

Disseny d'un generador eòlic de petita potència

ANNEX

Autor: MONJO MUR, LLUÍS

Director: BARGALLÓ PERPIÑÀ, RAMON

Convocatòria: JUNY 2009

Màster Interuniversitari UB - UPC

d'Enginyeria en Energia

Índex

1 Recursos eòlics. Estudi estadístic1
1.1 Implementació en Matlab1
2 Imans permanents5
3 Material constructiu7
4 Pauta de càlcul de màquines síncrones d'imans permanents11
4.1 Diagrama de flux11
4.2 Restriccions de disseny12
4.3 Pauta de càlcul13
5 Estudi tèrmic21
5.1 Circuit tèrmic equivalent21
5.2 Resolució del model25
5.3 Resolució del circuit tèrmic equivalent25
5.5 Resolució model tèrmic en Matlab26
5.4 Implementació model tèrmic en Matlab26
6 Modelització de la màquina en elements finits31
6.1 Procediment
6.2 Resultats

1 Recursos eòlics. Estudi estadístic

1.1 Implementació en Matlab

```
close all; clear all; clc;
%Llegeix fitxer meteocat
   nom_fitxer='raval.txt';
   fid=fopen(nom_fitxer,'r');
   [ca,ce]= textread(nom_fitxer, '%f %n');
   if i==1
      vv=ca;
      dv=ce;
   end
   if i>1
       vv=[vv;ca];
       dv=[dv;ce];
   end
   fclose(fid);
%CARACTERITZACIO DE LA VELOCITAT
%CORRECCIO A L'ALÇADA QUE TOQUI
h1=10;
                                             %Alçada de referencia
h2=25;
                                             %ALÇADA DE CALCUL
alfa=0.2;
vv_h2=ca*(h2/h1)^alfa;
if h2==h1
    velocitat=ca;
else
    velocitat=vv_h2;
end
%Grafica de vectors
%giro el grafic 90º perque el N es 0º i segons matlab 0º es l'est
direccio=90-ce;%f;
direccioRAD=direccio*pi/180;
[x,y]=pol2cart(direccioRAD,velocitat);
GR=compass(x,y,'b');
set(gcf, 'Color', [1 1 1]);
title 'Rosa dels vents v v[m/s] i d v(°)';
%Rosa dels vents
figure(2);
[ANGLE, FREQ]=rose(direccioRAD);
rose(direccioRAD);
set(gcf, 'Color', [1 1 1]);
title 'Rosa dels vents';
```

%histograma v max=18; %VELOCITAT MAXIMA DE VENT $x=0:1:v_max;$ %INTERVALS ASSOCIATS DE 1m/s [N,INT]=hist(velocitat,x); %FREQUENCIA DE LA CLASSE - NOMBRE N hora=N/2; TOTAL D'HORES DE CADA UN DELS INTERVALS % NOMBRE TOTAL D'HORES Hores_TOT=sum(N_hora); COMPTABILITZADES N_hora_REL=N_hora/Hores_TOT; %FREQUENCIA RELATIVA -- FREQ. CLASSE / NOMBRE D'HORES acumulat=0; for i=1:1:v_max+1 acumulat=0; for j=1:1:i acumulat=acumulat+N_hora_REL(j); end N_hora_REL_ACUM(i)=acumulat; %FREQUENCIA RELATIVA ACUMULADA end disp(N_hora_REL_ACUM); figure(3); bar(INT,N_hora); title 'Corba de frequencies'; xlabel('v(m/s)');ylabel('Hores'); axis([-0.5 16 0 max(N_hora)]); set(gcf, 'Color', [1 1 1]); etiqueta=strcat('Hores totals:',num2str(Hores_TOT)); text(12,70,etiqueta); v_promig=sum(INT*N_hora_REL'); **%VELOCITAT PROMIG** v_mediana=median(ca); **%VELOCITAT MEDIANA** v_varianza=var(ca); %VARIANÇA DE LA V v_desviacio=sqrt(v_varianza); %DESVIACIO TIPICA DE V disp('Resum dades') x',N_hora',N_hora_REL,N_hora_REL_ACUM disp(' '); %grafica de freq acumulada figure(4); bar(INT,N_hora_REL_ACUM); hold on plot(INT,N_hora_REL_ACUM,'g','linewidth',3); hold off title 'Corba de frequencies acumulades'; set(gcf, 'Color', [1 1 1]); xlabel('v(m/s)');ylabel('Frequencia relativa acumulada'); axis([0 v_max 0 1.02]); %grafica de duracio de velocitat figure(5); plot(8760*N_hora_REL_ACUM,12-INT); title 'Corba de duracio de velocitat'; set(gcf, 'Color', [1 1 1]); xlabel('hores/any'); ylabel('v(m/s)');

```
axis([0 8770 0 13]);
%calcul parametres weibull
max=size(INT)-1;
for i=2:1:max(2)
   if N hora REL ACUM(i)~=1
       w_v(i)=log(INT(i));
       w_f(i)=log(log(1/(1-N_hora_REL_ACUM(i))));
   else
       i=max(2);
   end
end
param_regressio=polyfit(w_v,w_f,1);
param_k=param_regressio(1);
param_c=exp(-param_regressio(2)/param_regressio(1));
%corba de duracio de velocitat
figure(6);
v=0:1:v_max;
for i=1:1:v_max+1
    v=i;%;/2;
    p(i)=(param_k/param_c)*(v/param_c)^(param_k-1)*exp(-
(v/param c)^param k);
    p acum(i)=1-exp(-(v/param c)^(param k));
end
plotyy(INT,p,INT,p_acum);
title 'Funcio densitat de probabilitat';
xlabel('v(m/s)');
ylabel('p(v)');
set(gcf, 'Color', [1 1 1]);
etiqueta_w=strcat('Parametre k:',num2str(param_k));
text(7,0.1,etiqueta_w);
etiqueta_w2=strcat('Parametre c:',num2str(param_c));
text(7,0.08,etiqueta_w2);
%densitat de potencia del vent
densitat aire=1.23;
cp=0.5;
p w dens=0.5*cp*densitat_aire*(INT.^3);
                                                 %POTENCIA ELECTRICA
DISPONIBLE
p_w_rel_dens=p_w_dens.*N_hora_REL;
                                                 %POTENCIA ELECTRICA
relativa DISPONIBLE A L'ANY
p_w_ave_dens=sum(p_w_rel_dens);
                                                 %CALCUL DENSITAT
PROMIG DE POTENCIA EOLICA DISPONIBLE
                                                 %MOSTRAR DENSITAT
disp(p_w_ave_dens);
PROMIG DE POTENCIA EOLICA DISPONIBLE
e_w=p_w_rel_dens*8760;
                                                 %ENERGIA HORARIA
DISPONIBLE
figure(8);
plotyy(INT,p_w_rel_dens,INT,p_w_dens,'bar','plot');
set(gcf, 'Color', [1 1 1]);
xlabel('v(m/s)');
ylabel('Densitat de potencia relativa - Potencia W (blau)');
axis auto;
disp(p_w_dens')
disp(e_w')
                                                     %MOSTRAR ENERGIA
ELECTRICA DISPONIBLE A L'ANY
```

2 Imans permanents

Els imans permanents són materials que presenten un camp magnètic remanent sense requerir energia externa després de la seva magnetització inicial, aquesta característica fa que els materials siguin utilitzats en una gran varietat d'aplicacions en especial la construcció de màquines elèctriques. La seva evolució ha estat creixen en els darrers últims cinquanta anys sobretot en el grau de qualitat de les seves propietats. Les investigacions en nous materials han dut a imans més compactes i de major eficiència.

La característica principal dels imans permanents, es que estan constituïts de manera que els moment magnètics dels seus dominis es poden reorientat amb relativa dificultat, pel que requereixen una major energia per orientar els dominis que els materials ferromagnètics habituals. Aquesta dificultat de reorientació es reflexa en les corbes d'histèresi, les què resulten més àmplies.

Figura 2.1 Corba B-H d'un iman permanent

En general els imans permanents treballen en el segon i el quart quadrant, on la direcció de intensitat de camp magnètic H i la inducció magnètica B són oposades.

En el segon quadrant la corba B-H és denominada 'corba de desmagnetització'. Els principals punts característics de desmagnetització són els següents:

- i. Remanència magnètica: Densitat de flux magnètic de l'iman quan la intensitat de camp que se li aplica és nul·la.
- ii. Força coercitiva: Si la intensitat de camp magnètic s'incrementa en polaritat oposta a través de la corba de desmagnetització i la densitat de flux es fa zero, la intensitat de camp present es denomina força coercitiva i es designa Hc.
- iii. Producte d'energia i producte d'energia màxim: El valor absolut del producte de la densitat de flux magnètic i la intensitat de camp en cada punt a través de la corba s'anomena producte d'energia. El seu valor màxim és el valor de la energia interna de l'iman.

Figura 2.2 Punts característics

Una altra propietat important en un iman permanent és la seva temperatura de Curie (Tc), que és la temperatura crítica sobre la què un material ferromagnètic es torna paramagnètic. Habitualment s'especifica també quina és la temperatura màxima d'operació generalment molt per sota de Tc.

3 Material constructiu

A continuació es descriuen les propietats magnètiques i les pèrdues característiques del material utilitzat en la construcció del generador a partir de les característiques donades pel fabricant.

Material		M235-35A
Fabricant		Cogent Power
Gruix de làmina	d_{lam}	0,35 mm
Densitat	ρ	7750 kg/m3
Conductivitat	σ	4 MS/m
Pèrdues a 50 Hz i 1 T		1,1 W/kg

_

Б

.35 mm (.014 inch, 29 gauge)						
	Magnetizin	g Force in Oerste	ds and Amperes	per meter		
B (Gauss)	Oe	A/m				
	50 hz		60 Hz			
1000	0,310	24,7	0,344	27,4		
2000	0,410	32,6	0,435	34,6		
3000	0,479	38,1	0,498	39,6		
4000	0,542	43,1	0,554	44,1		
5000	0,606	48,2	0,615	48,9		
6000	0,678	53,9	0,686	54,6		
7000	0,763	60,7	0,769	61,2		
8000	0,865	68,8	0,871	69,3		
9000	0,997	79,3	1,00	79,9		
10000	1,18	93,7	1,19	94,5		
11000	1,45	115	1,46	116		
12000	1,96	156	1,97	157		
13000	3,27	260	3,29	262		
14000	8,67	690	8,72	694		
15000	24,5	1950	24,6	1960		
16000	55,4	4410	55,7	4430		
17000	95,9	7630	96,3	7660		
18000	151	12000	151	12000		

	. 35 mm (Core Loss W/lb	.014 inch, 2 in Watts per kilogra	9 gauge) pound and V m	Vatts per		
	Core Loss W/lb	in Watts per kilogra	pound and V Im	Vatts per		
	W/lb	W/ka				
		WING				
	50 Hz		60 Hz		100 Hz	
1000	0,009	0,020	0,01	0,022	0,02	0,044
2000	0,027	0,060	0,03	0,066	0,06	0,132
3000	0,050	0,110	0,06	0,132	0,140	0,309
4000	0,091	0,200	0,110	0,242	0,220	0,485
5000	0,132	0,290	0,160	0,353	0,320	0,705
6000	0,172	0,380	0,210	0,463	0,440	0,970
7000	0,227	0,500	0,280	0,617	0,570	1,26
8000	0,281	0,620	0,340	0,749	0,710	1,56
9000	0,349	0,770	0,430	0,948	0,870	1,92
10000	0,417	0,920	0,510	1,12	1,05	2,31
11000	0,499	1,10	0,610	1,34	1,25	2,76
12000	0,594	1,31	0,730	1,61	1,48	3,26
13000	0,708	1,56	0,870	1,92	1,76	3,88
14000	0,871	1,92	1,08	2,38	2,12	4,67
15000	1,02	2,25	1,26	2,78	2,51	5,53
16000	1,15	2,53	1,42	3,13		
17000	1,25	2,75	1,54	3,39		
18000	1,33	2,94	1,65	3,64		
	Taula 3.3 Pèr	dues carac	terístique	s del mat	erial	
	1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 18000	50 Hz 1000 0,009 2000 0,027 3000 0,050 4000 0,091 5000 0,132 6000 0,172 7000 0,227 8000 0,281 9000 0,349 10000 0,417 11000 0,499 12000 0,594 13000 0,708 14000 0,871 15000 1,02 16000 1,15 17000 1,25 18000 1,33 Taula 3.3 Pèr	50 Hz 1000 0,009 0,020 2000 0,027 0,060 3000 0,050 0,110 4000 0,091 0,200 5000 0,132 0,290 6000 0,172 0,380 7000 0,227 0,500 8000 0,281 0,620 9000 0,349 0,770 10000 0,417 0,920 11000 0,499 1,10 12000 0,594 1,31 13000 0,708 1,56 14000 0,871 1,92 15000 1,02 2,25 16000 1,15 2,53 17000 1,25 2,75 18000 1,33 2,94	50 Hz 60 Hz 1000 0,009 0,020 0,01 2000 0,027 0,060 0,03 3000 0,050 0,110 0,06 4000 0,091 0,200 0,110 5000 0,132 0,290 0,160 6000 0,172 0,380 0,210 7000 0,227 0,500 0,280 8000 0,281 0,620 0,340 9000 0,349 0,770 0,430 10000 0,417 0,920 0,510 11000 0,499 1,10 0,610 12000 0,594 1,31 0,730 13000 0,708 1,56 0,870 14000 0,871 1,92 1,08 15000 1,02 2,25 1,26 16000 1,15 2,53 1,42 17000 1,25 2,75 1,54 18000 1,33 2,94 1,65	50 Hz 60 Hz 1000 0,009 0,020 0,01 0,022 2000 0,027 0,060 0,03 0,066 3000 0,050 0,110 0,06 0,132 4000 0,091 0,200 0,110 0,242 5000 0,132 0,290 0,160 0,353 6000 0,172 0,380 0,210 0,463 7000 0,227 0,500 0,280 0,617 8000 0,281 0,620 0,340 0,749 9000 0,349 0,770 0,430 0,948 10000 0,417 0,920 0,510 1,12 11000 0,499 1,10 0,610 1,34 12000 0,594 1,31 0,730 1,61 13000 0,708 1,56 0,870 1,92 14000 0,871 1,92 1,08 2,38 15000 1,15 2,53 1,42 3,13 <	50 Hz 60 Hz 100 Hz 1000 0,009 0,020 0,01 0,022 0,02 2000 0,027 0,060 0,03 0,066 0,06 3000 0,050 0,110 0,066 0,132 0,140 4000 0,091 0,200 0,110 0,242 0,220 5000 0,132 0,290 0,160 0,353 0,320 6000 0,172 0,380 0,210 0,463 0,440 7000 0,227 0,500 0,280 0,617 0,570 8000 0,281 0,620 0,340 0,749 0,710 9000 0,349 0,770 0,430 0,948 0,870 10000 0,417 0,920 0,510 1,12 1,05 11000 0,499 1,10 0,610 1,34 1,25 12000 0,594 1,31 0,730 1,61 1,48 13000 1,02 2,25 1,26

4 Pauta de càlcul de màquines síncrones d'imans permanents

4.1 Diagrama de flux

4.2 Restriccions de disseny

Objectiu de la			
	Número de pols	2 p	$p \ge 20$ nombre parell
	Número de ranures per pol i fase	$\frac{1}{q}$	$q \leq 1$
	Diàmetre del rotor	D_r	$D_r < D_a$
	Entreferro	δ	$\delta[m] \ge 0,0002 + 0,003 \sqrt{\frac{D_i L}{2}}$
	Longitud d'iman	l_m	$2mm \le l_m \le 8mm$
Valors de validesa del disseny de la MSIP	Angle de mig pol en graus elèctrics	α	$0,7\pi/2 \ge \alpha$
	Diàmetre exterior estator	D_a	$D_o \leq 500 mm$
	Ample de dent	b_{ts}	$b_{ts} > 2,5mm$
	Alçada de ranura	h_{ss}	$h_{ss} \ge 0$
	Obertura de ranura	k _{open}	$0, 2 \le k_{open}$
	Alçada entrada de ranura	h_{sw}	$h_{sw} \ge 1mm$
	Longitud de la màquina	L	$100mm \le L \le 500mm$
	Alçada corona estatòrica	h_{sy}	$h_{sy} \geq h_{ss} / 2$
	Ample de ranura	b_{ss2}	$0,15h_{ss} \leq b_{ss2} \leq 0,5h_{ss}$
Garantia de rigidesa mecànica	Ample de dent	b_{ts}	$b_{ts} \geq 0, 3\tau_s$
medamida	Base de ranura	b_{ss1}	$b_{ss1}k_{open} \ge 2mm$
	Obertura de ranura	b_{so}	$b_{so} \ge 2mm$
	Inducció màxima a l'entreferro	\hat{B}_{g}	$\hat{B}_{g} \leq 1, 1T$
Evitar la caturació	Inducció màxima a les dents	B_{ts}	$B_{ts} \leq 1, 6T$
	Ind. màx. a la corona estatòrica	B _{sy}	$B_{sy} \leq 1, 4T$
	Ind. màx. a la corona rotòrica	B _{ry}	$B_{ry} \leq 1, 4T$
Prevenció d'elevades	Temperatura bobinat	T_{cu}	$T_{cu} = 80^{\circ} C$
temperatures i pèrdua d'eficiència	Pèrdues del coure	P_{cu}	$P_{cu} \leq 700W$
Límit de preu	Massa d'iman	m _{mag}	$m_{mag} \leq 5,5kg$
Límit de pes	Massa de la màquina	m _{tot}	$m_{tot} \leq 150 kg$

Taula 4.1 Restriccions del disseny

4.3 Pauta de càlcul

Potència nominal elèctrica

$$P_n = \sqrt{3} \cdot V_n \cdot I_n \cdot \cos \varphi_n \tag{4.1}$$

Parell nominal

$$M_n = \frac{P_n}{\Omega_n} \tag{4.2}$$

Inducció mitja a l'entreferro

$$B_{g_{av}} = \frac{\phi}{\tau_{p} \cdot L} \tag{4.3}$$

On ϕ és el flux per pol de la màquina, τ_p és el pas polar i L la longitud axial del paquet de xapes.

$$\tau_p = \frac{\pi \cdot D}{2 \cdot p} \tag{4.4}$$

Sent p el nombre de parells de pols.

Altrament es pot obtenir la inducció màxima a l'entreferro com,

$$\hat{B}_{g_1} = \frac{4}{\pi} B_g \sin(\alpha) \tag{4.5}$$

I a partir d'aquesta la promig com,

$$B_{g_{av}} = \frac{2}{\pi} \hat{B}_{g_1}$$
(4.6)

La capa de corrent es pot escriure com,

$$A = \frac{Z \cdot I_z}{\pi \cdot D} \tag{4.7}$$

On Z és el número total de conductors de la màquina i lz la corrent que circula per cada un dels conductors.

El parell intern de la màquina es pot escriure com,

$$M = \frac{\pi}{2} \cdot B_{g_{av}} \cdot A \cdot D^2 \cdot L \tag{4.8}$$

Establint una relació entre D i L, o bé fixant-les com a condició inicials ja es té el dimensionament de la màquina pel que fa a diàmetre i longitud.

Iman

Corba característica del iman

$$B_m = B_r + \mu_r \mu_o H_m \tag{4.9}$$

Densitat de flux magnètic creada per un iman d'alçada determinada

$$B_m = \frac{B_r}{1 + \frac{\delta\mu_r}{h_m}}$$
(4.10)

Factor de recobriment polar

$$\Psi = \frac{\alpha}{\tau_p} \tag{4.11}$$

Força magnetomotriu

$$\hat{F}_{1} = \frac{4}{\pi} \frac{m}{2} \frac{T_{s} \xi}{2p} \sqrt{2} \hat{I}$$
(4.12)

Desmagnetització en càrrega

$$\Delta B = \mu_o \frac{\hat{F}_1}{\delta + \frac{h_m}{\mu_r}} \tag{4.13}$$

Entreferro

$$\delta[m] \ge 0,0002 + 0,003\sqrt{\frac{D \cdot L}{2}} \tag{4.14}$$

Bobinat

Angle elèctric

$$\gamma_e = 360 \frac{p}{Q_s} \tag{4.15}$$

Nombre de ranures per pol i fase

$$q = \frac{Q_s}{2\,pm} \tag{4.16}$$

Factor de distribució

$$\xi_{d} = \frac{\sin\left(q\frac{\gamma_{e}}{2}\right)}{q\sin\left(\frac{\gamma_{e}}{2}\right)} (\text{si } q > 1)$$
(4.17)

Pas polar

$$y_p = \frac{Q_s}{2p} \tag{4.18}$$

Factor de pas

$$y_k = 1 \tag{4.19}$$

Factor d'escurçament

$$\xi_a = \sin\left(\frac{\alpha}{2}\right) \tag{4.20}$$

$$\frac{\alpha}{2} = 90 \frac{y_k}{y_p} \tag{4.21}$$

Factor de bobinat

$$\xi_w = \xi_d \xi_a \tag{4.22}$$

Fem induïda

$$E = 4,44 \cdot f \cdot \phi \cdot T_s \cdot \xi_w \tag{4.23}$$

$$E = \frac{1}{\sqrt{2}} \omega \xi_{w} \cdot q \cdot N_{cr} \cdot \hat{B}_{g} \cdot L \cdot (D - \delta)$$
(4.24)

Induccions

A la corona estatòrica

$$B_{cs} = \frac{\frac{\phi}{2}}{h_{sy}L} \tag{4.25}$$

A la corona rotòrica

$$B_{cs} = \frac{\frac{\phi}{2}}{h_{ry}L} \tag{4.26}$$

A les dents

$$B_{ts} = B_{av} \frac{\pi D}{Q_s b_{ts}} \tag{4.27}$$

Paràmetres de la màquina

Resistència per fase

$$R_{phase} = \rho_{cu} \frac{(pL + (D_i + h_{ss})\pi k_{endw})N_{cr}^2 q}{f_s A_s}$$
(4.28)

Inductància magnetitzant

$$L_m = \frac{\mu_o}{\pi} m \frac{D_i L}{\delta_{eq}} \left(\frac{T_s \xi}{p}\right)^2$$
(4.29)

Entreferro equivalent

$$\delta_{eg} = \left(\delta + l_m\right) \cdot k_c \cdot k_{sat} \tag{4.30}$$

Pèrdues

Pèrdues per histèresi

$$P_H = k_H \cdot f \cdot V \cdot B_m^{\alpha} \tag{4.31}$$

Pèrdues per corrents de Foucault

$$P_F = \frac{\pi^2}{6} f^2 B_m^2 d_{lam}^2 \sigma V$$
 (4.32)

Pèrdues per efecte Joule

$$P_J = 3 \cdot R_f \cdot I^2 \tag{4.33}$$

Pèrdues addicionals

$$P_{add} = 1,8\% P_n \tag{4.34}$$

Rendiment

$$\eta = \frac{P_n}{P_n + P_H + P_F + P_J + P_{add}}$$
(4.35)

	272,7272727	S 18405 70437	0,005852455 Flux		228		i per pol i fase 18182 (3/8) inat inat
	Mi [Nm] 87,54	Bg_av [1] 0,618	Flux 3,53E-03 0,0055476		gamma 0,53		Número de ranures $q = \frac{Z_s}{2pm}$ 0,318 Factor de bobinat $\xi_b = \xi_a \xi_a$ 0,90
	$4,23764726 M_n = \frac{P_n}{\Omega_n}$	$B_{obe} = \frac{2}{\pi} \hat{B}_{g_i}$	D [mm] 200,95 200,951147		Ur 1,045 $\gamma = \frac{B_g}{B_\gamma}$		$i q > 1$ $i q > 1$ $1,00$ $1,00$ ent ka $90 \frac{y_k}{y_p}$ $0,99720$
	In [A] 4,03	(a) Bg_pic_1 []	(D^2)L 0,00811468 0,00811468		T] Hm [A/m] 00 883310		Factor de distribution $ \frac{\xi_d}{\xi_d} = \frac{\sin\left(\frac{q}{2}\frac{\chi_e}{2}\right)}{q\sin\left(\frac{\chi_e}{2}\right)} (s) $ Factor d'escurçam
pòtesis inicials	$I_{\scriptscriptstyle N} = \frac{P_{\scriptscriptstyle N}}{\eta \sqrt{3} V_{\scriptscriptstyle N} I_{\scriptscriptstyle N}} c$	$\hat{B}_{\mathcal{B}} = \frac{4}{\pi} B_{\mathcal{B}} \sin$	$D^{2}L = \frac{M}{\frac{\pi^{2}}{4\sqrt{2}}}L$		Br [] 1,16 1,16		Factor de pas yk 1
es nominals - Hi	2500 272,72 50	0,9 10000 230	120 120 0,953 3	es de l'iman	n $B_{\mu} = B_{\mu} + \mu$	at	elèctric $360 \frac{P}{Z_z}$ angle e 188,571 188,571 188,571 polar polar polar polar polar
Característique	P [W] n [rpm] f [Hz] D	R·cos(fi) A [A/m] U [V] Br T1 (0 7 0 0)	2;u-1;u) 2:alfa ["] L/D Bobinat m	Característique	Iman Corba de l'ima	Bobin	Angle $\gamma_s = \frac{\gamma_s}{y_s}$

Comprovació de flux i inducció	su				
Inducció a les dents (1,8 max) $B_{tb} = B_{av} \frac{\pi D}{Z_{s} b_{tb}} B_{tb}$	Bts_leak 0,46	nducció a la co $\frac{\phi}{h_{ij}L}$	rrona estatòrica (1,4 max Bcs 0,88	-	$B_{\mu} = \frac{B_{\mu} 2\alpha}{B_{\mu}} \frac{2}{p} \left(\frac{D_{\mu}}{2} - \delta\right) \left(1 - k_{\text{barkmank}}\right)$ $k_{\text{barkmark}} = \frac{17p/56 - 13/14}{100}$
Conductors					
Densitat de corrent [A/mm2] Delta 6	Aïllament [mr 0,1		$\frac{1}{4c} = N_{\sigma} \frac{\pi}{4} d_{c}^{'2}$	$f_{oc} = \frac{A_{w}}{A}$	actor d'ocupació 0,45
$\frac{I}{\Delta} = \frac{\pi}{4} a_{e}^{2}$ $\frac{dc[mm]}{0.92}$ Normalitzat $\frac{dc[mm]}{1.024}$	Årea d'un conduct Ac [mm2] 0,80	Þ.	rea total conductors c_tot [mm2] 77,85	$\Delta = \frac{N_{cr}I}{f_{cr}^{cr}A_{s}}$	Delta_Real 4,55
Característiques en càrrega					
Força magnetomotriu $\hat{F}_{1} = \frac{4}{\pi} \frac{m}{2} \frac{N\xi}{2p} \sqrt{2\hat{I}}$	Fmmd [A] 435,22	$=\delta + \frac{l_m}{\mu_s}$	delta' 3,57	$\Delta B = \mu_{\circ} \frac{\hat{F}_{1}}{\mathcal{S}^{1}}$	Delta_B [T] 0,153
$\Delta B = \frac{B_{\gamma}}{3}$	si >Br Fixar Delta_B i recalc Delta_B' [T] ΔB < B, 0,387 no	<mark>ular l'iman i la</mark> delta' [mm] 0,21146324	<mark>resta de paràmetres</mark> Im [mm] -0,5105209	a K44	

	n/ T] a 20°C Pj_TOT [W] a 80°C 149,2	Entreferro equivalent $\hat{\mathcal{E}}_{eg} = (\hat{\mathcal{E}} + l_m) \cdot k_e \cdot k_{sat}$ 0,00481								
	$\frac{M_w^2 q}{2,49}$ R_fase [ohr 3,07	eficient de saturació ksat 1		Rotor	0,00129	10,282117	6,13E-07			
	Resistència per fase $R_{phase} = \rho_{co} \frac{(pL + (D_i + h_{sc}))\pi k_{contra}}{f_s A_s}$	teoric kc ,043 1,3	m [H] POLS LLISOS - Ld = Lq = Lm	tator	3359	01017 W	9E-06 W	5	Hist+Fouc)	ų
	e final de bobinat	t de carter t_{3} $(k_{open}b_{s1})^{2}$ k_{c}^{-1} $(k_{open}b_{s1})^{2}$ $b_{c}(k_{open}b_{s1})^{2}$	cia magnetitzant $\sum_{r} \frac{D_{i} L}{\delta_{eq}} \left(\frac{T_{s} \xi}{p} \right)^{2} = 0.$	Est	0'0	17,10	1,705	4	52 W (Joul+	36
	Factor de kendv 1,36	Coeficier $k_{c} = \frac{\tau_{s}}{\tau_{s}}$	Inductàn $L_{\rm w} = \frac{\mu_{\rm e}}{\pi}$			er histèresi	er foucoult	ddicionals	es 221,(t 0,918
Paràmetres					Volum	Pèrdues p	Pèrdues p	Pèrdues a	Total pèrdue	Rendimen

5 Estudi tèrmic

5.1 Circuit tèrmic equivalent

Figura 5.1 Circuit tèrmic equivalent en règim permanent

El model treballat presenta un circuit equivalent basat en set nodes que representen diferents parts de la màquina a estudiar. Aquestes parts són la carcassa exterior de la màquina, la corona de l'estator, les dents, les ranures, els conductors, l'entreferro, els imans, la corona rotòrica i els rodaments propis de l'eix de la màquina.

La pauta de càlcul que permet la obtenció dels valors numèrics de les diferents resistències és la següent.

	Resistència tèrmica						
R_{th1}	Carcassa – Exterior						
R_{th2}	Carcassa – Corona						
R_{th3}	Corona - Dent						
R_{th4}	Conductors						
R_{th5}	Caps de bobina						
R_{th6}	Aire intern - Carcassa						
R_{th7}	Aire intern - Rotor						
R_{th8}	Aire intern – Caps de bobina						
R_{th9}	Entreferro						
R_{th10}	Rotor – Rodaments						
R_{th11}	Carcassa - Rodaments						

$$R_{th1} = \frac{1}{2} R_{thfr} = \frac{1}{2} \frac{h_{fr}}{\pi L \lambda_{al} \left(D_o + h_{fr} \right)}$$
(5.1)

$$R_{thys} = \frac{\ln\left(\frac{D_o/2}{D_i/2 + h_{ss}}\right)}{2\pi L\lambda_{fe}}$$
(5.2)

$$R_{thcy} = \frac{g_g}{\lambda_g A_g} \tag{5.3}$$

$$R_{th2} = \frac{1}{2}R_{thfr} + \frac{1}{2}R_{thys} + R_{thcy}$$
(5.4)

Figura 5.2 Geometria de les dents

$$R_{thd} = \frac{1}{\lambda_{Fe}Q_{s}L} \begin{bmatrix} \frac{y_{d1}}{x_{d1}} + \frac{y_{d3}}{x_{d3}} + \frac{y_{d2}}{x_{d1} - x_{d2}} \left(\ln \left| \frac{x_{d1}y_{d2}}{x_{d1} - x_{d2}} \right| - \ln \left| y_{d2} - \frac{x_{d1}y_{d2}}{x_{d1} - x_{d2}} \right| \right) + \\ -\frac{\pi}{4} + \frac{a}{\sqrt{a^{2} - 1}} \arctan \left(\frac{a + 1}{\sqrt{a^{2} - 1}} \right)$$
(5.5)

$$a = \frac{x_{d3} + 2y_{d4}}{2y_{d4}} \tag{5.6}$$

$$R_{th3} = \frac{1}{2} \left(R_{thd} + R_{thys} \right) \tag{5.7}$$

Figura 5.3 Geometria de les ranures

$$b = \frac{x_{Q3} + x_{Q2}}{2} - 2d \tag{5.8}$$

$$h = \frac{2A_Q}{x_{Q3} + x_{Q2}} \tag{5.9}$$

$$R_{xo} = \frac{b}{h\lambda_a} \quad R_{yo} = \frac{h}{b\lambda_a} \tag{5.10}$$

$$R_{ix} = \frac{d_i}{h\lambda_i} + \frac{d_A}{h\lambda_A} \quad R_{iy} = \frac{d_i}{b\lambda_i} + \frac{d_A}{b\lambda_A}$$
(5.11)

$$R_{x} = \frac{1}{2} \left(R_{ix} + \frac{R_{xo}}{6} \right) \quad R_{y} = \frac{1}{2} \left(R_{iy} + \frac{R_{yo}}{6} \right)$$
(5.12)

$$R_{th4} = \frac{R_x R_y}{Q_s L(R_x + R_y)} \left(1 - \frac{R_{xo} R_{yo}}{720(R_{xo} + R_{yo})} \right)$$
(5.13)

$$R_{thw} = \frac{L_{av}}{3A_{cu}\lambda_{cu}}$$
(5.14)

$$R_{th5} = \frac{R_{thw}}{2Q_S} \tag{5.15}$$

$$R_{1} = \frac{1}{\alpha_{1}A_{1}} \quad \alpha_{1} = 15 + 6,75^{0.65} + v_{r}^{0.65}$$
(5.16)

$$A_{\rm l} = 2A_{es} + A_{if} \tag{5.17}$$

$$R_2 = \frac{1}{\alpha_2 A_2} \quad \alpha_2 = 16, 5^{0.65} v_r^{0.65}$$
(5.18)

$$A_{2} = 2b_{fin}h_{fin}n_{fin} + \pi r_{\delta}^{2}$$
(5.19)

$$R_3 = \frac{1}{\alpha_3 A_3} \quad \alpha_3 = 6, 5 + 5, 25^{0.65} v_r^{0.6}$$
(5.20)

$$A_{3} = A_{ew} = \pi \left(L_{av} - L \right) \frac{d_{1} + d_{2}}{2}$$
(5.21)

Les resistències R6, R7, R7 conformen l'equivalent en triangle de les resistències R1, R2 i R3.

$$(Ta)_m = \frac{\Omega_m^2 r_\delta \delta^3}{v^2}$$
(5.22)

$$Nu = 0,409(Ta)_m^{0.241} - 137(Ta)_m^{-0.75}$$
(5.23)

$$\alpha_{\delta} = \frac{Nu\lambda_a}{2\delta} \tag{5.24}$$

$$R_{th\delta} = \frac{1}{\alpha_s 2\pi r_\delta L} \tag{5.25}$$

$$R_{thyr} = \frac{\ln\left(\frac{D_a}{2} + h_{yr}\right) - \ln\left(\frac{D_a}{2}\right)}{2\pi L\lambda_{fe}}$$
(5.26)

$$R_{thpm} = \frac{\ln\left(\frac{D_a}{2} + h_{yr} + h_{pm}\right) - \ln\left(\frac{D_a}{2} + h_{yr}\right)}{2\pi L\lambda_{pm}} \frac{2\pi}{2p\gamma_m}$$
(5.27)

$$R_{thsl} = \frac{h_{sl}}{\pi D_{ir} L \lambda_{sl}} \frac{2\pi}{2p\gamma_m}$$
(5.28)

$$R_{thins} = \frac{d_{1r}}{\pi \left(D_a + 2h_{yr} \right) L \lambda_{1r}} \frac{2\pi}{2p\gamma_m}$$
(5.29)

$$R_{th9} = R_{th\delta} + \frac{1}{2}R_{thd} + R_{thsl} + \frac{1}{2}R_{thpm}$$
(5.30)

$$R_{th_{sh}} = \frac{l_{bb}}{\pi \left(\frac{D_a}{2}\right)^2 \lambda_{sh}}$$
(5.31)

$$R_{thb} = 0,45(0,12 - d_b)(33 - \Omega_m d_b)$$
(5.32)

$$R_{th10} = \frac{1}{2}R_{thpm} + R_{thins} + R_{thyr} + R_{thcr} + \frac{1}{2}R_{thsh} + \frac{1}{4}R_{thb}$$
(5.33)

$$R_{th11} = \frac{1}{4} R_{thb} \tag{5.34}$$

5.2 Resolució del model

Els valors de les resistències tèrmiques fruit de l'aplicació del model tèrmic de la màquina síncrona d'imans permanents i implementats amb Matlab són els següents.

	Resistència tèrmica	Valor R _{thi} [K/W]
R_{th1}	Carcassa – Exterior	0,1178
R_{th2}	Carcassa – Corona	0,0023
R_{th3}	Corona - Dent	0,0034
R_{th4}	Conductors	0,0498
R_{th5}	Caps de bobina	0,0767
R_{th6}	Aire intern - Carcassa	0,0026
R_{th7}	Aire intern - Rotor	2,6266
R_{th8}	Aire intern – Caps de bobina	0,1206
R_{th9}	Entreferro	0,2280
R_{th10}	Rotor – Rodaments	0,5524
R_{th11}	Carcassa - Rodaments	0,3648
Ta	aula 5.1 Valors de les resistències tèrmique	s equivalent

5.3 Resolució del circuit tèrmic equivalent

Per al càlcul de les temperatures en règim permanent en cada un dels nodes del circuit tèrmic equivalent es pot utilitzar el mètode de càlcul provinent de la teoria de circuits. Es tracta d'aplicar el mètode dels nusos, que enuncia la següent igualtat.

```
[G] \cdot [\Theta] = [P]
```

On G és la matriu de conductàncies tèrmiques, quadrada i de dimensió el nombre de nodes que tingui el circuit equivalent.

P, és el vector que conté les pèrdues de cada un dels nodes.

O, és el vector de temperatures en cada un dels nodes del circuit.

5.5 Resolució model tèrmic en Matlab

Considerant que la màquina treballa a plena càrrega, 2500 W i a velocitat nominal, 272 rpm, la distribució de pèrdues és la que s'indica a la taula següent.

Pèrdues	Valor [W]	
Ferro estator	16,2	
Ferro dents	11	
Ferro rotor	0	
Joules conductors	86,4	
Joules caps de bobina	57,8	
Addicionals	0	
Pèrdues totals	171,4	
Taula 5.2 Distribució de pèrdues		

Amb les resistències tèrmiques i la distribució de pèrdues que s'han trobat, la temperatura als diferents punts de la màquina en règim permanent és la que segueix.

		Temperatura [°C]			
Amb	Ambient				
1	Carcassa	60,1995			
2	Corono estatòrica	60,4711			
3	Dents	60,8150			
4	Conductors	65,4799			
5	Caps de bobina	66,0326			
6	Imans	60,2119			
7	Rodaments	60,2044			
Taula 5.3 Distribució de temperatures					

5.4 Implementació model tèrmic en Matlab

%Model tèrmic de la màquina SIP

clear all;

```
clc;
%Parametres de la màquina
      f=50;
p=11;
               n=60*f/p;
%Perdues
            Pfe r=0;
                        Pfe t=34;
Pfe s=23;
                        Padd=0;
            Pj_ew=45;
Pj c=105;
%Geometria maquina
Do=269/1000; Di=209/1000; L=273/1000;
stack_f=0.95; Qs=21;
ag=0.7/1000; Dir=201.6/1000; Da=150/1000;
rd=104.15/1000;
hs=19/1000;
kfe=0.97;
tp=pi*Di/(2*p);
hpm=3/1000;
gammam=11*pi/180;
hfr=5/1000;
              % frame
dwew=1.06/1000; % end winding
lew=200/1000;
%Geometria de ranures i dents
xd1=28.46/1000; xd2=24.98/1000 ; xd3=27.72/1000; xd4=36.81/1000; %dent
yd1=2/1000; yd2=1/1000; yd3=15/1000; yd4=1/1000;
xq1=2.8/1000 ; xq2=7.12/1000 ; xq3=8.88/1000 ;
a=(xd3+2*yd4)/(2*yd4);
Aq=147/1000/1000;
fs=0.5;
%kinetic visccosity air
ua=1.689e-5;; %m2/s
%Materials aïllants
dlr=0.005/1000; %imans-rotor
hsl=0/1000;
%Bearings geometry
lbb=405/1000;
                db=20/1000;
%Conductivitats tèrmiques dels materials
landa_fe=97;
                landa_cu=394;
                                 landa_al=200;
                                                  landa_sh=52;
landa_pm=9;
landa_wi=0.2;
                landa_a=0.025;
                                  landa_sl=0.5;
landa_mi=0.5;
                landa_si=0.2;
                                  landa_q=0.2;
Rtframb=1/(25*2*pi*L*(Do+2*hfr));
Rthfr=hfr/(pi*L*landa_al*(Do+hfr));
%R+h1
Rth1=Rtframb+1/2*Rthfr;
lu=kfe*L;
Rthys=(log(Do/2)-log(Di/2+hs))/(2*pi*lu*landa_fe);
Rthcy=0.001154;
%Rth2
Rth2=1/2*Rthys+1/2*Rthfr+Rthcy;
```

```
%Rth3
Rthd_31=yd1/xd1;
Rthd 32=yd3/xd3;
Rthd_33=yd2/(xd1-xd2)*(log(abs(xd1*yd2/(xd1-xd2)))-log(abs(yd2-
xd1*yd2/(xd1-xd2))));
Rthd_34=-pi/4+a/sqrt(a^2-1)*atan((a+1)/sqrt(a^2-1));
Rthd=(1/(landa fe*Qs*lu))*(Rthd 31+Rthd 32+Rthd 33+Rthd 34);
Rth3=1/2*(Rthys+Rthd);
<u>&____</u>
d1=0.1/1000;
dA=0.005/1000;
d=d1+dA;
b=(xq3+xq2)/2-2*d;
h=2*Aq/(xq3+xq2)-2*d;
Rxo=b/(h*landa q);
Ryo=h/(b*landa_q);
Rix=d1/(h*landa_si)+dA/(h*landa_a);
Riy=d1/(b*landa_si)+dA/(b*landa_a);
Rx=1/2*(Rix+Rxo/6);
Ry=1/2*(Riy+Ryo/6);
Rth4=Rx*Ry/(Qs*lu*(Rx+Ry))*(1-Rxo*Ryo/(720*(Rxo+Ryo)));
8_____
Rthw=(L+tp*1.2+0.05/1000)/(3*Aq*fs*landa_cu);
Rth5=Rthw/(2*Qs);
8-----
vr=272.72*2*pi/60*(Dir/2);
alfa1=15+6.75^0.65+vr^0.65;
alfa2=16.5^0.65*vr^0.65;
alfa3=6.5+5.25^0.65*vr^0.6;
Aif=2*pi*Do*L;
Aes=pi/4*(Do*Do-Da^2);
A1=2*Aes+Aif;
A2=pi*(rd)^2;
Aew=pi*lew*dwew;
A3=Aew;
R1=1/(alfa1*A1); %Transformacio YD
R2=1/(alfa2*A2);
R3=1/(alfa3*A3);
Rth6=R1*R2/(R1+R2+R3);
Rth7=R2*R3/(R1+R2+R3);
Rth8=R1*R3/(R1+R2+R3);
8_____
Tam=1.23*1.23*((272.72*2*pi/60)^2)*rd*(ag^3)/(ua^2);%rd
if Tam<1740
    Nu=2;
else
    Nu=0.409*Tamr^0.241-137*Tamr^-0.75;
```

```
end
alfad=Nu*landa_a/(2*ag);
Rthde=1/(alfad*2*pi*rd*L);
hyr=(Dir-Da)/2;
Rthyr=1/(2*pi*lu*landa_fe)*(log(Da/2+hyr)-log(Da/2));
Rthpm=1/(2*pi*lu*landa_pm)*(2*pi/(2*p*gammam))*(log(Da/2+hyr+hpm)-
log(Da/2+hyr));
Rthsl=hsl/(pi*Dir*L*landa sl)*(2*pi/(2*p*gammam));
Rthins=dlr/(pi*(Da+2*hyr)*L*landa si)*(2*pi/(2*p*qammam));
Rth9=Rthde+1/2*Rthd+Rthsl+1/2*Rthpm;
§_____
Rthsh=lbb/(pi*(Da/2)^2*landa_sh);
Rthb=0.45*(0.12-db)*(33-272.72*2*pi/60*db);
Rth11=1/4*Rthb;
Rthcr=0.0001923;
Rth10=1/2*Rthpm+Rthins+Rthyr+1/2*Rthsh+1/4*Rthb+Rthcr;
R=[Rth1 Rth2 Rth3 Rth4 Rth5 Rth6 Rth7 Rth8 Rth9 Rth10 Rth11];
Rp=R'
%RESOLUCIÓ CIRCUIT EQUIVALENT
           [1 1 0 1 40 Rth1;...
BRANOUES=
            2 1 2 1 0 Rth2;...
            3 2 3 1 0 Rth3;
            4 3 4 1 0 Rth4;...
            5 4 5 1 0 Rth5;...
            6 6 1 1 0 Rth6;...
            7 6 5 1 0 Rth7;...
            8 1 5 1 0 Rth8;...
            9 3 6 1 0 Rth9;...
            10 6 7 1 0 Rth10;...
            11 7 1 1 0 Rth11;...
            12 2 0 2 Pfe_s 0;...
            13 3 0 2 Pfe_t 0;...
            14 4 0 2 Pj_c 0;...
            15 5 0 2 Pj_ew 0;...
            16 6 0 2 Pfe_r 0;...
            17 4 0 2 0.6*Padd 0;...
            18 5 0 2 0.4*Padd 0];
bb=size(BRANQUES);
b=bb(1);
J=zeros(7,1);
Y = zeros(7,7);
for k=1:1:b
    i=BRANQUES(k,2);
                       %node inici de branca
    f=BRANQUES(k,3);
                       %node final de branca
    %lecura de tipus de branca
    if BRANQUES(k,4)==1 %th
        ug=BRANQUES(k,5);
        zg=BRANQUES(k,6);
        %comprovem si hi a la branca hi ha un generador o nomes
impedancia
```

```
BR(5) = Ug BR(6) = Zg
        if ug==0 & zg~=0 %Nomes impedancia
            Y(i,i) = Y(i,i) + 1/zg;
            if f~=0
                Y(f,f) = Y(f,f) + 1/zg;
                Y(i,f)=Y(i,f)-1/zg;
                Y(f,i)=Y(f,i)-1/zg;
            end
        elseif ug~=0 & zg==0 %Font pura
            nac=nac+1;
            Ath=cat(2,Ath,A(:,k));
            Ul(nac)=ug;
            col0=zeros(n_b_rares,1);
            Zl=cat(1,Zl,col0');
        else %Generador amb impedancia interna
            J(i)=J(i)-(ug/zg);
            Y(i,i)=Y(i,i)+1/zg;
        end
    elseif BRANQUES(k,4)==2 %norton
        ig=BRANQUES(k,5);
        yg=BRANQUES(k,6);
        %comprovem si hi a la branca hi ha un generador o nomes
impedancia
        BR(5) = Ug BR(6) = Zg
        if ig~=0 & yg==0 %Font pura de corrent
            J(i)=J(i)-ig;
            if f~=0
                J(f)=J(f)+ig;
            end
        end
    elseif BRANQUES(k,4)==3 %acoblat
        ug=BRANQUES(k,5);
        zg=BRANQUES(k,6);
        nac=nac+1;
        Ath=cat(2,Ath,A(:,k));
        aux=zeros(1,n_b_rares);
        aux(1,nac)=zq;
        Zl=cat(1,Zl,aux);
        if BRANQUES(k,5)~=0
            Ul(nac)=ug;
        end
    end
end
```

T=abs(Y\J)	%Resultat	en	°C
Тр=Т+273	%Resultat	en	Κ

6 Modelització de la màquina en elements finits

6.1 Procediment

Per tal de validar els resultats del model en circuit equivalent de la màquina, també s'ha analitzat el funcionament tèrmic amb un programari d'elements finits, el FEMM.

El procediment per a la realització d'aquesta simulació és el següent.

Introducció de la geometria de la màquina

Definició dels materials

Iron Pure	Block Property
1101,1010	Name Aluminum, Pure
Copper, Pure	T-k Curve Thermal Conductivity Depends on Temperature
1	Thermal Conductivity, W/(m*K)
	Кх 236 Ку 236
	Edit Nonlinear Thermal Conductivity Curve
iman y	ā-
	Volume heat generation, 0
Iron_rotor	Volume heat generation,
Jiron_rotor	Volume heat generation, 0 OK Cancel
Iron_rotor	Volume heat generation, 0 OK Cancel Property Definition X
(ron_rotor	Volume heat generation, 0 OK Cancel Property Definition Property Name
Iron_rotor	Volume heat generation, 0 OK Cancel Property Definition Property Name Aluminum, Pure
	Volume heat generation, OK Cancel Property Definition Property Name Add Property
iron_rotor	Volume heat generation, OK Cancel Property Definition Property Name Aluminum, Pure Add Property Delete Property OK
□Iron_rotor	Volume heat generation, OK Cancel Property Definition Property Name Add Property Delete Property OK OK OK Cancel OK OK OK OK OK OK OK O

Imposició de condicions de contorn

lame	aire_frame		ОК	1
			Cancel	1
C Type	Convection			
Fixed Te	emperature, K	Heat	Flux, W/m^2	
0		0		
11k				_
Convect	tion			
		h,	25	
		To, K	313	
				_
Radiatio	n			
R <mark>adiatio</mark>	n	Beta	0	3

Figura 6.3

Obtenció de resultats

6.2 Resultats

Fent l'anàlisi amb elements finits, els resultats són els que mostra el gràfic següent.

Figura 6.4 Resultat de la simulació amb elements finits