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1. Introduction

1.1. Motivation

The electrocardiogram (ECG) provides useful information about the functional status of the
heart. Therefore, the analysis of the ECG is of great importance in the detection of cardiac
anomalies [46].

Regarding the detection of ischaemia the long-term ECG exhibits some advantages compared
to classical techniques which are used to detect ischaemic modifications:

1. The ECG constitutes a non-invasive, easy and cheap applicable way to draw conclusions
on the existence of ischaemia

2. Based on the ECG a monitoring is possible by which endangered persons can be continu-
ously recorded and warnings can be generated in case of immediate problems

3. The long term ECG allows the study of people during their daily activities, since factors
like mental stress are thought to be a major cause of ischaemia [16]

Owing to these advantages the detection of ischaemia from the long-term ECG is thought to
be of great importance in the future [13, 15, 25, 29, 68].

Precondition is the existence of methods which are able to provide meaningful results on is-
chaemic events based on the long-term ECG. As the detection of ischaemic events is one of the
toughest detection challenges in the field of ECG processing [66] the development of suited pro-
cessing methods constitutes an interesting field. Different studies propose detectors of ischaemic
episodes (e.g. [34, 65, 67]). However, the results which have been obtained until today are not
satisfactory and therefore an accurate detection of ischaemic events considering the long-term
ECG still constitutes a challenging task [21].

At the Institute of Biomedical Engineering (IBMT) topics related to the detection of ischaemia
are also studied. The research is carried out in cooperation with the Fraunhofer Institute for
Photonic Microsystems (IPMS) [7, 17, 50, 75]. The goal of the research is to extend the appli-
cability of ambulatory monitoring devices as developed by the IPMS regarding the possibility
to detect ischaemic episodes. In the feature this detection should be carried out online and in
real-time in order to allow medical intervention in the case of emergencies.

However, the complexity and the variety of factors that produce modifications which resem-
ble ischaemic beats are striking problems from which arises the need for proper classification
methods.

The Support Vector Machine (SVM) is nowadays the most successful statistical pattern classi-
fier [63]. This classifier has been used in multiple classification tasks with highly accurate results

7



1. Introduction

[46, 38]. Since the SVM can manage high-dimensional and large datasets this classifier consti-
tutes a suited choice for many tasks which are related to biomedical classification problems [11].
Facial expression classification [27], text classification [58], beat detection [46] and QRS complex
classification [23] are only a few examples for successful applications of the SVM.

The idea which underlies the SVM is to find a hyperplane that divides the samples in two
classes with a maximum margin between them. The SVM uses previous labeled data to find the
most suitable classification border. This border has a strong dependence on just few samples of
these training data, also called support vectors. Analyzing these support vectors one can extract
some characteristics of the data that is going to be classified. This renders SVM not only a
powerful classifier, but also allows the interpretation of its application in many cases. When
the input data is not linearly separable, Kernel Methods (KMs) are used to transform the input
data in a higher dimensional space where linear classification can be successfully used.

The SVM constitutes in its basic theory a supervised learning classifier. Nevertheless, some
recent studies have used this classifier to develop an unsupervised learning classifying method
[10, 74]. This recently proposed approach line can lead to further successful applications which
are related to SVMs accounting for the importance of this method.

1.2. Specification of the topic

As stated before the detection of ischaemia was topic of previous investigations at the IBMT.
Regarding the presented work the studies which have been carried out by Nauber [50] are of
particular interest, aiming at detecting ischaemia based on the morphology of the ventricular
repolarization (VR). Thereby, Nauber focuses on preprocessing techniques and their capacity to
provide a suited basis for the detection of ischaemia (details in section 2.1.4).

The presented work now builds up directly on Nauber’s work. The goal of this thesis is to
take advantage of SVMs’ classifying characteristics to develop an automatic detector of ischaemic
events. Therefore, the European ST-T-database is used.

As there have been no previous works on SVMs in the working group, at first, some basic
research on

• applications

• functioning

• proposed realizations

of SVMs has to be carried out within this work.

Based on the findings a method for beat classification regarding ischaemic beats based on the
SVMs has to be implemented.

Finally, not only an evaluation on the level of beat classes but the detection of ischaemic
episodes is required. However, the SVM originally only provides a classification on beat level.
Therefore a scheme must be developed which is able to detect episodes based on the results of
the beat classification.
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Nomenclature

αi : Lagrange multiplier

γ: Kernel parameter

γopt: Optimal γ parameter

λi: i
th basis function

Φ: Basis functon of KLT

φ(s): Mapping function

ν: Upper bound on the fraction of training errors and a lower bound of the fraction of sup-
port vectors

ξi : Slack variable associated with xi

+P : Positive predictivity

accglobal: global accuracy
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b : Bias term of the hyperplane

bac: Balanced accuracy

bi: ith KLT coefficient

C: Covariance matrix

C: Penalizing parameter

Copt: Optimal C parameter

d: margin of the SVM

di: distance between the hyperplane and the nearest observation of class i

FNi: False Negatives labels for class i
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FPi: False Positives labels for class i

FPQRS : Fiducial point of the QRS complex
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di: Distance between the hyperplane and the nearest observation of class i

H: Hyperplane

Hi: Secondary hyperplanes

H: Constructed matrix for QP solving problem
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LP : Minimizing goal function in dual formulation

LD: Maximizing goal function in dual formulation
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S: Matrix with all the support vectors

Se: Sensitivity

Sp: Specificity

SDSe: Duration based sensitivity

SD + P : Duration based positive predictive value

SESe: Episode based sensitivity

SE + P : Episdoe based positive predictive value
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y′: Predicted label

12



Abbreviations

ART: Adaptive Resonance Theory

B: Balanced

BAC: Balanced Accuracy

DPC: Detector Performance Characteristic

ECG: Electrocardiogram

EDB: European ST-T Database

DAG: Directed Acyclic Graph

DWT: Discrete Wavelet Transform

IBMT: Institute of Biomedical Engineering

ICA: Independent Component Analisys

IPMS: Fraunhofer Institute of Photonic Microsystems

KLT: Karhunen-Loève-Transformation
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2. State of Art

2.1. Ischaemia detection from the long-term ECG

2.1.1. Underlying ideas - definition of episode

The detection of ischaemia from the long-term ECG typically is based on the assumption that an
ischaemic event has to be considered as relevant when it causes a modification which is charac-
terized by a certain duration and intensity. This leads to the definition of so-called episodes. An
episode defines a signal segment which exhibits a relevant event. Occurrence and characteristics
of such episodes are used to assess the patient state regarding the existence of an ischaemic
disease [15, 69].

To define episodes typically the deviation from the normal state of one person is used (baseline-
ECG). Figure 2.1 gives an overview of the proceeding which is used to define an episode based
on the ST-deviation1. An upper threshold thres1 must be crossed at least for a time Tmin.
When this criterion is fulfilled an episode is existent. To delineate this episode, i.e. find onset
and end of this episode, another threshold trhes2 is applied. This threshold must be undercut
for at least 30 s to define the border of an episode. This scheme is applied in the databases which
are provided to support the development of algorithms in the context of ischaemia detection.

The scheme outlined before is applicable not only for the ST-deviation, but also for other
ECG based parameters. Indeed, different parameters which can be extracted from the ECG are
subject to ischaemic modifications. Amongst others, the ventricular depolarization [57] and the
heart rate variability [19] showed a characteristic behavior during transient ischaemic episodes.
Thus, it would be possible to define episodes based on these parameters. However, the VR is
considered to be the most sensitive signal portion when ischaemia is to be detected within the
long-term ECG. Thus, parameters of the VR as the ST-deviation and the T-wave amplitude are

1The ST-deviation is the deviation of the ST-segment from the isoelectric level under consideration of some
baseline deviation which can be fixed or even temporally changing

beginning end

time

S
T

-d
e
v
ia

ti
o
n

Tmin

thres1

thres2

> 30 s> 30 s

Figure 2.1.: Scheme to annotate episodes based on the registered ST-deviation
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2. State of Art

most often used in the detection of ischaemia. Even within this work, following consideration
only focus on the VR-based detection of ischaemia.

2.1.2. Subtasks in ischaemia detection

When one tries to detect ischaemia from the long-term ECG, different influence factors have to be
taken into account. These influence factors are able to modify the morphology of the VR which
may lead to erroneous classifications when they are not correctly identified as non-ischaemic
modifications. Based on the different types of influence factors, the detection of ischaemia today
can be seen as three step process [75]. Each step tackles a certain aspect and produces, in
conjunction with the previously given definition of an episode, its belonging output.

1. Handling of randomly occurring artifacts and noise→ detection of episodes with modified
ST-(T)-segment2

2. Consideration of slow-drifts and axis-shift → ST(-T)-episodes

3. Discrimination between ischaemic and heart-rate related ST(-T)-episodes → ischaemic
episodes

Strictly speaking, only approaches which execute all three steps really try to detect ischaemia3.
Nevertheless, to accomplish just the first two or even the first step are important tasks as they
constitute the basis for the detection of ischaemia.

Further on, ischaemic episodes can be seen as a subgroup of the ST(-T)-episodes and the
ST(-T)-modifications, respectively. A processing regarding these events already achieves an
aggregation of information based on which the medical personal can draw conclusions on the
patient state. Compared to the examination of the whole ECG such a processing already means
a simplification and is of high interest. More details on the subtasks and their execution can be
found in [75].

2.1.3. Methodological considerations

In the literature a huge amount of methods to detect ischaemia and related modifications, i.e.
ST(-T)-modifications and ST(-T)-episodes, respectively, from the long-term ECG can be found.
Even different methods to categorize the approaches have been devised. Most of them are based
on the computational paradigm underlying each of the methods. Differing from this, an own
partitioning separates the methods based on the feature on which the occurrence of ischaemia
is detected [75]. This idea leads to three approaches:

1. Univariate detection: the ST-deviation is used

2. Discrete multivariate detection: different discrete features from the VR are used (e.g.
ST-deviation, ST-slope, T-amplitude,...)

3. (Continuous) multivariate detection: entire signal segments (parts of the VR or the whole
VR) are used (most often in conjunction with a transform for dimension reduction)

2From here when the term ”ST(-T)-modifications” is used always episodes are meant
3In the literature typically there is not differentiation between these aspects; especially in the case of works

which consider more than the first step this can lead to confusions
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[75] gives a comprehensive overview on methods and results of approaches which have been
devised in the literature.

2.1.4. Previous own works

Different studies accomplished within the joint research activities of IPMS and IBMT already
tackled problems related to the detection of ischaemia from the long-term ECG. These studies
include methods belonging to the group of univariate algorithms, i.e. methods which try to
detect ischaemia based on the ST-deviation [7, 17, 75] as well as approaches which rely on the
multivariate detection [30, 50, 51].

Recently, Nauber [50] focused on different methods to extract and scale the VR in depen-
dency to varying heart rates. The focus of this work was the preparation of suited feature
vectors based on which the detection of ST-T-modifications can be done. More details regard-
ing the method of Nauber which serves as basis for this work are contained in chapter 4.2.2.
The detection/classification itself, however, was not a central aspect of Nauber’s work. Thus, a
comparatively elementary approach was used for the classification. This approach does the clas-
sification based on the euclidean distance between the beat under examination and a reference
template.

According to the topic of this work of major interest are the methods which rely on a mul-
tivariate detection. However, details on signal segmentation and transformation which are of
great importance in the process of multivariate ischaemia detection are not topic of this work,
as they have been tackled by own previous works. Moreover this, speaking in the introduced
nomenclature, this work focuses exclusively on the detection of ST-T-modifications. However,
owing to this limitation and in order to simplify the nomenclature from here the expression
ischaemic episodes is used even when only ST-T-modifications are detected.

2.2. Classification Methods and SVM in ECG processing

2.2.1. Classification Methods

Classification methods use a set of features or parameters to characterize given objects. Classi-
fication methods can be grouped in two main categories: supervised and unsupervised. Methods
for supervised classification are those where a set of objects with known class membership is used
for training. Unsupervised classifications have no a priori knowledge of the memberships[9, 53].

2.2.1.1. Methods for supervised classification

In supervised classification methods the set of known objects is called training set. Each object
of the training set consists of an feature vector and a belonging class value. Based on the training
data the supervised learning algorithm extracts a decision function to classify unknown input
data. If the output of the decision function is a discrete value this function is known as inferred
function. Otherwise, if the output is continuous the function is called regression function [9, 53].

Some widely used examples of supervised classification methods are:

• Neural networks

• Nearest-neighbor classifiers
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• Linear least squares fit (LLSF)

• Naive Bayes (NB) Cassifiers

• SVMs

2.2.1.2. Methods for unsupervised classification

In unsupervised classification methods one seeks to determine how the data is organized. This
type of method is usually related with density estimation [9, 53].

Some examples of unsupervised classification methods are:

• Neural networks

• Partitioning clustering techniques

• Hierarchical clustering techniques

• Linear discriminant analysis (LDA)

• Quadratic discriminant analysis (QDA)

• Self-organizing maps (SOMs)

2.2.2. SVMs in ECG processing

Although there are approaches in which the ideas which underlies the SVM are used in the
context of unsupervised learning [10, 74], the SVM in its original version is a supervised classi-
fication method.

In the field of ECG processing, the usage of SVMs becomes more and more popular in recent
times. The main reasons, first and foremost the convincing results, already have been outlined
in chapter 1. Table 2.1 summarizes the application of SVM by giving some selected examples.

By analyzing the given examples the actual relevance of SVMs becomes obvious. Moreover
this, table 2.1 gives details on the most important facts of the applied SVMs. Those facts include

• the type of SVM formulation used

• the Kernels which are used

• the multiclass classification strategy

• the feature vector extraction

For information on the theoretical basis of the depicted facts readers are referred to chapter 3.
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2.3. SVM implementations

Regarding the usage of SVMs there is some useful software available. Famous implementations
are:

• SVM-Toolbox by Albrecht [8]

• SVM-Light by Joachims [36]

• MySVM by Rüping [60]

• LibSVM by Chang and Lin [20]

• MatLab-SVM-Toolbox by Gunn [31]

• LaSVM by Bordes [14]

Besides SVM specific software there are libraries/toolboxes which are dedicated to signal
processing in a more general sense but include some SVM routines. Amongst others these are:

• Gait-CAD by Burmeister [18]

• MatLab Math Works [1]

• DTREG by Sherrod[62]

• PRTools [2]

• Tiberius [3]

In table 2.2 some of the toolboxes and their characteristics are summarized.
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Table 2.2.: Examples of SVM software

Reference/Software Name Characteristics of the Implementation

Albrecht [8] SVM Toolbox MatLab functions for transductive and inductive learning
2D-Visualization
Accuracy determination
Heuristic parameter search
OvA and OvO Multiclassification
Kernels: linear, polynomial, RBF, Sigmoidal

Bordes [14] LaSVM C library functions for approximate SVM solver
Uses online approximation Kernel classifier that modifies its hypothesis as new training
instances become available
Requires considerably less memory
Soft margin SVM formulation
Reorganization of SMO

Burmeister [18] Gait-CAD MatLab classification Toolbox
Supported methods: fuzzy systems, artificial neural networks, SVMs, statistical
methods, feature extraction methods

Chang and Lin [20] LibSVM C++ and Java implementation
C-SVC, ν-SVC, One-class SVM, ε-SVR and ν-SVR
Kernels: linear, polynomial, RBF, Sigmoidal
cross-validation and automatic model selection

Gunn [31] MatLab SVM
Toolbox

SVM classification and regression
Kernels: linear, polynomial, RBF, exponential RBF, Sigmoidal, Fourier series, Spline, B
spline, Additive Kernels and Tensor Product

Joachims [36] SVM light C implementation
Solves classification and regression problems
α-estimates of the error rate, the precision and the recall
Kernels: linear, polynomial, RBF, Sigmoidal

Rüping [60] MySVM C++ implementation
SVM classification and regression
Kernels: linear, polynomial, RBF and Sigmoidal

MatLab Math Works [1] Own MatLab Toolbox
Classification and statistical learning tools
Cross-validation
Compare different classification methods
SVM and K-nearest neighbor classifiers
Selecting diversity and discriminating features

[2] PRTools MatLab based toolbox for pattern recognition
Methods for: data generation, training classifiers, combining classifiers, features
selection, linear and non-linear feature extraction, density estimation, cluster analysis,
evaluation and visualization.

Sherrod [62] DTREG Software for predictive modeling and forecasting
Methods: SVM, Decision Trees, Boosted Decision Trees, Decision Tree Forests, MLP
Neural Networks, RBF Neural Networks, Polynomial Neural Networks, Cascade
Correlation Neural Networks, Probabilistic Neural Networks, K-Means Clustering,
LDA, Linear and Logistic Regression

[3] Tiberius Predicting modeling software
Methods: SVM, Neural Networks, Decision Tree, Logic Regression, Regression Splines,
Automatic scorecard building algorithms
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3.1. Introduction to SVMs

SVM is a training algorithm for learning classification and regression rules from data. It was
first introduced in 1990s by Vapnik and Chervonenkis in the book: The Nature of Statistical
Learning Theory [72]. SVMs, if necessary combined with KMs, have become popular to solve
classification problems due to their high accuracy, their ability to deal with high-dimensional
and large datasets as well as their flexibility in modeling diverse sources of data [11].

The main idea of applying SVMs is to find the separating hyperplane between two classes
that maximizes the margin between them. This border is found by using previously labeled
data. After finding this border, a classification function is extracted. Depending on the value
that this function takes, previously unknown data then can be assigned to a certain class. This
formulation results in a linear hard margin SVM.

To use the SVM as generalized classifier two considerations have to be taken into account
beside the given basic principle:

1. It must be possible to apply the SVM even when data is not linearly separable in the input
space

2. It must be possible to apply the SVM to multi-class problems

Regarding the first aspect there are two strategies. On the one hand, if the training data is not
linearly separable in the input space erroneous classifications during the training are tolerated
under certain circumstances. This expansion allows to construct a separating hyperplane even
in such case where linear separability is not existing (called soft margin SVM ). On the other
hand, a nonlinear mapping onto a high dimensional space to achieve separability can be applied.
This can be done with the help of a Kernel Method (called non-linear SVM ).

Regarding the second aspect the it multi-class problem is built up directly on binary SVMs.
Multi-class classification thereby is reached by combining single binary SVMs (called multiclass
SVM ).

The easiest example that one can formulate using a SVM is a binary, linear classification.
The following considerations which are based on [5] will start from using this assumption. Af-
terwards, the basic ideas are extrapolated to the non-trivial cases of nonlinear classification and
multi-class classification of non-separable data.
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3.2. Binary Classification

3.2.1. Linear Classification

In a SVM formulation, a set of examples X =
{
xi|i ∈ {1, . . . , n} ∧ xi ∈ Rq

}
with known class

membership Y =
{
yi|i ∈ {1, . . . , n} ∧ yi ∈ R

}
is used to train the classifier. Thereby, q is the

dimension of the input vectors. In a dichotomous case there are only two classes, i.e. Class 1
and Class 2, respectively. Then, the classes can be labeled, for instance, as yi = 1 for Class 1
and yi = −1 for Class 2.

Consider the case where X is linearly separable and xi has only two feature components.
One can place these examples in a two dimensional plane as is shown in figure 3.1. The best
boundary that one can intuitively trace will be placed as far as possible of both classes. This is
formally called Hard Margin.

3.2.1.1. Hard Margin

If the data is linearly separable, a hyperplane that maximizes the margin between two classes
can be defined as (see figure 3.1):

w · x+ b = 0 (3.1)

X1

X2

H1

H2

w

d1

d2-b

|w|

Class 1

Class 2

Figure 3.1.: Hard Margin classification. Based on a illustration in [5]

Where w, x ∈ Rd and b ∈ R. w is the normal to the hyperplane, b/ ‖w‖ is the perpendicular
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3. Principles of SVMs

distance from the hyperplane to the origin, ‖w‖ is the Euclidean norm of w and d1 and d2 are
the distance between the hyperplane and the nearest observation of each class.

To obtain the optimal separating hyperplane H, it has to be considered that the training data
satisfies:

yi(w · xi + b) ≥ 1 ∀i (3.2)

Then, the optimal separating hyperplane can be obtained by minimizing the norm of w by
adding the condition of equation (3.2):

min
w,b

1

2
‖w‖2 (3.3)

Two secondary hyperplanes (H1 and H2) can be defined. These hyperplanes are parallel and
between them there are no training points. The training points that are on the hyperplane
H1 = w ·xi + b = 1 and on the hyperplane H2 = w ·xi + b = −1 are called support vectors xs

i .
All the xs

i are grouped in the matrix S. This set of support vectors are the training examples
situated nearest to the optimal hyperplane. Finally one can take off all the other training points
and leave only the support vectors and the optimal hyperplane will not change.

The margin d of the SVM is calculated as the distance between both secondary hyperplane
H1 and H2. One can identify that the distance from a positive support vector to the origin is
|1−b|
‖w‖ . On the other hand, the distance from a negative support vector to the origin is |−1−b|

‖w‖ .

Consequently, the distance from a positive support vector to the optimal hyperplane is d1 = 1
‖w‖

as the distance from a negative support vector to the optimal hyperplane. The margin of the
SVM will be the sum of this both distances d = 2

‖w‖ as is represented in figure 3.1.

After determining the most suitable hyperplane, new data x′ will be classified by evaluating
y′ = sgn(w · x′ + b) as:

w · x′ + b > 0, x′ is classified as Class 1 ⇒ y′ = +1.

w · x′ + b < 0, x′ is classified as Class 2 ⇒ y′ = −1.

w · x′ + b = 0, x′ is data unclassifiable.

The optimization task which was depicted in equation 3.3 constraint to equation 3.2 can be
formulated in terms of Lagrange multipliers. This is very useful to reformulate the restriction
equation, equation 3.2, to be easily manageable. Also, using Lagrange multipliers, the training
points will only appear as a scalar product of vectors. This characteristic will be useful in the
nonlinear classification case. This formulation is called Dual Formulation.

Dual Formulation

The function of this new formulation [5] is build up by adding a positive Lagrange multiplier
αi for each restriction 3.2 and subtracting them from the goal function 3.3. With N as the
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number of support vectors this results in:

LP =
1

2
‖w‖2 −

N∑
i=1

αiyi(xi ·w + b) +

N∑
i=1

αi (3.4)

Now it is needed to minimize LP in respect of w and b, assuring that the gradient of LP will
be 0, and the Lagrange multipliers are positive defined, αi ≥ 0.

∂LP
∂w

= 0 (3.5)

∂LP
∂b

= 0 (3.6)

This leads to two conditions:

w =

N∑
i=1

αiyixi (3.7)

N∑
i=1

αiyi = 0 (3.8)

Substituting these conditions in 3.4 results in:

LD ≡
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj s.t αi ≥ 0 ∀i and
N∑
i=1

αiyi = 0 (3.9)

≡
N∑
i=1

αi −
1

2

N∑
i,j=1

αiH ijαj where Hij ≡ yiyjxi · xj (3.10)

≡
N∑
i=1

αi −
1

2
αTHα s.t αi ≥ 0 ∀i and

N∑
i=1

αiyi = 0 (3.11)

Having moved from minimizing LP to maximizing LD, the convex QP that is needed to solve
is:

max
α

[
N∑
i=1

αi −
1

2
αTHα

]
s.t αi ≥ 0∀i and

N∑
i=1

αiyi = 0 (3.12)

The solution of 3.12 is a vector with all the Lagrange multipliers α. Each Lagrange multiplier
corresponds to a training vector. Those which are greater than 0 (αi > 0) are support vectors
and are situated on the secondary hyperplanes H1 and H2, respectively. The other Lagrange
multipliers will be 0.

Finally, w is expressed as a combination of these support vectors 3.7. Parameter b will be
calculated as the average of all the equations:

b =
1

N

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs
i ) (3.13)

Application Example
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Consider the case where the input data has only one feature component and 2 defined classes
(see figure 3.2) [5]. Take as training observations the vectors:

x1 = −1, y1 = 1 (3.14)

x2 = 0, y2 = 1 (3.15)

x3 = 1, y3 = 1 (3.16)

Substituting this training points in equation 3.2 the restriction equations follow:

− w + b ≥ 1 (3.17)

−b ≥ 1 (3.18)

−w − b ≥ 1 (3.19)

The solution that minimizes ‖w‖2 is given by:

b = −1 (3.20)

w = −2 (3.21)

If those values are substituted in equation 3.1, the decision function that is obtained is:

y′ = −2x′ − 1 (3.22)

In this example, if the decision function is equal to 0, the decision boundary which is obtained
is fixed in x = −1/2. One has to take into account that as the support vectors of this example
are x1 and x2, x3 can be removed from the formulation and the decision boundary will not
change.

This example can be rewritten in a dual formulation. Now, the equation that has to be max-
imized is:

LD = α1 + α2 + α3 −
1

2
(α1 + α3)2 (3.23)

Subject to:
α1 − α2 − α3 = 0 and αi ≥ 0 (3.24)

The solution is:

α1 = 2 α2 = 2 α3 = 0 (3.25)

Substituting these values in the equation 3.7, one obtains the same solutions as the primary
problem.

3.2.1.2. Soft Margin

When the input data is not linear separable the Hard Margin SVM is unsolvable. In these cases
it is possible to introduce a non-negative slack variable ξi(≥ 0). This results in a Soft Margin
SVM for linear classification (see Figure 3.3). For this type of margin one assumes that some
points of the training data will be wrongly classified which allows to find a solution without
using a mapping function.
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X

Class 1 Class 2

X1 X2 X3

-1 0 1

Figure 3.2.: Example of SVM Hard Margin classification. Based on an illustration in [5]

This modifies the formula 3.2 to:

yi(xi ·w + b) ≥ 1− ξi ξi ≥ 0 ∀i (3.26)

Using a Soft Margin the points that are wrongly classified are penalized using a linear com-
bination in the goal function. The parameter C is used to trade-off between the maximization
of the margin and minimization of the classification error. Now, one can obtain the optimal
separating hyperplane by minimizing [5]:

min
w,b

1

2
‖w‖2 + C

N∑
i=1

ξi s.t yi(xi ·w + b)− 1 + ξi ≥ 0 ∀i (3.27)

C can be adjusted to penalize more or less the errors which are allowed. If C takes a big value,
the penalization is higher. One must take into account that ξi = 0 for those cases in which the
classification is correct. Consequently, just these points that are misclassified will be affected by
the parameter C, where ξi will take a value grater than 1.

Now the support vectors used in the formulation include the training points situated on the
hyperplanes H1 and H2 and the training points between them. Where NS is the number of the
support vectors.

Dual Formulation

The Soft Margin formulation also can be rewritten in a Dual Formulation [22]. In this formu-
lation it does not appear neither ξi or the Lagrange multipliers associated with ξi. Consequently,
as in the hard margin case, the dual formulation is easier to handle than the primary formula-
tion. Analogue to formula equation 3.4 in the hard margin case, the primary formulation in the
soft margin case is:

LP =
1

2
‖w‖2 + C

NS∑
i=1

ξi −
NS∑
i=1

αi [yi(xi ·w + b)− 1 + ξi]−
NS∑
i=1

µiξi (3.28)

This formula is to be minimized with respect to w, b and ξi with µi ≥ 0:

∂LP
∂w

= 0 (3.29)

∂LP
∂b

= 0 (3.30)
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X1

X2

H1

H2

w

-b

|w|

Class 1

Class 2

- i

|w|

- i

|w|

Figure 3.3.: Soft Margin classification. Based on a illustration in [5]
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∂LP
∂ξi

= 0 (3.31)

This leads to three conditions:

w =

NS∑
i=1

αiyixi (3.32)

NS∑
i=1

αiyi = 0 (3.33)

C = αi + µi (3.34)

Moving from minimizing LP to maximizing LD, the convex QP that is needed to solve in soft
margin case is:

max
α

[
NS∑
i=1

αi −
1

2
αTHα

]
s.t 0 ≤ αi ≤ C ∀i and

NS∑
i=1

αiyi = 0 (3.35)

The solution of 3.35 is also a vector with all Lagrange multipliers α. Each Lagrange multi-
plier corresponds to a training vector. Those αi which take values 0 < α < C are support vectors.

In the soft margin case w is calculated as in equation3.7 and b as in equation3.13 where N is
now NS .

3.2.2. Non-linear Classification

In many applications, the data is not linearly separable and it is not possible to obtain proper
classification results using a linear SVM. In these cases the definition of a suitable mapping
function φ : Rn −→ Rn+

(where n+ > n) to transform the input data to a high dimensional
feature space where the data is linearly separable is needed. Afterwards, a linear SVM is applied
in this new space to find the separating hyperplane (see figure 3.4).

Those methods, referred to as Kernel Methods (KMs), are applied by an inner product of a
nonlinear mapping function φ(x) that exports the data from an input space X to a high dimen-
sional feature space Z. This new space is commonly known as Hilbert space.

The Kernel functions are statistically seen as covariance. They must be symmetric functions
and positive defined. One can use any operation of transformation as a Kernel if it obey the
Cover Theorem [22] about separability of patterns. Furthermore, this transformation must be
able to express it as a scalar product of vectors in the output space (K(xi,xj) = φ(xi) ·φ(xj)).
The Mercer ’s condition [5] is used to prove it. Any Kernel that obey those conditions can be
used in the training by substitute all the xi · xj for K(xi,xj).

K(xi,xj) = φ(xi) · φ(xj) (3.36)

The convex QP which must be solved in this case is:

max
α

[
NS∑
i=1

αi −
1

2
αTHα

]
s.t 0 ≤ αi ≤ C ∀i and

NS∑
i=1

αiyi = 0 (3.37)
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X1

X2

Class 1

Class 2

X1

X2

Figure 3.4.: Mapping data. Based on a illustration in [5]

Where H is now:
Hij = yiyjk(xi,xj) = yiyjφ(xi) · φ(xj) (3.38)

Different Kernel functions have been depicted in the literature. The most widely used Kernel
functions are :

Linear:
K(xi,xj) = (xi) · (xj)

Polynomial:
K(xi,xj) = ((γ(xi) · (xj)) + a)p, γ > 0

RBF:
K(xi,xj) = e(−γ‖xi−xj)‖2 γ > 0

Perceptron:
K(xi,xj) = ‖xi − xj‖

Sigmoidal:
K(xi,xj) = tanh(γxi · xj + r) γ > 0

Where γ, r and p are Kernel parameters.
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3. Principles of SVMs

3.2.3. Types of SVM Classification

In the literature different types of SVMs are depicted which differ in their characteristics. Es-
sentially, the proposed methods are expansions of the basic algorithm C-SVM. Those expansions
aim at rendering the SVM useful for specific cases regarding the input data or the desired out-
put. There are also different types of SVM Regression as ε-SVR and ν-SVR which are not
contemplated within this work. Following some important expansions for classification propose
are introduced [20].

3.2.3.1. Weight-Classification

Weight-Classification is used when the class distribution in the trainings examples is unbalanced.
To reduce the contribution of dominating classes in the training process one has to weight the
parameter C by adding a new parameter wi for each class [23].

min
α

[
1

2
αTHα−

NS∑
i=1

αi

]
s.t 0 ≤ αi ≤ Cwi ∀i and

NS∑
i=1

αiyi = 0 (3.39)

Where H is now:
Hij = yiyjk(xi,xj) = yiyjK(xi), φ(xj) (3.40)

3.2.3.2. ν-Classification

This type of SVM is used when the number of support vectors and training errors is to be
controlled. A new parameter ν ∈ (0, 1] is introduced in the formulation to define the upper
bound on the fraction of training errors and a lower bound of the fraction of support vectors
[20].

min
α

[
1

2
αTHα

]
s.t 0 ≤ αi ≤ 1/l ∀i and

NS∑
i=1

αi ≥ ν,
NS∑
i=1

yiαi = 0 (3.41)

Where H is now:
Hij = yiyjk(xi,xj) = yiyjK(xi), φ(xj) (3.42)

3.3. Multi-class Support Vector Machines formulation

The classification in more than two classes is based on a combination of binary classification.
Now the possible labels of each training data will be y1, y2...yk with k > 2.

There are three typical strategies to solve multi-class SVM based on the construction on L
binary classification problems [33]:

• One versus One (OvO): this technique divided the hole formulation in k · (k− 1)/2 binary
SVMs, one for each pair of classes. Each testing example is classified by all the binary
SVMs. The decision function assigns the class which has the largest number of votes.

• One versus All (OvA): this technique divides the hole formulation into k binary SVMs.
The ith SVM is trained with all of the examples in ith class labeled as positive and the rest
labeled as negative. The class which is finally assigned is the class which has the largest
value of the decision function.
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3. Principles of SVMs

• Directed Acyclic Graph SVM (DAGSVM): this technique also use a set of binary SVM
to solve the main problem. In DAGSVM the decision function is constructed as a binary
tree. In each state of the tree the data is compared with two classes. The class that is less
similar to the input example is discarded (see figure 3.5).

A vs C

A vs B B vs C

B CA

Figure 3.5.: DAGSVM diagram. Illustration based on [38]
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4.1. Overview

The processing which is proposed within this thesis finally aims at the detection of ischaemic
episodes. The required processing steps to fulfill this task are shown in figure 4.1.

Preprocessed and segmented beats which are obtained from the European ST-T-database
(EDB) serve as input to further processing methods. These beats are labeled using a trained
SVM. Afterwards, the labeled beats are processed by a function to locate the episodes.

Classifier

Model

SVM

Beat

Classification

Find

episodes

Beats

preprocessed and

segmented

Preprocessed

Data Predicted Data Episodes

Figure 4.1.: Implementation of ischaemia episode detection

In the following sections the three main aspects of the presented thesis

• Input data: preprocessing and segmentation (see section 4.2)

• Beat classification: SVM model1 generation (training) and SVM application (see sec-
tion 4.3)

• Episode detection: method and parameters of the algorithm (see section 4.4)

are explained in detail.

4.2. Input data and preprocessing

4.2.1. The European ST-T database

Within this work the records of the EDB are used as data material. These records are referred
to as Raw Data.

1With model from here all the information which is related to the SVM is meant; amongst others this includes
the support vectors; for details see section 4.3.7
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The EDB was created for the evaluation of algorithms dedicated to the analysis of ST and
T-wave changes. It consists of 90 annotated excerpts of ambulatory ECG recording from 79 sub-
jects. The database includes 367 episodes of ST segment changes, and 401 episodes of T-wave
changes, with durations ranging from 30 seconds to several minutes, and peak displacements
ranging from 100µV to 1 mV. Each record is two hours in duration and contains two ECG
channels, each sampled at 250 samples per second with 12-bit resolution [69].

Two cardiologists worked independently to annotate each record beat-by-beat (QRS classes).
Further on, changes in ST segment, T-wave morphology and signal quality were annotated. ST
segment and T-wave changes were identified in both leads, and their onsets, extrema, and ends
were annotated. Annotations made by the two cardiologists were compared, disagreements were
resolved by the coordinating group in Pisa, and the reference annotation files were prepared;
altogether, these files contain 802,866 annotations [69].

4.2.2. Beat Preprocessing

4.2.2.1. Preprocessing Overview

The preprocessing summarizes all steps which lead to the Karhunen-Loève-Transformation-
coefficients (KLT-coefficients) which serve as basis in this work. The used preprocessing scheme
originates from the ideas described in Nauber [50]. Essentially, it consists of four steps.

1. Signal filtering

2. Beat segmentation

3. Temporal alignment

4. Application of the KLT

In the following sections the most important details on each step are outlined. For more details
readers are referred to [50, 76].

4.2.2.2. Signal filtering

To reduce the influence of typical distortions on the ST-T-complex a linear filter is applied
to the ECG. The applied FIR filter is implemented through the Wavelet Transform and its
inverse. Thereby the quadratic spline wavelet [44] is used. The upper and lower -3 dB frequencies
of the band pass filter are 0,48 Hz and 15,4 Hz, respectively. Figure 4.2 contains the filter
characteristics.

4.2.2.3. Beat segmentation

The beat segmentation aims at cutting out a signal segment which contains the complete VR.
In this regard, a scheme based on [41] is chosen. Onset onsetV R and length lV R(RR) of the
signal segments are given by

onsetV R = FPQRS + 72 ms (4.1)

lV R(RR) =

{
RR− 240 ms− 72 ms RR ≥ 720 ms
2
3RR− 72 ms RR < 720 ms.

(4.2)
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Figure 4.2.: Filters
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Figure 4.3.: Warping paths for different RR-categories [75]

Thereby, FPQRS constitutes the fiducial point of the QRS complex whose VR is under inves-
tigation. RR is the distance to the next QRS-complex. Within this work all regular beats of
the EDB are used. The regular beats comprise all beats except those which are annotated as
non-normal, neighboring beats of the non-normal beats as well as beats which are marked as
noisy.

4.2.2.4. Temporal alignment

The temporal alignment aims at reducing the influence of the varying lengths of the segmented
VRs. In [50] a proceeding is described which does this alignment based on data based warping
paths. The warping paths do a piecewise linear temporal scaling, i.e. a stretching and com-
pression respectively is done. The rule which is applied to a segmented VR depends on the
VR’s foregoing RR interval. Figure 4.3 contains the warping paths which resulted in [50]. The
application of the warping paths ensures that the resulting signal segments are of equal length.
This is the precondition to apply the KLT as next step.

4.2.2.5. Application of the KLT

KLT basics

The KLT is a signal dependent linear transform. Applying the KLT ensures the minimization
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of the resulting square error between an original signal x, also called pattern vector, of length
Nsig and its reconstruction xrec which is calculated from a feature vector consisting of n KLT
coefficients b1, b2 . . . bn with n < Nsig.

The transformation rests upon the basis functions Φ. The basis functions are the eigenvectors
of the covariance matrix C established by all training patterns

C = E
{

(P −M)T (P −M)
}

(4.3)

Thereby, P is a matrix containing all pattern vectors and M is a same-sized matrix as P con-
taining copies of the mean m of the samples of all pattern vectors. The eigenvector with the
i-largest eigenvalues λi constitutes the ith basis function.

KLT application

To calculate the KLT-coefficients an inner product between the signal segment under con-
sideration and the first six basis functions is calculated. Within this works the basis functions
of [50] are used. These basis functions are constructed using the temporal aligned VRs. As
result of applying the KLT one gets 6 coefficients by which the VR of each beat is described.
The further processing in this work relies on these coefficients.

4.2.3. Generation of SVM Input

To apply the SVM a vector of the features of each beat and a label that determines the belonging
class is needed. Within this work this data is referred to as Preprocessed Data. The steps to
obtain proper preprocessed data are shown in figure 4.4. A detailed description is given in the
next sections.

4.2.3.1. Feature vectors

The feature vectors of the preprocessed data are composed of the first 6 coefficients of the KLT
of each beat. These coefficients are obtained by the method which was previously explained.
However, in the ST-T database the criteria which is applied to identify and annotate ST-episodes
and T-episodes involves a reference. This reference was originally selected from the first 30 sec-
onds of each record and channel. ST-segment deviations were always measured relative to this
reference. To identify a T-wave episode a similar criteria was applied: T-deviations were mea-
sured relative to the same reference waveform which was used for measuring ST deviations. [69]

Within this work, to use an equivalent criteria to identify ST-episodes and T-episodes, a ref-
erence of each record and channel is extracted. This reference is obtained by calculating the
median of the first 200 beats’ coefficients. As a result one gets a pattern consisting of 6 KLT
coefficients for each channel and record. These pattern serve as reference. Finally this reference
is extracted from the original KLT coefficients.
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Figure 4.4.: Preprocessing Raw Data

4.2.3.2. Beat labels

By using the annotations of ST-episodes and T-episodes each beat is labeled with a specific
number2. The labeling is done based on the annotations for the single channels. The labels
assigned to the different annotations are:

Labels

• 0 : Non ischaemic beat

• 1 : ST segment elevation (s+)

• 2 : ST segment depression (s-)

• 4 : T wave elevation (T+)

• 8 : T wave depression (T-)

It has to be considered that each beat can have more than one annotation if ST- and T-
episodes occur at the same time. Considering this possibility and adding all the values assigned
to each beat, there are 9 label types:

Combined Labels

• 0 : Non ischaemic beat

• 1 : ST segment elevation (s+)

• 2 : ST segment depression (s-)

2Note that the EDB does distinguish between ischaemia and normal on a beat level, but just defines episodes
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• 4 : T wave elevation (T+)

• 5 : T elevation (T+) and ST elevation (s+)

• 6 : T elevation (T+) and ST depression (s-)

• 8 : T wave depression (T-)

• 9 : T depression (T-) and ST elevation (s+)

• 10 : T depression (T-) and ST depression (s-)

Considering the annotation scheme, some combinations are not feasible. As an example, label
3 can never be assigned to a beat because that means that a ST-segment elevation and depres-
sion is annotated at the same time.

The number of labels that is obtained for each record is contained in table 4.1:

Table 4.1.: Number of Labels in each record

Record Label 0 Label 1 Label 2 Label 4 Label 5 Label 6 Label 8 Label 9 Label 10

e0103 13276 656 0 0 0 0 0 0 0
e0104 10633 288 138 378 71 0 2585 0 87
e0105 9495 270 793 448 1708 0 0 0 0
e0106 11777 47 875 211 0 34 635 0 279
e0107 8298 29 417 416 353 0 805 0 116
e0108 10234 0 130 1423 303 0 35 0 267
e0110 12507 1 0 39 57 0 0 0 0
e0111 13555 9 3 98 99 0 158 0 152
e0112 6948 167 90 0 148 0 938 55 0
e0113 13637 96 0 235 543 0 339 0 0
e0114 8786 98 179 84 71 0 57 1 144
e0115 18077 0 603 0 0 0 118 0 0
e0116 7352 1 178 41 209 0 173 0 0
e0118 9345 166 191 355 841 0 110 0 0
e0119 5994 248 324 413 803 0 1159 33 38
e0121 14955 0 168 1471 0 0 769 543 356
e0122 18027 176 179 1598 0 0 2232 40 0
e0123 16527 0 579 23 0 841 0 0 0
e0124 14488 0 1041 305 0 576 136 0 0
e0125 15566 0 59 1270 0 369 0 0 0
e0126 15132 0 298 183 0 0 187 0 0
e0127 16380 136 224 250 298 0 0 0 0
e0129 8267 10 233 676 552 0 0 0 200
e0133 9202 0 0 558 0 0 200 0 0
e0136 11147 25 0 1298 158 28 0 0 0
e0139 16364 334 764 0 100 0 0 0 0
e0147 11235 0 430 0 0 273 0 0 0
e0148 16 0 0 0 0 0 0 0 0
e0151 11589 34 0 1625 258 0 0 0 0
e0154 12127 0 98 0 0 0 131 0 0
e0155 7467 0 0 13 0 0 0 0 0
e0159 8262 0 390 0 0 0 0 0 0
e0161 12511 0 1193 2046 0 0 0 0 0
e0162 10356 0 0 419 0 0 947 0 7066
e0163 13842 0 17 0 0 0 47 0 0
e0166 9668 45 335 678 784 0 614 0 72
e0170 11179 0 87 7 67 0 0 0 0
e0202 13546 0 2043 0 0 974 86 0 879

Continued on next page
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continued from previous page

Record Label 0 Label 1 Label 2 Label 4 Label 5 Label 6 Label 8 Label 9 Label 10

e0203 13984 2584 2450 0 0 0 0 0 0
e0204 19901 0 1388 0 0 0 79 0 76
e0205 15643 984 323 0 0 0 1214 0 1156
e0206 12823 3080 1148 0 0 0 1526 0 1091
e0207 11224 0 2162 0 0 0 246 0 0
e0208 14886 0 790 0 0 0 0 0 0
e0210 13043 0 3347 0 0 0 0 0 0
e0211 23322 0 2332 1915 0 275 0 0 0
e0212 19225 0 899 0 0 0 0 0 0
e0213 14393 0 1527 0 0 0 0 0 0
e0302 18999 0 591 0 0 0 0 0 0
e0303 15709 0 1213 108 0 0 0 0 0
e0304 15259 0 125 0 0 0 550 0 0
e0305 9999 0 1724 0 0 0 2424 0 3015
e0306 8380 0 3318 0 0 0 1304 0 0
e0403 17251 254 0 0 0 0 386 74 249
e0404 11878 0 735 622 77 0 0 0 0
e0405 11899 0 2165 1543 0 0 3653 0 1428
e0406 9612 0 4748 290 0 0 0 0 0
e0408 15726 0 1666 0 0 0 0 0 0
e0409 25572 0 0 0 0 0 0 0 0
e0410 13916 0 0 125 203 0 0 0 0
e0411 13965 96 200 84 98 0 212 0 269
e0413 10753 0 150 272 0 407 0 0 0
e0415 8435 0 4020 0 0 0 640 0 2571
e0417 16882 0 1380 0 0 0 0 0 0
e0418 21090 0 1922 0 0 0 0 0 0
e0501 11518 0 2276 0 0 0 0 0 0
e0509 14704 0 0 0 0 0 0 0 0
e0515 11106 421 18 0 0 0 4802 0 427
e0601 14299 55 0 0 25 0 351 0 0
e0602 14904 0 3736 0 0 0 0 0 0
e0603 11465 9 1491 2056 455 0 0 0 0
e0604 10850 22 1309 315 789 0 569 0 14
e0605 17278 0 1086 0 0 0 0 0 0
e0606 12821 0 156 0 0 0 1639 0 3434
e0607 7922 0 9350 0 0 0 0 0 0
e0609 14701 0 2825 0 0 0 0 0 0
e0610 12864 0 1725 680 0 41 0 0 0
e0611 9790 0 0 0 0 0 0 0 0
e0612 8173 0 1185 0 0 0 45 45 0
e0613 4157 32 427 2955 156 137 0 0 0
e0614 4444 0 8352 0 0 0 0 0 0
e0615 11897 0 0 112 0 5 0 0 0
e0704 13608 0 346 1490 0 0 278 0 2146
e0801 12572 0 391 0 0 0 66 0 25
e0808 7072 227 0 0 0 0 126 0 293
e0817 5378 0 120 428 0 0 0 0 0
e0818 12730 0 2073 0 0 0 0 0 23
e1301 15237 0 1123 0 0 0 610 0 0
e1302 13622 0 526 692 115 0 189 0 46
e1304 12078 0 823 0 0 0 24 0 1733

Total 1126726 10600 91720 30248 9341 3960 33394 791 27652

% 84.43 % 0.7943 % 6.8733 % 2.2667 % 0.7000 % 0.2968 % 2.5025 % 0.0593 % 2.0722 %
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4.3. Beat classification

4.3.1. Used software

Software selection: The SVM implementation in this work is done by building up on the Lib-
SVM software [20]. This software has been chosen because it can be applied to large datasets
(implementation in C++), supports automatic model selection, weighted SVM for unbalanced
data and multi-class classification. Furthermore, LibSVM is an integrated software package
that supports vector classification, regression and distribution estimation. Thus, it offers a
wider range than just the classification which may become important for future works.

Software details: To avoid solving a time-consuming numerical QP optimization problem,
LibSVM uses a modified SMO algorithm to perform SVM training. This algorithm breaks the
QP problem into a series of smallest possible QP problems that are solved analytically. In table
4.2 the main characteristics of LibSVM are detailed. Through it wide usage in the scientific
community LibSVM can be seen in table 2.1.

Software usage: Within this work, MatLab is used as interface to invoke the LibSVM soft-
ware package. All the C++, Java and Python sources included in LibSVM use data stored
in a special format. This format is known as LibSVM format. To transform this data files
into MatLab format one can use the function libsvmread.m. To write data in a LibSVM the
function libsvmwrite.m can be used. When needed the functions provided by LibSVM are
supplemented by own functions which are programmed in MatLab.

4.3.2. Classification proceeding

The method to extract the classifier model and the ischaemic episodes can be divided in different
stages which are characterized by different variants of their implementation. An overview is
shown in figure 4.5.

Details on each of the steps are outlined in the following sections.

4.3.3. Data separation

In order to obtain a realistic estimate of the real world performance of trained classifiers the
used data is separated into two sets. One set is used to train the SVM and the other to test
it. In particular when the SVM is used, limitations arise from the computational complexity
which is expected to increase with a growing number of training patterns (see details in 6.1).
However, a too small number of training patterns could result in an incomplete training set and
thus reduced classification results.

Within this work, the separation is quasi randomly done by choosing a number of records
Ntrain from the 90 records which are available in the EDB. The only requirement to be fulfilled
was that the record which are used for training purposes must contain a minimum number of
beats from each class 3. In this work Ntrain = 10 records have been selected. These records are
referred to as Training Data, whereas the rest of the records are referred to as Testing Data (see
figure 4.5).

3Therefore the selection is only quasi randomly
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Table 4.2.: Characteristics of LibSVM

Characteristics LibSVM

Sources
C++
Java

Interfaces
MatLab
Python
Others

Kernels

Linear
RBF
Polynomial
Sigmoid
Your own kernel by modifying svm.cpp

Different SVM formulations

C-SVC
ν-SVC
One-class SVM
ε-SVR
ν-SVR

One-class SVMs/Regression

ε-SVR
ν-SVC
Probability estimates for SVR
One-class SVM using a hyperplane

Binary classification SVMs

C-SVM
ν-SVC
Probability estimates for C-SVC
Probability estimates for ν-SVC

Multiclass algorithms
OvO
OvA

Weighted SVM Different weight of C for each class for unbalanced data

Cross validation With multiple criteria for evaluation

Grid search Via python script

Subset of data with same distribution Via python script

Feature scaling Via external program svm-scale

Other useful tools Read and write files in LibSVM format with MatLab
functions
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Figure 4.5.: Training and testing of an algorithm to detect ischaemic episodes
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The 10 records which build up the training data and their characteristics are described in
detail in table 4.3.

Table 4.3.: Number of labels in the training data

Record Label 0 Label 1 Label 2 Label 4 Label 5 Label 6 Label 8 Label 9 Label 10

e0113 13637 96 0 235 543 0 339 0 0
e0121 14955 0 168 1471 0 0 769 543 356
e0166 9668 45 335 678 784 0 614 0 72
e0202 13546 0 2043 0 0 974 86 0 879
e0206 12823 3080 1148 0 0 0 1526 0 1091
e0210 13043 0 3347 0 0 0 0 0 0
e0211 23322 0 2332 1915 0 275 0 0 0
e0302 18999 0 591 0 0 0 0 0 0
e0417 16882 0 1380 0 0 0 0 0 0
e0605 17278 0 1086 0 0 0 0 0 0

Total 154153 3221 12430 4299 1327 1249 3334 543 2398

% 84.2578 % 1.7605 % 6.7940 % 2.3498 % 0.7253 % 0.6826 % 1.8223 % 0.2968 % 1.3107 %

In total, the training consists of 182954 beats (16.2377% of the preprocessed data). To reduce
the training time consumption just a subset of the whole training data is selected. The selected
data is referred to as Training Subset (see figure 4.5) and has 8500 beats.

In the experiments on different training strategies, two distributions for the training subset
(unbalanced and balanced) are contemplated. With these two different distributions one expects
different SVM models and consequently different beat classification results.

4.3.3.1. Unbalanced

The first distribution choice is to keep the same data distribution as it is found in the original
training data. Having the same data distribution is supposed to have a positive contribution
to the training process [70]. LibSVM offers a python script (subset.py) that extracts a subset
with the same class distribution as in the original training data.

The number of beats belonging to each class and the percentage of each class from the total
number of beats in the unbalanced subset are detailed in table 4.4:

Table 4.4.: Number of Labels in Unbalanced Subset

Record Label 0 Label 1 Label 2 Label 4 Label 5 Label 6 Label 8 Label 9 Label 10

Number 7161 150 578 199 62 58 155 25 112

% 84.24 % 1.77 % 6.80 % 2.34 % 0.73 % 0.68 % 1.82 % 0.29 % 1.43
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4.3.3.2. Balanced

A balanced distribution, i.e. a training subset with same number of beats of each class is also
chosen. This distribution has the advantage of including more examples of ischaemic beats than
in the unbalanced distribution. In this case an own MatLab script (InputRandomData.m) is
used to select these beats. This script extracts randomly from the training subset, 1000 beats
of each class (except in class 9 were only 500 beats are selected; this exception is debited to the
distribution which is found in the preprocessed data where only 791 beats were labeled as class
9) (see table: 4.1). Furthermore, there is just one record (e0121), that has more than 500 beats
labeled as class 9. For this reason, this record must be included in the training data (therewith
it is the only record that is previously known to be part of the training subset).

4.3.4. Scaling

Scaling the feature vectors before applying the SVM is needed to get a faster and a better per-
formance of the SVM training and testing [32, 61]. Scaling each feature of training subset to a
specific range [-1,1] avoids that greater attributes dominate smaller ones. Furthermore, scaling
features results in simpler calculations.

In order to scale the data it is important to use the same scaling method in training and
testing processes. The scaling factors must be derived from the training data in order to avoid
biasing the classifier and thus modifying the results which are expected for real world data.

To scale data in a proper way, LibSVM includes a script (svm-scale.c) that scales each fea-
ture into the range [-1,1].

The data that one gets after scaling the training subset is referred to as Scaled Training Sub-
set. Analogously, the scaled testing data is referred to as Scaled Testing Data as it is shown in
figure 4.5.

4.3.5. Classification - binary and multi-class approach

The experiments which are carried out within this work are divided in binary classification and
multi-class classification. Whereas the binary classification just distinguishes between normal
and ischaemic beats, the multi-class classification distinguishes all the classes which have been
outlined in section 4.2.3.2.

By applying a binary classification the computational time is lower than in multi-class classi-
fication. However, by applying multi-class classification one could expect a better results of the
classification. By applying both strategies one allows to draw conclusions on the effect of the
multi-class classification compared to its higher computational costs in the end.

4.3.5.1. Binary Classification

To apply the binary classification at first the label vector of the scaled training subset and the
scaled testing data has to be adopted. This modification is made by changing all the ischaemic
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labels to 1 and the normal labels to −1. The usage of -1 allows the application of an automatic
parameter finding tool. A detailed description of the tool is contained in the next section 4.3.6.

4.3.5.2. Multi-class classification

To apply the multi-class classification the OvO strategy is chosen. This strategy is chosen
regarding better classification results [33] than OvA and DAGSVM. Considering that there are

9 classes, applying the OvO strategy one will get k(k−1)
2 = 36 binary classifiers.

4.3.6. Kernels and optimal parameters

From the most common Kernels which have been mentioned in section 3.2.2, Linear and RBF
Kernels are chosen to be used within this work. For each of these Kernels one must find the
optimal Kernel parameters as well as the penalty parameter C.

4.3.6.1. Linear

The linear Kernel has been chosen because it is computationally easiest to apply. Furthermore,
applying this Kernel one just needs to find the optimal parameter C. Moreover this, the linear
Kernel turned out to be even more powerful compared to more complex Kernels in other inves-
tigations [23].

4.3.6.2. RBF

The RBF Kernel is used in case that the relation between class labels and features coefficients is
not linear. This Kernel has been chosen because it has fewer numerical difficulties than sigmoid
Kernel or polynomial Kernel [32]. Furthermore, RBF Kernel has less parameters to optimize
than polynomial Kernel. To characterize RBF Kernels one has only to find C and γ parameters.

4.3.6.3. Parameter selection

LibSVM contains the script grid.py to find the best C and γ parameters for a C-SVM classifi-
cation using the RBF kernel. This script uses the program gnuplot [73] to visualize the results
in a graphic way. grid.py uses the global accuracy accglobal to evaluate the results. accglobal is
defined by

accglobal =

∑k
i=1 TPi
Nbeats

(4.4)

where TPi is the number of true positive labels for class i, k is the number of classes and Nbeats

is the total number of beats.

However, the global accuracy is not a suited criterion for binary classification of unbalanced
data [70]. One achieves high values of accuracy by predicting all beats as belonging to the class.
As an example, the preprocessed data has 84.43% of normal beats and 15.57% ischaemic beats.
By classifying all beats as normal one gets a value of 84.43% accuracy. For this reason, an own
sricpt Grid.m is used to find the best C and γ parameters with a more suitable evaluating criteria.
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Therefore, in this work the mean accuracy (MAC) mac is used [23].

mac =

∑k
i=1 acci
k

(4.5)

where acci is the accuracy for class i and k is the number of classes. For acci holds

acci =
TPi

TPi + FNi
(4.6)

where TPi and FNi are the true positives and false negatives, respectively.
In binary classification, the definition of MAC results in the balanced accuracy (BAC) bac

which is defined as

bac =
Se+ Sp

2
(4.7)

Where Se is sensitivity and Sp is specificity.

Sensitivity: ratio of correct detected events to the total number of events

Se =
TP

TP + FN
(4.8)

Specificity: ratio of correctly rejected nonevents to the total number of nonevents

Sp =
TN

TN + FP
(4.9)

The method used by Grid.m to estimate the best parameter combination (C, γ) is cross vali-
dation [20]. To perform cross validation one has to divide the scaled training subset in a certain
number of folds of equal size. In each iteration one of the folds is used to test the classifier. The
rest of the folds are used to train the SVM with a certain C and γ parameter. In each iteration
the fold used to test the found parameters is different, in order to extract the criterion value for
the selected parameters. This process is repeated with all determined combinations of C and
γ. Finally, the parameter combination (C, γ) that gets the best test results is extracted. The
method which underlies the parameter search is explained in figure 4.6.

The range of C and γ must be defined considering that the performance of the SVM depends
on them. One has to take into account that small values of C indicate low penalization of
misclassified training samples. Thus, the empirical error of the learning machine is considerably
large and the hyperplane is simple. However, large values of C lead to a complex hyperplane
as no misclassified training samples are allowed [43]. The range of C used is between 10−5 and
1015 with a step size of 102 as it is defined in the default values of grid.py.

The range of γ must be also defined. In this case, one must to take into consideration that
big values of γ lead to all the samples become support vectors. This causes that testing time
increases and over-fitting problem. However, small values of γ cause worse SVM performance
[43]. The range of γ used is between 10−15 and 105 with a step size of 102, as it is defined also
in the default values of grid.py.

In the case of unbalanced data one should use a weighted SVM to avoid possibly occurring
disproportionate influence of the majority class on the margin [26, 23]. This requires to weigh
the parameter C by defining a new parameter wi for each class (wiC). This parameter is not
automatically found by the grid function. In the literature there are some suggested formulas to
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define these values. Within this work, 3 of them are evaluated for each Kernel and the different
distributions of training data.

The first formula suggested in [23] is to set wi values according to the prior probabilities of
each class. This formula is referred to as W 1:

w1
i =

number of instances of i class

total number of instances

The second formula [4] to define wi is referred to as W 2:

w2
i =

number of instances of the biggest class

number of instances of classi

The third formula suggested in [26] to define wi is referred to as W 3:

w3
i =

total number of instances− number of instances of i class
total number of instances

The wi values that results of each formula and distribution are detailed in table 5.1:

Finally, the process made to find the optimal parameters for each method which is used to
set the wi (W 1,W 2,W 3) is an improved grid-search algorithm [43]:

1. Define wi

2. Conduct a coarse grid to find optimal parameters C1 (and γ1 in RBF Kernel)

3. Choose the wi with the best evaluation results

4. Only in RBF: Conduct a fine grid between γ1 + 102 and γ1− 102 with a step size of 100.25

and a fixed C1 to extract γopt.

5. Conduct a fine grid between C1 + 102 and C1 − 102 with a step size of 100.25 to extract
Copt (and a fixed γopt in RBF Kernel)

6. Select the optimal parameters wopt and Copt (and γopt in RBF Kernel)

4.3.7. Training

To train the SVM the MatLab interface is used. The training function which is included in Lib-
SVM is called svmtrain.m. This function allows to chose the type of SVM formulation which
is to be used, the Kernel and define the parameters which are needed for the respective Kernel.
Furthermore, the C parameter and a weight for each class wi can be used. As output one gets
a model structure which contains the following information:
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Table 4.5.: Weight values

W 1 W 2 W 3

Binary

Unbalanced
Normal 0.8425 1 0.1575
Ischaemic 0.1575 5.348 0.8425

Balanced
Normal 0.1176 7.5 0.8824
Ischaemic 0.8824 1 0.1176

Multiclass

Unbalanced

Label 0 0.84 1 0.15
Label 1 0.02 47 1
Label 2 0.07 12 1
Label 4 0.02 36 1
Label 5 0.01 115 1
Label 6 0.01 124 1
Label 8 0.02 46 1
Label 9 0.003 287 1
Label 10 0.01 64 1

Balanced

Label 0 0.12 1 0.88
Label 1 0.12 1 0.88
Label 2 0.12 1 0.88
Label 4 0.12 1 0.88
Label 5 0.12 1 0.88
Label 6 0.12 1 0.88
Label 8 0.12 1 0.88
Label 9 0.06 2 0.94
Label 10 0.12 1 0.88
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1. [1× 6] Vector with the training parameters options selected

2. Number of classes: k

3. Total number of support vectors: N

4. Parameter b of the decision function

5. [l × 1] Vector with the value of labels

6. [k × 1] Vector with the number of support vectors of each class

7. [N × 1] Vector with the coefficients assigned to each support vector (Ciwi)

8. [N × 6] Matrix with support vectors : S

This model is directly used to test new data. Thereto one can easily extract the decision
function by calculating:

w = ST ·Ciwi

y′ = wT · xi + b

4.3.8. Model application

To apply the SVM also the MatLab interface is used. The respective function included in Lib-
SVM package is called svmtest.m. The output of this function consists in a vector of predicted
labels, accuracy value and a matrix of decision values or probability estimates. This third output
is only completed if probability is specified in the options. In this work only the predicted labels
vector is used.

To evaluate the performance of the classifier an own MatLab script (accuracy.m) is used to
build up a confusion matrix. In each row of this matrix the predicted class is represented, while
each column represents the truth class of each tested beat. By this matrix one can easily extract
some conclusions of the predicted results.

4.3.9. Experiments

So far different training settings regarding methodology and training data have been described.
Overall, the combination of investigated selections leads to a set of experiments which are carried
out within this work regarding the beat classification. The performed experiments are itemized
in figure 4.7. Each experiment is a different combination of subset distribution, binary or multi-
class classification and linear of RBF Kernel. The experiments are referred to as:

Experiment 1: Unbalanced Subset, binary classification and Linear Kernel: UB2CL

Experiment 2: Balanced Subset, binary classification and Linear Kernel: B2CL

Experiment 3: Unbalanced Subset, binary classification and RBF Kernel: UB2CRBF

Experiment 4: Balanced Subset, binary classification and RBF Kernel: B2CRBF

Experiment 5: Unbalanced Subset, multi classification and Linear Kernel: UBMCL
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Experiment 6: Balanced Subset, multi classification and Linear Kernel: BMCL

Experiment 7: Unbalanced Subset, multi classification and RBF Kernel: UBMCRBF

Experiment 8: Balanced Subset, multi classification and RBF Kernel: BMCRBF
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4.4. Ischaemic Episode Detection

After classifying the beats of a record using the SVM one gets as output the predicted label
vector. The transformation of this vector into episode annotations is done by applying a slid-
ing window technique [48, 54, 55]: Based on the predicted labels windows of a certain time
duration are identified as normal or ischaemic. By using a sliding window the whole record
becomes classified on the basis of single windows. The classification of each window is based on
the percentage of beats which are predicted as ischaemic. Afterwards, a postprocessing of the
labeled windows is done in order to improve the quality of the window classification. Based on
the output of this postprocessing ischaemic episodes are found and delineated.

4.4.1. Window Labeling

The criteria used to label each time window is based on the number of the ischaemic predicted
beats related to the total number of beats in the respective window and channel (the channels
are considered seperately). This percentage is compared with two thresholds which divide the
possible range in 3 intervals. Depending on the interval to which the percentage of a window
belongs, a certain label is assigned to the window under consideration (see figure 4.8). The
interval between 100% and threshold1 is labeled as High: 3. The interval between threshold1

and threshold2 is labeled as 2: Median. The last interval is labeled as 1: Low.

To reduce erroneous labellings, there must be a minimum number of beats in a window to be
classified. If this minimum number is not reached because some of the beats have been discarded
in the preprocessing process, the whole window is labeled as -1 :Unlabeled.

The next window to be labeled is displaced a defined time from the beginning of the previous
window. This displacement is done until the end of the record is achieved. The parameters
chosen in this process to make the experiments are:

• Size of the window: 30 seconds

• Displacement: 10 seconds

• Minimum number of beats for each window: 5

• Threshold1: variable (see section 4.4.5)

• Threshold2: variable (see section 4.4.5)

After labeling all the windows of a record one obtains a vector of Labeled Windows for each
channel. Each labeled window is related to his initial time, his end time, the percentage of
ischaemic beats and the label which was assigned. The label vector constitutes a symbolic
representation regarding the occurrence of ischaemia which must be turned to episodes of is-
chaemia. Thereto, in order to allow a more robust episode detection, the label vector undergoes
a postprocessing before episodes are detected.

4.4.2. Postprocessing Labeled Windows

The postprocessing of labeled windows consists in analyzing and filtering the labeled window
vector. First, Unlabeled windows are labeled with the same label as the anterior window. Then,
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each group of three consecutive labels is analyzed to assign a postprocessed label. This post-
processed label will be assigned following this criteria:

1. 2 or 3 labels are equal −→ the postprocessed label is the majority label

2. All the labels are different −→ the postprocessed label is 2: Median

4.4.3. Locating Episodes

4.4.3.1. Detection

Compared to the annotation scheme of ST and T-episodes in the EDB, the basis for finding
episodes in the present work differs significantly: instead of a numeric value which describes
the ST-deviation and T-deviation, respectively, the output of SVM and the following processing
steps is a symbolic string. Thus, the own episode detection scheme must operate on such a
string. However, apart from the difference of the input a detection method was implemented
which is similar to the annotation scheme: following this scheme.

A detection of an episode is assumed when three consecutive High: 3 postprocessed labels
are found. This means that in an interval of 50 seconds the percentage of ischaemic predicted
labels is above threshold1.

4.4.3.2. Delineation

Analogously to the detection, even for the delineation similar criterion as explained in section
2.1.1 are used to delineate ischaemic episodes, i.e. find onset and end of the episode. The location
of the beginning of an episode is annotated by analyzing the postprocessed labels which occur
previous to the detected episode. To find the beginning of the episode at least two consecutive
Low: 1 postprocessed labels are required. The annotation of the episode beginning corresponds
with the end of the first Low: 1 label which was found.

The criterion which is used to annotate the episode end is, analogously, based on the analysis
of the postprocessed labels after each detected episode. The episode end is annotated when two
consecutive Low: 1 are found. The time which is annotated as episode end corresponds with
the initial time of the first Low: 1 label which was found.

Furthermore, the maximum of each found episode is annotated. The maximum of an episode
is located by comparing the percentages of ischaemic beats between the begin and end of an
episode. If more than one consecutive windows exhibit the same percentage, the maximum is
placed in the middle of all found the maxima. If more than one non-consecutive windows ex-
hibit the maximum percentage level, the maximum is placed in the middle of the first window
of maximum percentage.

An example of locating an episode is shown in figure 4.9.

4.4.4. Creating annotations

The procedures to label windows and locate episodes is carried out separately for each channel.
The annotations which are finally written constitute the disjunction of the single channel results
for each record. The further characterization of the performance is base on these annotations.
The single channel results are not evaluated within this work.
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Table 4.6.: Settings of the DPC analysis

Parameter Type Wert

Window size fixed 30 s
Window displacement fixed 10 s
Minimum number of beats fixed 5
threshold1 variable From 80 % to 100 %; step width 5 %
threshold2 variable From 55 % to 77,5 %; step width 2.5 %

4.4.5. Performance Analysis and DPC Analysis

To characterize the episode detection the presented work uses the parameters which are recom-
mended in this context [64]. Those parameters comprise

• SE Se: episode based sensitivity

• SE +P: episode based positive predictive value

• SD Se: duration based sensitivity

• SD +P: duration based positive predictive value

For all these values the average ([a]) and the gross ([g]) statistic are used. For detailed informa-
tion on the calculation of these parameters readers are referred to [64, 75].

The results of the episode detection vary with respect to the variables which have been in-
troduced in section 4.4.1. To find optimal settings for each experiment a detector performance
characteristic (DPC) analysis is carried out [64]. The DPC, which was introduced in the con-
text of ischaemia detection, constitutes an implementation of a receiver-operator-characteristic
(ROC) analysis. Differing from the classical ROC analysis which is based on sensitivity and
specificity the DPC uses the sensitivity and positive prediction, respectively.

During the own DPC analysis the thresholds threshold1 and threshold2 are varied according
to the values which are outlined in table 4.6. This range was identified as most suitable in
extensive pretests. Variations of the window length and window translation, respectively, are
not in the scope of this investigation and remain fixed during the DPC analysis.

As outlined before different parameters are used to characterize the detection results. This
makes it difficult to find the best results of the DPC. However, to find the most suited result and
its belonging parameters the optimal criterion which is proposed in [75] is applied. For optcrit
holds

optcrit =[SE Se[g] · SE +P[g] · SD Se[g] · SD +P[g]·
SE Se[a] · SE +P[a] · SD Se[a] · SD +P[a]

(4.10)

optcrit thus constitutes a merged measure for the detector’s quality.

Furthermore, in [75] the constraint

SD +P[g] + SD +P[a]

2
> 60 % (4.11)
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4. Implementation

must be fulfilled by a solution to be regarded as valid. Equation 4.11 tackles the problem of
globally improving results for decreasing values of SD +P. However, according to the results, in
this work this condition is not necessarily to be fulfilled as a meaningful discussion would not be
possible if all results which not fulfill the criterion would be disregarded. For this reason in the
results it is distinguished between unconstrained and constrained results. Only in the second
case equation 4.11 is considered.
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5. Results

5.1. SVM application

5.1.1. Parameter search

In table 5.1 the optimal parameters for each weight formulation are detailed. Thereby, the pa-
rameters are varied as outlined in section 4.3.6.3. The evaluation is done based on the percentage
which results from the cross-validation tests.

The highlighted parameters are the ones which belong to the settings which are finally selected
for each experiment.

5.1.2. Beat Classification

5.1.2.1. Binary Classification

In table 5.2 the MACs which result for each experiments that relies on the binary classification
are outlined. Classification results from training as well as testing are given.

5.1.2.2. Multiclass Classification

In table 5.3 the MACs which result for each experiments that relies on the multi-class classifi-
cation are outlined. Classification results from training as well as testing are given.

The given results summarize the contents of the confusion matrices which are built up each
experiment. Table 5.4 shows the confusion matrix which belongs to experiment 6. The remaining
ones are contained in the appendix (see figure A.1,figure A.2,figure A.3).
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5. Results

Table 5.1.: Weight values

Coarse grid γ Fine grid C Fine grid

C1 γ1 % γopt % Copt %

Experiment 1
UB W 1 2−5 55.30%
2C W 2 215 73.61%
L W 3 213 73.74% 211.25 73.89%

Experiment 2
B W 1 2−5 51.46%
2C W 2 215 66.80%
L W 3 25 67.02% 26.75 67.04%

Experiment 3
UB W 1 215 23 78.87%
2C W 2 27 23 84.85%

RBF W 3 211 23 84.89% 23.5 85.01% 29 85.29%

Experiment 4
B W 1 213 23 88.03% 23.5 88.10% 211.25 88.78%
2C W 2 215 23 65.99%

RBF W 3 215 23 61.55%

Experiment 5
UB W 1 213 54.16%
MC W 2 215 70.46% 212.75 71.74%
L W 3 25 55.21%

Experiment 6
B W 1 27 71.37%

MC W 2 213 71.51% 213 71.51%
L W 3 27 71.47%

Experiment 7
UB W 1 215 23 67.38%
MC W 2 2−3 23 77.83% 23.5 78.01% 2−4.25 78.49%
RBF W 3 2−5 23 70.77%

Experiment 8
B W 1 215 23 83.60% 23.25 83.67% 215 83.67%

MC W 2 211 23 83.36%
RBF W 3 211 23 82.96%
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5. Results

Table 5.2.: Binary Classification BAC Results

Training Results Testing Results

Experiment 1 73.89% 71.01%

Experiment 2 67.04% 61.82%

Experiment 3 85.29% 68.53%

Experiment 4 88.78% 73.3%
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5. Results

5.2. Episode detection results

The results which are outlined in this section are the ones which were obtained during the DPC.
For each of the experiments a DPC with equal parameters was done. Figure 5.1 and figure 5.2
contain the results regarding optcrit which are obtained by applying the binary and the multi-
class classification, respectively.

In each of the graphics each variation of the detection threshold threshold1 constitutes a dif-
ferent test for the belonging experiment. The variations in the delineation threshold threshold1

build up the abscissa over which optcrit is shown. Above each set of curves the best found
optcrit and its belonging parameters are shown. Thereby, it is distinguished between uncon-
strained (i.e. equation 4.11 is not considered) and the constrained results (i.e. equation 4.11 is
considered).

Table 5.5 and table 5.6 summarizes the single performance measures belonging to the best
optcrit for the unconstrained and the constrained case, respectively.

An even more detailed description of the behavior of these measures can be obtained by
showing the resulting DPC curves. Figure 5.3 and figure 5.4 contain these curves for experiment
4. If optcrit exists for the constrained case and differs from the unconstrained case, as observed
in experiment 4, the DPC curves for the constrained and the unconstrained case are given.
Each of the curve shows the values which have been obtained by varying threshold2. threshold1

remains fixed. Thereby, the chosen value of threshold1 is the one which belongs to the best
found optcrit for the respective experiment. For Experiment 4 this is threshold1 = 85 % and
threshold1 = 95 % for the unconstrained and for the constrained case, respectively. DPC curves
of the remaining experiments are given in the appendix A (figure B.1 to B.9).
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Figure 5.1.: Behaviour of optcrit for binary SVMs (threshold and optcrit values in %)
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Figure 5.2.: Behaviour of optcrit for multi-class SVMs (threshold and optcrit values in %)
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Table 5.5.: Unconstrained results for the detection of ST-T episodes (shown are the best values
found in the DPC analysis selected based on the unconstrained optcrit)

Test run Results (in %)
SE Se SE +P SD Se SD +P OPKRIT

Experiment 1 55.56 [g] 59.17 [a] 70.42 [g] 73.64 [a] 54.77 [g] 50.01 [a] 60.92 [g] 67.79 [a] 61.05

Experiment 2 54.39 [g] 53.50 [a] 54.75 [g] 59.15 [a] 48.41 [g] 40.75 [a] 46.72 [g] 50.99 [a] 50.79

Experiment 3 51.46 [g] 57.78 [a] 72.85 [g] 74.38 [a] 49.35 [g] 44.47 [a] 63.12 [g] 68.4 [a] 59.29

Experiment 4 77.19 [g] 79.99 [a] 63.66 [g] 69.1 [a] 75.45 [g] 72.17 [a] 52.2 [g] 57.06 [a] 67.69

Experiment 5 85.38 [g] 86.86 [a] 61.1 [g] 66.51 [a] 85.85 [g] 82.66 [a] 49.18 [g] 50.33 [a] 69.26

Experiment 6 88.01 [g] 88.59 [a] 62.15 [g] 65.59 [a] 89.29 [g] 86.19 [a] 46.05 [g] 48.46 [a] 69.52

Experiment 7 84.21 [g] 86.58 [a] 64.53 [g] 70.15 [a] 85.95 [g] 83.8 [a] 45.58 [g] 50.76 [a] 69.5896

Experiment 8 74.27 [g] 75.49 [a] 71.83 [g] 75.93 [a] 77.3 [g] 73.02 [a] 48.82 [g] 53.3 [a] 67.85

Table 5.6.: Constrained results for the detection of ST-T episodes (shown are the best values
found in the DPC analysis selected based on the constrained optcrit)

Test run Results (in %)
SE Se SE +P SD Se SD +P OPKRIT

Experiment 1 55.56 [g] 59.17 [a] 70.42 [g] 73.64 [a] 54.77 [g] 50.01 [a] 60.92 [g] 67.79 [a] 61.05

Experiment 2 No valid solution

Experiment 3 51.46 [g] 57.78 [a] 72.85 [g] 74.38 [a] 49.35 [g] 44.47 [a] 63.12 [g] 68.4 [a] 59.29

Experiment 4 60.23 [g] 64.77 [a] 70.14 [g] 74.49 [a] 62.54 [g] 58.08 [a] 56.16 [g] 65.01 [a] 63.68

Experiment 5 61.4 [g] 63.48 [a] 63.69 [g] 68.91 [a] 62.18 [g] 55.95 [a] 57.85 [g] 62.27 [a] 61.86

Experiment 6 No valid solution

Experiment 7 No valid solution

Experiment 8 47.08 [g] 52.24 [a] 74.73 [g] 76.14 [a] 48.94 [g] 43.81 [a] 57.92 [g] 62.53 [a] 56.82
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Figure 5.3.: DPC analysis for Experiment 4 ( carried out @ best optcrit, i.e. threshold1 =
85 %, threshold2 is varied; results for unconstrained optcrit); the gray colored lines indicate the
location of optcrit
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Figure 5.4.: DPC analysis for Experiment 4 ( carried out @ best optcrit, i.e. threshold1 = 95 %,
threshold2 is varied; results for constrained optcrit); the gray colored lines indicate the location
of optcrit
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6. Discussion

6.1. SVM application

6.1.1. Beat classification results

As can be seen in table 5.2 and table 5.3 the best classification results by means of MAC are
obtained by Experiment 4. From there, one can conclude that the combination of a balanced
training subset, binary classification and RBF Kernel is the most suited choice.

Thereby, the results which are obtained during the training are very promising (up to 88.78 %
obtained in Experiment 4). However, between the results of training and testing a significant
drop occurs. This holds for the binary classification, but even more for the multi-class classifica-
tion. A possible reason for this behaviour can be found in the limited number of records which
are used for training (just 10 records have been used). By such a small number of records just
a limited number of realization are provided to the training algorithm. Considering the high
variability of possible modifications regarding the ST-T-segment this issue becomes an compre-
hensible problem. The assumption of a too small number of training examples is supported by
the behaviour which is examined in the case of multi-class classification: here the drop is even
more destinctive.

However, owing to the computational complexity the elimination of this problem is not an
easy task. Figure 6.1 contains the results of some tests on the computational costs of using the
SVM. These tests measure the time amount which is required for training/testing a SVM with
RBF kernel on an increasing number of patterns. The exponential increase as well as the large
absolute time amounts which occur already at small numbers of pattern clarify the problem.
In spite of using LibSVM as a software package for large datasets this behaviour constitutes
a strong limitation concerning the training points that can be used. The selection of just 10
records and 8000 beats for training met these concerns, but apparently at the expense of the
classification results.

6.1.2. Parameter search

The results which are obtained in this thesis clarify the general importance of choosing adequate
parameters. This can be seen from table 5.1 when comparing the results which are obtained
at after applying the coarse grid (first column) to the final results (last column). Significant
changes are observed for all nearly all experiments thus pointing out the importance of a suited
parameter selection method. Within this work a combined method for finding suited kernel
parameters and class weights has been used.

To find the best parameters regarding the used kernel a method which builds up on the ideas
of grid.py (which is provided by LibSVM) was chosen. As the obtained results are in accordance
with the expected ones no further discussion of this method and its results will be carried out.
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6. Discussion

Figure 6.1.: Computational cost by means of time consumption for different number of pattern
for training/testing

Regarding the class weights three different methods have been evaluated. The evaluated meth-
ods originate from ideas which have been depicted in the literature. By analyzing the results
one must conclude that an optimal selection can not be given.

In a closer analysis one can identify that in binary classification the third criterion provides in
3 of 4 experiments the best evaluation results. Furthermore in these 3 experiments the second
criterion provides a similar evaluation results. Just in the experiment 4 the first criterion is
outperforms the others. In multi-class classification a similar behavior is observed. In this case
the second criterion provides in 3 of 4 experiments the best evaluation results. Furthermore,
just in experiment 8 the first criterion is the best one. However, as in the case of the Kernel
parameters the class weights affect the obtainable results significantly. The consideration of
different choices as it is done in this work thus constitutes an important step even for future
works.

6.2. Episode detection

To estimate the results which were obtained regarding the episode detection one must distin-
guish between the unconstrained and the constrained results. With respect to the latter, one
must conclude that no satisfactory grade was obtained. This rating is based on a comparison
between the actual results and those reported in [75]. Table 6.1 summarizes the results.

Considering unconstrained results the proposed method obtains similar values to [75]. How-
ever, as this is reached at the expense of fulfilling the additional criterion which is defined by
equation 4.11 those results cannot be compared directly to the ones depicted in [75]. But even
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6. Discussion

Table 6.1.: Comparison of obtained results for the unconstrained case, the constrained case and
the results reported in [75]

Results (in %)
SE Se SE +P SD Se SD +P OPKRIT

Unconstrained
(Experiment 6)

88.01 [g] 88.59 [a] 62.15 [g] 65.59 [a] 89.29 [g] 86.19 [a] 46.05 [g] 48.46 [a] 69.52

Constrained
(Experiment 4)

60.23 [g] 64.77 [a] 70.14 [g] 74.49 [a] 62.54 [g] 58.08 [a] 56.16 [g] 65.01 [a] 63.68

Literature [75] 72,50 [g] 72,9 [a] 72,5 [g] 77,9 [a] 72,8 [g] 65,7 [a] 55,2 [g] 66,9 [a] 69,2

if not directly comparable the results show that even on the basis of beat labels an episode
detection of similar performance is possible. Thus, to increase the positive predictive should be
the goal for future research.

However, considering all observed results this is not an easy task; thereby, the problem is not
only specifically to increase the positive predictive value, but the ways to take influence on the
results in general: it turned out, that the behaviour regarding the episode detection based on
the beat labels is very complex. The DPC curves on the episode based performance measure
clarify this. Two major observations can be found:

1. Inverse behaviour: the DPC curves show, at least in some ranges, an unexpected behaviour,
i.e. SE Se and SE +P increase at the same time while SD Se and SD +P show the expected
behaviour (see for example figure 5.3).

2. Inactive behaviour: In general the results are influenced only to a very limited extend
by varying the thresholds. This can be observed by examining the given DPC curves,
but even by the optcrit (see figure 5.1 and figure 5.2). Owing to its integrative character
optcrit indeed compensates the variations in the single performance measures to some
extend; nevertheless there should be typically found a clear maximum when all values are
arranged in a mean range [75]. Such a maximum does not occur in the presented evaluation
which accounts for the difficulty to influence the results in a systematic manner.

A very interesting aspect is the minor difference between the results obtained for binary and
multi-class classification, respectively. As the results on beat level differ significantly one could
expect distinctive differences even for the episode classification. However, before applying the
episode detection to the multi-class label, these labels where transformed to a binary representa-
tion; i.e. the higher output space is only used to train and apply the beat classifier. Afterwards
the gained information is broken down to the binary representation. Considering this, as well
as the medical point of view in which all the non-normal beats are of interest, it becomes evi-
dent that not only the number of wrongly classified beats but also the kind of missclassification
matters. These considerations imply that the confusion matrices which serve as basis for the
MAC are evaluated considering there ability to distinguish between normal and ischaemic beats.
Table 6.2 to table 6.5 shows the results of this binary examination of the confusion matrices.
thereby ”Old MAC” specifies the value obtained from the multi-class examination, ”New MAC”
the value obtained after breaking the confusion matrix down to normal and ischaemic.

This examination clarifies the found behaviour in the episode detection results. As there is
no difference between the type of episodes the binary consideration of the multi-class results
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6. Discussion

Table 6.2.: Binary Confusion Matrix Experi-
ment 5

Truth Labels

Normal Ischaemic

622195 21600
Predicted Labels

373700 161827

Accuracy 62.78% 88.22%

New MAC 75.50 %
Old MAC 47.04 %

Table 6.3.: Binary Confusion Matrix Experi-
ment 6

Truth Labels

Normal Ischaemic

603328 18137
Predicted Labels

995895 165290

Accuracy 89.15% 90.11%

New MAC 89.63 %
Old MAC 50.61 %

Table 6.4.: Binary Confusion Matrix Experi-
ment 7

Truth Labels

Normal Ischaemic

605883 21749
Predicted Labels

390012 161678

Accuracy 60.84% 88.14%

New MAC 74,49 %
Old MAC 33,42 %

Table 6.5.: Binary Confusion Matrix Experi-
ment 8

Truth Labels

Normal Ischaemic

608162 37072
Predicted Labels

387733 146355

Accuracy 61.07% 79.79%

New MAC 70.43 %
Old MAC 31.08 %
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6. Discussion

is decisive for the episode detection results. These results even outperfom the ”native” binary
results which accounts for the usage of multi-class SVM in the given context even when the
original MAC does not support this choice.
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7. Summary and forecast

The presented work constitutes an approach to detect ST-T-episodes based on beat classes. To
classify the beats of the EDB SVMs have been applied. Different experiments regarding variants
of SVMs (binary SVM - multi-class SVM, linear Kernel - RBF Kernel, balanced training data
- unbalanced training data) have been carried out in order to extract information on suitable
SVM models.

The obtained results show the applicability of SVMs in the given context. However, the com-
parison of these results to previously obtained results on the detection of ST-T-episodes even
clarifies the need for further investigation on the topic.

The observations which may be deduced from this thesis give cause for the assumption that the
relatively small number of training pattern is the main reason of the limitations which are exam-
ined within the results. However, expanding the training set is as shown before not an easy task.

Future works should address this issue. Thereby, two strategies may be pursued

1. The training subset could be expanded by including more morphologies but maintaining
the same size; this would imply that the number of training records should be increased,
from each record a smaller number of beats is selected and the applied methods (LibSVM)
could be maintained

2. The training subset could be expanded by including more morphologies and increasing the
size; this would imply that the number of training records should be increased, the overall
number of beats is increased and new training methods must be applied.

The latter strategy obviously constitutes the more comprehensive approach. This strategy
should be pursued if the application of SVMs is planned even in other contexts within the working
group. Thereto, a possible approach could evaluate the usability and efficiency, respectively, of
the software package LaSVM [14]. LaSVM especially is intended to be used in the case of large
datasets (in the sense of a big number of training pattern). As LaSVM supports the same data
formats as LibSVM most of the experience and some methods which have been devised in this
work could be transfered thus allowing an easy integration of LaSVM functions.
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B. DPC Analysis
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Figure B.1.: DPC analysis for Experiment 1 ( carried out @ best optcrit, i.e. threshold1 = 85 %,
threshold2 is varied; equal results for unconstrained and constrained optcrit; the gray colored
lines indicate the location of optcrit)
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Figure B.2.: DPC analysis for Experiment 2 ( carried out @ best optcrit, i.e. threshold1 = 80 %,
threshold2 is varied; results for unconstrained optcrit; the gray colored lines indicate the location
of optcrit)

87
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Figure B.3.: DPC analysis for Experiment 3 ( carried out @ best optcrit, i.e. threshold1 = 80 %,
threshold2 is varied; equal results for unconstrained and constrained optcrit; the gray colored
lines indicate the location of optcrit)
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B. DPC Analysis
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Figure B.4.: DPC analysis for Experiment 5 ( carried out @ best optcrit, i.e. threshold1 = 95 %,
threshold2 is varied; results for unconstrained optcrit; the gray colored lines indicate the location
of optcrit)
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Figure B.5.: DPC analysis for Experiment 5 ( carried out @ best optcrit, i.e. threshold1 = 100 %,
threshold2 is varied; results for constrained optcrit; the gray colored lines indicate the location
of optcrit)
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Figure B.6.: DPC analysis for Experiment 6 ( carried out @ best optcrit, i.e. threshold1 = 95 %,
threshold2 is varied; results for unconstrained optcrit; the gray colored lines indicate the location
of optcrit)
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Figure B.7.: DPC analysis for Experiment 7 ( carried out @ best optcrit, i.e. threshold1 = 95 %,
threshold2 is varied; results for unconstrained optcrit; the gray colored lines indicate the location
of optcrit)
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Figure B.8.: DPC analysis for Experiment 8 ( carried out @ best optcrit, i.e. threshold1 = 95 %,
threshold2 is varied; results for unconstrained optcrit; the gray colored lines indicate the location
of optcrit)
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Figure B.9.: DPC analysis for Experiment 8 ( carried out @ best optcrit, i.e. threshold1 = 100 %,
threshold2 is varied; results for constrained optcrit; the gray colored lines indicate the location
of optcrit)
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C. Data Disc

Contents:

1. Thesis (pdf format)

2. Thesis (latex source code)

3. Matlab source Code (including LibSVM implementation)
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