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1 Introduction  

Learning in general and learning in MAS in particular, has been described as a 

collective process, but one that draws mostly from the direct interaction with other 

agents. In contrast with that, Cultural Algorithms base their ideas on the way societies 

learn, by modeling a process of generalization of individual knowledge into a common 

space.  

However, Cultural Algorithms do not stop in modeling of this process of inference, they 

also address the one of adoption by modeling how individual agents select and adopt 

this common knowledge, incorporating it in their own stock. 

Therefore, one of the distinctive characteristics of Cultural Algorithms is its micro-

evolutionary perspective, focusing in the mechanisms employed by the agents to 

generalize and incorporate knowledge. By doing so, we are able to not only apply 

realistic mechanisms but assess their impact in the system. 

This work addresses Cultural Algorithms from a rather particular perspective: the one 

of complexity, assessing the mechanisms and system dynamics at different levels of 

complexity by exploring three main aspects.  

Firstly a key element of the mechanism of selection: the number of best cases to be 

investigated in the selection process. In fact, Cultural Algorithms distinguish 

themselves because of their frugality: a simple observable public signal drives the 

process of selection and generalization. In the present work we focus on a very 

concrete aspect of this process, on the optimal number of best cases, uncovering a 

novel aspect of Cultural Algorithms: their frugality in terms of best cases across all 

levels of complexity. 

Secondly we focus on the dynamics of the whole process, revealing its social aspects in 

terms of hypothesis building and social confirmation or refutation by adopting it. 

Adoption is therefore portrayed as a key element in this process, an element that to a 

great extend is able to amplify and substitute the discovery process done by the 

agents. 

And thirdly, we discuss a mix process of pattern adoption and individual exploration. 

Taking as granted that some agents will embark themselves in a process of individual 

exploration we demand again what is the optimal number. Is it better that all agents 

engage themselves in a costly process of exploration or Cultural Algorithms with their 

multiplicative power will lesser this requirement? Again we find that if a small fraction 

of agents engage in exploration it is enough to push the whole population to its best 

results.  
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In order to present this research, this document is organized as follows. 

Chapter two we will devoted to discuss the motivations of this work. 

In chapter three we describe evolutionary algorithms and their operators in order to 

provide a framework where to build and position this research. 

In chapter four we summarize the basics of Cultural Algorithms. Chapter five is 

devoted to position these Cultural Algorithms in the context of multi-agent systems 

paying attention to their application 

Chapter six introduces NK landscapes, our basic landscape structure where agents 

conduct their search process. 

In chapter seven we present our work modeling pattern-based learning in NK 

landscapes. This serves as the basis to develop our first results in chapter eight. There 

we will elucidate on the optimal quantity of best cases upon which to generalize with a 

unexpected result: less is more, both in terms of the number of the agents selected for 

generalization and in terms of the complexity of the patterns. 

In chapter nine we discuss the case of mixed situations where agents rely both on 

patterns and on their own exploration capacities. There we will explore the minimum 

quantity of agents performing the costly process of individual exploration, needed to 

attain optimal results. 

And finally in chapter ten we conclude and present some insights for future work.   
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2 Motivation  

Although learning in MAS is described as a collective experience, most of the times its 

modeling draws solely or mostly on the results of the interaction between the agents.  

This abruptly contrasts with our everyday experience where learning relies, to a great 

extent, on a large stock of already codified knowledge rather than on the direct 

interaction among the agents. 

If in the course human history this reliance on already codified knowledge had a 

significant importance, especially since the discovery of writing, during the last decade 

the size and availability of this stock has increased notably because of the Internet. 

Even more, humanity has endowed itself with institutions and organizations devoted 

to fulfill the role of codifying, preserving and diffusing knowledge since its early days. 

Cultural Algorithms are one of the few cases where the modeling of this process, 

although in a limited way, has been attempted. 

However, even in this case, the modeling lacks some of the characteristics that have 

made it so successful in human populations, notably its frugality in learning only from a 

rather small subset of the population and a discussion of its dynamics in terms of 

hypothesis generation and falsification and the relationship between adaptation and 

discovery. 

A deep understanding of this process of collective learning, in all its aspects of 

generalization and re-adoption of this collective and distilled knowledge, together with 

its diffusion is a key element to understand how human communities function and 

how a mixed community of humans and electronic agents could effectively learn. And 

this is more important now than ever because this process has become not only global 

and available to large populations but also has largely increased its speed.  

This research aims to contribute to cover this gap, elucidating on the frugality of the 

mechanism while mapping it in a framework characterized by a variable level of 

complexity of knowledge. 

Also seeks to understand the macro dynamics resulting from the micro mechanisms 

and strategies chosen by the agents. 

Nevertheless, as any exercise based on modeling, it portrays a stylized description of 

reality that misses important points and significant aspects of the real behavior. In this 

case, while we will focus on individual learning and on the process of generalization 

and ulterior re-use of these generalizations, learning from other agents is notably 
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absent. We believe however, that this choice contributes to make our model easier to 

understand and easier to expose the causality relationships emerging from our 

simulation exercises without sacrificing any significant result. 
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3 Evolutionary Algorithms 

The evolutionary approach has enjoyed a tremendous success in the last decades. 

From its applications to related fields such as modeling societal or economic behavior 

to others seemingly unrelated such as optimization, it has proven its value.  

Evolutionary Algorithms have their inspiration in the work of Darwin, around three 

fundamental concepts: replication, variation and natural selection. 

Although replication is fundamental for the survival of a specie, replication does not 

ensure evolution, because replication produces identical copies. For evolution to exist 

variation  is needed and variation is ensured by two mechanisms. First, caused by the 

errors in replication process fails to produce identical copies and those result into 

mutations. And secondly, because of sexual recombination that is itself a product of 

evolution. 

The third basic element of evolution is selection. The adaptation of life forms to the 

environment causes the survival of the fittest, where forms that are better adapted 

and do not conflict with a certain environment have better chances to survive and 

reproduce than ones that continuously strive for survival. This has important 

implications, because the fitness of an individual can only be defined respect to the 

environment where he lives. Therefore a whale that is very fit in big oceans cannot 

even survive in rivers or in mainland. 

Each organism carries genetic information referred as genotype. During his life period, 

the organism develops traits that constitute its phenotype. Both determine the genetic 

information that is passed to next generation, where organisms can be regarded as 

mortal vehicles for transmitting potentially immortal genetic information. 

Living organisms are built on the basis of set of chromosomes, which are strings of DNA 

(deoxyribonucleic acid); chromosomes are the blueprints of a living organism. 

Chromosomes are functionally divided into genes, blocks of DNA that encode a 

protein. Each gene has a locus in a chromosome and has different settings called 

alleles. In a very simplified model we can associate a gene to a trait, therefore skin or 

hair color will be associated to a gene. Complex organisms have more than one 

chromosome; all of them taken together constitute the collection of genetic material 

that is called a genome.  

In nature we can find two forms of reproduction. The first is asexual, were a living 

organism produces copies of itself. There variations exist because of mutations, 

because of errors in the copies. Mutations occur by changes alleles in genes or 
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changing the position of genes, their loci or by deleting some genes. In general any 

errors that produce an imperfect copy result in a mutation that enhances variation. 

The other form of reproduction is sexual recombination. There, genes are exchanged 

in an operation that can be thought as a crossover of chromosomes.  

The fitness of an organism is defined in two forms, first as the probability that this 

organism will live enough to reproduce, also called viability and secondly as the 

number of offspring that the organism has, also called fertility. 

The key element for variation is the level of interaction between genes, called epitasis. 

Because of this level of interaction, the result between of genetic variations derived 

from mutations or sexual recombination is hardly predictable, producing the rich 

explosion of life that fascinated Darwin and all of us. 

These ideas were adopted in Computer Science during the 60’s with three but 

simultaneous different strands of research. 

Evolutionary Programming was developed in the 60's by Fogel, Owens and Walsh 

(Fogel, ). They studied systems that on the basis of a given goal, predicted their 

environment and by doing that showed intelligent behavior. Their models were 

developed on finite state machines using mutation and selection. 

Also during the 60's in the Technical University of Berlin, Rechenberg and Schwefel 

(Rechenberg, ) introduced evolutionary strategies as an approach to optimization for 

devices. Their approach focused on continuous parameter optimization using mutation 

and selection. 

However, the best well-known approach is Genetic Algorithms. Genetic Algorithms 

were invented by Holland in the 60's (Holland, ). Holland's goal was to study the role of 

adaptation in nature and to incorporate it into computer science. To that effect, he 

developed a theoretical framework where chromosomes were represented by strings 

of bits (zeros and ones) where operators inspired in the genetic model were applied. 

These basic operators were crossover, mutation and inversion, genes were bits and the 

alleles were represented the binary digits "0" and "1". Genetic Algorithms was also the 

only approach-using crossover.  

In the last decades there has been a big interest in evolutionary approaches and the 

barriers between the three approaches have diluted and disappeared. Also, the field 

has been extended and evolutionary algorithms have found a place in many areas such 

as in machine learning, etc ... 

 



Inferring Best Strategies from Multiple Agents 
 

9/66 

 

3.1 Evolutionary Algorithms. The Basics 

Without referring to any particular case, a template for a generic evolutionary 

algorithm is presented in Algorithm 3.  

 

Algorithm 3 Generic Evolutionary Algorithm 

Input    : P  - population at t 
Output: P  - population at  t+1 
 

function EvolutionaryAlgorithm : (P ) →  P 
 t=0 
 evolution = true  
 IniPopulation(P(t)) 
 CalculateFitness( P(t)) 
  
 repeat  
  P' = SelectForVariation(P(t))   -  

  Mutate(P') 
  Recombine(P') 
  CalculateFitness( P(t)) 
  P(t+1) = SelectForSurvival( P(t)) 
  t = t + 1 
 until  evolution = false  
 return    

end 

 

There, we can observe how initially, the fitness of a population is calculated. The 

calculation of fitness is sometimes inherent to the model, as in the case of using 

landscapes such as NK models, but many times and specially when using evolutionary 

algorithms to solve optimization problems, correspond to the objective function. In 

other cases, such as in evolutionary economics (Dosi, 1988), fitness corresponds to a 

function that aims to map, in stylized form, the most relevant aspects of the problem. 

In all cases, how fitness is calculated is a central aspect of any evolutionary algorithm 

and determines much of it. 

The next step of any evolutionary algorithm is the selection of a part of the population, 

where genetic operators: mutation, crossover and inversion will be applied. Three 

families of methods are commonly used for selecting for variation.  

The first one takes into account the fitness of each individual and selects it on the base 

of its fitness. Therefore individuals with high fitness are more probable to be selected. 

Proportionate fitness selection, also known as Roulette Wheel Selection, mimics nature 

in the sense that individuals with a higher fitness are more prone to reproduce and 
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therefore their genes to cross-over or mutate. The probability of an individual si to be 

selected will be given by,  

 

However, fitness proportionality also has problems as a selection method, being the 

most common the fact that as variance of fitness decreases the sampling becomes 

more random. Maintaining the selection pressure independent of the variance of 

fitness values in a population is without any doubt interesting. A proposal that 

achieves that objective is the linear ranking model (17), where the probability of 

selecting an individual si is given by, 

 

where n is the size of a population ordered by fitness where i denotes this ordering, 

pmax and pmin denote the maximum and minimum selection probability. As in the case 

of selection proportional to fitness, ranking methods can be extended to non-linear 

functions. 

A third method of selection is tournament selection (Miller and Golberg, 1995) where k 

individuals are selected at random from the population, being k the tournament size, 

then with probability p the best individual from the pool is selected, with probability 

 the second individual, with probability  the third individual and so 

on. A 1-way tournament, denoting the case of p =1 is equivalent to random selection. 

To this sample, selected by using one of these three families of methodologies, genetic 

operators are applied and after that, a second type of selection must be performed, 

the one determining which individuals will survive and which one will not. 

The simplest way to approach the issue is through the imitation of biological systems. 

This is precisely what generational replacement does. There, parents are being 

replaced by their offspring. It is common to find this approach associated with a fitness 

proportionate selection. 

Even if the dynamics of short-lived species resembles this approach where the whole 

population is replaced by its offspring, this is not true for long-lived ones. There, each 

generation produces only a few new members that live concurrently with their 

parents. Steady state selection aims to reproduce this approach, several variations 

exist like oldest replacement or worst replacement. 

There are also two classes of Evolutionary Strategies (ES) used in nature-inspired 

search and optimization algorithms, known as  and  . In both 
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cases  denotes the number of parents and  the offspring. In the first case  parents 

are replaced by the best of the  offspring and in the second case the best  

individuals are chosen from a temporary population comprising the  parents and the 

 offspring. 

Furthermore, other strategies and combinations of strategies exist like for example, 

elitism (only the best individuals survive) or duplicate checking (identical copies are not 

included). 

3.1.1 Genetic Operators 

Mutation and recombination depend on the use of genetic operators to obtain the 

candidate solutions. Although in our work we will only use operators in bit strings, we 

will also discuss genetic operators in continuous variables. The use of genetic 

operators can also be extended to other structures like finite state machines or trees. 

Let us assume in the following that A and B are binary strings representing a candidate 

solution,  . 

One-point crossover 

This operator works by randomly selecting a point p that will be used to cut the bit 

strings in two parts. The operator connects the head of the first bit string with the tail 

of the second bit string (or vice versa). Therefore, one point-crossover produces two 

solutions. 

 

The following example illustrates the one-point crossover operator, 

 

Two-point crossover 

If instead of cutting in one point, we cut in two points we obtain a new operator: two-

point crossover that can be easily generalized to a k-point crossover. For the sake of 

the example we will discuss the two-point version. 

In the two-point version we will have to randomly chosen cutting points p1 and p2 

 resulting in three pieces. As before two solutions A' i B' will be generated. 

 



Inferring Best Strategies from Multiple Agents 
 

12/66 

 

Again we will use an example to illustrate how the two-point crossover works, 

 

Uniform crossover 

Uniform crossover is again a generalization of crossover. In that case a mask is used 

with a 1 indicating the position where the bit has to be copied and a 0 otherwise.  

 

The following example illustrates how it works, 

 

Bit flip mutation 

The bit flip operation consists simply in flipping one or more genes in the genome or, in 

the case of bit strings, changing their value from 0 to 1 or vice versa. For example  

 

The bit flip operator is predominantly implemented in two ways. One way is to 

predefine the number of bits to flip and select the loci randomly. The other one 

consists in predefining a rate in which each component is flipped. The effect could be 

similar depending on how these two mechanisms are implemented. For example, a 

mutation of a single bit randomly selected will have in the limit the same effect than a 

mutation of each bit with a rate of 1/n, being n the string length. 

Inversion 

Inversion is the second mutation operator. In that case two points in the bit string are 

chosen and the enclosed sub-bit string is reversed.  

 

 

We have discussed two types of operators: crossover and mutation. In genetic 

algorithms the bulk of the work is carried on by crossover operators. Mutation is 

normally applied to the offspring, after crossover with the objective of adding diversity 

to the population, preventing that way a premature convergence of the population or 

the system. 
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4 Basics of Cultural Algorithms  

Genetic algorithms (Holland, 1975) are a powerful tool for mapping biological 

evolution and, as we have already discussed, its use extends far beyond of a modeling 

exercise to areas such as optimization or in general a widespread use in Artificial 

Intelligence. 

However, powerful as they are, they are not adequate to model cultural evolution that 

is a fundamental trait of human societies. Although there are points of coincidence, 

cultural evolution has its own differential characteristics. Among them the fact that is 

orders of magnitude faster than genetic evolution and the existence of a shared belief 

space that allows individuals to directly incorporate knowledge from it without having 

to relearn everything from scratch either by themselves or by model other individuals. 

There have been however, attempts to have a more direct map of genetic algorithms 

to cultural spaces. Perhaps the best well known of these attempts is memes, an 

adaptation of the Greek work mimema (meaning something imitated). Richard 

Dawkings introduced the notion of Memes in the extremely popular book The Selfish 

Gene (Dawkins, 1976).  Dawkins defined memes as counterparts of genes in the 

cultural world. Memes are therefore the unit of cultural transmission or imitation such 

as a piece of thought, a fragment of music and so on. Memes propagate through 

imitation and evolve when three conditions exist:  

1) variation, when change is introduced to existing elements either by errors in 

copying them or by recombination,  

2) replication, when the capacity to make copies of memes exist, and  

3) differential fitness, so the fittest to a certain environment will survive. 

Memes focus on a micro-evolutionary perspective of the cultural evolutionary process, 

by paying attention only to the transmission of ideas, behaviors, traits, etc. between 

individuals of a population and discarding a macro perspective where a shared space 

of traits, behaviors and ideas is maintained. Cultural algorithms attempt to model both 

levels. 

4.1 Cultural Algorithms 

Eduard B. Tylor was the first to introduce the term Culture back in 1881 in his book 

Primitive Culture (Tylor, 1881). There, he described culture as "that complex whole 

that includes knowledge, art, morals, customs, and any other capabilities and habits 
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acquired by man as a member of society". These early approaches to culture where 

characterized with this type of understanding, leading to classifications into groups. 

For example, George Murdoch (Murdoch, 1975) produced a catalogue of 565 cultures 

based upon 30 different characteristics.  

The research in Cybernetics and System Theory during the 60's brought with them a 

new understanding of culture, where the concept of group and feedback mechanism 

was central. Culture was regarded as a system that interacted with its environment 

with positive and negative feedbacks that amplify and counteract behavioral 

deviations of individuals within a cultural group (Flannery, 1968). Also in the 60's 

Cultural Ecology emerged as a discipline concerned with the nature of the interaction 

between the cultural system and its environment.  

In the 70's we saw a renew emphasis on presenting culture as an information system 

and a rising concern on the flow of this information. For example, for Geertz "Culture is 

the fabric of meaning in terms of which human beings interpret their experience and 

guide their actions" (Geertz, 1973). In the same line of thought, Durham defined 

culture as a "system of symbolically encoded conceptual phenomenon that are socially 

and historically transmitted within and between populations" (Durham, 1990). 

This conceptualization of culture as a space of encoded concepts available to the 

whole population is the departing point of Cultural Algorithms in contrast to other 

mechanisms such as memes. 

Cultural Algorithms were introduced by Reynolds (Reynolds, 1994) aiming to model the 

cultural evolution process from both a micro-evolutionary perspective in terms of 

transmission of knowledge, behaviors or traits among individuals of a population and 

from a macro-evolutionary perspective in terms of generalization of this knowledge 

from individual experiences. A key element supporting on one side this generalization 

and on the other its influence to individuals is a dual inheritance system that enables 

both generalization and influence. 

In the macro-evolutionary level individuals create a mappa, a generalization of their 

beliefs, knowledge and preferences. Individual mappa can be merged creating group 

mappa, the dual inheritance system allows communication between these two levels. 

In cultural algorithms these two levels are mapped into two spaces, a population space 

and a belief space. In the population space we can find individuals that evolve in the 

conventional way of evolutionary computation. The belief space contains information 

that individuals have acquired during the evolutionary process and is available to the 

whole population. A communication protocol connects both spaces and determines 

the exchanges and what information is retained. For example, the communication 

protocol can establish that only individuals with the best fitness can update the belief 

space. 
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Cultural algorithms have been successfully applied in a number of domains, such as 

multi-objective optimization (Coelo and Becerra, 2003) and constraint based problems 

(Reynolds, Michalevicz and Cavaretta, 1995, Jin & Reynolds, 200). Of special interest in 

our work is their use in multi-agent systems to which we will devote a section.  

4.2 A Computational Framework 

As we just mentioned, the data part of the framework is supported by two spaces. One 

of those corresponding to individuals consists of a set of traits and behaviors. And 

another one corresponds to the whole population that generalizes these individual 

traits and behaviors.   

 

  Fig 2. Belief and Population Spaces in Cultural Algorithms and their mechanisms   

In Figure 2 we can appreciate a representation of the underlying mechanisms in 

cultural algorithms. 

Individuals in the population space are evaluated by means of the performance 

function and each individual produces a generalized map based on their actual 

experience (this process is called outlining). All these beliefs, coming from individual 

generalizations, are combined in the belief space. If the combined performance of 

these generalizations passes the acceptance function then they are incorporated to 

the belief space, if not they are discarded, that way the belief space is adjusted. 

At its turn, the belief space can be used to modify the performance of individuals of 

the population, modify the set of available traits, enforce beliefs that have been 

discarded because of lack of support in the acceptance function, etc. These processes 

are mapped by the influence function. 
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Once the influence function has been applied and the population evaluated a process 

of reproduction is applied. In this part, cultural algorithms follow quite precisely their 

genetic counterparts. First a part of the population is selected as parents of the new 

generation who by using genetic operators produce offspring.  

Communication protocols are an important aspect of the mechanism, because they 

determine the relation between the population space and the belief space by means of 

the acceptance and influence functions.  

A commonly use protocol is Vote-Inherit-Promote. In this protocol first the 

performance of an individual in the population space is evaluated by voting. After 

those are aggregated in the belief space and pruned using the acceptance function. In 

this protocol, the belief space inherits the aggregate individual performance that 

finally is used to promote these individuals in the population space giving those more 

chances of being selected and reproduce. 

A representation of this mechanism in pseudo-code is presented in the following 

algorithm,  

 

Algorithm 4 Generic Cultural Algorithm 

Input    : P  - population at t 
Output: P  - population at  t+1 
 

function CulturalAlgorithm : (P ) →  P 
 t=0 
 evolution = true  
 IniPopulation(P(t)) 
 IniBeliefSpace( B(t)) 
  
 repeat  
  EvaluatePopulation( P(t)) 
  AdjustBeliefSpace( B(t), Acept( P(t)) 
  InfluencePopulation( P(t), B(t) ) 
  P' = selectForVariation(P(t))   -  

  P=Evolve(P',P) 
  t = t + 1 
 until  evolution = false  
 return    

end 

 

Here we can observe the same elements described before arranged in a procedural 

fashion.  
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First both population and belief space are initialized and a loop repeats until the 

simulation ends. 

In the main loop, we begin first evaluating the population and assigning a fitness to 

each individual. After the process of outlining and the construction of the belief space 

is carried out by the AdjustBeliefSpace function, on the basis of the current 

version of the belief space and the acceptance function applied to the population, 

selecting the generalizations of beliefs from the population that enjoy enough support 

according to the acceptance function. 

InfluencePopulation maps the effect of the influence function where on the 

basis of the belief space, performance, traits or beliefs of the population are modified. 

Finally, SelectForVariation and Evolve that support not only variation but 

also survival perform the evolution of the population, the part that more closely 

corresponds to genetic algorithms. 

4.3 Version-Space Guided Genetic Algorithm (VGA) 

There are many variations in terms of implementation of the framework presented 

above. One of such implementation is Version-Space Guided Genetic Algorithm 

(Reynolds, 1994), where the micro-evolutionary process is modeled using genetic 

algorithm while the belief space represents schemadata or generalizations of 

individual strategies.  

A schemadata in terms of genetic algorithms is a template that identifies a set of 

similar strings. For example, if we consider only binary strings the schema 0**1*01 

represents binary strings of length 7 with 0 at positions 1 and 6 and 1 at positions 4 

and 7. Any implementation of a cultural algorithm must choose a way to implement 

the evolution in the population spaces and the beliefs in the belief space, together 

with the acceptance and influence functions. 

With respect to the evolution in the population space, it can be formalized in many 

different ways, Evolutionary Programming and Genetic Algorithms among them. VGA 

uses genetic algorithms for this purpose among other things because of its roots in 

cultural simulations where understanding the acceleration rate of this evolution is 

highly relevant. The schema theorem (Holland, 1975) in genetic algorithms provides a 

basis that can be used as a benchmark for this purpose. 

Regarding the belief space, VGA uses a lattice or Version Spaces (Mitchell, 1978), 

where each schemadata represents a set of individuals and is organized in a tree. The 

root of this tree represents the whole population. This representation fits pretty well 
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with the idea that a key aspect in the development of a culture is the ability and the 

need for classification and abstraction of common characteristics. 

An example of this tree structures is presented below. 

 

Note that in this case there are two prerequisite structures: T3 is supported by T1 and 

T2 and T4 has no prerequisites. These types of structures are represented by ordered 

sequences; normally post-order transversal is preferred, producing T1, T2, T3, T4. 

Augmenting the graph with leaf nodes containing all possible values, such as produces 

concrete specifications, 

 

Therefore, all possible chromosomes are obtained by traversing the nodes. In this 

example, chromosome 0110 will be obtained by choosing a 0 for T1, a 1 for T2, a 1 for 

T3 and a 0 for T4.  

The belief space is a representation of all series of unique combinations resulting from 

traversing these trees, for example,  
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Individual mappa is constructed by subsets of the belief space with a process called 

Outlining that depends on two functions, one that determines the acceptability and 

another that determines the performance.  

The process of outlining is one of generalizing solutions. Through this process two 

parts of the mappa are produced with linear complexity, the G-Mappa, corresponding 

to the generalization and the S-Mappa that describes the specialization set. This can be 

easily observed in the simple case presented above. There we have two instances 00 

and 01, which produce a generalization #0 because a 1 in the first position is not 

acceptable. 
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5 Cultural Algorithms & Multi-Agent 

Systems 

Human evolution has distinctive characteristics that many times, are not adequately 

mapped with the traditional toolset of Artificial Intelligence. In fact, human societies 

have endowed themselves of a mechanism of storage and transmission of information 

pretty unique: culture. Culture is independent of the individuals, being potentially (and 

thanks to Internet this potentiality is becoming real) available to all individuals. 

Adaptation is therefore not taking place only in terms of genetic but also in terms of 

cultural information. This key aspect provides not only with the possibility of a faster 

rate of adaptation but also with the capacity of storing much more information than in 

its genetic counterpart. 

In a cultural system, knowledge is stored and evolves not only at individual level, but 

also at societal level. Thus, cultural systems can be viewed as dual inheritance systems 

where knowledge is stored and evolves at two levels: a) at individual level and b) at the 

level of acquired beliefs, both levels interact and co-evolve (Durham, 1991). 

 Cultural algorithms were developed by Reynolds (1994, 1997) with the purpose of 

modeling cultural evolution. Therefore, because the mechanism that they aimed at 

modeling is inherently agent-based and distributed, cultural algorithms even if 

designed with an intention that lies far away from Multi-Agent systems, belong since 

the beginning to this category. The earliest models of cultural algorithms (Reynolds, 

1979) were motivated by existing evolutionary computational models were an 

individual consisted of a vector of traits and was affected by other individuals. The 

basic operators used were analogous to the ones in genetic algorithms. However other 

socially motivated operators, such as copying, were introduced (Boyd and Richerson, 

1985).  

The first model was used to show how the agriculture could have evolved as an 

accumulation of small-scale resource scheduling decisions, taking as an example the 

Valley of Oaxaca in Mexico. In these early models the whole population was used (the 

acceptance function was 100%) and the probability of applying an operator was 

proportional to the increase in fitness, performance that this new operator produced 

when incorporated. Likewise, it deceased with decreased performance. The influence 

function was based on the current beliefs of the agents about the utility of the 

operators. 

A second generation of models was characterized by using a lattice to represent the 

belief space where leafs nodes were explicit population members. Learning in the 
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belief space was done using Version Space algorithms (Mitchell, 1997 whose 

information structure we briefly presented in the previous section. These algorithms 

are able to identify regions in the lattice were the likelihood for encountering 

individuals with a fitness above the average is higher.  

Also the process of generalization-specialization was accelerated by using local search 

procedures that systematically changed some bits in order to finds out which ones 

resulted in higher fitness and which ones were irrelevant. The resulting description of 

individuals contained do not cares “#” and were called stable classes because their 

performance did not change for the specified bits. The further integration of these 

individuals in the belief space resulted in even more generalized classes. 

A schema theorem for Version Space Guided Genetic Algorithm was developed by 

Reynolds (1978 to illustrate how culture can accelerate learning in genetic algorithms. 

This second generation also introduced the recombination of lattices in the belief 

space, further accelerating the process of cultural evolution. Another important 

change was in the acceptance function that used to take all individuals in the previous 

generation and in this one, only the ones above average, resulting in a 50% of the 

population. 

Is in this second generation of Cultural Algorithms when we encounter a notable 

increase in applications that leave the original orientation of modeling human 

populations to a wide range of fields, from optimization to program understanding 

(Reynolds and Sverdlik, 1995) or concept learning problems (Reynolds and Maletic, 

1993). 

The third generation of cultural algorithms developed as a response to the need of 

dealing with real-value genetic algorithms (Michalewicz, 1994). There are many 

strategies that support real-value traits but we will focus on Cultural Algorithms with 

Evolutionary Programming because it has become the more common. In this case, 

ranges of real values represented traits in the agents. The belief space consisted of the 

traits, in form of real values, coming from the best individuals that surpassed a 

threshold. Typical acceptance rates are around 20% (Bäck, 1996). The evolution among 

the population is driven by the generation of offspring solutions by applying mutation 

operators and tournaments for carrying on the selection process.   

The applications expanded to cover other areas beyond optimization. They included 

learning among cooperating agents (Reynolds and Chung, 1997), data mining of large 

scale spatial-temporal databases (AlShehri, 1998), re-engineering rule based systems 

(Reynolds and Sternberg, 1997), gradient approaches to image segmentation 

(Reynolds and Rolnick, 1995) among others. 
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5.1 Agent-Based Historical Reconstructions 

One of the most evident uses of Cultural Algorithms is to simulate the behavior of 

human populations, representing how the knowledge of each individual is shared 

among the whole population (Kobti, Reynolds and Kohler, 2003). The first model of this 

type was built by Kohler (2000) attempting to explain the evolution and eventual 

disappearance of the pre-Hispanic Anasazi settlement in Mesa Verde (Colorado, USA). 

The aim of this first model was to understand the disappearance from the region. Later 

this initial model was transformed into a multi-agent simulation embedded in a 

Cultural Algorithm framework in order to explore how cultural learning and various 

socio-economic factors affect the population (Kobti, Reynolds and Kohler, 2003). 

In this model, each household has individual characteristics that are shared among the 

population. In addition each household is endowed of local knowledge between a 

radius, determining the maximum distance that they can travel and the move 

frequency. In addition to that, social ties were maintained together with rules for 

marriage.  

Reciprocal exchange strategies were added to the model in 2004 (Kobti, Reynolds and 

Kohler, 2004). They were representing rules for exchange food and services, using a 

finite state machine that represented diverse stages of each individual, from satisfied 

or philanthropic, or hungry to death. 

Cooperation was mapped as a consequence of the beliefs of the agents who kept track 

of the most successful interactions favoring them over the less successful ones. Agents 

are initially randomly assigned to areas representing the likelihood for selection for 

cooperation. The model was further extended to allow for food resources and the 

sharing of them (Kobti and Reynolds, 2005). 

5.2 Cultural Algorithms in Engineering and Management 

 Cultural Algorithms have also been used in engineering and management (Dasgupta 

and Michaalewicz, 1997; Ostrowxki, Schleis and Reynolds, 2003) in areas as diverse as 

decision rule-based systems (Sternberg and Reynolds, 1997) or decision tree-based 

knowledge discovery (Al-Sheher, 1997). 

One of the examples of usage in commercial settings is for modeling evolving pricing 

strategies for vehicle sales (Ostrowski, Tassier, Everson and Reynolds, 2002). In that 

case a multi-agent system to model Oem Equipment Manufacturer market was 

developed using MarketScape, a java based agent framework designed to model 

economic environments. Four types of agents were present: consumer, vehicles, 

manufacturers and dealers. The model showed that optimal strategies were generated 

faster using Cultural Algorithm based programming than genetic programming. 
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Cultural based algorithms have also been used in reengineering. Reengineering, when 

done manually, is a very labour intensive approach, the use of Cultural Algorithms 

proved that this task can be automated (Rychtyckyj, Ostrowski, Schleis and Reynolds, 

2003). This work was done using the Direct Labour Management System (DLMS), used 

by Ford to manage vehicle assembly. 

Another example of the use of Cultural Algorithms is for learning user behaviors. A 

concrete case was its use for learning the correct usage of safety restraints for children 

(Kobti, Snowdon, Rahahman, Dunlop and Kent, 2006). In that case a correct 

knowledge, obtained from surveys, is maintained together with the knowledge in the 

belief space and a distance between both is calculated. An interesting experiment was 

done in this case with the addition of a social network component based on kinship 

and local neighbourhood. The research showed that learning from an expert is best 

because the social network made the entire system more resilient to change. 

5.3 Cultural Swarms 

Cultural swarming in Cultural Algorithms emerged as a consequence of the discovery 

that problem solving phases emerge in the belief space (Reynolds and Saleem, 2003) 

and its prove by performing experiments using a population represented by a 

Canonical Particle Swarm model (Iacoban, Reynolds and Brewster, 2003). 

Reynolds and Saleem (2003) presented three phases of swarm emergence, each of 

them dominated by the knowledge source that is most successful in generating good 

solutions. The first phase is the coarse grain phase, dominated by topographical and 

situational knowledge. The second phase is the fine-grain phase, dominated by 

situational knowledge. Finally, the third phase is the backtracking phase where all 

sources of knowledge contribute equally. The authors presented the hypothesis that 

various knowledge sources were interacting at the cultural level, effectively guiding 

problem-solving decisions.  

 

5.4 Other applications of Cultural Algorithms 

A variety of applications have taken advantage of Cultural Algorithms besides the main 

categories that we have just discussed. Among them, maybe the most unexpected of 

them are games, from board games (Ochoa, Padilla, Gonzalez, Castro Hal, 2008; Ochoa 

et al., 2007) to racing games (Kinnaird-Heether, Reynolds, 2009). 

However optimization, in all its forms, has certainly been a fructiferous area, such as 

Constraint Satisfaction Problems are especially suited to Evolutionary Programming 
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and therefore have been also an area for Cultural Algorithms (Becerra and Coello, 

2004; Rynolds, Michalewicz and Cavaretta, 1995; Jin and Reynolds, 1999), multi-

objective optimization (Coello and Landa Becerra, 2003) or even Fuzzy Clustering 

(Alami, Benameur and Imarani, 2007). 

Finally, learning has obviously been also an area of work for cultural algorithms (Curran 

2006). 
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6 NK Landscapes 

NK landscapes were devised, by Stuart Kauffman, as a model for species fitness, 

mapping the states of a genome onto a scalar fitness (Kauffman and Levin 1987, 

Kauffman 1989, Kauffman 1993). The NK model provides a fitness landscape whose 

ruggedness can be tuned by a single parameter: K, this is one of the beauties of the 

model and part of the reason why it has been widely used.  

The NK model is a model of a genome with N genes. Each gene has A alleles, mostly 

A=2, representing a binary genetic code. Each of the N genes constituting the genome 

can interact with other K genes. These epistatic interactions are in fact the ones 

responsible for the ruggedness of the landscape.  

In its simplest model, when A=2, each gene i of N depends of other K genes that 

interact with it epistatically. Thus for each possible combination 2K+1 a random number 

is drawn from a uniform distribution between 0.0 and 1.0, this will be the contribution 

of gene i depending on the other K genes with whom it interacts. 

The next step in the model is to define the dependencies between the genes 

composing the genome N. Three different ways have been mostly used in the 

literature: random assignment (Kauffman, 1993), sequential (where the successive K 

genes are assigned to i) (Levinthal 1997) and nearest-neighbour (where its flanking 

K/2 neighbours to either side are chosen) (Kauffman 1993).  

Once selected both the dependences between genes and the contribution of each 

gene, depending on the combination of K+1 genes are maintained through the whole  

construction of the landscape.  

Finally, the fitness of each possible genotype is the average contribution of its genes: 





N

i

iw
N

W
1

1
 

where, wi stands for the contribution of each gene, depending on k other genes 

besides itself, and W represents the fitness of the whole genome. 

The NK model has been used to represent different scenarios. We are going to follow 

Rivkin’s (Rivkin, 200) and Levinthal’s (Levinthal, 1997) approach and use it to represent 

the strategy of a firm and its reward in the market given its strategy. 

Hence in our case, a strategy s will be represented vector {s1, s2, … sn} where each 

component can be activated or not, producing a total of 2N possible configurations. 
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The value of each strategy component si will depend of other K components. So for 

each 2K possible combinations a value will be drawn from a uniform probability 

distribution [0..1] and the contribution of each component si will be assigned taking in 

consideration the other K components. 

The overall value associated to a strategy s (a point in the NK landscape) is the average 

over the N value contributions. 

N
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When K=0 each component depends only of itself, so for every point in the landscape 

differing of only one component, the maximum difference in fitness will be 1/N, 

resulting therefore in a smooth landscape. Contrary to that, when K is big, each 

component depends of K others, so given two points in the landscape that differ of 

only one component their maximum difference in terms of fitness will be k+1/N 

consequently resulting in a roughed landscape. 

So the number of local maxima – a point with fitness greater than all its neighbours, 

a.k.a. all other points that only differ from it in one component – will depend on the 

value of K. For K=0 only one local (and global) maxima will exist (the one whose each 

component of N has greater value).  

On the other side, for K=N-1 the number of local optima is very large. The probability 

Ps that a given strategy is a local optima is just the probability whose fitness is greater 

than its N neighbours, so: 

1

1




N
Ps  

and the total number of existing strategies in a landscape of parameter N is 2N, so the 

expected number of local optima for one component neighbours is 

1

2
1




N
S

N

 

that give us a fairly large number. For example for a strategy of 16 components, we will 

have only one local maxima for K=0 and 3,855 for K=15. 

To get a feeling of how the various landscapes look like, it is helpful to observe the two 

extreme cases of the NK model, when K=0 and when K=N-1 (Kauffman, 1993). 

Properties of K=0 landscapes 

 There is an only one local/global maximum. 
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 The landscape is smooth and neighbouring points (1-opt neighbours) 
are highly correlated. The fitness of 1-opt neighbours differs no more 

than . 

 The number of fitted decreases at each step a 1-opt local search. 

 The average number of steps to reach local/global maxima is , 

therefore . 
 

Properties of K=N-1 landscapes 

If K=N-1, the contribution of each component - gene - depends on all the other 

components, resulting in a very rugged landscape.  

 The expected number of local optima is . 

 The expected number of fitter neighbours divides by  after each 

iteration of a 1-opt local search. 

  The number of steps to reach a local optimum is expected to be in 
. 

 The expected number of solutions to examine to reach a 1-opt local 
optimum is proportional to N. 

 Starting from an arbitrary point in the landscape only a fraction of local 
optima can be reached by 1-opt local search. The upper bound is given 

by . 

 Global optima can only be reached - performing a 1-opt local search - 

from a small number of starting points  
 

Furthermore, for increasing values of N, the fitness of local optima decreases towards 

. Kauffman calls this phenomenon a complexity catastrophe (Kauffman, 1993). In 

order to avoid it and be able to compare fitness values coming from different 

landscapes we will normalize the landscapes used in our simulations to (0..1]. 

Therefore global optima always will have a value of 1.   

 

Table 1 – Number of local peaks 

Panel A:  Number of Distinct local Peaks 

 N = 4 N = 8 N =12 N =16 

K = 0 1 
(0) 

1 
(0) 

1 
(0) 

1 
(0) 

K = 1 1.78 
(0.74) 

2.76 
(1.72) 

4.26 
(2.91) 

8.86 
(7.85) 

K = 2 2.36 
(0.72) 

4.96 
(1.71) 

11.04 
(4.35) 

24.68 
(12.27) 

K = 3 3.4 
(1.23) 

8.3 
(1.87) 

23.28 
(5.86) 

66.56 
(20.24) 



Inferring Best Strategies from Multiple Agents 
 

28/66 

 

K = 4  12.08 
(2.21) 

39.70 
(7.40) 

132.34 
(21.61) 

K = 5  17.08 
(2.52) 

59.70 
(7.58) 

223.56 
(21.16) 

K = 6   22.28 
(2.86) 

90.30 
(8.30) 

360.48 
(27.16) 

K = 7  28.80 
(3.07) 

121.10 
(8.45) 

546.60 
(38.32) 

K = 8   158.94 
(9.56) 

765.68 
(44.58) 

K = 9   205.20 
(8.48) 

1034.14 
(41.58) 

K= 10   255.00 
(12.03) 

1357.04 
(37.03) 

K =11   314.68 
(10.76) 

1736.54 
(35.80) 

K =12    2173.72 
(44.94) 

K =13    2670.70 
(41.92) 

K = 14    3221.34 
(38.93) 

K = 15    3857.34 
(37.29) 

 

Panel B:  Proportion of local Peaks vs. points 

 N = 4 
16 

points 

N = 8 
256 

points 

N =12 
4,096 
points 

N =16 
65,536 
points 

K = 0  6.250% 0.391% 0.024% 0.001% 

K = 1 11.125
% 

1.078% 0.104% 0.013% 

K = 2 11.750
% 

1.937% 0.269% 0.038% 

K = 3 21.250
% 

3.273% 0.568% 0.102% 

K = 4  4.719% 0.969% 0.202% 

K = 5  6.672% 1.457% 0.341% 

K = 6   8.703% 2.205% 0.550% 

K = 7  11.250
% 

2.956% 0.834% 

K = 8   3.880% 1.168% 

K = 9   5.010% 1.578% 

K= 10   6.226% 2.071% 

K =11   7.683% 2.650% 

K =12    3.317% 

K =13    4.075% 

K = 14    4.915% 

K = 15    5.882% 

 

For each level of N and K fifty landscapes were created and local peaks – within 1 
mutation distance – were counted exhaustively. Numbers shown on panel A, 
corresponds to the mean number of local peaks found and the standard deviation 
(below). Panel B shows the proportion of local maxima respect to the total number 
of positions in the landscape for every N, K value. 
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As K increases becomes easier for the agents to get trap into local maxima, making 
more difficult an incremental improvement strategy. 

In NK landscapes the number of local peaks grows exponentially as K grows (Table 1) 

and their grow ratio increases with N (Figure  1). But as N increases, a second regime 

can be observed, the ratio of local maxima versus total number of points for K maximal 

(K = N-1) is 1/N+1 and this percentage decreases with a ratio 1- 1/N as N 

increases (Table 1). So, local maxima become perceptually scarce as the landscape 

grows. 
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Fig 1. For each level of N and K fifty landscapes were created and local peaks – within 1 
mutation distance – were counted exhaustively. A figure with a log/log representation of the 
results is show for every level of N. 

The number of local peaks grows exponentially with K, but as N grows they are a fraction of 
the total 2N points. 

 

For NK landscapes as N and K grow two regimes can be observed. As K grows for a 

certain N, the landscape becomes rugged and it is easier for the agents to get trapped 

into local maxima, resulting in a lower success for an incremental improvement 

strategy.  

On the other side, as N grows, the size of the landscape grows faster than its number 

of local maxima, providing larger travelling spaces where incremental improvement 

agents can bet on more strategies without getting immediately trapped into a local 

peak.  
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One very well known characteristic of NK landscapes is that local peak height 

decreases as K increases (Table 2) effectively flattening the landscape.  

This effect can be avoided normalizing by N if desired, but in many cases is not 

relevant. For example, if we are using a greedy search strategy where the highest peak 

is the one selected, the relative height of peaks does not have any effect. On the 

contrary, if our agents use a fitness strategy, where peaks are selected on the basis of 

their relative height (or the difference in height with respect to our position) then 

differences in relative peak height will result in different probability distributions. 

 

Table 2 – Peak Height 

 

 N = 4 N = 8 N =12 N =16 

K = 0 0.669 
(0.04) 

0.669 
(0.02) 

0.668 
(0.07) 

0.670 
(0.04) 

K = 3 0.649 
(0.09) 

0.663 
(0.06) 

0.661 
(0.05) 

0.657 
(0.04) 

K = 5  0.654 
(0.06) 

0.657 
(0.05) 

0.659 
(0.04) 

K = 7  0.649 
(0.06) 

0.647 
(0.05) 

0.648 
(0.04) 

K = 9   0.647 
(0.04) 

0.645 
(0.04) 

K =11   0.638 
(0.05) 

0.639 
(0.04) 

K =13    0.636 
(0.04) 

K = 15    0.630 
(0.04) 

 

One hundred landscapes (random interactions) were created for different levels of N and K 
and local peaks were – within 1 mutation distance - were examined exhaustively. The mean 
peak height is shown in bold and below the standard deviation of the average is shown in 
parenthesis below each data point. 

The average height of local maxima falls as K increases, or as the landscape becomes more 
complex. This effect must be taken into account in simulations and can be corrected 

normalizing by N . 

 

Is difficult to assess if this fall of peak height reflects in any way a real world economic 

characteristic where more complex and interrelated strategies result in lower rewards 

(fitness) than simpler ones. Simpler strategies have usually lower entry barriers that 

result in more crowed points with higher concurrence levels than strategies with a 

higher degree of epistatic interactions. These differences in concurrence levels due to 

lower entry barriers make it difficult to assess if in real economies, a higher level of 

interaction between strategy components result in lower local peak fitness. Either way, 



Inferring Best Strategies from Multiple Agents 
 

31/66 

 

this effect is not relevant to the simulations and the work carried out in this paper, but 

must be taken into consideration for future work. 

The distribution of local maxima in NK landscapes is a relevant characteristic that will 

clearly affect how agents carry out search. We will use the Hamming distance 

(Hamming, 1986), known as the difference in information components, strategy 

components in that case, between to bit strings (strategies in that case). So if two 

strategies difference in 1 component, its Hamming distance will be 1. 

As we can see in Table 3, the average distance between local maxima approaches N/2 

as K increases which clearly corresponds with the random distribution upon which the 

NK spaces are built. One striking factor, already reported in (Kauffman, 1993) is the 

fact that for K low (K=1, K=2) peaks are closer, approaching N/3. This could be 

consistent with many real world situations where for very focused sectors, one or two 

components dominate their strategy (low cost flights, low cost retailing, … both with 

logistics and cost being the dominant strategy players) producing dominant strategies 

that are close together because they share the main dominant factors.  

 

Table 3 – Distance between Local Maxima 

 

 N = 4 N = 8 N =12 N =16 

K = 0 0 (0) 
0 (0) 

0 (0) 
0 (0) 

0 (0) 
0 (0) 

0 (0) 
0 (0) 

K = 1 1.49 (0.14) 
1.28 (0) 

2.66 (0.47) 
1.56 (0) 

3.58 (0.17) 
1.88 (0) 

5.54 (0.08) 
1.88 (0) 

K = 2 2.49 (0.23) 
2.05 (0.29) 

3.78 (0.51) 
2.09 (0.14) 

4.01 (0.29) 
2.00 (0) 

5.89 (0.07) 
2.00 (0) 

K = 3 2.20 (0.19) 
1.95 (0.04) 

4.05 (0.26) 
2.04 (0.06) 

5.65 (0.30) 
2.17 (0.27) 

5.96 (0.11) 
2.00 (0) 

K = 4  3.95 (0.23) 
2.03 (0.08) 

5.74 (0.27) 
2.09 (0.18) 

6.16 (0.25) 
2.00 (0) 

K = 5  3.98 (0.21) 
2.04 (0.13) 

5.78 (0.19) 
2.08 (0.22) 

6.82 (0.47) 
2.00 (0) 

K = 6   3.91 (0.17) 
2.00 (0.01) 

5.77 (0.14) 
2.02 (0.05) 

7.74 (0.14) 
2.11 (0.26) 

K = 7  3.88 (0.16) 
2.00 (0) 

5.88 (0.12) 
2.05 (0.17) 

7.70 (0.14) 
2.01 (0.11) 

K = 8   5.83 (0.10) 
2.00 (0) 

7.83 (0.08) 
2.04 (0.14) 

K = 9   5.86 (0.08) 
2.0 (0.03) 

7.85 (0.06) 
2.04 (0.15) 

K= 10   5.83 (0.08) 
2.00 (0.02) 

7.89 (0.05) 
2.01 (0.05) 

K =11   5.88 (0.07) 
2.00 (0) 

7.92 (0.04) 
2.01 (0.05) 

K =12    7.89 (0.03) 
2.00 (0.04) 

K =13    7.92 (0.03) 
2.00 (0) 

K = 14    7.93 (0.02) 
2.00 (0.01) 

K = 15    7.96 (0.03) 
2.00 (0.02) 
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For each level of N and K fifty landscapes were created and local peaks – within 1 mutation 

distance – were counted exhaustively. Once found the average (above in bold) and the 

minimum (below in normal) distance between each local maxima and all the others was 

obtained using the Hamming distance as a measure (number of bits – strategy components – 

different from one strategy with respect another one. Result corresponds to the average and 

standard deviation (between parentheses) of the 50 landscapes tested. 

We can see how as K increases, mean distance approaches N/2, beginning for K=1 with 

approximately N/3. A very interesting phenomena is that the minimum distance is always 

close to 2, but for K=1 that is even closer. That means that given any peak we can find 

another one really close, or that any peak carries information relevant not only to himself 

but to another one. 

 

What is also interesting on the data of Table 3 is that the minimum distance between 

two peaks – the distance to the closest peak – is always around 2 (except for K=1 that 

is even lower). That means that given any peak we can find another one at a distance 

of two or lower in any case (note that standard deviation is always 0.2 or lower). This is 

also consistent with the real world experience that not all factors weight the same and 

some are dominant, around these dominant factors we can find several strategies 

resulting of the interchange of equally weighted, let us call them, secondary factors. 

But this fact has also an important consequence for the collective behavior of the 

agents and their collective learning process. That is that the fact of being in one 

strategy local maxima carries information valid to other points, information that can 

potentially lead to find a different peak. 

 

Table 4 – Mean Walk Lengths to Local Optima  

 

 N = 4 N = 8 N =12 N =16 

K = 0 1.996 
(1.005) 

4.013 
(1.418) 

5.999 
(1.741) 

7.979 
(2.003) 

K = 1 1.682 
(0.977) 

3.467 
(1.379) 

4.976 
(1.624) 

6.803 
(1.876) 

K = 2 1.354 
(0.869) 

2.813 
(1.305) 

4.292 
(1.603) 

5.773 
(1.892) 

K = 3 1.159 
(0.806) 

2.448 
(1.266) 

3.705 
(1.572) 

5.060 
(1.838) 

K = 4  2.077 
(1.111) 

3.214 
(1.439) 

4.383 
(1.753) 

K = 5  1.821 
(1.041) 

2.801 
(1.342) 

3.797 
(1.614) 

K = 6   1.589 
(1.003) 

2.524 
(1.329) 

3.401 
(1.515) 

K = 7  1.418 
(0.961) 

2.233 
(1.181) 

3.077 
(1.400) 

K = 8   1.987 2.795 
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(1.081) (1.326) 

K = 9   1.832 
(1.047) 

2.559 
(1.302) 

K= 10   1.643 
(1.029) 

2.340 
(1.224) 

K =11   1.510 
(1.010) 

2.154 
(1.130) 

K =12    1.973 
(1.064) 

K =13    1.804 
(1.025) 

K = 14    1.684 
(1.010) 

K = 15    1.560 
(1.005) 

 

For each level of N and K one hundred landscapes were created and 100 agents released in 
each landscape. Incremental walks lengths performing a greedy search were recorded. The 
average walk length is shown in bold and the average of the standard deviations of walk 
lengths for each landscape is shown between parentheses.  

Mean walk length begins with N/2 and as K increases approaches 1 reflecting an increasingly 
rugged landscape. Mean walks lengths have also implications in how long a system will 
settled down and how much time will be available for diffusion between agents  

 

Correspondence to the real world is in that case quite direct. Complex, very 

interrelated strategies make the economic agents very prone to get trapped into local 

maxima, many times forgetting key factors that are suddenly rediscovered by a new 

competitor. We have many examples of that where in mature sectors like flight 

companies or banks, complex strategies were carried out and companies craved niches 

around them until a new competitor simplified the strategic approach and was able to 

attain a higher maximum. But the shortening of walks due to the increasing complexity 

of the environment has also two important implications in a dynamic system where 

economic agents are interrelated and interdependent.  

The first one is diffusion. A shorter path results inevitably in less time available to 

diffuse discoveries and to assimilate them. The second one is equilibrium, with a 

shorter path length equilibrium can potentially be reached earlier given the fact that 

the system will settled down when all agents have attained their maxima with regard 

of the positions of other agents. We can see, and we will present in the next sections 

several models of collective discovery where a group of agents guided only by local 

information and their greedy interest will in fact collaborate in the discovery of the 

highest peaks in the NK space attaining a situation that will be globally better than the 

one achievable without interrelation.  

This is a process of collaborative pattern learning, where the agents will try to discover 

patterns in the NK space construction that result in a higher fitness, these are nothing 

else than the ones that have the highest value in the K+1 gene table used originally to 

obtain the fitness of each point.  
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6.1 Greedy Algorithms for the NK Model 

Given the configuration of an NK landscape, it is possible to walk through it by 

changing one or more components at a time. If the choice of components follows a 

greedy rule, then the approach can be classified as a greedy heuristic for NK 

landscapes.  

Greedy heuristics are widely used in NK landscapes, mostly as a baseline upon which to 

compare other strategies because they easily get trapped into local maxima, especially 

in the case of 1-opt where only 1 component is investigated. Having an existing 

solution as a starting point, a new solution is built by maximizing a gain function 

 with  denoting the fitness of the position 

obtained by setting the component i-th component of the position in the landscape to 

the value . 

We define the gain function as the difference between the fitness of a partial position 

 with the i-th component set to  and the fitness of a partial position  with the 

component unspecified, 

 with 

 

The fitness of a partial solution is defined as the average fitness of all positions 

matching a template, e.g. assume a partial position , where  where 

* denotes indifference. Then, the fitness  of  will be the average fitness of four 

positions, namely (0,1,0,1,0,1), (0,1,0,1,1,1), (0,1,1,1,0,1) and (0,1,1,1,1,1).  

However, when performing local search neighbouring positions can be reached by 

flipping a single component of the actual one. Therefore, 

  with 

 

In terms of implementation, local search can be facilitated by using dynamic 

programming techniques (in many cases more than one agent will walk through a 

point previously calculated, especially when climbing basins, providing an opportunity 

for reuse) or by maintaining a gain vector with the partial values of the components 

because many will be unaffected by the change (especially when K low). 
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The implementation of 1-opt local search is straightforward and is presented in 

Algorithm 1. There an agent flips its position components maximizing its fitness by 

using the gain function previously described.  

 

Algorithm 1 Local Search 1-opt 

Input: x  - position in an NK landscape 
Input: L  - a vector representing the NK landscape  
Output: x - resulting position 
 

function LocalSearch1opt : (x, L) → x 
 
 calculate gains of ,  -gains changing 1-opt  

 
 repeat  
  find k with gk max 
  if  gk > 0   
   then 
                 -flip the component 

   find k with   max  - update gains 

  end 
 until  

 return   - position after performing a local search 1-opt 

end 

 

Similarly we can extend the last 1-opt algorithm to a k-opt local search, allowing the 

simultaneous change of 2 or more components instead of only one. The extension is 

completely straightforward if we enumerate all possible positions changing k 

components. However, its number grows exponentially, concretely following , 

making difficult its complete exploration as k grows. Therefore it will be useful to 

devise an algorithm that could allow even a partial exploration. Fortunately we can 

easily think of many of them and for the sake of the example we will discuss one of 

them. 

Possible the simplest way to approach the problem is by limiting the search space of 

solutions to explore and the easiest way to do it is following a greedy approach as we 

are doing in the previous one. Therefore we will pick up a subset of components based 

on their partial contribution to the overall fitness. As the lector might guess, this is not 

by far optimal and this approach will increasingly fail in reaching the global optima as 

the number of interactions between the components grows, or put it in another ways 

as K grows. 
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Algorithm 2 Local Search k-opt 

Input: x  - position in an NK landscape 
Input: L  - a vector representing the NK landscape  
Output: x - resulting position 
 

function LocalSearchkopt : (x, L) → x 
 
 calculate gains of ,  -gains changing 1-opt  

 
 repeat  
  G=0, Gmax=0, xold=x, S={1, ...n} 
  find j with gj max 
  while  

   G = G + gj 

    

   if  

     then 
     

     

   end 
    

   calculate gains of ,  

  end 
 
  if      

   then 
    

     else            
    

  end 
 until  

 return   - position after performing a local search k-opt 

end 
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7 Model-Based Learning 

In their evolution, Cultural Algorithms have suffered a process of sophistication in 

almost any of representative characteristic, from the knowledge representation in the 

shared space to the selection and acceptance functions or the evolutionary process 

that takes place among the population of agents. 

This sophistication allowed tackling types of problems that, at first sight, could appear 

to be far away from their reach. This is not only the case of the family of applications 

devoted to optimization, but also the one who addresses elaborated simulations of 

emergence. However, it could certainly be interesting to revisit the initial concepts 

where Cultural Algorithms have their roots. This exercise could provide not only a basis 

for more realistic social models when addressing the evolutions of human collectives 

but possibly insights that could open new understandings and new possibilities in the 

use of Cultural Algorithms. 

A set of these initial concepts that lay behind Cultural Algorithms are related to the 

selection function. How do we select the individual that is going to serve as the basis 

for inferring theory? Could it have large implications in terms of the amount of 

information that should be processed, sample size and the complexity of this process?. 

All these, could have significant implications in terms of applicability and the realism of 

simulations. 

Evolutionary psychology provides some clues on how the selection function could 

work. In fact, once individuals begin to learn from others, it is obviously wise to be 

selective, preferentially pay attention to, and learn from those who are highly 

successful or particularly skilled subjects (Henrich and Gil-White, 2001), being the 

probability of imitation correlated with the observed difference in payoffs (Apesteguia, 

Huck and Oechssler, 2005; Schlag 1998, 1999). 

However, in this form of model-based cultural learning assessing from whom to learn 

is not a straightforward task. This is why we rely on cues such as competence, success 

and prestige and we devise and build social mechanisms that promote their 

emergence. 

Therefore, in a social setting that makes use of competence and success signals, highly 

skilled individuals will be in high demand and a selection pressure leading to a 

deference mechanism will appear (Gurven, 2004). Naive entrants can therefore look at 

the existing pattern of deference in order to solve the costly information problem. 

Consequently, solving the problem of from whom to learn is reduced to aggregating 

information from the distribution of deference. 
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Therefore, the mechanism of selection, from the point of view of evolutionary 

psychology, is rooted on the selection of a few best and its use as a model. 

Similarly to the selection function, the adoption function drives to a large extend the 

workings of Cultural Algorithms. Again, we hope to find some clues revisiting what we 

know of the way social communities incorporate and adopt knowledge. A well-known 

social mechanism to perform this aggregation is conformist transmission (Boyd and 

Richerson, 2005; Henrich and Boyd, 1998), that can be described as copy the majority 

or copy what the majority understands as best practices. 

Moreover, conformist transmission is known to be the best route to adaptation in 

information poor environments (Henrich and Boyd 1998; Kameda and Nakanishi, 

2002). Hence, when individual ambiguity due to low accuracy of the information 

obtained through individual learning increases, so does the reliance on conformist 

transmission (McElreath, Lubell, et al. 2005). 

The last element that we should revisit is the knowledge representation that has 

evolved in many ways, some of them highly sophisticated. Examining the roots of the 

mechanism for abstraction and representation of knowledge, could again be valuable 

for elaborating models more closely related to our current knowledge.  

In this case, probably the strand of research more relevant comes from Cognitive 

Science that sees pattern matching as central to reasoning and learning. The two 

predominant cognitive models, the connectionist that sees the brain as a computer 

(Hebb, 1949) and the evolutionist (Dosi, Marengo and Fagiolo, 2003) that postulates a 

process based in somatic selections, view the brain as employing pattern-based 

reasoning, rather than abstract logical reasoning, which is essential for explaining how 

we make choices in a world of uncertainty. "Thinking occurs in terms of synthesized 

patterns, not logic and for this reason it may always exceed in its reach syntactical or 

mechanical relations" (Edelman and Tonini, 2001, p. 152). 

This pattern based reasoning mechanism also influenced Institutional Economics. In 

fact, when dealing with the process of economic change, Douglas C. North, indicates: 

"Much of learning comes from absorbing and adjusting to subtle events that 

have an impact on our lives, incrementally modifying our behavior ever so 

slightly. Implicit knowledge evolves without ever being reasoned out. In fact 

we are relatively poor at reasoning compared to our ability to understand 

problems and see solutions. We are good at understanding and 

comprehending if the issue is sufficiently similar to other events that have 

happened in our experience. Ideas to far from the norms embodied in our 

culture cannot easily be incorporate in our culture. Ideas are adopted if and 

when the share a kind of cohesion that does not take them too far from the 

norms we possess. Pattern matching is the way we perceive, remember and 
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comprehend. This is the key to our ability to generalize and use analogy. This 

ability makes us good not only at modeling "reality", but also at constructing 

theories in the face of real uncertainty." (North, 2005, p. 26-27). 

These insights provide some help and some clues on ways to characterize an 

alternative model for Cultural Algorithms. 

Such a model will be based on selecting the best performing individuals form a 

community on the basis of a public signal. From them, patterns of action supposedly 

producing these high results will be extracted and based on their popularity 

incorporated and adopted by the individuals in the social community still not endowed 

with them. 

It is a model, in many aspects, more simple than many of the ones reviewed, but 

because of this simplicity, we will probably be more able to infer conclusions on its 

workings and the relative importance of its different elements.  

Several research questions arise naturally from the simple observation of the model. 

Among them, we can mention: 

1) What is the optimal size of the sample to be used in the selection process? 

2) How comprehensive should be the patterns to be inferred? 

3) How extensive needs to be the process of adoption in order to obtain an 

optimal or near optimal result? 

In addition to these questions that relate to a particular aspect of Cultural Algorithms, 

a general one arises: the dependency of these variables on the type of information 

being treated.  

Certainly we can hypothesize that very simple types of knowledge could need smaller 

sample sizes, while more complex ones will require larger samples. Therefore, we 

should frame the previous research questions with the next one: 

4) Do sample size, comprehensiveness of patterns and the adoption process 

depend on the complexity of the informational landscape to be traversed?    

7.1 Modeling Pattern-Based Strategy Search 

The first two elements that should be first elucidated in order set the basis for our 

model are the type of knowledge representation that is going to be used and its 

mapping to a fitness function. 
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In the second case, the choice looks pretty obvious. In fact if we need to relate the rest 

of components to complexity, as we mention in the research question number four, 

our almost sole choice is the use of NK spaces for the mapping function. NK spaces 

allow the easy control of two key variables of the landscape: its size, using the 

parameter N, and its complexity, using the parameter K. 

The election of NK spaces as mapping function already determines, at least to some 

extent, the selection of the first one: knowledge representation. NK spaces use a 

simple binary where each component represents a knowledge component. Therefore, 

in this case there is a lack of representation for knowledge hierarchy on in general any 

type of knowledge structure. We certainly could have incorporated some type of 

structure when representing the knowledge of the agents, however, in order to 

answer the proposed research question this structure would probably not help and we 

will therefore complicate the model with unnecessary elements for its purpose. 

In addition to that, if we aim to use this model for comparison, a baseline is needed.  

Because agents move in an NK landscape, the optimization function is naturally 

mapped as search. Incremental search that captures the notion that agents have a 

bounded visibility by limiting the scope to a limited number of components, one in our 

case, is clearly a baseline against whom to compare the performance or Cultural 

Algorithms. 

Therefore, in our model an agent is endowed with a vector of binary choices 

representing unique components, as = {s1, s2, …, sn } which can take a value of either 0 

or 1. This vector is directly mapped to a position in the NK space, and through this 

mapping, a fitness value, corresponding to the fitness of this position in the NK space, 

for each agent is obtained. Agents move through the NK space performing individual 

search strategies either incremental or a Cultural Algorithm based on patterns. 

Incremental search is implemented by performing a hill-climbing algorithm where 

agents are allowed to freely move between 1-component ranges seeking the best 

fitness. A pattern is a group of binary choices composed by one or more components. 

Therefore all possible patterns of length l can be described as combinations of  . 

For example given N=4, s={s1, s2, s3, s4}, the possible patterns that could be derived 

from all possible combinations of length two of the two components of the strategy s 

are, 

s1, s2  s2, s3 s3, s4 

s1, s3 s2, s4 

s1, s4 

 

each of them can take any of the possible 2l combinations of si, si {0,1}, therefore 
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s1 s2 

0 0 

0 1 

1 0 

1 1 

 

Agents aim to discover the best patterns in the population of agents in order to 

incorporate them into their strategy and improve their fitness. 

The belief space is built by performing the following functions: 

1. Monitoring the position of the agents in the landscape at each iteration 
2. Ranking the agents according to their fitness and select a percentage of 

best performers (governed by a parameter ,  (0..1] ) as best cases 
3. Collect the patterns among these best cases and rank these patterns 

according to one of the following strategies 
 

a. the average fitness of the pattern. Representing a rational agent 
with complete and exact knowledge of the fitness of the rest. 

b. their popularity. Mapping the mechanism of conformist 
transmission. 

For the sake of the example let’s assume that there are only 4 agents with N=4 and 

=1, thus we consider the entire population as best cases. 

 

 

 

a1 = { 0 1 1 0 } 

a2 = { 1 0 1 0 } 

a3 = { 1 1 1 0 } 

a4   = { 1 0 1 1 } 

 

following the previous table, the ranking of patterns according to their popularity as 

best cases will be established as  

 

Strategy 

components 

Pattern Number of 

Cases 

s1, s3 1   1 3 

 0   0 0   1 1   0 1   1 

s1, s2 0 1 2 1 

s1, s3 0 1 0 3 

s1, s4 1 0 2 1 

s2, s3 0 2 0 2 

s2, s4 1 1 2 0 

s3, s4 0 0 3 1 
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s3, s4 1   0 3 

s1, s2 1   0 2 

s1, s4 1   0 2 

s2, s3 0   1 2 

s2, s3 1   1 2 

s2, s4 1   0 2 

s1, s2 0   1 1 

s1, s2 1   1 1 

s1, s4 0   0 1 

s1, s4 1   1 1 

s2, s4 0   0 1 

s2, s4 0   1 1 

s3, s4 1   1 1 

 

building that way an structure of patterns p as a set of tuples <ci, vi, oi, ai, fi> where ci 

stands for the set of components that the pattern considers, vi for their binary value, oi 

for the number of occurrences in the population of best cases considered (in case that 

we use the popularity classification), ai for the average fitness of each pattern (in case 

that we use the average fitness classification) and fi for the maximum fitness of the 

pattern, taken as the one of the best performing agent endowed with that pattern. 

Moreover, agents are endowed with a memory ma = {sa,1, …. , sa,n} which contains all 

strategies known by the agent because they have been previously applied. Therefore 

agents will only apply strategies that are either unknown or being known lead to a 

fitness higher than the current one. 

The model also needs an influence function, again we tried to keep close with what a 

realistic behaviour could be, introducing elements like the non adoption of patterns 

conducing to a lower fitness and endowing the agents with a certain size of memory in 

order not to repeat previous mistakes. This influence function is presented in 

Algorithm 3, 

 

Algorithm 3 Influence function 

Input: agent.{s,f} - agent's strategy (agents.s) and fitness (agents.f) 
Input: P - set of patterns in the belief space 
Output: agent.{s,f} - agent with adopted pattern 
 

function ApplyBestPattern : (agent, P) → agent 
 
 P' = sort(P, v, 'descend')   - Sort patterns by # votes  

 for each  p   P'  
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  if  p.f ≤ agent.fitness - pattern has lower fitness than the agent  
   then 
   continue 
  end 
 

  if   p  agent.s   -pattern exist in the agent’s strategy vector  
   then 
   continue 
  end 
 
  xs= apply(p, agent.s) 
 
  if xs in agent.mem and xs.fitness ≤ agent.fitness   
   then 
   - strategy has been applied and has a lower fitness 
   continue 
   else 
   agent.s = apply(p, agent.s)   - apply pattern  
   agent.mem = include(agent.mem, agent.s)  
   - include in memory 
   return agent 
  end 
 end 
 return agent 
end 

 

Therefore, in every round of the simulation each agent considers the existing selection 

of patterns sorted by popularity (or alternatively by the average fitness of the agents 

endowed with them) until one pattern if found and applied or all patterns have been 

discarded by any of the following conditions: 

1. The knowledge vector of the agent already includes the pattern. 

2. The best performer agent with this pattern has fitness lower or equal than 
the one of the agent. 

3. The position resulting from applying the pattern to the strategy of the agent 
is already in the memory of the agent with a lower or equal fitness (the 
appliance of the pattern does not result in a gain for the agent). 

As we can observe, in this case, agents do not adopt the patterns blindly, on the 

contrary they are endowed of cognitive capacities, mimicking human cognitive 

capacities that make them actively participate in the exploratory process. We can 

portray this participation in three distinctive ways. 

First, they contribute to pattern discovery with their knowledge vectors that constitute 

the raw materials for obtaining the best patterns.  
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Secondly, they perform a selection process. Patterns, in fact, are not applied blindly by 

the agents. Agents select patterns by comparing the fitness of the best performer 

agent endowed with the pattern with their own fitness and adopting it only in the case 

that the maximum fitness attainable by adopting the pattern is higher than the one 

that they already have. 

Therefore, we assume that fitness estimation, representative of the pattern, is public. 

This aims to model the common scenario where best practices are exemplified and 

presented with the aid of a real stellar performer. We can find multiple examples of 

this widespread practice, for example in the economic world, stellar performance is 

mostly public and the characteristics of the best performers highly publicized.  

This selection process that comes naturally, product of common sense, in the real 

world: a practice whose results seem to be worse than the ones obtained by practices 

in use, is not commonly applied, has important implications in the selection process, 

because that way, popular but non-performing practices are rapidly discarded. This is 

the case, for example, of the initial states of the simulation where the strategies of the 

agents are randomly picked and when their level of popularity does not correspond to 

a selection process socially evaluating their performance but to this initial random 

arrangement. 

The second mechanism of selection with which the agents are endowed is their 

memory. As we will discuss later in this chapter, the size of the memory has important 

implications on the resulting performance of the system. However, the main effect of 

memory is to prevent the agents to fall into traps and to avoid circular loops. 

This, of course, has the undesired effect of averting some jumps that have to find an 

alternative route. For illustration, let us assume positions a, b and c in the landscape, 

with fitness fa, fb and fc respectively, such as fb < fa < fc, and fc optimal maxima. Given 

that a path exist between a and c through b, agents will have to experience a 

reduction in their fitness when reaching position b. If b is in the memory of the agent, 

this fact will prevent that movement and position c could not be attained through this 

path. Fortunately, an alternative route to c will be found in most of the cases (with 

lower probability as K increases because the diameter of the basins of attraction 

determining the different ways to access the maxima, decrease). In addition to that, as 

we will discuss later, the process of discovery progresses through successive 

generations of alleged best practices, rendering important parts of the memory 

obsolete. 

Memory has therefore this dual effect of avoiding traps, but at the same time limiting 

discovery. In the business literature we can find many examples of this paradox, 

especially in areas related to change and change management.  
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Finally, there is a third mechanism of exploration driven by the agents: a variation of 

crossover. Agents generate potentially new strategies by adopting new patterns. Let 

us, for the sake of the example, consider an agent with knowledge vector 01110 (N=5) 

adopting pattern p=< component={2,4}, value={0,0}>. Once adopted the agent will 

hold vector 00100 as a result. 

However, even if pattern adoption drives discovery, it is also true that the progressive 

adoption of the most popular patterns reduces the level of heterogeneity among the 

population of agents. As we will discuss later on, this effect can be counteracted by a 

proactive exploration on the side of the agents.  

7.1.1 Aggregating Information: Average Fitness vs. Conformist 

Transmission 

Conformist transmission is based on popularity and this can obviously raise some 

skepticism around its goodness as an indicator of the performance of a pattern. 

Therefore, in order to assess its level of performance as a measure we chose two 

additional measures for comparison. 

First, and as a baseline, incremental search, where agents engage in a greedy search of 

1-component range. And secondly, instead using popularity that is clearly an inefficient 

proxy for high fitness (especially in the early stages, where distribution is basically 

random), we can try to cover for this inefficiency by using a statistical measure of the 

performance of a pattern; the most obvious one is the average fitness of a pattern. We 

then compared the performance of a population of agents when using these two 

different functions for pattern ranking: popularity and its average fitness, against 

incremental search. 

In figure 2 we can appreciate the results of this exercise. There the best 25% 

performers among the population of agents have been selected as best cases from 

where to infer patterns (we will see later on that these results are consistent for a 

lower set of best cases). We can observe that the use of the average fitness or 

popularity (number of agents endowed with a certain pattern) lead to results roughly 

equivalent. Results that are however, much better than the ones obtained by the use 

of incremental search, where agents easily fall and get trapped into local maxima. 
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Fig 2. Comparing three strategies: Popularity, Average Fitness and Hill Climbing 

500 agents performing patterned search are released in a NK landscape, 100 tries are 
performed and results are averaged. Three different approaches are used for 
selecting the pattern that agents will apply: a) the popularity of a pattern among a 
set of Best Performers, b) the average fitness of the agents endowed with that 
pattern and c) incremental search (hill climbing) where agents can change one 
component at a time . Error bars correspond to the standard error of the mean. 

We can observe that popularity is a heuristic as good as average fitness, although less 
costly and more easily observable. Both of them produce better results than 
performing incremental search with their distance increasing as complexity does.  

 

We also have to consider the operational efficiency of the mechanism. Compared to 

obtaining an accurate measure of the average fitness, popularity is easy observable 

and very cheap to assess because only involves counting. This is even truer in cases 

where the uncertainty of the economic or technological environment poses greater 

challenges to an accurate assessment of fitness, in these cases, popularity among best 

cases continues to be an easy, simple and fast measure.  

As we have seen, results of popularity as a heuristic are similar to using average fitness 

for a set of cases involving a 25% of the population of agents and both clearly superior 

to incremental innovation (hill-climbing).  

Finally, let us discuss the mechanisms with some more detail. 
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Proposition 1. Accuracy of ordering depends on the size of the set of best cases (in the 

case of average fitness ordering) and on the selection process. 

Let us consider first the case of ordering by average fitness. Following (1) we can 

consider that the fitness fi of point i, as divided in two parts, , the 

fitness corresponding to components included in the pattern p,  and the fitness of 

the components not belonging to p  . As the size of the set of best cases 

considered increases, this second part will tend to reflect the mean of these 

components because the fitness of the components are drawn from a uniform random 

distribution. Equally, the first part will tend to reflect the quality of the pattern. 

However, if the sample selected does not correspond to a random sample of the 

agents (as in the initial state), ordering will be driven by the selection process.  

This is also the case for popularity, which initially is completely random and later on is 

solely driven by the selection process. 

Proposition 2. Pattern selection is a social process - between the agents and the belief 

space - affected by the quality of the patterns and the quality of the ordering, which is 

more relevant as the average fitness of the set of best cases considered decreases 

(larger sets of best cases). 

Adoption of a pattern by an agent is governed by the ranking of the patterns, the 

offering of patterns and the agent’s fitness. In fact the condition for adoption is 

, therefore only patterns with higher 

representative fitness will be adopted. However, ranking can affect pattern adoption, 

e.g. given two patterns pi and pj with pi.f > pj.f, a certain ordering can effectively mask 

pi preventing its adoption and ultimately disappearing of the set of best cases being 

replace by the inferior pattern pj.  

In order to find out the relative importance of ranking, let us consider de case where 

only the best patterns are selected. Obviously ranking in that case will be completely 

superfluous. On the contrary, if heterogeneity is very high, the number of different 

patterns will also be higher (sets with more noise and smaller differences in ranking), 

in that case ranking quality will be very relevant in order to prevent masking. Therefore 

the importance of the ranking is directly correlated with the level of quality of the set 

of best cases, so their fitness. Nevertheless, the offering and ranking of patterns in the 

next iteration will depend on the ones selected by the agents in the previous one 

together with crossovers. In that sense pattern adoption is a social process where 

agents play a fundamental role by choosing to adopt and selecting patterns on the 

base of their own fitness. 
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8 Less is More 

In the model being presented, the knowledge of the agents is being generalized in the 

belief space by inferring patterns from the knowledge vectors of the agents. The 

question that immediately arises and corresponds to our first research question is 

about the size of the sample that is implemented in the present model by the  

parameter. 

What is the most appropriate magnitude for  in order to achieve the optimal results? 

Will larger sample sizes conduct to more exact results or, on the contrary, small ones – 

therefore less costly to observe – will produce better or roughly equivalent results? As 

we stayed in our research question four, these questions are situated in the framework 

of complexity that naturally comes from the use of NK spaces as the landscape that 

agents use to map their fitness function. 

 Figure 3 shows how different magnitudes of  perform. Agents are ranked following 

their fitness and a sample of best performers is used in order to distil patterns. We use 

sample sets that range from the best 2% of the agents ranked by their fitness to the 

100% of them, the whole population.  

There, we can observe how average fitness as a heuristic performs better for small 

sample sizes and how its performance decreases as the sample set of agents 

considered, enlarges. Obviously, the differences are significant for low and medium 

levels of complexity, however when complexity is too high, patterns encounter 

difficulties deciphering the landscape and its performance decreases.  
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Fig 3. Variation in performance for different set sizes using average fitness for pattern 

ranking 

A set of 500 agents performing patterned search with patterns ranked on the 

average fitness of each pattern, are released in a NK landscape, 100 tries are 

performed and the results averaged. The experiment is repeated for different sizes of 

the set of best cases, ranging from 2% (10 best cases) to 100% (500 best cases). The 

mean and its standard error are presented. 

We can observe how selecting a smaller sample set produces better results than a 

larger one(to an extent, as we will see later the number of cases has to be sufficient 

to contain enough information to allow the deciphering of the landscape). 

 

Will this result maintain when using popularity as heuristic? In Figure  4 we have the 

answer to this question. There, we can observe that popularity performs similarly to 

average fitness.  

Definitely, less is more, a small and well-selected set of best performers produce 

better results than a larger one or the use of the whole population and this result is 

valid for any level of complexity. 

Nevertheless, we can also observe some differences when comparing with the 

heuristic based on the average fitness. Even if for a small sample, results are roughly 
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similar, as the size of the sample increases we can observe how, in popularity based 

ranking, the degradation of results is more pronounced, compared to the average 

fitness that appears to be more robust respect to variations on the sample size of. 

Therefore, when using the popularity of patterns as the guide for pattern selection 

and adoption, its accurate selection, given the small size of the best performing set, 

appears to be of great importance. 
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Fig 4. Variation in performance for different sample sizes pursuing a popularity 

heuristic 

Again a set of 500 agents performing patterned search based, in this case, on the 

popularity of each pattern, are released in a NK landscape, 100 tries are performed 

and the results averaged. The experiment is repeated for different sizes of the set of 

best cases. The mean and its standard error are presented. 

We can observe a similar behavior than in the case of using the average fitness as a 

selection method. However, in that case the system is even more sensible to set 

sample size, resulting in a faster and deeper degradation as set size increases, 

compared to Figure  3. 
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Proposition 3. Performance of pattern driven search increases inversely to the size of 

best cases sampled by fitness in decreasing order (considering only set sizes with 

enough information to decipher the landscape). 

Because of proposition 2 we know that the average quality of the patterns presented 

to the agents is more relevant than the ordering because of its inaccuracy 

(proposition 1). Obviously the better the cases selected the better the quality of the 

patterns. 

Therefore, less noisy sets with a higher pattern accuracy will perform better. Smaller 

sets of best practices sampled by fitness fit better this characteristic than larger sets. 

 

Proposition 4. The size of the set of best cases sampled by fitness is more relevant in 

the case of ordering by popularity than in the case of ordering by average fitness. 

Because of proposition 1 we know that the accuracy of the ordering increases as the 

set of best cases grows in the case of ranking by average fitness. And because of 

proposition 2 we know that the accuracy of ranking by popularity decreases as the 

set enlarges. Therefore larger sets will benefit from a ranking by average fitness and 

suffer from a ranking by popularity.    

Given the results just described, the reader may be tempted to think that if less is 

more, maybe one is enough. In fact, as Figure  5 shows, results with only one agent 

are clearly worse and as we will discuss later on, there is an optimal range for set size, 

that even if small, must be significant. 

The next question that we can ask ourselves could be around the consistency of these 

results across a diversity of population sizes. Do larger populations of agents benefit 

for a larger collection of best cases? Figure 4 provides the answer to this question. 

There we can observe how smaller sets continue to produce better results than larger 

ones for diverse cardinalities of the agent set. Concretely we present two examples, 

one with 100 agents and another one with 30 times that size, 3000 agents, where we 

observe similar behaviours. 

However, as the size of the population increases we can witness two additional effects. 

First patterns are more accurate, and we are able to obtain high levels of average 

fitness. And secondly, the gap between sample set size closes, the system is therefore 

less sensitive to the size of the sample. Obviously, larger sets of agents have more 

possibilities of finding the best positions in the landscape than a smaller one. This 

implies that sample selection may be less critical in larger populations, because the 

lack of accuracy can be traded by larger samples.  
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Fig 5. Comparison between two populations of 100 and 3,000 agents respectively 

Results of the average fitness of two populations of agents, comprising 100 and 3,000 agents 

respectively are presented. In both cases 100 tries were performed with random generated 

landscapes in each try. Population average fitness and standard error are plotted in the 

graph. 

We can observe a similar pattern of behavior, where smaller set sizes obtain better results 

than larger ones, together with two additional effects: a) lager populations allow the 

inference of better patterns leading to better results and b) the gap between sample set size  

decreases as population size increases.  

 

Having established the fact that a smaller sample leads to better results than a larger 

one, being however, the sample significant enough to allow inferences that could be 

generalized in form of patterns, the next question should be about the possibility of 

exactly determining the optimal size of the sample, or at least providing some useful 

insights about it. This is the objective of the experiments presented in Figure 6. 

There, we can observe how if it is not really possible to find an exact number of cases 

where the system performs at its peak, there is a range that clearly leads to better 

results. In our case and for 100 agents and a landscape of N=16 (216 possible points) it 

can be situated between 5 and 15. 
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Fig 6. Determining the optimal sample size 

A number of experiments with different sizes of the best case set, ranging from 1 

agent to 100 agents, over a total population of 100 agents, are conducted. Results on 

population average fitness and standard error of 100 random experiments are 

plotted.    

We can observe that even if it is not possible to point out an exact sample size, there 

is a range, between 5 and 15 where the system performs at its peak. 

 

In fact, the optimal sample size to collect in order to be able to infer relevant 

information in the form of patterns is a balance between information and noise. A 

smaller sample ensures us low noise but at the cost of lower amounts of information. 

Following this reasoning, one may be tempted to believe that higher levels of 

complexity will require a larger sample in order to capture a level of information that 

is big enough to solve the landscape. Unfortunately, with more information comes 

more noise, reducing that way its effectiveness and leading to worse results. Later 

on, in this paper, we will discuss how the pro-active exploration by the agents, in 

addition to the use of the Cultural Algorithm, partially solves this problem. 
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8.1.1 Pattern Complexity 

Until now, we have restricted our experiments to patterns of two bits, a 

simplification easily generalizable but explicatory enough for our objectives. 

However, we can also imagine patterns of 1 bit or in general, patterns of any length. 

However, as pattern length increases, so does its number. In the case of binary 

patterns we have  patterns, while for 3 bits   patterns 

exist, for 4 bits , and for 8 bits  patterns. 

This massive increase on the number of possible patterns implies that every agent 

will possess a larger number of them, potentially lessening the focus on the really 

good ones and promoting a dispersion of the popularity votes over a larger set. It 

seems therefore that we have to find a balance between two forces: larger patterns 

could be potentially more exact, while smaller ones will result in less noisy sets and 

focused population votes (due also to its smaller number). 

In Figure 7 we can observe the results of the experiments carried out in order to get 

more insights about this balance. There, for two populations of 100 and 500 agents 

we can observe how patterns of size between 2 and 4 bits have similar levels of 

performance, especially at low complexity levels. Although smaller patterns (patterns 

of 2 bits) tend to marginally outperform larger ones, especially as complexity 

increases. 

Again, patterns can be small, but to an extent, patterns of 1 bit although perform 

quite well at low complexity levels, abruptly fail as complexity increases.  It can also 

be observed how larger populations of agents lead to better fitness results than 

smaller ones. Nevertheless, as the population increases so does the gap of 

performance between patterns of 1-bit and the rest, especially at high complexity 

levels. 
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Fig 7. Performance of patterns of different lengths and different population sizes 

Patterns of lengths from 1-bit to 4 components are used by two populations of 100 and 500 

agents respectively. Results from 100 randomly created NK landscapes, average population 

fitness and its standard error are presented. 

We can observe how patterns of 2-bits to 4-bits perform roughly similar, with a marginal 

advantage for the smaller 2-bit pattern. All beat the 1-bit pattern who abruptly fails as 

complexity increases. 
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9 The Importance of Diversity 

In our implementation of cultural algorithms, agents rely solely on the knowledge 

coming from the belief space for their exploration.  This mechanism served has well in 

the previous section in order to explore the best sample size and how comprehensive 

patterns should be.  

However, this is not a realistic representation of how societies operate neither takes 

full advantage of the possibilities of software agents. In both cases, agents actively 

engage in search in addition to take advantage of the insight coming from the belief 

space. In this section we will discuss how our model behaves when facing this dual 

exploration, the one coming from the individual initiative and insights of the agents 

and the one coming from the distilled theories in the belief space. 

Therefore, in figure 11 we compare the results of three different populations. One 

engaged solely on incremental search. A second one, engaged in popularity-based 

patterns. And a third one, where agents take advantage of their knowledge of the 

potential fitness if performing incremental improvements to decide if they use 

patterns (in the case that a pattern exist with better max fitness than the one 

attainable with an incremental improvement) or perform an incremental 

improvement. We have limited our exploration to incremental search; however, any 

other type of innovative engage on the side of the agents will produce similar results. 

As we can observe, results increasingly favour the mix of patterns with incremental 

improvement as complexity (K) increases. What we can call active populations or 

populations actively engaged in exploration. The reason why this happens is because 

the increase in exploration those incremental improvements bring to the system, also 

results in an increase in its diversity. In fact, as we have discussed before, pattern 

adoption can be portrayed as a social construction. From the belief space comes a 

proposition of a concrete pattern that, given the information provided by the sample 

selected, looks promising. Is however, the population of agents who verifies or falsifies 

this hypothesis with its adoption, being the pattern discarded or reinforced. 

If the exploration process performed by the agents, relies solely on the patterns 

provided by the belief space the only new information in the system is the one that 

comes from the crossover of the actual strategies of the agents with the proposed 

patterns, this new information is however limited, and the system converges fast to a 

very small number of strategies. This process of diversity creation is greatly enhanced 

by the active participation and engagement of the agents in an exploratory process. 
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Fig 11. Comparison between three mechanisms: incremental, pattern-based and mix. 

Three different experiments with populations of 500 agents performing three 

different strategies are presented: incremental, patterns based on popularity and 

mix. In the mix strategy, agents use their knowledge of the potential fitness of 

incremental search to decide which strategy to follow if incremental of pattern 

based. 

We can observe how a mix strategy is clearly superior because it relies on a larger 

amount of relevant information upon which better patterns can be inferred. 

The next question is if in this richer environment - information wise - still less is more, 

or we need larger sets of best cases in order to infer relevant patterns. Figure 12, 

attempts to answer this question by depicting the performance of several populations 

of agents with different set sizes. There, we can observe that if agents are actively 

engaged in incremental search and not only in taking advantage of the suggestions 

coming from the belief space, sample size is mostly irrelevant (if big enough). 

The reason behind this change is the fact that by engaging in a mix of patterns and 

incremental search and by using the information provided by their knowledge of the 

immediate neighbourhood to direct pattern selection, the agents themselves manage 
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to reduce noise by avoiding irrelevant strategy configurations while increasing 

exploration and providing new opportunities for uncovering novel and better patterns.  
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Fig 12. Relevance of set size when agents engage in a mix strategy. 

A population of 500 agents engages in a mix strategy, using the information of 

incremental search to decide which strategy to follow: incremental or patterns. 

Experiments are performed 100 times and the average fitness and its standard error are 

plotted. 

We can observe how if agents actively perform a mix strategy, set size is mostly 

irrelevant (although is still marginally better the smaller one). The reason behind is that 

agents themselves manage to clean unwanted patterns while increasing the process of 

exploration. 

 

However individual exploration is costly, especially in human populations where 

structures prioritize effectiveness over a continuous involvement in exploration.  

Therefore, a relevant research question is whatever it will be possible to obtain good 

results by primary following the advices coming from the belief space and limiting the 

amount of exploration.  
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Answering this question could allow the agents to better focus their resources instead 

of diverting them with engaging in exploration activities. Figure 13 aims to provide an 

answer to this question. There we can observe how if agents rely 25% of their time on 

the advice coming from the belief spaces without even looking at their incremental 

opportunities and perform a mix of pattern-based and incremental search the 

remaining 75% of their time, they achieve similar results as if they were fully engaged 

in exploration 100% of their time. 

What is more relevant is the fact that the level of engagement needed in incremental 

search, depends on complexity. In fact for lower levels of complexity, the engagement 

in even smaller amounts of exploration seems to be a viable alternative. 

Even for higher levels, engaging only 50% of the time in a decision of whether to bet 

on incremental or patterns while relying the other 50% solely on patterns, seems to be 

a fairly good alternative that still reverts in important gains close to maximum. 
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Fig 13. Relevance of the incremental engagement of the agents on patterns 

Different percentages of a mix strategy (patterns and incremental) are included in a pattern  

driven strategy selection. Percentages range from 5% to 90% of forced mix strategy. 

Experiments are conducted using a set corresponding to the best performing 2% of the 

population of agents. Averaged results of 100 experiments per mix are presented. Average 

fitness and standard error of the population are plotted. 
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We can observe how for a low level of complexity the complete reliance on patterns produces 

results that are very close to mix strategies. However, as complexity increases becomes 

evident the need for a percentage of mix strategies in exploration. Nevertheless, we can 

appreciate how a reliance of 50% on patterns, leaving the other 50% to mix strategies 

produces results very close to maximum. We can also notice that beyond 75% of reliance in 

mix strategies there is no improvement. 
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10 Conclusions and Future Work 

Cultural Algorithms can indeed achieve very good results in terms of performance. And 

they do so with a surprising frugality of resources and without the need of having 

access to specific performance figures; a public signal that can result in an ordered set 

is enough. Even more, as we have seen in this research, we only need to be able to 

discern the best group of agents from the rest. 

Popularity is indeed a good heuristic, and as we have demonstrated not only a 

measure of popularity among the very best is the only signal needed, but Cultural 

Algorithms work better when this set comprising the best performers is rather small: 

less is more in Cultural Algorithms. We also have described that they are flexible 

enough to allow for substitutions, such as trading a larger population for a better 

selection. 

During this work we also have explored other alternatives to discovery beyond the 

solely use of cultural algorithms. In fact, natural and artificial societies engage in 

autonomous discovery processes independently of the adoption of common beliefs. 

We have modeled this process by using a mix of incremental and patterned search. 

Again, we to a result pointing to frugality: a mere 25% of autonomous exploration was 

enough for the pattern mechanism to amplify and transform these results into ones 

equivalent to a complete involvement in exploration.   

Both results point to probably the most interesting characteristic of Cultural 

Algorithms: the fact that they are social algorithms.  

As such they exhibit an extraordinary capacity to amplify the autonomous discoveries 

of the agents through a process of abstraction, adoption and recombination through 

cross-over. 

But, at the same time, they rely in this same process of adoption to ensure their 

success. In fact, the whole process can be stylized as one of hypothesis forming 

through social abstraction of best patterns. These hypotheses get corroborated or 

falsified by this same adoption process.  

Societies can therefore be more innovative simply by being better adopters, making 

diffusion and discovery just two sides of the very same coin. 

This is certainly an interesting result, because even do we really do not know much of 

how to spur discovery, we know much better how to foster diffusion.  
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