els resultats de les 13 mesures avaluades en el polígon actiu. Finalment, a la part inferior dreta (número 5) es disposa d'un quadre de text on es mostren els valors numèrics associats a la mesura que s'està visualitzant a la finestra gràfica.

5.2 Inserir polígon

En aquesta secció expliquem com podem introduir un nou polígon. Concretament, en el primer apartat detallarem com introduir un polígon mitjançant la interacció amb el ratolí i, en el segon apartat, com podem introduir un polígon amb més precisió utilitzant un fitxer.

Sigui quin sigui el mode d'inserir el polígon, en el moment que finalitza la inserció s'avaluen el conjunt de les 13 mesures i es mostren els resultats en els quadre de text, finalment, s'activen les opcions en el menu de visualitzar mesures.

5.2.1 Per ratolí

Per poder introduir un nou polígon mitjançant l'element gràfic i interectuant amb el ratolí hem de tenir el mode de visió nou polígon activat (tal com es veu a la Figura 5.1), aquesta és l'opció per defecte. Per a més detalls sobre com activar-la, vegeu la Secció 5.5.1. Per introduir el polígon s'utilitza el quadre d'interacció gràfica, que sols respon als clicks produïts pel botó esquerra del ratolí. Un cop seleccionat aquest mode hem de fer click en el quadre d'interacció gràfica en el punt on volem situar el primer vèrtex, a continuació anem desplaçant el ratolí i a partir d'aquest moment, cada click introdueix un nou vèrtex en el lloc on tinguem el cursor(Figura 5.2). Per completar el polígon, quan estem situats a prop del vèrtex inicial se'ns crearà un segment vermell que connecta amb el vèrtex inicial (tal com es mostra a la Figura 5.3): fent click es finalitza la creació del polígon. Si el polígon que es construeix no és convex (Figura 5.4) o conté dos vèrtexs en un mateix punt, es mostrarà una finestra d'error com les de la Figura 5.5 i la Figura 5.6, respectivament.

5.2.2 Per fitxer

Per introduir un polígon amb una precisió més gran, es pot utilitzar un fitxer on es defineixen el seus vèrtexs. Més concretament, s'ha de crear un fitxer d'extensió ".txt" amb les coordenades dels vèrtexs del polígon en sentit horari o antihorari. El fitxer ha de contenir un vèrtex per linea indicant primer la coordenada x i a continuació, separada mitjançant un espai, la coordenada ydel vèrtex, per separar la part entera de la decimal s'ha d'utilitzar el caràcter ".".

Arxiu Edita Configura Visualitza Ajuda		
ann Taga Foundra Anna	Nou poligon Nou for a second	om

Figura 5.2: Construcció d'un polígon mitjançant el ratolí: s'han introduït cinc vèrtexs i s'està generant el el sisè.

Figura 5.3: Construcció d'un polígon mitjançant el ratolí: s'han introduït tots els vèrtex del polígon i es mostra el darrer costat (vermell), que ens permet finalitza el polígon.

Figura 5.4: Construcció d'un polígon no convex.

Figura 5.5: Finestra d'error que es produeix en cas d'introduir un polígon no convex.

Figura 5.6: Finestra d'error que es produeix en cas d'introduir un polígon amb dos o més vèrtexs en el mateix punt.

Un exemple del contingut d'un fitxer d'entrada d'un nou polígon, en aquest cas, un triangle amb els vèrtexs situats a (0, 0.533483), (0.412906, 0.563155)i (0.1516786, 1):

- 0 0.533483
- 0.412906 0.563155
- 0.156786 1

Un cop creat el fitxer s'ha de seleccionar l'opció del menu Arxiu->Obre Polígon o teclejar shift+A i a continuació shift+O. Un cop executada aquesta acció s'obrira una finestra de diàleg com la de la Figura 5.7, hem de seleccionar el fitxer en el qual hem definit el polígon i aquest quedarà inserit. En cas d'error en el format del fitxer d'entrada, es mostrarà una finestra d'error com la de la Figura 5.8. Com en el cas de la introducció per ratolí, si el polígon definit no és convex o conté dos vèrtexs en el mateix punt es mostrarà una finestra d'error.

5.3 Visualitzar mesures

Un cop introduït un polígon, a més dels resultats de les mesures, mostrats en els quadres de text, es poden visualitzar la representació gràfica de cada mesura i les dades pròpies de la mesura. Les dades es mostren en el quadre de text inferior i la representació gràfica en el quadre d'interacció gràfica.

Per seleccionar la visualització d'una de les mesures cal seleccionar en el menu l'opció Visualitza->Tria mesura i, a continuació, triar la mesura desitjada, tal com es mostra a la Figura 5.9. Un cop seleccionada la mesura, se'n visualitzaran els elements gràfics i les dades tal i com es mostra a la
0	Obri poligon	
Look in:	🛅 /home/ramon/Escriptorrficie/Imatges/manual 🗸 🔶 🋔	📔 🔃 🗉
Compute	er Poligon.txt	
ramon		
File name:	II Poligon.txt	Open
Files of type:	Text (* txt)	Cancel

Figura 5.7: Finestra de diàleg d'obrir polígon.

Figura 5.8: Finestra d'error en cas de format incorrecte del fitxer d'entrada.

Figura 5.10.

Figura 5.9: Com activar el menu Tria una mesura.

Un cop tenim seleccionada la visió de una mesura podem decidir quins elements gràfics es mostren (per defecte es mostren tots els corresponents a la mesura). Per realitzar aquesta acció s'ha de seleccionar en el menu l'opció Visualitza->Tria vista i, a continuació, seleccionar la mesura que es desitja. Tot seguit es mostrarà la llista dels elements gràfics de la mesura, amb els elements visibles estan marcats (Figura 5.11), fent un click sobre l'element s'invertira la seva visualització, és a dir, si estava visible passara a no visualitzar-se i viceversa (tal com es mostra a la Figura 5.12 on s'ha deixat de visualitzar la circumferència).

Figura 5.10: Exemple on es mostra la visualització de la mesura 2.

0					PI	FC						- ×
Arxiu	Edita	Configura	⊻isualitza	Ajuda								
			Poligon									
			Tria mes	ura⇒				0	Not	u polígon	. z	oom
			Tria vist	a >	Mesura 1				Mor	tifica polígo	n O P	an
					Mesura 2	2	Circumfere					
			1	_	Mesura 3	2	🖾 Poligon ori	ginal	1	0,957356	Mesura 2	0,733695
			1		Mesura 4		S Polígon ins	crit		0.725471	l	0.779229
					Mesrua 5		🛿 Polígon reg	gular	13	0,723471	Mesura 4	0,770223
					Mesura 6		🛿 Vèrtex insc	rit	5	0,776920	Mesura 6	0,796078
		1/			Mesura 7		🖾 Vèrtex regi	ular				
		X			Mesura 8		🖾 Parells de 🕯	vèrtexs	7	0,786441	Mesura 8	0.765792
		*			Mesura 9	27	1			0.770010		0.050300
		N			Mesura 10)	Mesura	9 9	0.779010	Mesura 10	0,658100
		NI I			Mesura 11	2)	1	Mesura	. 11	0,514105	Mesura 12	0,473942
					Mesura 12	2,	Y I					
		V.			Mesura 13	4		Mesura	a 13	0,514105		
						/						
		`			<u> </u>			MESU	RA :	2. MINIMITZ	ACIÓ DEL	<u> </u>
				-				DESPI	LAÇ.	AMENT MAD	am	
								Radi :	- 4.	10974		
								Difere	nci	a màxima a	angles = 0,5	57096
								Distà	ncia	angular m	àxima = 0,2	278289
								Mu2_	1 =	0.818258		~

Figura 5.11: Com activar el menu Tria vista.

e	PF	c					= ×
Arxiu Edita Configura Visualitza Ajuda							
Poligon							
Tria mesura >			0	Not	u polígon	0 Z	oom
Tria vista →	Mesura 1			Mor	tifica políor		
		🗌 Circumferè	ncia				
	Mesura 3	🖾 Polígon orig	ginal	1	0,957356	Mesura 2	0,733695
	Mesura 4	S Polígon inse	crit		0 725471		0.779220
	Mesrua 5	Polígon reg	ular	13	0,723471	Mesura 4	0,770229
	Mesura 6	🖾 Vèrtex insc	rit	15	0,776920	Mesura 6	0,796078
1	Mesura 7 🔿	🖾 Vèrtex regu	ılar	17			
X	Mesura 8	🖾 Parells de v	rèrtexs	7	0,786441	Mesura 8	0,765792
*	Mesura 9	\			0.770010		0.650100
	Mesura 10		Mesura	a 9	0,779010	Mesura 10	0,038100
	Mesura 11 >	(Masura		0,514105	Mesura 12	0,473942
	Mesura 12	>					
	Mesura 13		Mesura	a 13	0,514105		
			MESU	RA :	2. MINIMITZ	ACIÓ DEL	<u> </u>
			DESPL	LAÇ,	AMENT MÁJ	GM	
			Radi -	- 4.	10974		
			Diferè	nci	a màxima a	angles = 0,5	7096
			Distàr	ncia	angular m	àxima = 0,2	78289
			Mu2_1		0.818258		~

Figura 5.12: Visualització de com s'ha deixat de fer visible un element gràfic, concretament la circumferència en la mesura 2.

Les mesures 2 i 3, a més dels elements gràfics visibles fixos, incorporen la visualització de les parelles de vèrtexs associats entre el polígon inscrit a la circumferència i el polígon regular. Si està activada aquesta visualització en passar el cursor per sobre d'un dels vèrtexs de qualsevol dels dos polígons es visualitza també el vèrtex corresponent a l'altre polígon (Figura 5.13).

Figura 5.13: Visualització dels vèrtexs associats quan tenim el cursor sobre un vèrtex.

5.4 Modificar el polígon

En aquest capítol es descriu com modificar un polígon que ja ha estat introduït. Concretament, és possible moure un dels vèrtexs del polígon, inserir un nou vèrtex al polígon o suprimir un dels vèrtexs del polígon.

Per poder realitzar una modificació d'un polígon s'ha de tenir activat el mode de visió "Modifica polígon" (vegeu a la Secció 5.5.4).

5.4.1 Moure vèrtex

Per modificar la posició d'un vèrtex del polígon hem de seleccionar l'opció Edita->Tria modificació->Mou vèrtex del menu (quan s'entra en mode de visió modificació del polígon és l'opció per defecte). Vegeu a la Figura 5.14.

Per realitzar el moviment del vèrtex primer cal seleccionar el vèrtex que es vol moure, fent click amb el ratolí sobre el vèrtex. Un cop seleccionat el vèrtex, amb el moviment del ratolí s'aniran modificant els costats del polígon afectats pel moviment fins a seleccionar amb un nou click del ratolí la posició final del vèrtex.

Si al realitzar el moviment del vèrtex, el nou polígon no és convex o conté dos vèrtexs en el mateix punt es mostrara un missatge d'error com el de la Figura 5.15 i la modificació quedarà cancel·lada retornant el polígon a l'estat anterior a la modificació.

Figura 5.14: Com activar el menu que permet moure un vèrtex.

5.4.2 Inserir vèrtex

Per inserir un nou vèrtex al polígon actual hem de seleccionar l'opció del menu Edita->Tria modificació->Insereix vèrtex (Figura 5.16).

· PFC	
Arxiu Edita Configura Visualitza Ajuda	
Refès	
Desfès	 Nou polígon Zoom
Tria modificació 🔿 🛃 Mou vèrtex	O Modifica polígon 🔿 Pan
Suprimeix vértex	Mesura 1 0.745729 Mesura 2 0.793917
	Mesura 3 0,944952 Mesura 4 0,735643
	Mesura 5 0,718955 Mesura 6 0,769549
	Mesura 7 0,743822 Mesura 8 0,782844
	Mesura 9 0,716658 Mesura 10 0,625206
	Mesura 11 0,501594 Mesura 12 0,472997
	Mesura 13 0,450967
\sim	

Figura 5.16: Com activar el menu que permet inserir un vèrtex.

Per poder introduir un nou vèrtex el primer que hem d'indicar és entre quins dos vèrtexs volem situar el nou vèrtex, fent un click al costat del polígon que ens interessa (Figura 5.17). Un cop seleccionat el costat, en moure el ratolí es van creant els dos nous costats (Figura 5.18) fins a seleccionar la posició del nou vèrtex fent click al ratolí.

Figura 5.17: Selecció d'un costat per inserir un vèrtex.

Figura 5.18: Moviment del cursor per indicar el lloc on es vol situar el nou vèrtex, els costats van movent-se amb el cursor.

Si en realitzar la inserció d'un nou vèrtex, el nou polígon no és convex o conté dos vèrtexs en un mateix punt, es mostrarà un missatge d'error com el de la Figura 5.15 i la modificació quedara cancel·lada retornant el polígon a l'estat anterior a la modificació.

5.4.3 Suprimir vèrtex

Per suprimir un dels vèrtexs del polígon, s'ha de seleccionar al menu l'opció Edita->Tria modificació->Suprimeix vèrtex (Figura 5.19).

Per suprimir un dels vèrtexs, aquest s'ha de seleccionar fent click sobre ell, i serà eliminat. Si el polígon és un triangle, aquesta modificació no és possible i, es mostrarà un missatge d'error (Figura 5.20) i el polígon quedarà inalterat.

Figura 5.19: Com activar el menu que permet suprimir un vèrtex.

Figura 5.20: Finestra d'error que es mostra en cas d'haver seleccionat un vèrtex a suprimir i el polígon tingui només tres vèrtexs.

5.5 Modes d'interacció

L'aplicació permet 4 modes diferents d'interacció: Nou polígon, Zoom, Pan i Modificar polígon. En els apartats següents es detalla la manera d'activarlos i quines accions es poden dur a terme en cada mode.

5.5.1 Nou polígon

El mode Nou polígon permet introduir un polígon nou i és l'opció per defecte. Per seleccionar-la s'ha de tenir seleccionat el botó Nou polígon de la vista general i seleccionar l'opció Polígon en el menu de Visualització (Figura 5.21). Un cop activat aquest mode, es pot inserir un polígon tal com s'explica a la Secció 5.2. Convé tenir present que la inserció per fitxer pot, de fet, fer-se en qualsevol dels modes. Cada cop que es selecciona el botó Nou polígon, s'esborra el polígon actual i s'eliminen els valors de les mesures en els quadres de text.

5.5.2 Zoom

Per activar el mode Zoom s'ha de seleccionar el botó Zoom de la vista general (Figura 5.22). Aquest mode funciona en qualsevol de les visualitzacions que s'estigui realitzant.

Figura 5.21: Com activar el menu de visualització del polígon.

Figura 5.22: Com activar el mode Zoom.

Un cop seleccionat el mode, podem realitzar zoom fent un click sobre el quadre d'interacció gràfica, i mantenint el botó del ratolí polsat i fent un moviment en vertical del ratolí: si el moviment és cap a dalt s'augmenta el zoom i si és en sentit contrari es disminueix el zoom.

5.5.3 Pan

Per activar el mode Pan s'ha de seleccionar el botó Pan de la vista general (Figura 5.23). Aquest mode funciona en qualsevol de les visualitzacions que s'estigui realitzant.

Un cop seleccionat el mode podem realitzar pan fent un click sobre el quadre de interacció gràfica, i mantenint el botó del ratolí polsat i fent un moviment del ratolí en la direcció que volguem que es desplacin els elements gràfics.

Figura 5.23: Visualització de com activar el mode Pan.

5.5.4 Modificar polígon

Per poder modificar el polígon hem de seleccionar el botó de Modifica polígon (Figura 5.24) el qual activara l'opció del menu de Edita->Tria modificació i ens permetrà escollir l'opció de modificació que volem realitzar (Figura 5.14). Aquest mode d'interacció el podem seleccionar sempre. tanmateix, sols podrem realitzar la modificació del polígon quan tinguem seleccionat en el menu l'opció de Visualitza->Polígon (Figura 5.21), altrement aquest mode és inoperant.

Figura 5.24: Mode modificar polígon activat.

5.6 Altres interaccions

En aquest apartat es descriu la resta d'interaccions possibles per part de l'usuari. Totes es poden realitzar sigui quin sigui el mode d'interacció seleccionat.

5.6.1 Desfer/Refer

La aplicació permet desfer o refer una modificació d'un polígon mantenint fins a un total de deu modificacions possibles a desfer o refer. Per poder desfer una modificació realitzada sobre un polígon o simplement desfer la creació d'un nou polígon per retornar al anterior s'ha d'anar al menu Edita->Desfés (Figura 5.25) i per refer una modificació prèviament desfeta s'ha d'anar al menu Edita->Refés (Figura 5.26).

Figura 5.25: Desfer una acció realitzada.

Figura 5.26: Refer una acció anterior.

5.6.2 Configurar costats μ_5 , μ_6 i μ_7

L'aplicació permet configurar el nombre de costats del polígon regular amb que es compara el polígon d'entrada en les mesures 5, 6 i 7 (inscripció/circumscripció). Per defecte aquest paràmetre és el nombre de costats del polígon a avaluar. i es vol canviar, s'ha d'anar al menu Edita->Configurar nombre de costats (Figura 5.27) i apareix una finestra com la de la Figura 5.28 on es pot introduir mitjançant teclat el nombre de costats o mitjançant el ratolí anar incrementat o decrementant el nombre de costats. Un cop modificat, el programa torna a calcular les mesures 5, 6 i 7. El nombre de costats està limitat inferiorment per 3 perquè un polígon no pot tenir menys costats i limitat superiorment per 3500 per la limitació de memoria de la llibreria utilitzada en les mesures 5, 6 i 7.

Figura 5.27: Activa l'opció del menu per configurar el nombre de costats del polígon regular amb què es compara el polígon d'entrada en les mesures 5, 6 i 7.

	PFC		-
Arxiu Edita Configura ⊻isualitza	Ajuda		
	Configurar × Joonbre de costats regulas inacticicanment: © Cancel Ø SK	 Nou poligon Modifica poli Mesura 1 0.73569 Mesura 5 0.77692 Mesura 6 0.77901 Mesura 10 0.57400 Mesura 13 0.51639 	Zoom Pan Second Second Secon

Figura 5.28: Finestra que permet configurar el nombre de costats del polígon regular amb què es compara el polígon d'entrada en les mesures 5, 6 i 7.

5.6.3 Nou polígon

Per tal de esborrar un polígon es pot seleccionar l'opció del menu Arxiu->Nou (Figura 5.29), la qual esborra el polígon i les mesures associades a ell i permet, així, crear-ne un de nou.

Figura 5.29: Com activar l'opció del menu Nou polígon.

5.6.4 Desar polígon

Si es vol guardar el polígon introduït, amb el resultat de les mesures, en un fitxer de sortida, s'ha de seleccionar l'opció del menu Arxiu->Desa polígon. S'obrira un diàleg com el de la Figura 5.30 on hem d'indicar el nom del fitxer (que ha de tenir l'extensió ".txt") i la ubicació on el volem guardar. Un cop seleccionats aquests paràmetres fent click al botó save guardarem el fitxer amb les dades del polígon i les mesures amb el nom introduït i a l'ubicació seleccionada.

6	Desa poligon	×
Look in:	🛅 /home/ramor/Escriptori/PFC_interficie/interficie 🛩 🔶 👳	🔹 🗈 🖽 🗉
Compute ramon	rr (
Rie name:	Poligonitxt	Save
Ries of type:	Text (*.txt)	✓ Ocancel

Figura 5.30: Finestra de diàleg per desar un polígon.

Capítol 6

Experimentació

L'objectiu principal d'aquest projecte és fer una valoració pràctica de les mesures proposades a [3]. És amb aquesta finalitat d'experimentar el comportament de les mesures sobre polígons convexos, que hem implementat aquests algoritmes, tal i com hem descrit en el Capítol 2, i hem proposat unes mesures normalitzades associades a cada algoritme, tal i com hem descrit en el Capítol 3.

Per complir aquest objectiu, hem dissenyat i construït una serie de polígons convexos de diferents tipologies, els quals hem cregut representatius per obtenir resultats sobre les mesures, que ens han permès extreure conclusions sobre el comportament de les mesures i avalua com de bona o útils és cada mesura segons l'objectiu a valorar.

En les dues primeres seccions d'aquest capítol hem descrit quins són els polígons generats, com els hem construït i la finalitat de cada experiment realitzat. En la tercera secció d'aquest capítol s'hi exposen les conclusions extretes sobre el comportament de les mesures. Els resultats obtinguts es poden consultar als annexos B i C, on s'hi presenten no tan sols les dades numèriques en forma de taula, sinó també unes representacions gràfiques que, al notre entendre, faciliten la comprensió de l'anàlisi dels resultats.

6.1 Disseny dels experiments

En aquesta secció s'hi descriuen els experiments que hem dissenyat per tal d'extreure conclusions sobre les mesures i alhora comprovar el seu funcionament. Al llarg de la secció, a més de descriure els polígons dissenyats, tant pel que fa al criteri de creació com al nombre d'experiments, explicarem l'objectiu que persegueix cada conjunt d'experiments.

La primera qüestió a abordar a l'hora de dissenyar els experiments és el nombre de costats dels polígons sobre els quals es vol experimentar. Donat que els polígons més freqüents a la vida quotidiana són des dels triangles fins als octògons, aquests polígons han de formar part de l'experimentació per tal de relacionar la percepció humana amb els resultats de les mesures. Ara bé, no es pot només experimentar amb polígons d'un baix nombre de costats perquè això no permetria entendre les mesures en altres sentits. És per això que, a més d'aquests polígons, en els experiments s'han d'incloure polígons amb un nombre de costats més gran. Per tal de tenir una visió àmplia, però que, a la vegada, no quedin uns experiments desproporcionats, en els experiments s'inclouen dodecàgons, i polígons de vint-i-cinc, cinquanta i cent costats.

Un cop establert el nombre de costats dels polígons a estudiar, hem considerat diversos criteris de creació dels polígons, per tal d'estudiar aspectes diferents del comportament de les mesures.

En primer lloc, hem generat els polígons regulars per comprovar que, efectivament, les mesures els detecten.

En segon lloc, per tal d'obtenir una visió global de com actuen les mesures, hem generat una sèrie de polígons pseudo-aleatoris. Per comprovar la sensibilitat de les mesures a la conciclicitat dels vèrtexs, també hem generat un conjunt de polígons pseudo-aleatoris inscrits a una circumferència.

De cara a valorar l'aplicabilitat pràctica de les nostres mesures a la detecció automàtica de la regularitat en processos de reconeixement automàtic de formes (en general, imatges) o en processos de fabricació i, en particular, al control de qualitat en la fabricació de peces regulars, hem generat un conjunt de polígons regulars amb defectes. En aquest sentit, hem considerat dues tipologies de defectes: petites pertorbacions dels polígons i escapçaments i/o alineacions dels seus vèrtexs.

Un altre aspecte que hem volgut valorar és el comportament de les mesures en front de la deformació dels polígons. Per això hem generat experiments amb deformacions de tipologies diverses. En primer lloc, hem considerat polígons equilàters, on l'única deformació respecte de la regularitat es dóna en els angles interiors dels polígons. Aquest joc d'experiments, a més de ser útil per analitzar el comportament de les mesures en front de la deformació progressiva d'un polígon, també permet analitzar la seva sensibilitat a la modificació exclusiva dels angles i conèixer fins a quin punt el fet que tots els costats d'un polígon tinguin la mateixa longitud condiciona el valor de la mesura. També s'han generat conjunts de polígons deformats per escalat, per translació d'un vèrtex i per inclinació.

Finalment no hem volgut deixar d'estudiar el comportament de les mesures sobre polígons molt allunyats de ser regulars: per això hem generat uns experiments amb polígons quasi degenerats.

Cal dir també que, donat que triangles i quadrilàters són figures molt habituals a l'entorn humà, hem considerat justificada la creació de jocs d'experiments sobre triangles isoareals i isoperimètrics, així com també uns experiments amb trapezis. L'elecció d'aquests triangles i quadrilàters especials està, a més, directament vinculada a les peculiaritats d'algunes de les mesures, que utilitzen l'àrea i/o el perímetre del polígon a la seva formulació. En resum, doncs, els polígons creats per a l'experimentació de les mesures s'han agrupat en les categories següents:

- 1. Polígons regulars.
- 2. Polígons pseudo-aleatoris.
- 3. Polígons pseudo-aleatoris inscrits a una circumferència.
- 4. Polígons regulars amb errors.
- 5. Polígons regulars amb vèrtexs alineats i/o escapçats.
- 6. Polígons equilàters.
- 7. Polígons regulars deformats per escalat de les ordenades.
- 8. Polígons regulars deformats per translació d'un vèrtex.
- 9. Polígons regulars deformats per inclinació.
- Polígons quasi degenerats. Casos particulars:
- 11. Triangles isoareals.
- 12. Triangles isoperimètrics.
- 13. Trapezis.

Per als grups 1 a 3, s'han generat jocs de polígons de 3, 4, 5, 6, 7, 8, 12, 25, 50 i 100 costats. Quant a les tipologies 4 a 100, sols s'han generat polígons de 3 fins a 8 costats. Els grups 11, 12 i 13 són específics per a triangles (11 i 12) i quadrilàters (13).

L'última qüestió quant a disseny d'aquest joc d'experiments és definir quins *n*-gons es creen per cada tipologia i quin nombre de polígons es creen per cada cas. Aquesta és una qüestió en la que es fa imprescindible un cert balanç entre els desitjos (idealment, hom sol desitjar disposar de dades de *n*-gons per a tot *n* i tota tipologia) i el temps disponibles (els experiments s'han de poder dur a terme en el temps previst, i la informació que surti dels experiments s'ha de poder analitzar en un temps raonable). Tenint en compte aquestes restriccions, hem considerat que els polígons de 3 a 8 costats són més freqüents a l'entorn humà i, per tant, convé disposar de proves de tots els tipus per aquests polígons. Quant als polígons de 12, 25, 50 i 100 costats hem considerat que seria suficient obtenir un visió general del seu comportament i, per això, només hem realitzat experiments sobre els polígons regulars i sobre els pseudo-aleatoris, és a dir, els dels tipus 1, 2 i 3. Pel que fa al nombre de polígons per als experiments, aquest també és un aspecte on s'ha de cercar l'equilibri entre la dimensió dels experiments i la representació suficient per tenir una visió completa. Per complir aquest equilibri, hem cregut suficient construir, com a norma general, sis o dotze polígons per a cada nombre de costats i tipologia (depenent de l'interès del grup concret), tot duplicant aquestes xifres en els casos on la varietat de tipologies no és molt gran (polígons de 12, 25, 50 i 100 costats) i fent algunes tandes més en casos particulars per tenir una visió més àmplia. La Taula 6.1 recull el nombre d'experiments per a cada tipus de polígons i nombre de costats.

82

				Non	bre	de co	ostat	xo			
	n	4	ы	9	4	x	12	25	50	100	Total
Polígons regulars	-	-	-	-	-	-	-	-	-	-	10
Polígons pseudo-aleatoris	12	12	12	12	12	12	24	24	24	24	168
Polígons pseudo-aleatoris inscrits a una circumferència		9	9	9	9	9	9	9	9	9	54
Polígons regulars amb errors	12	12	12	12	12	12					72
Polígons regulars amb vèrtexs alineats i/o escapçats		က	9	12	12	12					45
Polígons equilàters		9	9	9	9	9					30
Polígons regulars deformats per escalat de les ordenades	9	9	9	9	9	9					36
Polígons regulars deformats per translació d'un vèrtex		9	9	9	9	9					30
Polígons regulars deformats per inclinació	9	9	9	9	9	9					36
Polígons quasi degenerats	9	9	9	9	9	9					36
Casos particulars											
Triangles isoareals	18										18
Triangles isoperimètrics	12										12
Trapezis		9									9
Total	73	70	67	73	73	73	31	31	31	31	553

Taula 6.1: Nombre de polígons per a cada experiment.

La finalitat del joc d'experiments descrit fins aquí és analitzar i comparar el resultat de totes les mesures sobre polígons amb un nombre de costats igual al del polígon regular amb qui es comparen. Ara bé tal com s'explica al Capítol 2les mesures 5, 6 i 7 (inscripció i circumscripció per un polígon regular) permeten analitzar fins a quin punt un n-gon està a prop de ser un *m*-gon regular per a $n \neq m$. Amb l'objectiu d'explorar aquesta possibilitat, hem dissenyat un joc d'experiments per comparar els resultats amb diferents nombres de costats: per a cada n-gon estudiat, s'han considerat tots els mgons regulars per a m des de 3 fins a 100 per estudiar com canvien els valors de les mesures 5, 6 i 7 en canviar m. Donat l'enorme nombre d'execucions de l'algorisme que aquest experiment comporta, les proves s'han limitat als n-gons del tipus 1 (regulars) per a tots els valors de n abans esmentats i del tipus 5 (polígons regulars amb vèrtexs alineats i/o escapçats) per a n entre 3 i 8. En cas de que els resultats no haguessin estat concloents s'hi haguessin afegit els de tipus 2 i 3 (pseudo-aleatoris) sobre polígons de 3 a 8 costats, o fins i tot, si fos necessari, sobre tots els n-gons considerats. Aquest no ha estat, però, el cas, tal com veurem més endavant.

6.2 Construcció dels experiments

En aquesta secció es descriu com hem dut a terme la construcció dels polígons per als experiments. En tots els casos hem generat fitxers d'entrada amb els vèrtexs dels polígons seguint el format d'entrada per fitxer descrit en el Capítol 5. La generació dels fitxers s'ha automatitzat en la majoria dels casos, realitzant la generació manual en experiments que no segueixen un patró (com el cas dels polígons quasi degenerats) o en casos on l'esforç de programar-ho s'ha considerat més elevat al de generar els fitxers manualment (com en el cas dels trapezis).

Per generar els vèrtexs dels polígons regulars hem implementat una funció amb el nombre de costats com a paràmetre. A partir del nombre de costats i una circumferència de radi r qualsevol i centrada en l'origen de coordenades, hem generat els vèrtexs utilitzant les funcions sinus i cosinus. Concretament, cada vèrtex del polígon P es calcula com $p_i = (r \cos (i \frac{2\pi}{n}), r \sin (i \frac{2\pi}{n}))$.

També hem automatitzat la creació dels polígon pseudo-aleatoris, mitjançant una funció amb paràmetres el nombre de costats del polígon que volem generar i el nombre de polígons pseudo-aleatoris a generar amb aquell nombre de costats. La funció itera l'algorisme de generació dels polígons pseudo-aleatori tantes vegades com polígons es volen generar. Per a generar un polígon pseudo-aleatori s'ha implementat un algorisme que consta d'una fase d'inicialització i una fase iterativa per afegir costats.

En la fase d'inicialització es genera un rectangle d'alçada 1 i d'amplada un nombre aleatori entre 0 i 1, a continuació es genera un vèrtex sobre cada costat seleccionant la seva posició amb un nombre aleatori entre 0 i

84

la longitud del costat. En cas de voler generar triangles pseudo-aleatoris seleccionem un dels quatre costats de forma aleatòria i aquell costat no hi afegim vèrtex, i es finalitza el procés en aquest punt, és a dir, sense entrar en la fase iterativa.

En la fase iterativa s'itera n - 4 vegades, on n és el nombre de costats del polígon a construir. A cada iteració, es selecciona una costat $p_i - p_{i+1}$ a l'atzar i es fa desaparèixer, tot substituint-lo per dos costats nous, $p_i - q$ i $q - p_{i+1}$. Per a determinar el nou vèrtex q, primer es calcula un triangle T_i sobre el costat $p_i - p_{i+1}$, exterior al polígon, i després es tria q a l'atzar dins de T_i (vegeu l'exemple de la Figura 6.2). Concretament, el tercer vèrtex del triangle és el punt d'intersecció de les rectes $p_{i-1} - p_i$ i $p_i - p_{i+1}$, sempre que pertanyi al rectangle contenidor, com en el cas 1 de la Figura 6.2. Altrament, (casos 2, 3 i 4) el triangle es talla amb el rectangle contenidor. Per a determinar el punt q dins el triangle, es trien tres nombres a l'atzar, λ , μ i ν , entre 0 i 1, que sumin 1, (dos si el triangle és degenerat) i es pren $q = \lambda p_i + \mu p_{i+1} + \nu t_i$, on t_i és el tercer vèrtex de T_i ($q = \lambda p_i + \mu p_{i+1}$, en cas de degeneració). D'aquesta manera, a cada iteració creix en una unitat el nombre de costats del polígon, fins a obtenir el nombre desitjat.

Figura 6.2: Casos possibles que ens podem trobar en la fase d'iteració de l'algorisme per generar polígons pseudo-aleatoris.

Per generar els polígons pseudo-aleatoris inscrits a una circumferència hem definit una funció amb paràmetres el radi de la circumferència r, el nombre de costats dels polígons, n, i el nombre de polígons a generar. L'algorisme itera tantes vegades com polígons es vulgui generar i crea tots els polígons en una circumferència centrada en l'origen i amb radi r de la manera següent:

primer genera n nombres aleatoris $\alpha_1, \ldots, \alpha_n$ entre 0 i 2π , que utilitza

per definir n punts a la circumferència de radi r utilitzant les funcions sinus i cosinus: $p_i = (r \cos \alpha_i, r \sin \alpha_i)$.

Els punts es classifiquen en una cadena superior (els punts de ordenada positiva o 0) i una cadena inferior (els punts d'ordenada negativa). Finalment, ordenem en ordre decreixent d'abscisses la cadena superior i en ordre creixent d'abscisses la cadena inferior.

En segon lloc, hem volgut generar un conjunt de polígons regulars amb errors, tal com s'obtindrien en procés de reconeixement de formes (imatges, per exemple) o de fabricació industrial. Per tal de simular els errors de la forma més realista possible, hem cercat i obtingut els estàndards ISO per a la tolerància en la fabricació de precisió [13]. Les dades disponibles es refereixen a la tolerància per al diàmetre de barres i tubs cilíndrics, que hem hagut d'adaptar al nostre cas, on en lloc de circumferències treballem amb polígons regulars. Per això hem considerat les dades de la taula ISO per a diàmetres compresos entre 80mm i 120mm. En primer lloc, hem establert els intervals d'error permesos en percentatge dividint l'error màxim entre el diàmetre mínim i l'error mínim amb el diàmetre màxim en cada interval de precisió dels definits a la taula ISO, obtenint així els intervals de precisió següents:

- 1. Alta precisió: 0.00083%-0.0050%
- 2. Precisió: 0.00500%-0.0188%
- 3. Mecànica fina: 0.01833%-0.0438%
- 4. Abast general: 0.04500%-0.1088%
- 5. Peces per forjats: 0.11667%-2.7500%

La forma d'emular l'error ha estat la següent: construïm el polígon regular del nombre de costats que desitgem i, per generar la pertorbació d'un vèrtex, creem una circumferència centrada en ell de radi aleatori dins l'interval de precisió que volguem, obtingut com el percentatge corresponent de la longitud del costat del *n*-gon regular de què es tracti. Finalment, substituïm el vèrtex del polígon regular per un punt aleatori de la frontera de la circumferència. Aquest punt es genera a través d'un angle aleatori entre 0 i 2π . Hem reproduït aquest procés per a cada nivell de precisió, per 1 i per a tots els vèrtexs del polígon.

L'altra familia de polígons pràcticament regulars que hem considerat és la dels polígons regulars amb vèrtexs alineats i/o amb vèrtexs escapçats. Per a construir-los, hem començat generant un polígon regular, amb la funció descrita anteriorment i, a continuació, manualment s'han afegit al fitxer vèrtexs alineats o s'ha substitut el vèrtex per dos vèrtexs de tal manera que formés un escapçament.

86

6.2. CONSTRUCCIÓ DELS EXPERIMENTS

A continuació hem construït una serie de polígons equilàters. Per a cada valor de n, es tracta de disposar de diversos n-gons amb tots els costats iguals però angles interiors diferents. Per generar els polígons equilàters s'ha implementat una funció particular per a cada n. Òbviament, tret de semblances, sols existeix un triangle equilàter.

Hem generat els quadrilàters equilàters mitjançant una funció que, partint d'un quadrat, va apropant al centre dos vèrtexs oposats, mentre n'allunya els altres dos, tots en la mateixa mesura tal com és mostra a la Figura 6.3.

Figura 6.3: Esquema de l'algorisme utilitzat per generar els quadrilàters equilàters.

Per generar els pentàgons equilàters hem construït un pentàgon regular com el de la Figura 6.4 i hem mogut el vèrtex superior al llarg de l'eix Y. A cada moviment hem calculat les coordenades (x, y) en funció del valor de b per tal de desplaçar de forma corresponent els altres vèrtexs. Concretament, $x = \frac{1+b^2+\sqrt{15b^2+12b^4-b^6}}{2+2b^2}$ i $y = \frac{-1+b^2+x}{2b}$.

Figura 6.4: Esquema de l'algorisme utilitzat per generar els pentagons equilàters.

Per generar els hexàgons equilàters hem partit de l'hexàgon regular i hem procedit tal com es mostra a la Figura 6.5. El vèrtex V_3 es mou al llarg de la circumferència centrada a V_2 mentre V_1 i V_2 es mantenen fixos i el costat $V_4 - V_5$ es manté horitzontal. D'aquesta manera, tot els vèrtexs queden determinats per la posició de V'_3 . Concretament, $V'_4 = (V_1.x, 2(V'_3 - V_2).y), V'_5 = (V_1.x, 2(V'_3 - V_2).y)$ i $V'_6 = (V_6.x - (V'_3 - V_3).x, V'_3.y).$

Figura 6.5: Esquema de l'algorisme utilitzat per a generar els hexagons equilàters. L'hexàgon negre és el regular, el vermell el que es genera a partir del primer moviment de V_3 i l'arc verd és l'arc de circumferència que descriu el recorregut de V_3 .

Els heptàgons i els octògons degut a la seva complicació s'ha estimat oportú generar-los manualment utilitzant el programa GeoGebra [14].

Per programar la construcció dels polígons regulars deformats per escalat de les ordenades, translació d'un vèrtexs i inclinació s'ha generat el *n*-gon regular i a partir d'aquest s'ha aplicat la deformació pertinent en cada cas. Per als deformats per escalat de les ordenades s'ha escalat progressivament les ordenades dels vèrtexs no fixats com a base. En els deformats per la translació d'un vèrtex s'ha traslladat un dels vèrtexs progressivament, i finalment, per a generar els polígons deformats per inclinació s'ha aplicat a cada vèrtex la modificació produïda per la matriu

$$\left(\begin{array}{rrr}1 & 1+a\\0 & 1\end{array}\right)$$

on a és un paràmetre que controla el grau d'inclinació.

Els polígons quasi degenerats s'han construït manualment degut a que no segueix un patró únic preestablert.

Finalment, dels casos particulars els trapezis s'han construït manualment mentre que s'ha programat la construcció dels triangles isoareals i isoperimètrics. En el cas dels isoareals, realitzant un desplaçament de la coordenada x del vèrtex superior. En el cas dels isoperimètrics s'ha construït una el·lipse i s'ha situat un vèrtex del triangle a cada focus i el restant s'ha mogut al llarg de l'el·lipse. Quant als semieixos de l'el·lipsses, s'ha creat una el·lipse d'amplada gairebè igual a l'alçada, i una altra, on l'amplada és més gran que l'alçada.

6.3 Anàlisi dels experiments

Aquesta secció analitza els resultats obtinguts en els experiments generats. S'ha cregut oportú organitzar els resultats numèrics de les mesures en taules que faciliten la seva lectura. Per això també s'ha programat unes funcions per generar, a partir dels fitxers d'entrada dels polígons de cada grup, el codi font LATEX (vegeu a [15] o [16]) de les taules amb els valors de les mesures i les imatges dels polígons. Finalment, per tal de facilitar la lectura de la taula, hem cregut útil representar gràficament el seu contingut. Així, doncs, cada taula s'acompanya de dues gràfiques, una on les dades es presenten per polígons i una altra on es presenten per mesures. A l'Annex B s'hi troben les taules i les gràfiques de cada experiment realitzat sobre totes les mesures. En una segona etapa, també hem volgut analitzar el comportament de les mesures quan el polígon es compara amb un polígon regular amb un nombre diferent de costats. La descripció dels experiments duts a terme i els seus resultats es recull a la Secció 6.3.2. Les taules i gràfiques amb els resultats es poden consultar a l'Annex C.

Aquesta secció es dedica, doncs, a l'anàlisi dels resultats que es poden consultar als annexos esmentats.

6.3.1 Comportament de les mesures

En aquesta secció analitzem els resultats obtinguts en l'experimentació i exposem les conclusions extretes de les mesures a partir del comportament que han donat en els experiments. Comencem destacant aspectes generals, per després analitzar cada mesura en particular.

El primer que s'observa en analitzar els resultats obtinguts és que l'aplicació i els algoritmes implementats donen resultats coherents i, per tant, que el software desenvolupat té un funcionament correcte.

Entrant a valorar el comportament de les mesures s'observa que, en termes generals, reflecteixen com a polígons propers o llunyans a ser regulars aquells polígons que la percepció humana identifica com a polígons propers o llunyans a ser regular. Aquesta observació es manifesta molt clarament analitzant els resultats per a polígons pseudo-aleatoris, on es veu que per als polígons que l'ull humà donaria com a poc regulars els valors de les mesures són baixos i per als polígons que l'ull humà donaria propers a regulars les mesures donen valors elevats. Tal com hem dit, els polígons pseudo-aleatoris ens permeten comprovar que les mesures tenen un comportament proper a la percepció humana de regularitat, però aquest fet també es manifesta en altres experiments, com per exemple en les deformacions de polígons regulars (escalat de les ordenades, translació d'un vèrtex i inclinació), on s'observa que a mesura que s'extremen les deformacions van baixant els valors de les mesures i, per tant, l'evolució de les deformacions es reflecteix en les mesures com ho fa a l'ull humà.

Així mateix, és destacable el fet que, en general, les mesures són consistents a l'hora de valorar quins polígons són mes regulars que d'altres i quins ho són menys. Això ens permet concloure que les mesures proposades són bones classificadores de polígons en funció de la seva regularitat. De totes maneres algunes mesures en segons quins casos perdent aquesta homogeneïtat. Per exemple, en casos molt degenerats són més discrepants i, a mesura que augmenta el nombre de costats es va perdent consistència.

Finalment, convé destacar que, tot i que les mesures coincideixen en els valors relatius i, per tant, en la classificació al avaluar diferents polígons, els valors absoluts difereixen i l'avaluació realitzada en un polígon concret dóna resultats molt diversos segons les mesures. Aquest fet és deu a què cada algorisme aplica criteris diferents a l'hora d'avaluar la regularitat i, per tant, segons la tipologia del polígon alguna mesura li afectarà més que a d'altres. Aquest fenomen ens permet tenir diversitat de mesures segons l'objectiu a valorar i, per tant, permet decidir quines mesures són bones per a cada finalitat de l'anàlisi de regularitat.

Així mateix, els experiments duts a terme amb polígons quasi degenerats permeten centralitzar que totes les mesures donen valors molts propers a zero quan se'ls apliquen.

Un altre aspecte destacat és veure com les mesures detecten aquells polígons que a percepció humana donaríem com a regulars però realment no són regulars. Això ho observem en els polígons que hem dissenyat amb petits defectes, és a dir, polígons regulars amb errors i els escapçats i/o amb vèrtexs alineats. En el cas dels polígons que no són regulars, fins i tot, amb errors d'alta precisió. Per altra banda, també s'observa que les mesures també són sensibles a les alineacions o els escapçaments de vèrtexs, tot i que en alguns casos algunes mesures donen aquests polígons com molt propers a regulars. En aquest sentit, doncs, les mesures proposades han resultat ser eficients i útils per una tasca tan delicada com és la detecció de defectes i errors. Val a dir, però, que per aquesta tasca algunes mesures resulten més eficients que d'altres i, en particular, algunes són summament recomanables. Vegeu la discussió segueix, sobre el comportament específic de cada mesura, per a més detalls.

Analitzant les mesures una a una, observem que hi ha diversitat en les mesures i, per tant, cada mesura és més apropiada segons l'objectiu avaluar.

La mesura 1 és la mesura que té pitjor funcionament, i sembla ser més una mesura que avalua com de prop està un polígon de ser arrodonit més que de ser regular. En particular, aquesta és l'única mesura incapaç de detectar petits errors.

Les mesures 2 i 3 tenen un comportament molt similar, com era previsible,

i tot i no ser males mesures no són mesures que destaquin en cap aspecte en concret.

La mesura 4 tampoc no és una mesura molt fiable degut a que té comportaments molt peculiars segons el polígon, ara bé, a mida que augmentem el nombre de costats del polígon, es va convertint en la mesura més útil.

Les mesures 5, 6 i 7 es poden agrupar en una sola mesura donat que no aporten informació molt diversa i tenen comportaments molt semblants, cal destacar que són un paquet de mesures que funcionen bé sigui quin sigui el polígon, i probablement, són les millors mesures si l'objectiu final és divers. A més, són mesures que permeten comparar polígons de diferent nombre de costats, aspecte que s'estudia a la Secció 6.3.2.

Les mesures 8, 9 i 10, com les mesures 2 i 3, tenen comportaments força acceptables, no destaquen en cap objectiu en concret.

Finalment, les mesures 11, 12 i 13 en alguns casos es comporten de manera atípica i poden no ser recomanables. Tanmateix, són mesures que per la detecció d'errors en polígons regulars tenen un molt bon funcionament, i no donen 1 en cap cas. A més, detecten el grau de marge d'error de manera excel·lent, o sigui que són molt recomanables en aquest cas.

6.3.2 Experiments amb nombre de costats diferent

Les mesures 5, 6 i 7, consistents a inscriure i circumscriure al n-gon donat un m-gon regular tan ajustat com sigui possible, permeten estudiar la mregularitat d'un n-gon per a $n \neq m$. La segona tanda d'experiments tenia per objectiu estudiar el comportament d'aquestes mesures en variar m. En particular, es tractava de comprovar que efectivament, les mesures detecten els casos en què un n-gon és molt semblant a un m-gon regular per a algun $m \neq n$. També es volia observar l'evolució dels valor per a un mateix n-gon a mida que m creix.

Les conclusions que es poden treure, a la llum de les dades de l'Annex C són essencialment dues. La primera és que, en els polígons regulars, les mesures 5, 6 i 7 reconeixen el nombre de costats de forma inequívoca: valen 1 sempre que m = n i exclusivament en aquest cas. La segona és que, en els polígons escapçats, les mesures 5, 6 i 7 detecten els escapçaments i en cap cas no donen 1, a més, donen el valor més alt de la mesura en el *m*-gon que l'ull humà associaria com el polígon regular més proper al *n*-gon avaluat.

Destaquem també que, a grans trets, l'evolució de les mesures és creixent en m fins a assolir el màxim, a continuació el valor descendeix visiblement i, en termes asimptòtics va creixent cap el valor que correspon a la circumferència. Ara bé, vist amb detall, l'afirmació anterior no és del tot certa, ja que es donen màxims locals (de valor relatiu petit). En general, es troben en els divisors i en els múltiples de n i, més destacadament, en els divisors i múltiples per potències de dos.

6.4 Conclusions

Al llarg del capítol hem explicat com s'ha completat l'objectiu principal d'aquest projecte que era passar l'estudi teòric dels algorismes realitzats a [3] a un estudi pràctic i experimental. D'aquesta manera hem pogut analitzar el comportament de les mesures per diferents tipologies de polígons i veure en quin cas cada mesura és més apropiada o, fins i tot, decidir realment quines mesures són bones.

Hem vist com els diferents experiments realitzats han estat satisfactoris per tal d'analitzar el comportament de les mesures i, a més, ens han servit per veure el correcte funcionament del software desenvolupat, tant en el sentit de tenir bones implementacions dels algoritmes, com pel fet de tenir un programa consistent i robust que ens permet introduir els polígons, sotmetre'ls als algoritmes i visualitzar-ne els resultats.

Un altre aspecte que ens han permès reflectir els experiments ha estat comprovar que disposar de bones normalitzacions és un fet important per tal de tenir una bona mesura.

Finalment, volem destacar que en aquest capítol hem pogut concloure d'una manera experimental que els algoritmes proposats a [3] combinat amb les normalitzacions realitzades al Capítol 3, en general, donen lloc a bones mesures que valoren la regularitat de forma adequada la percepció humana i, per tant, són mesures que classifiquen correctament la regularitat dels polígons.

A més, el fet d'haver implementat un conjunt de tretze mesures ens ha permès detectar quines mesures són apropiades a cada objectiu. D'aquesta manera hem vist com les mesures 11, 12 i 13 són molt apropiades per a detectar petites pertorbacions en polígons regulars i, per tant, són bones mesures per tal d'utilitzar en el control de qualitat en la fabricació de peces regulars. La nota negativa la posen les mesures 1 i 4, no molt fiables. La mesura 1 no és gens precisa a l'hora de detectar petits errors en la regularitat dels polígons i la mesura 4, si el nombre de costats és petit, té comportaments que no s'adiuen amb la percepció humana de la regularitat. Finalment, les mesures 2 i 3, així com les mesures 8, 9 i 10, tenen comportaments acceptables però sense ser mesures de comportament especialment destacable. Finalment, hem observat que les mesures 5, 6 i 7 són mesures idònies per a detectar la proximitat dels polígons a la regularitat a un nivell menys precís, sigui quina sigui la tipologia dels polígons, a més de ser útils per a cercar el m-gon regular més proper al n-gon avaluat. En aquest sentit, doncs, són mesures que podríem anomenar "tot terreny". Al nostre entendre, les més recomanables en un entorn multi-objectiu.

Capítol 7

Gestió del projecte

Al llarg els capítols anteriors hem descrit els objectius i la tasca realitzada al llarg del projecte, així com els seus resultats. En aquest capítol es recull com vam avaluar el projecte i com hem gestionat el seu desenvolupament al llarg de la duració de tot el projecte. Més concretament, expliquem com a l'inici del projecte, vam descriure les característiques del projecte, el seu abast, els riscos associats al projecte, la planificació realitzada per dur a terme el projecte i, finalment, quin pressupost tenia desenvolupar aquest projecte. A més, a cada secció analitzem comparativament com vam veure el projecte a l'inici i com aquest ha acabat desenvolupant-se realment.

7.1 Paràmetres del projecte

En aquesta secció es recull com vam definir els paràmetres del projecte, és a dir, objectius, temps i recursos, i quina prioritat es va donar a cadascun abans de l'inici del projecte.

L'objectiu del projecte era passar d'una fase teòrica els algorismes de regularitat per a polígons convexos proposats a [3], a una fase pràctica de la qual es poguessin treure unes conclusions experimentals sobre les mesures de regularitat. Es tractava, doncs, d'implementar els algoritmes proposats a [3] i experimentar sobre ells per tal d'avaluar la qualitat de les mesures.

El temps en què s'havia de desenvolupar el projecte venia marcat pel fet de ser un Projecte Final de Carrera el qual es volia matricular durant el quadrimestre de primavera del curs 2009-2010 i, per tant, la data limit del projecte estava fixada en el 2 de juliol del 2010.

Finalment, els recursos dels quals disposàvem per dur a terme el projecte era d'una persona per desenvolupar-lo més la directora del projecte.

Entre els tres paràmetres del projectes es va decidir com a prioritari el temps degut a que era una limitació que un cop fixada esdevenia inamovible i, per tant, s'havia de desenvolupar aquest projecte en el termini fixat. Com a segon més prioritari es va decidir que eren els objectius del projecte, els quals es desitjava completar en tota la seva extensió. Finalment, com a darrer i, per tant, possiblement difícil de complir es van marcar els recursos del projecte, els quals, tal com vam preveure, van ser insuficients: al llarg del projecte hem hagut d'invertir moltes més hores de feina de les previstes, per tal de dotar de més recursos al projecte i poder complir amb el temps i els objectius definits.

7.2 Abast del projecte

En aquesta secció es recull quin va ser l'abast fixat al inici del projecte, és a dir, quines eren les fites que havia de complir el projecte.

Abans d'iniciar el projecte es va definir que l'abast del projecte vindria marcat bàsicament per tres fites: desenvolupar una aplicació que permetés executar els algoritmes, experimentar amb els algoritmes i concloure sobre el funcionament de les mesures de regularitat.

Més concretament, es volia una aplicació que oferís d'una interfície amb la qual introduir polígons, sobre els quals es poguessin executar les mesures per obtenir els resultats. En segon lloc, es desitjava disposar d'un disseny d'experiments prou ampli per poder extreure conclusions definitives sobre les mesures i dur a terme aquestes experimentacions. Finalment, com a darrera feina a realitzar durant el projecte, es va establir l'anàlisi dels experiments duts a terme i l'extracció de conclusions sobre les mesures.

Cal destacar que al llarg del desenvolupament del projecte es va detectar que era necessari realitzar un estudi teòric més ampli sobre com avaluar els algoritmes proposats a [3] per obtenir resultats comparables entre les diferents mesures i que permetessin avaluar com de regular era cada polígon. Aquest fet estava fora de l'abast previst inicialment. El fet de ser una tasca no prevista en la planificació inicial va comportar tenir que dedicar més hores de les previstes per poder-la dur a terme, i dins dels terminis marcats durant el projecte.

7.3 Riscos del projecte

Aquesta secció recull quins són els riscos del projecte que vam detectar com a possibles, com aquests podien impactar en el desenvolupament del projecte i en quina probabilitat creiem que podien succeir (Taula 7.1). A més, també s'exposa quines van ser les mesures que es va preveure adoptar per intentar evitar el risc, en els casos possibles, i quina actuació es duria a terme en cas de succeir (Taula 7.2).

Dels possibles riscos previstos abans de l'inici del projecte se n'han produït dos. En primer lloc, en alguna ocasió hi va haver problemes amb la compatibilitat teòrica i la implementació pràctica duta a terme, fet que ens va portar a fer una implementació alternativa, tot i així en cap moment va

	Risc	Probabilitat	Impacte
1	Problemes teòrics d'algun dels algoritmes	Baixa	Alt
	a implementar.		
2	Problemes pràctics de compatibilitat dels	Mitja	Mitja
	algoritmes proposats a nivell teòric.		
3	Buit teòric d'algun aspecte relacionat amb	Mitja	Alt
	les mesures.		
4	Limitació de comprensió matemàtica d'al-	Baixa	Alt
	guns algoritmes		

Taula 7.1: Riscos previstos en iniciar el projecte.

Risc n ^o	Mitigació	Contingència
1	Lectura detallada prèvia dels	Avaluar quin és el grau del
	algoritmes.	problema teòric i, en cas
		de poder-se solucionar en un
		temps prudencial, solucionar-
		lo, en el seu defecte, renunciar
		a la implementació l'algoritme
		que presenti aquest problema.
2	Lectura detallada prèvia dels	Intentar buscar una imple-
	algoritmes i estudi a fons de	mentació alternativa que no
	quina implementació és més	presenti els mateixos proble-
	adient.	mes.
3	Lectura detallada prèvia dels	Avaluar l'impacte que té el
	algoritmes.	buit concret i analitzar si és
		viable realitzar l'estudi teòric.
4	Lectura detallada prèvia dels	Estudiar els conceptes
	algoritmes.	matemàtics necessaris per
		tal d'entendre els algoritmes.

Taula 7.2: Actuacions de mitigació i contingència per a cada risc definit.

haver-hi problemes greus i es van poder solucionar amb relativa facilitat. El segon risc que es va materialitzar, és que va haver-hi un aspecte teòric no prou desenvolupat prèviament que es va haver de resoldre. Concretament, no estava prou definit com fer que les mesures fossin normalitzades. Aquest estudi teòric va ser dut a terme durant el projecte (vegeu Capítol 2) i això va tenir un impacte important en la planificació del projecte.

7.4 Planificació del projecte

En aquesta secció es mostra quina va ser la planificació realitzada al principi del projecte i es descriu com aquesta planificació es va veure afectada al llarg del projecte.

ld		Nombre de tarea	Duración	Comienzo	Fin
l l	0				
1		PFC	188 días	lun 05/10/09	mié 23/06/10
2	111	Lectura de la tesis	10 días	lun 05/10/09	vie 16/10/09
3		Implementació Algoritmes	108 días	lun 19/10/09	mié 17/03/10
4		Algoritme 1: Mateix nombre de costats	74 días	lun 19/10/09	jue 28/01/10
5	111	Lectura i presa de decisions	9 días	lun 19/10/09	jue 29/10/09
6		Implementació	33 días	vie 30/10/09	mar 15/12/09
7		Proves i refinaments	32 días	mié 16/12/09	jue 28/01/10
8		Algoritme 2: Inscripció/Circumscripció	16 días	vie 29/01/10	dom 21/02/10
9	111	Lectura i presa de decisions	6 días	vie 29/01/10	vie 05/02/10
10		Implementació	8 días	vie 05/02/10	mar 16/02/10
11	111	Proves i refinaments	5 días	lun 15/02/10	dom 21/02/10
12		Algoritme 3: Simetria radial	18 días	lun 22/02/10	mié 17/03/10
13	111	Lectura i presa de decisions	6 días	lun 22/02/10	lun 01/03/10
14	111	Implementació	9 días	lun 01/03/10	jue 11/03/10
15	111	Proves i refinaments	4 días	vie 12/03/10	mié 17/03/10
16		Interfície	32 días	jue 18/03/10	vie 30/04/10
17	111	Decisions amb relació entrada/sortida algoritmes	9 días	jue 18/03/10	mar 30/03/10
18		Disseny de la interfície	9 días	jue 18/03/10	mar 30/03/10
19	111	Implementació interfície	10 días	lun 29/03/10	vie 09/04/10
20		Proves i refinaments	5 días	lun 26/04/10	vie 30/04/10
21		Experimentació	24 días	vie 16/04/10	mié 19/05/10
22		Disseny dels experiments	24 días	vie 16/04/10	mié 19/05/10
23		Realització i obtenció de resultats	24 días	vie 16/04/10	mié 19/05/10
24		Escriptura i presentació del projecte	26 días	mié 19/05/10	mié 23/06/10
25		Aprendre LaTeX	2 días	mié 19/05/10	jue 20/05/10
26		Redactat de la memòria	15 días	vie 21/05/10	jue 10/06/10
27	111	Preparació de la presentació	8 días	vie 11/06/10	mar 22/06/10
28		Defensa del projecte	1 día	mié 23/06/10	mié 23/06/10
29		Burocràcia	180 días	lun 05/10/09	vie 11/06/10
30		Inscripció del projecte	15 días	lun 05/10/09	vie 23/10/09
31		Matricula del projecte	3 días	mar 16/02/10	jue 18/02/10
32		Informe del projecte	3 días	mié 10/03/10	vie 12/03/10
33		Reserva de sala defensa	1 día	mié 19/05/10	mié 19/05/10
34		Presentació de sol·licitud de lectura	1 día	vie 11/06/10	vie 11/06/10
35		Presentació memòria	1 día	vie 11/06/10	vie 11/06/10

Figura 7.3: Planificació de les tasques a realitzar.

El principal canvi que es va produir durant la realització del projecte, respecte de la planificació prevista, va ser produït pel risc succeït de detectar un buit teòric, això ens va portar a realitzar un estudi teòric que no estava previst. Aquesta detecció es va produir a principis de febrer i la durada d'aquest estudi teòric es va preveure d'un mes aproximadament. Per tal de realitzar el projecte dins el termini previst es van prendre dues mesures que afectaven la planificació. La primera va ser pos posar el lliurament del projecte una setmana (marge que vam deixar en la planificació inicial respecte el termini límit) i la segona va ser treballar 60 hores setmanals en comptes de 40 hores setmanals durant 6 setmanes. Amb aquestes mesures manteníem el projecte dins el termini fixat i incloíem l'estudi teòric, el qual es va considerar imprescindible incorporar (vegeu Capítol 2) al projecte.

Durant la realització del projecte es van detectar petits desajustos de planificació. El desajust més gran va ser produït durant la fase de desenvolupament dels algoritmes del bloc 2 (inscricpció/circumscripció) i dels algorismes del bloc 3 (simetria radial). Els del bloc 2 van durar menys del previst, per contra aquest temps es va veure compensat pels del bloc 3 per als quals el desenvolupament previst va ser inferior al real.

7.5 Pressupost del projecte

En aquesta secció es detalla el pressupost inicial del projecte en base a les hores planificades i les característiques de cada tipus de feina que s'ha realitzat en cada fase, posant així preu per hora a cada fase del projecte.

El projecte en total s'ha planificat a dur a terme en un total de 37 setmanes, de les quals les 17 primeres eren de dedicació parcial, concretament 5 hores setmanals, i les 20 restants de dedicació completa, és a dir, 40 hores setmanals. Dins les tasques hi ha rols de feina diferent i, per tant, cal associar preus diferents. Concretament, en les fases de lectura de tesis (tasques de la planificació 2, 5, 9 i 13) s'ha de contar l'esforç d'un analista/dissenyador i una directora, al igual que en les tasques de decisió i disseny (tasques 17, 18 i 22). En les fases d'implementació, proves i escriptura de la memòria es necessita un programador. Finalment, per a la fase de realització i obtenció de resultats, es necessiten un programador i una directora. Tenint en compte aquesta associació, en total es comptabilitzen 120 hores de directora, 388 hores d'analista/dissenyador i 687 hores de programador. Associant un preu per hora de 55€ a la directora, de 48€ a l'analista/dissenyador i de 40€ al programador, i incloent una partida per imprevistos, tenim un pressupost total de 62.000€.

El cost final del projecte s'ha vist augmentat degut al fet d'haver realitzat l'estudi teòric de les normalitzacions de les mesures, el qual no estava previst i, per tant, ha portat ha realitzar més hores de feina amb el seu cost associat. Així doncs, les hores finals comptabilitzades han estat 240 hores de directora, 508 hores d'analista/dissenyador i 687 hores de programador i, per tant, el cost real del projecte ha estat de $65.064 \in$, el qual no ha estat molt allunyat del pressupostat degut a que es va pressupostar una partida per imprevistos.

100

Capítol 8

Conclusions

Al llarg de la memòria hem vist com hem aconseguit dur a terme els objectius plantejats en el projecte. Concretament, s'ha aconseguit realitzar les implementacions de tots els algoritmes plantejats a [3] dels quals, a més, s'ha completat la tasca teòrica de normalitzar-les, tasca inicialment no prevista en el projecte. Això ens ha portat a tenir un total de tretze mesures de regularitat, totes les quals s'han pogut dur a una fase d'experimentació i, per tant, hem pogut extreure conclusions sobre cada una d'elles.

Al realitzar les tretze implementacions dels algoritmes sempre s'ha tingut com objectiu la utilització d'aquests algorismes per treure conclusions experimentals sobre les mesures. Això fa que el fet més valorat en les implementacions hagi estat la seva correctessa front la seva eficiència. Tot i així s'ha aconseguit trobar un equilibri entre aquests dos paràmetres força satisfactori. Al realitzar les implementacions, s'han produït problemes derivats del pas de la teoria a la pràctica, la qual cosa ha portat a implementar càlculs aproximats. Per exemple, a l'hora de calcular el radi de la circumferència que circumscriu P en les mesures 2 i 3, o a l'hora de gestionar les funcions quocients de polinomis de grau dos en tan α . Tot i això, aquests problemes s'han resolt sempre utilitzant marges de tolerància i aconseguint així implementacions que produeixen resultats totalment satisfactoris.

Una feina realitzada, que en un principi no estava prevista en el projecte, ha estat la normalització de les mesures. Aquesta tasca s'ha considerat, tot i la seva dificultat, necessària perquè d'aquesta manera els algoritmes es poden comparar entre ells i, per tant, es poden extreure conclusions entre els diferents algoritmes. Així mateix, gràcies a la normalització es pot analitzar com cada mesura avalua com de proper a ser regular està un polígon. A més, s'han dut a terme normalitzacions totalment satisfactòries la qual cosa és molt positiva, perquè altrament es podia produir que un bon algoritme acabés sent totalment ineficaç.

L'aspecte del que podem estar més satisfets, i que era l'objectiu final/principal del projecte, és haver pogut dur a terme les experimentacions sobre les mesures, la qual cosa ens ha permès extreure conclusions sobre les tretze mesures, tant per separat com comparativament entre elles. En total s'han generat dos conjunts d'experiments amb els quals creiem que hem aconseguit generar un ventall prou ampli per a extreure conclusions prou fermes sobre les mesures. Un primer conjunt de polígons als quals s'han aplicat totes les mesures i un segon conjunt específic per a les mesures 5, 6 i 7 per tal d'analitzar en la seva qualitat de poder avaluar amb polígons de diferent nombre de costats.

Quan a les conclusions extretes sobre les mesures a partir dels experiments generats, podem dir que han estat molt satisfactòries. En primer lloc podem afirmar que s'observa que l'aplicació duta a terme i els algoritmes implementats donen resultats coherents, i per tant, que el software desenvolupat té un funcionament correcte. En segon lloc, que les mesures en termes generals són bones mesures en el sentit que reflecteixen com a polígons propers o llunyans a ser regulars aquells polígons els quals la percepció humana identifica com a polígons propers o llunyans a ser regulars. A més, les mesures són consistents a l'hora de valorar quins polígons són més regulars que d'altres. Aquests dos fets ens permet dir que podem utilitzar les mesures com a classificadores de polígons en funció de la seva regularitat

Entrant a valorar mesura a mesura podem dir que al tenir un conjunt prou ampli de mesures hem trobat mesures adients a cada cas. Més concretament, podem dir que les mesures 2, 3, 8, 9 i 10 són mesures prou bones però sense ser excel·lents. La mesura 1 és probablement la mesura que té pitjor funcionament i no la recomanaríem en cap cas. La mesura 4, en cas de voler avaluar polígons de molts costats podria ser una mesura vàlida però el seu funcionament decau en polígons de pocs costats. Les mesures 11, 12, i 13 són mesures les quals són excel·lents per a detectar polígons amb defectes de fabricació. Finalment, les mesures 5, 6 i 7 són mesures "tot terreny" i, per tant, són les mesures que escolliríem en termes generals, és a dir, sense una finalitat concreta. A més, són mesures que ens permeten detectar quin m-gon regular és el que percep un humà en un polígon que tingui defectes d'escapçament i/o alineacions.

A més, podem dir que el software desenvolupat per tal de dur a terme aquests experiments compleix el criteris de qualitat necessaris per tal de dur a terme aquest objectiu amb comoditat, és a dir, el software compleix els criteris de fiabilitat, modularitat, facilitat d'ús i reparabilitat. A més, hem inclòs un manual d'usuari per tal de, si és volgués continuar utilitzant, qualsevol usuari sabés com utilitzar-lo.

Finalment, podem destacar que criem que s'ha gestionat el projecte amb força encert. En primer lloc, perquè hem complert tots els objectius definits en el termini fixat. De fet, fins i tot s'ha inclòs un objectiu teòric no previst a l'inici del projecte (però inicialment detectat com a risc potencial).

Com a feines possibles de cara a millores futures quedarien el fet de implementar algoritmes més eficients en cas de que les mesures es volguessin
aplicar a polígons de molts costats, la qual cosa creiem poc probable perquè els polígons majoritàriament utilitzats a les aplicacions imaginables no acostumen a tenir més de deu costats, i en aquest supòsit les mesures funcionen amb una eficiència suficient.

Finalment, com a balanç personal vull destacar que crec que ha estat un projecte molt enriquidor aquest que he tingut la gran sort d'haver pogut desenvolupar. Crec que ha estat un projecte en cert sentit multidisiplinari, m'ha permès aprendre moltes coses i de caire molt divers, a més de tenir l'opció de gestionar un projecte de cert abast i aplicar en ell les tècniques vistes en gestió de projectes. En primer lloc, el fet d'estar vinculat amb la tesis de Master de la Maria Saumell, la qual van dirigir els professors Ferran Hurtado i Vera Sacristán, m'ha permès treballar al costat de tots tres, en especial durant la feina de normalització de les mesures. Aquest fet m'ha permès aprendre moltíssims conceptes matemàtics nous, a més, també m'ha permès aprendre temes més formals de notació, la utilització del LATEX (amb el qual he escrit tota la memòria) o la utilització de Ipe (amb el qual he elaborat tots els dibuixos d'aquesta memòria).

En segon lloc, a més de tot el coneixement matemàtic adquirit, el fet de realitzar el software desenvolupat per tal de dur a terme els experiments, m'ha servit no només per posar en pràctica els coneixements adquirits durant la carrera en temes de programació, disseny de software i algorísmica, sinó també per aprofundir en ells i veure com durant els anys de la carrera se m'han dotat de suficients elements com per ser capaç d'adquirir nous coneixements de forma autònoma.

Amb aquest projecte he tingut l'opció de dur a terme un treball d'investigació el qual no havia pogut realitzar mai i, en particular, veure com en diverses ocasions s'ha d'anar per un camí equivocat per acabar trobant el camí correcte. Aquest projecte també m'ha servit per aprendre a escriure d'una forma més matemàtica i formal al mateix temps que aprenia conceptes lingüístics. Finalment, tal com he dit abans, aquest ha estat un projecte en el qual han col·laborat dues persones més apart de la professora Vera Sacristán com a directora i jo. Aquest fet, junt amb el fet de que en la majoria del temps de realització del projecte les persones implicades han estat a l'estranger, ha portat que la comunicació estudiant/directora fos realment diferent a l'habitual duta a terme en altres projectes i, no per això, hagi estat menys eficient.

Bibliografia

- N. Barnes, G. Loy, D. Shaw, A. Robles-Kelly. Regular Polygon Detection, Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), Xina, 2005.
- [2] G. Piccioli, E. De Micheli, P. Parodi, M. Campani. Robust Method for Road Sign Detection and Recognition, *Image and Vision Computing*, Vol. 14(3), pags. 209-223, 1996.
- [3] M. Saumell. Mesures de regularitat per a polígons convexos, Tesi de màster, Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya, 2008.
- [4] F. Hurtado, M. Saumell, V. Sacristán. Some regularity measures for convex polygons, Proc. 25th European Workshop in Computational Geometry, pp. 125-129, 2009. Versió preliminar a Proc. VI Jornadas de Matemática Discreta y Algorítmica, pp. 401-408, 2008.
- [5] A. Aubanell, A. Benseny, A. Delshams. Eines bàsiques de càlcul numèric: amb 87 problemes resolts. Barcelona: Universitat Autònoma de Barcelona, 1991.
- [6] P. K. Agarwal, N. Amenta, B. Aronov, M. Sharir. Largest Placements and Motion Planing of a Convex Polygon, Second International Workshop on Algorithmic Foundations of Robotics, pp. 28-37, 1996.
- [7] P. K. Agarwal, N. Amenta, M. Sharir. Largest Placement of One Convex Polygon inside Another, *Discrete & Computational Geometry*, 19:95-104, 1998.
- [8] http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html (consultada juny 2010).
- [9] J. Žunić, P. L. Rosin. A Convexity Measurement for Polygons, Proc. BMVC'02, 2002.
- [10] I. M. Yaglom, V. G. Boltyanskii. Convex Figures. Holt, Rinehart and Winston, 1961.

- [11] http://www.cplusplus.com/reference (consultada juny 2010).
- [12] http://doc.trolltech.com/4.0/index.html (consultada juny 2010).
- [13] http://es.wikipedia.org/wiki/Ajuste (consultada juny 2010).
- [14] http://www.geogebra.org/cms (consultada juny 2010).
- [15] L. Lamport, LaTeX, a Document Preparation System, Addison-Wesley.
- [16] M. Gossens, F. Mittelbach, A. Samarin, The LaTeX Companion, Addison-Wesley.

Apèndix A

Format dels fitxers de sortida/entrada

A continuació es pot veure un exemple de fitxer de sortida. En primer lloc hi apareixen les dades del polígon. A continuació, els resultats de cadascuna de les 13 mesures, aplicada al polígon. Per a cada mesura s'hi pot llegir: el número i un descriptor de la mesura de que és tracta, el valor de la mesura i els paràmetres més rellevants involucrats en el càlcul de la mesura.

Tal com s'explica al Capítol 4, els fitxers de sortida es poden llegir com a fitxers d'entrada. Ara bé, per a què un fitxer d'entrada sigui vàlid sols es requereix que contingui les files corresponents a les coordenades del vèrtexs, ordenats horariament o antihorariament.

108 APÈNDIX A. FORMAT DELS FITXERS DE SORTIDA/ENTRADA

Mesura 2. Minimització del desplaçament màxim

Mesura 2 = 0.907994

Altres paràmetres:

```
Radi de la circumferència = 0.274428
Diferència màxima, en valor absolut, entre els angles del polígon
original i els corresponents del polígon inscrit = 5.21805e-15
La diferència, en valor absolut, entre l'angle del vèrtex 0 del polígon
original i el corresponent del polígon inscrit = 2.44249e-15
La diferència, en valor absolut, entre l'angle del vèrtex 1 del polígon
original i el corresponent del polígon inscrit = 5.21805e-15
La diferència, en valor absolut, entre l'angle del vèrtex 2 del polígon
original i el corresponent del polígon inscrit = 2.88658e-15
Distància angular màxima entre vèrtexs corresponents del polígon
inscrit i el polígon regular = 0.192698
La distància angular entre el vèrtex O del polígon original i el
corresponent del polígon inscrit = 0.192698
La distància angular entre el vèrtex 1 del polígon original i el
corresponent del polígon inscrit = 0.0625866
La distància angular entre el vèrtex 2 del polígon original i el
corresponent del polígon inscrit = 0.192698
Mu2_1 = 1
Mu2_2 = 0.907994
```

Mesura 3. Minimització de la suma de desplaçaments

Mesura 3 = 0.907994

Altres paràmetres:

```
Radi de la circumferència = 0.274428
Diferència màxima, en valor absolut, entre els angles del polígon
original i els corresponents del polígon inscrit = 5.21805e-15
La diferència, en valor absolut, entre l'angle del vèrtex 0 del polígon
original i el corresponent del polígon inscrit = 2.44249e-15
La diferència, en valor absolut, entre l'angle del vèrtex 1 del polígon
original i el corresponent del polígon inscrit = 5.21805e-15
La diferència, en valor absolut, entre l'angle del vèrtex 2 del polígon
original i el corresponent del polígon inscrit = 2.88658e-15
Suma de distàncies angulars entre vèrtexs corresponents del polígons
inscrit i el polígon regular = 0.385396
La distància angular entre el vèrtex 0 del polígon original i el
```

```
corresponent del polígon inscrit = 0.255284
La distància angular entre el vèrtex 1 del polígon original i el
corresponent del polígon inscrit = 1.0114e-16
La distància angular entre el vèrtex 2 del polígon original i el
corresponent del polígon inscrit = 0.130111
Mu3_1 = 1
Mu3_2 = 0.907994
*****
Mesura 4. Distància punt recta
Mesura 4 = 0.903851
Altres paràmetres:
El punt format pel polígon original = (0.293073, 0.358501, 0.348426,
1.17484, 1.11225, 0.8545)
La longitud del costat del polígon de la recta més proper al polígon
original = 0.348426
Distància respecte les longituds = 0.0654288
Distància respecte els angles = 0.385396
Distància total = 0.450824
******
Mesura 5. Circumscripció
Mesura 5 = 0.78953
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea del polígon regular circumscrit = 0.119043
*****
Mesura 6. Inscripció
Mesura 6 = 0.78953
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea del polígon regular inscrit = 0.0742062
Mesura 7. Relació Inscripció/Circumscripció
```

```
110 APÈNDIX A. FORMAT DELS FITXERS DE SORTIDA/ENTRADA
Mesura 7 = 0.78953
Altres paràmetres:
Radi del polígon original = 0.268983
Radi del polígon regular inscrit = 0.239006
Radi del polígon regular circumscrit = 0.302719
Mesura 8. Distribució equiangular: minimització àrea més petita
Mesura 8 = 0.849466
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea de la porció més petita = 0.0266131
Àrea de la porció 0 = 0.0309821
Àrea de la porció 1 = 0.0363925
Àrea de la porció 2 = 0.0266131
Angle del primer segment del tallador amb l'horitzontal = 1.54767
Mesura 9. Distribució equiangular: maximització àrea més gran
Mesura 9 = 0.600194
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea de la porció més gran = 0.0372933
Àrea de la porció 0 = 0.0290089
Àrea de la porció 1 = 0.0372933
Àrea de la porció 2 = 0.0276856
Angle del primer segment del tallador amb l'horitzontal = 1.68032
Mesura 10. Distribució equiangular: maximització diferència àrees
Mesura 10 = 0.73128
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea de la porció més petita = 0.0266131
Àrea de la porció més gran = 0.0363925
```

```
Àrea de la porció 0 = 0.0309821
Àrea de la porció 1 = 0.0363925
Àrea de la porció 2 = 0.0266131
Angle del primer segment del tallador amb l'horitzontal = 1.54767
Mesura 11. Centre areal: minimització àrea triangle més gran
Mesura 11 = 0.837331
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea del triangle més gran = 0.0313293
Distància entre el centre areal i el vèrtex més proper = 0.251827
Distància entre el centre areal i el vèrtex més llunyà = 0.302936
Distància entre el centre areal i el vèrtex 0 = 0.251827
Distància entre el centre areal i el vèrtex 1 = 0.261063
Distància entre el centre areal i el vèrtex 2 = 0.302936
Angle minim entre vèrtexs consecutius i centre areal = 1.87832
Angle màxim entre vèrtexs consecutius i centre areal = 2.22704
Angle entre vèrtex 0, centre areal i el vèrtex 1 = 1.87832
Angle entre vèrtex 1, centre areal i el vèrtex 2 = 2.22704
Angle entre vèrtex 2, centre areal i el vèrtex 0 = 2.17782
Coordenades centre areal = (0.189897, 0.698879)
Mu11_1 = 0.911751
Mu11_2 = 0.918377
Mesura 12. Centre areal: maximització àrea triangle més petit
Mesura 12 = 0.837331
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea del triangle més petit = 0.0313293
\hat{A}rea del triangle 0 = 0.0313293
\dot{A}rea del triangle 1 = 0.0313293
Àrea del triangle 2 = 0.0313293
Distància entre el centre areal i el vèrtex més proper = 0.251827
Distància entre el centre areal i el vèrtex més llunyà = 0.302936
Distància entre el centre areal i el vèrtex 0 = 0.251827
Distància entre el centre areal i el vèrtex 1 = 0.261063
Distància entre el centre areal i el vèrtex 2 = 0.302936
```

112 APÈNDIX A. FORMAT DELS FITXERS DE SORTIDA/ENTRADA

```
Angle minim entre vèrtexs consecutius i centre areal = 1.87832
Angle màxim entre vèrtexs consecutius i centre areal = 2.22704
Angle entre vèrtex 0, centre areal i el vèrtex 1 = 1.87832
Angle entre vèrtex 1, centre areal i el vèrtex 2 = 2.22704
Angle entre vèrtex 2, centre areal i el vèrtex 0 = 2.17782
Coordenades centre areal = (0.189897, 0.698879)
Mu12_1 = 0.911751
Mu12_2 = 0.918377
Mesura 13. Centre areal: minimització diferència àrees
Mesura 13 = 0.837331
Altres paràmetres:
Àrea del polígon original = 0.0939878
Àrea del triangle més petit = 0.0313293
Àrea del triangle més gran = 0.0313293
Àrea del triangle 0 = 0.0313293
Àrea del triangle 1 = 0.0313293
Àrea del triangle 2 = 0.0313293
Distància entre el centre areal i el vèrtex més proper = 0.251827
Distància entre el centre areal i el vèrtex més llunyà = 0.302936
Distància entre el centre areal i el vèrtex 0 = 0.251827
Distància entre el centre areal i el vèrtex 1 = 0.261063
Distància entre el centre areal i el vèrtex 2 = 0.302936
Angle minim entre vèrtexs consecutius i centre areal = 1.87832
Angle màxim entre vèrtexs consecutius i centre areal = 2.22704
Angle entre vèrtex 0, centre areal i el vèrtex 1 = 1.87832
Angle entre vèrtex 1, centre areal i el vèrtex 2 = 2.22704
Angle entre vèrtex 2, centre areal i el vèrtex 0 = 2.17782
Coordenades centre areal = (0.189897, 0.698879)
Mu13_1 = 0.911751
Mu13_2 = 0.918377
```

Apèndix B

Resultats dels experiments

En aquest annex s'hi recullen els resultats dels experiments duts a terme per a totes les mesures, els quals hem descrit al Capítol 6. Concretament, per a cada conjunt d'experiments, s'hi troba una taula amb les imatges dels polígons avaluats i els resultats de les 13 mesures. A més, a continuació de la taula es mostren dues gràfiques dels resultats, una per polígons i l'altra per mesures, que, al nostre entendre, ajuden a analitzar els resultats. Els resultats estan agrupats pel criteri de creació dels polígons i en ordre creixent del nombre de costats per a cada criteri.

μ_1	1,000000	$1,\!000000$	1,000000	1,000000	1,000000
μ_2	1,000000	1,000000	1,000000	1,000000	1,000000
μ_3	1,000000	1,000000	1,000000	1,000000	1,000000
μ_4	1,000000	1,000000	1,000000	1,000000	1,000000
μ_5	1,000000	1,000000	1,000000	1,000000	1,000000
μ_6	1,000000	1,000000	1,000000	1,000000	1,000000
μ_7	1,000000	1,000000	1,000000	1,000000	1,000000
μ_8	1,000000	1,000000	1,000000	1,000000	1,000000
μ_9	1,000000	1,000000	1,000000	1,000000	1,000000
μ_{10}	1,000000	1,000000	1,000000	1,000000	1,000000
μ_{11}	1,000000	1,000000	1,000000	1,000000	1,000000
μ_{12}	1,000000	1,000000	1,000000	1,000000	1,000000
μ_{13}	1,000000	1,000000	1,000000	1,000000	1,000000

Taula B.1: Resultats de les mesures per a triangle, quadrat, pentàgon, hexàgon i heptàgon regular (1).

μ_1	1,000000	1,000000	1,000000	$1,\!000000$	1,000000
μ_2	1,000000	1,000000	1,000000	$1,\!000000$	1,000000
μ_3	$1,\!000000$	1,000000	1,000000	$1,\!000000$	1,000000
μ_4	1,000000	1,000000	1,000000	$1,\!000000$	1,000000
μ_5	1,000000	1,000000	1,000000	1,000000	1,000000
μ_6	1,000000	1,000000	1,000000	1,000000	1,000000
μ_7	1,000000	1,000000	1,000000	1,000000	1,000000
μ_8	1,000000	1,000000	1,000000	$1,\!000000$	1,000000
μ_9	1,000000	1,000000	1,000000	$1,\!000000$	1,000000
μ_{10}	1,000000	1,000000	1,000000	$1,\!000000$	1,000000
μ_{11}	1,000000	1,000000	1,000000	1,000000	1,000000
μ_{12}	1,000000	1,000000	1,000000	1,000000	1,000000
μ_{13}	1,000000	1,000000	1,000000	1,000000	1,000000

Taula B.2: Resultat de les mesures per a octògon, dodecagon, polígon de vint-i-cinc, cinquanta i cent costats regulars (i2)

μ_1	0,979094	0,712578	0,229769	0,963904	$0,\!473146$	0,826804
μ_2	0,907994	0,561583	$0,\!192371$	0,885478	$0,\!608785$	$0,\!687340$
μ_3	0,907994	0,561583	$0,\!192371$	0,885478	$0,\!608785$	$0,\!687340$
μ_4	0,903851	0,566812	$0,\!208467$	$0,\!878582$	$0,\!576423$	$0,\!683264$
μ_5	0,789530	$0,\!383657$	$0,\!103989$	0,746989	0,214206	$0,\!496266$
μ_6	0,789530	$0,\!383657$	$0,\!103989$	0,746989	0,214206	$0,\!496266$
μ_7	0,789530	$0,\!383657$	$0,\!103989$	0,746989	0,214206	$0,\!496266$
μ_8	0,849466	$0,\!383657$	0,103989	0,772096	0,260286	$0,\!496266$
μ_9	0,600194	0,364275	0,095608	0,535104	0,089967	$0,\!378542$
μ_{10}	0,731280	0,287042	0,066566	0,653432	0,304291	$0,\!380706$
μ_{11}	0,837331	0,515308	0,205435	0,782055	$0,\!352107$	$0,\!584581$
μ_{12}	0,837331	0,515308	0,205435	0,782055	0,352107	$0,\!584581$
μ_{13}	0,837331	0,515308	0,205435	0,782055	0,352107	0,584581

Taula B.3: Resultats de les mesures per a triangles pseudo-aleatoris (1).

Figura B.4: Representació gràfica del comportament de les mesures per a triangles pseudo-aleatoris (per polígons) (1).

Figura B.5: Representació gràfica del comportament de les mesures per a triangles pseudo-aleatoris (per mesures) (1).

μ_1	0,865086	0,030113	0,923524	0,993674	$0,\!456278$	$0,\!175869$
μ_2	0,786889	0,027181	$0,\!812885$	0,948055	$0,\!417148$	$0,\!534752$
μ_3	0,786889	0,027181	$0,\!812885$	0,948055	0,417148	0,534752
μ_4	0,772297	0,054664	0,805997	0,945811	0,410725	0,488719
μ_5	0,556622	0,013388	0,645897	0,883941	0,220501	0,078140
μ_6	0,556622	0,013388	0,645897	0,883941	0,220501	0,078140
μ_7	0,556622	0,013388	$0,\!645897$	0,883941	0,220501	0,078140
μ_8	0,582324	0,013388	0,645897	0,883941	0,385713	0,083535
μ_9	0,321569	0,040309	0,473402	0,794633	0,136012	0,026225
μ_{10}	0,479298	0,010742	0,521134	0,812658	0,282128	0,282867
μ_{11}	0,613112	0,071083	0,698163	0,904169	0,316710	0,189208
μ_{12}	0,613112	0,071083	0,698163	0,904169	0,316710	0,189208
μ_{13}	0,613112	0,071083	0,698163	0,904169	0,316710	0,189208

Taula B.6: Resultats de les mesures per a triangles pseudo-aleatoris (i 2).

Figura B.7: Representació gràfica del comportament de les mesures per a triangles pseudo-aleatoris (per polígons) (i 2).

Figura B.8: Representació gràfica del comportament de les mesures per a triangles pseudo-aleatoris (per mesures) (i 2).

μ_1	0,660244	0,744624	0,721193	0,663691	0,588306	0,531318
μ_2	0,515691	$0,\!615094$	0,513918	0,597071	0,538011	$0,\!373664$
μ_3	0,580836	$0,\!670588$	0,512776	0,614450	0,542262	0,400943
μ_4	0,644071	$0,\!669526$	0,589636	0,780580	0,549197	$0,\!641185$
μ_5	0,375621	$0,\!459946$	0,387260	0,356028	0,336407	0,285928
μ_6	0,347887	0,441939	$0,\!489920$	0,325123	0,287369	$0,\!299635$
μ_7	0,361488	$0,\!450853$	0,435576	0,340225	0,310923	0,292702
μ_8	0,282650	0,397478	0,499306	0,270438	0,269690	0,224730
μ_9	0,266239	0,451445	0,448390	0,216439	0,227965	0,263565
μ_{10}	0,172571	0,282360	0,381390	0,180450	0,156836	0,137999
μ_{11}	0,247078	0,257412	0,369059	0,282728	0,340855	$0,\!179444$
μ_{12}	0,226772	0,207865	0,368825	0,247614	0,343773	0,167191
μ_{13}	0,215813	0,257412	$0,\!370553$	0,238259	0,339437	0,160988

Taula B.9: Resultats de les mesures per a quadrilàters pseudo-aleatoris (1).

Figura B.10: Representació gràfica del comportament de les mesures per a quadrilàters pseudo-aleatoris (per polígons) (1).

Figura B.11: Representació gràfica del comportament de les mesures per a quadrilàters pseudo-aleatoris (per mesures) (1).

μ_1	0,720185	0,405446	0,577848	0,630863	0,736863	0,616736
μ_2	0,575557	0,490830	$0,\!424619$	0,592975	$0,\!626969$	0,517846
μ_3	0,593579	0,460215	0,419098	0,575603	$0,\!606152$	0,563949
μ_4	0,585383	$0,\!463653$	0,544406	$0,\!647857$	$0,\!653830$	$0,\!610600$
μ_5	$0,\!432873$	0,220732	0,311490	0,354371	$0,\!471424$	0,330913
μ_6	0,462182	0,160027	$0,\!435642$	0,288633	$0,\!398042$	$0,\!338124$
μ_7	0,447288	0,187944	0,368372	0,319818	$0,\!433182$	$0,\!334499$
μ_8	0,500068	$0,\!150860$	0,360953	0,269751	0,366991	$0,\!294772$
μ_9	0,419070	$0,\!158433$	0,244893	0,224305	0,311802	$0,\!217860$
μ_{10}	0,345410	$0,\!081070$	0,220139	$0,\!154901$	$0,\!239464$	0,169918
μ_{11}	0,420300	0,265350	0,318520	0,362408	0,329836	$0,\!319954$
μ_{12}	$0,\!416507$	0,265259	0,359219	0,362250	$0,\!306801$	0,318212
μ_{13}	0,420370	0,265410	0,323089	0,362505	$0,\!278640$	0,317149

Taula B.12: Resultats de les mesures per a quadrilàters pseudo-aleatoris (i 2).

Figura B.13: Representació gràfica del comportament de les mesures per a quadrilàters pseudo-aleatoris (per polígons) (i 2).

Figura B.14: Representació gràfica del comportament de les mesures per a quadrilàters pseudo-aleatoris (per mesures) (i 2).

μ_1	0,734496	0,825661	0,887051	0,154299	0,076601	0,612078
μ_2	0,545659	0,557470	0,633304	0,305017	$0,\!191565$	0,529793
μ_3	0,589348	0,573424	0,631231	0,332881	0,198331	0,553705
μ_4	0,590650	0,641243	0,705270	0,164544	0,120907	0,734680
μ_5	0,424107	0,564199	0,640041	0,065591	0,032157	0,316025
μ_6	0,560352	0,612841	0,579267	0,104899	0,043851	0,236983
μ_7	0,487493	0,588018	0,608896	0,082948	0,037552	$0,\!273665$
μ_8	0,435354	0,583356	0,659133	0,069372	0,030607	0,252614
μ_9	0,435717	0,596620	0,687468	0,060256	0,043678	0,199764
μ_{10}	0,281989	0,460129	0,528195	0,033352	0,014347	0,144611
μ_{11}	0,264155	0,404145	0,412052	0,098733	0,032311	0,174103
μ_{12}	0,201644	0,331927	0,446807	0,065750	0,021179	0,159751
μ_{13}	0,264155	0,305667	0,481929	0,098733	0,032311	0,174103

Taula B.15: Resultats de les mesures per a pentàgons pseudo-aleatoris (1).

Figura B.16: Representació gràfica del comportament de les mesures per a pentàgons pseudo-aleatoris (per polígons) (1).

Figura B.17: Representació gràfica del comportament de les mesures per a pentàgons pseudo-aleatoris (per mesures) (1).

μ_1	0,394989	0,919053	$0,\!626533$	0,539777	$0,\!805931$	0,709039
μ_2	0,249361	0,787241	$0,\!482470$	0,333793	0,568849	$0,\!433346$
μ_3	0,280484	0,770218	0,511631	0,376325	0,571205	$0,\!453399$
μ_4	0,423307	0,894679	0,735416	$0,\!673669$	0,690811	$0,\!650845$
μ_5	0,182666	$0,\!644589$	0,343678	0,265581	0,482934	$0,\!412677$
μ_6	0,277924	0,692323	$0,\!250751$	0,219700	$0,\!676887$	0,577408
μ_7	0,225316	0,668030	0,293560	0,241554	0,571745	0,488143
μ_8	0,195389	0,571260	0,250027	0,200655	0,578159	0,417139
μ_9	0,151542	0,577163	0,203438	0,187506	0,518757	$0,\!456397$
μ_{10}	0,122589	0,420708	0,148557	0,110867	0,400483	0,283541
μ_{11}	0,177723	0,508862	0,175443	0,148335	0,402392	0,155906
μ_{12}	0,135225	0,420927	0,080169	0,100807	0,357918	0,053933
μ_{13}	0,177723	0,456415	0,089066	0,123456	0,402392	0,155906

Taula B.18: Resultats de les mesures per a pentàgons pseudo-aleatoris (i 2).

Figura B.19: Representació gràfica del comportament de les mesures per a pentàgons pseudo-aleatoris (per polígons) (i 2).

Figura B.20: Representació gràfica del comportament de les mesures per a pentàgons pseudo-aleatoris (per mesures) (i 2).

μ_1	0,330464	$0,\!665910$	0,555371	0,586634	$0,\!861716$	0,907116
μ_2	0,248874	0,474098	0,302957	0,416410	0,674237	0,733715
μ_3	0,269208	0,475586	$0,\!278737$	0,439973	$0,\!656750$	0,757440
μ_4	0,405035	0,529163	0,313112	0,500181	0,733364	0,678546
μ_5	0,159528	0,395106	0,311089	0,318267	0,593761	0,623287
μ_6	0,214301	0,449547	0,465376	0,376172	0,662875	0,716107
μ_7	0,184898	0,421448	0,380491	0,346011	0,627367	0,668087
μ_8	0,123502	0,336637	0,358930	0,269668	0,561049	0,760543
μ_9	0,101093	0,356840	0,349926	0,280938	0,585144	0,708033
μ_{10}	$0,\!055079$	0,224548	$0,\!213734$	$0,\!158537$	0,422279	$0,\!619055$
μ_{11}	0,048395	0,078864	0,082540	0,155108	0,387942	0,474461
μ_{12}	0,019504	0,020210	$0,\!039247$	0,106431	0,255710	$0,\!358070$
μ_{13}	0,048395	0,078864	$0,\!082540$	0,155108	0,387942	$0,\!474461$

Taula B.21: Resultats de les mesures per a hexàgons pseudo-aleatoris (1).

Figura B.22: Representació gràfica del comportament de les mesures per a hexàgons pseudo-aleatoris (per polígons) (1).

Figura B.23: Representació gràfica del comportament de les mesures per a hexàgons pseudo-aleatoris (per mesures) (1).

μ_1	0,408146	0,295045	0,286897	0,891022	0,120206	0,872874
μ_2	0,285796	0,198173	0,267635	0,580210	0,177350	0,604645
μ_3	0,320224	0,215932	0,264201	$0,\!603790$	$0,\!171377$	$0,\!640574$
μ_4	0,384560	0,382055	0,308990	0,584543	0,260678	0,592063
μ_5	0,198634	0,139458	0,133296	$0,\!650698$	0,054153	0,649502
μ_6	0,181335	0,242036	0,204252	0,719678	0,094838	0,723007
μ_7	0,189787	$0,\!183723$	0,165003	$0,\!684319$	$0,\!071664$	$0,\!685269$
μ_8	0,163367	0,139614	$0,\!126846$	0,822624	$0,\!054409$	0,732842
μ_9	0,135155	0,105341	0,133267	0,802548	0,035912	0,739053
μ_{10}	0,093177	0,061507	0,056462	0,726310	0,022302	$0,\!602576$
μ_{11}	0,114306	0,046417	0,092034	0,375596	0,034060	0,413415
μ_{12}	0,131374	0,021835	0,092576	0,287327	0,036454	0,228539
μ_{13}	0,155272	0,046417	0,092034	0,350806	0,034060	0,413415

Taula B.24: Resultats de les mesures per a hexàgons pseudo-aleatoris (i 2).

Figura B.25: Representació gràfica del comportament de les mesures per a hexàgons pseudo-aleatoris (per polígons) (i 2).

Figura B.26: Representació gràfica del comportament de les mesures per a hexàgons pseudo-aleatoris (per mesures) (i 2).

μ_1	0,390487	$0,\!603494$	$0,\!479261$	$0,\!627347$	0,818651	0,396260
μ_2	0,380909	0,393505	$0,\!287476$	$0,\!435230$	0,521768	$0,\!355972$
μ_3	0,402014	$0,\!374075$	0,344996	$0,\!450897$	0,528989	0,359966
μ_4	0,426312	$0,\!472669$	$0,\!591354$	0,522597	0,514575	0,362660
μ_5	0,181242	0,334982	0,237269	0,302800	0,614355	0,174169
μ_6	0,252331	0,394851	$0,\!172948$	0,392283	0,647633	$0,\!179050$
μ_7	0,213853	0,363687	0,202571	0,344650	0,630774	$0,\!176593$
μ_8	$0,\!157954$	$0,\!302636$	$0,\!17\overline{4370}$	$0,\!373461$	0,618433	$0,\!193046$
μ_9	0,141715	0,320107	$0,\!143975$	0,301747	0,673624	$0,\!156764$
μ_{10}	0,057990	0,165343	0,066882	0,201805	0,494447	$0,\!074150$
μ_{11}	0,052593	0,146817	0,046964	0,120996	0,126546	0,137994
μ_{12}	0,015202	0,081551	0,028813	0,131417	0,026210	$0,\!123520$
μ_{13}	0,052593	$0,\!146817$	0,047205	0,120996	0,103769	0,137994

Taula B.27: Resultats de les mesures per a heptàgons pseudo-aleatoris (1).

Figura B.28: Representació gràfica del comportament de les mesures per a heptàgons pseudo-aleatoris (per polígons) (1).

Figura B.29: Representació gràfica del comportament de les mesures per a heptàgons pseudo-aleatoris (per mesures) (1).

APÈNDIX B. RESULTATS DELS EXPERIMENTS

μ_1	0,837815	0,819732	0,019377	0,800349	0,190146	0,538959
μ_2	0,569724	0,605663	0,058470	0,521978	0,209874	0,359455
μ_3	$0,\!605560$	$0,\!632274$	0,064397	$0,\!596309$	$0,\!183315$	$0,\!384237$
μ_4	$0,\!647775$	$0,\!610002$	$0,\!051796$	$0,\!642374$	$0,\!191646$	0,501197
μ_5	0,560434	0,531019	0,007988	0,544848	$0,\!080562$	0,268354
μ_6	$0,\!621988$	$0,\!495777$	0,006999	$0,\!690966$	$0,\!106618$	0,327588
μ_7	0,590409	0,513096	0,007477	$0,\!613573$	0,092679	$0,\!296495$
μ_8	0,527152	$0,\!449773$	0,006939	0,544290	0,078993	0,214303
μ_9	0,561952	0,418709	0,040048	0,533697	$0,\!058239$	0,220210
μ_{10}	0,383304	$0,\!271697$	0,002382	0,378824	0,024639	0,098045
μ_{11}	0,266336	$0,\!254777$	0,029200	$0,\!122260$	0,061888	0,094044
μ_{12}	$0,\!154683$	0,260471	0,011268	$0,\!025465$	0,012153	$0,\!055181$
μ_{13}	0,266336	0,254777	0,013605	0,122260	0,061888	0,094044

Taula B.30: Resultats de les mesures per a heptàgons pseudo-aleatoris (i 2).

Figura B.31: Representació gràfica del comportament de les mesures per a heptàgons pseudo-aleatoris (per polígons) (i 2).

Figura B.32: Representació gràfica del comportament de les mesures per a heptàgons pseudo-aleatoris (per mesures) (i 2).

μ_1	0,909692	0,650252	0,464911	0,657343	0,099704	0,820333
μ_2	0,555418	0,468729	$0,\!296058$	0,481942	$0,\!127177$	0,543980
μ_3	0,567116	0,524735	$0,\!286116$	0,496148	$0,\!085087$	0,523128
μ_4	$0,\!624544$	0,607710	0,223621	$0,\!473128$	$0,\!390609$	$0,\!591160$
μ_5	0,660198	0,368552	$0,\!246277$	0,379213	0,044121	0,542053
μ_6	0,751145	$0,\!489423$	$0,\!357763$	0,462608	$0,\!088755$	$0,\!582847$
μ_7	0,704205	$0,\!424709$	$0,\!296831$	0,418840	0,062577	0,562080
μ_8	0,762550	0,335074	0,239124	0,318023	0,044995	$0,\!499787$
μ_9	$0,\!686580$	0,305461	0,222991	0,343203	0,023268	0,506265
μ_{10}	0,588897	0,161173	0,096292	$0,\!157885$	0,010947	0,313170
μ_{11}	0,189845	0,135666	0,054681	0,059351	0,017923	$0,\!248870$
μ_{12}	0,062886	$0,\!106976$	$0,\!056836$	0,011451	0,005413	$0,\!205659$
μ_{13}	0,189845	0,135666	0,054681	0,059351	0,017923	0,248870

Taula B.33: Resultats de les mesures per a octògons pseudo-aleatoris (1).

Figura B.34: Representació gràfica del comportament de les mesures per a octògons pseudo-aleatoris (per polígons) (1).

Figura B.35: Representació gràfica del comportament de les mesures per a octògons pseudo-aleatoris (per mesures) (1).

μ_1	0,444197	0,688017	0,786022	0,720739	0,855231	0,100992
μ_2	0,258087	$0,\!497709$	$0,\!475933$	0,429813	$0,\!608693$	0,341440
μ_3	0,271913	0,526282	0,452685	0,434715	0,612029	0,317425
μ_4	0,497208	0,550843	0,458542	0,608489	0,533011	0,233386
μ_5	0,220121	0,376237	0,549489	0,422219	0,678744	0,043788
μ_6	0,354162	0,396811	0,679886	0,447419	0,624218	0,045972
μ_7	0,279211	0,386387	0,611220	0,434636	0,650911	0,044867
μ_8	0,234680	0,348106	0,632118	0,351900	0,532797	0,033177
μ_9	0,224388	0,339232	0,619348	0,294420	0,601122	0,037217
μ_{10}	0,095870	0,169845	0,466962	0,163769	0,389174	0,008438
μ_{11}	0,054743	0,222423	0,053199	0,122795	$0,\!119563$	0,030907
μ_{12}	0,011526	0,198195	0,014497	0,050499	0,027776	0,023431
μ_{13}	0,054743	0,222423	0,053199	0,122795	0,119563	0,045615

Taula B.36: Resultats de les mesures per a octògons pseudo-aleatoris (i 2).

Figura B.37: Representació gràfica del comportament de les mesures per a octògons pseudo-aleatoris (per polígons) (i 2).

Figura B.38: Representació gràfica del comportament de les mesures per a octògons pseudo-aleatoris (per mesures) (i 2).

μ_1	0,704425	0,500311	0,261626	0,599899	0,086793	$0,\!698087$
μ_2	0,385678	0,166289	$0,\!211479$	0,392648	$0,\!173737$	0,508665
μ_3	0,399196	0,218977	0,243942	0,407671	0,166398	0,520019
μ_4	0,443096	0,376288	$0,\!295855$	$0,\!379154$	0,160644	0,468128
μ_5	0,444493	0,251695	$0,\!119705$	0,308267	0,036121	0,394145
μ_6	0,585659	0,254323	$0,\!199970$	0,482013	0,041468	$0,\!493007$
μ_7	0,510217	0,253006	$0,\!154717$	0,385472	0,038702	0,440813
μ_8	0,447419	0,198891	0,111514	0,338025	0,040006	$0,\!444955$
μ_9	0,369619	0,187417	0,090162	$0,\!274943$	$0,\!037681$	$0,\!336182$
μ_{10}	0,216378	0,061564	0,025418	$0,\!133681$	0,007288	$0,\!195296$
μ_{11}	0,099259	0,040874	0,027351	0,084307	0,007672	0,099422
μ_{12}	0,086328	0,010125	0,040400	0,055149	0,004597	0,080259
μ_{13}	0,099259	0,040874	0,027351	0,084307	0,007672	0,099422

Taula B.39: Resultats de les mesures per a dodecàgons pseudo-aleatoris (1).

Figura B.40: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per polígons) (1).

Figura B.41: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per mesures) (1).

μ_1	0,259438	$0,\!238967$	$0,\!295550$	0,692404	0,724456	$0,\!107051$
μ_2	0,191897	$0,\!186959$	0,368226	0,234224	0,382399	$0,\!179148$
μ_3	0,217626	0,163375	0,358838	0,246348	0,424999	$0,\!179251$
μ_4	0,394517	0,357222	0,318172	0,305445	0,586366	0,218955
μ_5	0,115935	0,104374	0,127561	0,438542	0,435495	0,045251
μ_6	0,137335	0,112109	0,141575	0,533608	0,449344	0,045714
μ_7	0,126182	0,108172	0,134386	0,483745	0,442365	0,045482
μ_8	0,084031	0,082077	0,136167	0,396823	0,350025	0,043646
μ_9	0,071650	0,077479	0,104178	0,406168	0,316426	0,036979
μ_{10}	0,017815	0,017732	0,032491	0,188511	0,147606	0,007924
μ_{11}	0,010879	0,005059	0,016001	0,049431	0,046308	0,012290
μ_{12}	0,005189	0,002141	0,008637	0,007140	0,024322	0,007769
μ_{13}	0,010879	0,005059	0,016001	0,049431	0,046308	0,012290

Taula B.42: Resultats de les mesures per a dodecàgons pseudo-aleatoris (2).

Figura B.43: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per polígons) (2).

Figura B.44: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per mesures) (2).

μ_1	0,695296	0,713604	0,832902	0,638491	$0,\!475129$	0,497941
μ_2	0,418826	$0,\!450879$	0,543384	0,280215	0,332816	0,314126
μ_3	0,510712	$0,\!480845$	0,543053	0,315353	$0,\!285667$	0,312698
μ_4	0,297764	$0,\!617855$	0,647046	0,325035	0,262162	0,344636
μ_5	$0,\!431988$	$0,\!421576$	$0,\!540173$	0,360991	$0,\!246346$	$0,\!259149$
μ_6	0,598962	$0,\!358440$	$0,\!638285$	0,379766	$0,\!359345$	0,201591
μ_7	0,508669	$0,\!388729$	$0,\!587184$	0,370260	$0,\!297528$	0,228565
μ_8	0,467609	$0,\!306767$	0,569237	$0,\!326056$	$0,\!259893$	$0,\!185105$
μ_9	0,371116	0,338804	0,500070	0,301459	0,208838	0,166663
μ_{10}	0,228409	0,134769	0,329709	0,132464	$0,\!088965$	0,054011
μ_{11}	0,101588	0,063733	0,161498	0,045182	$0,\!073199$	0,085922
μ_{12}	0,029308	0,025113	0,043229	0,025721	$0,\!021925$	0,084063
μ_{13}	0,101588	0,063733	0,161498	0,045182	0,073199	0,083946

Taula B.45: Resultats de les mesures per a dodecàgons pseudo-aleatoris (3).

Figura B.46: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per polígons) (3).

Figura B.47: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per mesures) (3).

						\bigcirc
μ_1	$0,\!675586$	0,533593	0,704636	0,471936	$0,\!673329$	$0,\!908763$
μ_2	$0,\!481399$	0,258404	0,363086	0,248996	$0,\!466127$	0,511153
μ_3	0,511999	0,269391	0,292321	0,285083	$0,\!498521$	$0,\!485320$
μ_4	0,568465	0,222619	$0,\!410457$	$0,\!416722$	0,511440	$0,\!477107$
μ_5	0,403583	0,314302	0,444290	0,229947	0,384714	$0,\!685170$
μ_6	0,495623	0,513829	$0,\!498220$	0,243032	0,382989	0,802802
μ_7	0,447242	0,401868	$0,\!470483$	0,236399	0,383851	0,741657
μ_8	0,335528	0,325628	0,393562	0,187113	0,368341	0,802657
μ_9	0,276610	0,259497	0,376356	0,193646	0,277762	0,684562
μ_{10}	0,135180	0,121508	0,195349	0,059123	0,143826	0,593920
μ_{11}	0,100950	0,057775	0,086812	0,052800	0,040705	0,083354
μ_{12}	0,068516	0,019133	0,021675	0,043440	0,022167	0,022278
μ_{13}	0,100950	0,057775	0,086812	0,052800	0,040705	0,083354

Taula B.48: Resultats de les mesures per a dodecà
gons pseudo-aleatoris (i4).

Figura B.49: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per polígons) (i 4).

Figura B.50: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris (per mesures) (i 4).

μ_1	$0,\!831329$	0,783229	0,702980	$0,\!199184$	$0,\!812061$	$0,\!391547$
μ_2	0,359292	$0,\!271706$	0,319315	0,220908	$0,\!434823$	$0,\!338256$
μ_3	0,348891	0,244257	0,345256	0,217947	0,464243	0,348216
μ_4	0,379049	0,200756	0,448263	0,288253	0,352109	0,345275
μ_5	$0,\!623295$	0,546453	0,413500	0,083032	0,511841	0,177156
μ_6	$0,\!628657$	$0,\!697348$	0,477305	0,093028	$0,\!629738$	0,202708
μ_7	$0,\!625970$	$0,\!617307$	0,444258	$0,\!087888$	0,567737	$0,\!189502$
μ_8	0,582958	$0,\!612317$	0,383721	0,081326	$0,\!531337$	$0,\!176663$
μ_9	0,594022	$0,\!499701$	0,310400	0,067353	$0,\!473046$	$0,\!125992$
μ_{10}	0,363428	0,328239	0,138709	0,010992	0,271842	0,033415
μ_{11}	0,004644	0,009835	0,015192	0,002807	0,036905	$0,\!010672$
μ_{12}	0,002492	0,003839	0,014217	0,001846	$0,\!006509$	0,011913
μ_{13}	0,004644	0,009835	0,015192	0,002807	0,036905	0,010672

Taula B.51: Resultats de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (1).

Figura B.52: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per polígons) (1).

Figura B.53: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per mesures) (1).

μ_1	0,824468	0,712378	$0,\!208551$	0,529499	0,648198	0,756345
μ_2	0,442246	0,362396	0,346878	0,360324	0,313588	0,401504
μ_3	0,423230	0,366304	0,377365	0,439776	0,371585	0,415576
μ_4	0,417800	0,400609	0,303827	0,400927	0,354060	0,429290
μ_5	0,509536	0,370072	0,088883	0,265816	0,360378	0,498701
μ_6	0,641503	0,502880	0,083494	0,210613	0,420103	0,561102
μ_7	0,571724	0,431395	0,086147	0,236610	0,389097	0,528982
μ_8	0,599548	0,434311	0,066496	0,188988	0,332232	0,384281
μ_9	0,509203	0,343075	0,056340	0,208893	0,291298	0,401450
μ_{10}	0,326968	0,169573	0,008288	0,050245	0,113750	0,170935
μ_{11}	0,040412	0,010145	0,007275	0,011232	0,026066	0,028405
μ_{12}	0,032936	0,007395	0,003630	0,006376	0,009821	0,012681
μ_{13}	0,040412	0,013050	0,007275	0,011232	0,026066	0,028405

Taula B.54: Resultats de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (2).

Figura B.55: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per polígons) (2).

Figura B.56: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per mesures) (2).

μ_1	0,418659	$0,\!156230$	$0,\!662042$	0,662042	$0,\!443497$	$0,\!666672$
μ_2	0,281314	$0,\!103705$	$0,\!488922$	$0,\!488922$	$0,\!246746$	0,219410
μ_3	0,302882	0,100804	$0,\!476768$	$0,\!476768$	0,243916	0,226066
μ_4	0,352612	0,306434	$0,\!487151$	$0,\!487151$	0,331329	0,349040
μ_5	0,188298	0,064244	0,339763	0,339763	$0,\!199821$	$0,\!388857$
μ_6	0,174415	0,060404	$0,\!378148$	0,378148	$0,\!335048$	$0,\!447167$
μ_7	0,181224	0,062295	$0,\!358442$	0,358442	0,258746	$0,\!416994$
μ_8	0,167421	0,050914	0,328335	0,328335	0,240779	0,327254
μ_9	0,152397	0,039542	0,307948	0,307948	0,160725	0,308466
μ_{10}	0,035770	0,005576	$0,\!117917$	0,117917	0,053331	$0,\!117629$
μ_{11}	0,011671	0,003451	0,022821	0,022821	0,012304	0,013799
μ_{12}	0,002818	0,004131	$0,\!008607$	0,008607	0,007442	0,003856
μ_{13}	0,010064	0,003451	0,022821	0,022821	0,012304	0,013799

Taula B.57: Resultats de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (3).

Figura B.58: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per polígons) (3).

Figura B.59: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per mesures) (3).

μ_1	0,849676	0,558490	0,769629	$0,\!818962$	$0,\!819555$	0,560055
μ_2	0,368915	0,302374	0,368513	0,517482	0,398261	0,379929
μ_3	0,413623	0,311939	$0,\!427249$	0,546432	$0,\!456080$	$0,\!372641$
μ_4	0,352772	0,409422	0,363501	$0,\!331064$	0,322219	$0,\!381692$
μ_5	0,580117	0,265666	$0,\!457803$	$0,\!572420$	0,563283	$0,\!281132$
μ_6	$0,\!654639$	0,308884	$0,\!645835$	$0,\!656721$	$0,\!611920$	$0,\!270254$
μ_7	$0,\!616253$	0,286461	0,543751	$0,\!613123$	$0,\!587098$	$0,\!275639$
μ_8	0,607421	0,233155	$0,\!555640$	$0,\!558784$	$0,\!598336$	$0,\!229503$
μ_9	0,552201	0,237008	0,445860	0,479292	0,521148	0,210997
μ_{10}	0,357006	0,068423	0,270466	0,288771	0,332759	0,061526
μ_{11}	0,014715	0,025464	0,010254	0,027453	0,041755	0,035134
μ_{12}	0,003940	0,004944	0,000000	$0,\!053037$	$0,\!036157$	0,024959
μ_{13}	0,014715	0,025464	0,010254	0,027453	$0,02\overline{2366}$	0,035134

Taula B.60: Resultats de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (i 4).

Figura B.61: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per polígons) (i 4).

Figura B.62: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris (per mesures) (i 4).

μ_1	$0,\!887906$	0,180681	0,772551	$0,\!805687$	$0,\!901147$	0,500305
μ_2	0,585827	0,213449	0,348282	0,386414	0,543732	$0,\!290569$
μ_3	0,575960	0,237871	0,396389	0,413201	0,554680	$0,\!289666$
μ_4	0,396424	0,254524	$0,\!300257$	$0,\!276462$	0,365628	$0,\!288961$
μ_5	$0,\!622456$	0,075027	0,510003	$0,\!494755$	0,724589	$0,\!249245$
μ_6	$0,\!697489$	0,066034	0,585229	$0,\!614758$	0,746242	$0,\!284134$
μ_7	$0,\!658905$	0,070387	0,546323	0,551502	0,735336	0,266119
μ_8	$0,\!584994$	0,060995	$0,\!462687$	0,517707	$0,\!651110$	$0,\!236575$
μ_9	0,530831	0,052050	0,383746	0,487818	$0,\!621864$	0,188417
μ_{10}	0,321701	0,005282	0,188060	0,262675	0,414023	0,051595
μ_{11}	0,014432	0,001487	0,006849	0,057906	0,023137	0,006757
μ_{12}	0,018748	0,000928	0,001223	0,045566	0,041794	0,005622
μ_{13}	0,014947	0,001487	0,006849	0,057906	0,023632	0,006757

Taula B.63: Resultats de les mesures per a polígons de cinquanta costats pseudo-aleatoris (1).

Figura B.64: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per polígons) (1).

Figura B.65: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per mesures) (1).

μ_1	0,854715	$0,\!870135$	0,732185	$0,\!639917$	$0,\!431510$	$0,\!836403$
μ_2	$0,\!425592$	$0,\!491540$	$0,\!257413$	$0,\!422702$	0,416548	0,330503
μ_3	0,476212	$0,\!491626$	0,223285	0,464215	$0,\!425018$	0,316956
μ_4	0,395582	$0,\!437557$	$0,\!181771$	$0,\!472242$	$0,\!243490$	$0,\!356915$
μ_5	0,594689	$0,\!669771$	0,471308	0,351169	0,211693	0,580920
μ_6	0,703911	$0,\!645302$	$0,\!623000$	0,345808	0,162324	0,715244
μ_7	0,647000	0,657423	0,541871	0,348478	0,185372	0,644593
μ_8	0,601964	0,542071	0,538117	0,261432	0,151702	0,612957
μ_9	0,475944	0,609475	0,404518	0,286330	0,172460	0,511579
μ_{10}	0,299245	0,339354	0,229246	0,081703	0,030694	0,309422
μ_{11}	0,004277	0,005217	0,003954	0,005649	0,005464	0,011017
μ_{12}	0,004161	0,013822	0,004378	0,010333	0,008988	0,013345
μ_{13}	0,004277	0,005217	0,003954	0,005649	0,005464	0,011017

Taula B.66: Resultats de les mesures per a polígons de cinquanta costats pseudo-aleatoris (2).

Figura B.67: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per polígons) (2).

Figura B.68: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per mesures) (2).

μ_1	0,552774	0,280045	0,717953	0,191808	0,214943	0,799382
μ_2	0,298162	0,314873	0,519882	$0,\!157567$	0,089394	$0,\!467990$
μ_3	0,293949	0,344262	0,537242	0,168506	0,093593	0,532455
μ_4	0,290495	0,156232	0,410800	0,218584	0,195295	0,379511
μ_5	0,293773	0,121272	0,413616	0,078628	0,090594	0,469610
μ_6	0,347073	0,149583	0,422156	0,081839	0,111032	0,554498
μ_7	0,319313	0,134686	0,417864	0,080217	0,100294	0,510292
μ_8	0,255793	0,109994	0,345941	0,074356	0,076392	0,433128
μ_9	0,213378	0,080148	0,338517	0,058188	0,063818	0,420133
μ_{10}	0,061856	0,012468	0,125407	0,006865	0,007456	0,191707
μ_{11}	0,006944	0,002029	0,011373	0,003434	0,000375	0,007286
μ_{12}	0,011119	0,002048	0,020230	0,002578	0,000399	0,007932
μ_{13}	0,005892	0,002029	0,011373	0,003539	0,000375	0,007286

Taula B.69: Resultats de les mesures per a polígons de cinquanta costats pseudo-aleatoris (3).

Figura B.70: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per polígons) (3).

Figura B.71: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per mesures) (3).

μ_1	0,257834	0,505008	$0,\!826562$	0,695914	$0,\!600342$	0,215206
μ_2	0,200252	0,354818	$0,\!448155$	0,354068	0,337258	$0,\!153452$
μ_3	0,218679	0,342342	0,503566	0,368767	0,353188	$0,\!152502$
μ_4	$0,\!146632$	$0,\!274072$	0,418400	0,385319	0,260088	$0,\!126981$
μ_5	0,107743	0,272485	$0,\!581472$	0,364097	0,330927	$0,\!088762$
μ_6	0,122033	0,363196	$0,\!696545$	0,427384	0,377759	$0,\!105507$
μ_7	$0,\!114665$	0,314588	$0,\!636413$	0,394473	0,353568	$0,\!096773$
μ_8	0,099804	0,247266	$0,\!594051$	0,329048	0,325062	$0,\!103197$
μ_9	0,078515	$0,\!174799$	0,536526	0,334756	0,242359	$0,\!078064$
μ_{10}	0,011175	$0,\!050736$	0,329751	0,118471	$0,\!087672$	$0,\!011497$
μ_{11}	0,011968	0,007380	0,008766	0,005446	0,004078	0,000996
μ_{12}	0,012151	$0,\!009155$	0,001339	0,002873	0,002570	$0,\!001505$
μ_{13}	0,011968	0,007380	0,008766	0,005446	0,004078	0,000996

Taula B.72: Resultats de les mesures per a polígons de cinquanta costats pseudo-aleatoris (i 4).

Figura B.73: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per polígons) (i 4).

Figura B.74: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris (per mesures) (i 4).

μ_1	0,797715	0,694040	$0,\!89\overline{3}147$	$0,\!80\overline{4537}$	0,862884	$0,\!171371$
μ_2	0,545825	0,396048	$0,\!454350$	0,272890	$0,\!422959$	$0,\!375297$
μ_3	0,575944	0,343193	0,509462	0,262520	$0,\!455743$	$0,\!337847$
μ_4	0,332798	0,158704	0,329173	0,152452	0,351271	0,208665
μ_5	0,524940	0,432699	0,698948	0,604935	0,695066	0,059240
μ_6	0,460301	0,496198	0,751860	0,718874	0,752626	0,081660
μ_7	0,491559	0,463362	0,724921	0,659448	0,723274	0,069553
μ_8	0,411701	0,399686	0,725377	0,705468	0,611160	0,066266
μ_9	0,469695	0,344626	0,677284	0,548910	0,577403	$0,\!051376$
μ_{10}	0,198603	0,143134	0,502023	0,393967	0,359424	0,004554
μ_{11}	0,001883	0,007556	0,009208	0,004594	0,009442	0,000764
μ_{12}	0,001180	0,008130	0,017336	0,007656	0,009471	0,000440
μ_{13}	0,001883	0,007556	0,009208	0,004594	0,009442	0,000789

Taula B.75: Resultats de les mesures per a polígons de cent costats pseudo-aleatoris (1).

Figura B.76: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per polígons) (1).

Figura B.77: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per mesures) (1).

μ_1	$0,\!645431$	0,404518	0,947764	$0,\!641749$	$0,\!551107$	$0,\!106424$
μ_2	0,312427	0,301484	$0,\!479648$	0,415427	$0,\!177390$	$0,\!113835$
μ_3	0,311118	0,350250	0,524426	0,442551	0,163588	0,068288
μ_4	0,232587	0,240824	0,338335	0,289424	0,206116	$0,\!123188$
μ_5	0,375827	$0,\!181087$	0,721536	0,362857	0,259805	$0,\!041878$
μ_6	0,320008	$0,\!244165$	$0,\!830603$	0,338902	0,369684	0,043814
μ_7	0,346796	0,210274	0,774151	0,350675	0,309912	0,042835
μ_8	0,288966	$0,\!159771$	0,777330	0,258933	0,287826	0,036029
μ_9	0,312927	0,138160	$0,\!67\overline{5776}$	0,338975	0,231620	$0,03\overline{2778}$
μ_{10}	0,094159	0,024701	$0,\!534007$	0,091891	0,071042	0,001812
μ_{11}	0,001271	0,002233	0,013862	0,002532	0,001702	0,001325
μ_{12}	0,002181	0,001185	0,000849	0,001526	0,000206	0,000097
μ_{13}	0,001271	0,002233	0,013862	0,002532	0,001702	0,001325

Taula B.78: Resultats de les mesures per a polígons de cent costats pseudo-aleatoris (2).

Figura B.79: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per polígons) (2).

Figura B.80: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per mesures) (2).

μ_1	0,398138	0,682835	0,494414	0,845855	0,807723	0,046715
μ_2	0,204058	0,553740	0,305453	0,693525	0,399768	0,183994
μ_3	0,230409	0,562316	0,269248	0,422569	0,417019	0,218730
μ_4	0,206714	0,284209	0,236192	0,271409	0,340357	0,189900
μ_5	0,195140	0,403694	0,233027	0,548496	0,522115	0,031469
μ_6	0,236157	$0,\!440376$	0,238419	0,594129	0,465572	0,060304
μ_7	0,214671	0,421637	$0,\!235708$	0,570857	0,493033	$0,\!043563$
μ_8	$0,\!150306$	0,343854	$0,\!185547$	0,564462	0,439969	$0,\!018728$
μ_9	0,136484	0,347220	0,200044	0,543668	$0,\!455568$	0,016424
μ_{10}	0,022982	0,124216	0,039884	0,312589	0,207137	0,000640
μ_{11}	0,001336	0,004058	0,000275	0,005149	0,002644	0,000113
μ_{12}	0,001176	0,004169	0,000185	0,010228	0,004601	0,000000
μ_{13}	0,001336	0,004058	0,000245	0,006731	0,002644	0,000113

Taula B.81: Resultats de les mesures per a polígons de cent costats pseudo-aleatoris (3).

Figura B.82: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per polígons) (3).

Figura B.83: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per mesures) (3).

μ_1	0,810373	0,635276	0,626396	0,248818	0,850070	0,438908
μ_2	$0,\!492825$	$0,\!298673$	$0,\!425687$	0,256897	0,323172	0,328395
μ_3	0,406778	0,317516	0,460306	0,275696	0,328769	0,211296
μ_4	0,312008	0,231419	0,241255	0,245653	0,288232	0,272651
μ_5	0,589549	0,393453	0,328972	0,098785	0,588993	$0,\!196783$
μ_6	$0,\!681272$	0,299698	0,349862	0,127761	0,706746	0,278304
μ_7	$0,\!633753$	0,343391	0,339256	0,112343	0,645189	0,234020
μ_8	$0,\!606491$	0,282520	0,252510	0,095072	0,626139	$0,\!183532$
μ_9	0,536789	0,388843	0,329097	0,078942	0,513395	0,162755
μ_{10}	0,332192	0,112426	0,086477	0,008271	0,328391	0,032777
μ_{11}	0,004232	0,003293	0,006443	0,000883	0,001052	0,002363
μ_{12}	0,004698	0,002915	0,003800	0,000710	0,001967	0,001981
μ_{13}	0,004232	0,000892	0,006443	0,000883	0,001122	0,002363

Taula B.84: Resultats de les mesures per a polígons de cent costats pseudoaleatoris (i 4).

Figura B.85: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per polígons) (i 4).

Figura B.86: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris (per mesures) (i 4).

μ_1	0,951342	0,713231	0,217981	0,264111	$0,\!629230$	0,502888
μ_2	0,845102	0,703557	0,204461	0,202523	0,561807	$0,\!453396$
μ_3	0,858138	$0,\!698392$	$0,\!173735$	0,226999	0,555224	0,379300
μ_4	0,856317	0,806838	$0,\!195708$	0,266570	0,544046	0,384974
μ_5	0,727641	0,370942	0,111965	0,136394	0,375435	0,292433
μ_6	0,602225	0,410681	0,172701	0,150646	0,393623	0,355760
μ_7	0,661970	0,390306	0,139056	0,143343	0,384421	0,322546
μ_8	0,743281	0,339966	0,097064	0,097360	0,330295	0,253281
μ_9	0,632204	0,251721	0,085799	0,123133	0,363961	0,239846
μ_{10}	0,622124	0,220288	0,054529	0,053813	0,271801	0,155404
μ_{11}	0,650263	0,251116	0,161906	0,100603	0,242115	0,275186
μ_{12}	0,534484	0,189442	$0,\!153553$	0,098125	0,209661	0,177874
μ_{13}	0,540562	0,176416	0,161906	0,100569	0,242115	0,275186

Taula B.87: Resultats de les mesures per a quadrilàters pseudo-aleatoris inscrits en una circumferència.

Figura B.88: Representació gràfica del comportament de les mesures per a quadrilàters pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.89: Representació gràfica del comportament de les mesures per a quadrilàters pseudo-aleatoris inscrits en una circumferència (per mesures).

μ_1	0,439643	0,749355	0,734973	0,903430	0,589903	0,885019
μ_2	0,323770	0,557407	0,569015	0,762125	$0,\!573710$	0,719167
μ_3	0,359034	$0,\!596107$	$0,\!612719$	0,696482	$0,\!634057$	0,756166
μ_4	0,376920	0,572350	$0,\!613383$	$0,\!694463$	$0,\!665024$	0,741985
μ_5	0,204790	0,490463	$0,\!446165$	$0,\!642356$	0,318220	$0,\!629166$
μ_6	0,247538	0,578345	$0,\!450269$	0,681646	0,261011	0,471894
μ_7	0,225152	0,532594	0,448212	0,661709	0,288199	0,544885
μ_8	0,170218	0,509847	0,341308	$0,\!655266$	0,237986	0,552844
μ_9	0,210447	0,539579	0,360446	0,735385	$0,\!183005$	0,524043
μ_{10}	0,096972	$0,\!375442$	0,218727	0,546848	$0,\!138315$	0,406305
μ_{11}	0,171718	0,075306	0,317008	0,502407	0,129008	$0,\!387089$
μ_{12}	0,178516	0,007758	0,300276	0,340237	0,042436	0,194363
μ_{13}	0,174420	0,075306	0,307318	0,416238	0,129008	0,278398

Taula B.90: Resultats de les mesures per a pentàgons pseudo-aleatoris inscrits en una circumferència.

Figura B.91: Representació gràfica del comportament de les mesures per a pentàgons pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.92: Representació gràfica del comportament de les mesures per a pentàgons pseudo-aleatoris inscrits en una circumferència (per mesures).

μ_1	$0,\!627801$	$0,\!873328$	$0,\!601750$	0,840901	0,942310	0,753904
μ_2	0,508073	$0,\!674666$	$0,\!616428$	0,791430	0,849001	0,569342
μ_3	0,485122	0,632029	0,590629	0,709725	0,872756	0,597224
μ_4	0,478740	$0,\!651615$	0,606143	0,732263	0,876644	0,575522
μ_5	0,367222	$0,\!692685$	0,353100	0,666571	0,753959	0,491810
μ_6	0,406287	0,612886	0,500129	$0,\!692367$	0,742530	0,497407
μ_7	0,386261	$0,\!651565$	0,420233	$0,\!679347$	0,748223	0,494600
μ_8	0,292860	0,623418	0,409014	$0,\!656761$	0,776160	0,406241
μ_9	0,306698	0,639069	0,373618	$0,\!651925$	0,760470	$0,\!434999$
μ_{10}	0,213884	0,490498	0,247899	0,498094	$0,\!652080$	0,302887
μ_{11}	0,078603	$0,\!157365$	0,056144	0,091832	0,371465	0,051405
μ_{12}	0,026405	0,025230	0,020987	0,020934	0,167507	0,006437
μ_{13}	0,078603	0,157365	0,056144	0,091832	0,371465	0,051405

Taula B.93: Resultats de les mesures per a hexàgons pseudo-aleatoris inscrits en una circumferència.

Figura B.94: Representació gràfica del comportament de les mesures per a hexàgons pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.95: Representació gràfica del comportament de les mesures per a hexàgons pseudo-aleatoris inscrits en una circumferència (per mesures).

μ_1	0,909688	0,882458	0,957136	0,840748	0,914272	$0,\!652580$
μ_2	0,741071	0,723681	$0,\!805001$	0,709510	$0,\!655175$	$0,\!581365$
μ_3	0,758465	$0,\!687623$	$0,\!810830$	0,731715	$0,\!662544$	0,585660
μ_4	0,738772	0,723252	$0,\!806243$	$0,\!658384$	$0,\!619804$	0,565499
μ_5	0,714445	$0,\!644685$	0,806830	0,593391	0,730713	$0,\!415792$
μ_6	0,669296	$0,\!652373$	0,713596	$0,\!600125$	0,760454	0,569790
μ_7	$0,\!691502$	$0,\!648518$	0,758782	0,596748	0,745435	$0,\!486738$
μ_8	$0,\!660574$	0,535493	0,733142	$0,\!470270$	$0,\!802457$	$0,\!429328$
μ_9	0,708422	0,569036	0,798699	$0,\!458834$	$0,\!803695$	0,393416
μ_{10}	0,539003	0,407429	$0,\!648550$	0,334582	$0,\!685537$	0,261908
μ_{11}	$0,06\overline{7034}$	$0,36\overline{8430}$	$0,23\overline{3832}$	$0,25\overline{1771}$	$0,16\overline{7550}$	$0,02\overline{7878}$
μ_{12}	$0,00\overline{3909}$	$0,23\overline{1053}$	$0,\!05\overline{7099}$	$0,\!13\overline{5045}$	0,033266	$0,\!00\overline{3460}$
μ_{13}	$0,06\overline{7034}$	0,368430	$0,16\overline{7722}$	0,251771	0,167550	0,027878

Taula B.96: Resultats de les mesures per a heptàgons pseudo-aleatoris inscrits en una circumferència.

Figura B.97: Representació gràfica del comportament de les mesures per a heptàgons pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.98: Representació gràfica del comportament de les mesures per a heptàgons pseudo-aleatoris inscrits en una circumferència (per mesures).

		\bigcirc				
μ_1	0,724012	0,857888	0,755087	0,877570	0,570935	0,850668
μ_2	0,633911	$0,\!658576$	$0,\!602220$	$0,\!676798$	0,562118	$0,\!651941$
μ_3	0,606336	$0,\!645356$	$0,\!613168$	$0,\!655722$	$0,\!589577$	0,713646
μ_4	0,515222	0,628360	0,579924	0,678129	$0,\!458265$	$0,\!658217$
μ_5	0,484520	0,670955	0,501013	0,701017	0,324785	0,631651
μ_6	0,600066	0,642280	0,576511	0,668459	0,320220	0,623175
μ_7	0,539207	0,656461	0,537438	0,684545	0,322494	0,627398
μ_8	0,434337	0,608155	0,404767	0,539754	0,231338	0,493280
μ_9	0,387540	0,659536	0,412059	0,607410	0,203036	0,505017
μ_{10}	0,247221	0,477486	0,231535	0,397920	0,089075	0,330345
μ_{11}	0,067257	0,054750	0,199299	0,134758	0,091386	0,134159
μ_{12}	0,007125	0,008382	0,120530	0,037564	0,141840	0,046880
μ_{13}	0,067257	0,054750	0,199299	0,134758	0,091386	0,134159

Taula B.99: Resultats de les mesures per a octògons pseudo-aleatoris inscrits en una circumferència.

Figura B.100: Representació gràfica del comportament de les mesures per a octògons pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.101: Representació gràfica del comportament de les mesures per a octògons pseudo-aleatoris inscrits en una circumferència (per mesures).

μ_1	0,753719	0,860987	0,925856	0,941248	0,937779	$0,\!930683$
μ_2	$0,\!429039$	$0,\!679089$	0,788320	0,640018	0,763448	$0,\!686297$
μ_3	0,360555	0,729782	$0,\!824217$	0,715631	0,775349	0,733164
μ_4	0,403680	$0,\!651505$	0,709081	$0,\!652298$	$0,\!682233$	$0,\!635744$
μ_5	0,512157	0,681740	$0,\!810654$	0,844524	$0,\!836593$	$0,\!823675$
μ_6	0,565262	$0,\!658638$	0,790454	$0,\!810356$	0,761276	0,784015
μ_7	0,538055	$0,\!670089$	0,800490	0,827263	0,798046	$0,\!803600$
μ_8	0,412956	0,508823	0,722321	0,804504	$0,\!685824$	0,760109
μ_9	0,468278	0,568336	0,759480	0,839626	0,782452	$0,\!805508$
μ_{10}	0,235913	$0,\!327654$	0,570712	$0,\!691714$	0,559100	$0,\!650873$
μ_{11}	$0,06\overline{5591}$	0,114813	$0,\!14\overline{2316}$	0,209404	$0,\!13\overline{6402}$	$0,\!10\overline{8386}$
μ_{12}	0,006646	0,019947	0,090473	0,059814	$0,\!07\overline{7094}$	$0,\!03\overline{8635}$
μ_{13}	0,065591	0,114813	0,142316	0,209404	0,136402	$0,\!108386$

Taula B.102: Resultats de les mesures per a dodecàgons pseudo-aleatoris inscrits en una circumferència.

Figura B.103: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.104: Representació gràfica del comportament de les mesures per a dodecagons pseudo-aleatoris inscrits en una circumferència (per mesures).

μ_1	0,972344	$0,\!971930$	$0,\!984936$	$0,\!981626$	0,976997	$0,\!981815$
μ_2	0,796471	0,781435	0,738464	$0,\!835906$	$0,\!695763$	0,794520
μ_3	$0,\!832349$	$0,\!807744$	0,747958	0,869148	0,713483	$0,\!817145$
μ_4	$0,\!633770$	$0,\!651337$	$0,\!680598$	$0,\!675618$	$0,\!626823$	$0,\!671996$
μ_5	0,930544	0,930193	$0,\!955585$	0,949284	0,940826	$0,\!951107$
μ_6	0,863592	0,827712	$0,\!935735$	0,898214	$0,\!905646$	0,915874
μ_7	$0,\!896443$	$0,\!877458$	$0,\!945608$	0,923396	0,923069	0,933324
μ_8	0,793209	0,810466	$0,\!905776$	0,861854	$0,\!837085$	$0,\!906578$
μ_9	0,902715	0,925915	0,945702	$0,\!926431$	0,918033	$0,\!937517$
μ_{10}	0,721627	0,755193	0,862791	$0,\!803597$	0,778559	0,854640
μ_{11}	0,060669	0,071198	$0,\!059131$	0,047670	0,022820	0,020127
μ_{12}	0,012068	0,007832	0,008988	0,005574	0,001114	0,002230
μ_{13}	0,060669	0,069781	0,059131	0,047670	0,022820	0,020127

Taula B.105: 1

Figura B.106: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.107: Representació gràfica del comportament de les mesures per a polígons de vint-i-cinc costats pseudo-aleatoris inscrits en una circumferència (per mesures).

μ_1	0,992723	0,993208	0,993255	0,996426	0,992557	0,995651
μ_2	0,828360	$0,\!830384$	0,747710	0,879294	$0,\!801641$	0,792451
μ_3	0,819196	$0,\!838556$	0,783220	0,911406	$0,\!807600$	$0,\!840955$
μ_4	$0,\!685073$	$0,\!697210$	$0,\!660317$	0,728486	$0,\!630968$	$0,\!695173$
μ_5	0,981616	0,982572	0,982721	0,989038	$0,\!981387$	$0,\!987438$
μ_6	0,953159	0,948298	0,965061	$0,\!971563$	$0,\!953466$	0,968008
μ_7	0,967283	0,965283	$0,\!973851$	0,980262	0,967326	$0,\!977675$
μ_8	0,922893	0,924367	0,956960	0,960339	0,925894	0,955539
μ_9	0,969123	0,974590	0,973202	0,986690	$0,\!973122$	$0,\!986388$
μ_{10}	0,895093	0,901727	0,934111	0,949206	0,902008	$0,\!943035$
μ_{11}	0,017191	0,035738	0,037006	0,038139	0,029897	$0,\!072555$
μ_{12}	0,001092	0,002435	0,002177	0,003648	0,005933	0,024204
μ_{13}	0,017191	0,035738	0,037006	0,038139	0,029897	0,072555

Taula B.108: Resultats de les mesures per a polígons de cinquanta costats pseudo-aleatoris inscrits en una circumferència.

Figura B.109: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.110: Representació gràfica del comportament de les mesures per a polígons de cinquanta costats pseudo-aleatoris inscrits en una circumferència (per mesures).

μ_1	0,997776	0,998752	0,998949	0,998736	0,998964	0,997995
μ_2	0,926207	0,928333	$0,\!879618$	$0,\!848067$	$0,\!991076$	$0,\!891885$
μ_3	0,872892	0,905831	0,905917	$0,\!876381$	0,919691	0,909908
μ_4	0,667549	$0,\!699880$	0,702571	0,697104	0,708221	$0,\!686835$
μ_5	0,994572	0,996527	0,996921	0,996496	$0,\!996954$	0,995000
μ_6	0,978483	0,989303	$0,\!991682$	0,988246	$0,\!989678$	$0,\!976146$
μ_7	0,986494	0,992908	0,994298	0,992362	$0,\!993309$	$0,\!985528$
μ_8	0,963231	0,986349	0,990923	0,982924	$0,\!988076$	$0,\!956484$
μ_9	0,990429	0,995916	0,996362	0,995825	0,996834	0,991220
μ_{10}	0,954185	0,982510	0,987460	0,978914	$0,\!985080$	0,948313
μ_{11}	0,021044	0,054441	0,054879	0,034528	0,034958	0,019569
μ_{12}	0,007070	0,006006	0,073744	0,015396	0,033069	0,015084
μ_{13}	0,021044	0,054441	0,054879	0,034528	0,034958	0,019569

Taula B.111: Resultats de les mesures per a polígons de cent costats pseudoaleatoris inscrits en una circumferència.

Figura B.112: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris inscrits en una circumferència (per polígons).

Figura B.113: Representació gràfica del comportament de les mesures per a polígons de cent costats pseudo-aleatoris inscrits en una circumferència (per mesures).

APÈNDIX B. RESULTATS DELS EXPERIMENTS

μ_1	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
μ_2	1,000000	1,000000	0,999964	1,000000	1,000000	1,000000
μ_3	1,000000	0,999994	0,999964	0,999911	0,999925	0,999856
μ_4	0,999998	0,999993	0,999961	0,999907	0,999923	0,999849
μ_5	0,999994	0,999984	0,999912	0,999784	0,999819	0,999653
μ_6	0,999994	0,999984	0,999912	0,999784	0,999819	0,999653
μ_7	0,999994	0,999984	0,999912	0,999784	0,999819	0,999653
μ_8	0,999997	0,999985	0,999913	0,999784	0,999819	0,999653
μ_9	0,999985	0,999959	0,999779	0,999608	0,999730	0,999272
μ_{10}	0,999991	0,999969	0,999825	0,999627	0,999712	0,999362
μ_{11}	0,999996	0,999986	0,999920	0,999830	0,999868	0,999708
μ_{12}	0,999996	0,999986	0,999920	0,999830	0,999868	0,999708
μ_{13}	0,999996	0,999986	0,999920	0,999830	0,999868	0,999708

Taula B.114: Resultats de les mesures per a triangles regulars amb errors (1). Els dos primers tenen un marge d'error d'altra precisió, els dos següents de precisió i els dos darrers de fabricació fina. En el primer experiment de cada conjunt és modifica sols un vèrtex i en el segon tots els vèrtexs.

Figura B.115: Representació gràfica del comportament de les mesures per a triangles regulars amb errors (per polígons) (1).

Figura B.116: Representació gràfica del comportament de les mesures per a triangles regulars amb errors (per mesures) (1).

APÈNDIX B. RESULTATS DELS EXPERIMENTS

μ_1	1,000000	1,000000	0,999998	0,999967	0,999817	0,999923
μ_2	1,000000	1,000000	1,000000	0,996262	0,991583	0,994404
μ_3	0,999839	0,999865	0,999209	0,996262	0,991583	0,994404
μ_4	0,999835	0,999860	0,999172	0,996102	0,991134	0,994134
μ_5	0,999612	0,999673	0,998090	0,991015	0,979799	$0,\!986586$
μ_6	0,999612	0,999673	0,998090	0,991015	0,979799	$0,\!986586$
μ_7	0,999612	$0,\!999673$	0,998090	0,991015	0,979799	$0,\!986586$
μ_8	0,999612	0,999770	0,998090	0,991015	0,982705	$0,\!986586$
μ_9	0,999419	0,999184	0,996251	0,983520	0,951055	0,973285
μ_{10}	0,999380	0,999444	0,996594	0,984489	0,963832	0,976065
μ_{11}	0,999717	0,999746	0,998441	0,992854	0,982850	0,988913
μ_{12}	0,999717	0,999746	0,998441	0,992854	0,982850	0,988913
μ_{13}	0,999717	0,999746	0,998441	0,992854	0,982850	0,988913

Taula B.117: Resultats de les mesures per a triangles regulars amb errors (i 2). Els dos primers tenen un marge d'error general i els quatre darrers el de peces per forjat, fusió o laminades. En el primer conjunt el primer experiment modifica un vèrtex i en el segon tots, en el segon conjunt els dos primers modifiquen un vèrtex i el dos darrers tots els vèrtexs.

Figura B.118: Representació gràfica del comportament de les mesures per a triangles regulars amb errors (per polígons) (i 2).

Figura B.119: Representació gràfica del comportament de les mesures per a triangles regulars amb errors (per mesures) (i 2).

μ_1	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
μ_2	0,999998	0,999993	0,999979	0,999965	0,999984	0,999970
μ_3	0,999993	0,999995	0,999965	0,999942	0,999949	0,999900
μ_4	0,999994	0,999993	0,999975	0,999951	0,999966	0,999910
μ_5	0,999983	0,999968	0,999960	0,999873	0,999830	0,999663
μ_6	0,999969	0,999974	0,999899	0,999819	0,999928	0,999595
μ_7	0,999976	0,999971	0,999930	0,999846	0,999879	0,999629
μ_8	0,999986	0,999981	0,999963	0,999958	0,999903	0,999764
μ_9	0,999966	0,999970	0,999902	0,999858	0,999880	0,999529
μ_{10}	0,999968	0,999965	0,999913	0,999883	0,999839	0,999505
μ_{11}	0,999981	0,999981	0,999935	0,999890	0,999898	0,999716
μ_{12}	0,999981	0,999981	0,999935	0,999890	0,999898	0,999716
μ_{13}	0,999981	0,999981	0,999920	0,999852	0,999879	0,999715

Taula B.120: Resultats de les mesures per a quadrilàters regulars amb errors (1). Els dos primers tenen un marge d'error d'altra precisió, els dos següents de precisió i els dos darrers de fabricació fina. En el primer experiment de cada conjunt és modifica sols un vèrtex i en el segon tots els vèrtexs.

Figura B.121: Representació gràfica del comportament de les mesures per a quadrilàters regulars amb errors (per polígons) (1).

Figura B.122: Representació gràfica del comportament de les mesures per a quadrilàters regulars amb errors (per mesures) (1).

μ_1	1,000000	1,000000	0,999959	0,999974	0,999837	0,999939
μ_2	0,999948	0,999952	$0,\!994607$	0,995602	$0,\!989637$	$0,\!996980$
μ_3	0,999864	0,999716	$0,\!994817$	0,995709	$0,\!989651$	$0,\!994343$
μ_4	0,999899	$0,\!999755$	0,995536	0,997091	0,991796	$0,\!996031$
μ_5	0,999641	$0,\!998659$	0,989342	0,993910	0,984204	$0,\!981666$
μ_6	0,999836	0,999336	0,992784	0,985766	0,972081	0,982425
μ_7	0,999738	0,998997	0,991062	0,989830	0,978124	0,982046
μ_8	0,999815	0,999152	0,995054	0,994367	0,987262	$0,\!985727$
μ_9	0,999754	0,998869	0,990941	0,985232	0,971798	0,974877
μ_{10}	0,999696	0,998531	0,990821	0,986429	0,972702	0,972110
μ_{11}	0,999751	0,999285	0,990679	0,991366	0,979150	$0,\!985760$
μ_{12}	0,999751	0,999285	0,990666	0,991318	0,978989	0,985759
μ_{13}	0,999751	0,999285	0,990684	0,991331	0,979039	0,985760

Taula B.123: Resultats de les mesures per a quadrilàters regulars amb errors (i 2). Els dos primers tenen un marge d'error general i els quatre darrers el de peces per forjat, fusió o laminades. En el primer conjunt el primer experiment modifica un vèrtex i en el segon tots, en el segon conjunt els dos primers modifiquen un vèrtex i el dos darrers tots els vèrtexs.

Figura B.124: Representació gràfica del comportament de les mesures per a quadrilàters regulars amb errors (per polígons) (i 2).

Figura B.125: Representació gràfica del comportament de les mesures per a quadrilàters regulars amb errors (per mesures) (i 2).

μ_1	1,000000	$1,\!000000$	1,000000	1,000000	1,000000	1,000000
μ_2	0,999998	0,999986	0,999995	0,999954	0,999980	0,999909
μ_3	0,999996	0,999984	0,999987	0,999939	0,999950	0,999908
μ_4	0,999996	0,999991	0,999992	0,999950	0,999965	0,999944
μ_5	0,999989	0,999963	0,999967	0,999896	0,999860	0,999756
μ_6	0,999984	0,999969	0,999984	0,999914	0,999925	0,999858
μ_7	0,999987	0,999966	0,999975	0,999905	0,999893	0,999807
μ_8	0,999988	0,999969	0,999977	0,999956	0,999901	0,999831
μ_9	0,999981	0,999949	0,999965	0,999925	0,999849	0,999679
μ_{10}	0,999976	0,999936	0,999955	0,999908	0,999804	0,999626
μ_{11}	0,999980	0,999954	0,999953	0,999868	0,999803	0,999694
μ_{12}	0,999977	0,999941	0,999962	0,999855	0,999839	0,999701
μ_{13}	0,999980	0,999956	0,999961	0,999848	0,999835	0,999703

Taula B.126: Resultats de les mesures per a pentàgons regulars amb errors (1). Els dos primers tenen un marge d'error d'altra precisió, els dos següents de precisió i els dos darrers de fabricació fina. En el primer experiment de cada conjunt és modifica sols un vèrtex i en el segon tots els vèrtexs.

Figura B.127: Representació gràfica del comportament de les mesures per a pentàgons regulars amb errors (per polígons) (1).

Figura B.128: Representació gràfica del comportament de les mesures per a pentàgons regulars amb errors (per mesures) (1).

μ_1	1,000000	1,000000	0,999982	0,999968	0,999873	0,999842
μ_2	0,999733	$0,\!999615$	0,997915	$0,\!996465$	0,991438	$0,\!987213$
μ_3	0,999812	0,999695	$0,\!995917$	0,994542	0,990272	$0,\!986889$
μ_4	0,999876	0,999789	0,997500	0,995937	0,989612	0,990586
μ_5	0,999664	0,999508	0,997218	0,995323	0,982839	0,981271
μ_6	0,999857	0,999497	0,991404	0,991754	0,986172	0,978640
μ_7	0,999760	0,999502	$0,\!994307$	0,993537	0,984504	0,979955
μ_8	0,999847	0,999447	0,994986	0,994205	0,989694	0,988332
μ_9	0,999683	0,999126	0,992459	0,993379	0,985612	0,980006
μ_{10}	0,999648	0,998889	0,990506	0,990128	0,981060	0,976387
μ_{11}	0,999561	0,999287	0,991217	0,987986	0,986923	0,974293
μ_{12}	0,999620	0,999224	0,988348	0,989559	0,978944	0,969475
μ_{13}	0,999583	0,999324	0,989476	0,989974	0,984564	0,972482

Taula B.129: Resultats de les mesures per a pentàgons regulars amb errors (i 2). Els dos primers tenen un marge d'error general i els quatre darrers el de peces per forjat, fusió o laminades. En el primer conjunt el primer experiment modifica un vèrtex i en el segon tots, en el segon conjunt els dos primers modifiquen un vèrtex i el dos darrers tots els vèrtexs.

Figura B.130: Representació gràfica del comportament de les mesures per a pentàgons regulars amb errors (per polígons) (i 2).

Figura B.131: Representació gràfica del comportament de les mesures per a pentàgons regulars amb errors (per mesures) (i 2).

μ_1	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
μ_2	0,999995	0,999995	0,999975	0,999969	0,999965	0,999948
μ_3	0,999993	0,999988	0,999974	0,999961	0,999977	0,999875
μ_4	0,999995	0,999992	0,999984	0,999972	0,999976	0,999895
μ_5	0,999986	0,999985	0,999986	0,999930	0,999916	0,999708
μ_6	0,999996	0,999968	0,999939	0,999933	0,999900	0,999778
μ_7	0,999991	0,999976	0,999962	0,999932	0,999908	0,999743
μ_8	0,999994	0,999981	0,999962	0,999951	0,999917	0,999807
μ_9	0,999988	0,999973	0,999958	0,999921	0,999885	0,999817
μ_{10}	0,999986	0,999962	0,999933	0,999896	0,999836	0,999679
μ_{11}	0,999976	0,999962	0,999919	0,999898	0,999802	0,999536
μ_{12}	0,999985	0,999939	0,999886	0,999901	0,999774	0,999367
μ_{13}	0,999980	0,999947	0,999912	0,999883	0,999789	0,999545

Taula B.132: Resultats de les mesures per a hexàgons regulars amb errors (1). Els dos primers tenen un marge d'error d'altra precisió, els dos següents de precisió i els dos darrers de fabricació fina. En el primer experiment de cada conjunt és modifica sols un vèrtex i en el segon tots els vèrtexs.

Figura B.133: Representació gràfica del comportament de les mesures per a hexàgons regulars amb errors (per polígons) (1).

Figura B.134: Representació gràfica del comportament de les mesures per a hexàgons regulars amb errors (per mesures) (1).

μ_1	1,000000	1,000000	0,999999	0,999994	0,999967	0,999875
μ_2	0,999890	0,999735	0,999432	0,997141	0,996527	0,987789
μ_3	0,999855	0,999523	0,999207	0,997386	0,994561	0,987845
μ_4	0,999900	0,999599	0,999487	0,998451	0,996354	0,988156
μ_5	0,999811	0,999310	0,998776	0,998741	0,985714	0,980206
μ_6	0,999914	0,999260	0,999558	0,994609	0,992803	0,982230
μ_7	0,999863	0,999285	0,999167	0,996673	0,989252	0,981217
μ_8	0,999892	0,999627	0,999409	0,996799	0,993248	0,992172
μ_9	0,999775	0,999273	0,998794	0,996909	0,984241	0,988689
μ_{10}	0,999747	0,999118	0,998611	0,994817	0,982298	0,984316
μ_{11}	0,999761	0,998433	0,998236	0,993295	0,981136	0,980620
μ_{12}	0,999607	0,998670	0,998166	0,992308	0,980048	0,974704
μ_{13}	0,999770	0,998541	0,998405	0,993140	0,981109	0,972409

Taula B.135: Resultats de les mesures per a hexàgons regulars amb errors (i 2). Els dos primers tenen un marge d'error general i els quatre darrers el de peces per forjat, fusió o laminades. En el primer conjunt el primer experiment modifica un vèrtex i en el segon tots, en el segon conjunt els dos primers modifiquen un vèrtex i el dos darrers tots els vèrtexs.

Figura B.136: Representació gràfica del comportament de les mesures per a hexàgons regulars amb errors (per polígons) (i 2).

Figura B.137: Representació gràfica del comportament de les mesures per a hexàgons regulars amb errors (per mesures) (i 2).

μ_1	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
μ_2	0,999990	0,999986	0,999995	0,999955	0,999934	0,999872
μ_3	0,999990	0,999983	0,999990	0,999928	0,999916	0,999803
μ_4	0,999992	0,999979	0,999992	0,999936	0,999949	0,999832
μ_5	0,999986	0,999972	0,999984	0,999903	0,999896	0,999829
μ_6	0,999995	0,999975	0,999973	0,999895	0,999966	0,999738
μ_7	0,999990	0,999973	0,999978	0,999899	0,999931	0,999784
μ_8	0,999992	0,999982	0,999977	0,999916	0,999944	0,999833
μ_9	0,999982	0,999972	0,999974	0,999915	0,999882	0,999746
μ_{10}	0,999979	0,999964	0,999958	0,999859	0,999869	$0,\!999657$
μ_{11}	0,999981	0,999953	0,999927	0,999701	0,999825	0,999425
μ_{12}	0,999988	0,999956	0,999922	0,999843	0,999879	0,999459
μ_{13}	0,999982	0,999951	0,999922	0,999789	0,999835	0,999515

Taula B.138: Resultats de les mesures per a heptàgons regulars amb errors (1). Els dos primers tenen un marge d'error d'altra precisió, els dos següents de precisió i els dos darrers de fabricació fina. En el primer experiment de cada conjunt és modifica sols un vèrtex i en el segon tots els vèrtexs.

Figura B.139: Representació gràfica del comportament de les mesures per a heptàgons regulars amb errors (per polígons) (1).

Figura B.140: Representació gràfica del comportament de les mesures per a heptàgons regulars amb errors (per mesures) (1).

μ_1	1,000000	1,000000	0,999988	1,000000	0,999974	0,999969
μ_2	0,999851	0,999714	0,996086	0,999956	$0,\!993750$	0,995718
μ_3	0,999854	0,999564	0,996006	0,999763	$0,\!995389$	0,993160
μ_4	0,999912	0,999552	0,997659	0,999725	$0,\!995666$	0,994354
μ_5	0,999942	0,999563	0,993745	0,999146	$0,\!992218$	0,992341
μ_6	0,999807	0,999495	0,998525	0,999040	$0,\!994322$	$0,\!993535$
μ_7	0,999874	0,999529	0,996132	0,999093	$0,\!993269$	0,992938
μ_8	0,999847	0,999726	0,997311	0,999093	$0,\!995072$	0,993175
μ_9	0,999868	0,999599	0,994032	0,998828	$0,\!991542$	0,991160
μ_{10}	0,999757	0,999447	0,993051	0,998224	0,988826	0,987548
μ_{11}	0,999754	0,998859	0,987647	0,996939	0,982644	0,979930
μ_{12}	0,999656	0,999025	0,990502	0,996890	0,986264	0,980664
μ_{13}	0,999677	0,999100	0,988390	0,996619	0,986152	0,984630

Taula B.141: Resultats de les mesures per a heptàgons regulars amb errors (i 2). Els dos primers tenen un marge d'error general i els quatre darrers el de peces per forjat, fusió o laminades. En el primer conjunt el primer experiment modifica un vèrtex i en el segon tots, en el segon conjunt els dos primers modifiquen un vèrtex i el dos darrers tots els vèrtexs.

Figura B.142: Representació gràfica del comportament de les mesures per a heptàgons regulars amb errors (per polígons) (i 2).

Figura B.143: Representació gràfica del comportament de les mesures per a heptàgons regulars amb errors (per mesures) (i 2).

μ_1	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
μ_2	0,999990	0,999989	0,999983	0,999950	0,999940	0,999861
μ_3	0,999990	0,999983	0,999989	0,999927	$0,\!999927$	0,999861
μ_4	0,999993	0,999982	0,999991	0,999946	$0,\!999957$	0,999865
μ_5	0,999996	0,999984	0,999959	0,999914	0,999917	0,999784
μ_6	0,999984	0,999985	0,999961	0,999930	0,999977	0,999860
μ_7	0,999990	0,999985	0,999960	0,999922	$0,\!999947$	0,999822
μ_8	0,999987	0,999987	0,999983	0,999960	0,999958	0,999897
μ_9	0,999991	0,999981	0,999969	0,999932	0,999906	0,999856
μ_{10}	0,999981	0,999973	0,999959	0,999908	0,999891	0,999805
μ_{11}	0,999978	0,999948	0,999910	0,999837	0,999856	0,999293
μ_{12}	0,999969	0,999955	0,999909	0,999814	0,999908	0,999660
μ_{13}	0,999978	0,999954	0,999897	0,999794	0,999866	0,999602

Taula B.144: Resultats de les mesures per a octògons regulars amb errors (1). Els dos primers tenen un marge d'error d'altra precisió, els dos següents de precisió i els dos darrers de fabricació fina. En el primer experiment de cada conjunt és modifica sols un vèrtex i en el segon tots els vèrtexs.

Figura B.145: Representació gràfica del comportament de les mesures per a octògons regulars amb errors (per polígons) (1).

Figura B.146: Representació gràfica del comportament de les mesures per a octògons regulars amb errors (per mesures) (1).

		\bigcirc				
μ_1	1,000000	1,000000	0,999999	1,000000	0,999859	0,999910
μ_2	0,999869	0,999445	0,998700	0,999168	$0,\!991131$	0,988229
μ_3	0,999884	0,999470	0,999313	0,999277	0,989129	$0,\!989037$
μ_4	0,999934	0,999390	0,999552	0,999590	$0,\!983534$	$0,\!988557$
μ_5	$0,\!999657$	0,999403	$0,\!998531$	0,999801	$0,\!988860$	0,990450
μ_6	0,999967	0,999325	0,999498	0,998829	$0,\!986928$	0,989709
μ_7	0,999812	0,999364	0,999014	0,999315	0,987894	0,990079
μ_8	0,999932	0,999456	0,999255	0,999175	0,992335	0,990493
μ_9	0,999835	0,999407	0,998543	0,999456	0,991920	0,991570
μ_{10}	0,999807	0,999063	0,998127	0,998760	$0,\!986822$	0,984665
μ_{11}	0,999538	0,999097	0,995688	0,997538	0,981479	0,974822
μ_{12}	0,999642	0,998773	0,995683	0,997197	0,973630	0,981090
μ_{13}	0,999584	0,999152	0,995000	0,997451	0,978077	0,976613

Taula B.147: Resultats de les mesures per a octògons regulars amb errors (i 2). Els dos primers tenen un marge d'error general i els quatre darrers el de peces per forjat, fusió o laminades. En el primer conjunt el primer experiment modifica un vèrtex i en el segon tots, en el segon conjunt els dos primers modifiquen un vèrtex i el dos darrers tots els vèrtexs.

Figura B.148: Representació gràfica del comportament de les mesures per a octògons regulars amb errors (per polígons) (i 2).

Figura B.149: Representació gràfica del comportament de les mesures per a octògons regulars amb errors (per mesures) (i 2).

μ_1	0,798656	0,770825	0,769800
μ_2	$0,\!689380$	$0,\!667403$	0,512336
μ_3	$0,\!666667$	$0,\!666667$	0,560460
μ_4	$0,\!668535$	$0,\!666728$	0,522884
μ_5	$0,\!484556$	0,464782	0,464102
μ_6	$0,\!499220$	$0,\!497425$	0,497423
μ_7	$0,\!491833$	0,480826	0,480473
μ_8	0,762122	0,769791	0,769800
μ_9	0,794592	0,795017	0,795017
μ_{10}	$0,\!677821$	0,683014	0,683012
μ_{11}	0,222055	0,040665	0,495584
μ_{12}	0,049177	0,001518	0,495584
μ_{13}	0,222055	0,040665	0,495584

Taula B.150: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters). P1 té un escapçament gran. P2 té un escapçament petit. P3 té un vèrtex alineat al mig d'un costat.

Figura B.151: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (per polígons) (1).

Figura B.152: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (per mesures) (1).

μ_1	0,717564	0,725322	0,699116	0,920474	0,909498	$0,\!908178$
μ_2	0,663263	0,534925	$0,\!471085$	0,763940	0,751393	$0,\!607062$
μ_3	$0,\!672313$	0,533988	0,503997	0,750787	0,750068	$0,\!624717$
μ_4	0,727844	0,555024	$0,\!357182$	0,750395	0,750039	$0,\!676425$
μ_5	0,428862	$0,\!437876$	0,412209	0,678136	$0,\!663897$	$0,\!662219$
μ_6	0,538972	0,540487	0,538541	0,674492	$0,\!673658$	$0,\!673649$
μ_7	$0,\!480775$	$0,\!486483$	$0,\!471160$	0,676312	$0,\!668760$	$0,\!667910$
μ_8	0,699127	0,692142	0,699116	0,907116	0,908167	$0,\!908178$
μ_9	0,699347	0,699062	0,699366	0,920868	0,922720	0,922739
μ_{10}	0,572940	0,566384	0,572940	0,864661	0,867442	0,867472
μ_{11}	0,129409	0,204824	0,293123	0,249964	0,079724	0,594604
μ_{12}	0,015734	0,059214	0,245933	0,049952	0,004645	0,377857
μ_{13}	0,129409	0,204824	0,293123	0,249964	0,079724	0,485880

Taula B.153: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons). P1 té dos escapçaments petits. P2 té un escapçament gran i un vèrtex alineat al mig del costat. P3 té dos vèrtexs alineats repartits en un mateix costat. P4 té un escapçament gran. P5 té un escapçament petit. P6 té un vèrtex alineat en el mig d'un costat.

Figura B.154: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (per polígons).

Figura B.155: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (per mesures).

μ_1	$0,\!692955$	0,684259	$0,\!675456$	0,889729	0,868546	0,889729
μ_2	0,795793	0,536519	0,515119	0,704827	0,700407	0,806210
μ_3	$0,\!674158$	0,525231	$0,\!433375$	0,732788	0,723243	0,786492
μ_4	0,893883	0,707489	0,518601	0,726374	0,723640	0,729080
μ_5	0,514533	0,509744	0,504938	0,640484	$0,\!621058$	$0,\!647563$
μ_6	$0,\!662818$	$0,\!667200$	$0,\!662397$	$0,\!697897$	$0,\!696170$	$0,\!697897$
μ_7	0,583988	0,583182	0,578334	$0,\!668575$	$0,\!657542$	$0,\!672259$
μ_8	$0,\!660517$	$0,\!666677$	$0,\!660648$	0,863994	0,866004	0,868196
μ_9	$0,\!632544$	0,642841	$0,\!632778$	0,872295	0,872405	0,869153
μ_{10}	0,490671	0,500000	0,490844	0,808893	0,812563	0,811413
μ_{11}	0,129102	0,093414	0,078349	0,250935	0,079755	0,256705
μ_{12}	0,130397	0,018976	0,018771	0,105980	0,029626	0,035632
μ_{13}	0,129102	0,093414	0,078349	0,249382	0,079755	0,256705

Taula B.156: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (1). P1 té tres escapçaments petits. P2 té dos escapçaments petits i un vèrtex alineat en el punt mig d'un dels costats que té un vèrtex sense escapçar. P3 té un escapçament i dos vèrtexs alineats en el punt mig de cada costat que té com a un dels vèrtexs l'escapçat. P4 té dos escapçaments grans en un mateix costat. P5 té dos escapçaments petits en un mateix costat. P6 té dos escapçaments grans en vèrtexs oposats.

Figura B.157: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (per polígons) (1).

Figura B.158: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (per mesures) (1).

μ_1	0,871034	0,877750	0,866025	0,953738	0,959683	0,953585
μ_2	0,801267	$0,\!607389$	$0,\!674843$	0,800115	$0,\!805209$	$0,\!670916$
μ_3	0,779541	$0,\!614544$	$0,\!665222$	0,799776	0,788546	$0,\!693820$
μ_4	0,724475	$0,\!615862$	0,526659	0,799782	0,788413	0,755332
μ_5	0,623528	$0,\!631058$	$0,\!618802$	0,767477	0,774366	0,767210
μ_6	0,696222	$0,\!697024$	$0,\!696152$	0,775695	0,783429	0,775558
μ_7	0,658873	0,663221	$0,\!656339$	0,771575	0,778884	0,771373
μ_8	0,866112	0,865012	0,866025	0,953361	0,940842	$0,\!953585$
μ_9	0,872275	0,870772	$0,\!872405$	0,962909	0,943743	0,963250
μ_{10}	0,806000	0,809684	$0,\!811655$	0,928928	0,911303	0,929055
μ_{11}	0,113203	0,210230	0,432761	0,039847	0,264222	0,636010
μ_{12}	0,006628	0,059984	0,381315	0,000955	0,051604	0,410564
μ_{13}	0,113203	0,210230	0,594604	0,039847	0,264222	0,410564

Taula B.159: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (i 2). P1 té dos escapçaments petits en vèrtexs oposats. P2 té un escapçament petit i un vèrtex alineat en el mig d'un costat. P3 té dos vèrtexs alineats en el mig dels costats. P4 té un escapçament petit. P5 té un escapçament gran. P6 té un vèrtex alineat en el mig d'un costat.

Figura B.160: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (per polígons) (i 2).

Figura B.161: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (per mesures) (i 2).

μ_1	$0,\!674335$	$0,\!665737$	0,846439	0,846439	0,865822	0,928260
μ_2	$0,\!486158$	$0,\!472642$	0,750041	0,750041	0,585245	0,733284
μ_3	0,541386	0,533037	0,751896	0,751896	0,618381	0,766683
μ_4	0,740058	0,591819	0,790725	0,790725	0,667544	0,743806
μ_5	0,446765	0,439477	0,630435	0,630435	0,657522	0,723727
μ_6	0,573278	0,573049	0,728906	0,728906	0,730705	0,773143
μ_7	0,506084	0,501838	$0,\!677885$	$0,\!677885$	0,693148	0,748027
μ_8	$0,\!642769$	0,642034	$0,\!842766$	0,842766	0,844868	0,927844
μ_9	0,595413	0,595525	0,837109	0,837109	0,834165	0,935261
μ_{10}	0,462965	$0,\!459546$	0,745166	0,745166	0,745791	$0,\!885550$
μ_{11}	0,093055	0,089495	0,079849	0,079849	0,170492	0,039866
μ_{12}	0,094985	0,025234	0,003285	0,003285	0,035632	0,000956
μ_{13}	0,093055	0,089495	0,079849	0,079849	0,234014	0,039866

Taula B.162: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (1). P1 té tres escapçaments grans i un vèrtex alineat al mig d'un costat. P2 té dos escapçaments grans i dos vèrtexs alineats al mig dels costats que no tenen un vèrtex escapçat. P3 té tres escapçaments petits. P4 té dos escapçaments petits en un mateix costat i dos vèrtexs alineats al mig dels costats que tenen un vèrtex escapçat. P5 té dos escapçaments grans en vèrtexs oposats i dos vèrtexs alineats al mig dels costats que tenen un vèrtex escapçat. P5 té dos escapçaments grans en vèrtexs oposats i dos vèrtexs alineats al mig de dos costats consecutius. P6 té dos escapçaments petits.

Figura B.163: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (per polígons) (1).

Figura B.164: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (per mesures) (1).

μ_1	0,921449	0,928111	0,929394	0,974035	0,975562	0,973130
μ_2	0,725792	$0,\!673871$	$0,\!676181$	$0,\!832569$	0,828278	0,717017
μ_3	0,770865	0,685162	0,685533	0,828883	0,810437	0,729141
μ_4	0,755551	0,671854	0,670696	0,828969	0,810016	0,803341
μ_5	0,754281	0,723713	0,728498	0,834776	0,820837	0,830483
μ_6	0,795076	0,773155	0,774185	0,837874	$0,\!849552$	$0,\!835753$
μ_7	0,774410	0,748026	0,750995	0,836323	0,835071	0,833113
μ_8	0,903464	0,927744	0,925722	0,970589	0,959595	0,973130
μ_9	0,895384	0,935179	0,932065	0,973630	0,946287	0,979800
μ_{10}	0,836307	0,885492	0,881119	0,956459	0,928101	0,959261
μ_{11}	0,121732	0,035845	0,112258	0,134055	0,309096	$0,\!658037$
μ_{12}	0,009808	0,001122	0,011370	0,010770	0,059404	0,371087
μ_{13}	0,121732	0,035845	0,112258	0,134055	0,261575	0,416846

Taula B.165: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (i 2). P1 té dos escapçaments grans. P2 té dos vèrtexs alineats en el mig de dos costats consecutius. P3 té un escapçament petit i un vèrtexs alineat en la base. P4 té un escapçament petit. P5 té un escapçament gran. P6 té un vèrtex alineat en el mig d'un costat.

Figura B.166: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (per polígons) (i 2).

Figura B.167: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (per mesures) (i 2).

μ_1	0,662870	0,833260	0,862811	0,916497	0,912622	0,915062
μ_2	0,500984	0,858971	$0,\!657193$	0,741114	0,740191	0,648992
μ_3	0,544802	0,753199	$0,\!630890$	0,776234	0,772523	$0,\!665789$
μ_4	0,638083	0,905435	0,785866	0,761040	0,761572	$0,\!671007$
μ_5	0,438683	0,711232	0,725550	0,740330	0,733278	0,737896
μ_6	0,581090	0,828469	$0,\!831545$	0,794361	0,794204	0,794319
μ_7	0,504890	0,767615	0,776742	0,766870	0,763133	0,765588
μ_8	0,631841	0,828469	0,829530	0,911108	0,912071	0,910961
μ_9	0,568890	0,811076	$0,\!809573$	0,912304	0,913940	0,911539
μ_{10}	0,433990	0,707167	0,707107	0,851472	$0,\!851460$	$0,\!850737$
μ_{11}	0,079332	0,080245	0,100016	0,124274	0,039533	0,112671
μ_{12}	0,094118	0,080245	0,221317	0,034866	0,010672	0,013988
μ_{13}	0,071594	0,080245	0,215678	0,124274	0,039533	0,112671

Taula B.168: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (1). P1 té tres escapçaments i dos vèrtexs alineats en el mig dels costats. P2 té quatre escapçaments petits. P3 té tres escapçaments grans i un vèrtex alineat en el mig d'un dels costats amb els dos vèrtexs escapçats. P4 té tres escapçaments petits consecutius. P5 té tres escapçaments petits alternats. P6 té dos escapçaments petits i un vèrtex alineat en la base.

Figura B.169: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (per polígons) (1).

Figura B.170: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (per mesures) (1).

μ_1	0,958325	0,965454	0,959448	0,983553	0,983677	0,982998
μ_2	0,858836	0,811197	$0,\!679151$	0,854205	0,847645	0,751853
μ_3	0,834663	$0,\!832571$	$0,\!699548$	0,850167	0,835870	0,765409
μ_4	0,767217	0,770168	0,722015	0,850369	0,836000	$0,\!835617$
μ_5	0,801365	$0,\!814798$	0,801339	0,872610	0,864087	$0,\!871544$
μ_6	0,830816	$0,\!831572$	$0,\!833731$	0,878261	$0,\!885163$	$0,\!874873$
μ_7	0,815957	0,823143	$0,\!817375$	0,875431	$0,\!874562$	$0,\!873207$
μ_8	0,956388	0,956605	0,952792	0,978721	0,968535	0,982998
μ_9	0,962629	0,960518	0,953194	0,979758	0,962183	0,987752
μ_{10}	0,930108	0,928347	0,918230	0,966430	0,940925	$0,\!973667$
μ_{11}	0,123122	0,298161	0,220203	0,149272	0,258566	$0,\!671181$
μ_{12}	0,025228	0,307820	0,033583	0,011395	0,035878	0,385173
μ_{13}	0,121996	0,298161	0,220203	0,149272	0,258566	0,671181

Taula B.171: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (i 2). P1 té dos escapçaments petits en vèrtexs oposats. P2 té dos escapçaments grans en vèrtexs frontals. P3 té un escapçament gran i un vèrtex alineat en el mig d'un costats sense vèrtexs escapçats. P4 té un escapçament petit. P5 té un escapçament gran. P6 té un vèrtex alineat en el mig d'un costat.

Figura B.172: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (per polígons) (i 2).

Figura B.173: Representació gràfica del comportament de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (per mesures) (i 2).

μ	1	0,198020	0,238774	0,300138	0,402021	0,596814	0,971197
μ	2	0,563451	0,576745	0,597033	0,631692	0,703567	0,923418
μ	3	0,563451	0,576745	0,597033	0,631692	0,703567	0,923418
μ	4	0,246781	0,269719	0,304722	0,364524	0,488536	0,867865
μ	5	0,100000	0,121139	0,153610	0,209864	0,331126	0,784314
μ	6	0,165289	0,192750	0,230851	0,286744	0,373753	0,784314
μ	7	0,128565	0,152805	0,188311	0,245310	0,351794	0,784314
μ	8	0,181818	0,216099	0,266312	0,346921	0,497512	0,879121
μ	9	0,181818	0,201035	0,230554	0,281694	0,391933	0,803922
μ_1	10	0,100000	0,121139	0,153610	0,209864	0,331126	0,784314
μ_1	1	0,316228	0,348050	0,391931	0,458109	0,575435	0,885615
μ_1	12	0,316228	0,348050	0,391931	0,458109	0,575435	0,885615
μ_1	13	0,316228	0,348050	0,391931	0,458109	0,575435	0,885615

Taula B.174: Resultats de les mesures per a quadrilàters equilàters.

Figura B.175: Representació gràfica del comportament de les mesures per a quadrilàters equilàters (per polígons).

Figura B.176: Representació gràfica del comportament de les mesures per a quadrilàters equilàters (per mesures).

μ_1	0,829435	0,902010	0,958775	0,993530	0,996419	0,947146
μ_2	$0,\!682475$	0,770337	0,856699	0,945001	0,960094	0,849313
μ_3	$0,\!682475$	0,770337	0,856699	0,945001	0,960094	0,849313
μ_4	$0,\!672801$	0,751952	0,838796	0,935838	0,951840	0,811856
μ_5	0,552087	0,634741	0,741726	0,885976	0,921701	0,732367
μ_6	0,509131	0,619151	0,744359	0,893649	0,910561	0,678668
μ_7	0,530174	$0,\!626897$	0,743041	0,889804	0,916114	0,705007
μ_8	0,531572	$0,\!658569$	0,785038	0,916526	0,944914	0,788891
μ_9	0,538653	$0,\!633271$	0,746755	0,890949	0,909425	0,700245
μ_{10}	0,417368	0,520484	$0,\!670809$	0,858921	0,894921	0,650181
μ_{11}	0,580121	0,678211	0,787712	0,913693	0,933872	0,745869
μ_{12}	0,586465	0,681021	0,788037	0,913176	0,937302	0,783511
μ_{13}	0,586465	0,681021	0,788037	0,913176	0,933872	0,745869

Taula B.177: Resultats de les mesures per a pentàgons equilàters.

Figura B.178: Representació gràfica del comportament de les mesures per a pentàgons equilàters (per polígons).

Figura B.179: Representació gràfica del comportament de les mesures per a pentàgons equilàters (per mesures).

μ_1	0,363295	$0,\!674820$	$0,\!892844$	0,993512	0,974802	0,855756
μ_2	$0,\!487268$	$0,\!641202$	0,795136	0,949070	$0,\!896995$	0,743061
μ_3	$0,\!487268$	$0,\!641202$	0,795136	0,949070	$0,\!896995$	0,743061
μ_4	0,312916	0,519195	0,725473	0,931752	0,861969	$0,\!655690$
μ_5	0,167914	$0,\!351628$	0,573037	0,871657	0,835817	$0,\!651163$
μ_6	0,210431	$0,\!427166$	$0,\!657292$	0,909662	0,748095	0,523013
μ_7	$0,\!187974$	$0,\!387561$	$0,\!613720$	0,890457	0,790740	$0,\!583581$
μ_8	0,210431	0,427166	0,657292	0,909662	0,818594	0,559423
μ_9	0,174530	0,362331	0,585181	0,877097	0,769419	0,514362
μ_{10}	0,119021	0,278371	0,522080	0,857107	0,747765	$0,\!463586$
μ_{11}	0,273622	$0,\!473992$	$0,\!690354$	0,920453	0,705522	0,324263
μ_{12}	0,143931	0,313716	0,533592	0,853671	0,855679	0,686348
μ_{13}	0,273622	0,473992	0,690354	0,920453	0,855679	0,686348

Taula B.180: Resultats de les mesures per a hexàgons equilàters.

Figura B.181: Representació gràfica del comportament de les mesures per a hexàgons equilàters (per polígons).

Figura B.182: Representació gràfica del comportament de les mesures per a hexàgons equilàters (per mesures).

				\bigcirc		
μ_1	0,720184	0,792911	0,856330	0,921672	0,959678	0,987709
μ_2	$0,\!675796$	0,722416	0,769576	0,842025	0,888866	0,937228
μ_3	$0,\!675672$	0,722503	0,769578	0,842039	0,888445	0,937039
μ_4	0,579360	$0,\!642603$	0,706493	0,768047	0,836001	$0,\!908807$
μ_5	0,411936	$0,\!471507$	$0,\!536762$	0,644045	0,726957	$0,\!838870$
μ_6	0,393217	0,467374	0,546788	0,628649	0,728130	$0,\!842637$
μ_7	0,402467	0,469436	$0,\!541752$	0,636301	0,727543	$0,\!840752$
μ_8	0,373601	$0,\!457898$	0,544165	$0,\!665005$	0,753335	0,860948
μ_9	0,362776	$0,\!435360$	0,511607	$0,\!616564$	0,710694	0,829243
μ_{10}	0,205650	$0,\!275057$	$0,\!356608$	0,482187	0,598753	0,757123
μ_{11}	$0,\!278017$	$0,\!376670$	$0,\!477805$	0,588101	0,699044	0,826328
μ_{12}	0,397160	0,481357	0,568365	0,666905	0,754049	0,858428
μ_{13}	0,397160	0,481357	0,568365	0,666905	0,754049	0,858428

Taula B.183: Resultats de les mesures per a heptàgons equilàters.

Figura B.184: Representació gràfica del comportament de les mesures per a heptàgons equilàters (per polígons).

Figura B.185: Representació gràfica del comportament de les mesures per a heptàgons equilàters (per mesures).

				\bigcirc	\bigcirc	
μ_1	0,051934	0,246552	0,407669	0,632348	0,842795	0,958697
μ_2	0,272671	0,367130	0,439122	0,566047	0,713796	0,840493
μ_3	0,272597	0,367155	0,439283	0,565708	0,713593	0,840929
μ_4	0,124133	0,238201	0,324589	0,476811	$0,\!655155$	0,772894
μ_5	0,022182	0,107163	0,183301	0,310563	0,491322	0,724082
μ_6	0,034872	0,141845	0,262780	0,396567	0,597792	0,850984
μ_7	0,027813	0,123291	0,219472	0,350940	0,541949	0,784973
μ_8	0,035057	0,144050	$0,\!275983$	0,423272	0,629648	0,881778
μ_9	0,048987	0,109306	$0,\!188459$	0,313198	0,501806	0,753677
μ_{10}	0,009219	0,044614	$0,\!102405$	0,197978	$0,\!386541$	0,729315
μ_{11}	0,022917	0,118616	0,214220	0,371482	0,580065	0,828593
μ_{12}	0,024553	0,122252	0,216365	0,372012	0,577340	0,825294
μ_{13}	0,022538	0,122184	0,217251	0,371562	0,580115	0,827898

Taula B.186: Resultats de les mesures per a octògons equilàters.

Figura B.187: Representació gràfica del comportament de les mesures per a octògons equilàters (per polígons).

Figura B.188: Representació gràfica del comportament de les mesures per a octògons equilàters (per mesures).

μ_1	0,263662	0,610244	0,802125	0,909859	0,966895	0,993046
μ_2	0,699015	0,763135	0,822363	0,876210	0,923615	0,964691
μ_3	0,548523	0,644703	0,733545	0,814316	0,885422	0,947036
μ_4	0,882180	0,914281	0,938924	0,958777	0,975018	$0,\!988551$
μ_5	0,131831	0,305122	0,401063	0,538184	0,692123	$0,\!846061$
μ_6	0,076368	0,231296	$0,\!384245$	0,538184	0,692123	$0,\!846061$
μ_7	0,100337	0,265657	$0,\!392564$	0,538184	0,692123	$0,\!846061$
μ_8	0,076368	0,231296	0,384245	0,538184	0,692123	$0,\!846061$
μ_9	0,127000	0,209792	0,307101	0,425601	0,571996	0,757449
μ_{10}	0,039700	0,130772	0,237811	0,368161	0,529195	0,733194
μ_{11}	0,225826	0,411321	0,552003	0,677050	0,791917	0,899131
μ_{12}	0,225826	0,411321	0,552003	0,677050	0,791917	0,899131
μ_{13}	0,225826	0,411321	0,552003	0,677050	0,791917	0,899131

Taula B.189: Resultats de les mesures per a quadrilàters regulars modificats per escalat de les ordenades dels vèrtexs.

Figura B.190: Representació gràfica del comportament de les mesures per a quadrilàters regulars modificats per escalat de les ordenades dels vèrtexs(per polígons).

Figura B.191: Representació gràfica del comportament de les mesures per a quadrilàters regulars modificats per escalat de les ordenades dels vèrtexs (per mesures).

μ_1	0,213415	0,840813	$0,\!987647$	0,991147	0,941069	0,859854
μ_2	0,370829	0,704776	0,909121	0,920610	0,797244	0,691370
μ_3	0,360951	$0,\!696490$	$0,\!906861$	0,919255	0,795381	$0,\!690667$
μ_4	0,233827	0,724079	0,927484	0,939793	$0,\!845667$	0,762511
μ_5	0,090909	0,500000	0,833333	0,857143	$0,\!666667$	0,523810
μ_6	0,090909	0,500000	0,833333	0,857143	$0,\!666667$	0,523810
μ_7	0,090909	0,500000	0,833333	0,857143	$0,\!666667$	0,523810
μ_8	0,090909	0,500000	0,833333	0,879423	0,704015	0,562807
μ_9	$0,\!118467$	$0,\!439734$	0,795163	0,796840	$0,\!576671$	0,440161
μ_{10}	0,045110	0,333861	0,727574	0,767198	0,516777	0,367081
μ_{11}	0,071323	0,452464	0,812068	0,840057	$0,\!635963$	0,491859
μ_{12}	0,071323	$0,\!452464$	0,812068	0,840057	$0,\!635963$	0,491859
μ_{13}	0,071323	0,452464	0,812068	0,840057	$0,\!635963$	0,491859

Taula B.192: Resultats de les mesures per a pentàgons regulars modificats per escalat de les ordenades dels vèrtexs.

Figura B.193: Representació gràfica del comportament de les mesures per a pentàgons regulars modificats per escalat de les ordenades dels vèrtexs(per polígons).

Figura B.194: Representació gràfica del comportament de les mesures per a pentàgons regulars modificats per escalat de les ordenades dels vèrtexs (per mesures).

	~~~~					
$\mu_1$	0,202048	$0,\!833990$	$0,\!987463$	0,991260	0,942885	0,865889
$\mu_2$	0,301842	$0,\!684869$	0,912904	0,928741	0,824481	0,739791
$\mu_3$	0,297629	$0,\!679522$	0,910869	0,926941	$0,\!820180$	0,733614
$\mu_4$	0,213702	$0,\!699972$	0,925075	0,941177	$0,\!855720$	0,786444
$\mu_5$	0,090897	0,500000	0,833333	0,857143	$0,\!666668$	0,523810
$\mu_6$	0,090909	0,500000	0,833333	0,857143	$0,\!666667$	0,523810
$\mu_7$	0,090903	0,500000	0,833333	0,857143	$0,\!666667$	0,523810
$\mu_8$	0,090909	0,500000	0,833333	0,888889	0,727273	$0,\!594595$
$\mu_9$	0,095238	0,464286	0,821429	0,809524	$0,\!591837$	$0,\!450549$
$\mu_{10}$	0,049428	0,371212	0,758869	0,796348	0,558211	0,403321
$\mu_{11}$	0,167154	0,524791	0,836123	0,856535	$0,\!662349$	0,516005
$\mu_{12}$	0,167154	0,524791	0,836123	0,856535	$0,\!662349$	0,516005
$\mu_{13}$	0,167154	0,524791	0,836123	0,856535	0,662349	0,516005

Taula B.195: Resultats de les mesures per a hexàgons regulars modificats per escalat de les ordenades dels vèrtexs.



Figura B.196: Representació gràfica del comportament de les mesures per a hexàgons regulars modificats per escalat de les ordenades dels vèrtexs (per polígons).



Figura B.197: Representació gràfica del comportament de les mesures per a hexàgons regulars modificats per escalat de les ordenades dels vèrtexs(per mesures).

$\mu_1$	0,216331	$0,\!841142$	$0,\!987648$	$0,\!991147$	$0,\!941038$	$0,\!877196$
$\mu_2$	0,295269	0,718599	0,920760	0,929190	0,814140	0,745883
$\mu_3$	0,288000	0,711633	0,918467	0,927108	$0,\!808786$	0,750460
$\mu_4$	0,260244	0,760011	0,931362	0,940496	$0,\!843054$	0,796796
$\mu_5$	0,090909	0,500000	0,833333	0,857143	$0,\!666667$	0,558103
$\mu_6$	0,090909	0,500000	0,833333	0,857143	$0,\!666667$	0,536169
$\mu_7$	0,090909	0,500000	0,833333	0,857143	$0,\!666667$	0,547026
$\mu_8$	0,090909	0,500000	0,833333	0,868553	$0,\!685525$	0,561659
$\mu_9$	0,090525	$0,\!438894$	0,801119	0,817508	$0,\!601318$	0,468382
$\mu_{10}$	0,031067	0,304305	0,712760	0,751708	$0,\!485715$	0,344550
$\mu_{11}$	0,055998	0,404791	0,787760	0,818923	0,595320	0,459932
$\mu_{12}$	0,055998	0,404791	0,787760	0,818923	0,595320	0,462933
$\mu_{13}$	0,055998	0,404791	0,787760	0,818923	0,595320	0,462933

Taula B.198: Resultats de les mesures per a heptàgons regulars modificats per escalat de les ordenades dels vèrtexs.


Figura B.199: Representació gràfica del comportament de les mesures per a heptàgons regulars modificats per escalat de les ordenades dels vèrtexs (per polígons).



Figura B.200: Representació gràfica del comportament de les mesures per a heptàgons regulars modificats per escalat de les ordenades dels vèrtexs (per mesures).

$\mu_1$	0,242006	$0,\!541723$	0,747684	$0,\!878682$	0,953990	$0,\!990168$
$\mu_2$	$0,\!603519$	$0,\!684493$	0,761404	0,832059	$0,\!895380$	$0,\!951216$
$\mu_3$	0,559431	0,644621	0,727816	0,806186	0,878006	0,942590
$\mu_4$	0,446672	0,564449	$0,\!673830$	0,772358	0,859207	0,934742
$\mu_5$	0,107942	0,266049	0,408584	0,547315	0,698210	$0,\!849105$
$\mu_6$	0,100283	0,250189	0,400143	0,550104	0,700068	0,850034
$\mu_7$	0,104042	0,257997	0,404341	0,548708	0,699138	0,849569
$\mu_8$	0,100283	0,250189	0,400143	0,550104	0,700068	0,850034
$\mu_9$	0,087461	0,206926	0,341442	0,486339	0,643240	0,813820
$\mu_{10}$	0,029361	0,096457	0,195917	0,331123	0,506507	0,727390
$\mu_{11}$	0,101507	0,211239	0,334126	0,477503	0,638840	0,814243
$\mu_{12}$	0,099361	0,206449	0,327943	0,471297	0,633776	0,811291
$\mu_{13}$	0,101507	0,211239	0,334126	0,477503	0,638840	0,814243

Taula B.201: Resultats de les mesures per a octògons regulars modificats per escalat de les ordenades dels vèrtexs.



Figura B.202: Representació gràfica del comportament de les mesures per a octògons regulars modificats per escalat de les ordenades dels vèrtexs(per polígons).



Figura B.203: Representació gràfica del comportament de les mesures per a octògons regulars modificats per escalat de les ordenades dels vèrtexs (per mesures).

		$\sim$	$\langle \rangle$			
$\mu_1$	0,706617	0,883862	0,975800	0,984186	0,948579	0,904821
$\mu_2$	0,536792	0,709406	0,866773	0,885479	0,786475	0,704361
$\mu_3$	0,559377	0,733699	$0,\!882287$	0,901475	$0,\!815638$	0,743894
$\mu_4$	0,561595	0,735566	$0,\!884543$	0,913132	0,847333	0,796500
$\mu_5$	0,515000	$0,\!676667$	0,838333	0,860832	0,755668	$0,\!673401$
$\mu_6$	0,515000	$0,\!676667$	0,838333	0,860832	0,755668	$0,\!673401$
$\mu_7$	0,515000	$0,\!676667$	0,838333	0,860832	0,755668	$0,\!673401$
$\mu_8$	0,470711	0,706814	0,875570	0,912685	0,829148	0,748156
$\mu_9$	0,559026	0,701026	0,844872	0,842364	0,736456	0,660514
$\mu_{10}$	0,356610	0,593532	0,804274	0,840376	0,724396	$0,\!634229$
$\mu_{11}$	0,506401	0,655782	0,821180	0,842930	0,728331	0,643577
$\mu_{12}$	0,506401	$0,\!655782$	0,821180	0,842930	0,728331	$0,\!643577$
$\mu_{13}$	0,434761	0,588492	0,807579	0,835879	0,651763	0,547086

Taula B.204: Resultats de les mesures per a quadrilàters regulars modificats per translació d'un vèrtex.



Figura B.205: Representació gràfica del comportament de les mesures per a quadrilàters regulars modificats per translació d'un vèrtex (per polígons).



Figura B.206: Representació gràfica del comportament de les mesures per a quadrilàters regulars modificats per translació d'un vèrtex (per mesures).

$\mu_1$	0,862026	0,942998	0,987250	0,990382	0,966877	0,935708
$\mu_2$	0,628796	0,763135	0,888343	0,907744	$0,\!835909$	0,770777
$\mu_3$	$0,\!634111$	0,768551	0,891916	0,911957	0,844184	0,782775
$\mu_4$	0,710806	0,818061	0,916201	0,931036	0,874981	0,829332
$\mu_5$	0,735607	0,823738	0,911869	0,864679	0,760590	0,678225
$\mu_6$	0,547493	$0,\!694588$	$0,\!845786$	0,919007	$0,\!850151$	0,790893
$\mu_7$	0,634618	0,756412	0,878206	0,891429	0,804125	0,732396
$\mu_8$	0,584357	0,746919	0,884068	0,928165	0,863719	0,805090
$\mu_9$	0,651320	0,766615	0,882358	0,859673	0,757899	0,680883
$\mu_{10}$	0,461460	$0,\!639670$	0,819201	0,845378	0,730371	0,640902
$\mu_{11}$	0,476384	0,615277	0,790757	0,858890	0,748463	0,661561
$\mu_{12}$	0,575879	0,704459	0,846102	0,809534	0,674117	0,578566
$\mu_{13}$	0,575879	0,704459	0,846102	0,858890	0,748463	0,661561

Taula B.207: Resultats de les mesures per a pentàgons regulars modificats per translació d'un vèrtex.



Figura B.208: Representació gràfica del comportament de les mesures per a pentàgons regulars modificats per translació d'un vèrtex (per polígons).



Figura B.209: Representació gràfica del comportament de les mesures per a pentàgons regulars modificats per translació d'un vèrtex (per mesures).

$\mu_1$	0,923686	0,967761	0,992521	0,993855	0,977981	0,955722
$\mu_2$	0,707941	0,801910	0,914565	0,917632	$0,\!849953$	0,794729
$\mu_3$	0,698127	0,806706	0,908250	0,921542	0,857807	0,806467
$\mu_4$	0,786465	0,862999	0,935168	0,943612	0,895418	0,854495
$\mu_5$	0,843333	$0,\!895556$	0,947778	0,904902	$0,\!825520$	0,758358
$\mu_6$	$0,\!693943$	0,794156	$0,\!896275$	0,950370	0,905433	$0,\!864553$
$\mu_7$	0,765000	0,843333	$0,\!921667$	0,927357	$0,\!864553$	$0,\!809717$
$\mu_8$	0,666432	0,788452	0,899398	0,938652	$0,\!882706$	$0,\!831478$
$\mu_9$	0,737003	0,821954	0,909575	0,880591	0,788259	0,714897
$\mu_{10}$	0,561801	0,703550	$0,\!849713$	0,865939	0,758315	$0,\!676951$
$\mu_{11}$	0,728011	0,589482	0,918332	0,885901	0,788858	0,706503
$\mu_{12}$	0,677063	0,774294	0,881821	0,788858	0,872595	0,528847
$\mu_{13}$	0,677063	0,774294	0,881821	0,885901	0,788858	0,706503

Taula B.210: Resultats de les mesures per a hexàgons regulars modificats per translació d'un vèrtex.



Figura B.211: Representació gràfica del comportament de les mesures per a hexàgons regulars modificats per translació d'un vèrtex (per polígons).



Figura B.212: Representació gràfica del comportament de les mesures per a hexàgons regulars modificats per translació d'un vèrtex (per mesures).

$\mu_1$	0,953860	0,980245	0,995318	0,995939	0,985039	0,969115
$\mu_2$	0,741182	$0,\!831578$	0,918457	0,926751	0,863851	$0,\!810546$
$\mu_3$	0,743139	0,833429	0,919664	0,928281	0,866971	$0,\!815270$
$\mu_4$	0,832527	0,891374	0,947784	0,952919	0,911200	$0,\!874588$
$\mu_5$	0,900997	0,933998	0,966999	0,918050	0,847507	0,786244
$\mu_6$	0,742139	0,826261	0,912277	0,968053	0,938085	0,909916
$\mu_7$	0,817719	0,878479	0,939240	0,942720	0,891647	0,845823
$\mu_8$	0,728970	0,824581	0,914904	0,950266	0,903598	0,859775
$\mu_9$	0,804264	0,866972	0,932195	0,900227	0,819041	0,751814
$\mu_{10}$	0,652609	0,756027	$0,\!876598$	0,886900	0,793448	0,715291
$\mu_{11}$	0,808387	0,876923	0,940477	0,908176	0,827118	0,755428
$\mu_{12}$	0,735544	0,817490	0,905541	0,946814	0,901301	0,861778
$\mu_{13}$	0,735544	0,817490	0,905541	0,908176	0,827118	0,755428

Taula B.213: Resultats de les mesures per a heptàgons regulars modificats per translació d'un vèrtex.



Figura B.214: Representació gràfica del comportament de les mesures per a heptàgons regulars modificats per translació d'un vèrtex (per polígons).



Figura B.215: Representació gràfica del comportament de les mesures per a heptàgons regulars modificats per translació d'un vèrtex (per mesures).

$\mu_1$	0,970466	0,987244	$0,\!996935$	0,997244	$0,\!989645$	$0,\!978204$
$\mu_2$	0,778426	0,861353	0,929318	0,934931	$0,\!877132$	$0,\!826516$
$\mu_3$	0,780138	0,856626	0,930331	0,936231	0,879814	0,830619
$\mu_4$	0,863750	0,911027	0,956804	0,960083	0,923763	$0,\!891055$
$\mu_5$	0,934277	0,956184	0,978092	0,937917	0,882390	$0,\!832485$
$\mu_6$	0,807454	0,870561	0,934767	0,978562	0,958024	0,938330
$\mu_7$	0,868553	0,912369	0,956184	0,958024	0,919429	0,883824
$\mu_8$	0,777731	0,854520	0,928628	0,961005	0,923610	0,887754
$\mu_9$	0,854379	0,901068	0,949589	0,917124	0,846949	0,786846
$\mu_{10}$	0,712852	0,803630	0,900126	0,906264	0,826251	0,757395
$\mu_{11}$	0,858549	0,908151	0,955180	0,926476	0,859185	0,797570
$\mu_{12}$	0,790591	0,855867	0,925585	0,958869	0,922428	0,889850
$\mu_{13}$	0,790591	0,855867	0,925585	0,930931	0,866786	0,807373

Taula B.216: Resultats de les mesures per a octògons regulars modificats per translació d'un vèrtex.



Figura B.217: Representació gràfica del comportament de les mesures per a octògons regulars modificats per translació d'un vèrtex (per polígons).



Figura B.218: Representació gràfica del comportament de les mesures per a octògons regulars modificats per translació d'un vèrtex (per mesures).

$\mu_1$	0,959435	0,782475	0,463145	$0,\!279055$	0,181864	$0,\!126779$
$\mu_2$	0,864276	$0,\!630346$	$0,\!354601$	0,228997	0,166193	$0,\!129734$
$\mu_3$	0,864276	$0,\!630346$	$0,\!354601$	0,228997	0,166193	$0,\!129734$
$\mu_4$	0,859259	0,631810	0,368870	0,243532	$0,\!179444$	$0,\!141568$
$\mu_5$	0,728858	$0,\!445927$	0,220911	0,127347	0,081832	$0,\!056724$
$\mu_6$	0,728858	$0,\!445927$	0,220911	0,127347	0,081832	$0,\!056724$
$\mu_7$	0,728858	$0,\!445927$	0,220911	0,127347	0,081832	$0,\!056724$
$\mu_8$	0,728858	0,445927	0,220911	0,127347	0,081832	$0,\!056724$
$\mu_9$	0,579082	0,396329	0,223602	0,113475	0,067164	0,044050
$\mu_{10}$	0,611931	0,339940	$0,\!155035$	0,091697	0,064945	$0,\!050573$
$\mu_{11}$	0,773190	0,563474	$0,\!347174$	0,231290	$0,\!179899$	$0,\!148862$
$\mu_{12}$	0,773190	0,563474	0,347174	0,231290	0,179899	0,148862
$\mu_{13}$	0,773190	0,563474	0,347174	0,231290	0,179899	0,148862

Taula B.219: Resultats de les mesures per a triangles inclinats.



Figura B.220: Representació gràfica del comportament de les mesures per a triangles inclinats (per polígons).



Figura B.221: Representació gràfica del comportament de les mesures per a triangles inclinats (per mesures).

$\mu_1$	0,972244	0,831328	0,487766	0,270048	0,163929	0,108586
$\mu_2$	0,915359	0,767155	0,584159	0,515877	$0,\!493675$	$0,\!485850$
$\mu_3$	0,881872	0,703921	0,526922	$0,\!474525$	0,462168	0,460521
$\mu_4$	0,947271	0,768895	0,424213	0,261047	$0,\!197600$	0,169233
$\mu_5$	0,722222	0,513889	0,264706	0,137931	$0,\!082569$	$0,\!054463$
$\mu_6$	0,720000	$0,\!458599$	$0,\!246575$	0,150943	0,101124	$0,\!072217$
$\mu_7$	0,721110	$0,\!485457$	0,255480	0,144291	$0,\!091376$	0,062715
$\mu_8$	0,720000	$0,\!458599$	$0,\!246575$	0,150943	0,101124	$0,\!072217$
$\mu_9$	0,602273	0,361382	0,218750	0,165121	0,139322	0,124965
$\mu_{10}$	0,562500	$0,\!297521$	$0,\!140625$	0,081633	$0,\!053254$	0,037461
$\mu_{11}$	0,791273	0,545035	0,326943	0,226233	$0,\!171419$	$0,\!137534$
$\mu_{12}$	0,791273	0,545035	0,326943	0,226233	0,171419	0,137534
$\mu_{13}$	0,791273	0,545035	0,326943	0,226233	0,171419	0,137534

Taula B.222: Resultats de les mesures per a quadrilàters inclinats.



Figura B.223: Representació gràfica del comportament de les mesures per a quadrilàters inclinats (per polígons).



Figura B.224: Representació gràfica del comportament de les mesures per a quadrilàters inclinats (per mesures).

$\mu_1$	0,959944	0,792448	0,481479	0,285113	0,181271	0,123900
$\mu_2$	0,834150	0,629210	0,463722	0,398697	0,351426	0,323962
$\mu_3$	0,832194	$0,\!629797$	$0,\!459131$	0,388346	0,341922	0,317463
$\mu_4$	0,873367	0,711118	$0,\!455609$	0,287711	0,210716	0,170934
$\mu_5$	0,721369	0,447378	0,222610	0,123113	$0,\!076868$	0,052213
$\mu_6$	0,721369	0,447378	0,222610	0,123113	$0,\!076868$	$0,\!052213$
$\mu_7$	0,721369	$0,\!447378$	0,222610	0,123113	$0,\!076868$	$0,\!052213$
$\mu_8$	0,737786	$0,\!472154$	0,222610	0,123113	$0,\!076868$	$0,\!052213$
$\mu_9$	$0,\!632533$	0,372986	0,205238	0,138270	$0,\!106203$	$0,\!086025$
$\mu_{10}$	0,570940	$0,\!295952$	$0,\!120584$	0,062300	$0,\!037613$	0,024955
$\mu_{11}$	0,678679	0,405500	0,182892	0,097230	$0,06\overline{2479}$	$0,\!05\overline{3791}$
$\mu_{12}$	0,678679	0,405500	0,182892	0,097230	0,062479	0,053791
$\mu_{13}$	0,678679	0,405500	0,182892	0,097230	0,062479	0,053791

Taula B.225: Resultats de les mesures per a pentàgons inclinats.



Figura B.226: Representació gràfica del comportament de les mesures per a pentàgons inclinats (per polígons).



Figura B.227: Representació gràfica del comportament de les mesures per a pentàgons inclinats (per mesures).

		$\bigcirc$				
$\mu_1$	0,960433	$0,\!807790$	0,516832	$0,\!307307$	$0,\!190080$	$0,\!126587$
$\mu_2$	0,861543	$0,\!697165$	$0,\!554410$	$0,\!410709$	0,318397	$0,\!278739$
$\mu_3$	0,858143	$0,\!690141$	0,544996	0,403488	0,313316	$0,\!274715$
$\mu_4$	0,883744	0,749666	$0,\!628351$	$0,\!370929$	$0,\!230007$	0,168515
$\mu_5$	0,739103	$0,\!461825$	0,264882	$0,\!142806$	$0,\!085682$	$0,\!056582$
$\mu_6$	0,739103	$0,\!461825$	0,264882	$0,\!142806$	$0,\!085682$	$0,\!056582$
$\mu_7$	0,739103	0,461825	0,264882	0,142806	0,085682	0,056582
$\mu_8$	0,757914	0,519366	0,272000	0,142806	$0,\!085682$	$0,\!056582$
$\mu_9$	$0,\!655262$	$0,\!385387$	$0,\!201587$	$0,\!126878$	0,092243	0,076179
$\mu_{10}$	0,602158	0,321561	$0,\!157440$	$0,\!078459$	0,046320	0,029644
$\mu_{11}$	0,685716	0,421670	0,197000	0,120990	0,098340	0,085428
$\mu_{12}$	0,685716	$0,\!421670$	0,197000	0,120990	0,098340	0,085428
$\mu_{13}$	0,685716	0,421670	0,197000	0,120990	0,098340	0,085428

Taula B.228: Resultats de les mesures per a hexàgons inclinats.



Figura B.229: Representació gràfica del comportament de les mesures per a hexàgons inclinats (per polígons).



Figura B.230: Representació gràfica del comportament de les mesures per a hexàgons inclinats (per mesures).

		$\bigcirc$	$\square$			
$\mu_1$	0,959935	0,798449	0,494218	0,298896	0,190200	$0,\!129407$
$\mu_2$	0,857309	$0,\!660347$	$0,\!420398$	0,314617	0,265628	$0,\!238795$
$\mu_3$	0,853419	$0,\!653149$	0,409196	0,307333	$0,\!259034$	0,232719
$\mu_4$	0,877495	0,710529	$0,\!493495$	$0,\!371068$	0,241810	$0,\!181584$
$\mu_5$	0,717930	$0,\!453748$	0,229450	0,128728	$0,\!079617$	$0,\!053707$
$\mu_6$	0,717930	$0,\!453748$	0,228437	0,128728	0,079617	$0,\!053707$
$\mu_7$	0,717930	$0,\!453748$	0,228943	0,128728	0,079617	$0,\!053707$
$\mu_8$	0,717930	$0,\!453748$	$0,\!235607$	0,128728	0,079617	$0,\!053707$
$\mu_9$	0,665875	0,389113	$0,\!181493$	0,113311	$0,\!082970$	0,068118
$\mu_{10}$	0,544222	$0,\!254552$	0,101890	0,046141	0,026766	$0,\!017483$
$\mu_{11}$	0,644831	$0,\!352159$	$0,\!178259$	0,091045	$0,\!051885$	0,032220
$\mu_{12}$	0,644831	0,352159	0,178259	0,091045	$0,\!051885$	0,032220
$\mu_{13}$	0,644831	0,352159	0,178259	0,091045	0,051885	0,032220

Taula B.231: Resultats de les mesures per a heptàgons inclinats.



Figura B.232: Representació gràfica del comportament de les mesures per a heptàgons inclinats (per polígons).



Figura B.233: Representació gràfica del comportament de les mesures per a heptàgons inclinats (per mesures).

		$\bigcirc$	$\bigcirc$			
$\mu_1$	0,959850	0,785253	0,482892	0,292731	0,183132	0,122081
$\mu_2$	0,858193	$0,\!684795$	$0,\!614798$	$0,\!485129$	0,302924	0,223924
$\mu_3$	0,857511	$0,\!670889$	$0,\!577624$	0,451896	0,284831	0,213356
$\mu_4$	0,886178	0,705349	0,529333	0,453416	0,296119	$0,\!190857$
$\mu_5$	0,720000	$0,\!452233$	0,234171	0,133289	0,079618	$0,\!052459$
$\mu_6$	0,722222	$0,\!450911$	0,214185	0,119712	0,075351	0,051487
$\mu_7$	0,721110	0,451571	0,223955	0,126318	0,077455	0,051971
$\mu_8$	0,745478	0,450911	0,214185	0,119712	0,075351	0,051487
$\mu_9$	0,685326	0,377849	$0,\!175176$	0,100416	0,072044	0,058421
$\mu_{10}$	0,563676	0,235162	0,077326	0,036344	0,021203	0,013939
$\mu_{11}$	0,666565	0,354082	$0,\!185476$	0,118713	0,080175	$0,\!058767$
$\mu_{12}$	0,666565	0,354082	0,185476	0,118713	0,080175	0,058767
$\mu_{13}$	0,666565	0,354082	0,185476	0,118713	0,080175	0,058767

Taula B.234: Resultats de les mesures per a octògons inclinats.



Figura B.235: Representació gràfica del comportament de les mesures per a octògons inclinats (per polígons).



Figura B.236: Representació gràfica del comportament de les mesures per a octògons inclinats (per mesures).

$\mu_1$	0,025722	0,000260	0,000003	0,000260	0,000260	0,000003
$\mu_2$	0,504774	0,500048	0,500000	0,004823	0,000191	0,000010
$\mu_3$	0,504774	0,500048	0,500000	0,004823	0,000191	0,000010
$\mu_4$	0,452536	0,446740	0,446682	0,005375	0,053489	0,005341
$\mu_5$	0,011416	0,000115	0,000001	0,000115	0,000115	0,000001
$\mu_6$	0,011416	0,000115	0,000000	0,000115	0,000115	0,000001
$\mu_7$	0,011416	0,000115	0,000000	0,000115	0,000115	0,000001
$\mu_8$	0,011547	0,000115	0,000001	0,000118	0,000115	0,000001
$\mu_9$	0,003482	0,000035	0,000000	0,000065	0,166731	0,000790
$\mu_{10}$	0,009402	0,000095	0,000001	0,202041	0,000077	0,210637
$\mu_{11}$	0,069262	0,006910	0,000500	0,006893	0,008165	0,000683
$\mu_{12}$	0,069262	0,006910	0,000500	0,006893	0,008165	0,000683
$\mu_{13}$	0,069262	0,006910	0,000691	0,006893	0,008165	0,000683

Taula B.237: Resultats de les mesures per a triangles quasi degenerats. P1, P2 i P3 tenen dos vèrtexs en un extrem i l'altre en l'altre extrem, de P1 a P3 s'allarga més el polígon. P4 té dos vèrtexs en un extrem quasi bé en el mateix punt i l'altre a l'altre extrem. P5 i P6 tenen dos vèrtexs a cada extrem i el tercer en el punt mig dels dos, de P4 a P6 s'allarga més el polígon.



Figura B.238: Representació gràfica del comportament de les mesures per a triangles quasi degenerats (per polígons).



Figura B.239: Representació gràfica del comportament de les mesures per a triangles quasi degenerats (per mesures).

$\mu_1$	0,000400	0,039208	0,020396	0,029988	0,024993	$0,\!037925$
$\mu_2$	0,004374	0,339645	0,016981	0,022626	0,019492	0,088245
$\mu_3$	0,006479	0,503142	0,012990	0,025451	0,018273	$0,\!125666$
$\mu_4$	0,008322	0,434067	0,081238	0,090649	0,085138	0,122400
$\mu_5$	0,000200	0,019606	0,010200	0,015000	0,012500	0,019000
$\mu_6$	0,000400	0,038447	0,019608	0,013333	0,016000	0,010526
$\mu_7$	0,000283	0,027455	0,014142	0,014142	0,014142	0,014142
$\mu_8$	0,000180	0,017776	0,009060	0,010535	0,010240	0,010160
$\mu_9$	0,000082	0,006665	0,098979	0,096935	0,062447	0,095718
$\mu_{10}$	0,000081	0,008066	0,005028	0,005394	0,005176	0,005109
$\mu_{11}$	0,007979	0,080030	0,067477	0,071551	0,032437	0,078102
$\mu_{12}$	0,007979	0,080030	0,002914	0,048481	0,043401	0,077462
$\mu_{13}$	0,007979	0,080030	0,067477	0,072997	0,032437	0,078111

Taula B.240: Resultats de les mesures per a quadrilàters quasi degenerats. P1 té un vèrtex a un extrem un altre a l'altre extrem, els dos vèrtexs restants estan propers a un extrem separats equidistants de la recta que uneix els altres dos vèrtexs. P2 té tres vèrtexs a un extrem i el restant a l'altre extrem. P3 té un vèrtex a cada extrem i els altres dos equiespaiats al llarg del segment. P4 Té un vèrtex a cada extrem i els altres dos al llarg del segment cadascun proper a un extrem. P5 té dos vèrtexs a cada extrem i els altres dos al llarg del segment equiespaiats.



Figura B.241: Representació gràfica del comportament de les mesures per a quadrilàters quasi degenerats (per polígons).



Figura B.242: Representació gràfica del comportament de les mesures per a quadrilàters quasi degenerats (per mesures).

$\mu_1$	0,000363	0,000545	0,035611	0,035611	0,029047	0,018360
$\mu_2$	0,003302	0,250103	0,087968	0,502375	0,022342	0,015914
$\mu_3$	0,004368	0,333418	0,116147	0,503697	0,023827	0,010726
$\mu_4$	0,006511	0,294330	0,619905	0,590340	0,087847	0,039452
$\mu_5$	0,000152	0,000228	0,015058	0,015058	0,012174	0,007692
$\mu_6$	0,000291	0,000436	0,007265	0,007265	0,009082	0,014373
$\mu_7$	0,000210	0,000315	0,010460	0,010460	0,010515	0,010515
$\mu_8$	0,000163	0,000242	0,009082	0,009082	0,009539	0,008160
$\mu_9$	0,000074	0,000093	0,066831	0,066831	0,067903	0,068779
$\mu_{10}$	0,000065	0,000097	0,004239	0,004075	0,004551	0,005219
$\mu_{11}$	0,000115	0,005947	0,011282	0,002821	0,010183	0,024462
$\mu_{12}$	0,000794	0,005947	0,034645	0,034631	0,024724	0,000448
$\mu_{13}$	0,000115	0,005947	0,009232	0,034675	0,012189	0,024462

Taula B.243: Resultats de les mesures per a pentàgons quasi degenerats. P1 i P2 tenen quatre vèrtexs a un extrem i el restant a l'altre i es diferencien en que P2 s'allarga més que P1. P3 té dos vèrtexs a cada extrem i el restant en el punt mig dels extrems. P4 té tres vèrtexs a un extrem i els altres dos al altre. P5 té els vèrtexs repartits al llarg del segment. P6 té un vèrtex a cada extrem i els altres acumulats al centre.



Figura B.244: Representació gràfica del comportament de les mesures per a pentàgons quasi degenerats (per polígons).



Figura B.245: Representació gràfica del comportament de les mesures per a pentàgons quasi degenerats (per mesures).

			<u> </u>			
$\mu_1$	0,000346	0,066592	0,033955	0,066592	0,017663	0,027699
$\mu_2$	0,002658	0,405692	$0,\!206647$	0,412524	0,015280	$0,\!021155$
$\mu_3$	0,004375	$0,\!452881$	$0,\!338077$	0,401818	0,008743	0,021150
$\mu_4$	0,005429	0,448772	0,224924	0,503136	0,010836	0,085276
$\mu_5$	0,000154	0,030093	0,015220	0,030093	0,007852	0,012317
$\mu_6$	0,000346	0,017321	0,033475	0,017321	0,016981	0,010825
$\mu_7$	0,000231	0,022830	0,022572	0,022830	0,011547	$0,\!011547$
$\mu_8$	0,000156	0,017321	0,015394	0,017321	0,007846	0,009096
$\mu_9$	0,000068	0,056012	0,006130	0,056012	0,055559	0,052818
$\mu_{10}$	0,000069	0,008813	0,006794	0,008813	0,003116	0,004220
$\mu_{11}$	0,000115	0,003989	0,034628	0,031894	0,042467	0,042197
$\mu_{12}$	0,000057	0,022388	0,034628	0,053881	0,000688	0,004806
$\mu_{13}$	0,000115	0,022539	0,034628	0,022709	0,042467	0,042197

Taula B.246: Resultats de les mesures per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (i 2). P1 té dos escapçaments petits en vèrtexs oposats. P2 té un escapçament petit i un vèrtex alineat en el mig d'un costat. P3 té dos vèrtexs alineats en el mig dels costats. P4 té un escapçament petit. P5 té un escapçament gran. P6 té un vèrtex alineat en el mig d'un costat.



Figura B.247: Representació gràfica del comportament de les mesures per a hexàgons quasi degenerats (per polígons).



Figura B.248: Representació gràfica del comportament de les mesures per a hexàgons quasi degenerats (per mesures).

			(				
	$\mu_1$	0,000337	0,033955	0,095242	0,064802	0,017189	0,027627
	$\mu_2$	0,002229	0,206647	$0,\!185924$	0,118859	0,014856	0,021572
	$\mu_3$	0,003318	0,338077	0,267932	0,174897	0,007651	0,021134
	$\mu_4$	0,004632	0,224924	$0,\!183357$	0,363343	0,009936	0,078649
	$\mu_5$	0,000139	0,015220	0,040845	0,027397	0,007086	0,011393
	$\mu_6$	0,000303	0,033475	0,085644	0,015145	0,014848	0,009235
	$\mu_7$	0,000205	0,022572	0,059145	0,020370	0,010257	0,010257
	$\mu_8$	0,000151	0,015394	0,044907	0,016855	0,007635	0,008829
	$\mu_9$	0,000065	0,006130	0,019430	0,046618	0,046260	0,042685
	$\mu_{10}$	0,000041	0,006794	0,012783	0,005181	0,002237	0,002648
	$\mu_{11}$	0,000115	0,034628	0,059859	0,034764	0,037961	0,011464
	$\mu_{12}$	0,000057	0,034628	0,037818	0,011354	0,000688	0,007352
	$\mu_{13}$	0,000115	0,034628	0,059859	0,013081	0,037961	0,011464

Taula B.249: Resultats de les mesures per a heptàgons quasi degenerats. P1 té un vèrtexs a cada extrem i els restants en un punt mig dels dos segments equidistants entre si respecte al segment que uneix els vèrtexs dels extrems. P2 té cinc vèrtexs a un extrem i el restants a l'altre. P3 té sis vèrtexs a un costat i el restant a l'altre. P4 té tres vèrtexs a cada extrem i el restant al mig del segment. P5 té dos vèrtexs a cada extrem i els tres restants acumulats al mig. P6 té els vèrtexs repartits al llarg del segment.



Figura B.250: Representació gràfica del comportament de les mesures per a heptàgons quasi degenerats (per polígons).



Figura B.251: Representació gràfica del comportament de les mesures per a heptàgons quasi degenerats (per mesures).

	$\mu_1$	0,017062	0,028971	0,000331	0,063701	0,063694	0,056003
	$\mu_2$	0,014558	0,025292	0,001922	0,575940	0,294265	0,294198
	$\mu_3$	0,006751	0,025991	0,003322	0,507115	0,383066	0,382189
	$\mu_4$	0,009829	0,084677	0,003992	0,303239	0,303239	0,303244
	$\mu_5$	0,007283	0,012371	0,000141	0,027821	0,027821	0,024394
	$\mu_6$	0,016086	0,009468	0,000331	0,016569	0,036247	0,041139
	$\mu_7$	0,010824	0,010823	0,000216	0,021470	0,031756	0,031679
	$\mu_8$	0,007572	0,008588	0,000149	0,016569	0,019443	0,019843
Ī	$\mu_9$	0,039867	0,036318	0,000062	0,040239	0,017673	0,011442
	$\mu_{10}$	0,001986	0,002180	0,000033	0,006584	0,004642	0,004642
	$\mu_{11}$	0,029987	0,018564	0,000115	0,000000	0,026763	0,034702
	$\mu_{12}$	0,000680	0,003077	0,000057	0,056466	0,034612	0,056435
	$\mu_{13}$	0,029987	0,021335	0,000115	0,056771	0,026763	0,034702

Taula B.252: Resultats de les mesures per a octògons quasi degenerats. P1 té un vèrtex a cada extrem i els restants acumulats al mig. P2 té els vèrtexs repartits al llarg del segment. P3 té un vèrtex a cada extrem i els restants en el punt mig del segment que uneix els extrems i equidistants respecte aquest segment. P4 té quatre vèrtexs a cada extrem. P5 té sis vèrtexs a un extrem i els restants a l'altre. P6 té set vèrtexs a un extrem i el restant a l'altre.


Figura B.253: Representació gràfica del comportament de les mesures per a octògons quasi degenerats (per polígons).



Figura B.254: Representació gràfica del comportament de les mesures per a octògons quasi degenerats (per mesures).

				_	_	
$\mu_1$	0,791556	$0,\!453343$	0,109969	0,397638	0,300950	$0,\!233517$
$\mu_2$	0,733805	$0,\!435203$	0,165143	0,308184	0,243277	$0,\!199556$
$\mu_3$	0,733805	$0,\!435203$	0,165143	0,308184	0,243277	$0,\!199556$
$\mu_4$	0,717481	$0,\!424852$	0,163440	0,322879	0,257943	0,213646
$\mu_5$	$0,\!433013$	0,219891	0,049238	$0,\!186133$	$0,\!137883$	$0,\!105792$
$\mu_6$	$0,\!433013$	0,219891	0,049238	$0,\!186133$	$0,\!137883$	$0,\!105792$
$\mu_7$	$0,\!433013$	0,219891	0,049238	$0,\!186133$	$0,\!137883$	$0,\!105792$
$\mu_8$	0,549530	0,219891	0,049238	$0,\!186133$	$0,\!137883$	$0,\!105792$
$\mu_9$	0,233902	$0,\!117559$	0,024307	$0,\!180587$	$0,\!124935$	0,090875
$\mu_{10}$	0,442088	0,182644	0,046410	0,129924	0,098195	0,078803
$\mu_{11}$	$0,56\overline{2863}$	0,314958	0,140150	0,301891	0,243316	0,207119
$\mu_{12}$	0,562863	0,314958	$0,\!140150$	0,301891	$0,\!243316$	0,207119
$\mu_{13}$	$0,56\overline{2863}$	$0,\!31\overline{4958}$	$0,\!14\overline{0150}$	0,301891	0,243316	$0,20\overline{7}119$

Taula B.255: Resultats de les mesures per a triangles isoareals (1).



Figura B.256: Representació gràfica del comportament de les mesures per a triangles isoareals (per polígons) (1).



Figura B.257: Representació gràfica del comportament de les mesures per a triangles isoareals (per mesures) (1).

$\mu_1$	0,998751	0,969368	0,905325	0,719005	0,397638	0,233517
$\mu_2$	0,978809	0,884184	0,777536	0,566618	0,308184	$0,\!199556$
$\mu_3$	0,978809	0,884184	0,777536	0,566618	0,308184	$0,\!199556$
$\mu_4$	0,977520	0,879438	0,772982	0,572454	0,322879	0,213646
$\mu_5$	0,950119	0,761905	$0,\!605144$	0,388727	$0,\!186133$	$0,\!105792$
$\mu_6$	0,950119	0,761905	$0,\!605144$	0,388727	$0,\!186133$	$0,\!105792$
$\mu_7$	0,950119	0,761905	$0,\!605144$	0,388727	$0,\!186133$	$0,\!105792$
$\mu_8$	0,950119	0,761905	$0,\!605144$	0,388727	$0,\!186133$	$0,\!105792$
$\mu_9$	0,888172	$0,\!612676$	$0,\!478172$	0,380718	0,180587	0,090875
$\mu_{10}$	0,908207	$0,\!649227$	0,484222	0,292920	0,129924	$0,\!078803$
$\mu_{11}$	0,955386	0,799213	$0,\!678532$	0,525070	0,301891	0,207119
$\mu_{12}$	0,955386	0,799213	$0,\!678532$	0,525070	0,301891	0,207119
$\mu_{13}$	0,955386	0,799213	$0,\!678532$	0,525070	0,301891	0,207119

Taula B.258: Resultats de les mesures per a triangles isoareals (2).



Figura B.259: Representació gràfica del comportament de les mesures per a triangles isoareals (per polígons) (2).



Figura B.260: Representació gràfica del comportament de les mesures per a triangles isoareals (per mesures) (2).

$\mu_1$	0,254738	0,253850	0,248024	0,206020	0,114458	0,089370
$\mu_2$	0,188499	0,221375	$0,\!427835$	0,375000	0,094249	0,067751
$\mu_3$	0,188499	0,221375	$0,\!427835$	0,375000	0,094249	0,067751
$\mu_4$	0,223285	0,232331	0,399393	0,350192	$0,\!120522$	0,104881
$\mu_5$	0,115470	0,115470	0,115470	0,094648	0,051093	0,039817
$\mu_6$	0,115470	0,115470	0,115470	0,094648	0,051093	0,039817
$\mu_7$	0,115470	0,115470	0,115470	0,094648	0,051093	0,039817
$\mu_8$	0,343046	0,230940	0,140817	0,094648	0,051093	0,039817
$\mu_9$	0,263075	0,097332	0,044075	0,035945	0,075973	$0,\!112955$
$\mu_{10}$	0,080066	0,191719	0,241408	0,141654	0,036525	0,026579
$\mu_{11}$	0,269085	0,217282	0,220265	0,198201	0,140157	$0,\!123730$
$\mu_{12}$	0,269085	0,217282	0,220265	0,198201	0,140157	0,123730
$\mu_{13}$	0,269085	0,217282	0,220265	0,198201	0,140157	0,123730

Taula B.261: Resultats de les mesures per a triangles isoareals (i 3).



Figura B.262: Representació gràfica del comportament de les mesures per a triangles isoareals (per polígons) (i 3).



Figura B.263: Representació gràfica del comportament de les mesures per a triangles isoareals (per mesures) (i 3).

## APÈNDIX B. RESULTATS DELS EXPERIMENTS

$\mu_1$	0,425992	0,417812	0,392251	0,345471	0,266524	0,094425
$\mu_2$	0,595295	$0,\!593477$	$0,\!587791$	$0,\!491412$	$0,\!353787$	$0,\!117831$
$\mu_3$	0,595295	$0,\!593477$	$0,\!587791$	$0,\!491412$	$0,\!353787$	$0,\!117831$
$\mu_4$	0,560798	0,557290	0,550326	0,462341	$0,\!337507$	$0,\!124829$
$\mu_5$	0,191067	0,195401	$0,\!192521$	0,165772	$0,\!123320$	$0,\!042156$
$\mu_6$	0,191067	0,195401	$0,\!192521$	0,165772	$0,\!123320$	0,042156
$\mu_7$	0,191067	0,195401	$0,\!192521$	0,165772	$0,\!123320$	0,042156
$\mu_8$	0,228934	0,233524	0,228191	0,209355	$0,\!123320$	0,042156
$\mu_9$	0,077425	0,076345	0,072911	0,066414	$0,\!053740$	0,027219
$\mu_{10}$	0,156143	0,228586	$0,\!271029$	0,253637	$0,\!138868$	0,046166
$\mu_{11}$	$0,32\overline{6976}$	$0,\!31\overline{4}157$	$0,\!29\overline{4945}$	$0,26\overline{7}665$	$0,\!22\overline{6533}$	$0,\!12\overline{8676}$
$\mu_{12}$	0,326976	$0,\!314157$	$0,\!294945$	0,267665	$0,\!226533$	$0,\!128676$
$\mu_{13}$	0,326976	0,314157	0,294945	0,267665	0,226533	0,128676

Taula B.264: Triangles:isoperimètrics:1



Figura B.265: Representació gràfica del comportament de les mesures per a triangles isoperimètrics (per polígons) (1).



Figura B.266: Representació gràfica del comportament de les mesures per a triangles isoperimètrics (per mesures) (1).

$\mu_1$	0,646171	0,633444	0,593625	0,520536	0,396171	0,101849
$\mu_2$	0,500000	0,508268	0,535792	0,593818	0,587396	$0,\!274786$
$\mu_3$	0,500000	0,508268	0,535792	0,593818	0,587396	0,274786
$\mu_4$	0,511485	0,509096	0,523911	0,565975	0,550463	0,254377
$\mu_5$	0,333333	0,326768	0,306227	0,268523	0,182475	0,045796
$\mu_6$	0,333333	0,326768	0,306227	0,268523	0,182475	0,045796
$\mu_7$	0,333333	0,326768	0,306227	0,268523	0,182475	0,045796
$\mu_8$	0,583333	0,545565	0,502958	0,351849	0,216156	0,045796
$\mu_9$	0,414894	0,289570	0,182085	0,117112	0,070583	0,016467
$\mu_{10}$	0,250028	0,441670	0,366368	0,300500	0,282437	0,100218
$\mu_{11}$	0,490948	0,432411	0,391461	0,354607	0,304913	$0,\!136890$
$\mu_{12}$	0,490948	0,432411	0,391461	0,354607	0,304913	0,136890
$\mu_{13}$	0,490948	0,432411	0,391461	0,354607	0,304913	0,136890

Taula B.267: Resultats de les mesures per a triangles isoperimètrics (i 2).



Figura B.268: Representació gràfica del comportament de les mesures per a triangles isoperimètrics (per polígons) (i 2).



Figura B.269: Representació gràfica del comportament de les mesures per a triangles isoperimètrics (per mesures) (i 2).

## APÈNDIX B. RESULTATS DELS EXPERIMENTS

$\mu_1$	0,875388	0,925234	0,952434	0,918221	0,722596	0,072262
$\mu_2$	0,719445	0,798923	0,854764	0,814215	0,751780	0,671971
$\mu_3$	0,704833	0,757076	0,812994	0,849282	0,694271	0,511935
$\mu_4$	0,719138	0,766280	0,817395	0,855170	0,870747	0,864319
$\mu_5$	0,480001	0,542524	0,653026	0,611250	0,364325	0,036129
$\mu_6$	$0,\!666667$	$0,\!658663$	0,626288	0,548529	0,382488	0,032515
$\mu_7$	0,565686	0,597780	$0,\!639517$	0,579041	0,373296	$0,\!034274$
$\mu_8$	0,526749	$0,\!656385$	$0,\!870659$	0,631164	$0,\!335071$	0,020164
$\mu_9$	0,537089	0,713248	0,771553	0,531714	0,233710	0,053136
$\mu_{10}$	0,396170	0,552867	0,761265	0,493319	$0,\!195877$	0,009664
$\mu_{11}$	0,618684	$0,\!654287$	0,662196	0,540509	0,321589	0,066949
$\mu_{12}$	0,513013	0,571975	0,553671	0,425563	0,259696	$0,\!054967$
$\mu_{13}$	0,628717	0,641985	0,613680	0,478120	0,274347	0,048514

Taula B.270: Resultats de les mesures per a trapezis.



Figura B.271: Representació gràfica del comportament de les mesures per a trapezis (per polígons).



Figura B.272: Representació gràfica del comportament de les mesures per a trapezis (per mesures).

## Apèndix C

## Resultats dels experiments $\mu_5$ , $\mu_6$ i $\mu_7$

En aquest annex s'hi recullen els resultats dels experiments específics de les mesures 5, 6 i 7 definits al Capítol 6. Concretament, per cada polígon avaluat es troben dues taules amb la imatge del polígon i els resultats de les mesures 5, 6 i 7 per cada nombre de costats del polígon regular (de 3 a 100 costats). A més, a continuació de la taula es mostra una gràfica de l'evolució de les mesures en variar el nombre de costats que, al nostre entendre, ajuden a analitzar els resultats.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	1,000000	1,000000	1,000000	33	0,416006	0,606433	0,502274
4	0,464102	0,497423	0,480473	34	0,413796	0,603260	0,499626
5	0,412209	0,538541	0,471160	35	0,413709	$0,\!603335$	$0,\!499605$
6	0,500000	$0,\!666667$	0,577350	36	$0,\!415603$	$0,\!606139$	0,501910
7	$0,\!424394$	0,571966	$0,\!492685$	37	$0,\!413747$	$0,\!603468$	$0,\!499683$
8	$0,\!415225$	$0,\!579808$	0,490664	38	$0,\!413679$	$0,\!603527$	$0,\!499667$
9	$0,\!449099$	$0,\!630415$	0,532089	39	$0,\!415291$	$0,\!605911$	0,501627
10	0,418061	0,588878	0,496172	40	0,413709	0,603632	0,499728
11	$0,\!414871$	$0,\!591643$	0,495435	41	$0,\!413655$	$0,\!603679$	0,499715
12	0,433013	$0,\!618802$	0,517638	42	0,415043	$0,\!605730$	0,501402
13	0,415973	0,595358	0,497647	43	0,413679	0,603762	0,499764
14	0,414499	0,596642	0,497300	44	0,413636	0,603800	0,499753
15	0,425841	$0,\!613598$	0,511170	45	0,414843	0,605584	0,501221
16	0,415043	0,598519	0,498408	46	0,413655	0,603868	0,499793
17	0,414243	0,599217	0,498218	47	0,413619	$0,\!603899$	0,499784
18	$0,\!422015$	$0,\!610815$	0,507713	48	0,414680	$0,\!605465$	0,501073
19	0,414551	0,600295	0,498852	49	0,413635	$0,\!603955$	0,499817
20	0,414069	0,600717	0,498736	50	0,413606	0,603981	0,499810
21	0,419731	0,609151	0,505648	51	0,414545	0,605366	0,500950
22	0,414260	0,601393	0,499132	52	0,413619	0,604027	0,499837
23	0,413948	0,601666	0,499057	53	0,413594	0,604049	0,499831
24	0,418258	0,608077	0,504314	54	0,414431	0,605283	0,500847
25	0,414075	0,602118	0,499322	55	0,413605	0,604088	0,499854
26	$0,\!413861$	$0,\!602306$	0,499270	56	$0,\!413585$	0,604106	0,499849
27	0,417252	0,607343	0,503404	57	0,414335	0,605213	0,500760
28	0,413949	0,602622	0,499455	58	0,413594	0,604140	0,499869
29	0,413796	0,602757	0,499418	59	0,413576	0,604155	0,499864
30	$0,\!416535$	0,606820	0,502754	60	0,414253	$0,\!605153$	0,500686

Taula C.1: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un triangle regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,413584	0,604184	$0,\!499881$	83	0,413538	$0,\!604375$	0,499932
62	$0,\!413569$	$0,\!604197$	$0,\!499877$	84	0,413883	$0,\!604882$	0,500350
63	$0,\!414183$	$0,\!605101$	0,500622	85	0,413541	$0,\!604386$	0,499938
64	$0,\!413576$	$0,\!604222$	$0,\!499892$	86	0,413535	$0,\!604391$	0,499937
65	$0,\!413563$	$0,\!604233$	$0,\!499889$	87	0,413856	$0,\!604863$	0,500326
66	0,414122	$0,\!605057$	0,500567	88	0,413538	0,604400	0,499942
67	$0,\!413569$	$0,\!604255$	0,499901	89	0,413533	0,604404	0,499941
68	0,413557	0,604265	0,499898	90	0,413833	0,604845	0,500305
69	0,414069	0,605018	0,500519	91	0,413535	0,604413	0,499946
70	0,413563	0,604284	0,499909	92	0,413531	0,604417	0,499945
71	$0,\!413553$	$0,\!604293$	$0,\!499907$	93	0,413811	$0,\!604830$	0,500285
72	0,414022	$0,\!604984$	0,500476	94	0,413533	$0,\!604425$	0,499949
73	$0,\!413557$	$0,\!604309$	0,499916	95	0,413528	$0,\!604428$	0,499948
74	0,413548	0,604317	0,499914	96	0,413792	0,604816	0,500268
75	0,413981	0,604954	0,500439	97	0,413530	0,604435	0,499952
76	0,413552	0,604332	0,499923	98	0,413527	0,604439	0,499951
77	0,413544	0,604339	0,499921	99	0,413774	0,604803	0,500252
78	0,413944	0,604927	0,500406	100	0,413528	0,604445	0,499955

Taula C.2: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un triangle regular.





2	$\mu_5$	$\mu_6$	$\mu_7$	99	$\mu_5$	$\mu_6$	$\mu_7$
	1,000000	1,000000	1,000000	- 33 - 24	0,030308	0,102010	0,705942
4	1,000000	1,000000	1,000000	34	0,050104	0,782000	0,705595
0	0,002219	0,073049	0,007910	30	0,030455	0,783130	0,700000
6	0,618802	0,696152	0,656339	30	0,639863	0,787398	0,709808
7	0,626247	0,728878	0,675617	37	0,636573	0,783392	0,706177
8	0,707107	0,828427	0,765367	38	0,636255	0,783162	0,705897
9	0,638627	0,751326	0,692688	39	0,636492	0,783593	0,706223
10	0,630978	0,753163	$0,\!689369$	40	$0,\!639245$	0,787017	0,709293
11	$0,\!633625$	0,762630	0,695141	41	$0,\!636578$	0,783765	0,706348
12	0,666667	0,803848	0,732051	42	0,636322	0,783567	0,706117
13	0,636980	0,769113	0,699935	43	0,636518	0,783913	0,706381
14	0,633844	0,768936	0,698130	44	0,638789	0,786736	0,708913
15	0,635293	0,773174	0,700851	45	0,636582	0,784042	0,706475
16	0,653270	0,795649	0,720953	46	0,636371	0,783872	0,706282
17	0,636671	0,775885	0,702840	47	$0,\!636537$	0,784155	0,706501
18	0,634966	0,775436	0,701694	48	0,638441	0,786522	0,708624
19	0,635893	0,777784	0,703269	49	$0,\!636586$	0,784255	0,706573
20	0,647214	0,791922	0,715921	50	0,636410	0,784106	0,706408
21	0,636590	0,779167	0,704280	51	$0,\!636551$	0,784342	0,706593
22	0,635521	0,778728	0,703490	52	0,638172	0,786355	0,708399
23	0,636168	0,780204	0,704515	53	0,636590	0,784421	0,706650
24	0,643951	0,789915	0,713208	54	0,636440	0,784291	0,706508
25	0,636568	0,781003	0,705097	55	0,636562	0,784490	0,706666
26	0,635837	0,780622	0,704520	56	0,637957	0,786223	0,708221
27	0,636314	0,781630	0,705239	57	0,636593	0,784553	0,706711
28	0,641994	0,788711	0,711581	58	0,636464	0,784438	0,706588
29	$0,\!636565$	0,782132	0,705605	59	$0,\!636570$	0,784609	0,706724
30	0,636033	0,781810	0,705165	60	0,637785	0,786117	0,708077

Taula C.4: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un quadrat.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!636595$	0,784660	0,706761	83	$0,\!636596$	0,785000	0,706914
62	$0,\!636483$	0,784558	0,706653	84	0,637214	0,785765	0,707602
63	$0,\!636577$	0,784706	0,706772	85	0,636606	0,785018	0,706928
64	$0,\!637644$	0,786030	0,707960	86	$0,\!636549$	0,784961	0,706871
65	$0,\!636598$	0,784748	0,706802	87	$0,\!636599$	0,785035	0,706932
66	$0,\!636499$	0,784657	0,706706	88	0,637161	0,785732	0,707558
67	$0,\!636582$	0,784787	0,706811	89	$0,\!636607$	0,785052	0,706944
68	$0,\!637527$	0,785957	0,707862	90	$0,\!636555$	0,784999	0,706891
69	$0,\!636600$	0,784821	0,706836	91	0,636601	0,785067	0,706947
70	$0,\!636513$	0,784739	0,706751	92	0,637115	0,785704	0,707519
71	$0,\!636587$	0,784854	0,706843	93	0,636608	0,785081	0,706957
72	$0,\!637429$	0,785897	0,707780	94	0,636560	0,785033	0,706909
73	0,636602	0,784883	0,706865	95	0,636602	0,785094	0,706960
74	0,636524	0,784808	0,706788	96	0,637075	0,785679	0,707486
75	$0,\!636591$	0,784910	0,706871	97	0,636609	0,785106	0,706969
76	0,637346	0,785846	0,707711	98	0,636565	0,785062	0,706925
77	0,636603	0,784935	0,706889	99	0,636604	0,785118	0,706972
78	0,636534	0,784867	0,706820	100	0,637039	0,785657	0,707456

Taula C.5: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un quadrat.



Figura C.6: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a un quadrat.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,538541	0,412209	$0,\!471160$	33	0,755426	0,860592	$0,\!806296$
4	$0,\!673649$	0,662219	0,667910	34	0,756458	0,862044	$0,\!807527$
5	1,000000	1,000000	1,000000	35	0,760907	0,867136	0,812287
6	0,767210	0,775558	0,771373	36	0,756679	0,862343	0,807785
7	0,723207	0,773044	0,747711	37	0,755701	$0,\!861453$	0,806847
8	0,732488	0,794195	0,762718	38	0,755770	$0,\!861627$	0,806965
9	0,746982	0,825285	0,785158	39	0,756557	0,862707	0,807891
10	0,809017	0,894427	0,850651	40	0,759948	0,866589	0,811519
11	0,757305	0,838375	0,796810	41	0,756705	0,862907	0,808063
12	0,745860	0,833136	0,788291	42	0,755954	0,862204	0,807333
13	0,747760	0,837791	0,791497	43	0,756001	0,862323	0,807414
14	0,753714	0,848501	0,799704	44	0,756621	0,863157	0,808136
15	0,779420	0,877677	0,827091	45	0,759291	0,866214	0,810993
16	0,756614	0,852326	0,803045	46	0,756725	0,863298	0,808256
17	0,751431	0,848968	0,798712	47	0,756131	0,862728	0,807672
18	0,752113	0,850673	0,799877	48	0,756164	0,862813	0,807730
19	0,755369	0,855958	0,804092	49	0,756665	0,863477	0,808308
20	0,769421	0,871990	0,819101	50	0,758822	0,865946	0,810617
21	0,756570	0,857564	0,805486	51	0,756740	0,863579	0,808397
22	0,753623	0,855335	0,802870	52	0,756258	0,863108	0,807919
23	0,753942	0,856139	0,803417	53	0,756283	0,863171	0,807962
24	0,755996	0,859262	0,805977	54	0,756696	0,863711	0,808435
25	0,764853	0,869387	0,815447	55	0,758475	0,865748	0,810339
26	0,756606	0,860083	0,806687	56	0,756753	0,863788	0,808501
27	0,754707	0,858514	0,804938	57	0,756354	0,863393	0,808103
28	0,754881	0,858955	0,805238	58	0,756373	0,863441	0,808136
29	0,756295	0,861010	0,806955	59	0,756719	0,863889	0,808531
30	0,762388	0,867981	0,813473	60	0,758212	0,865597	0,810127

Taula C.7: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un pentàgon regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,756763	0,863948	$0,\!808582$	83	0,756605	0,864140	0,808587
62	0,756427	0,863612	$0,\!808245$	84	0,756777	0,864354	0,808779
63	0,756442	0,863649	$0,\!808270$	85	0,757516	0,865200	0,809570
64	0,756737	0,864027	0,808604	86	0,756792	$0,\!864375$	0,808797
65	0,758007	0,865480	$0,\!809963$	87	0,756624	$0,\!864199$	0,808625
66	0,756771	0,864073	0,808644	88	0,756629	0,864213	0,808634
67	0,756485	0,863783	$0,\!808356$	89	0,756783	0,864403	0,808805
68	0,756496	0,863813	$0,\!808376$	90	0,757442	0,865158	0,809510
69	0,756750	0,864136	$0,\!808663$	91	0,756795	0,864421	0,808820
70	0,757844	0,865387	0,809832	92	0,756646	0,864264	0,808666
71	0,756778	0,864173	0,808695	93	0,756650	0,864275	0,808674
72	0,756531	0,863920	0,808444	94	0,756787	0,864445	0,808827
73	0,756540	0,863944	0,808461	95	0,757379	0,865122	0,809460
74	0,756761	0,864223	0,808709	96	0,756798	0,864460	0,808840
75	0,757713	0,865312	0,809727	97	0,756664	0,864318	0,808702
76	0,756783	0,864254	0,808735	98	0,756668	0,864328	0,808708
77	0,756568	0,864032	0,808516	99	0,756792	0,864481	0,808846
78	0,756576	0,864051	0,808530	100	0,757325	0,865091	0,809416

Taula C.8: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un pentàgon regular.





	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	$0,\!666667$	0,500000	0,577350	33	$0,\!826364$	0,903476	0,864060	
4	$0,\!696152$	0,618802	$0,\!656339$	34	0,825421	0,902603	0,863150	
5	0,775558	0,767210	0,771373	35	0,826536	0,904058	0,864429	
6	1,000000	1,000000	1,000000	36	0,831207	0,909209	0,869333	
7	0,830483	0,835753	0,833113	37	0,826735	0,904357	0,864675	
8	0,797628	0,830648	0,813971	38	0,825735	0,903459	0,863723	
9	0,817788	0,860967	0,839100	39	0,826544	0,904448	0,864619	
10	0,808439	0,857767	0,832738	40	0,825858	0,903794	0,863948	
11	0,820360	0,878115	0,848747	41	0,826670	0,904829	0,864867	
12	0,866025	0,928203	0,896575	42	0,830086	0,908595	0,868454	
13	0,825991	0,886294	0,855612	43	0,826794	0,905017	0,865022	
14	0,817632	0,881684	0,849054	44	0,826055	0,904333	0,864308	
15	0,823868	0,890339	0,856459	45	0,826656	0,905058	0,864969	
16	0,819845	0,887566	0,853034	46	0,826135	0,904551	0,864454	
17	0,824656	0,894852	0,859037	47	0,826752	0,905324	0,865147	
18	0,844030	0,916222	0,879385	48	0,829360	0,908197	0,867884	
19	0,826274	0,897256	0,861034	49	0,826836	0,905450	0,865250	
20	0,822433	0,894505	0,857713	50	0,826267	0,904912	0,864696	
21	0,825424	0,898447	0,861162	51	0,826731	0,905466	0,865203	
22	0,823228	0,896651	0,859156	52	0,826322	0,905062	0,864796	
23	0,825828	0,900319	0,862269	53	0,826807	0,905660	0,865336	
24	0,836516	0,912115	0,873498	54	0,828862	0,907924	0,867493	
25	0,826504	0,901330	0,863106	55	0,826866	0,905749	0,865409	
26	0,824301	0,899557	0,861107	56	0,826415	0,905315	0,864965	
27	0,826051	0,901785	0,863088	57	0,826784	0,905752	0,865367	
28	0,824673	0,900567	0,861785	58	0,826454	0,905422	0,865037	
29	0,826301	0,902760	0,863685	59	0,826845	0,905900	0,865470	
30	0,833070	0,910229	0,870796	60	0,828507	0,907729	0,867214	

Taula C.10: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un hexàgon regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,826888	$0,\!905964$	0,865523	83	$0,\!826921$	0,906394	0,865746
62	$0,\!826521$	$0,\!905606$	0,865161	84	$0,\!827765$	0,907323	0,866631
63	0,826822	0,905960	0,865487	85	$0,\!826937$	0,906418	0,865766
64	$0,\!826550$	$0,\!905686$	0,865214	86	0,826748	0,906227	0,865576
65	$0,\!826872$	$0,\!906076$	$0,\!865569$	87	0,826903	0,906407	0,865743
66	0,828244	$0,\!907585$	0,867007	88	0,826759	0,906258	0,865596
67	0,826905	0,906124	0,865609	89	0,826931	0,906460	0,865783
68	$0,\!826601$	$0,\!905825$	$0,\!865307$	90	$0,\!827666$	0,907268	0,866553
69	$0,\!826850$	0,906116	$0,\!865576$	91	0,826943	0,906479	0,865799
70	$0,\!826623$	$0,\!905885$	0,865347	92	0,826779	0,906312	0,865633
71	$0,\!826893$	0,906209	0,865643	93	0,826915	0,906468	0,865778
72	0,828044	0,907476	0,866850	94	0,826788	0,906337	0,865649
73	0,826918	$0,\!906246$	0,865674	95	0,826939	0,906514	0,865813
74	0,826662	0,905992	0,865418	96	0,827584	0,907224	0,866489
75	0,826872	0,906237	0,865645	97	0,826949	0,906530	0,865826
76	0,826679	0,906039	0,865450	98	0,826804	0,906382	0,865679
77	0,826909	0,906313	0,865701	99	0,826924	0,906519	0,865807
78	0,827888	0,907390	0,866728	100	0,826812	0,906402	0,865693

Taula C.11: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un hexàgon regular.



Figura C.12: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a un hexàgon regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,571966	$0,\!424394$	$0,\!492685$	33	0,868894	$0,\!926852$	0,897405	
4	0,728878	0,626247	$0,\!675617$	34	0,870430	0,928781	0,899132	
5	0,773044	0,723207	0,747711	35	0,875723	0,934452	0,904611	
6	0,835753	0,830483	0,833113	36	0,870704	0,929122	0,899439	
7	1,000000	1,000000	1,000000	37	0,869328	0,927892	0,898132	
8	$0,\!871544$	0,874873	0,873207	38	0,869552	0,928253	0,898423	
9	$0,\!841746$	0,864714	0,853153	39	0,869641	0,928439	0,898559	
10	0,849094	0,879361	0,864095	40	0,869576	0,928476	0,898543	
11	0,853592	0,888383	0,870814	41	0,870631	0,929768	0,899713	
12	0,854786	0,893811	0,874081	42	0,874284	0,933683	0,903495	
13	0,865697	0,910329	0,887733	43	0,870789	0,929965	0,899891	
14	0,900969	0,947905	0,924139	44	0,869826	0,929077	0,898963	
15	0,869965	0,915708	0,892544	45	0,869976	0,929310	0,899154	
16	0,861890	0,910393	0,885809	46	0,870030	0,929423	0,899236	
17	0,863577	0,913584	0,888229	47	0,869976	0,929430	0,899212	
18	0,864531	0,915559	0,889679	48	0,870745	0,930355	0,900057	
19	0,864582	0,916634	0,890227	49	0,873418	0,933220	0,902824	
20	0,869046	0,922809	0,895525	50	0,870845	0,930480	0,900168	
21	$0,\!884159$	0,938956	0,911146	51	0,870133	0,929808	0,899476	
22	$0,\!870332$	0,924394	$0,\!896956$	52	0,870240	0,929970	0,899610	
23	0,866621	0,921481	0,893630	53	0,870275	0,930044	0,899664	
24	0,867312	0,922709	0,894582	54	0,870231	0,930039	0,899638	
25	0,867658	0,923431	0,895110	55	0,870816	0,930733	0,900276	
26	0,867590	0,923750	0,895230	56	$0,\!872857$	0,932920	0,902388	
27	0,870029	0,926930	0,898029	57	0,870883	$0,\!930816$	0,900351	
28	0,878380	0,935871	0,906670	58	0,870336	0,930292	0,899815	
29	0,870566	0,927598	0,898630	59	0,870416	0,930410	0,899913	
30	0,868441	0,925785	0,896655	60	0,870440	0,930461	0,899950	

Taula C.13: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un heptàgon regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!870403$	$0,\!930450$	$0,\!899926$	83	$0,\!870938$	$0,\!931410$	0,900667
62	$0,\!870864$	0,930990	$0,\!900425$	84	0,871839	0,932375	0,901599
63	0,872472	0,932714	0,902090	85	0,870958	0,931435	0,900689
64	0,870911	0,931049	0,900478	86	0,870712	0,931190	0,900444
65	0,870477	0,930628	0,900050	87	0,870746	0,931237	0,900484
66	$0,\!870539$	0,930717	0,900125	88	0,870754	0,931252	0,900495
67	0,870556	0,930754	0,900152	89	0,870733	0,931240	0,900479
68	0,870525	0,930741	0,900129	90	0,870952	0,931490	0,900712
69	0,870897	0,931173	0,900531	91	0,871719	0,932311	0,901506
70	0,872197	0,932567	0,901877	92	0,870968	0,931509	0,900730
71	0,870931	0,931216	0,900569	93	0,870758	0,931299	0,900520
72	$0,\!870578$	0,930870	0,900220	94	0,870786	0,931337	0,900553
73	$0,\!870628$	0,930941	0,900279	95	0,870792	0,931350	0,900562
74	$0,\!870641$	0,930968	0,900299	96	0,870775	0,931339	0,900548
75	0,870614	0,930954	0,900279	97	0,870963	0,931552	0,900748
76	0,870921	0,931308	0,900608	98	0,871623	0,932260	0,901432
77	0,871994	0,932458	0,901719	99	0,870975	0,931568	0,900762
78	0,870946	0,931340	0,900637	100	0,870794	0,931386	0,900581

Taula C.14: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un heptàgon regular.





	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,579808	0,415225	$0,\!490664$	33	0,899880	0,944614	0,921976	
4	0,828427	0,707107	0,765367	34	0,898232	0,943176	0,920429	
5	0,794195	0,732488	0,762718	35	0,898278	0,943372	0,920549	
6	0,830648	0,797628	0,813971	36	0,899742	0,945052	0,922118	
7	0,874873	0,871544	$0,\!873207$	37	0,898488	0,943865	0,920897	
8	1,000000	1,000000	1,000000	38	0,898648	0,944149	0,921117	
9	0,899160	0,901758	0,900458	39	0,899849	0,945592	0,922437	
10	0,875892	0,892393	0,884104	40	0,904029	0,950014	0,926736	
11	0,879527	0,901173	0,890284	41	0,900019	0,945827	0,922639	
12	0,894899	0,921022	0,907867	42	0,898951	0,944858	0,921618	
13	0,885374	0,914363	$0,\!899752$	43	0,898966	0,944953	0,921673	
14	0,887945	0,919443	$0,\!903557$	44	0,899932	0,946046	0,922701	
15	$0,\!896363$	0,931385	0,913706	45	0,899081	0,945223	0,921863	
16	0,923880	0,960434	0,941979	46	0,899178	0,945390	0,921995	
17	0,899086	0,935077	0,916905	47	0,900003	0,946361	0,922891	
18	0,892855	0,930694	0,911578	48	0,902893	0,949416	0,925862	
19	0,893388	0,932204	0,912590	49	0,900101	0,946497	0,923008	
20	0,898430	0,938317	0,918157	50	0,899353	0,945800	0,922284	
21	0,894624	0,935070	0,914624	51	0,899356	0,945850	0,922310	
22	0,895329	0,936416	0,915642	52	0,900042	0,946618	0,923036	
23	0,898828	0,940966	0,919656	53	0,899426	0,946014	0,922426	
24	0,910684	0,953512	0,931852	54	0,899491	0,946122	0,922512	
25	0,899622	0,942056	0,920594	55	0,900092	0,946819	0,923160	
26	0,896749	0,939716	0,917981	56	0,902208	0,949055	0,925335	
27	0,896889	0,940190	0,918285	57	0,900154	0,946904	0,923233	
28	0,899363	0,943088	0,920966	58	0,899601	0,946380	$0,92\overline{2694}$	
29	0,897337	0,941236	0,919025	59	0,899599	0,946409	$0,92\overline{2707}$	
30	0,897638	0,941789	0,919448	60	0,900110	0,946977	0,923246	

Taula C.16: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un octògon regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!899644$	$0,\!946515$	0,922782	83	$0,\!899954$	0,947225	0,923287	
62	$0,\!899690$	$0,\!946589$	0,922842	84	0,900211	$0,\!947507$	0,923556	
63	0,900148	0,947114	0,923332	85	$0,\!899970$	0,947264	0,923314	
64	$0,\!901764$	0,948822	0,924994	86	$0,\!899991$	0,947295	0,923340	
65	$0,\!900189$	0,947171	0,923381	87	0,900230	0,947564	0,923594	
66	$0,\!899764$	0,946762	0,922964	88	0,901082	0,948462	0,924469	
67	$0,\!899760$	0,946779	0,922970	89	0,900246	$0,\!947586$	0,923613	
68	$0,\!900156$	0,947216	0,923386	90	0,900019	0,947362	0,923387	
69	$0,\!899791$	0,946852	0,923022	91	0,900015	0,947365	0,923387	
70	0,899825	0,946906	0,923065	92	0,900229	0,947599	0,923610	
71	0,900185	0,947315	0,923449	93	0,900027	0,947395	0,923407	
72	$0,\!901460$	0,948662	0,924760	94	0,900044	0,947420	0,923428	
73	0,900214	0,947355	0,923484	95	0,900245	0,947644	0,923640	
74	$0,\!899877$	0,947027	0,923151	96	0,900959	0,948398	0,924374	
75	0,899872	0,947038	0,923154	97	0,900257	0,947661	0,923655	
76	0,900188	0,947384	0,923485	98	0,900066	0,947471	0,923464	
77	0,899895	0,947090	0,923191	99	0,900062	0,947473	0,923463	
78	0,899921	0,947130	0,923224	100	0,900242	0,947670	0,923652	

Taula C.17: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un Octògon regular.



Figura C.18: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a un octògon regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	$0,\!618802$	0,433013	0,517638	33	0,952583	0,971706	0,962097	
4	$0,\!803848$	$0,\!666667$	0,732051	34	0,952436	$0,\!971727$	0,962033	
5	$0,\!833136$	0,745860	0,788291	35	0,954234	$0,\!973824$	0,963979	
6	0,928203	0,866025	0,896575	36	0,959795	0,979536	0,969616	
7	0,893811	0,854786	0,874081	37	0,954494	0,974163	0,964278	
8	0,921022	0,894899	0,907867	38	0,952934	0,972787	0,962809	
9	0,922836	0,906479	0,914621	39	0,953250	0,973222	0,963184	
10	0,925841	0,916529	0,921173	40	0,953619	0,973703	0,963608	
11	0,945390	0,944431	0,944910	41	0,953182	$0,\!973354$	0,963215	
12	1,000000	1,000000	1,000000	42	0,954483	0,974771	0,964573	
13	0,952825	0,953688	0,953256	43	0,953341	$0,\!973689$	0,963461	
14	0,940161	0,945900	0,943026	44	0,953847	0,974283	0,964011	
15	0,943510	0,951332	0,947413	45	0,953668	$0,\!974174$	0,963866	
16	0,946676	0,956220	0,951436	46	0,953568	0,974140	0,963799	
17	0,944742	0,955668	0,950189	47	0,954559	0,975260	0,964854	
18	0,952449	0,964655	0,958532	48	0,957662	0,978446	0,967998	
19	0,946773	0,959910	0,953319	49	0,954669	$0,\!975403$	0,964980	
20	0,949664	0,963696	0,956654	50	0,953777	$0,\!974586$	0,964126	
21	0,949122	0,963884	0,956474	51	0,953948	$0,\!974810$	0,964322	
22	0,948967	0,964366	0,956636	52	0,954154	$0,\!975068$	0,964555	
23	0,953185	0,969582	0,961348	53	0,953884	0,974836	0,964303	
24	0,965926	0,982668	0,974261	54	0,954660	$0,\!975671$	0,965108	
25	0,954070	0,970728	0,962363	55	0,953959	0,974994	0,964419	
26	$0,\!950663$	0,967959	0,959272	56	0,954261	$0,\!975341$	0,964744	
27	0,951421	0,969074	0,960207	57	0,954144	0,975256	0,964642	
28	$0,\!952251$	0,970226	0,961196	58	0,954073	$0,\!975218$	0,964588	
29	0,951436	0,969671	0,960510	59	0,954700	0,975914	0,965249	
30	0,954050	0,972585	0,963273	60	0,956677	0,977942	0,967251	

Taula C.19: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un dodecàgon regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!954756$	$0,\!975987$	0,965313	83	0,954817	$0,\!976475$	0,965585
62	0,954180	0,975447	0,964755	84	0,955821	$0,\!977504$	0,966602
63	0,954286	0,975581	0,964875	85	0,954837	$0,\!976502$	0,965609
64	0,954418	0,975741	0,965021	86	0,954540	0,976216	0,965317
65	$0,\!954235$	$0,\!975577$	0,964847	87	0,954592	0,976279	0,965375
66	$0,\!954749$	$0,\!976126$	0,965378	88	0,954659	$0,\!976357$	0,965447
67	$0,\!954275$	$0,\!975664$	0,964910	89	0,954559	$0,\!976264$	0,965350
68	$0,\!954476$	$0,\!975890$	0,965124	90	0,947038	$0,\!976553$	0,961682
69	0,954393	0,975825	0,965050	91	0,954575	0,976298	0,965375
70	0,954342	0,975792	0,965007	92	0,954682	0,976416	0,965488
71	0,954774	$0,\!976265$	0,965460	93	0,954634	$0,\!976375$	0,965444
72	$0,\!956143$	$0,\!977669$	0,966846	94	0,954604	$0,\!976352$	0,965416
73	$0,\!954806$	$0,\!976307$	0,965497	95	0,954845	$0,\!976611$	0,965666
74	$0,\!954404$	$0,\!975924$	0,965104	96	0,955612	$0,\!977398$	0,966443
75	0,954476	0,976013	0,965184	97	0,954858	0,976629	0,965682
76	0,954567	0,976121	0,965284	98	0,954630	0,976407	0,965457
77	0,954434	0,976000	0,965157	99	0,954669	0,976454	0,965500
78	0,954800	$0,\!976388$	0,965534	100	0,954720	0,976513	0,965555

Taula C.20: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un dodecàgon regular.



Figura C.21: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a un dodecàgon regular.
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,602118	0,414075	$0,\!499322$	33	$0,\!986771$	0,988993	0,987882	
4	0,781003	$0,\!636568$	0,705097	34	0,986729	0,989120	0,987924	
5	0,869387	0,764853	0,815447	35	0,987165	0,989715	0,988439	
6	0,901330	0,826504	0,863106	36	0,987034	0,989730	0,988381	
7	0,923431	0,867658	0,895110	37	0,987570	0,990413	0,988991	
8	0,942056	0,899622	0,920594	38	0,987692	0,990637	0,989163	
9	0,949553	0,916423	0,932841	39	0,987400	0,990469	0,988933	
10	0,960523	0,934243	0,947292	40	0,987714	0,990890	0,989300	
11	0,962884	0,941938	0,952353	41	0,987597	0,990870	0,989232	
12	0,970728	0,954070	0,962363	42	0,987823	0,991187	0,989504	
13	0,974086	0,960031	0,967033	43	0,987781	0,991232	0,989505	
14	0,973112	0,961939	0,967509	44	0,987910	0,991440	0,989674	
15	0,976708	0,967592	0,972139	45	0,988090	0,991695	0,989891	
16	0,976942	0,969544	0,973236	46	0,988006	0,991679	0,989841	
17	0,979227	0,973209	0,976213	47	0,988058	0,991797	0,989926	
18	0,979648	0,974860	0,977251	48	0,988113	0,991913	0,990011	
19	0,980940	0,977156	0,979046	49	0,989131	0,993032	0,991080	
20	0,982323	0,979415	0,980868	50	0,992115	0,996042	0,994076	
21	0,982300	0,980140	0,981220	51	0,989236	0,993163	0,991197	
22	0,982893	0,981385	0,982139	52	0,988319	0,992329	0,990322	
23	0,983433	0,982492	0,982962	53	0,988368	0,992423	0,990393	
24	0,987769	0,987653	0,987711	54	0,988417	0,992516	0,990464	
25	1,000000	1,000000	1,000000	55	0,988558	0,992698	0,990626	
26	0,988606	0,988700	0,988653	56	0,988520	0,992698	0,990607	
27	0,985100	0,985841	0,985471	57	0,988524	0,992738	0,990629	
28	0,985425	0,986479	0,985952	58	0,988622	0,992871	0,990744	
29	0,985729	0,987064	0,986396	59	0,988584	0,992865	0,990722	
30	0,986319	0,987908	0,987113	60	0,988710	0,993022	0,990864	

Taula C.22: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un polígon de vint-i-cinc costats regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!988645$	$0,\!992987$	0,990814	83	0,989074	$0,\!993822$	$0,\!991445$
62	$0,\!988818$	$0,\!993192$	0,991003	84	$0,\!989051$	$0,\!993810$	$0,\!991428$
63	$0,\!988845$	$0,\!993240$	0,991040	85	$0,\!989109$	$0,\!993879$	0,991491
64	$0,\!988724$	$0,\!993147$	0,990933	86	0,989073	$0,\!993853$	0,991460
65	$0,\!988827$	$0,\!993275$	0,991049	87	0,989157	0,993949	0,991550
66	$0,\!988769$	$0,\!993240$	0,991002	88	0,989167	$0,\!993967$	0,991564
67	$0,\!988844$	$0,\!993337$	0,991088	89	0,989101	$0,\!993911$	0,991503
68	$0,\!988816$	$0,\!993331$	0,991071	90	$0,\!989152$	$0,\!993971$	$0,\!991559$
69	$0,\!988857$	$0,\!993392$	0,991122	91	0,989118	$0,\!993946$	0,991529
70	0,988921	0,993476	0,991196	92	0,989155	0,993991	0,991570
71	$0,\!988876$	$0,\!993449$	0,991160	93	0,989137	0,993982	$0,\!991557$
72	$0,\!988889$	$0,\!993480$	0,991182	94	0,989156	0,994009	0,991580
73	0,988903	0,993512	0,991205	95	0,989188	0,994049	0,991616
74	$0,\!989347$	0,993986	0,991664	96	0,989161	0,994030	0,991592
75	0,990664	0,995313	0,992986	97	0,989166	0,994042	0,991601
76	0,989378	0,994025	0,991699	98	0,989172	0,994054	0,991610
77	0,988964	0,993635	0,991297	99	0,989419	0,994315	0,991864
78	0,988980	0,993665	0,991320	100	0,990157	0,995058	0,992604

Taula C.23: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un polígon de vint-i-cinc costats regular.



Figura C.24: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a un polígon de vint-i-cinc costats regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	$0,\!603981$	0,413606	$0,\!499810$	33	0,994604	0,992914	0,993758	
4	0,784106	$0,\!636410$	0,706408	34	0,994544	0,993023	0,993783	
5	0,865946	0,758822	0,810617	35	0,994770	0,993408	0,994089	
6	$0,\!904912$	$0,\!826267$	0,864696	36	0,994849	$0,\!993633$	0,994241	
7	0,930480	0,870845	0,900168	37	0,994981	0,993899	0,994440	
8	0,945802	0,899353	0,922285	38	0,995108	0,994150	0,994629	
9	0,956802	0,919783	0,938110	39	0,995235	0,994392	0,994813	
10	0,968157	0,937956	0,952937	40	0,995564	0,994827	0,995196	
11	$0,\!970378$	0,945528	0,957872	41	0,995432	0,994793	0,995112	
12	0,974586	0,953777	0,964126	42	0,995518	0,994972	0,995245	
13	0,977948	0,960321	0,969094	43	0,995624	0,995163	0,995394	
14	0,980652	0,965572	0,973083	44	0,995683	0,995301	0,995492	
15	0,983175	0,970160	0,976646	45	0,995798	0,995490	0,995644	
16	0,984581	0,973273	0,978910	46	0,995826	0,995589	0,995708	
17	$0,\!986975$	0,977039	0,981995	47	0,995891	0,995718	0,995804	
18	0,987270	0,978574	0,982912	48	0,995952	0,995841	0,995897	
19	0,988298	0,980614	0,984449	49	0,996988	0,996975	0,996982	
20	0,990131	0,983307	0,986713	50	1,000000	1,000000	1,000000	
21	0,989948	0,983879	0,986909	51	0,997093	0,997106	0,997100	
22	0,990614	0,985195	0,987900	52	0,996162	0,996261	0,996212	
23	0,991195	0,986343	0,988766	53	0,996207	0,996351	0,996279	
24	0,991694	0,987342	0,989516	54	0,996250	0,996437	0,996344	
25	0,996042	0,992115	0,994076	55	0,996318	0,996545	0,996432	
26	0,992535	0,989015	0,990773	56	0,996329	0,996595	0,996462	
27	0,992891	0,989720	0,991304	57	0,996377	0,996679	0,996528	
28	0,993201	0,990343	0,991771	58	0,996399	0,996736	0,996568	
29	0,993481	0,990904	0,992192	59	0,996434	0,996804	0,996619	
30	0,994158	0,991834	0,992995	60	0,996568	0,996969	0,996768	

Taula C.25: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un polígon de cinquanta costats regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!996497$	$0,\!996928$	$0,\!996713$	83	0,996934	0,997770	0,997352
62	$0,\!996521$	$0,\!996979$	0,996750	84	0,996907	0,997755	0,997331
63	$0,\!996546$	0,997032	0,996789	85	0,996930	0,997788	0,997359
64	$0,\!996573$	0,997084	0,996828	86	0,996929	0,997798	0,997363
65	$0,\!996617$	0,997152	0,996885	87	0,996938	0,997817	0,997378
66	0,996620	0,997179	0,996900	88	0,996948	0,997837	0,997393
67	0,996701	0,997282	0,996992	89	0,996960	0,997859	0,997409
68	$0,\!996664$	$0,\!997267$	$0,\!996965$	90	0,997014	0,997921	0,997467
69	0,996683	0,997307	0,996995	91	0,996977	0,997893	0,997435
70	$0,\!996781$	0,997424	0,997102	92	0,996984	0,997909	0,997447
71	$0,\!996722$	0,997383	0,997052	93	0,996997	0,997930	0,997464
72	$0,\!996740$	0,997420	0,997080	94	0,997001	0,997942	0,997471
73	$0,\!996758$	0,997455	0,997106	95	0,997017	$0,\!997967$	0,997492
74	0,996774	0,997487	0,997130	96	0,997016	0,997973	0,997494
75	0,997224	0,997954	0,997589	97	0,997023	0,997987	0,997505
76	0,996805	0,997549	0,997177	98	0,997030	0,998001	0,997516
77	0,996820	0,997579	0,997199	99	0,997258	0,998265	0,997762
78	0,996833	0,997607	0,997220	100	0,998027	0,999012	0,998519

Taula C.26: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a un polígon de cinquanta costats regular.





	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	$0,\!604445$	0,413528	$0,\!499955$	33	0,996568	0,993893	0,995230
4	0,785657	$0,\!637039$	0,707456	34	0,996500	0,993994	0,995246
5	0,865091	0,757325	0,809416	35	$0,\!996677$	0,994330	0,995503
6	0,906402	0,826812	0,865693	36	0,996816	0,994616	0,995715
7	0,931386	0,870794	0,900581	37	0,996943	0,994877	0,995909
8	0,947670	0,900242	0,923652	38	0,997067	0,995125	0,996095
9	0,958666	0,920665	0,939473	39	0,997182	0,995354	0,996268
10	0,967201	0,936105	0,951526	40	0,997533	0,995811	0,996671
11	0,972269	0,946436	0,959266	41	0,997387	0,995765	0,996576
12	0,976513	0,954720	0,965555	42	0,997480	0,995949	0,996714
13	0,979844	0,961234	0,970494	43	0,997591	0,996145	0,996868
14	0,982531	0,966468	0,974466	44	0,997652	0,996285	0,996968
15	0,984795	0,970799	0,977772	45	0,997718	0,996438	0,997078
16	0,986527	0,974235	0,980362	46	0,997790	0,996567	0,997178
17	0,987950	0,977076	0,982498	47	0,997858	0,996700	0,997279
18	0,989186	0,979505	0,984334	48	0,997922	0,996825	0,997373
19	0,990236	0,981568	0,985892	49	0,997974	0,996935	0,997454
20	0,992088	0,984279	0,988176	50	0,999012	0,998027	0,998519
21	0,991894	0,984840	0,988361	51	0,998079	0,997145	0,997612
22	0,992548	0,986144	0,989341	52	0,998132	0,997246	0,997689
23	0,993149	0,987313	0,990226	53	0,998175	0,997334	0,997755
24	0,993655	0,988318	0,990983	54	0,998216	0,997418	0,997817
25	0,995058	0,990157	0,992604	55	0,998263	0,997506	0,997885
26	0,994480	0,989975	0,992225	56	0,998299	0,997580	0,997939
27	0,994833	0,990677	0,992753	57	0,998346	0,997663	0,998005
28	$0,\!995165$	0,991322	0,993242	58	0,998366	0,997718	0,998042
29	$0,99\overline{5434}$	0,991873	$0,\!99\overline{3652}$	59	0,998398	0,997783	0,998091
30	0,995796	0,992487	0,994140	60	0,998538	0,997954	0,998246

Taula C.28: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un polígon de cent costats regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!998459$	$0,\!997905$	0,998182	83	$0,\!998865$	$0,\!998717$	$0,\!998791$
62	$0,\!998488$	$0,\!997962$	$0,\!998225$	84	$0,\!998878$	$0,\!998741$	$0,\!998810$
63	$0,\!998515$	$0,\!998016$	0,998265	85	$0,\!998887$	$0,\!998764$	$0,\!998826$
64	$0,\!998543$	$0,\!998070$	0,998306	86	0,998898	0,998782	0,998840
65	$0,\!998570$	$0,\!998121$	0,998345	87	0,998908	$0,\!998803$	0,998856
66	$0,\!998588$	$0,\!998163$	0,998375	88	0,998920	0,998824	0,998872
67	$0,\!998671$	$0,\!998268$	0,998469	89	0,998931	$0,\!998845$	0,998888
68	0,998634	0,998253	0,998443	90	0,998948	0,998871	0,998910
69	$0,\!998652$	0,998291	0,998472	91	0,998948	0,998879	0,998914
70	$0,\!998691$	0,998349	0,998520	92	0,998956	0,998896	0,998926
71	$0,\!998691$	$0,\!998367$	0,998529	93	0,998962	0,998911	0,998937
72	0,998711	0,998406	0,998558	94	0,998970	0,998927	0,998949
73	$0,\!998726$	$0,\!998438$	0,998582	95	0,998981	$0,\!998945$	0,998963
74	0,998742	0,998471	0,998607	96	0,998987	0,998959	0,998973
75	0,998867	0,998612	0,998739	97	0,998993	0,998972	0,998983
76	0,998776	0,998535	0,998655	98	0,999000	0,998987	0,998993
77	0,998790	0,998565	0,998677	99	0,999213	0,999210	0,999212
78	0,998802	0,998591	0,998697	100	1,000000	1,000000	1,000000

Taula C.29: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a un polígon de cent costats regular.



Figura C.30: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a un polígon de cent costats regular.

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	$0,\!996400$	$0,\!886792$	0,940000	33	$0,\!436678$	$0,\!608624$	0,515532
4	$0,\!484556$	0,499220	0,491833	34	$0,\!437651$	$0,\!605439$	0,514753
5	$0,\!437876$	0,540487	$0,\!486483$	35	0,437186	$0,\!605515$	0,514512
6	$0,\!498877$	$0,\!669075$	0,577742	36	$0,\!436775$	$0,\!608329$	0,515464
7	$0,\!445546$	0,574032	0,505725	37	$0,\!437649$	$0,\!605649$	0,514841
8	$0,\!441275$	0,581903	0,506734	38	$0,\!436999$	$0,\!605708$	0,514484
9	$0,\!457572$	0,632693	0,538055	39	0,436940	0,608100	0,515464
10	0,440140	0,591005	0,510025	40	0,437651	0,605813	0,514912
11	0,441015	0,593780	0,511728	41	0,436875	0,605860	0,514476
12	0,445669	0,621038	0,526096	42	0,437070	0,607918	0,515464
13	0,438719	0,597509	0,511995	43	0,437366	0,605944	0,514800
14	0,440853	0,598797	0,513791	44	0,436795	0,605982	0,514480
15	0,440863	0,615815	0,521047	45	0,437176	0,607772	0,515464
16	0,438160	0,600681	0,513025	46	0,437117	0,606050	0,514699
17	0,440645	0,601382	0,514777	47	0,436744	0,606081	0,514492
18	0,438583	0,613021	0,518518	48	0,437262	0,607652	0,515464
19	0,437905	0,602464	0,513636	49	0,436942	0,606137	0,514632
20	0,440404	0,602887	0,515280	50	0,436722	0,606163	0,514514
21	0,437398	0,611352	0,517111	51	0,437333	$0,\!607553$	0,515464
22	0,437777	0,603566	0,514030	52	0,436836	0,606210	0,514601
23	$0,\!439652$	0,603840	0,515247	53	0,436721	0,606231	0,514542
24	0,436829	0,610274	0,516319	54	0,437393	0,607470	0,515464
25	0,437711	0,604294	0,514301	55	0,436773	0,606271	0,514590
26	0,438571	0,604482	0,514886	56	0,436729	0,606289	0,514572
27	0,436674	0,609537	0,515916	57	0,437444	0,607399	0,515464
28	$0,\!437676$	0,604800	0,514496	58	0,436740	0,606322	0,514592
29	$0,\!437899$	0,604935	0,514685	59	0,436720	0,606338	0,514587
30	0,436643	0,609012	0,515675	60	0,437381	0,607339	0,515401

Taula C.31: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (1).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!436728$	$0,\!606367$	0,514604	83	$0,\!436829$	$0,\!606559$	0,514745	
62	$0,\!436724$	$0,\!606380$	0,514607	84	$0,\!436643$	$0,\!607067$	0,514851	
63	$0,\!437205$	$0,\!607288$	0,515276	85	0,436740	$0,\!606569$	0,514697	
64	$0,\!436704$	$0,\!606405$	0,514606	86	$0,\!436786$	$0,\!606574$	0,514726	
65	$0,\!436740$	$0,\!606417$	0,514632	87	0,436636	0,607048	0,514839	
66	$0,\!437063$	$0,\!607243$	0,515173	88	$0,\!436755$	$0,\!606584$	0,514712	
67	$0,\!436691$	$0,\!606438$	0,514612	89	$0,\!436751$	$0,\!606588$	0,514711	
68	0,436766	0,606448	0,514661	90	0,436636	0,607031	0,514832	
69	0,436948	0,607204	0,515089	91	0,436769	0,606597	0,514726	
70	0,436691	0,606467	0,514625	92	0,436723	0,606601	0,514700	
71	0,436803	0,606476	0,514694	93	0,436644	0,607015	0,514830	
72	$0,\!436855$	0,607170	0,515019	94	0,436784	0,606608	0,514740	
73	$0,\!436696$	$0,\!606493$	0,514639	95	0,436701	0,606612	0,514692	
74	$0,\!436844$	$0,\!606501$	0,514729	96	$0,\!436667$	0,607001	0,514837	
75	0,436779	0,607139	0,514962	97	0,436800	0,606619	0,514754	
76	0,436705	0,606515	0,514653	98	0,436683	0,606623	0,514686	
77	0,436883	0,606522	0,514761	99	0,436695	0,606988	0,514848	
78	0,436717	0,607113	0,514914	100	0,436782	0,606629	0,514747	

Taula C.32: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (1).



Figura C.33: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (1)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,999996	0,996008	0,998000	33	0,416699	0,606435	0,502694	
4	0,464782	0,497425	0,480826	34	0,414606	0,603262	0,500116	
5	0,413034	0,538543	0,471632	35	0,414538	0,603338	0,500107	
6	0,499999	0,666669	$0,\!577351$	36	0,416308	$0,\!606142$	0,502336	
7	$0,\!425107$	0,571968	0,493100	37	0,414558	$0,\!603471$	0,500174	
8	0,416056	0,579811	0,491156	38	0,414508	0,603530	0,500168	
9	0,449429	0,630417	0,532286	39	0,416005	0,605913	0,502058	
10	0,418817	0,588880	0,496622	40	0,414521	0,603634	0,500219	
11	0,415702	0,591645	0,495932	41	0,414484	0,603681	0,500216	
12	0,433475	0,618805	0,517916	42	0,415765	0,605732	0,501839	
13	0,416750	0,595360	0,498113	43	0,414493	0,603765	0,500256	
14	0,415330	0,596644	0,497799	44	0,414464	0,603802	0,500255	
15	0,426378	0,613600	0,511493	45	0,415572	0,605586	0,501662	
16	0,415831	0,598521	0,498882	46	0,414469	0,603871	0,500286	
17	0,415073	0,599219	0,498718	47	0,414448	0,603901	0,500286	
18	0,422600	0,610817	0,508066	48	0,415414	0,605467	0,501517	
19	0,415346	0,600298	0,499331	49	0,414451	0,603957	0,500310	
20	0,414898	0,600719	0,499237	50	0,414435	0,603983	0,500311	
21	0,420350	0,609153	0,506022	51	0,415284	0,605368	0,501398	
22	0,415060	0,601395	0,499615	52	0,414435	0,604030	0,500331	
23	0,414777	0,601669	0,499558	53	0,414423	0,604051	0,500333	
24	0,418903	0,608079	0,504704	54	0,415176	0,605285	0,501298	
25	0,414878	0,602121	0,499807	55	0,414422	0,604091	0,500348	
26	0,414690	0,602308	0,499771	56	0,414413	0,604109	0,500351	
27	0,417917	0,607346	0,503806	57	0,415084	0,605215	0,501214	
28	0,414756	0,602625	0,499942	58	0,414411	0,604142	0,500363	
29	0,414625	0,602759	0,499919	59	0,414405	0,604158	0,500366	
30	0,417216	0,606822	0,503166	60	0,415006	0,605155	0,501142	

Taula C.34: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (2).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!414402$	$0,\!604186$	0,500376	83	$0,\!414367$	$0,\!604378$	0,500434	
62	$0,\!414398$	0,604200	0,500379	84	0,414656	0,604884	0,500818	
63	0,414939	0,605104	0,501080	85	0,414361	0,604388	0,500435	
64	0,414394	0,604224	0,500387	86	0,414364	0,604393	0,500438	
65	0,414392	0,604236	0,500390	87	0,414632	0,604865	0,500796	
66	0,414881	0,605059	0,501027	88	0,414359	0,604402	0,500439	
67	0,414388	0,604257	0,500397	89	0,414361	0,604407	0,500443	
68	0,414386	0,604268	0,500400	90	0,414610	0,604848	0,500775	
69	0,414831	0,605020	0,500980	91	0,414356	0,604415	0,500443	
70	0,414382	0,604286	0,500405	92	0,414359	0,604419	0,500447	
71	0,414381	0,604295	0,500408	93	0,414590	0,604832	0,500757	
72	0,414787	0,604986	0,500939	94	0,414354	0,604427	0,500446	
73	0,414377	0,604312	0,500412	95	0,414357	0,604431	0,500450	
74	$0,\!414377$	0,604320	0,500416	96	0,414572	0,604818	0,500740	
75	0,414748	0,604956	0,500904	97	0,414352	0,604438	0,500450	
76	0,414372	0,604334	0,500419	98	0,414355	0,604441	0,500453	
77	0,414373	0,604341	0,500423	99	0,414556	0,604805	0,500725	
78	0,414714	0,604929	0,500872	100	0,414350	0,604447	0,500452	

Taula C.35: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (2).



Figura C.36: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (2)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	1,000000	1,000000	1,000000	33	0,416006	0,606433	0,502274	
4	0,464102	0,497423	0,480473	34	0,413796	0,603260	0,499626	
5	0,412209	0,538541	$0,\!471160$	35	0,413709	$0,\!603335$	$0,\!499605$	
6	0,500000	$0,\!666667$	0,577350	36	0,415604	$0,\!606139$	0,501910	
7	$0,\!424394$	0,571966	$0,\!492685$	37	0,413747	$0,\!603468$	$0,\!499683$	
8	$0,\!415225$	0,579808	0,490664	38	0,413679	$0,\!603527$	$0,\!499667$	
9	$0,\!449099$	$0,\!630415$	0,532089	39	0,415291	$0,\!605911$	0,501627	
10	0,418061	0,588878	$0,\!496172$	40	0,413709	$0,\!603632$	$0,\!499728$	
11	0,414871	0,591643	0,495435	41	0,413655	0,603679	0,499715	
12	0,433013	0,618802	0,517638	42	0,415043	0,605730	0,501402	
13	0,415973	0,595358	0,497647	43	0,413679	0,603762	0,499764	
14	0,414499	0,596642	0,497300	44	0,413636	0,603800	0,499753	
15	0,425841	0,613598	0,511170	45	0,414843	0,605584	0,501221	
16	0,415043	0,598519	0,498408	46	0,413655	0,603868	0,499793	
17	0,414243	0,599217	0,498218	47	0,413619	0,603899	0,499784	
18	0,422015	0,610815	0,507713	48	0,414680	0,605465	0,501073	
19	0,414551	0,600295	0,498852	49	0,413635	0,603955	0,499817	
20	0,414069	0,600717	0,498736	50	0,413606	0,603981	0,499810	
21	0,419731	0,609151	0,505648	51	0,414545	0,605366	0,500950	
22	0,414260	0,601393	0,499132	52	0,413619	0,604027	0,499837	
23	0,413948	0,601666	0,499057	53	0,413594	0,604049	0,499831	
24	0,418258	0,608077	0,504315	54	0,414431	0,605283	0,500847	
25	0,414075	0,602118	0,499322	55	0,413605	0,604088	0,499854	
26	0,413861	0,602306	0,499270	56	0,413585	0,604106	0,499849	
27	0,417253	0,607343	0,503404	57	0,414335	0,605213	0,500760	
28	0,413949	0,602622	0,499455	58	0,413594	0,604140	0,499869	
29	0,413796	0,602757	0,499418	59	0,413576	0,604155	0,499864	
30	0,416535	0,606820	0,502754	60	0,414254	0,605153	0,500686	

Taula C.37: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (i 3).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!413584$	$0,\!604184$	$0,\!499881$	83	$0,\!413538$	$0,\!604375$	0,499932	
62	$0,\!413569$	$0,\!604197$	$0,\!499877$	84	$0,\!413883$	$0,\!604882$	0,500350	
63	$0,\!414183$	$0,\!605101$	0,500622	85	$0,\!413541$	$0,\!604386$	$0,\!499938$	
64	$0,\!413576$	$0,\!604222$	$0,\!499892$	86	$0,\!413535$	$0,\!604391$	$0,\!499937$	
65	$0,\!413563$	$0,\!604233$	$0,\!499889$	87	$0,\!413856$	$0,\!604863$	0,500326	
66	0,414122	$0,\!605057$	0,500567	88	$0,\!413538$	0,604400	0,499942	
67	$0,\!413569$	$0,\!604255$	$0,\!499901$	89	$0,\!413533$	0,604404	0,499941	
68	$0,\!413557$	$0,\!604265$	$0,\!499898$	90	$0,\!413833$	$0,\!604845$	0,500305	
69	$0,\!414069$	$0,\!605018$	0,500519	91	$0,\!413535$	$0,\!604413$	0,499946	
70	0,413563	0,604284	0,499909	92	0,413531	0,604417	0,499945	
71	0,413553	0,604293	0,499907	93	0,413812	0,604830	0,500285	
72	0,414022	0,604984	0,500476	94	0,413533	0,604425	0,499949	
73	$0,\!413557$	$0,\!604309$	$0,\!499916$	95	$0,\!413528$	$0,\!604428$	0,499948	
74	$0,\!413548$	$0,\!604317$	0,499914	96	$0,\!413792$	$0,\!604816$	0,500268	
75	0,413981	0,604954	0,500439	97	0,413530	0,604435	0,499952	
76	0,413552	0,604332	0,499923	98	0,413527	0,604439	0,499951	
77	0,413544	0,604339	0,499921	99	0,413774	0,604803	0,500252	
78	0,413944	$0,\!604927$	0,500406	100	$0,\!413528$	$0,\!604445$	$0,\!499955$	

Taula C.38: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (i 3).



Figura C.39: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (quadrilàters) (i 3)

🖶 mu5 🔶 mu6 🗸 mu7

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,999200	0,961169	0,980000	33	0,430972	0,606918	0,511434	
4	0,477614	0,497821	0,487613	34	0,430132	0,603743	0,509597	
5	0,428862	0,538972	$0,\!480775$	35	$0,\!430423$	$0,\!603818$	0,509801	
6	0,509744	0,667200	$0,\!583182$	36	$0,\!430700$	$0,\!606625$	0,511149	
7	0,438740	0,572424	0,501144	37	0,430128	$0,\!603952$	0,509683	
8	0,432000	0,580273	0,500677	38	0,430392	0,604010	0,509864	
9	0,460689	0,630920	0,539127	39	0,430502	0,606396	0,510935	
10	0,433181	0,589349	0,505267	40	0,430130	0,604115	0,509753	
11	0,431632	0,592116	0,505546	41	0,430367	0,604162	0,509913	
12	0,445617	0,619298	0,525328	42	0,430353	0,606215	0,510770	
13	0,431490	0,595835	0,507047	43	0,430136	0,604246	0,509812	
14	0,431245	0,597119	0,507449	44	0,430346	0,604283	0,509952	
15	0,439118	0,614089	0,519286	45	0,430239	0,606069	0,510641	
16	0,430805	0,598998	0,507988	46	0,430041	0,604352	0,509800	
17	0,430978	0,599697	0,508386	47	0,430330	0,604382	0,509984	
18	0,435771	0,611304	0,516128	48	0,430152	0,605949	0,510539	
19	0,430481	0,600776	0,508549	49	0,429964	0,604439	0,509791	
20	0,430797	0,601198	0,508915	50	0,430316	0,604464	0,510010	
21	0,433848	0,609639	0,514287	51	0,430084	0,605850	0,510457	
22	0,430313	0,601874	0,508915	52	0,429926	0,604511	0,509799	
23	0,430671	0,602148	0,509242	53	0,430304	0,604532	0,510032	
24	0,432657	0,608564	0,513127	54	0,430031	0,605767	0,510391	
25	0,430222	0,602600	0,509168	55	0,429933	0,604572	0,509829	
26	0,430580	0,602788	0,509459	56	0,430294	0,604590	0,510050	
27	0,431878	0,607829	0,512355	57	0,429990	0,605697	0,510337	
28	0,430171	0,603105	0,509351	58	0,429941	0,604623	0,509855	
29	0,430513	0,603239	0,509610	59	0,430285	0,604639	0,510066	
30	0,431346	0,607305	0,511819	60	0,429958	0,605637	0,510293	

Taula C.40: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (1).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!429949$	$0,\!604668$	0,509878	83	0,430084	$0,\!604859$	0,510039	
62	$0,\!430277$	$0,\!604681$	0,510079	84	$0,\!430001$	$0,\!605366$	0,510204	
63	$0,\!429932$	$0,\!605586$	0,510256	85	0,430000	0,604870	0,509994	
64	$0,\!429956$	0,604706	0,509899	86	$0,\!430050$	0,604874	0,510025	
65	$0,\!430271$	0,604717	0,510090	87	0,430015	$0,\!605347$	0,510204	
66	0,429913	0,605541	0,510225	88	0,430005	0,604884	0,510003	
67	$0,\!429963$	0,604739	0,509917	89	0,430020	0,604888	0,510014	
68	0,430265	0,604749	0,510100	90	0,430011	0,605330	0,510194	
69	0,429905	0,605502	0,510204	91	0,430010	0,604897	0,510012	
70	0,429970	0,604768	0,509933	92	0,429995	0,604901	0,510004	
71	0,430260	0,604777	0,510109	93	0,429981	0,605314	0,510170	
72	0,429929	0,605468	0,510204	94	0,430015	0,604909	0,510019	
73	$0,\!429976$	0,604793	0,509948	95	0,429973	0,604912	0,509996	
74	0,430224	0,604801	0,510098	96	$0,\!429957$	0,605300	0,510150	
75	0,429950	0,605438	0,510204	97	0,430019	0,604919	0,510027	
76	0,429983	0,604816	0,509961	98	0,429954	0,604923	0,509989	
77	0,430170	0,604823	0,510075	99	0,429936	0,605287	0,510132	
78	0,429969	0,605411	0,510204	100	0,430024	0,604929	0,510033	

Taula C.41: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (1).



Figura C.42: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (1).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	$0,\!996400$	$0,\!886792$	0,940000	33	$0,\!436678$	$0,\!608624$	0,515532	
4	$0,\!484556$	0,499220	0,491833	34	$0,\!437651$	$0,\!605439$	0,514753	
5	0,437876	0,540487	0,486483	35	0,437186	$0,\!605515$	0,514512	
6	$0,\!498877$	0,669075	0,577742	36	0,436775	0,608329	0,515464	
7	0,445546	0,574032	0,505725	37	0,437649	0,605649	0,514841	
8	0,441275	0,581903	0,506734	38	0,436999	0,605708	0,514484	
9	0,457572	0,632693	0,538055	39	0,436940	0,608100	0,515464	
10	0,440140	0,591005	0,510025	40	0,437651	0,605813	0,514912	
11	0,441015	0,593780	0,511728	41	0,436875	0,605860	0,514476	
12	0,445669	0,621038	0,526096	42	0,437070	0,607918	0,515464	
13	0,438719	0,597509	0,511995	43	0,437366	0,605944	0,514800	
14	0,440853	0,598797	0,513791	44	0,436795	0,605982	0,514480	
15	0,440863	0,615815	0,521047	45	0,437176	0,607772	0,515464	
16	0,438160	0,600681	0,513025	46	0,437117	0,606050	0,514699	
17	0,440645	0,601382	0,514777	47	0,436744	0,606081	0,514492	
18	0,438583	0,613021	0,518518	48	0,437262	0,607652	0,515464	
19	0,437905	0,602464	0,513636	49	0,436942	0,606137	0,514632	
20	0,440404	0,602887	0,515280	50	0,436722	0,606163	0,514514	
21	0,437398	0,611352	0,517111	51	0,437333	0,607553	0,515464	
22	0,437777	0,603566	0,514030	52	0,436836	0,606210	0,514601	
23	0,439652	0,603840	0,515247	53	0,436721	0,606231	0,514542	
24	0,436829	0,610274	0,516319	54	0,437393	0,607470	0,515464	
25	0,437711	0,604294	0,514301	55	0,436773	0,606271	0,514590	
26	0,438571	0,604482	0,514886	56	0,436729	0,606289	0,514572	
27	$0,\!436674$	0,609537	0,515916	57	0,437444	$0,\!607399$	0,515464	
28	$0,\!437676$	0,604800	0,514496	58	0,436740	0,606322	0,514592	
29	$0,\!437899$	0,604935	0,514685	59	0,436720	0,606338	0,514587	
30	0,436643	0,609012	0,515675	60	0,437381	0,607339	0,515401	

Taula C.43: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (2).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!436728$	$0,\!606367$	0,514604	83	$0,\!436829$	$0,\!606559$	0,514745	
62	$0,\!436724$	$0,\!606380$	0,514607	84	$0,\!436643$	$0,\!607067$	0,514851	
63	$0,\!437205$	$0,\!607288$	0,515276	85	$0,\!436740$	$0,\!606569$	0,514697	
64	$0,\!436704$	$0,\!606405$	0,514606	86	$0,\!436786$	$0,\!606574$	0,514726	
65	$0,\!436740$	$0,\!606417$	0,514632	87	0,436636	0,607048	0,514839	
66	$0,\!437063$	$0,\!607243$	0,515173	88	$0,\!436755$	$0,\!606584$	0,514712	
67	$0,\!436691$	$0,\!606438$	0,514612	89	$0,\!436751$	$0,\!606588$	0,514711	
68	$0,\!436766$	0,606448	0,514661	90	0,436636	0,607031	0,514832	
69	0,436948	0,607204	0,515089	91	0,436769	0,606597	0,514726	
70	0,436691	0,606467	0,514625	92	0,436723	0,606601	0,514700	
71	0,436803	0,606476	0,514694	93	0,436644	0,607015	0,514830	
72	$0,\!436855$	$0,\!607170$	0,515019	94	0,436784	0,606608	0,514740	
73	0,436696	0,606493	0,514639	95	0,436701	0,606612	0,514692	
74	0,436844	0,606501	0,514729	96	0,436667	0,607001	0,514837	
75	$0,\!436779$	0,607139	0,514962	97	0,436800	0,606619	0,514754	
76	$0,\!436705$	0,606515	0,514653	98	0,436683	0,606623	0,514686	
77	0,436883	0,606522	0,514761	99	0,436695	0,606988	0,514848	
78	0,436717	0,607113	0,514914	100	0,436782	0,606629	0,514747	

Taula C.44: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (2).



Figura C.45: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (2)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	1,000000	1,000000	1,000000	33	0,416006	0,606433	0,502274	
4	0,464102	$0,\!497423$	$0,\!480473$	34	$0,\!413796$	0,603260	0,499626	
5	0,412209	0,538541	$0,\!471160$	35	$0,\!413709$	$0,\!603335$	$0,\!499605$	
6	0,500000	$0,\!666667$	0,577350	36	0,415604	0,606139	0,501910	
7	0,424394	0,571966	$0,\!492685$	37	0,413747	0,603468	0,499683	
8	0,415225	0,579808	0,490664	38	0,413679	0,603527	0,499667	
9	0,449099	0,630415	0,532089	39	0,415291	0,605911	0,501627	
10	0,418061	0,588878	0,496172	40	0,413709	0,603632	0,499728	
11	0,414871	0,591643	0,495435	41	0,413655	0,603679	0,499715	
12	0,433013	0,618802	0,517638	42	0,415043	0,605730	0,501402	
13	0,415973	0,595358	0,497647	43	0,413679	0,603762	0,499764	
14	0,414499	0,596642	0,497300	44	0,413636	0,603800	0,499753	
15	0,425841	0,613598	0,511170	45	0,414843	0,605584	0,501221	
16	0,415043	0,598519	0,498408	46	0,413655	0,603868	0,499793	
17	0,414243	0,599217	0,498218	47	0,413619	0,603899	0,499784	
18	0,422015	0,610815	0,507713	48	0,414680	0,605465	0,501073	
19	0,414551	0,600295	0,498852	49	0,413635	0,603955	0,499817	
20	0,414069	0,600717	$0,\!498736$	50	0,413606	0,603981	0,499810	
21	0,419731	0,609151	0,505648	51	0,414545	0,605366	0,500950	
22	0,414260	0,601393	0,499132	52	0,413619	0,604027	0,499837	
23	0,413948	0,601666	0,499057	53	0,413594	0,604049	0,499831	
24	0,418258	0,608077	0,504315	54	0,414431	0,605283	0,500847	
25	0,414075	0,602118	0,499322	55	0,413605	0,604088	0,499854	
26	0,413861	0,602306	0,499270	56	0,413585	0,604106	0,499849	
27	0,417253	0,607343	0,503404	57	0,414335	0,605213	0,500760	
28	0,413949	0,602622	0,499455	58	0,413594	0,604140	0,499869	
29	0,413796	0,602757	0,499418	59	0,413576	0,604155	0,499864	
30	0,416535	0,606820	0,502754	60	0,414254	0,605153	0,500686	

Taula C.46: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (3).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!413584$	0,604184	$0,\!499881$	83	$0,\!413538$	$0,\!604375$	$0,\!499932$	
62	$0,\!413569$	$0,\!604197$	$0,\!499877$	84	$0,\!413883$	$0,\!604882$	0,500350	
63	$0,\!414183$	0,605101	0,500622	85	0,413541	0,604386	0,499938	
64	$0,\!413576$	0,604222	0,499892	86	0,413535	0,604391	$0,\!499937$	
65	$0,\!413563$	0,604233	0,499889	87	0,413856	0,604863	0,500326	
66	$0,\!414122$	$0,\!605057$	0,500567	88	0,413538	0,604400	0,499942	
67	$0,\!413569$	0,604255	0,499901	89	0,413533	0,604404	0,499941	
68	$0,\!413557$	0,604265	0,499898	90	0,413833	0,604845	0,500305	
69	0,414069	0,605018	0,500519	91	0,413535	0,604413	0,499946	
70	$0,\!413563$	0,604284	0,499909	92	0,413531	0,604417	$0,\!499945$	
71	$0,\!413553$	0,604293	0,499907	93	0,413812	0,604830	0,500285	
72	0,414022	0,604984	0,500476	94	0,413533	0,604425	$0,\!499949$	
73	$0,\!413557$	0,604309	0,499916	95	0,413528	0,604428	0,499948	
74	$0,\!413548$	0,604317	0,499914	96	0,413792	0,604816	0,500268	
75	0,413981	0,604954	0,500439	97	0,413530	0,604435	0,499952	
76	$0,\!413552$	0,604332	0,499923	98	0,413527	0,604439	0,499951	
77	0,413544	0,604339	0,499921	99	0,413774	0,604803	0,500252	
78	0,413944	0,604927	0,500406	100	0,413528	0,604445	$0,\!499955$	

Taula C.47: Resultats de les mesures 5, 6 i 7 de 60 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (3).



Figura C.48: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (3) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,510385	0,464682	0,486998	33	0,638159	0,783856	0,707266
4	0,998750	0,951815	0,975000	34	0,639005	0,783584	0,707611
5	0,678136	0,674492	0,676312	35	0,637965	0,784136	0,707285
6	0,631058	0,697024	0,663221	36	0,639064	0,788383	0,709808
7	0,642803	0,729790	0,684917	37	0,637739	0,784373	0,707266
8	0,706223	0,829464	0,765367	38	0,638403	0,784142	0,707530
9	0,650327	0,752267	0,699442	39	0,637548	0,784573	0,707250
10	0,648487	0,754105	0,699305	40	0,638446	0,788002	0,709293
11	0,645293	0,763584	0,701951	41	0,637383	0,784746	0,707237
12	0,665833	0,804854	0,732051	42	0,637957	0,784548	0,707466
13	0,643268	0,770075	0,703822	43	0,637241	0,784894	0,707225
14	0,651841	0,769898	0,708415	44	0,637990	0,787720	0,708913
15	0,641413	0,774141	0,704659	45	0,637118	0,785023	0,707214
16	$0,\!652465$	0,796645	0,720960	46	$0,\!637618$	0,784853	0,707415
17	0,640713	0,776856	0,705508	47	0,637010	0,785137	0,707206
18	0,646078	0,776406	0,708251	48	0,637643	0,787506	0,708624
19	$0,\!639816$	0,778758	0,705877	49	$0,\!636915$	0,785236	0,707198
20	$0,\!646405$	0,792913	0,715921	50	0,637354	0,785088	0,707374
21	$0,\!639503$	0,780142	0,706331	51	$0,\!636831$	0,785324	0,707191
22	$0,\!642953$	0,779702	0,708034	52	$0,\!637374$	0,787339	0,708399
23	$0,\!639013$	0,781181	0,706530	53	$0,\!636756$	0,785402	0,707184
24	$0,\!643146$	0,790904	0,713208	54	$0,\!637144$	0,785272	0,707341
25	$0,\!638834$	0,781980	0,706792	55	$0,\!636689$	0,785472	0,707179
26	0,641069	0,781599	0,707855	56	$0,\!637160$	0,787207	0,708221
27	$0,\!638556$	0,782608	0,706922	57	0,636630	0,785535	0,707174
28	0,641192	0,789698	0,711581	58	0,636974	0,785420	0,707314
29	0,638425	0,783111	0,707077	59	$0,\!636576$	0,785591	0,707169
30	$0,\!639845$	0,782789	0,707717	60	0,636988	0,787101	0,708077

Taula C.49: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (4).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!636527$	0,785642	0,707165	83	$0,\!636204$	0,785982	0,707138
62	$0,\!636836$	0,785540	0,707290	84	$0,\!636417$	0,786748	0,707602
63	$0,\!636483$	0,785689	0,707162	85	$0,\!636186$	0,786001	0,707137
64	$0,\!636847$	0,787013	0,707960	86	$0,\!636360$	0,785944	0,707208
65	$0,\!636443$	0,785730	0,707158	87	$0,\!636170$	0,786018	0,707136
66	$0,\!636721$	0,785639	0,707271	88	$0,\!636365$	0,786715	0,707558
67	$0,\!636407$	0,785769	0,707155	89	0,636154	0,786034	0,707134
68	$0,\!636730$	0,786941	0,707862	90	$0,\!636315$	0,785982	0,707200
69	$0,\!636374$	0,785804	0,707153	91	$0,\!636140$	0,786049	0,707133
70	$0,\!636624$	0,785721	0,707255	92	$0,\!636319$	0,786687	0,707519
71	0,636343	0,785836	0,707150	93	0,636126	0,786063	0,707132
72	$0,\!636632$	0,786881	0,707780	94	$0,\!636275$	0,786015	0,707193
73	$0,\!636315$	0,785865	0,707148	95	0,636114	0,786077	0,707131
74	$0,\!636542$	0,785791	0,707240	96	$0,\!636278$	0,786662	0,707486
75	$0,\!636289$	0,785892	0,707146	97	0,636102	0,786089	0,707130
76	$0,\!636549$	0,786829	0,707711	98	0,636240	0,786044	0,707186
77	0,636265	0,785917	0,707144	99	0,636091	0,786101	0,707129
78	$0,\!636473$	0,785850	0,707228	100	0,636243	0,786640	0,707456

Taula C.50: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (4).





	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,498752	0,464107	0,481118	33	0,637587	0,782886	0,706511
4	0,999988	0,995019	0,997500	34	0,638169	0,782614	0,706711
5	0,663897	0,673658	0,668760	35	0,637478	0,783166	0,706577
6	0,619943	0,696161	0,656947	36	0,639855	0,787408	0,709808
7	0,627923	0,728887	0,676524	37	0,637390	0,783402	0,706635
8	0,707098	0,828437	0,765367	38	0,638395	0,783172	0,707088
9	0,640857	0,751336	0,693901	39	0,637312	0,783602	0,706682
10	0,632340	0,753172	0,690117	40	0,639237	0,787027	0,709293
11	0,635335	0,762639	0,696083	41	0,637248	0,783774	0,706724
12	0,666658	0,803858	0,732051	42	0,638613	0,783577	0,707391
13	0,638948	0,769122	0,701020	43	0,637190	0,783923	0,706759
14	0,635325	0,768946	0,698950	44	0,638781	0,786745	0,708913
15	0,637077	0,773183	0,701839	45	0,637142	0,784052	0,706790
16	0,653273	0,795659	0,720960	46	0,638408	0,783882	0,707415
17	0,638796	0,775895	0,704016	47	0,637098	0,784165	0,706817
18	0,636543	0,775445	0,702570	48	0,638433	0,786531	0,708624
19	0,637799	0,777794	0,704327	49	0,637062	0,784264	0,706841
20	0,647206	0,791932	0,715921	50	0,638144	0,784116	0,707374
21	0,638897	0,779177	0,705559	51	0,637027	0,784352	0,706862
22	0,637193	0,778737	0,704419	52	0,638164	0,786365	0,708399
23	0,638244	0,780214	0,705668	53	0,636998	0,784430	0,706881
24	0,643943	0,789925	0,713208	54	0,637933	0,784300	0,707341
25	0,638307	0,781012	0,706063	55	0,636970	0,784500	0,706897
26	0,637609	0,780631	0,705505	56	0,637949	0,786233	0,708221
27	0,638062	0,781640	0,706212	57	0,636948	0,784563	0,706913
28	0,641986	0,788720	0,711581	58	0,637764	0,784448	0,707314
29	0,637872	0,782142	0,706333	59	0,636925	0,784619	0,706926
30	0,637916	0,781820	0,706212	60	0,637777	0,786127	0,708077

Taula C.52: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (5).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!636907$	0,784670	0,706939	83	$0,\!636778$	0,785009	0,707019
62	$0,\!637625$	0,784568	0,707290	84	$0,\!637206$	0,785774	0,707602
63	$0,\!636889$	0,784716	0,706949	85	$0,\!636772$	0,785028	0,707024
64	$0,\!637636$	0,786039	0,707960	86	$0,\!637149$	0,784971	0,707208
65	$0,\!636874$	0,784758	0,706960	87	$0,\!636764$	0,785045	0,707028
66	$0,\!637510$	0,784667	0,707271	88	$0,\!637153$	0,785742	0,707558
67	$0,\!636858$	0,784796	0,706968	89	$0,\!636759$	0,785061	0,707032
68	$0,\!637519$	0,785967	0,707862	90	$0,\!637103$	0,785009	0,707200
69	$0,\!636846$	0,784831	0,706977	91	$0,\!636752$	0,785076	0,707036
70	$0,\!637413$	0,784749	0,707255	92	$0,\!637107$	0,785713	0,707519
71	$0,\!636833$	0,784863	0,706984	93	$0,\!636748$	0,785091	0,707039
72	$0,\!637421$	0,785907	0,707780	94	$0,\!637063$	0,785042	0,707193
73	$0,\!636823$	0,784893	0,706992	95	$0,\!636742$	0,785104	0,707042
74	$0,\!637331$	0,784818	0,707240	96	$0,\!637067$	0,785688	0,707486
75	$0,\!636812$	0,784920	0,706998	97	$0,\!636738$	0,785116	0,707046
76	$0,\!63\overline{7}338$	0,785856	0,707711	98	$0,\!637028$	0,785072	0,707186
77	0,636803	0,784945	0,707004	99	0,636733	0,785128	0,707048
78	0,637261	0,784877	0,707228	100	$0,\!637031$	0,785666	0,707456

Taula C.53: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (5).



Figura C.54: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (5).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,497423	0,464102	0,480473	33	0,636568	0,782876	0,705942
4	1,000000	1,000000	1,000000	34	0,636164	0,782605	0,705595
5	0,662219	0,673649	0,667910	35	0,636455	0,783156	0,706006
6	0,618802	0,696152	0,656339	36	0,639863	0,787398	0,709808
7	0,626247	0,728878	0,675617	37	0,636573	0,783392	0,706177
8	0,707107	0,828427	0,765367	38	0,636255	0,783162	0,705897
9	0,638627	0,751326	0,692688	39	0,636492	0,783593	0,706223
10	0,630978	0,753163	0,689369	40	0,639245	0,787017	0,709293
11	0,633626	0,762630	0,695142	41	0,636578	0,783765	0,706348
12	0,666667	0,803848	0,732051	42	0,636322	0,783567	0,706117
13	0,636980	0,769113	0,699935	43	0,636518	0,783913	0,706381
14	0,633844	0,768936	0,698130	44	0,638789	0,786736	0,708913
15	0,635293	0,773174	0,700851	45	0,636582	0,784042	0,706475
16	$0,\!653270$	0,795649	0,720953	46	0,636371	0,783872	0,706282
17	$0,\!636671$	0,775885	0,702840	47	$0,\!636537$	0,784155	0,706501
18	0,634966	0,775436	0,701694	48	0,638441	0,786522	0,708624
19	$0,\!635893$	0,777784	0,703269	49	$0,\!636586$	0,784255	0,706573
20	$0,\!647214$	0,791922	0,715921	50	0,636410	0,784106	0,706408
21	$0,\!636590$	0,779167	0,704280	51	$0,\!636551$	0,784342	0,706593
22	$0,\!635521$	0,778728	0,703490	52	$0,\!638172$	0,786355	0,708399
23	$0,\!636168$	0,780204	0,704515	53	$0,\!636590$	0,784421	0,706650
24	$0,\!643951$	0,789915	0,713208	54	0,636440	0,784291	0,706508
25	$0,\!636568$	0,781003	0,705097	55	$0,\!636562$	0,784490	0,706666
26	$0,\!635837$	0,780622	0,704520	56	$0,\!637957$	0,786223	0,708221
27	0,636314	0,781630	0,705239	57	$0,\!636593$	0,784553	0,706711
28	0,641994	0,788711	0,711581	58	0,636464	0,784438	0,706588
29	$0,\!63\overline{6565}$	0,782132	0,705605	59	$0,\!63\overline{6570}$	0,784609	0,706724
30	0,636033	0,781810	0,705165	60	0,637785	0,786117	0,708077

Taula C.55: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (i 6).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,636595	0,784660	0,706761	83	0,636596	0,785000	0,706914
62	0,636483	0,784558	0,706653	84	0,637214	0,785765	0,707602
63	$0,\!636577$	0,784706	0,706772	85	0,636606	0,785018	0,706928
64	$0,\!637644$	0,786030	0,707960	86	$0,\!636549$	0,784961	0,706871
65	$0,\!636598$	0,784748	0,706802	87	$0,\!636599$	0,785035	0,706932
66	$0,\!636499$	0,784657	0,706706	88	$0,\!637161$	0,785732	0,707558
67	$0,\!636582$	0,784787	0,706811	89	$0,\!636607$	0,785052	0,706944
68	$0,\!637527$	0,785957	0,707862	90	$0,\!636555$	0,784999	0,706891
69	$0,\!636600$	0,784821	0,706836	91	$0,\!636601$	0,785067	0,706947
70	$0,\!636513$	0,784739	0,706751	92	$0,\!637115$	0,785704	0,707519
71	$0,\!636587$	0,784854	0,706843	93	$0,\!636608$	0,785081	0,706957
72	$0,\!637429$	0,785897	0,707780	94	$0,\!636560$	0,785033	0,706909
73	$0,\!636602$	0,784883	0,706865	95	$0,\!636602$	0,785094	0,706960
74	$0,\!636524$	0,784808	0,706788	96	$0,\!637075$	0,785679	0,707486
75	$0,\!636591$	0,784910	0,706871	97	$0,\!636609$	0,785106	0,706969
76	$0,\!63\overline{7}346$	0,785846	0,707711	98	$0,\!636565$	0,785062	0,706925
77	$0,\!63\overline{6603}$	$0,78\overline{4935}$	$0,70\overline{6889}$	99	0,636604	0,785118	$0,70\overline{6972}$
78	$0,\!63\overline{6534}$	0,784867	0,706820	100	0,637039	0,785657	0,707456

Taula C.56: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (pentàgons) (i 6).




	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,979239	0,942678	0,960785	33	$0,\!438881$	0,606393	0,515883	
4	$0,\!484195$	$0,\!498694$	$0,\!491391$	34	$0,\!438541$	0,604112	0,514712	
5	$0,\!434591$	0,540242	$0,\!484545$	35	0,438417	0,604146	0,514654	
6	0,514533	0,662818	0,583988	36	$0,\!438655$	0,606157	0,515649	
7	0,446765	0,573278	0,506084	37	0,438554	0,604306	0,514802	
8	0,438683	0,581090	0,504890	38	0,438420	0,604329	0,514733	
9	0,467042	0,628365	0,541731	39	0,438493	0,605978	0,515478	
10	0,441290	0,590078	0,510290	40	0,438565	0,604456	0,514872	
11	0,438757	0,592745	0,509972	41	0,438424	0,604472	0,514796	
12	0,452557	0,617494	0,528632	42	0,438376	0,605838	0,515349	
13	0,439675	0,596467	0,512105	43	0,438573	0,604575	0,514928	
14	0,438631	0,597648	0,512003	44	0,438429	0,604587	0,514848	
15	0,446374	0,612704	0,522968	45	0,438290	0,605729	0,515252	
16	0,439045	0,599559	0,513063	46	0,438475	0,604671	0,514911	
17	0,438537	0,600163	0,513024	47	0,438434	0,604679	0,514890	
18	0,443232	0,610188	0,520052	48	0,438227	0,605641	0,515178	
19	0,438764	0,601285	0,513636	49	0,438393	0,604749	0,514895	
20	0,438480	0,601622	0,513614	50	0,438439	0,604756	0,514926	
21	0,441452	0,608711	0,518379	51	0,438180	0,605570	0,515120	
22	0,438629	0,602342	0,514008	52	0,438329	0,604813	0,514886	
23	0,438447	0,602543	0,513987	53	0,438445	0,604819	0,514956	
24	0,440366	0,607776	0,517343	54	0,438147	0,605512	0,515076	
25	0,438564	0,603036	0,514266	55	0,438281	0,604867	0,514880	
26	0,438429	0,603160	0,514240	56	0,438450	0,604873	0,514982	
27	0,439669	0,607149	0,516667	57	0,438196	0,605464	0,515084	
28	0,438536	0,603514	0,514454	58	0,438243	0,604912	0,514877	
29	0,438420	0,603593	0,514420	59	0,438455	0,604918	0,515004	
30	0,439203	0,606711	0,516206	60	0,438240	0,605424	0,515093	

Taula C.58: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (1).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!438214$	$0,\!604950$	0,514876	83	0,438311	$0,\!605118$	0,515005	
62	$0,\!438461$	$0,\!604957$	0,515024	84	0,438436	$0,\!605260$	0,515139	
63	$0,\!438277$	$0,\!605390$	0,515101	85	0,438241	$0,\!605120$	0,514964	
64	$0,\!438192$	0,604983	0,514877	86	0,438284	$0,\!605132$	0,514995	
65	0,438466	0,604990	0,515041	87	0,438450	0,605251	0,515143	
66	$0,\!438309$	$0,\!605362$	0,515107	88	0,438253	0,605131	0,514976	
67	0,438175	0,605011	0,514880	89	0,438261	0,605144	0,514987	
68	0,438470	0,605019	0,515056	90	0,438446	0,605242	0,515137	
69	0,438337	0,605338	0,515114	91	0,438264	0,605141	0,514987	
70	0,438170	0,605036	0,514887	92	0,438249	0,605155	0,514984	
71	0,438475	0,605044	0,515070	93	0,438415	0,605235	0,515115	
72	0,438362	0,605317	0,515120	94	0,438275	0,605151	0,514998	
73	0,438185	0,605057	0,514905	95	0,438241	0,605165	0,514984	
74	0,438426	0,605066	0,515050	96	0,438388	0,605228	0,515097	
75	0,438384	0,605300	0,515125	97	0,438285	0,605159	0,515007	
76	0,438200	0,605076	0,514922	98	0,438237	0,605174	0,514985	
77	0,438381	0,605085	0,515032	99	0,438364	0,605222	0,515080	
78	0,438403	0,605285	0,515130	100	0,438295	0,605166	0,515016	

Taula C.59: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (1).



Figura C.60: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (1) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,999200	0,961169	0,980000	33	0,430972	0,606918	0,511434
4	$0,\!477614$	0,497821	0,487613	34	0,430132	0,603743	0,509597
5	$0,\!428862$	0,538972	$0,\!480775$	35	$0,\!430423$	$0,\!603818$	0,509801
6	0,509744	$0,\!667200$	0,583182	36	$0,\!430700$	$0,\!606625$	0,511149
7	$0,\!438740$	0,572424	0,501144	37	0,430128	$0,\!603952$	0,509683
8	$0,\!432000$	0,580273	0,500677	38	0,430392	0,604010	0,509864
9	$0,\!460689$	0,630920	0,539127	39	0,430502	$0,\!606396$	0,510935
10	0,433181	0,589349	0,505267	40	0,430130	0,604115	0,509753
11	0,431632	0,592116	0,505546	41	0,430367	0,604162	0,509913
12	0,445617	0,619298	0,525328	42	0,430353	0,606215	0,510770
13	0,431490	0,595835	0,507047	43	0,430136	0,604246	0,509812
14	0,431245	0,597119	0,507449	44	0,430346	0,604283	0,509952
15	0,439118	0,614089	0,519286	45	0,430239	0,606069	0,510641
16	0,430805	0,598998	0,507988	46	0,430041	0,604352	0,509800
17	0,430978	0,599697	0,508386	47	0,430330	0,604382	0,509984
18	0,435771	0,611304	0,516128	48	0,430152	0,605949	0,510539
19	0,430481	0,600776	0,508549	49	0,429964	0,604439	0,509791
20	$0,\!430797$	0,601198	0,508915	50	0,430316	0,604464	0,510010
21	0,433848	0,609639	0,514287	51	0,430084	0,605850	0,510457
22	0,430313	0,601874	0,508915	52	0,429926	0,604511	0,509799
23	0,430671	0,602148	0,509242	53	0,430304	0,604532	0,510032
24	0,432657	0,608564	0,513127	54	0,430031	0,605767	0,510391
25	0,430222	0,602600	0,509168	55	0,429933	0,604572	0,509829
26	0,430580	0,602788	0,509459	56	0,430294	0,604590	0,510050
27	0,431878	0,607829	0,512355	57	0,429990	$0,\!605697$	0,510337
28	0,430171	0,603105	0,509351	58	0,429941	0,604623	0,509855
29	0,430513	0,603239	0,509610	59	0,430285	0,604639	0,510066
30	0,431346	0,607305	0,511819	60	0,429958	$0,\!605637$	0,510293

Taula C.61: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (2).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!429949$	$0,\!604668$	0,509878	83	0,430084	$0,\!604859$	0,510039	
62	$0,\!430277$	$0,\!604681$	0,510079	84	$0,\!430001$	$0,\!605366$	0,510204	
63	$0,\!429932$	$0,\!605586$	0,510256	85	0,430000	0,604870	0,509994	
64	$0,\!429956$	$0,\!604706$	0,509899	86	$0,\!430050$	0,604874	0,510025	
65	0,430271	0,604717	0,510090	87	0,430015	0,605347	0,510204	
66	$0,\!429913$	$0,\!605541$	0,510225	88	0,430005	0,604884	0,510003	
67	0,429963	0,604739	0,509917	89	0,430020	0,604888	0,510014	
68	0,430265	0,604749	0,510100	90	0,430011	0,605330	0,510194	
69	0,429905	$0,\!605502$	0,510204	91	0,430010	0,604897	0,510012	
70	0,429970	0,604768	0,509933	92	0,429995	0,604901	0,510004	
71	0,430260	0,604777	0,510109	93	0,429981	0,605314	0,510170	
72	0,429929	0,605468	0,510204	94	0,430015	0,604909	0,510019	
73	$0,\!429976$	$0,\!604793$	0,509948	95	0,429973	0,604912	0,509996	
74	0,430224	0,604801	0,510098	96	0,429957	0,605300	0,510150	
75	0,429950	0,605438	0,510204	97	0,430019	0,604919	0,510027	
76	0,429983	0,604816	0,509961	98	0,429954	0,604923	0,509989	
77	0,430170	0,604823	0,510075	99	0,429936	0,605287	0,510132	
78	0,429969	0,605411	0,510204	100	0,430024	0,604929	0,510033	

Taula C.62: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (2).



Figura C.63: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (2)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,980393	0,980392	0,980392	33	0,423810	0,605939	0,506757
4	0,472152	0,498293	$0,\!485047$	34	0,421926	0,603641	0,504670
5	0,419272	0,539801	$0,\!475734$	35	0,421834	$0,\!603675$	0,504629
6	0,504938	$0,\!662397$	$0,\!578334$	36	$0,\!423447$	$0,\!605702$	0,506441
7	0,432201	0,572821	$0,\!497567$	37	0,421887	0,603835	0,504728
8	0,422828	0,580626	0,495485	38	0,421815	0,603858	0,504694
9	0,455498	0,627934	0,534811	39	0,423167	0,605521	0,506198
10	0,425941	0,589610	0,501138	40	0,421859	0,603985	0,504773
11	0,422671	0,592277	0,500338	41	0,421801	0,604001	0,504746
12	0,439945	0,617057	0,521029	42	0,422948	0,605381	0,506008
13	0,423920	0,595997	0,502648	43	0,421837	0,604104	0,504810
14	0,422404	0,597177	0,502245	44	0,421790	0,604116	0,504787
15	0,433062	0,612262	0,514924	45	0,422772	0,605271	0,505857
16	0,423039	0,599088	0,503426	46	0,421819	0,604200	0,504840
17	0,422213	0,599692	0,503188	47	0,421781	0,604209	0,504820
18	0,429419	0,609742	0,511698	48	0,422630	0,605182	0,505735
19	0,422584	0,600813	0,503879	49	0,421806	0,604278	0,504865
20	0,422085	0,601151	0,503723	50	0,421774	0,604285	0,504848
21	0,427263	0,608263	0,509792	51	0,422514	0,605111	0,505636
22	0,422322	0,601871	0,504166	52	0,421795	0,604343	0,504885
23	0,421997	0,602071	0,504056	53	0,421768	0,604349	0,504871
24	0,425884	0,607325	0,508577	54	0,422417	0,605052	0,505554
25	0,422159	0,602564	0,504359	55	0,421787	0,604397	0,504902
26	0,421935	0,602688	0,504277	56	0,421764	0,604402	0,504891
27	0,424951	0,606697	0,507756	57	0,422336	0,605004	0,505485
28	0,422052	0,603043	0,504495	58	0,421780	0,604442	0,504917
29	0,421891	0,603122	0,504432	59	0,421760	0,604447	0,504907
30	0,424292	0,606257	0,507178	60	0,422268	0,604963	0,505427

Taula C.64: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (3).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!421774$	0,604480	0,504930	83	$0,\!421746$	0,604648	0,504983
62	$0,\!421757$	0,604486	0,504922	84	0,421970	0,604798	0,505180
63	0,422210	0,604930	0,505378	85	0,421753	0,604650	0,504988
64	0,421770	0,604513	0,504941	86	0,421746	0,604661	0,504988
65	0,421754	0,604519	0,504934	87	0,421950	0,604788	0,505164
66	0,422160	0,604901	0,505336	88	0,421752	0,604662	0,504992
67	$0,\!421766$	0,604541	0,504950	89	0,421745	0,604674	0,504993
68	$0,\!421752$	0,604548	0,504945	90	0,421933	0,604779	0,505150
69	$0,\!422117$	0,604877	0,505300	91	0,421751	0,604672	0,504996
70	$0,\!421762$	$0,\!604566$	0,504959	92	0,421747	0,604685	0,504999
71	$0,\!421751$	$0,\!604573$	0,504955	93	0,421917	0,604772	0,505137
72	$0,\!422079$	$0,\!604856$	0,505269	94	$0,\!421751$	0,604681	0,505000
73	$0,\!421760$	$0,\!604587$	0,504966	95	$0,\!421748$	$0,\!604695$	0,505004
74	0,421749	0,604595	0,504963	96	0,421903	0,604765	0,505126
75	$0,\!422047$	0,604838	0,505242	97	0,421752	0,604690	0,505004
76	$0,\!421758$	0,604606	0,504972	98	$0,\!42\overline{1749}$	0,604704	0,505008
77	0,421748	0,604615	0,504970	99	0,421890	0,604759	0,505115
78	0,422018	0,604823	0,505219	100	0,421753	0,604697	0,505008

Taula C.65: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (3).



Figura C.66: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (3) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,523877	0,465265	0,493702	33	0,665516	0,784838	0,722719
4	0,997500	0,936786	0,966667	34	0,665953	0,784566	0,722831
5	0,681914	0,675338	0,678618	35	0,668411	0,785119	0,724418
6	0,640484	0,697897	0,668575	36	0,666315	0,789371	0,725238
7	$0,\!659520$	0,730705	0,694200	37	0,665784	0,785356	0,723103
8	0,717598	0,830503	0,771989	38	0,666215	0,785125	0,723230
9	$0,\!665967$	0,753209	0,708246	39	0,667896	0,785557	0,724341
10	0,656746	0,755050	0,704185	40	0,666637	0,788990	0,725238
11	0,666698	0,764541	0,713945	41	0,666002	0,785729	0,723393
12	0,683183	0,805862	0,741992	42	0,666419	0,785531	0,723528
13	$0,\!665751$	0,771040	0,716464	43	0,667210	0,785878	0,724117
14	0,661272	0,770863	0,713968	44	0,666395	0,788707	0,724976
15	0,668072	0,775111	0,719604	45	0,666181	0,786007	0,723618
16	$0,\!673378$	0,797644	0,732882	46	0,666582	0,785837	0,723757
17	0,666162	0,777829	0,719834	47	0,666720	0,786120	0,723963
18	0,663296	0,777379	0,718076	48	0,666124	0,788493	0,724730
19	0,668449	0,779734	0,721950	49	0,666331	0,786220	0,723798
20	$0,\!669270$	0,793907	0,728930	50	0,666716	0,786072	0,723938
21	$0,\!666149$	0,781120	0,721348	51	0,666386	0,786308	0,723868
22	$0,\!664419$	0,780679	0,720207	52	0,665949	0,788326	0,724559
23	$0,\!668558$	0,782160	0,723131	53	0,666294	0,786387	0,723854
24	0,667280	0,791895	0,726922	54	0,666827	0,786256	0,724083
25	$0,\!665576$	0,782960	0,721886	55	0,666164	0,786457	0,723816
26	$0,\!665125$	0,782578	0,721465	56	0,665839	0,788194	0,724438
27	0,668578	0,783589	0,723803	57	0,666058	0,786519	0,723787
28	0,666364	0,790687	0,725869	58	0,666921	0,786404	0,724202
29	$0,\!665354$	0,784092	0,722287	59	0,666013	0,786576	0,723789
30	0,665606	0,783770	0,722275	60	0,665774	0,788087	0,724353

Taula C.67: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (4).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!665893$	0,786627	0,723747	83	$0,\!665923$	0,786967	0,723920
62	$0,\!667001$	0,786524	0,724301	84	$0,\!666073$	0,787734	0,724354
63	$0,\!665914$	0,786673	0,723779	85	0,666270	0,786986	0,724117
64	$0,\!665809$	0,788000	0,724332	86	0,666019	0,786929	0,723954
65	$0,\!665915$	0,786715	0,723799	87	0,665878	0,787003	0,723911
66	$0,\!666781$	0,786623	0,724227	88	$0,\!665979$	0,787701	0,724288
67	$0,\!666005$	0,786753	0,723866	89	0,666330	0,787019	0,724165
68	$0,\!665875$	0,787927	0,724335	90	$0,\!665959$	0,786967	0,723939
69	$0,\!665995$	0,786788	0,723876	91	$0,\!665848$	0,787034	0,723909
70	$0,\!666538$	0,786706	0,724134	92	$0,\!665908$	0,787673	0,724236
71	$0,\!666119$	0,786821	0,723958	93	0,666383	0,787048	0,724207
72	0,665940	0,787867	0,724342	94	0,665915	0,787000	0,723931
73	0,666070	0,786850	0,723945	95	0,665865	0,787062	0,723932
74	$0,\!666352$	0,786775	0,724065	96	0,665908	0,787648	0,724224
75	$0,\!666078$	0,786877	0,723962	97	0,666320	0,787074	0,724185
76	0,666003	0,787815	0,724353	98	0,665947	0,787029	0,723961
77	0,666140	0,786902	0,724008	99	0,665894	0,787086	0,723958
78	0,666208	0,786834	0,724014	100	0,665944	0,787626	0,724234

Taula C.68: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (4).



Figura C.69: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (4)

	115	Ше	117		115	Ше	147
3	0.500087	0.464113	0.481764	33	0.639663	0.782896	0.707665
4	0.999975	0.993369	0.996667	34	0.639193	0.782624	0.707282
5	0,664335	0,673666	0,668984	35	0,639699	0,783176	0,707811
6	0,621058	0,696170	0,657542	36	0,642520	0,787418	0,711288
7	0,629598	0,728896	0,677430	37	0,639678	0,783412	0,707906
8	0,708304	0,828448	0,766024	38	0,639300	0,783181	0,707593
9	0,641461	0,751345	0,694232	39	0,639730	0,783612	0,708026
10	0,633626	0,753182	0,690822	40	0,641951	0,787037	0,710802
11	0,636960	0,762649	0,696977	41	0,639690	0,783784	0,708081
12	0,668440	0,803868	0,733033	42	0,639379	0,783587	0,707820
13	0,639913	0,769132	0,701554	43	0,639751	0,783933	0,708182
14	0,636650	0,768955	0,699682	44	0,641535	0,786755	0,710444
15	0,638601	0,773193	0,702682	45	0,639701	0,784062	0,708213
16	$0,\!655366$	0,795669	0,722118	46	0,639440	0,783892	0,707991
17	$0,\!639672$	0,775904	0,704503	47	$0,\!639765$	0,784175	0,708299
18	$0,\!637857$	0,775455	0,703299	48	0,641222	0,786541	0,710174
19	0,639180	0,777804	0,705094	49	0,639710	0,784274	0,708314
20	0,649496	0,791942	0,717191	50	$0,\!639487$	0,784126	0,708123
21	$0,\!639629$	0,779186	0,705968	51	$0,\!639776$	0,784362	0,708390
22	$0,\!638466$	0,778747	0,705126	52	$0,\!640983$	0,786375	0,709967
23	$0,\!639440$	0,780224	0,706333	53	$0,\!639718$	0,784440	0,708393
24	$0,\!646369$	0,789935	0,714555	54	$0,\!639525$	0,784310	0,708227
25	$0,\!639633$	0,781022	0,706801	55	$0,\!639784$	0,784510	0,708461
26	$0,\!638818$	0,780641	0,706178	56	$0,\!640795$	0,786243	0,709803
27	$0,\!639574$	0,781650	0,707052	57	$0,\!639725$	0,784573	0,708457
28	0,644513	0,788730	0,712984	58	$0,\!639555$	0,784458	0,708311
29	$0,\!639647$	0,782152	0,707320	59	$0,\!639789$	0,784629	0,708518
30	0,639041	0,781830	0,706839	60	0,640646	0,786136	0,709672

Taula C.70: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (5).

			1				
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!639731$	0,784680	0,708508	83	$0,\!639805$	0,785019	0,708702
62	$0,\!639580$	0,784578	0,708379	84	$0,\!640160$	0,785784	0,709245
63	$0,\!639794$	0,784726	0,708564	85	$0,\!639754$	0,785038	0,708683
64	$0,\!640523$	0,786049	0,709565	86	$0,\!639669$	0,784981	0,708610
65	$0,\!639736$	0,784768	0,708551	87	0,639806	0,785055	0,708719
66	0,639602	0,784676	0,708435	88	0,640118	0,785752	0,709206
67	$0,\!639797$	0,784806	0,708602	89	0,639756	0,785071	0,708699
68	0,640422	0,785977	0,709477	90	0,639678	0,785019	0,708632
69	0,639741	0,784841	0,708586	91	0,639806	0,785086	0,708734
70	0,639619	0,784759	0,708482	92	0,640081	0,785723	0,709173
71	$0,\!639800$	0,784873	0,708634	93	$0,\!639759$	0,785100	0,708713
72	0,640339	0,785917	0,709403	94	0,639686	0,785052	0,708651
73	0,639745	0,784903	0,708616	95	0,639807	0,785114	0,708746
74	0,639635	0,784828	0,708522	96	0,640049	0,785698	0,709144
75	0,639802	0,784930	0,708660	97	0,639761	0,785126	0,708726
76	0,640269	0,785865	0,709342	98	0,639693	0,785081	0,708668
77	$0,\!639748$	0,784955	0,708642	99	0,639808	0,785138	0,708757
78	0,639648	0,784887	0,708556	100	0,640022	0,785676	0,709119

Taula C.71: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (5).



Figura C.72: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (5).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,509746	0,465265	0,486998	33	0,637361	0,784838	0,707266
4	0,997500	0,907268	0,951315	34	0,638657	0,784566	0,707862
5	0,686561	0,675338	0,680926	35	0,637167	0,785119	0,707285
6	0,647563	0,697897	0,672259	36	0,638264	0,789371	0,709808
7	$0,\!657522$	0,730705	0,693148	37	0,636941	0,785356	0,707266
8	0,705339	0,830503	0,765367	38	0,637931	0,785125	0,707711
9	0,649513	0,753209	0,699442	39	0,636750	0,785557	0,707250
10	$0,\!678819$	0,755050	0,715921	40	0,637647	0,788990	0,709293
11	0,644485	0,764541	0,701951	41	0,636585	0,785729	0,707237
12	0,665000	0,805862	0,732051	42	0,637403	0,785531	0,707602
13	0,642463	0,771040	0,703822	43	0,636444	0,785878	0,707225
14	$0,\!656858$	0,770863	0,711581	44	0,637192	0,788707	0,708913
15	0,640610	0,775111	0,704659	45	0,636320	0,786007	0,707214
16	$0,\!651650$	0,797644	0,720961	46	$0,\!637007$	0,785837	0,707519
17	$0,\!639912$	0,777829	0,705508	47	$0,\!636213$	0,786120	0,707206
18	$0,\!648110$	0,777379	0,709808	48	$0,\!636845$	0,788493	0,708624
19	$0,\!639016$	0,779734	0,705877	49	$0,\!636118$	0,786220	0,707198
20	$0,\!645596$	0,793907	0,715921	50	$0,\!636703$	0,786072	0,707456
21	$0,\!638702$	0,781120	0,706331	51	$0,\!636034$	0,786308	0,707191
22	$0,\!643744$	0,780679	0,708913	52	$0,\!636576$	0,788326	0,708399
23	$0,\!638213$	0,782160	0,706530	53	$0,\!635959$	0,786387	0,707184
24	$0,\!642341$	0,791895	0,713208	54	$0,\!636463$	0,786256	0,707406
25	$0,\!638034$	0,782960	0,706792	55	$0,\!635893$	0,786457	0,707179
26	$0,\!64\overline{1252}$	$0,78\overline{2578}$	0,708399	56	$0,\!63\overline{6363}$	0,788194	0,708221
27	$0,\!637757$	0,783589	0,706922	57	0,635833	0,786519	0,707174
28	0,640389	0,790687	0,711581	58	$0,\!636272$	0,786404	0,707366
29	$0,\!637626$	0,784092	0,707077	59	$0,\!635779$	0,786576	0,707169
30	0,639695	0,783770	0,708077	60	0,636190	0,788087	0,708077

Taula C.73: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (6).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!635731$	0,786627	0,707165	83	$0,\!635408$	0,786967	0,707138
62	$0,\!636116$	0,786524	0,707334	84	$0,\!635621$	0,787734	0,707602
63	$0,\!635687$	0,786673	0,707162	85	$0,\!635390$	0,786986	0,707137
64	$0,\!636049$	0,788000	0,707960	86	$0,\!635594$	0,786929	0,707225
65	$0,\!635647$	0,786715	0,707158	87	$0,\!635373$	0,787003	0,707136
66	$0,\!635988$	0,786623	0,707307	88	$0,\!635568$	0,787701	0,707558
67	$0,\!635610$	0,786753	0,707155	89	$0,\!635358$	0,787019	0,707134
68	$0,\!635933$	0,787927	0,707862	90	$0,\!635544$	0,786967	0,707214
69	$0,\!635577$	0,786788	0,707153	91	$0,\!635344$	0,787034	0,707133
70	$0,\!635882$	0,786706	0,707285	92	$0,\!635522$	0,787673	0,707519
71	$0,\!635547$	0,786821	0,707150	93	$0,\!635330$	0,787048	0,707132
72	$0,\!635835$	0,787867	0,707780	94	$0,\!635501$	0,787000	0,707206
73	$0,\!635519$	0,786850	0,707148	95	$0,\!635318$	0,787062	0,707131
74	$0,\!635792$	0,786775	0,707266	96	$0,\!635482$	0,787648	0,707486
75	$0,\!635493$	0,786877	0,707146	97	$0,\!635306$	0,787074	0,707130
76	$0,\!635752$	0,787815	0,707711	98	0,635463	0,787029	0,707198
77	$0,\!635469$	0,786902	0,707144	99	$0,\!635295$	0,787086	0,707129
78	0,635716	0,786834	0,707250	100	0,635446	0,787626	0,707456

Taula C.74: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (6).



Figura C.75: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (6)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,500049	0,464148	0,481764	33	0,637572	0,782955	0,706533
4	0,999900	0,980298	0,990051	34	0,640194	0,782683	0,707862
5	0,668953	0,673717	0,671330	35	0,637457	0,783235	0,706596
6	0,623528	0,696222	0,658873	36	0,639799	0,787477	0,709808
7	0,631437	0,728951	0,678444	37	0,637376	0,783471	0,706658
8	0,707036	0,828510	0,765367	38	0,639466	0,783240	0,707711
9	0,647600	0,751402	0,697573	39	0,637292	0,783671	0,706702
10	0,636947	0,753238	0,692656	40	0,639181	0,787096	0,709293
11	0,640337	0,762706	0,698848	41	0,637235	0,783843	0,706747
12	0,666600	0,803928	0,732051	42	0,638937	0,783646	0,707602
13	0,642942	0,769190	0,703238	43	0,637172	0,783991	0,706780
14	0,640836	0,769013	0,702005	44	0,638725	0,786814	0,708913
15	0,641315	0,773251	0,704200	45	0,637130	0,784121	0,706814
16	0,653216	0,795729	0,720960	46	0,638540	0,783950	0,707519
17	0,640264	0,775962	0,704855	47	0,637081	0,784234	0,706838
18	0,643107	0,775513	0,706214	48	0,638378	0,786600	0,708624
19	0,639511	0,777862	0,705302	49	0,637049	0,784333	0,706866
20	0,647149	0,792001	0,715921	50	0,638235	0,784185	0,707456
21	0,638991	0,779245	0,705642	51	0,637011	0,784421	0,706884
22	0,645060	0,778806	0,708785	52	$0,\!638108$	0,786434	0,708399
23	0,638579	0,780282	0,705884	53	$0,\!636987$	0,784499	0,706906
24	0,643886	0,789994	0,713208	54	$0,\!637995$	0,784369	0,707406
25	0,638286	0,781081	0,706083	55	$0,\!636956$	0,784569	0,706920
26	0,642794	0,780700	0,708399	56	0,637893	0,786302	0,708221
27	0,638035	0,781708	0,706227	57	0,636937	0,784632	0,706938
28	0,641930	0,788789	0,711581	58	0,637803	0,784517	0,707366
29	$0,\!637855$	0,782210	0,706354	59	0,636911	0,784688	0,706949
30	0,641234	0,781888	0,708077	60	0,637721	0,786195	0,708077

Taula C.76: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (7).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!636896$	0,784739	0,706963	83	$0,\!636766$	0,785078	0,707044
62	$0,\!637647$	0,784636	0,707334	84	$0,\!637150$	0,785843	0,707602
63	$0,\!636875$	0,784785	0,706972	85	$0,\!636761$	0,785097	0,707050
64	$0,\!637580$	0,786108	0,707960	86	$0,\!637123$	0,785040	0,707225
65	$0,\!636863$	0,784827	0,706985	87	$0,\!636753$	0,785114	0,707053
66	$0,\!637519$	0,784735	0,707307	88	0,637097	0,785811	0,707558
67	$0,\!636845$	0,784865	0,706992	89	0,636749	0,785130	0,707058
68	$0,\!637463$	0,786036	0,707862	90	0,637073	0,785078	0,707214
69	$0,\!636836$	0,784900	0,707002	91	0,636741	0,785145	0,707060
70	$0,\!637412$	0,784818	0,707285	92	0,637051	0,785782	0,707519
71	0,636820	0,784932	0,707008	93	0,636738	0,785159	0,707065
72	$0,\!637365$	0,785976	0,707780	94	0,637030	0,785111	0,707206
73	$0,\!636812$	0,784961	0,707017	95	0,636731	0,785172	0,707067
74	$0,\!637322$	0,784887	0,707266	96	0,637011	0,785757	0,707486
75	$0,\!636799$	0,784989	0,707022	97	$0,\!636728$	0,785185	0,707071
76	$0,\!637282$	0,785924	0,707711	98	0,636992	0,785140	0,707198
77	$0,\!636793$	0,785014	0,707030	99	0,636722	0,785197	0,707073
78	$0,\!637245$	0,784946	0,707250	100	$0,\!636975$	0,785735	0,707456

Taula C.77: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (7).



Figura C.78: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (7).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,510385	0,464682	0,486998	33	0,638159	0,783856	0,707266
4	0,998750	0,951815	0,975000	34	0,639005	0,783584	0,707611
5	0,678136	0,674492	0,676312	35	0,637965	0,784136	0,707285
6	0,631058	0,697024	0,663221	36	0,639064	0,788383	0,709808
7	0,642803	0,729790	0,684917	37	0,637739	0,784373	0,707266
8	0,706223	0,829464	0,765367	38	0,638403	0,784142	0,707530
9	$0,\!650327$	0,752267	0,699442	39	0,637548	0,784573	0,707250
10	0,648487	0,754105	0,699305	40	0,638446	0,788002	0,709293
11	$0,\!645293$	0,763584	0,701951	41	0,637383	0,784746	0,707237
12	0,665833	0,804854	0,732051	42	0,637957	0,784548	0,707466
13	0,643268	0,770075	0,703822	43	0,637241	0,784894	0,707225
14	0,651841	0,769898	0,708415	44	0,637990	0,787720	0,708913
15	0,641413	0,774141	0,704659	45	0,637118	0,785023	0,707214
16	$0,\!652465$	0,796645	0,720960	46	0,637618	0,784853	0,707415
17	$0,\!640713$	0,776856	0,705508	47	0,637010	0,785137	0,707206
18	$0,\!646078$	0,776406	0,708251	48	0,637643	0,787506	0,708624
19	$0,\!639816$	0,778758	0,705877	49	0,636915	0,785236	0,707198
20	$0,\!646405$	0,792913	0,715921	50	0,637354	0,785088	0,707374
21	$0,\!639503$	0,780142	0,706331	51	0,636831	0,785324	0,707191
22	$0,\!642953$	0,779702	0,708034	52	0,637374	0,787339	0,708399
23	$0,\!639013$	0,781181	0,706530	53	$0,\!636756$	0,785402	0,707184
24	$0,\!643146$	0,790904	0,713208	54	0,637144	0,785272	0,707341
25	$0,\!638834$	0,781980	0,706792	55	0,636689	0,785472	0,707179
26	$0,\!641069$	0,781599	0,707855	56	0,637160	0,787207	0,708221
27	$0,\!638556$	0,782608	0,706922	57	0,636630	0,785535	0,707174
28	0,641192	0,789698	0,711581	58	0,636974	0,785420	0,707314
29	0,638425	0,783111	0,707077	59	0,636576	0,785591	0,707169
30	$0,\!639845$	0,782789	0,707717	60	0,636988	0,787101	0,708077

Taula C.79: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (7).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,636527	0,785642	0,707165	83	0,636204	0,785982	0,707138
62	0,636836	0,785540	0,707290	84	0,636417	0,786748	0,707602
63	0,636483	0,785689	0,707162	85	0,636186	0,786001	0,707137
64	0,636847	0,787013	0,707960	86	0,636360	0,785944	0,707208
65	0,636443	0,785730	0,707158	87	0,636170	0,786018	0,707136
66	0,636721	0,785639	0,707271	88	0,636365	0,786715	0,707558
67	0,636407	0,785769	0,707155	89	0,636154	0,786034	0,707134
68	0,636730	0,786941	0,707862	90	0,636315	0,785982	0,707200
69	0,636374	0,785804	0,707153	91	0,636140	0,786049	0,707133
70	0,636624	0,785721	0,707255	92	0,636319	0,786687	0,707519
71	0,636343	0,785836	0,707150	93	0,636126	0,786063	0,707132
72	0,636632	0,786881	0,707780	94	0,636275	0,786015	0,707193
73	$0,\!636315$	0,785865	0,707148	95	0,636114	0,786077	0,707131
74	0,636542	0,785791	0,707240	96	0,636278	0,786662	0,707486
75	0,636289	0,785892	0,707146	97	0,636102	0,786089	0,707130
76	0,636549	0,786829	0,707711	98	0,636240	0,786044	0,707186
77	0,636265	0,785917	0,707144	99	0,636091	0,786101	0,707129
78	0,636473	0,785850	0,707228	100	0,636243	0,786640	0,707456

Taula C.80:



Figura C.81: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (8)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,497423	0,464102	0,480473	33	0,636568	0,782876	0,705942
4	1,000000	1,000000	1,000000	34	0,636164	0,782605	0,705595
5	0,662219	0,673649	0,667910	35	$0,\!636455$	0,783156	0,706006
6	0,618802	0,696152	0,656339	36	0,639863	0,787398	0,709808
7	0,626247	0,728878	0,675617	37	0,636573	0,783392	0,706177
8	0,707107	0,828427	0,765367	38	0,636255	0,783162	0,705897
9	$0,\!638627$	0,751326	$0,\!692688$	39	$0,\!636492$	0,783593	0,706223
10	$0,\!630978$	0,753163	$0,\!689369$	40	$0,\!639245$	0,787017	0,709293
11	$0,\!633625$	0,762630	$0,\!695141$	41	$0,\!636578$	0,783765	0,706348
12	$0,\!666667$	0,803848	0,732051	42	$0,\!636322$	0,783567	0,706117
13	$0,\!636980$	0,769113	$0,\!699935$	43	$0,\!636518$	0,783913	0,706381
14	0,633844	0,768936	0,698130	44	$0,\!638789$	0,786736	0,708913
15	$0,\!635293$	0,773174	0,700851	45	$0,\!636582$	0,784042	0,706475
16	$0,\!653270$	0,795649	0,720953	46	$0,\!636371$	0,783872	0,706282
17	0,636671	0,775885	0,702840	47	$0,\!636537$	0,784155	0,706501
18	0,634966	0,775436	0,701694	48	0,638441	0,786522	0,708624
19	0,635893	0,777784	0,703269	49	$0,\!636586$	0,784255	0,706573
20	0,647214	0,791922	0,715921	50	0,636410	0,784106	0,706408
21	0,636590	0,779167	0,704280	51	0,636551	0,784342	0,706593
22	0,635521	0,778728	0,703490	52	0,638172	0,786355	0,708399
23	0,636168	0,780204	0,704515	53	0,636590	0,784421	0,706650
24	0,643951	0,789915	0,713208	54	0,636440	0,784291	0,706508
25	0,636568	0,781003	0,705097	55	0,636562	0,784490	0,706666
26	0,635837	0,780622	0,704520	56	0,637957	0,786223	0,708221
27	0,636314	0,781630	0,705239	57	0,636593	0,784553	0,706711
28	0,641994	0,788711	0,711581	58	0,636464	0,784438	0,706588
29	0,636565	0,782132	0,705605	59	0,636570	0,784609	0,706724
30	0,636033	0,781810	0,705165	60	0,637785	0,786117	0,708077

Taula C.82: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (9).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!636595$	0,784660	0,706761	83	$0,\!636596$	0,785000	0,706914
62	$0,\!636483$	0,784558	0,706653	84	0,637214	0,785765	0,707602
63	$0,\!636577$	0,784706	0,706772	85	$0,\!636606$	0,785018	0,706928
64	$0,\!637644$	0,786030	0,707960	86	0,636549	0,784961	0,706871
65	$0,\!636598$	0,784748	0,706802	87	$0,\!636599$	0,785035	0,706932
66	$0,\!636499$	0,784657	0,706706	88	$0,\!637161$	0,785732	0,707558
67	$0,\!636582$	0,784787	0,706811	89	0,636607	0,785052	0,706944
68	$0,\!637527$	0,785957	0,707862	90	$0,\!636555$	0,784999	0,706891
69	0,636600	0,784821	0,706836	91	0,636601	0,785067	0,706947
70	$0,\!636513$	0,784739	0,706751	92	0,637115	0,785704	0,707519
71	$0,\!636587$	0,784854	0,706843	93	0,636608	0,785081	0,706957
72	$0,\!637429$	0,785897	0,707780	94	$0,\!636560$	0,785033	0,706909
73	$0,\!636602$	0,784883	0,706865	95	0,636602	0,785094	0,706960
74	$0,\!636524$	0,784808	0,706788	96	0,637075	0,785679	0,707486
75	$0,\!636591$	0,784910	0,706871	97	0,636609	0,785106	0,706969
76	0,637346	0,785846	0,707711	98	0,636565	0,785062	0,706925
77	0,636603	0,784935	0,706889	99	0,636604	0,785118	0,706972
78	0,636534	0,784867	0,706820	100	0,637039	0,785657	0,707456

Taula C.83: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (9).



Figura C.84: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (9) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,538844	0,412229	$0,\!471303$	33	0,755996	0,860649	0,806627	
4	$0,\!673907$	$0,\!662337$	$0,\!668097$	34	0,756777	0,862098	$0,\!807722$	
5	$0,\!999739$	0,998739	0,999239	35	0,760709	0,867012	0,812123	
6	0,767477	0,775695	0,771575	36	0,756971	0,862427	0,807981	
7	0,723713	0,773155	0,748026	37	0,756295	0,861534	0,807201	
8	0,732976	0,794210	0,762979	38	0,756352	0,861686	0,807303	
9	0,747570	0,825351	0,785498	39	0,756811	0,862763	0,808052	
10	0,808806	0,894195	0,850429	40	0,759750	0,866469	0,811357	
11	0,757707	0,838488	0,797075	41	0,756945	0,862990	0,808230	
12	0,746398	0,833234	0,788622	42	0,756561	0,862283	0,807694	
13	0,748281	0,837828	0,791789	43	0,756596	0,862383	0,807760	
14	0,754300	0,848550	0,800038	44	0,756824	0,863215	0,808271	
15	0,779217	0,877498	0,826898	45	0,759093	0,866098	0,810832	
16	0,757074	0,852427	0,803337	46	0,756876	0,863379	0,808375	
17	0,751982	0,849059	0,799048	47	0,756751	0,862806	0,808040	
18	0,752650	0,850719	0,800184	48	0,756772	0,862875	0,808084	
19	0,755954	0,856000	0,804423	49	0,756790	0,863535	0,808402	
20	0,769220	0,871835	0,818922	50	0,758624	0,865833	0,810458	
21	0,757066	0,857658	0,805794	51	0,756827	0,863659	0,808481	
22	0,754185	0,855422	0,803210	52	0,756893	0,863185	0,808294	
23	0,754491	0,856191	0,803734	53	0,756905	0,863234	0,808323	
24	0,756583	0,859309	0,806312	54	0,756763	0,863771	0,808499	
25	0,764654	0,869247	0,815275	55	0,758278	0,865638	0,810181	
26	0,757037	0,860172	0,806959	56	0,756792	0,863868	0,808559	
27	0,755279	0,858598	0,805283	57	0,757004	0,863470	0,808486	
28	0,755440	0,859009	0,805562	58	0,757011	0,863504	0,808506	
29	0,756756	0,861060	0,807225	59	0,756743	0,863935	0,808565	
30	0,762189	0,867850	0,813306	60	0,758014	0,865489	0,809971	

Taula C.85: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (10).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,756765	0,864020	$0,\!808616$	83	0,756827	0,864204	0,808735
62	0,756948	0,863688	$0,\!808558$	84	0,756688	0,864400	0,808753
63	0,756977	0,863712	$0,\!808586$	85	0,757319	0,865099	0,809417
64	0,756727	0,864065	$0,\!808617$	86	0,756695	0,864419	0,808765
65	0,757809	0,865374	0,809807	87	0,756794	0,864274	0,808750
66	0,756744	0,864124	0,808654	88	0,756804	0,864278	0,808758
67	0,756903	0,863859	0,808615	89	0,756682	0,864452	0,808774
68	0,756927	0,863877	$0,\!808635$	90	0,757244	$0,\!865057$	0,809357
69	0,756714	0,864175	$0,\!808661$	91	0,756688	$0,\!864467$	0,808784
70	0,757646	0,865282	$0,\!809678$	92	0,756777	0,864338	0,808771
71	0,756728	0,864206	0,808684	93	0,756786	0,864341	0,808777
72	0,756867	0,863996	0,808659	94	0,756676	0,864496	0,808791
73	0,756886	0,864009	0,808676	95	0,757181	0,865022	0,809307
74	0,756704	0,864264	0,808698	96	0,756682	0,864509	0,808800
75	0,757515	0,865209	0,809573	97	0,756762	0,864392	0,808789
76	0,756715	0,864290	0,808716	98	0,756770	0,864394	0,808794
77	0,756838	0,864107	0,808696	99	0,756672	0,864533	0,808807
78	0,756854	0,864116	0,808708	100	0,757127	0,864992	0,809264

Taula C.86: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (10).



Figura C.87: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats  $\rm i/o~amb$  vèrtex<br/>s alineats (hexàgons) (10)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,553306	0,413512	$0,\!478329$	33	0,747218	0,859330	0,801316
4	$0,\!689415$	0,668910	$0,\!679085$	34	0,746198	0,859763	0,800970
5	0,985555	0,938924	0,961957	35	0,749916	0,861043	0,803561
6	0,774366	0,783429	0,778884	36	0,746307	0,859235	0,800783
7	0,755950	0,779499	0,767634	37	0,746742	0,861814	0,802217
8	0,760511	0,795581	0,777848	38	0,746877	0,859536	0,801229
9	0,746752	0,829373	0,786979	39	0,746133	0,860051	0,801070
10	0,797331	0,882678	0,838920	40	0,748971	0,860755	0,802920
11	0,752014	0,843561	0,796474	41	0,746206	0,859441	0,800825
12	0,752453	0,838978	0,794538	42	0,746560	0,861701	0,802067
13	0,756359	0,840340	0,797245	43	0,746653	0,859690	0,801180
14	0,746966	0,852402	0,797944	44	0,746087	0,860241	0,801134
15	0,768162	0,868706	0,816889	45	0,748324	0,860582	0,802492
16	0,748417	0,853996	0,799466	46	0,746138	0,859680	0,800900
17	0,749470	0,854435	0,800234	47	0,746431	0,861609	0,801955
18	0,750842	0,853738	0,800639	48	0,746497	0,859810	0,801153
19	0,746652	0,856937	0,799896	49	0,746053	0,860373	0,801176
20	0,758307	0,864307	0,809574	50	0,747862	0,860474	0,802194
21	0,747250	0,857410	0,800437	51	0,746090	0,859856	0,800955
22	0,748136	0,860572	0,802387	52	0,746336	0,861534	0,801869
23	0,748772	0,858610	0,801812	53	0,746385	0,859906	0,801137
24	0,746433	0,858498	0,800507	54	0,746027	0,860467	0,801206
25	0,753805	0,862454	0,806302	55	0,747520	0,860407	0,801980
26	0,746735	0,858983	0,800895	56	0,746055	0,859988	0,800998
27	0,747429	0,862146	0,802741	57	0,746264	0,861266	0,801706
28	0,747774	0,859042	0,801479	58	0,746302	0,859985	0,801129
29	0,746291	0,859300	0,800805	59	0,746007	0,860536	0,801228
30	0,751376	0,861540	0,804575	60	0,747260	0,860366	0,801821

Taula C.88: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (11).

		$\bigcirc$						
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	0,746029	0,860092	0,801032	83	0,746090	0,860305	0,801164	
62	0,746209	0,861059	$0,\!801580$	84	0,745953	0,860704	$0,\!801276$	
63	0,746238	0,860050	$0,\!801125$	85	0,746575	0,860321	0,801432	
64	0,745991	0,860588	0,801244	86	0,745960	0,860379	0,801129	
65	0,747058	0,860341	0,801701	87	0,746057	0,860586	$0,\!801278$	
66	0,746008	0,860174	0,801060	88	0,746068	0,860287	0,801144	
67	0,746165	0,860906	0,801485	89	0,745946	0,860719	0,801281	
68	0,746188	0,860134	0,801138	90	0,746501	0,860325	0,801395	
69	0,745979	0,860628	0,801255	91	0,745953	0,860412	0,801141	
70	0,746897	0,860327	0,801608	92	0,746040	0,860546	0,801250	
71	0,745992	0,860240	0,801082	93	0,746049	0,860290	0,801136	
72	0,746130	0,860791	0,801412	94	0,745941	0,860732	0,801284	
73	0,746148	0,860237	0,801164	95	0,746439	0,860331	0,801364	
74	0,745968	0,860659	0,801264	96	0,745947	0,860440	0,801151	
75	0,746768	0,860320	0,801536	97	0,746026	0,860515	0,801228	
76	0,745979	0,860295	0,801101	98	0,746033	0,860315	0,801139	
77	0,746101	0,860704	0,801356	99	0,745937	0,860743	0,801286	
78	0,746116	0,860324	0,801187	100	0,746386	0,860338	0,801339	

Taula C.89: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (11).



Figura C.90: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (11) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,538541	0,412209	0,471160	33	0,755426	0,860592	0,806296
4	0,673649	0,662220	0,667910	34	0,756458	0,862044	0,807528
5	0,999999	0,999999	0,999999	35	0,760907	0,867136	0,812287
6	0,767210	0,775558	0,771373	36	0,756679	0,862343	0,807785
7	0,723207	0,773045	0,747711	37	0,755702	0,861453	0,806847
8	0,732489	0,794195	0,762718	38	0,755770	0,861627	0,806965
9	0,746982	0,825285	0,785158	39	0,756557	0,862707	0,807891
10	0,809016	0,894427	0,850650	40	0,759948	0,866589	0,811518
11	0,757305	0,838375	0,796810	41	0,756705	0,862907	0,808063
12	0,745861	0,833136	0,788291	42	0,755954	0,862204	0,807333
13	0,747760	0,837791	0,791497	43	0,756002	0,862323	0,807414
14	0,753714	0,848501	0,799704	44	0,756621	0,863157	0,808136
15	0,779420	0,877677	0,827091	45	0,759291	0,866214	0,810992
16	0,756614	0,852326	0,803045	46	0,756725	0,863298	0,808257
17	0,751431	0,848968	0,798712	47	0,756131	0,862728	0,807673
18	0,752113	0,850673	0,799877	48	0,756164	0,862813	0,807731
19	0,755370	0,855958	0,804093	49	0,756665	0,863477	0,808309
20	0,769420	0,871990	0,819101	50	0,758822	0,865946	0,810616
21	0,756570	0,857564	0,805486	51	0,756741	0,863579	0,808397
22	0,753623	0,855335	0,802870	52	0,756259	0,863108	0,807919
23	0,753943	0,856139	0,803418	53	0,756283	0,863171	0,807962
24	0,755996	0,859262	0,805977	54	0,756697	0,863712	0,808435
25	0,764853	0,869387	0,815447	55	0,758475	0,865748	0,810338
26	0,756606	0,860083	0,806687	56	0,756753	0,863788	0,808501
27	0,754707	0,858514	0,804939	57	0,756354	0,863393	0,808103
28	0,754881	0,858955	0,805238	58	0,756373	0,863441	0,808136
29	0,756295	0,861010	0,806955	59	0,756720	0,863889	0,808531
30	0,762388	0,867981	0,813473	60	0,758211	0,865597	0,810127

Taula C.91: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (i 12).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,756763	0,863948	$0,\!808582$	83	0,756605	$0,\!864140$	$0,\!808587$
62	0,756427	0,863612	$0,\!808245$	84	0,756777	0,864354	0,808779
63	0,756442	0,863649	$0,\!808270$	85	0,757516	0,865200	0,809570
64	0,756737	0,864027	0,808604	86	0,756792	0,864375	0,808797
65	0,758006	0,865480	$0,\!809963$	87	0,756624	$0,\!864199$	0,808625
66	0,756771	0,864073	0,808645	88	0,756630	0,864213	0,808634
67	0,756485	0,863783	0,808356	89	0,756783	0,864403	0,808805
68	0,756497	0,863813	0,808376	90	0,757442	0,865158	0,809510
69	0,756751	0,864136	0,808663	91	0,756796	0,864421	0,808820
70	0,757844	0,865387	0,809832	92	0,756646	0,864264	0,808666
71	0,756778	0,864173	$0,\!808695$	93	0,756650	0,864275	0,808674
72	0,756531	0,863920	0,808444	94	0,756788	0,864445	0,808827
73	0,756540	0,863944	0,808461	95	0,757378	0,865122	0,809459
74	0,756761	0,864223	$0,\!808709$	96	0,756799	0,864460	0,808840
75	0,757712	0,865312	0,809727	97	0,756664	0,864318	0,808702
76	0,756784	0,864254	0,808735	98	0,756668	0,864328	0,808708
77	0,756568	0,864032	0,808516	99	0,756792	0,864481	0,808846
78	0,756576	0,864051	0,808530	100	0,757325	0,865091	0,809416

Taula C.92: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (hexàgons) (i 12).



Figura C.93: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats  $\rm i/o~amb$  vèrtex<br/>s alineats (hexàgons) (12)
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,979239	0,942678	0,960785	33	$0,\!438881$	$0,\!606393$	0,515883
4	$0,\!484195$	0,498694	$0,\!491391$	34	$0,\!438541$	0,604112	0,514712
5	0,434591	0,540242	$0,\!484545$	35	0,438417	0,604146	0,514654
6	0,514533	0,662818	0,583988	36	$0,\!438655$	0,606157	0,515649
7	0,446765	0,573278	0,506084	37	0,438554	0,604306	0,514802
8	0,438683	0,581090	0,504890	38	0,438420	0,604329	0,514733
9	0,467042	0,628365	0,541731	39	0,438493	0,605978	0,515478
10	0,441290	0,590078	0,510290	40	0,438565	0,604456	0,514872
11	0,438757	0,592745	0,509972	41	0,438424	0,604472	0,514796
12	0,452557	0,617494	0,528632	42	0,438376	0,605838	0,515349
13	0,439675	0,596467	0,512105	43	0,438573	0,604575	0,514928
14	0,438631	0,597648	0,512003	44	0,438429	0,604587	0,514848
15	0,446374	0,612704	0,522968	45	0,438290	0,605729	0,515252
16	0,439045	0,599559	0,513063	46	0,438475	0,604671	0,514911
17	0,438537	0,600163	0,513024	47	0,438434	0,604679	0,514890
18	0,443232	0,610188	0,520052	48	0,438227	0,605641	0,515178
19	0,438764	0,601285	0,513636	49	0,438393	0,604749	0,514895
20	0,438480	0,601622	0,513614	50	0,438439	0,604756	0,514926
21	0,441452	0,608711	0,518379	51	0,438180	0,605570	0,515120
22	0,438629	0,602342	0,514008	52	0,438329	0,604813	0,514886
23	0,438447	0,602543	0,513987	53	0,438445	0,604819	0,514956
24	0,440366	0,607776	0,517343	54	0,438147	0,605512	0,515076
25	0,438564	0,603036	0,514266	55	0,438281	0,604867	0,514880
26	0,438429	0,603160	0,514240	56	0,438450	0,604873	0,514982
27	0,439669	0,607149	0,516667	57	0,438196	0,605464	0,515084
28	0,438536	0,603514	0,514454	58	0,438243	0,604912	0,514877
29	0,438420	0,603593	0,514420	59	0,438455	0,604918	0,515004
30	0,439203	0,606711	0,516206	60	0,438240	0,605424	0,515093

Taula C.94: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (1).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!438214$	0,604950	0,514876	83	0,438311	0,605118	0,515005	
62	$0,\!438461$	0,604957	0,515024	84	0,438436	0,605260	0,515139	
63	0,438277	0,605390	0,515101	85	0,438241	0,605120	0,514964	
64	0,438192	0,604983	0,514877	86	0,438284	0,605132	0,514995	
65	0,438466	0,604990	0,515041	87	0,438450	0,605251	0,515143	
66	$0,\!438309$	$0,\!605362$	0,515107	88	0,438253	0,605131	0,514976	
67	0,438175	0,605011	0,514880	89	0,438261	0,605144	0,514987	
68	0,438470	0,605019	0,515056	90	0,438446	0,605242	0,515137	
69	0,438337	0,605338	0,515114	91	0,438264	0,605141	0,514987	
70	0,438170	0,605036	0,514887	92	0,438249	0,605155	0,514984	
71	0,438475	0,605044	0,515070	93	0,438415	0,605235	0,515115	
72	0,438362	0,605317	0,515120	94	0,438275	0,605151	0,514998	
73	0,438185	0,605057	0,514905	95	0,438241	0,605165	0,514984	
74	0,438426	0,605066	0,515050	96	0,438388	0,605228	0,515097	
75	0,438384	0,605300	0,515125	97	0,438285	0,605159	0,515007	
76	0,438200	0,605076	0,514922	98	0,438237	0,605174	0,514985	
77	0,438381	0,605085	0,515032	99	0,438364	0,605222	0,515080	
78	0,438403	0,605285	0,515130	100	0,438295	0,605166	0,515016	

Taula C.95: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (1).



Figura C.96: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (1) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,979816	0,951930	0,965772	33	0,430733	0,606166	0,510975	
4	$0,\!479203$	0,498493	$0,\!488753$	34	$0,\!430066$	$0,\!603877$	0,509614	
5	$0,\!427627$	0,540032	$0,\!480554$	35	$0,\!430271$	$0,\!603912$	0,509751	
6	0,504877	0,662608	0,578390	36	0,430481	$0,\!605929$	0,510726	
7	0,439477	0,573049	0,501838	37	0,430050	0,604070	0,509687	
8	0,431264	0,580864	0,500505	38	0,430253	0,604094	0,509817	
9	0,458747	0,628150	0,536807	39	0,430297	0,605749	0,510541	
10	0,433501	0,589844	0,505666	40	0,430041	0,604221	0,509745	
11	0,431111	0,592515	0,505410	41	0,430239	0,604237	0,509869	
12	0,444535	0,617275	0,523832	42	0,430159	0,605610	0,510400	
13	0,431694	0,596232	0,507336	43	0,430036	0,604340	0,509792	
14	0,430842	0,597415	0,507338	44	0,430228	0,604352	0,509911	
15	0,438396	0,612483	0,518180	45	0,430055	0,605500	0,510292	
16	0,430934	0,599324	0,508202	46	0,430034	0,604435	0,509831	
17	0,430650	0,599930	0,508291	47	0,430219	0,604444	0,509945	
18	0,435239	0,609965	0,515248	48	0,429975	0,605411	0,510208	
19	0,430556	0,601049	0,508709	49	0,430033	0,604513	0,509864	
20	0,430521	0,601388	0,508832	50	0,430212	0,604521	0,509973	
21	0,433429	0,608487	0,513552	51	0,429917	0,605340	0,510143	
22	0,430347	0,602106	0,509033	52	0,430034	0,604578	0,509891	
23	0,430433	0,602308	0,509169	53	0,430182	0,604584	0,509981	
24	0,432309	0,607550	0,512493	54	0,429887	0,605282	0,510101	
25	0,430223	0,602800	0,509253	55	0,430036	0,604631	0,509915	
26	0,430372	0,602925	0,509394	56	0,430114	0,604638	0,509964	
27	0,431578	0,606923	0,511796	57	0,429866	0,605234	0,510068	
28	0,430145	0,603279	0,509409	58	0,430039	0,604677	0,509936	
29	0,430328	0,603359	0,509551	59	0,430061	0,604683	0,509951	
30	0,431081	0,606484	0,511316	60	0,429851	0,605193	0,510042	

Taula C.97: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (2).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!430038$	$0,\!604715$	0,509952	83	$0,\!429855$	$0,\!604883$	0,509914	
62	0,430014	$0,\!604721$	0,509940	84	0,429877	$0,\!605029$	0,509988	
63	0,429841	0,605160	0,510022	85	0,430009	0,604885	0,510006	
64	0,430034	0,604748	0,509963	86	0,429847	0,604897	0,509915	
65	$0,\!429974$	$0,\!604755$	0,509930	87	0,429890	0,605019	0,509992	
66	0,429836	0,605131	0,510007	88	0,429979	0,604896	0,509993	
67	0,430030	0,604776	0,509972	89	0,429841	0,604909	0,509917	
68	0,429942	0,604784	0,509923	90	0,429902	0,605011	0,509995	
69	0,429833	0,605107	0,509995	91	0,429954	0,604907	0,509982	
70	0,430026	0,604801	0,509981	92	0,429837	0,604920	0,509919	
71	0,429916	0,604809	0,509918	93	0,429902	0,605003	0,509992	
72	0,429833	0,605087	0,509986	94	0,429932	0,604916	0,509973	
73	0,430024	0,604822	0,509988	95	0,429834	0,604930	0,509921	
74	0,429895	0,604831	0,509916	96	0,429903	0,604996	0,509990	
75	0,429834	0,605069	0,509980	97	0,429913	0,604924	0,509966	
76	0,430022	0,604841	0,509995	98	0,429832	0,604939	0,509923	
77	$0,\!429879$	0,604850	0,509914	99	0,429905	0,604991	0,509989	
78	0,429844	0,605054	0,509979	100	0,429898	0,604932	0,509960	

Taula C.98: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (2).



Figura C.99: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (2)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,500080	0,464119	0,481764	33	0,640762	0,782906	0,708277
4	0,999963	0,990087	0,995013	34	0,641271	0,782634	0,708435
5	0,666029	0,673675	0,669841	35	0,640653	0,783186	0,708344
6	0,622205	0,696179	0,658153	36	0,642769	0,787428	0,711431
7	0,630435	0,728906	0,677885	37	0,640562	0,783422	0,708400
8	0,709156	0,828458	0,766489	38	0,641544	0,783191	0,708838
9	0,643714	0,751355	0,695455	39	0,640485	0,783622	0,708448
10	0,634998	0,753191	0,691574	40	0,642176	0,787047	0,710931
11	0,638143	0,762658	0,697628	41	0,640419	0,783794	0,708489
12	0,669088	0,803878	0,733393	42	0,641810	0,783597	0,709169
13	0,641977	0,769142	0,702689	43	0,640362	0,783942	0,708524
14	0,638144	0,768965	0,700507	44	0,641740	0,786765	0,710562
15	0,640041	0,773203	0,703478	45	0,640312	0,784072	0,708555
16	$0,\!655881$	0,795679	0,722407	46	$0,\!641565$	0,783901	0,709171
17	0,641895	0,775914	0,705730	47	0,640268	0,784185	0,708582
18	$0,\!639453$	0,775465	0,704183	48	0,641411	0,786551	0,710283
19	$0,\!640872$	0,777814	0,706030	49	0,640230	0,784284	0,708606
20	0,649921	0,791952	0,717430	50	0,641276	0,784136	0,709117
21	0,641719	0,779196	0,707124	51	0,640196	0,784372	0,708627
22	0,640164	0,778757	0,706068	52	0,641156	0,786385	0,710067
23	0,641401	0,780234	0,707420	53	0,640166	0,784450	0,708645
24	0,646731	0,789945	0,714760	54	0,641050	0,784320	0,709075
25	0,641488	0,781032	0,707829	55	0,640139	0,784520	0,708662
26	0,640629	0,780651	0,707183	56	$0,\!640955$	0,786253	0,709896
27	0,641244	0,781659	0,707979	57	0,640115	0,784582	0,708677
28	0,644828	0,788740	0,713163	58	0,640870	0,784468	0,709043
29	0,641049	0,782161	0,708099	59	0,640094	0,784639	0,708691
30	0,640978	0,781840	0,707914	60	0,640793	0,786146	0,709759

Taula C.100: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (3).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,640074	0,784690	0,708703	83	0,639944	0,785029	0,708784
62	0,640724	0,784587	0,709016	84	0,640268	0,785794	0,709309
63	$0,\!640056$	0,784736	0,708714	85	$0,\!639937$	0,785048	0,708788
64	$0,\!640662$	0,786059	0,709647	86	0,640243	0,784991	0,708932
65	$0,\!640040$	0,784778	0,708724	87	0,639930	0,785065	0,708792
66	$0,\!640605$	0,784686	0,708995	88	0,640220	0,785761	0,709267
67	0,640026	0,784816	0,708733	89	0,639924	0,785081	0,708796
68	$0,\!640554$	0,785987	0,709554	90	0,640199	0,785029	0,708925
69	$0,\!640012$	0,784851	0,708741	91	$0,\!639918$	0,785096	0,708800
70	$0,\!640507$	0,784768	0,708978	92	$0,\!640179$	0,785733	0,709232
71	$0,\!640000$	0,784883	0,708749	93	$0,\!639913$	0,785110	0,708803
72	$0,\!640463$	0,785926	0,709477	94	0,640160	0,785062	0,708919
73	$0,\!639989$	0,784912	0,708756	95	0,639908	0,785123	0,708806
74	$0,\!640424$	0,784838	0,708963	96	0,640143	0,785708	0,709201
75	$0,\!639978$	0,784940	0,708762	97	$0,\!639903$	0,785136	0,708809
76	$0,\!640387$	0,785875	0,709412	98	0,640126	0,785091	0,708913
77	0,639969	0,784965	0,708768	99	0,639898	0,785147	0,708812
78	0,640354	0,784897	0,708951	100	0,640111	0,785686	0,709173

Taula C.101: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (3).



Figura C.102: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (3).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,500080	0,464119	0,481764	33	0,640762	0,782906	0,708277
4	0,999963	0,990087	0,995013	34	0,641271	0,782634	0,708435
5	0,666029	0,673675	0,669841	35	0,640653	0,783186	0,708344
6	0,622205	0,696179	0,658153	36	0,642769	0,787428	0,711431
7	0,630435	0,728906	0,677885	37	0,640562	0,783422	0,708400
8	0,709156	0,828458	0,766489	38	0,641544	0,783191	0,708838
9	0,643714	0,751355	0,695455	39	0,640485	0,783622	0,708448
10	0,634998	0,753191	0,691574	40	0,642176	0,787047	0,710931
11	0,638143	0,762658	0,697628	41	0,640419	0,783794	0,708489
12	0,669088	0,803878	0,733393	42	0,641810	0,783597	0,709169
13	$0,\!641977$	0,769142	0,702689	43	0,640362	0,783942	0,708524
14	$0,\!638144$	0,768965	0,700507	44	0,641740	0,786765	0,710562
15	$0,\!640041$	0,773203	0,703478	45	0,640312	0,784072	0,708555
16	$0,\!655881$	0,795679	0,722407	46	$0,\!641565$	0,783901	0,709171
17	$0,\!641895$	0,775914	0,705730	47	0,640268	0,784185	0,708582
18	$0,\!639453$	0,775465	0,704183	48	0,641411	0,786551	0,710283
19	$0,\!640872$	0,777814	0,706030	49	$0,\!640230$	0,784284	0,708606
20	$0,\!649921$	0,791952	0,717430	50	$0,\!641276$	0,784136	0,709117
21	$0,\!641719$	0,779196	0,707124	51	$0,\!640196$	0,784372	0,708627
22	$0,\!640164$	0,778757	0,706068	52	$0,\!641156$	0,786385	0,710067
23	$0,\!641401$	0,780234	0,707420	53	$0,\!640166$	0,784450	0,708645
24	$0,\!646731$	0,789945	0,714760	54	$0,\!641050$	0,784320	0,709075
25	$0,\!641488$	0,781032	0,707829	55	$0,\!640139$	0,784520	0,708662
26	0,640629	0,780651	0,707183	56	0,640955	0,786253	0,709896
27	0,641244	0,781659	0,707979	57	0,640115	0,784582	0,708677
28	0,644828	0,788740	0,713163	58	0,640870	0,784468	0,709043
29	0,641049	0,782161	0,708099	59	0,640094	0,784639	0,708691
30	0,640978	0,781840	0,707914	60	0,640793	0,786146	0,709759

Taula C.103: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (4).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,640074	0,784690	0,708703	83	0,639944	0,785029	0,708784
62	0,640724	0,784587	0,709016	84	0,640268	0,785794	0,709309
63	0,640056	0,784736	0,708714	85	$0,\!639937$	0,785048	0,708788
64	$0,\!640662$	0,786059	0,709647	86	0,640243	0,784991	0,708932
65	0,640040	0,784778	0,708724	87	$0,\!639930$	0,785065	0,708792
66	$0,\!640605$	0,784686	0,708995	88	0,640220	0,785761	0,709267
67	0,640026	0,784816	0,708733	89	0,639924	0,785081	0,708796
68	$0,\!640554$	0,785987	0,709554	90	0,640199	0,785029	0,708925
69	$0,\!640012$	0,784851	0,708741	91	$0,\!639918$	0,785096	0,708800
70	$0,\!640507$	0,784768	0,708978	92	0,640179	0,785733	0,709232
71	0,640000	0,784883	0,708749	93	0,639913	0,785110	0,708803
72	0,640463	0,785926	0,709477	94	0,640160	0,785062	0,708919
73	$0,\!639989$	0,784912	0,708756	95	0,639908	0,785123	0,708806
74	0,640424	0,784838	0,708963	96	0,640143	0,785708	0,709201
75	$0,\!639978$	0,784940	0,708762	97	0,639903	0,785136	0,708809
76	0,640387	0,785875	0,709412	98	0,640126	0,785091	0,708913
77	0,639969	0,784965	0,708768	99	0,639898	0,785147	0,708812
78	0,640354	0,784897	0,708951	100	0,640111	0,785686	0,709173

Taula C.104: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (4).



Figura C.105: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (4)

							1
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,509746	0,465265	0,486998	33	0,637361	0,784838	0,707266
4	0,997500	0,907268	0,951315	34	0,638657	0,784566	0,707862
5	0,686561	0,675338	0,680926	35	0,637167	0,785119	0,707285
6	$0,\!647563$	$0,\!697897$	$0,\!672259$	36	0,638264	0,789371	0,709808
7	$0,\!657522$	0,730705	$0,\!693148$	37	0,636941	0,785356	0,707266
8	0,705339	$0,\!830503$	0,765367	38	$0,\!637931$	0,785125	0,707711
9	0,649513	0,753209	$0,\!699442$	39	0,636750	0,785557	0,707250
10	$0,\!678819$	0,755050	0,715921	40	0,637647	0,788990	0,709293
11	0,644485	0,764541	0,701951	41	0,636585	0,785729	0,707237
12	0,665000	0,805862	0,732051	42	0,637403	0,785531	0,707602
13	0,642463	0,771040	0,703822	43	0,636444	0,785878	0,707225
14	0,656858	0,770863	0,711581	44	0,637192	0,788707	0,708913
15	0,640610	0,775111	0,704659	45	0,636320	0,786007	0,707214
16	0,651648	0,797644	0,720960	46	0,637007	0,785837	0,707519
17	0,639912	0,777829	0,705508	47	0,636213	0,786120	0,707206
18	0,648110	0,777379	0,709808	48	0,636845	0,788493	0,708624
19	0,639016	0,779734	0,705877	49	0,636118	0,786220	0,707198
20	0,645596	0,793907	0,715921	50	0,636703	0,786072	0,707456
21	0,638702	0,781120	0,706331	51	0,636034	0,786308	0,707191
22	0,643744	0,780679	0,708913	52	0,636576	0,788326	0,708399
23	0,638213	0,782160	0,706530	53	0,635959	0,786387	0,707184
24	0,642341	0,791895	0,713208	54	0,636463	0,786256	0,707406
25	0,638034	0,782960	0,706792	55	0,635893	0,786457	0,707179
26	0,641252	0,782578	0,708399	56	0,636363	0,788194	0,708221
27	0,637757	0,783589	0,706922	57	0,635833	0,786519	0,707174
28	0,640389	0,790687	0,711581	58	0,636272	0,786404	0,707366
29	0,637626	0,784092	0,707077	59	0,635779	0,786576	0,707169
30	0,639695	0,783770	0,708077	60	0,636190	0,788087	0,708077

Taula C.106: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (5).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!635731$	0,786627	0,707165	83	0,635408	0,786967	0,707138
62	0,636116	0,786524	0,707334	84	0,635621	0,787734	0,707602
63	$0,\!635687$	0,786673	0,707162	85	$0,\!635390$	0,786986	0,707137
64	$0,\!636040$	0,788000	0,707954	86	$0,\!635594$	0,786929	0,707225
65	$0,\!635647$	0,786715	0,707158	87	$0,\!635373$	0,787003	0,707136
66	$0,\!635988$	0,786623	0,707307	88	$0,\!635568$	0,787701	0,707558
67	$0,\!635610$	0,786753	0,707155	89	$0,\!635358$	0,787019	0,707134
68	$0,\!635933$	0,787927	0,707862	90	$0,\!635544$	0,786967	0,707214
69	$0,\!635577$	0,786788	0,707153	91	0,635344	0,787034	0,707133
70	$0,\!635882$	0,786706	0,707285	92	$0,\!635522$	0,787673	0,707519
71	$0,\!635547$	0,786821	0,707150	93	$0,\!635330$	0,787048	0,707132
72	$0,\!635835$	0,787867	0,707780	94	0,635501	0,787000	0,707206
73	$0,\!635519$	0,786850	0,707148	95	$0,\!635318$	0,787062	0,707131
74	$0,\!635792$	0,786775	0,707266	96	0,635482	0,787648	0,707486
75	$0,\!635493$	0,786877	0,707146	97	$0,\!635306$	0,787074	0,707130
76	$0,\!635752$	0,787815	0,707711	98	0,635463	0,787029	0,707198
77	$0,\!635469$	0,786902	0,707144	99	0,635295	0,787086	0,707129
78	0,635716	0,786834	0,707250	100	$0,\!635446$	0,787626	0,707456

Taula C.107: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (5).



Figura C.108: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (5).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,538807	0,412230	0,471288	33	0,756061	0,860625	$0,\!806651$	
4	$0,\!674162$	$0,\!662455$	0,668283	34	0,757068	0,862109	$0,\!807883$	
5	$0,\!999479$	0,998999	0,999239	35	0,760914	0,867084	0,812266	
6	0,767617	0,775648	0,771622	36	0,757189	0,862376	0,808073	
7	0,723727	0,773143	0,748027	37	0,756337	0,861506	0,807211	
8	0,733025	0,794205	0,763002	38	0,756412	0,861662	0,807324	
9	0,747502	0,825416	0,785493	39	0,757081	0,862769	0,808200	
10	0,808596	0,894284	0,850361	40	0,759976	0,866536	0,811509	
11	0,757833	0,838438	0,797117	41	0,757173	0,862939	0,808328	
12	0,746439	0,833211	0,788632	42	0,756596	0,862256	0,807700	
13	0,748345	0,837811	0,791816	43	0,756651	0,862359	0,807777	
14	0,754284	0,848599	0,800053	44	0,757101	0,863217	0,808420	
15	0,779201	0,877600	0,826938	45	0,759336	0,866162	0,810992	
16	0,757184	0,852376	0,803371	46	0,757175	0,863328	0,808512	
17	0,752033	0,849033	0,799062	47	0,756778	0,862779	0,808042	
18	0,752719	0,850699	0,800211	48	0,756820	0,862849	0,808098	
19	0,755965	0,856041	0,804448	49	0,757126	0,863535	0,808582	
20	0,769300	0,871937	0,819012	50	0,758881	0,865894	0,810623	
21	0,757162	0,857607	0,805821	51	0,757179	0,863609	0,808645	
22	0,754237	0,855395	0,803225	52	0,756911	0,863158	0,808291	
23	0,754561	0,856168	0,803761	53	0,756946	0,863208	0,808333	
24	0,756609	0,859336	0,806338	54	0,757140	0,863768	0,808699	
25	0,764792	0,869335	0,815390	55	0,758545	0,865696	0,810351	
26	0,757213	0,860121	0,807028	56	0,757146	0,863819	0,808726	
27	0,755329	0,858571	0,805297	57	0,757013	0,863442	0,808478	
28	0,755509	0,858986	0,805588	58	0,757043	0,863478	0,808511	
29	0,756921	0,861078	0,807322	59	0,757120	0,863945	0,808771	
30	0,762366	0,867929	0,813437	60	0,758290	0,865545	0,810145	

Taula C.109: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (6).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,757121	0,863980	$0,\!808788$	83	0,757165	0,864179	0,808904
62	0,757093	0,863661	0,808623	84	0,757066	0,864376	0,808944
63	0,757120	0,863687	0,808650	85	0,757625	0,865148	0,809603
64	0,757105	0,864081	0,808826	86	0,757058	0,864407	0,808954
65	0,758093	0,865428	0,809984	87	0,757198	0,864247	0,808954
66	0,757102	0,864106	$0,\!808837$	88	0,757145	0,864252	0,808928
67	0,757158	0,863832	$0,\!808738$	89	0,757060	0,864418	0,808960
68	0,757182	0,863851	$0,\!808760$	90	0,757554	0,865105	0,809546
69	0,757092	0,864189	0,808870	91	0,757052	$0,\!864454$	0,808973
70	0,757937	0,865335	$0,\!809858$	92	0,757180	0,864311	0,808974
71	0,757087	0,864207	$0,\!808876$	93	0,757128	$0,\!864315$	0,808948
72	0,757211	0,863969	0,808830	94	0,757055	$0,\!864459$	0,808977
73	0,757218	0,863983	0,808841	95	0,757495	0,865069	0,809497
74	0,757082	0,864266	0,808901	96	0,757047	0,864495	0,808989
75	0,757812	0,865260	0,809756	97	0,757164	0,864365	0,808991
76	0,757076	0,864288	0,808907	98	0,757114	0,864368	0,808965
77	0,757246	0,864080	0,808901	99	0,757051	0,864496	0,808992
78	0,757189	0,864090	0,808875	100	0,757444	0,865039	0,809456

Taula C.110: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (6).



Figura C.111: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (6)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,549189	0,414329	$0,\!477017$	33	0,759577	0,862106	0,809219	
4	$0,\!695130$	$0,\!679484$	$0,\!687262$	34	0,760195	0,860935	0,808999	
5	0,963322	0,961855	0,962588	35	0,758845	0,864497	0,809950	
6	0,782743	0,784023	0,783383	36	0,760875	0,861216	0,809492	
7	0,743208	0,779519	0,761147	37	0,759213	0,862239	0,809088	
8	0,754281	0,795076	0,774410	38	0,759436	0,862463	0,809312	
9	0,766071	0,830039	0,797414	39	0,759571	0,861336	0,808855	
10	0,786320	0,883334	0,833417	40	0,758900	0,864087	$0,\!809787$	
11	0,766695	$0,\!845955$	$0,\!805350$	41	0,759611	0,861510	$0,\!808957$	
12	0,767943	0,838093	0,802251	42	0,759101	0,862282	0,809048	
13	0,761597	0,839197	0,799456	43	0,759409	0,862478	0,809304	
14	0,766796	0,850127	0,807387	44	0,758966	0,861578	0,808646	
15	0,766442	0,871416	0,817245	45	0,759042	0,863732	0,809697	
16	0,763786	0,855923	0,808543	46	0,758894	0,861712	0,808671	
17	0,768473	0,853302	$0,\!809777$	47	0,759073	0,862312	0,809047	
18	0,760746	0,852436	$0,\!805287$	48	0,759337	0,862487	0,809270	
19	0,764388	0,856252	0,809017	49	0,758587	0,861750	$0,\!808525$	
20	0,761242	0,867912	0,812829	50	0,759277	0,863480	0,809704	
21	0,763087	0,858705	$0,\!809485$	51	0,758522	0,861858	0,808541	
22	0,762212	0,859344	0,809322	52	0,758965	0,862336	0,809001	
23	0,761031	0,858139	0,808128	53	0,758866	0,862493	0,809022	
24	0,763252	0,858618	0,809532	54	0,758399	0,861876	0,808484	
25	0,759537	0,866003	$0,\!811025$	55	0,759380	0,863295	$0,\!809672$	
26	0,762306	0,860032	0,809696	56	0,758321	0,861966	0,808484	
27	0,760151	0,861634	0,809304	57	0,758803	0,862353	0,808923	
28	0,759998	0,861133	0,808986	58	0,758625	0,862497	0,808896	
29	0,761535	0,859989	0,809266	59	0,758328	0,861972	0,808491	
30	0,758972	0,865033	0,810269	60	0,759227	0,863155	0,809525	

Taula C.112: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (7).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,758261	$0,\!862049$	0,808491	83	0,758265	0,862503	$0,\!808706$
62	0,758731	0,862368	0,808891	84	0,758448	0,862225	$0,\!808673$
63	0,758522	0,862499	0,808842	85	0,758142	0,862792	0,808777
64	0,758328	0,862047	0,808526	86	0,758552	0,862267	0,808749
65	0,758791	0,863047	0,809242	87	0,758169	0,862409	0,808611
66	0,758274	0,862113	0,808528	88	0,758240	0,862503	0,808693
67	0,758717	0,862379	0,808889	89	0,758367	0,862251	$0,\!808643$
68	0,758503	0,862501	0,808832	90	0,758136	0,862754	$0,\!808755$
69	0,758374	0,862106	0,808578	91	0,758520	0,862291	$0,\!808743$
70	0,758500	0,862962	0,809047	92	0,758154	0,862414	0,808605
71	0,758338	0,862164	0,808587	93	0,758244	0,862503	0,808695
72	0,758544	0,862389	0,808802	94	0,758332	0,862274	0,808635
73	0,758455	0,862502	0,808807	95	0,758154	0,862722	0,808750
74	0,758447	0,862153	0,808639	96	0,758353	0,862311	0,808663
75	0,758311	0,862894	0,808914	97	0,758168	0,862419	0,808615
76	0,758426	0,862206	0,808653	98	0,758269	0,862502	0,808708
77	0,758344	0,862397	0,808698	99	0,758251	0,862294	0,808601
78	0,758332	0,862502	0,808742	100	0,758188	0,862695	0,808755

Taula C.113: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (7).



Figura C.114: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (7).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,538844	0,412229	$0,\!471303$	33	0,755996	0,860649	$0,\!806627$
4	$0,\!673907$	$0,\!662337$	$0,\!668097$	34	0,756777	0,862098	$0,\!807722$
5	0,999739	0,998739	0,999239	35	0,760709	0,867012	0,812123
6	0,767477	0,775695	0,771575	36	0,756971	0,862427	0,807981
7	0,723713	0,773155	0,748026	37	0,756295	0,861534	0,807201
8	0,732976	0,794210	0,762979	38	0,756352	0,861686	0,807303
9	0,747570	0,825351	0,785498	39	0,756811	0,862763	0,808052
10	0,808806	0,894195	0,850429	40	0,759750	0,866469	0,811357
11	0,757707	0,838488	0,797075	41	0,756945	0,862990	0,808230
12	0,746398	0,833234	0,788622	42	0,756561	0,862283	0,807694
13	0,748281	0,837828	0,791789	43	0,756596	0,862383	0,807760
14	0,754300	0,848550	0,800038	44	0,756824	0,863215	0,808271
15	0,779217	0,877498	0,826898	45	0,759093	0,866098	0,810832
16	0,757074	0,852427	0,803337	46	0,756876	0,863379	0,808375
17	0,751982	0,849059	0,799048	47	0,756751	0,862806	0,808040
18	0,752650	0,850719	0,800184	48	0,756772	0,862875	0,808084
19	0,755954	0,856000	0,804423	49	0,756790	0,863535	0,808402
20	0,769220	0,871835	0,818922	50	0,758624	0,865833	0,810458
21	0,757066	0,857658	0,805794	51	0,756827	0,863659	0,808481
22	0,754185	0,855422	0,803210	52	0,756893	0,863185	0,808294
23	0,754491	0,856191	0,803734	53	0,756905	0,863234	0,808323
24	0,756583	0,859309	0,806312	54	0,756763	0,863771	0,808499
25	0,764654	0,869247	0,815275	55	0,758278	0,865638	0,810181
26	0,757037	0,860172	0,806959	56	0,756792	0,863868	0,808559
27	0,755279	0,858598	0,805283	57	0,757004	0,863470	0,808486
28	0,755440	0,859009	0,805562	58	0,757011	0,863504	0,808506
29	0,756756	0,861060	0,807225	59	0,756743	0,863935	0,808565
30	0,762189	0,867850	0,813306	60	0,758014	0,865489	0,809971

Taula C.115: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (8).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	0,756765	0,864020	$0,\!808616$	83	0,756827	0,864204	0,808735	
62	0,756948	0,863688	$0,\!808558$	84	0,756688	0,864400	0,808753	
63	0,756977	0,863712	$0,\!808586$	85	0,757319	0,865099	0,809417	
64	0,756727	0,864065	$0,\!808617$	86	0,756695	0,864419	$0,\!808765$	
65	0,757809	0,865374	0,809807	87	0,756794	0,864274	0,808750	
66	0,756744	0,864124	$0,\!808654$	88	0,756804	0,864278	0,808758	
67	0,756903	0,863859	$0,\!808615$	89	0,756682	0,864452	0,808774	
68	0,756927	0,863877	0,808635	90	0,757244	0,865057	0,809357	
69	0,756714	0,864175	$0,\!808661$	91	0,756688	$0,\!864467$	0,808784	
70	0,757646	0,865282	$0,\!809678$	92	0,756777	0,864338	0,808771	
71	0,756728	0,864206	0,808684	93	0,756786	0,864341	0,808777	
72	0,756867	0,863996	0,808659	94	0,756676	0,864496	0,808791	
73	0,756886	0,864009	$0,\!808676$	95	0,757181	0,865022	0,809307	
74	0,756704	0,864264	0,808698	96	0,756682	0,864509	0,808800	
75	0,757515	0,865209	0,809573	97	0,756762	0,864392	0,808789	
76	0,756715	0,864290	0,808716	98	0,756770	0,864394	0,808794	
77	0,756838	0,864107	0,808696	99	0,756672	0,864533	0,808807	
78	0,756854	0,864116	0,808708	100	0,757127	0,864992	0,809264	

Taula C.116: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (8).



Figura C.117: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (8)

		$\bigcirc$				$\bigcirc$	
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,541560	0,412417	$0,\!472597$	33	0,756155	0,861193	0,806967
4	$0,\!676361$	$0,\!663427$	$0,\!669863$	34	0,755122	0,862586	$0,\!807067$
5	0,997342	0,987465	0,992391	35	0,758885	0,865897	0,810627
6	0,770247	0,776966	0,773599	36	0,755232	0,862588	0,807127
7	0,728498	0,774185	0,750995	37	0,755672	0,862288	0,807222
8	0,737477	0,794371	0,765395	38	0,755809	0,862246	0,807275
9	0,752859	0,825969	0,788567	39	0,755057	0,862925	0,807191
10	0,806867	0,892100	0,848414	40	0,757928	0,865399	0,809883
11	0,760346	0,839542	0,798963	41	0,755130	0,862895	0,807216
12	0,751797	0,834154	0,791905	42	0,755488	0,863027	0,807469
13	0,753327	0,838184	0,794624	43	0,755582	0,862955	0,807486
14	0,755575	0,849040	0,800945	44	0,755010	0,863154	0,807273
15	0,777349	0,875885	0,825148	45	0,757274	0,865063	0,809376
16	0,757368	0,853370	0,803937	46	0,755061	0,863107	0,807279
17	0,757983	0,849914	0,802633	47	0,755358	0,863541	0,807640
18	0,758241	0,851162	0,803359	48	0,755425	0,863456	0,807636
19	0,755582	0,856458	0,804440	49	0,754975	0,863316	0,807330
20	0,767376	0,870446	0,817288	50	0,756806	0,864826	0,809015
21	0,756186	0,858403	0,805675	51	0,755013	0,863261	0,807325
22	0,757083	0,856237	0,805135	52	0,755262	0,863914	0,807763
23	0,757726	0,856683	0,805687	53	0,755311	0,863745	0,807711
24	0,755360	0,859772	0,805877	54	0,754949	0,863435	0,807372
25	0,762821	0,867987	0,813707	55	0,756460	0,864653	0,808749
26	0,755666	0,860493	0,806378	56	0,754977	0,863376	0,807360
27	0,756367	0,859385	0,806233	57	0,755189	0,864050	0,807788
28	0,756717	0,859532	0,806488	58	0,755227	0,863768	0,807676
29	0,755217	0,861571	0,806643	59	0,754929	0,863524	0,807403
30	0,760362	0,866675	0,811780	60	0,756197	0,864523	0,808548

Taula C.118: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (9).

		$\bigcirc$					
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,754951	0,863464	$0,\!807386$	83	0,755012	0,863837	$0,\!807594$
62	0,755133	0,864047	$0,\!807756$	84	0,754874	0,863754	$0,\!807481$
63	0,755162	0,863787	$0,\!807651$	85	0,755503	0,864193	$0,\!808023$
64	0,754913	0,863593	$0,\!807426$	86	0,754881	0,863731	$0,\!807474$
65	0,755992	0,864424	0,808392	87	0,754979	0,864031	0,807667
66	0,754930	0,863533	0,807408	88	0,754990	0,863845	$0,\!807586$
67	0,755089	0,864043	$0,\!807731$	89	0,754868	0,863778	$0,\!807489$
68	0,755112	0,863803	0,807631	90	0,755429	0,864160	0,807967
69	0,754900	0,863647	$0,\!807445$	91	0,754874	0,863761	0,807484
70	0,755830	0,864346	0,808269	92	0,754962	0,864028	0,807656
71	0,754914	0,863598	0,807429	93	0,754972	0,863852	0,807579
72	0,755053	0,864040	0,807710	94	0,754862	0,863799	0,807496
73	0,755072	0,863816	0,807616	95	0,755366	0,864131	0,807920
74	0,754890	0,863690	0,807459	96	0,754868	0,863786	0,807493
75	0,755699	0,864284	0,808170	97	0,754948	0,864026	0,807647
76	0,754901	0,863652	0,807447	98	0,754956	0,863859	0,807574
77	0,755024	0,864037	0,807693	99	0,754858	0,863816	0,807501
78	0,755039	0,863827	0,807603	100	0,755312	0,864108	0,807881

Taula C.119: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (9).



Figura C.120: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (9).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	$0,\!664056$	0,501966	0,577350	33	0,824719	0,902310	0,862643
4	$0,\!698736$	$0,\!619283$	$0,\!657811$	34	0,823643	0,902855	0,862340
5	0,781324	0,769067	0,775171	35	0,823706	0,903053	0,862468
6	0,996084	0,986618	0,991340	36	0,827952	$0,\!906639$	0,866403
7	0,834776	0,837874	0,836323	37	0,823848	0,903786	0,862892
8	0,801830	0,832123	0,816836	38	0,823572	0,904269	0,862978
9	0,814586	0,860835	0,837391	39	0,824474	0,903335	0,863004
10	0,813343	0,858333	0,835535	40	0,823668	0,903417	0,862621
11	0,821435	0,879961	0,850194	41	0,823728	0,903637	0,862758
12	0,862634	0,923888	0,892736	42	0,826836	0,906142	0,865581
13	0,825509	0,888542	0,856446	43	0,823817	0,904216	0,863081
14	0,821821	0,883208	0,851962	44	0,823623	0,904550	0,863138
15	0,822330	0,889559	0,855284	45	0,824311	0,904048	0,863259
16	0,823569	0,888632	0,855482	46	0,823685	0,903782	0,862805
17	0,823184	0,895974	0,858808	47	0,823739	0,904009	0,862941
18	0,840725	0,912809	0,876026	48	0,826112	0,905831	0,865054
19	0,824345	0,898792	0,860764	49	0,823799	0,904488	0,863201
20	0,822945	0,896269	0,858825	50	0,823655	0,904729	0,863241
21	0,825790	0,897387	0,860844	51	0,824198	0,904313	0,863327
22	0,823569	0,898276	0,860112	52	0,823698	0,904035	0,862932
23	0,823544	0,900195	0,861017	53	0,823745	0,904261	0,863065
24	0,833241	0,909130	0,870358	54	0,825617	0,905626	0,864697
25	0,824028	0,901710	0,861994	55	0,823787	0,904603	0,863250
26	0,823319	0,901693	0,861615	56	0,823677	0,904849	0,863310
27	0,825111	0,900629	0,862044	57	0,824116	0,904459	0,863353
28	0,823610	0,901916	0,861874	58	0,823708	0,904217	0,863024
29	0,823659	0,902066	0,861971	59	0,823749	0,904439	0,863152
30	0,829808	0,907494	0,867782	60	0,825263	0,905486	0,864444

Taula C.121: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (10).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!823780$	0,904649	0,863268	83	0,823754	0,904802	0,863328	
62	$0,\!823693$	0,904933	0,863358	84	0,824524	0,905218	0,863929	
63	0,824054	0,904569	0,863373	85	0,823766	0,904775	0,863321	
64	0,823715	0,904354	0,863093	86	0,823724	0,905094	0,863451	
65	0,823751	0,904569	0,863215	87	0,823918	0,904819	0,863422	
66	0,825001	0,905386	0,864259	88	0,823733	0,904664	0,863251	
67	0,823774	0,904688	0,863284	89	0,823755	0,904849	0,863351	
68	$0,\!823704$	0,904992	0,863392	90	0,824425	0,905186	0,863862	
69	0,824008	0,904653	0,863389	91	0,823764	0,904797	0,863330	
70	0,823721	0,904459	0,863147	92	0,823728	0,905114	0,863463	
71	0,823753	0,904667	0,863262	93	0,823898	0,904864	0,863433	
72	0,824802	0,905313	0,864120	94	0,823735	0,904710	0,863274	
73	$0,\!823771$	0,904721	0,863298	95	0,823755	0,904888	0,863369	
74	0,823712	$0,\!905036$	0,863417	96	0,824344	0,905162	0,863808	
75	0,823971	0,904720	0,863402	97	0,823763	0,904817	0,863339	
76	0,823726	0,904542	0,863189	98	0,823732	0,905129	0,863472	
77	0,823754	0,904742	0,863299	99	0,823882	0,904905	0,863444	
78	0,824647	0,905259	0,864013	100	0,823737	0,904748	0,863293	

Taula C.122: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (10).



Figura C.123: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (10)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	$0,\!652726$	0,510679	$0,\!577350$	33	0,810647	0,895393	$0,\!851967$	
4	0,712993	$0,\!621449$	$0,\!665649$	34	$0,\!809590$	0,894907	0,851180	
5	0,780817	0,777215	0,779014	35	$0,\!809651$	$0,\!896397$	0,851921	
6	0,979088	0,934821	0,956699	36	0,813825	0,895732	0,853797	
7	0,820837	0,849552	$0,\!835071$	37	0,809791	0,895046	0,851352	
8	0,801607	0,840614	0,820879	38	0,809519	0,895552	0,851450	
9	0,814898	0,860365	0,837323	39	0,810406	0,895144	0,851722	
10	0,810191	0,866528	0,837886	40	0,809613	0,895542	0,851494	
11	0,807419	0,877780	0,841865	41	0,809673	0,896717	0,852084	
12	0,847915	0,905637	0,876301	42	0,812728	0,895732	0,853221	
13	0,811424	0,884851	0,847342	43	0,809760	0,895646	0,851621	
14	0,807799	0,894811	0,850192	44	0,809569	0,895548	0,851474	
15	0,812950	0,886295	0,848830	45	0,810246	0,895100	0,851617	
16	0,809517	0,883662	0,845777	46	0,809631	0,895345	0,851410	
17	0,809138	0,889920	0,848568	47	0,809684	0,897008	0,852228	
18	0,826380	0,898346	0,861612	48	0,812016	0,895792	0,852876	
19	0,810280	0,888955	0,848706	49	0,809742	0,896049	0,851804	
20	0,808903	0,897164	0,851892	50	0,809601	0,895496	0,851467	
21	0,811700	0,892910	$0,\!851337$	51	0,810135	0,895145	0,851580	
22	0,809517	0,889813	0,848716	52	0,809644	0,895291	$0,\!851391$	
23	0,809492	0,893738	0,850573	53	0,809690	0,896650	0,852061	
24	0,819023	0,896466	0,856870	54	0,811529	0,895875	0,852660	
25	0,809968	0,892400	0,850185	55	0,809731	0,896335	0,851933	
26	0,809270	0,895575	0,851330	56	0,809623	0,895522	0,851490	
27	0,811033	0,895421	0,852183	57	0,810054	0,895229	0,851577	
28	0,809557	0,893206	0,850354	58	0,809653	0,895562	0,851525	
29	0,809605	0,895556	0,851497	59	0,809694	0,896368	0,851929	
30	0,815650	0,895889	0,854828	60	0,811181	0,895964	0,852519	

Taula C.124: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (11).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!809724$	$0,\!896544$	0,852029	83	$0,\!809699$	$0,\!896045$	$0,\!851779$
62	$0,\!809638$	$0,\!895600$	$0,\!851535$	84	$0,\!810455$	$0,\!896285$	0,852290
63	$0,\!809994$	$0,\!895541$	$0,\!851694$	85	$0,\!809710$	$0,\!896276$	$0,\!851894$
64	0,809660	$0,\!895811$	$0,\!851647$	86	$0,\!809669$	$0,\!896035$	0,851758
65	$0,\!809696$	$0,\!896203$	0,851852	87	0,809860	0,896281	$0,\!851975$
66	0,810924	$0,\!896052$	0,852426	88	0,809678	$0,\!896270$	0,851874
67	0,809718	0,896704	0,852102	89	0,809699	0,896047	0,851779
68	$0,\!809649$	$0,\!895867$	0,851668	90	0,810358	$0,\!896352$	0,852271
69	0,809948	0,895800	0,851793	91	0,809708	0,896199	0,851857
70	0,809666	0,896016	0,851748	92	0,809673	0,895991	0,851739
71	$0,\!809697$	0,896110	0,851809	93	0,809840	0,896192	0,851923
72	$0,\!810728$	$0,\!896135$	0,852363	94	0,809680	$0,\!896375$	0,851926
73	$0,\!809715$	$0,\!896488$	0,851997	95	0,809700	0,896061	0,851786
74	$0,\!809658$	0,896093	0,851779	96	0,810278	0,896413	0,852258
75	0,809912	0,896007	0,851872	97	0,809707	0,896164	0,851839
76	0,809671	$0,\!896145$	0,851811	98	0,809676	0,896010	0,851750
77	0,809698	0,896063	0,851787	99	0,809825	0,896137	0,851889
78	0,810576	0,896213	0,852320	100	0,809682	0,896337	0,851908

Taula C.125: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (11).



Figura C.126: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (11).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	$0,\!666667$	0,500000	0,577350	33	$0,\!826364$	$0,\!903476$	0,864060	
4	$0,\!696152$	$0,\!618802$	$0,\!656339$	34	0,825421	0,902603	0,863150	
5	0,775558	0,767210	0,771373	35	0,826536	0,904058	0,864429	
6	1,000000	1,000000	1,000000	36	0,831207	0,909209	0,869333	
7	0,830483	0,835753	0,833113	37	0,826735	0,904357	0,864675	
8	0,797628	0,830648	0,813971	38	0,825735	0,903459	0,863723	
9	0,817788	0,860967	0,839100	39	0,826544	0,904448	0,864619	
10	0,808439	0,857767	0,832738	40	0,825858	0,903794	0,863948	
11	0,820360	0,878115	0,848747	41	0,826670	0,904829	0,864867	
12	0,866025	0,928203	0,896575	42	0,830086	0,908595	0,868454	
13	0,825991	0,886294	0,855612	43	0,826794	0,905017	0,865022	
14	0,817632	0,881684	0,849054	44	0,826055	0,904333	0,864308	
15	0,823868	0,890339	0,856459	45	0,826656	0,905058	0,864969	
16	0,819845	0,887566	0,853034	46	0,826135	0,904551	0,864454	
17	0,824656	0,894852	0,859037	47	0,826752	0,905324	0,865147	
18	0,844030	0,916222	0,879385	48	0,829360	0,908197	0,867884	
19	0,826274	0,897256	0,861034	49	0,826836	0,905450	0,865250	
20	0,822433	0,894505	0,857713	50	0,826267	0,904912	0,864696	
21	0,825424	0,898447	0,861162	51	0,826731	0,905466	0,865203	
22	0,823228	0,896651	0,859156	52	0,826322	0,905062	0,864796	
23	0,825828	0,900319	0,862269	53	0,826807	$0,\!905660$	0,865336	
24	0,836516	0,912115	0,873498	54	0,828862	0,907924	0,867493	
25	0,826504	0,901330	0,863106	55	0,826866	0,905749	0,865409	
26	0,824301	0,899557	0,861107	56	0,826415	0,905315	0,864965	
27	0,826051	0,901785	0,863088	57	0,826784	0,905752	0,865367	
28	0,824673	0,900567	0,861785	58	0,826454	0,905422	0,865037	
29	0,826301	0,902760	0,863685	59	0,826845	0,905900	0,865470	
30	0,833070	0,910229	0,870796	60	0,828507	0,907729	0,867214	

Taula C.127: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (i 12).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!826888$	$0,\!905964$	0,865523	83	0,826921	$0,\!906394$	0,865746	
62	$0,\!826521$	0,905606	0,865161	84	0,827765	0,907323	0,866631	
63	0,826822	0,905960	0,865487	85	0,826937	0,906418	0,865766	
64	$0,\!826550$	0,905686	0,865214	86	0,826748	0,906227	0,865576	
65	0,826872	0,906076	0,865569	87	0,826903	$0,\!906407$	0,865743	
66	0,828244	0,907585	$0,\!867007$	88	0,826759	$0,\!906258$	0,865596	
67	$0,\!826905$	0,906124	0,865609	89	0,826931	0,906460	0,865783	
68	$0,\!826601$	0,905825	0,865307	90	0,827666	0,907268	0,866553	
69	0,826850	0,906116	0,865576	91	0,826943	0,906479	0,865799	
70	0,826623	0,905885	0,865347	92	0,826779	0,906312	0,865633	
71	0,826893	0,906209	0,865643	93	0,826915	$0,\!906468$	0,865778	
72	0,828044	0,907476	0,866850	94	0,826788	$0,\!906337$	0,865649	
73	0,826918	0,906246	0,865674	95	0,826939	0,906514	0,865813	
74	$0,\!826662$	0,905992	0,865418	96	0,827584	0,907224	0,866489	
75	0,826872	0,906237	0,865645	97	0,826949	0,906530	0,865826	
76	$0,\!826679$	0,906039	0,865450	98	0,826804	0,906382	0,865679	
77	0,826909	0,906313	0,865701	99	0,826924	0,906519	0,865807	
78	0,827888	0,907390	0,866728	100	0,826812	0,906402	0,865693	

Taula C.128: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (heptàgons) (i 12).



Figura C.129: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtex<br/>s alineats (heptàgons) (i12)
			-					
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,979239	0,942678	0,960785	33	0,438881	0,606393	0,515883	
4	$0,\!484195$	$0,\!498694$	$0,\!491391$	34	0,438541	0,604112	0,514712	
5	$0,\!434591$	0,540242	$0,\!484545$	35	0,438417	0,604146	0,514654	
6	0,514533	$0,\!662818$	0,583988	36	$0,\!438655$	$0,\!606157$	0,515649	
7	$0,\!446765$	0,573278	0,506084	37	0,438554	0,604306	0,514802	
8	0,438683	0,581090	0,504890	38	0,438420	0,604329	0,514733	
9	0,467042	0,628365	0,541731	39	0,438493	0,605978	0,515478	
10	0,441290	0,590078	0,510290	40	0,438565	0,604456	0,514872	
11	0,438757	0,592745	0,509972	41	0,438424	0,604472	0,514796	
12	0,452557	0,617494	0,528632	42	0,438376	0,605838	0,515349	
13	0,439675	0,596467	0,512105	43	0,438573	0,604575	0,514928	
14	0,438631	0,597648	0,512003	44	0,438429	0,604587	0,514848	
15	0,446374	0,612704	0,522968	45	0,438290	0,605729	0,515252	
16	0,439045	0,599559	0,513063	46	0,438475	0,604671	0,514911	
17	0,438537	0,600163	0,513024	47	0,438434	0,604679	0,514890	
18	0,443232	0,610188	0,520052	48	0,438227	0,605641	0,515178	
19	0,438764	0,601285	0,513636	49	0,438393	0,604749	0,514895	
20	0,438480	0,601622	0,513614	50	0,438439	0,604756	0,514926	
21	0,441452	0,608711	0,518379	51	0,438180	0,605570	0,515120	
22	0,438629	0,602342	0,514008	52	0,438329	0,604813	0,514886	
23	0,438447	0,602543	0,513987	53	0,438445	0,604819	0,514956	
24	0,440366	0,607776	0,517343	54	0,438147	0,605512	0,515076	
25	0,438564	0,603036	0,514266	55	0,438281	0,604867	0,514880	
26	0,438429	0,603160	0,514240	56	0,438450	0,604873	0,514982	
27	0,439669	0,607149	0,516667	57	0,438196	0,605464	0,515084	
28	0,438536	0,603514	0,514454	58	0,438243	0,604912	0,514877	
29	0,438420	0,603593	0,514420	59	0,438455	0,604918	0,515004	
30	0,439203	0,606711	0,516206	60	0,438240	0,605424	0,515093	

Taula C.130: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (1).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!438214$	$0,\!604950$	0,514876	83	0,438311	$0,\!605118$	0,515005
62	$0,\!438461$	$0,\!604957$	0,515024	84	0,438436	$0,\!605260$	0,515139
63	$0,\!438277$	$0,\!605390$	0,515101	85	0,438241	0,605120	0,514964
64	$0,\!438192$	$0,\!604983$	0,514877	86	0,438284	$0,\!605132$	0,514995
65	0,438466	0,604990	0,515041	87	0,438450	0,605251	0,515143
66	0,438309	$0,\!605362$	0,515107	88	0,438253	0,605131	0,514976
67	$0,\!438175$	0,605011	0,514880	89	0,438261	0,605144	0,514987
68	$0,\!438470$	$0,\!605019$	0,515056	90	0,438446	0,605242	0,515137
69	0,438337	$0,\!605338$	0,515114	91	0,438264	0,605141	0,514987
70	0,438170	0,605036	0,514887	92	0,438249	0,605155	0,514984
71	$0,\!438475$	0,605044	0,515070	93	0,438415	0,605235	0,515115
72	0,438362	$0,\!605317$	0,515120	94	0,438275	0,605151	0,514998
73	$0,\!438185$	$0,\!605057$	0,514905	95	0,438241	$0,\!605165$	0,514984
74	0,438426	0,605066	0,515050	96	0,438388	0,605228	0,515097
75	0,438384	0,605300	0,515125	97	0,438285	0,605159	0,515007
76	0,438200	$0,\!605076$	0,514922	98	0,438237	0,605174	0,514985
77	0,438381	$0,\!605085$	0,515032	99	0,438364	0,605222	0,515080
78	0,438403	$0,\!605285$	0,515130	100	0,438295	0,605166	0,515016

Taula C.131: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (1).



Figura C.132: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (1).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,500074	0,461848	0,480581	33	0,642634	0,782915	0,709315
4	0,999950	0,990100	0,995013	34	0,642243	0,782644	0,708976
5	0,666021	0,673683	0,669841	35	0,642552	0,783195	0,709397
6	$0,\!623326$	$0,\!696187$	$0,\!658750$	36	$0,\!645710$	0,787437	0,713061
7	$0,\!631213$	0,728915	$0,\!678307$	37	$0,\!642674$	0,783431	0,709571
8	0,711232	0,828469	0,767615	38	$0,\!642367$	0,783201	0,709297
9	$0,\!643706$	0,751364	$0,\!695455$	39	$0,\!642618$	0,783632	0,709631
10	$0,\!636290$	0,753200	0,692282	40	$0,\!645143$	0,787056	0,712576
11	$0,\!639111$	0,762668	0,698162	41	0,642707	0,783804	0,709758
12	$0,\!671540$	0,803888	0,734740	42	0,642459	0,783607	0,709532
13	0,642527	0,769151	0,702994	43	0,642667	0,783952	0,709803
14	0,639474	0,768974	0,701241	44	0,644729	0,786775	0,712219
15	0,641017	0,773212	0,704019	45	0,642734	0,784081	0,709899
16	0,658514	0,795689	0,723859	46	0,642530	0,783911	0,709709
17	0,642425	0,775924	0,706026	47	0,642705	0,784194	0,709934
18	$0,\!640768$	0,775474	0,704911	48	0,644417	0,786561	0,711950
19	0,641754	0,777823	0,706520	49	0,642757	0,784294	0,710007
20	0,652663	0,791962	0,718946	50	0,642587	0,784146	0,709846
21	0,642468	0,779206	0,707541	51	0,642736	0,784382	0,710036
22	$0,\!641431$	0,778767	0,706771	52	0,644178	0,786394	0,711743
23	0,642118	0,780243	0,707819	53	0,642777	0,784460	0,710094
24	0,649546	0,789954	0,716318	54	0,642632	0,784330	0,709955
25	$0,\!642530$	0,781042	0,708409	55	0,642761	0,784530	0,710116
26	0,641821	0,780661	0,707845	56	0,643989	0,786262	0,711579
27	0,642327	0,781669	0,708581	57	0,642794	0,784592	0,710163
28	0,647697	0,788750	0,714752	58	0,642669	0,784477	0,710042
29	$0,\!642587$	0,782171	0,708952	59	0,642782	0,784649	0,710182
30	0,642071	0,781849	0,708522	60	0,643839	0,786156	0,711448

Taula C.133: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (2).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!642809$	0,784700	0,710219	83	$0,\!642857$	0,785039	0,710400
62	$0,\!642700$	0,784597	0,710113	84	$0,\!643360$	0,785804	0,711024
63	$0,\!642799$	0,784746	0,710235	85	$0,\!642867$	0,785057	0,710414
64	$0,\!643718$	0,786069	0,711342	86	0,642812	0,785001	0,710358
65	$0,\!642822$	0,784788	0,710266	87	$0,\!642865$	0,785075	0,710420
66	$0,\!642726$	0,784696	0,710172	88	0,643318	0,785771	0,710986
67	$0,\!642814$	0,784826	0,710280	89	0,642874	0,785091	0,710432
68	$0,\!643619$	0,785997	0,711254	90	0,642824	0,785039	0,710381
69	$0,\!642833$	0,784861	0,710306	91	0,642872	0,785106	0,710438
70	$0,\!642749$	0,784778	0,710222	92	0,643281	0,785743	0,710953
71	0,642827	0,784893	0,710317	93	0,642880	0,785120	0,710449
72	$0,\!643536$	0,785936	0,711181	94	0,642834	0,785072	0,710402
73	$0,\!642843$	0,784922	0,710339	95	$0,\!642878$	0,785133	0,710454
74	0,642768	0,784848	0,710264	96	0,643250	0,785718	0,710924
75	0,642839	0,784949	0,710349	97	0,642885	0,785146	0,710464
76	0,643467	0,785885	0,711120	98	0,642843	0,785101	0,710420
77	0,642852	0,784974	0,710368	99	0,642884	0,785157	0,710468
78	0,642785	0,784907	0,710300	100	0,643222	0,785696	0,710899

Taula C.134: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (2).



Figura C.135: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (2)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,523194	0,465849	0,493690	33	0,668186	0,785823	0,724621
4	0,996250	0,908407	0,951315	34	0,667810	0,785550	0,724291
5	0,695111	0,676185	0,685583	35	0,668074	0,786104	0,724690
6	0,653783	0,698773	0,675904	36	0,667575	0,790362	0,726379
7	$0,\!670776$	0,731622	0,700539	37	0,667979	0,786341	0,724748
8	0,725550	0,831545	0,776742	38	0,667385	0,786110	0,724319
9	$0,\!681577$	0,754154	0,716948	39	$0,\!667898$	0,786542	0,724797
10	$0,\!679478$	0,755998	0,716717	40	0,667230	0,789979	0,726015
11	$0,\!676620$	0,765500	0,719690	41	$0,\!667829$	0,786715	0,724839
12	$0,\!689161$	0,806873	0,745698	42	0,667103	0,786517	0,724353
13	$0,\!673859$	0,772008	0,721266	43	0,667769	0,786864	0,724875
14	0,682102	0,771830	0,725580	44	0,666998	0,789697	0,725759
15	$0,\!672159$	0,776084	0,722255	45	0,667717	0,786993	0,724906
16	$0,\!677705$	0,798644	0,735694	46	0,666912	0,786823	0,724390
17	$0,\!671036$	0,778805	0,722915	47	0,667672	0,787107	0,724934
18	0,674803	0,778354	0,724731	48	0,666840	0,789482	0,725574
19	$0,\!670256$	0,780712	0,723379	49	0,667632	0,787207	0,724958
20	0,672801	0,794903	0,731308	50	0,666780	0,787058	0,724427
21	0,669690	0,782100	0,723716	51	0,667597	0,787295	0,724980
22	$0,\!671372$	0,781659	0,724420	52	0,666731	0,789315	0,725438
23	0,669268	0,783141	0,723969	53	0,667566	0,787373	0,724999
24	0,670324	0,792888	0,729035	54	0,666689	0,787243	0,724463
25	0,668944	0,783942	0,724164	55	0,667538	0,787443	0,725016
26	$0,\!669537$	0,783560	0,724308	56	0,666655	0,789183	0,725336
27	0,668690	0,784572	0,724317	57	0,667512	0,787506	0,725031
28	0,668936	0,791679	0,727724	58	0,666626	0,787391	0,724497
29	0,668487	0,785076	0,724440	59	0,667490	0,787563	0,725045
30	0,668469	0,784753	0,724281	60	0,666602	0,789076	0,725258

Taula C.136: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (3).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!667469$	0,787614	0,725057	83	$0,\!666655$	0,787954	0,724772
62	$0,\!666583$	0,787511	0,724528	84	$0,\!666517$	0,788722	0,725050
63	$0,\!667357$	0,787660	0,725018	85	$0,\!666620$	0,787973	0,724761
64	$0,\!666567$	0,788988	0,725199	86	$0,\!666518$	0,787916	0,724680
65	$0,\!667244$	0,787702	0,724976	87	$0,\!666589$	0,787990	0,724752
66	$0,\!666554$	0,787610	0,724558	88	$0,\!666520$	0,788690	0,725036
67	$0,\!667144$	0,787741	0,724939	89	$0,\!666560$	0,788007	0,724744
68	$0,\!666543$	0,788916	0,725153	90	$0,\!666522$	0,787954	0,724699
69	$0,\!667056$	0,787776	0,724907	91	$0,\!666535$	0,788022	0,724737
70	$0,\!666535$	0,787693	0,724586	92	$0,\!666525$	0,788661	0,725026
71	$0,\!666977$	0,787808	0,724879	93	0,666513	0,788036	0,724732
72	0,666529	0,788855	0,725117	94	0,666528	0,787988	0,724718
73	0,666907	0,787837	0,724855	95	0,666493	0,788049	0,724727
74	0,666524	0,787762	0,724612	96	0,666531	0,788636	0,725018
75	0,666845	0,787865	0,724833	97	0,666475	0,788062	0,724723
76	0,666520	0,788804	0,725089	98	0,666535	0,788017	0,724735
77	0,666789	0,787890	0,724815	99	0,666459	0,788073	0,724720
78	0,666518	0,787822	0,724636	100	0,666539	0,788614	0,725012

Taula C.137: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (3).



Figura C.138: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (3).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,543201	0,412472	0,473344	33	0,761919	0,861017	0,809954
4	$0,\!679955$	0,663832	0,671845	34	0,760564	0,862229	0,809803
5	0,995664	0,985896	0,990768	35	0,763321	0,866249	0,813158
6	0,773233	0,776339	0,774784	36	0,760440	0,862586	0,809905
7	0,731406	0,773690	0,752251	37	0,761088	0,861973	0,809961
8	0,740330	0,794361	0,766870	38	0,761434	0,862073	0,810193
9	0,756852	0,826002	0,790671	39	0,760491	0,862892	0,810075
10	0,809104	0,892134	0,849605	40	0,762476	0,865767	0,812482
11	0,765028	0,839039	0,801179	41	0,760319	0,863080	0,810072
12	0,754559	0,833725	0,793155	42	0,760804	0,862725	0,810163
13	0,756170	0,838076	0,796070	43	0,761115	0,862790	0,810360
14	0,760814	0,848931	0,803666	44	0,760439	0,863279	0,810229
15	0,780619	0,876073	0,826970	45	0,761909	0,865442	0,812027
16	0,763186	0,852930	0,806811	46	0,760242	0,863365	0,810164
17	0,760300	0,849524	0,803675	47	0,760613	0,863253	0,810309
18	0,760759	0,851014	0,804622	48	0,760896	0,863301	0,810482
19	0,761656	0,856297	0,807591	49	0,760407	0,863510	0,810320
20	0,771153	0,870706	0,819419	50	0,761511	0,865214	0,811708
21	0,761662	0,858137	0,808462	51	0,760191	0,863570	0,810234
22	0,762576	0,855873	0,807879	52	0,760480	0,863638	0,810420
23	0,762717	0,856515	0,808257	53	0,760738	0,863680	0,810577
24	0,760904	0,859648	0,808770	54	0,760383	0,863680	0,810387
25	0,766903	0,868291	0,816024	55	0,761223	0,865049	0,811477
26	0,760987	0,860638	0,809280	56	0,760157	0,863723	0,810287
27	0,762266	0,859040	0,809208	57	0,760385	0,863930	0,810506
28	0,762704	0,859357	0,809589	58	0,760622	0,863791	0,810567
29	0,760670	0,861237	0,809393	59	0,760363	0,863809	0,810437
30	0,764650	0,867007	0,814222	60	0,761008	0,864926	0,811305

Taula C.139: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (4).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,760137	0,863839	$0,\!810331$	83	0,760338	$0,\!864070$	$0,\!810546$
62	0,760315	$0,\!864157$	$0,\!810575$	84	0,760300	0,864144	$0,\!810561$
63	0,760535	0,863872	$0,\!810558$	85	0,760472	$0,\!864617$	0,810874
64	0,760346	0,863908	$0,\!810475$	86	0,760112	0,864151	0,810463
65	0,760844	0,864832	$0,\!811173$	87	0,760150	0,864425	0,810613
66	0,760128	0,863931	$0,\!810369$	88	0,760310	0,864102	0,810546
67	0,760263	0,864339	$0,\!810632$	89	0,760292	0,864180	0,810573
68	0,760467	0,863936	0,810552	90	0,760419	0,864586	0,810831
69	0,760332	0,863987	0,810504	91	0,760110	0,864184	0,810478
70	0,760717	0,864758	0,811071	92	0,760136	0,864435	0,810610
71	0,760122	0,864003	0,810400	93	0,760287	0,864129	0,810547
72	0,760223	0,864378	0,810629	94	0,760285	0,864210	0,810584
73	0,760414	0,863989	$0,\!810549$	95	0,760375	0,864560	0,810796
74	0,760320	0,864050	0,810527	96	0,760109	0,864213	0,810491
75	0,760617	0,864701	0,810991	97	0,760124	0,864443	0,810607
76	0,760117	0,864062	0,810425	98	0,760267	0,864152	0,810547
77	0,760193	0,864397	0,810622	99	0,760279	0,864235	0,810592
78	0,760372	0,864033	0,810547	100	0,760338	0,864539	0,810766

Taula C.140: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (4).



Figura C.141: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (4)

		$\bigcirc$					
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,539014	$0,\!412235$	$0,\!471381$	33	0,756320	0,860624	0,806788
4	$0,\!674259$	$0,\!662377$	$0,\!668292$	34	0,757265	0,862074	0,807972
5	0,999569	0,998587	0,999077	35	0,761149	0,867041	0,812371
6	0,767761	0,775632	0,771687	36	0,757466	0,862389	0,808226
7	0,724019	0,773105	0,748159	37	0,756599	0,861497	0,807346
8	0,733278	0,794204	0,763133	38	0,756668	0,861660	0,807459
9	0,747958	0,825356	0,785704	39	0,757281	0,862738	0,808291
10	0,809027	$0,\!894195$	0,850546	40	0,760201	0,866500	0,811612
11	0,757971	0,838436	0,797189	41	0,757519	0,862952	0,808519
12	0,746722	0,833189	0,788772	42	0,756853	0,862247	0,807833
13	0,748605	0,837812	0,791954	43	0,756903	0,862357	0,807911
14	0,754679	0,848544	0,800236	44	0,757374	0,863189	0,808553
15	0,779541	0,877512	0,827077	45	0,759553	0,866130	0,811093
16	0,757317	0,852381	0,803444	46	0,757561	0,863342	0,808724
17	0,752309	0,849018	0,799202	47	0,757031	0,862770	0,808173
18	0,752982	0,850699	0,800350	48	0,757068	0,862847	0,808229
19	0,756323	0,855988	0,804614	49	0,757440	0,863510	0,808738
20	0,769595	$0,\!871856$	$0,\!819131$	50	0,759091	0,865866	0,810723
21	0,757318	0,857615	0,805908	51	0,757521	0,863623	0,808834
22	0,754510	0,855383	$0,\!803365$	52	0,757160	0,863150	0,808420
23	0,754823	0,856168	0,803900	53	0,757189	0,863206	0,808461
24	0,756943	0,859288	0,806494	54	0,757461	0,863745	0,808859
25	0,765059	0,869272	0,815502	55	0,758750	0,865671	0,810449
26	0,757387	0,860131	0,807126	56	0,757456	0,863832	0,808897
27	0,755598	0,858559	$0,\!805435$	57	0,757256	0,863435	0,808605
28	0,755770	0,858985	0,805726	58	0,757279	0,863476	0,808636
29	0,757236	0,861038	0,807471	59	0,757409	0,863924	0,808915
30	0,762615	0,867878	0,813545	60	0,758491	0,865523	0,810242

Taula C.142: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (5).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,757406	0,863992	$0,\!808945$	83	0,757485	0,864176	$0,\!809074$
62	0,757330	0,863653	$0,\!808746$	84	0,757275	0,864385	0,809060
63	0,757348	0,863684	0,808771	85	0,757812	0,865134	$0,\!809697$
64	0,757369	0,864062	0,808958	86	0,757277	0,864410	0,809072
65	0,758290	0,865408	0,810081	87	0,757435	0,864241	$0,\!809077$
66	0,757368	0,864116	0,808983	88	0,757448	0,864250	0,809089
67	0,757388	0,863825	0,808858	89	0,757261	0,864436	0,809076
68	0,757403	0,863849	0,808877	90	0,757739	0,865093	0,809639
69	0,757337	0,864171	0,808993	91	0,757263	0,864456	0,809087
70	0,758131	0,865317	0,809953	92	0,757404	0,864305	0,809091
71	0,757338	0,864216	0,809014	93	0,757417	0,864312	0,809101
72	0,757435	0,863962	0,808947	94	0,757249	0,864472	0,809087
73	0,757447	0,863980	0,808962	95	0,757678	0,865058	0,809590
74	0,757312	0,864259	0,809021	96	0,757252	0,864492	0,809097
75	0,758003	0,865244	0,809850	97	0,757378	0,864359	0,809103
76	0,757313	0,864296	0,809038	98	0,757391	0,864365	0,809112
77	0,757472	0,864073	0,809019	99	0,757240	0,864504	0,809096
78	0,757483	0,864088	0,809031	100	0,757626	0,865028	0,809548

Taula C.143: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (5).



Figura C.144: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (5) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	$0,\!541182$	0,412471	$0,\!472464$	33	0,758869	0,860959	0,808304
4	$0,\!678771$	$0,\!664609$	$0,\!671653$	34	0,758986	0,862116	$0,\!808909$
5	$0,\!991836$	0,990048	0,990942	35	0,760930	0,866702	0,812096
6	0,771223	0,776564	0,773889	36	0,758799	0,862956	0,809203
7	0,728396	0,774058	0,750880	37	0,760028	0,862023	0,809421
8	0,737896	0,794319	0,765588	38	0,758672	0,862008	0,808691
9	0,752430	0,826627	0,788656	39	0,758935	0,862813	0,809209
10	0,804828	0,892993	0,847765	40	0,760190	0,866156	0,811445
11	0,761235	0,839147	0,799242	41	0,758786	0,863375	0,809393
12	0,751654	0,833923	0,791721	42	0,759783	0,862762	0,809637
13	0,753768	0,838021	0,794779	43	0,758557	0,862714	0,808961
14	0,758269	0,849516	0,802597	44	0,758898	0,863296	0,809416
15	0,777177	0,876913	0,825540	45	0,759716	0,865782	0,811017
16	0,760304	0,852992	0,805316	46	0,758776	0,863582	0,809484
17	0,757516	0,849659	0,802266	47	0,759604	0,863276	0,809783
18	0,758504	0,850962	0,803404	48	0,758488	0,863213	0,809158
19	0,759339	0,856824	0,806610	49	0,758871	0,863629	0,809557
20	0,768166	0,871523	0,818214	50	0,759394	0,865514	0,810720
21	0,759338	0,858185	0,807250	51	0,758767	0,863730	0,809549
22	0,759958	0,855975	0,806539	52	0,759468	0,863649	0,809885
23	0,759933	0,856465	0,806756	53	0,758464	0,863578	0,809316
24	0,759173	0,859738	0,807892	54	0,758851	0,863801	0,809627
25	0,764193	0,868950	0,814890	55	0,759169	0,865317	0,810507
26	0,758950	0,860690	0,808221	56	0,758758	0,863841	0,809597
27	0,760903	0,859121	0,808522	57	0,759361	0,863928	0,809959
28	0,759226	0,859304	0,807717	58	0,758457	0,863853	0,809441
29	0,759061	0,861222	0,808530	59	0,758847	0,863895	0,809669
30	0,762125	0,867546	0,813129	60	0,759007	0,865167	0,810350

Taula C.145: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (6).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,758751	0,863926	0,809632	83	0,758452	$0,\!864352$	0,809673
62	0,759224	0,864142	0,809986	84	0,758811	0,864140	0,809765
63	0,758449	0,864066	$0,\!809537$	85	0,758642	$0,\!864771$	0,809970
64	0,758841	0,863967	0,809700	86	0,758660	0,864151	0,809689
65	0,758888	0,865050	0,810232	87	0,758714	0,864355	0,809814
66	0,758744	0,863992	0,809660	88	0,758456	0,864355	0,809676
67	0,759064	0,864299	0,809974	89	0,758804	0,864166	0,809773
68	0,758447	0,864234	0,809615	90	0,758612	0,864728	0,809934
69	0,758833	0,864025	0,809723	91	0,758647	0,864175	0,809694
70	0,758799	0,864957	0,810141	92	0,758667	0,864357	0,809790
71	0,758719	0,864044	0,809671	93	0,758461	0,864358	0,809680
72	0,758942	0,864344	0,809930	94	0,758797	0,864188	0,809780
73	0,758447	0,864319	0,809654	95	0,758589	0,864692	0,809905
74	0,758826	0,864071	0,809740	96	0,758637	0,864196	0,809698
75	0,758732	0,864882	0,810070	97	0,758628	0,864360	0,809770
76	0,758695	0,864087	0,809678	98	0,758466	0,864360	0,809683
77	0,758847	0,864348	0,809882	99	0,758791	0,864207	0,809785
78	0,758449	0,864349	0,809669	100	0,758571	0,864662	0,809881

Taula C.146: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (6).



Figura C.147: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (6)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,666637	0,497141	0,575684	33	0,827639	0,903516	0,864746	
4	0,698352	0,618830	0,657390	34	0,827739	0,902643	0,864380	
5	0,777889	0,767244	0,772548	35	0,827084	0,904098	0,864734	
6	0,999956	0,988630	0,994277	36	0,831170	0,909249	0,869333	
7	0,834787	0,835790	0,835288	37	0,827171	0,904397	0,864923	
8	0,801562	0,830685	0,815993	38	0,827583	0,903499	0,864708	
9	0,817751	0,861005	0,839100	39	0,827678	0,904488	0,865231	
10	0,812893	0,857805	0,835047	40	0,827522	0,903834	0,864837	
11	0,824958	0,878154	0,851141	41	0,827056	0,904869	0,865088	
12	0,865987	0,928244	0,896575	42	0,830049	0,908635	0,868454	
13	0,829474	0,886334	0,857432	43	0,827111	0,905057	0,865207	
14	0,823095	0,881723	0,851905	44	0,827424	0,904373	0,865043	
15	0,823831	0,890378	0,856459	45	0,827515	0,905098	0,865438	
16	0,825866	0,887606	0,856180	46	0,827384	0,904591	0,865127	
17	0,827241	0,894892	0,860402	47	0,827036	0,905364	0,865314	
18	0,843992	0,916263	0,879385	48	0,829323	0,908237	0,867884	
19	0,827954	0,897295	0,861928	49	0,827072	0,905490	0,865393	
20	0,829204	0,894545	0,861255	50	0,827319	0,904952	0,865265	
21	0,825606	0,898487	0,861276	51	0,827401	0,905506	0,865573	
22	0,828817	0,896691	0,862086	52	0,827292	0,905102	0,865322	
23	0,827184	0,900359	0,862996	53	0,827021	0,905701	0,865467	
24	0,836479	0,912156	0,873498	54	0,828826	0,907965	0,867493	
25	0,827480	0,901370	0,863635	55	0,827046	0,905789	0,865523	
26	0,828291	0,899597	0,863208	56	0,827245	0,905355	0,865419	
27	0,826720	0,901825	$0,\!863457$	57	0,827319	0,905792	0,865667	
28	0,828108	0,900607	0,863597	58	0,827226	0,905462	0,865460	
29	0,827126	0,902801	0,864135	59	0,827010	0,905940	0,865576	
30	0,833033	0,910270	0,870796	60	0,828470	0,907770	0,867214	

Taula C.148: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (7).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!827028$	$0,\!906004$	0,865616	83	$0,\!826985$	$0,\!906435$	0,865799
62	$0,\!827192$	$0,\!905647$	$0,\!865531$	84	$0,\!827728$	$0,\!907363$	0,866631
63	$0,\!827257$	$0,\!906000$	0,865734	85	0,826992	$0,\!906458$	0,865814
64	$0,\!827178$	$0,\!905726$	0,865561	86	0,827079	0,906268	0,865769
65	$0,\!827001$	$0,\!906116$	0,865655	87	0,827120	$0,\!906447$	0,865876
66	0,828207	0,907626	0,867007	88	0,827074	0,906298	0,865780
67	0,827015	$0,\!906165$	0,865686	89	0,826982	0,906501	0,865829
68	0,827153	$0,\!905865$	0,865614	90	0,827629	0,907309	0,866553
69	$0,\!827210$	$0,\!906157$	0,865784	91	0,826987	$0,\!906520$	0,865841
70	0,827142	0,905925	0,865638	92	0,827064	$0,\!906353$	0,865801
71	$0,\!826995$	$0,\!906249$	0,865716	93	0,827101	$0,\!906509$	0,865895
72	$0,\!828007$	$0,\!907516$	0,866850	94	0,827059	$0,\!906377$	0,865810
73	0,827006	0,906287	0,865739	95	0,826979	0,906554	0,865853
74	0,827122	0,906032	0,865678	96	0,827547	0,907264	0,866489
75	0,827173	$0,\!906277$	0,865822	97	0,826983	0,906570	0,865863
76	0,827113	0,906079	0,865696	98	0,827051	0,906422	0,865828
77	0,826989	0,906353	0,865762	99	0,827084	0,906559	0,865911
78	0,827852	0,907431	0,866728	100	0,827047	0,906443	0,865835

Taula C.149: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (7).



Figura C.150: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (7) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,665926	0,500556	0,577350	33	0,827336	0,904481	0,865049
4	0,706263	0,619490	0,661455	34	0,826672	0,903607	0,864284
5	0,788042	0,768064	0,777988	35	0,826499	0,905064	0,864890
6	0,998889	0,962950	0,980755	36	0,830283	0,910220	0,869333
7	0,844374	0,836682	0,840519	37	0,826574	0,905363	0,865072
8	0,814798	0,831572	0,823143	38	0,826439	0,904464	0,864572
9	0,824647	0,861925	0,843080	39	0,826975	0,905454	0,865325
10	0,826952	0,858721	0,842687	40	0,826498	0,904799	0,864763
11	0,828820	0,879092	0,853586	41	0,826391	0,905835	0,865202
12	0,865063	0,929236	0,896575	42	0,829164	0,909606	0,868454
13	0,831022	0,887280	0,858690	43	0,826438	0,906024	0,865316
14	0,828078	0,882665	0,854936	44	0,826352	0,905339	0,864944
15	0,832372	0,891329	0,861346	45	0,826750	0,906065	0,865499
16	0,829163	0,888553	0,858345	46	0,826390	0,905557	0,865068
17	$0,\!827565$	0,895848	0,861030	47	0,826320	$0,\!906331$	0,865401
18	0,843092	0,917241	0,879385	48	0,828438	0,909207	0,867884
19	0,828181	0,898254	0,862506	49	0,826351	$0,\!906457$	0,865478
20	0,827217	0,895500	0,860682	50	0,826293	0,905918	0,865190
21	0,829231	0,899446	0,863625	51	0,826600	$0,\!906473$	0,865616
22	$0,\!827600$	0,897648	0,861913	52	0,826319	0,906068	0,865275
23	$0,\!826975$	0,901320	0,863348	53	0,826270	$0,\!906668$	0,865536
24	0,835587	0,913130	0,873498	54	0,827941	0,908934	0,867493
25	0,827230	0,902332	0,863965	55	0,826292	0,906756	0,865590
26	0,826801	0,900557	0,862892	56	0,826250	0,906322	0,865360
27	0,827968	0,902788	0,864569	57	0,826494	0,906759	0,865697
28	0,826979	0,901568	0,863469	58	0,826269	0,906429	0,865421
29	0,826673	0,903765	0,864360	59	0,826234	0,906907	0,865631
30	0,832145	0,911242	0,870796	60	0,827586	0,908739	0,867214

Taula C.151: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (8).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	$0,\!826250$	$0,\!906972$	$0,\!865670$	83	$0,\!826157$	$0,\!907403$	0,865827	
62	$0,\!826219$	$0,\!906614$	0,865484	84	0,826845	$0,\!908332$	0,866631	
63	$0,\!826418$	0,906968	$0,\!865757$	85	0,826163	0,907426	0,865842	
64	$0,\!826233$	$0,\!906693$	0,865529	86	0,826152	$0,\!907235$	0,865745	
65	$0,\!826207$	0,907084	0,865701	87	0,826254	0,907415	0,865884	
66	0,827324	$0,\!908595$	$0,\!867007$	88	0,826157	0,907266	0,865762	
67	$0,\!826219$	0,907132	0,865731	89	0,826147	0,907469	0,865853	
68	$0,\!826196$	$0,\!906832$	$0,\!865575$	90	0,826746	$0,\!908277$	0,866553	
69	$0,\!826361$	0,907124	0,865801	91	0,826151	$0,\!907488$	0,865865	
70	$0,\!826206$	0,906893	0,865610	92	0,826142	0,907320	0,865780	
71	0,826186	0,907217	0,865754	93	0,826232	0,907477	0,865902	
72	0,827124	0,908485	0,866850	94	0,826146	0,907345	0,865794	
73	$0,\!826195$	0,907255	0,865777	95	0,826138	0,907522	0,865875	
74	$0,\!826178$	0,907000	0,865646	96	0,826665	0,908233	0,866489	
75	$0,\!826317$	0,907245	0,865836	97	0,826142	$0,\!907538$	0,865884	
76	$0,\!826186$	0,907047	$0,\!865673$	98	0,826134	$0,\!907390$	0,865810	
77	0,826170	0,907321	0,865795	99	0,826213	0,907528	0,865916	
78	0,826969	0,908400	0,866728	100	0,826138	0,907411	0,865821	

Taula C.152: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (8).



Figura C.153: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (8)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
3	0,663944	0,498017	0,575026	33	0,830651	0,901631	0,865414	
4	0,698924	0,619194	0,657852	34	0,830173	0,904358	0,866472	
5	0,778646	0,769068	0,773842	35	0,830236	0,902087	0,865416	
6	0,991919	0,990866	0,991392	36	0,834516	0,905603	0,869333	
7	0,833789	0,838472	0,836127	37	0,830379	0,902215	0,865552	
8	0,801339	0,833731	0,817375	38	0,830101	0,905367	0,866917	
9	0,820977	0,857748	0,839161	39	0,831010	0,902324	0,865934	
10	0,812575	0,858743	0,835340	40	0,830198	0,905165	0,866871	
11	0,824738	0,879719	0,851785	41	0,830258	0,902418	0,865586	
12	0,867091	0,924522	0,895346	42	0,833391	0,904992	0,868454	
13	0,830204	0,888574	0,858893	43	0,830348	0,902498	0,865672	
14	0,822334	0,884412	0,852808	44	0,830153	0,904841	0,866693	
15	0,827148	0,887262	0,856678	45	0,830846	0,902568	0,865965	
16	0,824775	0,888957	0,856265	46	0,830215	0,904710	0,866663	
17	0,829131	0,895112	0,861490	47	0,830270	0,902630	0,865694	
18	0,847311	0,912588	0,879344	48	0,832662	0,904595	0,867884	
19	0,830881	0,898605	0,864080	49	0,830330	0,902684	0,865751	
20	0,827797	0,897054	0,861730	50	0,830185	0,904494	0,866543	
21	0,828724	0,895685	0,861554	51	0,830732	0,902731	0,865984	
22	0,828936	0,898231	0,862888	52	0,830229	0,904404	0,866523	
23	0,830073	0,900206	0,864429	53	0,830276	0,902774	0,865766	
24	0,839847	0,908498	0,873498	54	0,832162	0,904324	0,867493	
25	0,830561	0,900914	0,865022	55	0,830318	0,902812	0,865807	
26	0,829846	0,902001	0,865172	56	0,830207	0,904252	0,866439	
27	0,829704	0,899440	0,863869	57	0,830649	0,902845	0,865995	
28	0,830139	0,902253	0,865446	58	0,830238	0,904188	0,866424	
29	0,830189	0,901530	0,865124	59	0,830280	0,902876	0,865817	
30	0,836387	0,906620	0,870796	60	0,831805	0,904130	0,867214	

Taula C.154: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (9).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	$0,\!830311$	0,902904	0,865847	83	0,830285	$0,\!903087$	0,865922
62	$0,\!830223$	$0,\!904077$	0,866363	84	$0,\!831061$	0,903725	0,866631
63	$0,\!830588$	0,902929	0,866003	85	$0,\!830297$	0,903097	0,865932
64	$0,\!830246$	$0,\!904029$	0,866353	86	$0,\!830255$	$0,\!903705$	0,866202
65	$0,\!830282$	$0,\!902951$	0,865855	87	0,830450	$0,\!903107$	0,866017
66	$0,\!831541$	$0,\!903986$	0,867007	88	0,830263	$0,\!903687$	0,866198
67	$0,\!830305$	0,902972	0,865877	89	0,830286	0,903116	0,865935
68	$0,\!830234$	0,903946	0,866307	90	0,830961	$0,\!903670$	0,866553
69	$0,\!830540$	0,902991	0,866008	91	0,830295	0,903124	0,865944
70	$0,\!830252$	0,903910	0,866298	92	0,830259	$0,\!903654$	0,866180
71	$0,\!830284$	0,903008	0,865883	93	0,830431	$0,\!903131$	0,866018
72	$0,\!831341$	$0,\!903877$	0,866850	94	0,830266	0,903640	0,866176
73	$0,\!830302$	0,903024	0,865900	95	0,830286	0,903139	0,865946
74	$0,\!830243$	0,903846	0,866263	96	$0,\!830879$	0,903626	0,866489
75	0,830503	0,903039	0,866012	97	0,830294	0,903145	0,865954
76	$0,\!830257$	0,903818	0,866257	98	0,830262	0,903613	0,866161
77	0,830285	0,903052	0,865905	99	0,830414	0,903152	0,866020
78	0,831185	0,903792	0,866728	100	0,830268	0,903601	0,866159

Taula C.155: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (9).



Figura C.156: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (9).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,576923	$0,\!426369$	$0,\!495966$	33	0,866173	0,926262	$0,\!895714$
4	0,734046	$0,\!627802$	$0,\!678848$	34	0,866674	0,927091	$0,\!896374$
5	0,781166	0,726573	0,753375	35	$0,\!871665$	0,929322	0,900032
6	0,842028	0,834348	0,838179	36	0,866905	0,926824	0,896364
7	0,995367	0,982826	0,989076	37	0,866302	0,928509	0,896867
8	0,872610	0,878261	0,875431	38	0,866526	0,926254	0,895893
9	0,852882	0,868738	0,860773	39	0,866529	0,927026	0,896267
10	0,854315	0,882030	0,868062	40	0,866432	0,927356	0,896377
11	0,855341	0,888807	0,871914	41	0,866784	0,927502	0,896629
12	0,860992	0,897971	0,879287	42	0,870233	0,928805	0,899042
13	0,863803	0,911146	0,887159	43	0,866919	0,927239	0,896572
14	0,896795	0,940398	0,918338	44	0,866507	0,929074	0,897245
15	0,867332	0,919286	0,892931	45	0,866659	0,927073	0,896357
16	0,863131	0,914630	0,888508	46	0,866661	0,927942	0,896778
17	0,864692	0,914375	0,889186	47	0,866585	0,927836	0,896688
18	0,864732	0,915162	0,889590	48	0,866845	0,927741	0,896776
19	0,864562	0,919672	0,891691	49	0,869372	0,928521	0,898460
20	0,865890	0,922194	0,893599	50	0,866931	0,927496	0,896702
21	0,880063	0,932798	0,906047	51	0,866632	0,929300	0,897419
22	0,866938	0,924973	0,895485	52	0,866742	0,927557	0,896634
23	0,865171	0,925246	0,894705	53	0,866743	0,928414	0,897049
24	0,865833	0,921816	0,893386	54	0,866683	0,927861	0,896750
25	0,865846	0,922268	0,893612	55	0,866883	0,927893	0,896869
26	0,865682	0,924226	0,894475	56	0,868813	0,928355	0,898091
27	0,866451	0,925811	0,895639	57	0,866941	0,927667	0,896790
28	0,874310	0,930360	0,901900	58	0,866714	0,928999	0,897316
29	0,866897	0,926457	0,896182	59	0,866797	0,927680	0,896722
30	0,865935	0,927465	0,896172	60	0,866798	0,928433	0,897086

Taula C.157: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (10).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$	
61	0,866749	0,927887	$0,\!896797$	83	0,866947	0,928154	0,897028	
62	0,866908	0,927994	$0,\!896931$	84	0,867800	0,928122	0,897454	
63	0,868430	0,928253	$0,\!897843$	85	0,866965	0,927989	0,896958	
64	0,866949	0,927786	$0,\!896852$	86	0,866866	0,928368	0,897090	
65	0,866771	0,928747	$0,\!897224$	87	0,866902	0,927945	0,896904	
66	0,866836	0,927770	0,896785	88	0,866902	0,928444	0,897145	
67	0,866837	0,928442	0,897111	89	0,866877	0,927978	0,896907	
68	0,866796	0,927913	0,896834	90	0,866954	0,928183	0,897046	
69	0,866925	0,928065	$0,\!896974$	91	0,867680	0,928105	0,897384	
70	0,868156	0,928189	$0,\!897671$	92	0,866968	0,928029	0,896979	
71	0,866955	0,927873	$0,\!896897$	93	0,866884	0,928305	0,897069	
72	0,866812	0,928575	$0,\!897162$	94	0,866914	0,927970	0,896923	
73	0,866864	0,927859	0,896843	95	0,866915	0,928441	0,897151	
74	0,866865	0,928445	0,897127	96	0,866893	0,927996	0,896924	
75	0,866831	0,927937	0,896863	97	0,866959	0,928205	0,897060	
76	0,866938	0,928116	0,897005	98	0,867585	0,928095	0,897330	
77	0,867954	0,928148	0,897546	99	0,866971	0,928061	0,896996	
78	0,866961	0,927938	0,896931	100	0,866899	0,928259	0,897054	

Taula C.158: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (10).



Figura C.159: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (10)

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,586816	0,430574	0,502661	33	0,857714	0,917810	0,887253
4	0,746367	0,631091	0,686313	34	0,858210	0,919886	0,888513
5	0,800249	0,733739	0,766273	35	0,863152	0,918524	0,890408
6	0,833805	0,838060	0,835929	36	0,858438	0,918734	0,888075
7	0,985646	0,949157	0,967229	37	0,857842	0,919535	0,888153
8	0,864087	0,885163	0,874562	38	0,858063	0,918232	0,887638
9	0,845465	0,877306	0,861238	39	0,858066	0,920744	0,888853
10	0,851884	0,884564	0,868070	40	0,857970	0,918205	0,887577
11	0,852156	0,887450	0,869624	41	0,858318	0,920205	0,888723
12	0,852583	0,896600	0,874315	42	0,861734	0,918528	0,889678
13	0,855367	0,908687	0,881624	43	0,858452	0,919207	0,888310
14	0,888036	0,924712	0,906188	44	0,858044	0,919108	0,888051
15	0,858861	0,910601	0,884353	45	0,858195	0,918677	0,887921
16	0,854701	0,919118	0,886324	46	0,858197	0,919875	0,888501
17	0,856247	0,910815	0,883109	47	0,858122	0,918506	0,887801
18	0,856294	0,912779	0,884085	48	0,858379	0,920382	0,888840
19	0,856118	0,912649	0,883932	49	0,860881	0,918614	0,889279
20	0,857434	0,917719	0,887064	50	0,858464	0,919507	0,888462
21	0,871468	0,919880	0,895347	51	0,858168	0,918939	0,888034
22	0,858471	0,916246	0,886888	52	0,858277	0,918984	0,888112
23	0,856722	0,921115	0,888335	53	0,858278	0,919431	0,888329
24	0,857377	0,916556	0,886473	54	0,858218	0,918741	0,887964
25	0,857390	0,919816	0,888055	55	0,858417	0,920053	0,888701
26	0,857227	0,917277	0,886744	56	0,860328	0,918725	0,889047
27	0,857989	0,919246	0,888089	57	0,858474	0,919711	0,888565
28	0,865771	0,918774	0,891879	58	0,858249	0,918891	0,888053
29	0,858431	0,917911	0,887673	59	0,858332	0,919208	0,888248
30	0,857468	0,920573	0,888461	60	0,858333	0,919202	0,888246

Taula C.160: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (11).

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,858284	0,918930	0,888090	83	0,858480	0,919159	0,888302
62	0,858441	0,919631	0,888510	84	0,859325	0,919136	0,888728
63	$0,\!859949$	0,918838	0,888906	85	0,858498	0,919357	0,888406
64	0,858482	0,919856	$0,\!888639$	86	0,858400	0,919049	$0,\!888207$
65	0,858306	0,918900	$0,\!888087$	87	0,858435	0,919615	$0,\!888499$
66	$0,\!858370$	0,919378	$0,\!888351$	88	0,858435	0,919047	0,888224
67	$0,\!858371$	0,919090	0,888211	89	0,858411	0,919415	0,888389
68	$0,\!858331$	0,919085	0,888188	90	0,858487	0,919120	0,888286
69	0,858459	0,919384	0,888399	91	0,859206	0,919219	0,888706
70	0,859678	0,918946	0,888818	92	0,858501	0,919257	0,888360
71	0,858489	0,919764	0,888598	93	0,858418	0,919108	0,888245
72	0,858346	0,918939	0,888126	94	0,858451	0,919451	0,888428
73	0,858398	0,919512	0,888430	95	0,858448	0,919085	0,888249
74	0,858398	0,919042	0,888203	96	0,858427	0,919495	0,888436
75	0,858365	0,919213	0,888268	97	0,858492	0,919106	0,888282
76	0,858471	0,919240	0,888336	98	0,859112	0,919293	0,888693
77	0,859477	0,919046	0,888763	99	0,858504	0,919197	0,888332
78	0,858494	0,919515	0,888481	100	0,858432	0,919167	0,888281

Taula C.161: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (11).



Figura C.162: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (11) .

	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
3	0,571966	$0,\!424394$	$0,\!492685$	33	0,868894	$0,\!926852$	0,897406
4	0,728878	$0,\!626247$	$0,\!675617$	34	0,870430	0,928781	0,899132
5	0,773045	0,723207	0,747711	35	$0,\!875722$	$0,\!934451$	0,904610
6	$0,\!835753$	0,830483	0,833114	36	0,870704	0,929122	$0,\!899439$
7	1,000000	0,999999	0,999999	37	0,869328	0,927892	0,898133
8	$0,\!871544$	0,874873	0,873207	38	0,869552	0,928253	0,898423
9	$0,\!841746$	0,864714	0,853153	39	0,869641	0,928440	$0,\!898559$
10	0,849094	$0,\!879361$	0,864095	40	0,869576	0,928476	$0,\!898543$
11	0,853592	0,888383	0,870814	41	0,870631	0,929768	0,899714
12	0,854787	0,893811	0,874081	42	0,874284	0,933682	0,903495
13	0,865698	0,910329	0,887733	43	0,870789	0,929965	0,899891
14	0,900969	0,947904	0,924139	44	0,869826	0,929077	0,898963
15	0,869966	0,915708	0,892544	45	0,869976	0,929310	0,899154
16	0,861890	0,910393	0,885810	46	0,870030	0,929424	0,899236
17	0,863578	0,913584	0,888229	47	0,869976	0,929430	0,899212
18	0,864531	0,915559	0,889679	48	0,870745	0,930355	0,900057
19	0,864582	0,916634	0,890228	49	0,873418	0,933219	0,902824
20	0,869047	0,922810	0,895525	50	0,870845	0,930480	0,900169
21	0,884159	0,938955	0,911145	51	0,870133	0,929808	0,899476
22	0,870332	0,924394	0,896956	52	0,870241	0,929971	0,899610
23	0,866621	0,921481	0,893630	53	0,870276	0,930044	0,899664
24	0,867312	0,922709	0,894582	54	0,870231	0,930039	0,899638
25	0,867658	0,923431	0,895110	55	0,870817	0,930733	0,900277
26	0,867590	0,923750	0,895230	56	0,872856	0,932919	0,902388
27	0,870029	0,926930	0,898029	57	0,870883	0,930817	0,900351
28	0,878379	0,935871	0,906670	58	0,870336	0,930292	0,899815
29	0,870566	0,927598	0,898630	59	0,870416	0,930410	0,899913
30	0,868441	0,925785	0,896655	60	0,870440	0,930461	0,899950

Taula C.163: Resultats de les mesures 5, 6 i 7 de 3 a 60 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (i 12).

		$\bigcirc$					
	$\mu_5$	$\mu_6$	$\mu_7$		$\mu_5$	$\mu_6$	$\mu_7$
61	0,870403	$0,\!930450$	0,899926	83	0,870939	0,931411	0,900667
62	$0,\!870864$	0,930991	0,900425	84	0,871839	0,932375	0,901599
63	$0,\!872472$	0,932714	0,902090	85	0,870958	0,931435	0,900689
64	0,870911	0,931049	0,900478	86	0,870712	0,931191	0,900444
65	0,870477	0,930628	0,900050	87	0,870746	0,931237	0,900484
66	0,870539	0,930718	0,900126	88	0,870754	0,931253	0,900495
67	0,870556	0,930754	0,900152	89	0,870734	0,931240	0,900479
68	$0,\!870525$	0,930741	0,900129	90	0,870952	0,931490	0,900713
69	$0,\!870897$	0,931174	0,900531	91	0,871719	0,932311	0,901506
70	$0,\!872197$	0,932567	$0,\!901877$	92	0,870968	0,931509	0,900730
71	$0,\!870931$	0,931216	0,900569	93	0,870758	0,931299	0,900520
72	$0,\!870578$	$0,\!930871$	0,900220	94	0,870787	$0,\!931338$	0,900553
73	$0,\!870628$	$0,\!930941$	0,900280	95	0,870793	$0,\!931350$	0,900563
74	0,870641	0,930968	0,900299	96	0,870775	0,931339	0,900548
75	0,870614	0,930954	0,900279	97	0,870963	$0,\!931553$	0,900748
76	0,870921	0,931308	0,900609	98	0,871623	0,932260	0,901432
77	0,871994	0,932458	0,901719	99	0,870975	0,931568	0,900762
78	0,870946	0,931340	0,900637	100	0,870794	0,931386	0,900581

Taula C.164: Resultats de les mesures 5, 6 i 7 de 61 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (i 12).



Figura C.165: Representació gràfica del comportament de les mesures 5, 6 i 7 de 3 a 100 costats per a polígons regulars escapçats i/o amb vèrtexs alineats (octògons) (i 12)