
Departament de Llenguatges i Sistemes Informàtics

Master in Computing

Master Thesis

Computing the Importance
of Schema Elements
Taking Into Account
the Whole Schema

Student: Antonio Villegas Niño
Director: Antoni Olivé Ramon

June 2009

Universitat Politècnica de Catalunya

Title Computing the Importance of Schema Elements
Taking into Account the Whole Schema

Author Antonio Villegas Niño

Advisor/Director Antoni Olivé Ramon

Date June 2009

Abstract Conceptual Schemas are one of the most important
artifacts in the development cycle of information sys-
tems. To understand the conceptual schema is essential
to get involved in the information system that is de-
scribed within it. As the information system increases
its size and complexity, the relative conceptual schema
will grow in the same proportion making difficult to un-
derstand the main concepts of that schema/information
system.

The thesis comprises the investigation of the influence of
the whole schema in computing the relevance of schema
elements. It will include research and implementation
of algorithms for scoring elements in the literature, an
study of the different results obtained once applied to a
few example conceptual schemas, an extension of those
algorithms including new components in the computa-
tion process like derivation rules, constraints and the
behavioural subschema specification, and an in-depth
comparison among the initial algorithms and the ex-
tended ones studying the results in order to choose those
algorithms that give the most valuable output.

Keywords Large Conceptual Schemas, Relevance Computing,
UML, OCL

Language English

Modality Research Work

To those who believe in me
and specially to my family

my girlfriend, and closer friends
for their patience

Acknowledgments

Thanks to my master thesis director Dr. Antoni Olivé
for his support and for give me the opportunity of

discover the great world of research.

Thanks to my colleagues in the Grup de Recerca en
Modelització Conceptual (GMC) for let me participate

in their activities and interesting meetings.

Thanks to Miquel Camprodon for the interesting
conversations about maths and statistics

and thanks to David Aguilera for
all these years working together.

An also thanks to the LATEXcommunity for the
big amounts of documentation that made easy

to write this document.

This work has been partly supported by the
Ministerio de Ciencia y Tecnologia under

TIN2008-00444 project, Grupo Consolidado.

This work has been partly supported by the
Universitat Politècnica de Catalunya

under Becas UPC Recerca program.

Scientific contributions

The results of this work have been submitted and accepted for publication in
the proceedings of the ER 2009 affiliated workshop CoMoL (Conceptual
Modeling in the Large):

Antonio Villegas, Antoni Olivé. On Computing the Importance of Entity
Types in Large Conceptual Schemas. In Proceedings of Conceptual Modeling
in the Large (CoMoL 2009). 28th International Conference on Conceptual
Modeling (ER 2009) affiliated workshop. Gramado, Brazil. Lecture Notes in
Computer Science, Springer-Verlag

Contents

1 Introduction 1
1.1 Conceptual Modeling . 1
1.2 Large Conceptual Schemas . 2
1.3 Aim of this Thesis . 3
1.4 Outline of the document . 4

2 Background 5
2.1 Conceptual Schemas . 5

2.1.1 Structural Schema . 7
2.1.2 Behavioural Schema . 8

2.2 Modeling Languages . 10
2.2.1 The Entity-Relationship Model 10
2.2.2 The Unified Modeling Language 11
2.2.3 The Object Constraint Language 12

2.3 Information Extraction . 14
2.4 Human Capacity for Processing Information 15

3 State of the Art 17
3.1 Requests for Contributions . 17
3.2 Clustering . 18
3.3 Filtering/Scoring/Ranking . 29
3.4 Metrics . 35
3.5 Visualization . 36
3.6 Conclusions . 41

4 Measures, Methods and Extensions 43
4.1 Measures . 43

4.1.1 Importance-computing Principles 44
4.1.2 Basic Metrics . 45

4.2 Methods . 47
4.2.1 The Connectivity Counter (CC) 48
4.2.2 The Simple Method (SM) 49
4.2.3 The Weighted Simple Method (WSM) 49
4.2.4 The Transitive inheritance Method (TIM) 50
4.2.5 EntityRank (ER) . 50
4.2.6 BEntityRank (BER) . 51
4.2.7 CEntityRank (CER) . 52

4.3 Extended Measures . 53

i

CONTENTS

4.3.1 Complex Relationship Types 54
4.3.2 The Power of OCL . 57
4.3.3 Extended metrics . 61

4.4 Extended Methods . 63
4.4.1 The Connectivity Counter Extended (CC+) 64
4.4.2 The Simple Method Extended (SM+) 64
4.4.3 The Weighted Simple Method Extended (WSM+) 65
4.4.4 The Transitive inheritance Method Extended (TIM+) . . 66
4.4.5 EntityRank Extended (ER+) 66
4.4.6 BEntityRank Extended (BER+) 67
4.4.7 CEntityRank Extended (CER+) 68

4.5 Comparison . 69

5 Experimental Evaluation 73
5.1 Conceptual Schemas for the Evaluation 73

5.1.1 The osCommerce . 74
5.1.2 The UML Metaschema . 77

5.2 Correlation Study . 78
5.2.1 Correlation Between the Original and the Extended Versions 78
5.2.2 Variability of the Original and the Extended Versions . . 82

5.3 Timing Evaluation . 88
5.4 Evaluation of Results . 91

6 Implementation 95
6.1 The USE Tool . 96
6.2 The Architecture . 97
6.3 Computing Link Analysis based Methods 99

6.3.1 The Power of Linear Algebra 99
6.3.2 EntityRank (ER) . 101
6.3.3 BEntityRank (BER) . 102
6.3.4 CEntityRank (CER) . 103
6.3.5 EntityRank Extended (ER+) 104
6.3.6 BEntityRank Extended (BER+) 104
6.3.7 CEntityRank Extended (CER+) 104

6.4 User Manual . 105
6.4.1 Working with USE . 105
6.4.2 Compute the Relevance of Entity Types 107
6.4.3 Visualization of Results 109

7 Conclusions 111
7.1 Conceptual Modeling . 111
7.2 State of the Art . 112
7.3 Thesis Contribution . 113
7.4 Future Work . 114

Bibliography 117

ii

List of Figures

2.1 Classification of domain concepts into entity types. 6
2.2 Example of event types. 9
2.3 ER diagram about customers. 10
2.4 Entity-Relationship diagram. 11
2.5 Class diagram of the 13 types of diagrams of the UML 2.0. . . . 12
2.6 Example of conceptual schema specified in UML 2.0 13
2.7 Example of schema rules specified in OCL 2.0 13
2.8 Tag cloud of the superstructure specification of the UML 2.0 [39]. 15
2.9 Bottleneck in human and computer capacity for processing infor-

mation and solutions. While computers can be replicated, each
human being only can have a brain, so the solution is to reduce
the amount of information to process. 16

3.1 Three levels of abstraction diagramming. Extracted from [20]. . . 19
3.2 Example of dominance grouping operation. Extracted from [51]. 21
3.3 Example of Entity Cluster Levels. Extracted from [51]. 22
3.4 Example of Relationship Clustering. Extracted from [28]. 23
3.5 Example of Level Entity Relationship Model. Extracted from [22]. 24
3.6 Example of Levelled Data Model. Extracted from [37, 36]. 26
3.7 Manual Decomposition Procedure. Extracted from [37, 36]. . . . 28
3.8 Application of clustering algorithm of Tavana, Joglekar and Red-

mond. Extracted from [50]. 29
3.9 Representative elements of a conceptual schema. Extracted from

[13]. 31
3.10 PageRank example. 32
3.11 EntityRank application. Extracted from [54]. 33
3.12 3D mesh representing a plane at four different levels of detail.

Extracted from [49]. 37
3.13 Blur effect in Focus+Context technique to highlight persons. . . 38
3.14 Example of visualization techniques. 38
3.15 Example of Indented List and Node-Link Tree. 39
3.16 Example of World’s Population visualized with a Tree Map, in-

cluded in Space Filling techniques. 40
3.17 Example of 3D landscape of a Unix File System. 40

4.1 Example of basic metrics. 47
4.2 Example of schema. 48
4.3 Implicit reification of a binary relationship with association class. 54

iii

LIST OF FIGURES

4.4 Implicit reification of a n-ary (n>2) relationship with association
class. 55

4.5 Implicit reification of a ternary relationship with association class. 56
4.6 Fragment of the OCL metamodel including and overview of the

expressions. Extracted from [38]. 58
4.7 Fragment of the OCL metamodel including navigation expres-

sions. Extracted from [38]. 58
4.8 Example of uncovered links extracted from the OCL. 59
4.9 Example of navigations of minSalaryRule. Dashed lines (a), (b)

and (c) represent the elements in navcontext(minSalaryRule) while
(d) and (a) are the connections through navigation expressions
(see navexpr(minSalaryRule)). 62

4.10 Extension of the schema in Fig.4.2 with some OCL invariants. . . 63

5.1 Order confirmation at osCommerce. 74
5.2 Simplification of the structural schema of the osCommerce. Ex-

tracted from [52] . 75
5.3 UpdateOrderStatus event at osCommerce. Extracted from [52] . 76
5.4 Shape of the Kernel section of the UML metaschema. 77
5.5 Comparison between base and extended importance-computing

methods once applied to the osCommerce schema. 80
5.6 Comparison between base and extended importance-computing

methods once applied to the UML metaschema. 81
5.7 Comparison between base methods applied to the UML meta-

schema. 84
5.8 Comparison between extended methods applied to the UML meta-

schema. 85
5.9 Comparison between base methods applied to the osCommerce. . 86
5.10 Comparison between extended methods applied to the osCom-

merce. 87
5.11 Values in milliseconds (ms) of execution time. 89
5.12 Values in milliseconds (ms) of execution time per entity type. . . 90

6.1 Snapshot of the USE tool. 96
6.2 Architecture design for the implementation of the relevance com-

puting methods. 97
6.3 Steps to compute the importance of the entity types belonging

to a conceptual schema. 98
6.4 Example of simple conceptual schema. 99
6.5 USE main window. 105
6.6 Open a conceptual schema in USE. 106
6.7 Class diagram view of the osCommerce schema in USE. 107
6.8 Selection of the importance computing method in USE. 108
6.9 Saving the results of an importance computing method in USE. . 108
6.10 Ranking list of the osCommerce in USE. 109
6.11 Top-20 entity types of the osCommerce in USE. 110
6.12 Top-10 entity types of the osCommerce in USE. 110

iv

List of Tables

3.1 Some metrics introduced by Baroni et al. in [4, 5, 6, 7]. 35
3.2 Metrics introduced by Genero et al. in [25]. 36

4.1 Definition of basic metrics. 46
4.2 Results for CC applied to example of Fig 4.2. 48
4.3 Results for SM applied to example of Fig 4.2. 49
4.4 Results for WSM applied to example of Fig 4.2. 50
4.5 Results for TIM applied to example of Fig 4.2. 50
4.6 Results for ER applied to example of Fig 4.2. 51
4.7 Results for BER applied to example of Fig 4.2. 52
4.8 Results for CER applied to example of Fig 4.2. 53
4.9 Definition of extended metrics. 62
4.10 Results for CC+ applied to example of Fig 4.10. 64
4.11 Results for SM+ applied to example of Fig 4.10. 65
4.12 Results for WSM+ applied to example of Fig 4.10. 66
4.13 Results for TIM+ applied to example of Fig 4.10. 67
4.14 Results for ER+ applied to example of Fig 4.10. 67
4.15 Results for BER+ applied to example of Fig 4.10. 68
4.16 Results for CER+ applied to example of Fig 4.10. 68
4.17 Classification of selected methods according to their approach. . 69
4.18 Comparison of knowledge used between both base and extended

versions of the selected methods. 71

5.1 Connectivity degree δ for the test schemas. 78
5.2 Correlation coefficients between results of original and extended

methods for the UML metaschema. 82
5.3 Correlation coefficients between results of original and extended

methods for the osCommerce. 83
5.4 Values in milliseconds (ms) of execution time. 88
5.5 Values in milliseconds (ms) of execution time per entity type. . . 90
5.6 Comparison between the top-10 of the methods for the osCom-

merce. 92
5.7 Comparison between the top-10 of the methods for the UML

metaschema. 93
5.8 Comparison between the top-10 event types of the methods for

the osCommerce. 94

6.1 Eigenvalues and associated eigenvectors 102

v

LIST OF TABLES

6.2 Ranking of entity types for the example of Fig. 6.4 using the
linear algebra version of the ER. 102

vi

Computing the Importance

of Schema Elements

Taking Into Account
the Whole Schema

Chapter 1

Introduction

This chapter starts with a short overview of conceptual modeling of information
systems and its role in the software engineering process in Section 1.1. Special
attention is given to the problem of dealing with large conceptual schemas which
is presented in Section 1.2.

The research interest of this thesis is related with methods to compute the
importance of schema elements and their application in the visualization and
usability improvement of conceptual schemas. A brief description of the ob-
jectives is presented in Section 1.3 and, finally, Section 1.4 finishes the chapter
with an outline of the rest of the thesis.

1.1 Conceptual Modeling

Conceptual modeling can be roughly defined as the activity that must be done
to obtain the conceptual schema of an information system. We define informa-
tion system as a designed system that collects, stores, processes and distributes
information about the state of a domain.

Thus, conceptual modeling is one of the initial activities in the software en-
gineering process and consists of gather, classify, structure and maintain knowl-
edge about a real-world domain. This processed knowledge conforms the con-
ceptual schema.

Conceptual schemas are the central unit of knowledge in the development
process of information systems. A conceptual schema must include the definition
of all relevant characteristics appearing in an organization that are useful in
the task of representation (also know as conceptualization) of the information
system.

Usually, conceptual schemas have been seen as documentation items in the
software engineering process. However, since the initial stages of model-driven

1

1.2. Large Conceptual Schemas

approaches [31] came out many years ago, conceptual schemas have increased
its importance and participation as key artifacts in the software development
activities. Model-driven approaches try to generate software (including both
code and documentation) from a specified model, which may be a conceptual
schema of an organization domain. This new role given to conceptual schemas
implies that the specification and comprehension of conceptual schemas are main
tasks for the stakeholders of an information system.

A conceptual schema provides an abstraction layer between the real-world
knowledge and the portion of that knowledge that is really useful in the devel-
opment of an information system. This abstraction provides simplification to
describe real concepts as general ones without taking into account the develop-
ment technology of the final stages in the software engineering process.

The development process of information systems always include a concep-
tual schema. Sometimes, such schema can be explicitly reproduced as a piece
of documentation and, sometimes, the schema is shared in the minds of the
stakeholders. In any case, the conceptual schema of an information system ex-
ists, although obviously to have the schema explicitly is always the best choice.
Note that if shared in the stakeholders minds it may take differences due to the
inherent differences of thought we have as human beings.

Comprehension and understandability of conceptual schemas and their com-
ponents are the main object of research of this thesis. Although we can antic-
ipate that conceptual schemas should contain a structural (sub)schema and a
behavioral (sub)schema, we will describe its contents in detail in following chap-
ters.

1.2 Large Conceptual Schemas

Nowadays the need of information that organizations have has clearly increased.
As the amount of knowledge of an information system of an organization grows,
the size of its conceptual schema also gets bigger following the same proportion.

As it is not the same programming in the large than programming in the
small [18], likewise, to deal with small (sometimes know as toy) schemas is
different than to specify, comprehend and study large conceptual schemas.

A complex and large conceptual schema is difficult to comprehend, limit-
ing the accessibility to a small number of people, who have spent a significant
amount of time understanding the schema. Obviously, the possibility that all
the stakeholders of an information system spend that time is not acceptable.

Real information systems often have extremely complex conceptual schemas.
The visualization and understanding of these schemas require the use of specific
methods, which are not needed in small schemas. These methods generate
indexed, clustered, filtered, summarized or focused schemas that are easier to
visualize and to understand.

2

Chapter 1. Introduction

To provide a conceptual schema with the most relevant knowledge high-
lighted implies a rise of knowledge accessibility that benefits the understand-
ability of the schema. Otherwise we have a case of information overload.

1.3 Aim of this Thesis

As explained in the previous sections, to deal with large conceptual schemas is
not an easy task for those who are not the modelers of the schema. In those
cases, to give a reduced, less complex and understandable schema is mandatory
if we want to increase efficiency.

There exists some alternative methods to process raw conceptual schemas
and produce the desired output consisting in a simpler version of the input.
Many of the above methods require computing the importance (also called rel-
evance or, simply, score) of each element in the schema. The computed impor-
tance induces an ordering of the elements, which plays a key role in the steps
and result output.

Intuitively, it seems that an objective metric of the importance of an ele-
ment in a given schema should be related to the amount of knowledge that the
schema defines about it. The more (less) knowledge a schema defines about
an element, the more (less) important should be that element in the schema.
Adding more knowledge about an element should increase (or at least not de-
crease) the relative importance of that element with respect to the others. Note
that in this thesis we focus on objective metrics, which are independent from
subjective evaluations of users and modelers.

As far as we know, the existing metrics for elements importance are mainly
based on the amount of knowledge defined in the schema, but only take into
account a little part (concretely, a subset of the structural subschema) of it to
compute that importance. Surprisingly, none of the methods we are aware of
take into account all the knowledge about elements defined in the whole schema
that, according to the intuition, could have an effect on the importance. A
definition of complete schema [40] and its contents will be introduced in the
next chapters.

Concretely we have selected a representative set of methods of the literature
and have described them. We have tested those methods with some conceptual
schemas we have. Afterwards, we have introduced new measures that consider
the extra knowledge of the schema traditionally forgotten in the importance
computation process. These measures induce extended versions of the base
methods in the literature.

As before, we will define such extension approaches and test them with the
same conceptual schemas. The results obtained are compared with the raw
methods and some conclusions extracted.

To sum up, our intention here is to discover whether taking into account the

3

1.4. Outline of the document

whole knowledge of the schema has an impact in the importance of the elements.
Besides, we show some applications of the importance of elements in the process
of increase the comprehension and accessibility of large conceptual schemas.

1.4 Outline of the document

Chapter 2 introduces some basics about the different areas of the thesis. For-
mal definition of conceptual schemas and its contents are presented, with some
points about modeling languages, information retrieval concepts and the hu-
man perception. All of these are required knowledge to easily understand the
following chapters.

Chapter 3 reviews the main contributions in the literature related to the
topics of the thesis. Concretely, it contains descriptions of works on clustering
of conceptual schema elements, a brief summary of filtering (or ranking) tech-
niques, and some basics about visualization methods in the field of graph theory
applied to conceptual modeling diagrams.

Chapter 4 presents the methods to compute the importance of entity types
selected from the literature (some of them reviewed in Chapter 3). Furthermore,
the metrics used by such methods are also included in the study, and some
examples of application are described in order to increase understandability.
Besides, such methods are extended with new metrics that take into account
components of the conceptual schema traditionally forgotten.

Chapter 5 does an experimental evaluation of the methods presented in
Chapter 4. Concretely, it includes a comparison between the similarity of the
results obtained by both original and extended versions of the methods. Fur-
thermore, the execution time is also evaluated and some advice are extracted in
order to select the best method in any case.

Chapter 6 describes the implementation of the methods presented in Chapter
4 and evaluated in Chapter 5 into an existing modeling environment. It also
includes the architecture selected and the way some of the methods must be
computed in order to reach the solution. Finally, a brief user manual about the
extended version of the environment is shown for the sake of understandability.

Chapter 7 concludes the thesis with a short review of the conclusions ex-
tracted from the explained research. In addition to it, a presentation of some
notes about future work that must be done in the scope of the topic of relevance
computing on conceptual modeling finishes the document.

4

Chapter 2

Background

This chapter starts with a description about the contents of complete conceptual
schemas taking into account both structural and behavioural (sub)schemas in
Section 2.1. Furthermore, Section 2.2 presents some modeling languages used
to represent conceptual schemas. Concretely the aim of such section is centered
in the UML and OCL as the modeling languages selected in this thesis.

The second part of the chapter continues in Section 2.3 with some basics
about information retrieval and data mining areas which are becoming popular
since many years ago due to the increasing size of information to manage. Fi-
nally, Section 2.4 justifies the need of methods and techniques to deal with huge
amounts of information because of the limited capacity for processing informa-
tion human beings have.

2.1 Conceptual Schemas

As introduced in Chapter 1, conceptual schemas are one of the key artifacts in
the software engineering process. To be complete, a conceptual schema should
contain two subschemas: the structural schema and the behavioural schema.

A conceptual schema contains the abstraction of the concepts of a concrete
real-world domain. More precisely, each concept that has an important role in an
organization and worths to be included in the information system is represented
as an entity type.

Look at the example in Fig. 2.1. Imagine we have a domain of an orga-
nization that manages information about customers. This way, the concept
customer which is important for the organization is represented in the informa-
tion system by the entity type Customer. Therefore, real-world customers are
represented by instances of the Customer entity type in the information system
of the organization.

5

2.1. Conceptual Schemas

Figure 2.1: Classification of domain concepts into entity types.

Entity types are not independent. It is possible to have generalization /
specialization relationships between any pair of them. In the previous exam-
ple, the organization may have a special kind of customers, say gold customers.
To denote this behaviour in the conceptual schema, it is possible to indicate
that exists another entity type called GoldCustomer such that IsA(Customer,
GoldCustomer). It means that GoldCustomer is an specialization of the en-
tity type Customer, and that Customer is a generalization of GoldCustomer.
Each information about Customer in the information system is inherited by the
GoldCustomer entity type.

Another element in conceptual schemas are relationship types. Each rela-
tionship type represent a connection or association between two or more entity
types. In the previous example, imagine it is important to maintain informa-
tion about the parents of a customer to, for example, offer them special dis-
counts. The conceptual schema should contain a new relationship type IsPar-
entOf(parent:Customer, child:Customer). It means that exists a bidirectional
reflexive relationship in Customer to denote the parents/children of an instance
of Customer. The tags before the names of the entity types in the relationship
represent the role names of such entity types as participants in the relationship.

The relationship types also have cardinalities. In the relationship IsPar-
entOf, the cardinalities should be something like Card(IsParentOf; parent, child)
= (0,∞) and Card(IsParentOf; child, parent) = (0,2). This way, an instance of
Customer can have zero or more instances of Customer as its children; and an

6

Chapter 2. Background

instance of Customer can have at most two instances of Customer as its parents.

Another important characteristic to explain are Attributes. An attribute is
a property of an entity type that contains information about it. Concretely, an
attribute can be seen as a special relationship with two participants: an entity
type and a data type. If the organization in our example wants to maintain
the name of the customers in its information system, it is possible to declare
an attribute in the form of HasName(Customer, name : String). It means
that an instance of Customer is related to an instance of the data type String
(e.g. the word ’John C. Brown’) that is the name of the customer. Data types
are basic types and there exists some predefined like String, Integer, Real or
Boolean.

The last concept we present are Schema Rules. A schema rule is a property
about a subset of the conceptual schema that must be always satisfied. In
our example about the management of customers, an instance of the entity
type Customer could be related to itself through the association IsParentOf.
This way, we could have that a customer is one of its parents. Obviously, this
behaviour is not allowed and to denote it, we can specify a schema rule like:

Rule(NotParentOfItself : IsParentOf(c1, c2)⇒ c1 6= c2)

To sum up, we have briefly explained the main components of a conceptual
schema. All extra information about conceptual schemas will be introduced in
next chapters if necessary. For more about conceptual modeling take a look at
Olive’s book in [40]. Formally, we have:

Definition 2.1.1. (Conceptual Schema) A complete conceptual schema CS is
defined as a tuple CS = 〈SS,BS, E ,R,G,A,SR〉, where:
- SS is the Structural Schema. It will be explained in Section 2.1.1.
- BS is the Behavioural Schema. It will be explained in Section 2.1.2.
- E is a set of Entity Types. Each e ∈ E has a name and represents a concept
in the domain of knowledge of the conceptual schema.
- R is a set of Relationship Types. Each r ∈ R has a name and represents a
relationship between entity types e1, ..., ek ∈ E . Note that the number of par-
ticipants k in r ∈ R is the degree of r and k > 1.
- G is a set of Generalization relationships. Each g ∈ G represents a directed
relationship between a pair of entity types (ei → ej) where ei, ej ∈ E indicating
that ei is a direct descendant of ej and ej is a direct ascendant of ei.
- A is a set of Attributes. Each a ∈ A has a name and a type, and is owned by
an entity type e ∈ E .
- SR is a set of Schema Rules. Each sr ∈ SR indicates an invariant, a deriva-
tion rule or a pre- or postcondition about a subset of the CS.

2.1.1 Structural Schema

The structural schema is the part of the conceptual schema that consists on
the set of entity and relationship types, as well as other elements that will be

7

2.1. Conceptual Schemas

mentioned below, used to observe the state of a domain. This part is also known
as the static component of the whole knowledge of the information system.

As we can see in the next definition, the structural schema contains a subset
of the conceptual schema contents that represents the relevant concepts, associ-
ations, properties and rules that must be maintained by the information system.
Formally, we have:

Definition 2.1.2. (Structural Schema) The structural schema SS is defined as
a tuple SS = 〈Ess,Rss,Gss,Ass,SRss〉, where:
- Ess ⊂ E is a set of Entity Types.
- Rss ⊂ R is a set of Relationship Types. Each r ∈ Rss has a name and repre-
sents a relationship between entity types e1, ..., ek ∈ Ess. Note that the number
of participants k in r ∈ Rss is the degree of r and k > 1.
- Gss is a set of Generalization relationships. Each g ∈ Gss represents a directed
relationship between a pair of entity types (ei → ej) where ei, ej ∈ Ess indicat-
ing that ei is a direct descendant of ej and ej is a direct ascendant of ei.
- Ass ⊂ A is a set of Attributes. Each a ∈ Ass has a name and a type, and is
owned by an entity type e ∈ Ess.
- SRss ⊂ SR is a set of Schema Rules. Each sr ∈ SRss indicates an invariant
or a derivation rule in the context of a subset of elements in SS.

Not all the entities and relationships types used to model the state of a do-
main need to be represented in an information system. The conceptual schema
of an information system describes only the portion of the whole domain con-
ceptualization containing the entities and relationship types that are useful for
the organization and are represented in the information system.

For example, we can have an organization whose domain contains the con-
cepts of Product, Customer and Worker but the organization only wants to
represent Product and Customer in the information system.

2.1.2 Behavioural Schema

As Olive states in [40], the behavioural schema represents the valid changes in
the domain state, as well as the actions that the system can perform. Changes
in the domain state are domain events, and a request to perform an action is
an action request event. We represent such events as entity types following
the same approach as in [42]. This way, the same techniques to compute the
importance of entity types can be directly applied to compute the importance
of events.

An example of action request event can be the action of sending a mail to
the system customers once a new product is included in the information system,
while an example of domain event type can be the registration of a new customer
in the information system. Take a look at Fig. 2.2.

The behavioural schema can contain relationship types whose participants

8

Chapter 2. Background

Figure 2.2: Example of event types.

include entity types from the structural schema related with entity types (event
types) from the behavioural schema. Nevertheless, definition of structural entity
types and relationship types between structural entity types are only placed in
the structural schema.

Definition 2.1.3. (Behavioural Schema) The behavioural schema BS is de-
fined as a tuple BS = 〈Ebs,Rbs,Gbs,Abs,SRbs〉, where:
- Ebs ⊂ E is a set of Entity Types. These are called Event Types.
- Rbs ⊂ R is a set of Relationship Types. Each r ∈ Rbs has a name and repre-
sents a relationship between entity types e1, ..., ek ∈ (Ess ∪ Ebs). Note that the
number of participants k in r ∈ Rbs is the degree of r and k > 1.
- G is a set of Generalization relationships. Each g ∈ Gbs represents a directed
relationship between a pair of entity types (ei → ej) where ei, ej ∈ Ebs indicat-
ing that ei is a direct descendant of ej and ej is a direct ascendant of ei.
- Abs ⊂ A is a set of Attributes. Each a ∈ Abs has a name and a type, and is
owned by an entity type e ∈ Ebs.
- SRbs ⊂ SR is a set of Schema Rules. Each sr ∈ SRbs indicates an invariant,
a derivation rule or a pre- or postcondition in the context of a subset of elements
in BS. Such subset may also contain some elements in SS.

The effect of an event type must be defined with pre- and postconditions
included in the schema rules component of the behavioural schema. At bottom
part of Fig. 2.2 there is an example of such definition for the domain event type
NewCustomer.

9

2.2. Modeling Languages

2.2 Modeling Languages

A modeling language is an artificial language used to express information or
knowledge about a domain. Modeling languages can be graphical or textual.
Usually, graphical modeling languages are used to define the structure of con-
cepts and its relationships using symbols and lines, while textual modeling lan-
guages are used to express what is not possible to express graphically like schema
rules.

In the following subsections we briefly describe two popular modeling lan-
guages: the Unified Modeling Language –which is a graphical modeling lan-
guage; and the Object Constraint Language –which is a textual modeling lan-
guage. Such languages will be the used languages in the rest of this thesis.

Before the introduction of such languages, we make a short description about
the Entity-Relationship model, which is the precursor of modern object-oriented
approaches to model data and is broadly used in the literature about the topic
of this thesis.

2.2.1 The Entity-Relationship Model

The Entity-Relationship (ER) model was firstly introduced by Chen in [14]. It
defines a conceptual representation of data, formerly used for graphical database
modeling.

The ER model introduces the concept of entity as an abstraction of some
aspect of the real world which can be distinguished from other aspects of the
real world. Furthermore it represents entities as rectangles and the relationships
between them as diamonds, connected by lines to each of the entities in the re-
lationship. Entities can be thought as nouns while relationships can be thought
as verbs connecting two or more nouns. Finally, attributes are represented as
ellipses connected to the entity or relationship that owns them.

Figure 2.3: ER diagram about customers.

The graphical diagram containing entities, relationships and attributes is
known as Entity-Relationship Diagram (or simply ERD). An example ERD

10

Chapter 2. Background

about customers explained in previous sections of the chapter can be found at
Fig. 2.3. A more complex example from Wikipedia1 is shown at Fig. 2.4.

Figure 2.4: Entity-Relationship diagram.

The ER diagram notation has many variants and has evolved in the course
of time. As we will see in the next chapter, many contributions in the litera-
ture about construct reduced, focused or filtered conceptual schemas are based
on the ER notation and work with ER diagrams. Although in our thesis we
focus on UML/OCL schemas, it is important to note that in the basis, both
UML/OCL and ER schemas follow the same ideas and, therefore, the solutions
to the problem of dealing with large and complex schemas for one of these
modeling languages are valid solutions to the other type of modeling language.

2.2.2 The Unified Modeling Language

The Unified Modeling Language (UML) is a standardized general-purpose mod-
eling language maintained by the Object Management Group(OMG). Its spec-
ification is public and actually the language is on version 2.0 [39].

1http://en.wikipedia.org/wiki/File:ER_Diagram_MMORPG.png

11

2.2. Modeling Languages

The UML is a graphical language that contains several diagrams to specify
a conceptual schema. An overview of the diagrams is depicted at Fig. 2.5. In
this thesis we will only use the class diagram of the UML to define both the
structural and behavioural subschemas of the conceptual schema. It is due to
entity and relationship types can be defined as UML classes and associations.
In the case of the event types of the behavioural schema, as we model them
as events it is no necessary to use a special diagram different than the class
diagram to specify them.

Figure 2.5: Class diagram of the 13 types of diagrams of the UML 2.0.

Modeling entity types as boxes and relationship types as links between them,
the example of the conceptual schema about the management of customers is
shown in Fig 2.6. Note that the attributes of each entity type is placed inside
the attributes compartment of the related UML class. The cardinalities and
roles of the relationship types are explicitly shown in the ends of each UML
association between classes.

2.2.3 The Object Constraint Language

The Object Constraint Language (OCL) is a declarative language to formally
describe rules in object-oriented models. The OCL is a widely accepted standard
firstly introduced by IBM and now included in the UML and maintained by the
Object Management Group (OMG). Its specification is public and actually the
language is in the same version as UML (2.0)

The UML language provides a graphical notation based on diagrams to spec-
ify conceptual schemas as explained before. Nevertheless, invariants, derivation
rules and pre- and postconditions must be expressed in natural language as
comments in the diagrams of the schema. Thus, UML alone does not provide
support for specify schema rules. Since the adoption of the OCL as part of
the UML, it is possible to express schema rules using formal notation through

12

Chapter 2. Background

Figure 2.6: Example of conceptual schema specified in UML 2.0

OCL expressions, constructions and statements. A full explanation (a little bit
outdated) about the syntax and semantics can be found in [57]. Another (more
complex) source is [38], and a review of tools supporting OCL is described in
[44].

In Fig. 2.7 there are the schema rules of our previous example about cus-
tomers, including the invariants and pre- and postconditions of both structural
and behavioural subschemas. We assume that the operation send of SendMail
returns a boolean value according to if the message was sent successfully or not,
because the body of the forAll construction requires a boolean expression.

Figure 2.7: Example of schema rules specified in OCL 2.0

13

2.3. Information Extraction

2.3 Information Extraction

Nowadays information retrieval and, in a broader sense data mining, have be-
come two of the most important disciplines to deal with large amounts of infor-
mation. These subjects provide a set of different methods to extract knowledge
from data. In-deep information about such topics can be found in [46] and [45].
More recent sources about information retrieval and data mining are [3] and
[27], respectively.

Information retrieval was initially centered in searching information within
documents until the birth of the web. As the Internet information became
bigger, increasingly diffuse and complex to manage, information retrieval got
a major prominence. One of the main contributions of this science was the
appearance of the web searchers.

On the other hand, data mining has a broader scope of application. Some
of its methods are used in statistics, programming and specially in data bases.
As we will see in next chapter, literature contributions about reducing schemas
have principally centered on database schemas.

Along this thesis, some of the main techniques will be used to compute the
importance of schema elements (mainly entity types). Principally, link analysis
and occurrence counting are the focus of our work.

Link analysis studies the edges of a connected graph to provide a ranking
of those nodes that are more important according to its inner and outer con-
nections through edges. This method is recursively defined and needs iterative
algorithms to solve the problem. That is because the importance of a node
comes from the other nodes that point to it and, therefore such importance
flows to the nodes pointed by the node in question. This importance propa-
gation must be computed in an equilibrium point where the graph nodes are
balanced. Principally, such approach was introduced by Brin and Page as the
foundation of Google’s PageRank in [11].

Alternatively, occurrence counting is a basic technique that consists on to
count how many times an element appears on a situation. It was centered
on word occurrences in texts to discover the most/less used words or to state
similarities between documents. As we will see in the next chapters, we apply
this idea to conceptual schemas counting the number of occurrences of schema
elements in different contexts.

Let’s look an example of occurrence counting. Figure 2.8 contains a tag cloud
with the top-150 words included in the superstructure specification document
of the UML 2.0 language (see [39]). As the reader can see, a tag cloud is a cloud
of words where the words with a greater number of occurrences have a greater
size than the others.

Without read that document, it is possible to say that probably such doc-
ument contains information about an specification, a superstructure, states,
actions, elements, types, objects, classifiers, attributes, associations, constraints

14

Chapter 2. Background

Figure 2.8: Tag cloud of the superstructure specification of the UML 2.0 [39].

and, specially, about the UML. This way, to decide whether two documents are
similar or not is simpler and more efficient than to read them.

Following the same idea, we can affirm that the words with more occur-
rences are the most important. This approach will be the main we follow in
the application of occurrence counting to compute the importance of schema
elements.

2.4 Human Capacity for Processing Information

The human brain is one of the most complex tools we have. As Marois and
Ivanoff indicates in [34], its hundred billion neurons and several hundred trillion
synaptic connections can process and exchange prodigious amounts of informa-
tion over a distributed neural network in the matter of milliseconds.

However, the human capacity for processing unknow information is very lim-
ited. It contains bottlenecks in visual short-term memory and causes problems
to identify and held stimuli. Miller in [35] states that the limit on our capacity
for processing information is contained in a range of seven, plus or minus two,
items or chunks of information. Of course, a differentiation must be done be-
tween short- and long-term memory. Cowan explains in [17] that such memories
differs in properties like timing of memory activation, coding and control, and
storage capacity. Although long-term memory has a large storage capacity, its
activation is slower and requires more attention time than short-term memory.

We can say that human capacity for processing information has similar char-
acteristics than a computer. To have a little number of stimuli is like to have
a little amount of instructions to process. On the other hand, to deal with big
amounts of stimuli saturates our brain as big amounts of instructions do with a
computer processor. Of course, there exists some techniques to solve these prob-

15

2.4. Human Capacity for Processing Information

lems, like parallel computing or to have several replications of core processors.
However, such solutions are not directly applicable to human beings.

Figure 2.9: Bottleneck in human and computer capacity for processing information
and solutions. While computers can be replicated, each human being
only can have a brain, so the solution is to reduce the amount of infor-
mation to process.

As we cannot replicate our brains or (generally) parallelize tasks, our pur-
pose is to cut down the amount of information to process. Some solutions in
this are are presented to reduce bottlenecks in human capacity for informa-
tion processing, like clustering, that consists on group items according to some
sort of similarity, or filtering, that hides irrelevant information, increasing the
attention to important items. Such methods are highly recommendable in con-
ceptual modeling to improve accessibility and comprehension of large conceptual
schemas by reducing or changing the structure of their information.

16

Chapter 3

State of the Art

This chapter starts with a description about some notes taken from the literature
that introduce the problem of large conceptual schemas management in Section
3.1. Furthermore, Section 3.2 explains the major contributions about schema
clustering in the literature. As we will see there, this is a well explored area
with a big amount of proposed solutions.

The second part of the chapter continues in Section 3.3 with some exploration
about contributions in the filtering of conceptual schemas area. In this case,
there is no agreement on the name of this topic, and it is possible to find
synonym areas of filtering in the literature, like scoring or ranking.

Section 3.4 briefly describes some contributions defining metrics to measure
some characteristics about conceptual schemas. Such metrics will be used (after
a process of adjustment) in the main chapters of this thesis once introducing the
methods we use to compute the importance of schema elements. And Section
3.5 shows some existing works dealing with how to visualize conceptual schemas
in order to improve understandability.

Finally, Section 3.6 finalizes the chapter with some conclusions about the
explanations introduced along the previous sections.

3.1 Requests for Contributions

In their research agenda for Conceptual Schema-Centric Development (CSCD)
[41], Olivé and Cabot describe that we need methods, techniques and tools to
support designers and users in the development, reuse, evolution, and under-
standing of large schemas. They dedicate a section of their agenda to explain
that the development of large conceptual schemas pose specific problems not
found in small conceptual schemas.

They also indicate that work on this topic has focused mainly on conceptual

17

3.2. Clustering

schemas for databases and, as a conclusion, it is important to deal with informa-
tion systems and to take into account both the structural (including constraints
and derivation rules) and behavioural schemas. As explained in previous chap-
ters, to follow such indications will be our purpose in computing the importance
of schema elements.

Another request for contributions in this area is found in the study of Lind-
land, Sindre and Sølvberg about quality in conceptual modeling [33]. They
classify filtering as a modeling activity to improve the comprehension goal and
model properties as structuredness, executability and expressive economy.

Concretely, they view filtering as a necessary activity because a person can-
not grasp the entire schema at once and must concentrate on specific parts or
aspects at a time. Filtering may also include aspects of translation because a
large schema may have a rather diverse audience. Therefore, different languages
will be preferred by various groups. While end users may want to see business
rules in natural language, analysts may want to see them in logic.

This way, in addition to filtering they indicate that different views using
different languages should be made in order to simplify the understandability
of all kind of users of the conceptual schema.

Finally, Papazoglou claims in [43] that to improve the utility of large and
complex information systems, we need to make schema interfaces more percep-
tive, responsive, and efficient for all categories of users including casual users.
The author also requests the use of schema semantics instead of only the struc-
ture of the schema to reach this goal.

3.2 Clustering

Clustering can be defined as the activity of grouping elements according to a
similarity function. Therefore, similar elements will be put together in the same
group, or cluster. There exists a huge amount of contributions in the literature
about clustering of schemas, ontologies or, definitely, graphs.

Estivill-Castro wonders in [19] why the existence of so many clustering algo-
rithms. The answer here is clear: there are many clustering algorithms because
there are many algorithms for each inductive principle and there are many induc-
tive principles to solve the same problem. The author explains that clustering
is in part in the eye of the beholder, meaning that every researcher can propose
his own similarity function to approximate a solution. Because clustering is an
optimization problem, the number of approximated solutions closer to the best
solution is huge.

In this section we will review some solutions proposed to solve the problem
of clustering the elements of conceptual schemas in the conceptual modeling
area.

18

Chapter 3. State of the Art

The paper from Feldman and Miller [20] is one of the foundation papers in
such area. They explain the technique called entity model clustering and state
that entity relationship diagrams can be manipulated in various ways to be more
easily comprehended.

One of the problems the authors define is that the usefulness of any dia-
gram is inversely proportional to the size of the model depicted. They consider
any diagram with more than about 30 entity types to be reaching the limits of
easy comprehension, depending on the number of relationships –the more rela-
tionships, the less comprehension is possible due to the accompanying increase
in complexity. Therefore, it is possible to say that the two main problems of
conceptual schemas are about size and complexity.

The entity model clustering technique proposed consists of a decomposition
of the diagram in a tree with three levels of abstraction. Some entity types are
allowed to be duplicate in some branches of the tree according to the authors’
experience. Although the number of levels is determined by the diversity and
complexity of an organization, they state that in practice three levels of diagram
have been found to be useful. The hierarchy of successively more detailed entity
relationship diagrams is shown in Fig. 3.1.

Figure 3.1: Three levels of abstraction diagramming. Extracted from [20].

First step consists on finding the major entity types. Occurrences of a major
entity type should be uniquely identifiable from any related entity types. Fur-

19

3.2. Clustering

thermore, a major entity type should be of fundamental importance to more
than one functional area of organization, i.e. should appear in more than one
information are.

Next step is to detect subject areas of the higher level. Subject areas and
their information areas can be thought of as decompositions of the relationships
between major entity types. Information areas are formed by first abstracting
minor entities into a logical horizon and then successively abstracting the logical
horizons and majority entity types. This process actually results in more than
one information area relating to the same group of major entity types. These
similar information areas are then abstracted to form a subject area, which is
placed in the highest level.

Finally, Feldman and Miller classify the benefits of entity model clustering
in:

• Organizational benefits: levels of diagrams are similar to levels in the
organization.

• End-user computing benefits: they do not need to have to know of the
existence of an entity type, but can be led to it through the succeeding
levels of detail of the clustered entity model.

• Information system development benefits: development activities can be
built without the complexity associated to large models.

• Entity modeling benefits: very large models become easy to communicate,
validate and maintain.

Another foundational paper is the one from Teorey et al. [51]. Their ap-
proach is similar than Feldman and Miller’s, but it contains some differences.
The clustering method does not allow duplicate entities in different levels of the
clustering hierarchy and the number of levels in not predefined.

First of all, the authors define four grouping techniques that make the same
work than a similarity function:

• Dominance grouping: Dominant objects can be identified as the major
entities. Each dominant object can then be grouped together with all its
related (non-dominant) objects into a cluster.

• Abstraction grouping: Multi-level data objects using such abstractions as
generalization, aggregation, classification, and membership (association)
can be grouped into an entity cluster.

• Constraint grouping: Constraint-related objects that extend the ER model
to incorporate the integrity constraints can be grouped into an entity
cluster.

• Relationship grouping: The n-ary relationships of any degree can poten-
tially be grouped into an entity cluster.

20

Chapter 3. State of the Art

An example of dominance grouping operation is shown in Fig 3.2 where the
entity type Book is clustered with its non-dominant connected entities. Note
that the cluster name is the name of the major entity type and each cluster
contains the number of level in the clustering hierarchy.

Figure 3.2: Example of dominance grouping operation. Extracted from [51].

Roughly, the clustering technique from Teorey et al. follows the next steps:

1. Define points of grouping within functional areas: locate the dominant en-
tities in a functional area, either through the natural relationships as ob-
tained from the system requirements document, local n-ary relationships,
integrity constraints, abstractions, or by just being the central focus of
many simple relationships.

2. Form entity clusters: use the basic grouping operations on elementary
entities and their relationships to form higher-level objects, entity clusters.

3. Form higher-level entity clusters. Apply the grouping operations recur-
sively to any combination of elementary entities and entity clusters to
form new levels of entity clusters (higher level objects).

21

3.2. Clustering

4. Validate the cluster diagram. Check for consistency of the interfaces (re-
lationships) between objects at each level diagram. Verify the meaning of
each level with the end users.

The result of applying these steps to an example of entity relationship dia-
gram is shown in Fig. 3.3

Figure 3.3: Example of Entity Cluster Levels. Extracted from [51].

Shoval, Danoch and Balabam in [48, 47] do a revision and refactors the ap-
proach of Teorey et al., previously defined. They call their new solution HERD
(Hierarchical Entity-Relationship Diagrams) and basically includes minimum
changes in grouping operations and their application.

Another different contribution was made by Jaeschke, Oberweis and Stucky
[28]. In that paper the approaches to entity model clustering have been ex-
tended to allow top-down design. The main idea is to determine the major entity
types and the coarse relationship types between them. Then these relationship
types are refined iteratively by complex and simple relationship clustering, also
involving entity clustering. After determining the major entity types, the de-

22

Chapter 3. State of the Art

tailed design of the different relationship clusters can be realized simultaneously
and independently by different project groups. This approach also supports
database reengineering. The clusters can be built bottom-up based on already
existing database schemes while the redesign is realized top down.

Roughly, the process consists on define high-level objects at first and, after
that, redefine the relationships between them to complete the schema. An
example of it is shown in Fig. 3.4.

Figure 3.4: Example of Relationship Clustering. Extracted from [28].

Francalanci and Pernici in [21] discuss the problem of the semi-automatic
construction of abstract ER schemas and propose and algorithm for schema
clustering, mainly based on the structure of the schema. Furthermore, they de-
fine affinity and closeness between concepts and coupling and cohesion between
clusters as the operating criteria for clustering:

• Affinity: captures semantic closeness among concepts. To compute it, they
assign a list of words to each concept of a schema. The affinity between
two concepts is calculated as the mean value of the similarities between
each pair of words belonging to each concept.

• Closeness: corresponds to a quantitative evaluation of the links among
concepts, i.e., an evaluation of syntactic closeness between concepts. Both
the type and number of relationships between concepts suggest a strength
of their closeness. Therefore closeness between two concepts is calculated
as the addition of the strength for each relationship, according to its type,
between the concepts.

• Cohesion: corresponds to a value indicating how well internally connected
are the concepts within clusters.

• Coupling: corresponds to a value indicating the amount of connections
between different clusters.

23

3.2. Clustering

• Balance: the balance of a clustering of a schema can be measured as the
standard deviation of the number of elements per cluster. It is interesting
to have a clustered schema with clusters having similar number of concepts
inside.

Another different approach for clustering is introduced in [22] by Gandhi,
Robertson and Van Gucht. They define a new ER model called Leveled Entity
Relationship (LER) model as a new way of modeling.

The Leveled Entity Relationship (LER) model is an adaptation of the tradi-
tional ER model adding a mechanism to make sub-entities deep inside an entity
visible to the external world without unnecessary complexities. An LER entity
may be atomic (like and ER entity) or it may have an internal structure. An
aspect of an entity may be a direct property of the entity (like and ER attribute)
or it may reflect an internal facet of the entity. And an LER relationship may di-
rectly associate two entities (like an ER relationship) or it may associate entities
by linking subentities within them.

Look at Fig. 3.5 to see an example of LER model. Double arrowed edges
represent the correspondence between aspects of the entity and aspects within
the entity. Shaded boxes represent the self aspect of an entity and is used to
define the internal structures of the entity. It is the focal point in the internal
organization of the entity.

Figure 3.5: Example of Level Entity Relationship Model. Extracted from [22].

Next contribution that deserves a mention is Akoka and Comyn-Wattiau’s
paper [2] on ER and object-oriented automatic clustering. There, the authors
propose a common clustering algorithm and a set of similarity functions that
they call distances between elements. They define such distances and apply them
in their algorithm. A short review of the distances, including object-oriented
distances, is shown in the list as follows:

24

Chapter 3. State of the Art

• Visual distance: two entities are said to be close if they are involved in
the same relationship.

• Hierarchical distance: the distance between two entities is measured by
the shortest relationship path between entities. The cardinalities of rela-
tionships are included in the computation of such distance.

• Cohesive distance: as with the preceding distance, the cohesive distance
is measured by the shortest path between those entities. However, it is
considered a different segment length and weight on such paths.

• Structural-connective distance: two elements are close if they are neigh-
bors in a hierarchy (aggregation, generalization, whole-part structure).
They are close if they are linked by an instance connection or a message
connection. Otherwise the distance between two objects is the length of
the shortest path between them.

• Category distance: two elements are considered to be very close if there
exists a generalization relationship between them.

• Communicative distance: the communication between two objects ex-
presses a semantic link between these objects. Therefore the commu-
nicative distance is based on message flowing.

• Frequent communicative distance: the message frequency is the number of
times a message is flowing between objects for a given period of time. As
a consequence, two objects are considered to be close when this frequency
is high.

For their part, Campbell, Halpin and Proper formalizes in [12] a method
for the strictly automatic selection of major entity (or object) types. Their
approach sets apart from others because it considers the detailed conceptual
semantics hidden in the constraints and also the manner in which the facts
within the domain are verbalized. In particular, their approach utilizes the
detailed constraint specifications and verbalizations provided by Object Role
Modeling (a modeling technique that allows a variety of data constraints to be
specified on the conceptual schema).

The semantics of these constraints allow to make the selection of major
objects. The authors claim that their approach more accurately imitates human
intuition than previous methods. As a second goal, the paper utilize the selected
major object types in an algorithm to derive abstractions for a flat conceptual
schema.

Using constraints to compute the major entity types is an approach followed
by us in the next chapter of this thesis. We also take into account event types
of the behavioural subschema.

Moody and Flitman in [37, 36] state that a Levelled Data Model consists of
the following components:

25

3.2. Clustering

• Context Data Model: a high level diagram, which provides an overview of
the model and how it is divided into subject areas.

• Subject Area Data models: which show a subset of the data model in full
detail. Foreign entities are used to show relationships to entities on other
subject areas.

• Indexes: which are used to help locate individual objects (entities, rela-
tionships and attributes) within each subject area.

The model may be organized into any number of levels, depending on the
size. Look at the example in Fig. 3.6.

Figure 3.6: Example of Levelled Data Model. Extracted from [37, 36].

The authors also collects the major deficiencies identified in the existing
literature:

• Lack of cognitive justification: to be truly effective in improving human
understanding, clustering approaches need to be soundly based on princi-
ples of human information processing.

• Lack of size constraints: the aim of all existing methods is to reduce the
model to parts of manageable size, but none of them define what this is.

• Lack of automation: only some approaches provide automated solutions
to the problem.

• Levels of decomposition: most of the approaches proposed are limited to
a fixed number of levels of decomposition.

• Lack of empirical testing: it is stated and argued by the authors that their
methods provide an effective solution to the problem, but these claims are
unsubstantiated.

Another good contribution by Moody and Flitman is the definition of formal
rules or principles for evaluating the quality of decompositions and choosing
between alternatives. These principles are briefly reviewed in the list as follows:

26

Chapter 3. State of the Art

1. Completeness: each entity type must be assigned to at least one subject
area. The union of the subject areas cover all the entities in the underlying
model.

2. Non-Redundancy: each entity type must be assigned to at most one sub-
ject area. This ensures that subject areas are disjoint.

3. Integration: each subject area forms a fully connected subgraph of the
original model.

4. Unity: each subject area should be named after one of the entities on the
subject area, called the central entity. The central entity forms the core
of the subject area.

5. Cognitively Manageable: each subject are must be of cognitively manage-
able size. It means a maximum of nine concepts (remember the seven plus
or minus two number).

6. Flexibility: the partitioning of the data model into subject areas should
allow adequate capacity for growth. A data model which consists of sub-
ject areas that are all of the size of nine will have to be repartitioned if
even a single entity is added. To solve this situation, it is required that
the average size of subject areas is as close as possible to seven entities.

7. Equal abstraction: all subject areas should be similar in size.

8. Coupling: the number of relationships between entities from different sub-
ject areas should be minimum.

9. Cohesion: the number of relationships between entities on the same sub-
ject area should be maximum.

The last contribution of Moody and Flitman is the definition of a manual de-
composition procedure (see Fig. 3.7) and an automatic decomposition procedure
(using genetic algorithms) of conceptual schemas.

To conclude the section, Tavana, Joglekar and Redmond study in [50] the de-
composition principles of Moody and Flitman previously described. Concretely,
they made a test with experts to decide the importance of each principle de-
noted by an order of significance. Afterwards, the obtained experience allowed
them to refactor the Moody and Flitman’s principles into a reduced set of seven:

1. Semantically Meaningful: people familiar with the task domain should
find the clusters logical and coherent.

2. Completeness: decomposition should cover all of the entities and relation-
ships in the complete model and no entities or relationships should be left
out

3. Non-Redundancy: each entity and relationship should be in one, and only
one, cluster.

27

3.2. Clustering

Figure 3.7: Manual Decomposition Procedure. Extracted from [37, 36].

4. Fully Connected: all the entities in a cluster should be connected to each
other, via relationship paths that are within the cluster.

5. Maximal Cohesion Within Clusters: to the extent possible, all entities
within a cluster should be closely related to each other.

6. Minimal Coupling Between Clusters: to the extent possible, entities in
different clusters should not be closely related to each other.

7. High Degree of Modularity: provided all of the other criteria are satisfied,
a solution with a greater number of clusters is preferred to a solution with
smaller number of clusters.

The last part of the paper introduces a clustering algorithm that adopts some
concepts and metrics from machine-part clustering in cellular manufacturing
while exploiting some of the characteristics of ER diagrams. The aim of the
algorithm is to follow the previous principles and, mainly, to reduce coupling
and increase cohesion.

28

Chapter 3. State of the Art

In fact, Tavana, Joglekar and Redmond make a comparison between their
algorithm and the solutions proposed by Feldman and Miller, and Moody and
Flitman. In both cases, the results obtained by their algorithm seem to be
better than others. An example of the application of such algorithm is shown
in Fig. 3.8.

Figure 3.8: Application of clustering algorithm of Tavana, Joglekar and Redmond.
Extracted from [50].

3.3 Filtering/Scoring/Ranking

In contrast to clustering of conceptual schemas, the number of research con-
tributions on filtering (also known as scoring or ranking) methods applied to
conceptual schemas have been clearly lower. In this section we review some of
the most important papers in this area.

One of the first works on conceptual schema analysis was done by Castano,
de Antonellis, Fugini and Pernici in [13]. The techniques proposed in the article
include schema indexing methods, techniques for deriving abstract representa-
tions of large schemas and, similarity metrics for comparing schemas. Our inter-
est about the article remains on the schema indexing method proposed, which
will be explained in next chapter as one of the selected methods to compute the
importance of entity types. However, let us take a look to this technique here.

Castano et al. state that the representative elements of a schema are its
most relevant elements, that is, describing the purpose of the schema and its
basic characteristics. Representative elements are determined on the basis of a
relevance measure within the schema. To compute the relevance of an element,
they take into account the properties of the element and the links in which it
participates. The rationale is that the number of properties and links in which
the element participates can be used as a (heuristic) measure of its relevance
within the schema. The greater this measure, the higher the relevance of the

29

3.3. Filtering/Scoring/Ranking

element, since this means that the element is characterized by several properties
and is referred to by several other elements of the schema.

The method of Castano et al. only consider a small part of the structural
subschema of a conceptual schema containing the entity types, their attributes,
and the relationships between entity types (both association and generalization
relationships). Roughly, for each entity type, its relevance is computed as the
addition of the number of owned attributes plus the number of relationships
in which the entity participates. In fact, each kind of characteristic (attribute,
association, generalization) is weighted with a strength factor to denote a differ-
ence of the contribution of such kind in the final relevance value. The authors
choose to give a higher strength to attributes, then generalizations and then as-
sociation relationships. This is due to the fact that generalization/specialization
links between entities in a hierarchy express a high connection between entity
and its specializations, whereas relationships represent a weaker link, from the
semantic point of view.

Concretely, to select the set of representative elements of a conceptual schema
the steps are as follows:

• Computation of the relevance for each element (in this case it means entity
type) according to the previous heuristic.

• Definition of a relevance threshold for selection of representative elements
(e.g. the average relevance).

• Selection, as representative elements, such elements whose relevance ex-
ceeds the threshold.

Look at Fig. 3.9 to see an example where the bold squares are the represen-
tative elements computed according to the previous steps.

Also, Geerts, Mannila and Terzi adapt in [23] link analysis algorithms to
relational databases. In analogy to link analysis algorithms, which use the Web
graph to rank web pages, they use the database graph to rank partial tuples.
To obtain rankings for partial tuples they mimic the principles of link analysis
algorithms.

The well-studied algorithms for the Web show that the structure of the
interconnections of web pages has lots of valuable information. For example,
Kleinberg’s HITS algorithm [30] suggests that each page should have a separate
authority rating (based on the links going to the page) and hub rating (based
on the links going from the page). The intuition behind the algorithm is that
important hubs have links to important authorities and important authorities
are linked by important hubs.

Brin and Page’s PageRank algorithm [11], on the other hand, calculates
globally the PageRank of a web page by considering a random walk on the Web
graph and computing its stationary distribution.

30

Chapter 3. State of the Art

Figure 3.9: Representative elements of a conceptual schema. Extracted from [13].

The PageRank algorithm can also be seen as a model of a user’s behavior
where a hypothetical web surfer clicks on hyperlinks at random with no regard
towards content. More specifically, when the random surfer is on a web page,
the probability that he clicks on one hyperlink of the page depends solely on
the number of outgoing links the latter has. However, sometimes the surfer
gets bored and jumps to a random web page on the Web. The PageRank of a
web page is the expected number of times the random surfer visits that page if
he would click infinitely many times. Important web pages are ones which are
visited very often by the random surfer.

Look at the example in Fig. 3.10. In such figure, size means relevance. It
is easy to see that bigger (most relevant) smiley is the most pointed (or linked)
one, and that the smileys linked by it get part of its importance becoming also
big. That is due to the relevance flowing that link analysis algorithms produce
according to their recursive definition: the relevance of an element is the addition
of a proportional portion of the relevance of the elements that point to it. It
is important to note that to execute such link analysis algorithms an iterative
method is needed because of the recursive definition.

Geerts, Mannila and Terzi use this observation to extend the random surfer
model to the random querier, which generalizes random-walk based link analysis
algorithms by providing the random surfer with a different set of queries at his
disposal. Additionally, the model facilitates extensions that allow for using this
model for ranking partial tuples. The authors also apply HITS algorithm in the
same way.

31

3.3. Filtering/Scoring/Ranking

Figure 3.10: PageRank example.

As they indicate, ranking tuples according to a query on a database is useful
because to see the top-k partial tuples that satisfy a query rather than thou-
sands of tuples ordered in a completely uninformative way increases database
manageability.

Although we are not interested in ranking tuples in a database, the same
approach can be used to rank entity types in a conceptual schema. Concretely,
Tzitzikas and Hainaut propose in [54] two PageRank style algorithms, called
EntityRank and BEntityRank, to obtain a rank of entity types according to
their relevance in ER diagrams. The same algorithms, among others, are also
included in the paper by Tzitzikas, Kotzinos and Theoaris [55], but applied to
RDF schemas.

These two variants take into account in their computation only some struc-
tural elements of the conceptual schema. Concretely, to calculate the relevance
of an entity type they use the relationships (without make a differentiation be-
tween generalization or association relationships). BEntityRank algorithm also
assumes that the initial relevance of entity types is the number of attributes
they own. After every iteration of the algorithms, the relevance gets closer to
the real one due to the relevance transfers the algorithms produce through the
relationships between entities.

EntityRank and BEntityRank are used to obtain the top-k entities in ER
diagrams. Concretely, such algorithms produce a ranking that then is processed
to filter those entities that are not the k most important ones. Look at the
example of Fig. 3.11 to see a complete ER diagram (Fig. 3.11(a)) and the top-5
diagram (Fig. 3.11(b)) after the application of one of these algorithms.

A complete explanation with the definition of the algorithms introduced in
[54] and [55], adapted to be used with conceptual schemas specified in UML/OCL,
can be found in the next chapter.

32

Chapter 3. State of the Art

(a) Full ER diagram

(b) Top-5 entity types

Figure 3.11: EntityRank application. Extracted from [54].

Last contribution we mention is the one by Yu and Jagadish [58]. It formally
defines the concept of schema summary and two desirable properties (in addition
to minimizing size) of a summary: presenting important schema elements and
achieving broad information coverage. The method to obtain schema summaries
is applied to database schemas.

A summary uses abstract elements and abstract links to summarize a com-
plex schema and provide the users with a concise overview for better under-
standing. Each abstract element in the summary corresponds to a cluster of
original schema elements (and other lower level abstract elements in the case
of a multi-level summary), and each abstract link represents one or more links
between the schema elements within those abstract elements. While schema
summaries are useful, creating a good summary is a non-trivial task. A schema
summary should be concise enough for users to comprehend, yet it needs to
convey enough information for users to obtain a decent understanding of the

33

3.3. Filtering/Scoring/Ranking

underlying schema and data.

Therefore, the importance of a schema element is reflected in two aspects - its
connectivity in the schema and its cardinality in the database. The connectivity
of an element in the schema graph provides a count of the number of other
elements that are directly connected to it (via either relationship links). An
important element is likely to be one from which many other elements can be
reached easily. The cardinality of a schema element is the number of data nodes
(database tuples) it corresponds to. If there are many data nodes of a schema
element in the database, then that element is likely to be of greater importance
than another one with very few data nodes.

The authors attempt to develop a single comprehensive notion of importance
that combines these two aspects, and they use a PageRank-based algorithm
according to the similarities of database schemas to the web. Unfortunately,
we have studied the paper in deep and we do not agree with the affirmation of
the more tuples a relation of the database has, the more important it is. We
think in some examples in which this affirmation does not work. Imagine you
are member of an organization that sells planes to a reduced group of exclusive
customers from around the world. In your database probably there are a few
instances of planes and customers, but if you maintain a list of the countries
of the world where the customers come from, it could happen that the relation
country have more tuples than plane or customer, but it is obvious that country
is not more important than the others. Therefore, taking into account the
number of tuples is not always a good idea.

Also, Yu and Jagadish use three relational database schemas to evaluate their
algorithm –XMark, a database schema of an XML benchmark derived from an
auction site; TPC-H, a relational benchmark for a decision support system; and
MiMI, a real world scientific schema on protein interaction information.

They affirm that such schemas are large, concretely it is possible to find
in the paper that XMark contains 327 schema elements, TPC-H contains 70,
and MiMI 155. After our research on these schemas we have found that the
real numbers for them are 29 for XMark, 9 for TPC-H and 38 for MiMI. Each
number represents the number of relations (or tables) in each relational schema.

The difference between the number of elements is produced because Yu and
Jagadish count the columns of the tables of the three relational database schemas
also as elements, each one connected through a relationship with the element
(the table or relation in the database) that owns it. We believe that it is not
a good way to obtain a large schema for testing because, in this case, it is
possible to obtain that an element, which in the real schema is a column of a
table could be more important than the element that represents the table itself.
Imagine we have a relation called Person to represent information about persons
in our database, including three columns: id, name and phone. If we use id as
primary key and it is used in other relations as foreign key, it could reach more
importance than the relation Person. This behaviour is not acceptable and
then the testing section of the article by Yu and Jagadish should be checked
and corrected.

34

Chapter 3. State of the Art

3.4 Metrics

The construction of similarity functions or heuristics to make clusters, or the
computation of the importance of schema elements require to have a set of
metrics that provide some measures taking into account the conceptual schema
and, concretely both structural and behavioural subschemas.

Baroni et al. in [4, 5, 6, 7] present a library of measures, named FLAME
(Formal Library for Aiding Metrics Extraction), which is mainly used to for-
malize metrics. Such library is formalized with OCL [38] upon the UML [39]
metamodel.

Baroni’s work includes the formalization of metrics of another libraries like
MOOD (Metrics for Object-Oriented Design) [1] or MOOSE (Metrics for Object-
Oriented Software) [15]. As we can see in Table 3.1, these are one of the metrics
introduced by Baroni and used in the next chapters of this thesis (after a re-
finement process).

Metric Description

DAN Defined Attributes in an entity type.

AAN Available Attributes Number. Both defined and inherited
(through generalization relationships) attributes of an entity
type.

CHIN Children Number. Directly descendant entities of an entity type
(through generalization relationships).

PARN Parents Number. Directly ascendant entities of an entity type
(through generalization relationships).

DESN Descendants Number. All descendants of an entity type (di-
rected and undirected).

ASCN Ascendants Number. All ascendants of an entity type (directed
and undirected).

CN Classes Number. Number of entity types in the schema.

Table 3.1: Some metrics introduced by Baroni et al. in [4, 5, 6, 7].

Genero, Poels and Piattini in [24, 25] defines a set of metrics for Entity-
Relationship (ER) diagrams that can be used as indicators of the understand-
ability of diagrams. Table 3.2 shows such metrics with their description.

The authors state that external qualities such as understandability and main-
tainability are hard to measure objectively early on in the modeling process. For
a more objective assessment of external quality attributes, an indirect measure-
ment based on internal model properties is required.

The metrics of Genero et al. allow compare different designs of the same
domain in order to determine which one has a greater complexity or would be
more difficult to maintain or comprehend. It is clear that a schema with greater

35

3.5. Visualization

values for the metrics will be in a sense more complex and, therefore cause
difficulties of understandability to end-users and other stakeholders.

In our approach we use such metrics (and others) to compute the importance
of schema elements and, in particular, entity types.

Metric Description

NE Number of Entities.

NA Total number of Attributes in the ER diagram.

NDA Total number of Derived Attributes in the ER diagram.

NCA Total number of Composite Attributes in the ER diagram.

NMVA Total number of Multi-valued Attributes in the ER diagram.

NR Total number of Relationships.

NM:NR Total number of Relationships with cardinality M:N.

N1:NR Total number of Relationships with cardinality 1:N.

NN AryR Total number of N-ary Relationships.

NBinaryR Total number of Binary Relationships.

NRefR Total number of Reflexive Relationships.

NIS AR Total number of IsA (generalization) Relationships.

Table 3.2: Metrics introduced by Genero et al. in [25].

3.5 Visualization

Although visualization of large-sized conceptual schemas could be placed beyond
the scope of this thesis, we cannot forget to present here some methods and
techniques in the literature about this topic. The application of clustering or
filtering methods must be followed by the application of visualization solutions
in order to increase even more the understandability of schemas.

Tzitzikas and Hainaut explain in [53] that diagram drawing is not a panacea.
It has been recognized long ago that the usefulness of conceptual diagrams
degrades rapidly as they grow in size. Although the article focus in visualization
of ontologies, it could be translated to database or conceptual modeling schemas
written in ER or UML/OCL.

The authors include filtering and clustering as visualization techniques. That
is a good classification because such techniques improve the graphical under-
standability of schemas. Furthermore, context-based browsing is also intro-
duced. It consists on show only a short part of the whole schema so that the
user could start browsing the diagram starting from any node of the schema.
At each point in time, the neighborhood of the selected node is displayed. The
user is then able to click on any other displayed node to change the focus. This
way, the understanding of the schema is done gradually.

36

Chapter 3. State of the Art

Another approach is presented by Streit, Pham and Brown in [49] to man-
age large business process specifications. Such specifications can be seen as
graphs and, therefore, the application of the solution proposed be extended to
conceptual schemas.

The solution here is adopted from the discipline of 3D computer graphics. It
is possible to compare a large and complex diagram with a 3D representation of
a full scale model. The authors explain that the purpose of simplification is to
maintain a representation of the 3D model that is recognisable while reducing
the processing and data requirements of the system. Similarly, in the case
of conceptual schemas our purpose is to reduce the schema maintaining the
relevant elements and a recognisable version of the whole while reducing the
understandability effort users should made.

In Fig. 3.12 we can see the structure of a 3D model of a plane extracted
from [49]. It is evident that the model continues looking as a plane although its
detail level (complexity and size) is lower in the left side than in the right.

views of the specification that exclude less relevant information. This filtering
of information produces a model with lower complexity, but introduces a degree
of uncertainty. This uncertainty reflects the lower resolution model’s potential
for representing variations of the original model. This use of uncertainty mimics
human reasoning [3], where decisions are made on relevant information instead
of relying upon a detailed and precise model.

The discipline of 3D computer graphics has conducted extensive research
into level of detail algorithms [4]. These algorithms construct simplified repre-
sentations of a full scale model. The purpose of simplification is to maintain a
representation of the model that is recognisable while reducing the processing
and data requirements of the system (see Figure 1). Typically, lower level detail
versions of a model are substituted for the object when it is further away from
the observer, where the change is indiscernible.

Fig. 1. The structure of the 3D model of a plane is evident, even at four different levels
of detail. (from [5])

The approach in this paper is motivated by the success of level of detail
methods in the 3D graphics field. The proposal is a simplification approach for
business process specifications by constructing a reduced graph that captures
the most relevant information of the original graph. This technique avoids the
intuitiveness issue mentioned previously by using the same graphical notation as
the original graph. However, the reduced graph must also preserve the semantics
of the original graph to avoid being misleading.

This reduction process presents an opportunity to not only preserve the
overview of structure, but to actually provide different views of the same graph
according to different interests of the user. Reduction should therefore be di-
rected by criteria that represent the interest of the user, which is governed by
the task of the user. For example, the user may wish to see only those processes
that are involved in a possible dead-lock situation, or alternatively the user may
wish to see nodes that are relevant to a text search term. A graphical search
engine can be constructed by creating reduced views of business process models
according to search terms. This effectively allows the user to browse the business
process much like using a web search engine.

Figure 3.12: 3D mesh representing a plane at four different levels of detail. Extracted
from [49].

The proposal of Streit, Pham and Brown consist on calculate the relevance
of each node according to a criterion function. The second step is to reduce the
graph (or schema in our case) by collapse or decimation methods. Finally, the
graph is displayed for the user inspection. We can affirm that such solution is
closer to filtering methods than to clustering.

Focus+Context is other visualization technique worths a mention here. Kosara,
Miksch and Hauser in [32] explain how to use focus+context techniques in infor-
mation visualization to point out relevant information to a user. They present
a method for doing this which uses selective blur to direct the user’s attention.

Roughly, the main idea is to blur objects based on their relevance. As hu-
man perception divides our field of view into foreground and background, most
relevant objects must be placed closer (in the foreground) than less important
ones (in the background). Look in Fig 3.13 to see an example of this technique
to put the focus at persons in a picture hiding the details of the background.

Another contribution in the literature is the review of Cockburn, Karlson
and Bederson [16]. It contains a summary of the different works and contribu-
tions in the visualization area and, in particular, those techniques classified in

37

3.5. Visualization

Figure 3.13: Blur effect in Focus+Context technique to highlight persons.

Overview+Detail, Zooming, or Focus+Context methods.

Overview+Detail techniques are characterized by the simultaneous display
of both an overview and detailed view of an information space, each in a distinct
presentation space. The second category of interface supporting both focused
and contextual views is based on Zooming, which involves a temporal separation
between views. User magnify (zoom in) or demagnify (zoom out) a fragment of
the information in the visualization area to focus on desired elements.

Figure 3.14: Example of visualization techniques.

Finally, Focus+Context as explained before, integrates focus and context
into a single display where all parts are concurrently visible. The focus is dis-
played seamlessly within its surrounding context. An example of Focus+Context
using the fisheye technique is shown in Fig. 3.14(c).

38

Chapter 3. State of the Art

To finish this section, we also take into account the survey about ontology
visualization methods of Katifori et al. [29]. Ontologies are sets of concepts and
their relationships so that we can apply the methods explained in such survey
to conceptual schemas.

The methods described in the survey are grouped in the following categories,
according to their visualization type:

• Indented list

• Node-link and tree

• Zoomable

• Space-filling

• Focus+context or distortion

• 3D information landscapes

The Zoomable and Focus+Context categories are the same as in the survey of
Cockburn et al. [16] previously explained.

On the other hand, the authors define Indented List techniques as lists where
the elements of an ontology are hierarchically placed like in a directory tree view
of common operating systems. Look at the example in Fig 3.15(a).

(a) Indented List (b) Node-Link Tree

Figure 3.15: Example of Indented List and Node-Link Tree.

The next category is Node-link and tree, which represents ontologies as a
set of interconnected nodes, presenting the taxonomy with a top–down or left
to right layout. The user is generally allowed to expand and retract nodes and
their subtrees, in order to adjust the detail of the information shown and avoid
display clutter. Look at the example in Fig 3.15(b)1.

1www.gosurfer.org

39

3.5. Visualization

Then, Space-filling techniques are based on the concept of using the whole
of the screen space by subdividing the space available for a node among its
children. The size of each subdivision corresponds to a property of the node
assigned to it—its size, number of contained nodes, and so on. Look at the
example in Fig 3.16.

Figure 3.16: Example of World’s Population visualized with a Tree Map, included
in Space Filling techniques.

Finally, a very common metaphor used in Virtual Reality environments for
document management is the landscape metaphor, where elements are placed
on a plane as color- and size-coded 3D objects. Look at the example in Fig 3.17.

Figure 3.17: Example of 3D landscape of a Unix File System.

40

Chapter 3. State of the Art

3.6 Conclusions

The main conclusions extracted from the previous sections are summarized in
two affirmations we can construct due to the obtained experience.

On one hand, it is clear that the major contributions on dealing with the
problems of conceptual modeling in the large in the literature are applied in the
scope of databases or entity-relationship diagrams. As seen earlier in the chap-
ter, although UML/OCL actually are the de facto standard modeling language,
the number of methods to reduce or restructure conceptual schemas defined
using UML/OCL is very small. Furthermore, a comparison between the huge
amount of proposed solutions does not exists and makes difficult to select the
best method for each situation.

On the other hand, most of the contributions do not take into account the
whole knowledge provided by the conceptual schema. Concepts like constraints,
derivation rules, definition of actions and events are commonly avoided. How-
ever, there exists the thought of the more knowledge used, the more complete
the results will be.

Regarding these trends, we notice that a new approach to solve the problem
of large conceptual schemas should be provided adapting and comparing exist-
ing methods to UML/OCL schemas, and including in their computation new
measures, which could enclose the forgotten knowledge. These are the main
points of this document.

41

42

Chapter 4

Measures, Methods and
Extensions

In this chapter we briefly review the definition of some of the existing methods
for computing the importance of entity types in a schema. Each method is
followed by a brief description and formal definition of our adaptation to be
applied to conceptual schemas modeled with UML/OCL.

The original version of the methods only takes into account the indicated
elements of the structural schema while in the extended version we also take
into account the rules and the complete behavioural schema.

Section 4.1 introduces the measures (also called metrics) used in the base
versions of the selected methods. Such measures are formally specified and an
example is provided for the sake of understandability. Section 4.2 shows the
selected methods of the literature and their definition.

Finally, Section 4.3 introduces new measures to take into account the whole
knowledge of the conceptual schema and Section 4.4 presents the extension of the
previous methods using such new measures. Section 4.5 concludes the chapter
with a comparison of the methods and the knowledge used by both base and
extended versions.

4.1 Measures

To cover the knowledge represented in a conceptual schema is not an easy job.
There exists a set of modeling elements and a big amount of combinations
between them to conform the structures and constructions that appear in the
structural and behavioural sides of a conceptual schema.

In this section we adapt and define some of the main metrics in the literature

43

4.1. Measures

to gather the knowledge of schemas defined in UML. The main point here is the
knowledge of the structural schema, since the great majority of methods focus
on such part of the whole schema.

4.1.1 Importance-computing Principles

According to the experience obtained after the review of the state of the art
in the field of how to compute the importance of schema elements, it is possi-
ble to say that most of the methods in the literature are based on subjective
approaches.

A big number of solutions are evaluated comparing the results obtained by
them and the solutions provided by an expert (or a set of them) in the informa-
tion area where the conceptual schema defines the concepts of an information
system. Such expert, also known as oracle, indicates the major elements in the
schema, sometimes in a ranked list, according to its own experience.

This kind of evaluation that we can name as subjective similarity tends to
a deviation produced by the inherent subjectivity of the validation. Roughly
speaking, two oracles in the same area can have different points of view even
if they work or have experience in the same aspects of the elements of a con-
ceptual schema. Furthermore, to have the possibility of relying on an oracle
that collaborate in the process of the application of a method to compute the
most important schema elements is not possible in, at least, a big number of
situations.

Thus, there exist the need of objective evaluations that do not change ac-
cording to the influence of external factors like stakeholders of the information
system. To reach this goal we present a set of objective metrics that only take
into account the information represented in the conceptual schema. This way,
the figure of the oracle can be avoided.

The first point is the definition of an axiom we follow along this thesis, and
that have been studied in other research areas like text searching or document
indexing in information retrieval or data mining. We call it the principle of high
appearance of elements in a scope, and define it as follows:

Definition 4.1.1. (Principle of High Appearance)
The more occurrences an item/element has in an scope, the more important
such item becomes.

According to the definition, the importance of an element has a proportional
relation to the frequency with which such element appears in a scope. In the
scope of conceptual schemas we redefine such principle for entity types:

Definition 4.1.2. (Principle of High Appearance in Conceptual Schemas)
The most important entity types of a conceptual schema are those that have
the greater number of attributes, participate in a major number of associations,

44

Chapter 4. Measures, Methods and Extensions

have more ascendants and descendants, appear in the structure of schema rules,
and definitely, have a bigger participation in the conceptual schema than others.

From the other point of view, the most important entity types are those that
the designer of the conceptual schema requires a bigger effort and produces more
information in the schema to define them.

This principle is directly related with the requirements engineering phase of
software engineering. The requirements of an information system must be trans-
formed into a conceptual schema using both the structural part and, mainly,
the behavioural schema which can indicate the allowed actions and events of
the system. Therefore, the requirements are converted into UML and OCL
constructions.

Since the principle of high appearance induces that the most important el-
ements are those that the conceptual schema has more information about, the
relevance of such elements directly depends on the requirements. This way we
have an objective approach based on schema metrics to denote the relevant
elements, which has a component of subjectivity according to the information
added by modelers and requirements engineers. Therefore, our approach is suf-
ficiently objective to avoid deviations, but includes the required subjectivity to
be useful.

4.1.2 Basic Metrics

Discuss about the relevance of schema elements has a point of ambiguity since
there are a lot of types of elements in a conceptual schema. Although to compute
the relevance of attributes, associations or constraints could be a research topic
with interest, our approach, similarly as major contributions in the literature,
has the computation of the relevance of entity types as the main goal of the
thesis.

Obviously, the most important kind of elements in a conceptual schema are
entity types, because they are the representation of concepts of the real world.
Therefore, the application of methods for focus on the most relevant ones must
contribute in a higher degree to increase understandability and usability.

In this section we go over the main concepts and the notation we have used
to define the knowledge of conceptual schemas, as explained in Chapt. 2. In
this thesis we deal with schemas written in the UML[39]/OCL[38]. Table 4.1
summarizes the notation (inspired by [55, 7]) used in the rest of the document.

As previously introduced, conceptual schema consists of a structural sub-
schema and a behavioral subschema. The structural schema consists of a taxon-
omy of entity types (a set of entity types with their generalization/specialization
relationships and the taxonomic constraints), a set of relationship types (either
attributes or associations), the cardinality constraints of the relationship types,
and a set of other static constraints formally defined in OCL.

45

4.1. Measures

We denote by E the set of entity types defined in the schema. For a given
e ∈ E we denote by par(e) and chi(e) the set of directly connected ascendants
(parent entity types) and descendants (children entity types) of e, respectively,
and by gen(e) the union of both sets. The set of attributes defined in the schema
is denoted by A. If a ∈ A then entity(a) denotes the entity type where a is
defined. The set of attributes of an entity type e is denoted by attr(e).

Notation Definition

par(e) = {e′ ∈ E | e IsA e′}

chi(e) = {e′ ∈ E | e′ IsA e}

gen(e) = par(e) ∪ chi(e)

attr(e) = {a ∈ A | entity(a) = e}

members(r) = {e ∈ E | e is a participant of r}

assoc(e) = {r ∈ R | e ∈ members(r)}

conn(e) =]r∈assoc(e){members(r)\{e}}1

parinh(e) = par(e) ∪ {parinh(e′) | e′ ∈ par(e)}

chiinh(e) = chi(e) ∪ {chiinh(e′) | e′ ∈ chi(e)}

attrinh(e) = attr(e) ∪ {attrinh(e′) | e′ ∈ par(e)}

associnh(e) = assoc(e)] {assoc(e′) | e′ ∈ parinh(e)}

conninh(e) = conn(e)] {conn(e′) | e′ ∈ parinh(e)}

Table 4.1: Definition of basic metrics.

The set of associations (relationship types) defined in the schema is denoted
by R. If r ∈ R then members(r) denotes the set of entity types that participate
in association r, and assoc(e), where e ∈ E , the set of associations in which e
participates. Note that an entity type e may participate more than once in the
same association, and therefore members(r) and assoc(e) are multisets (may
contain duplicate elements).

Moreover, conn(e) denotes the multiset of entity types connected to e through
associations. For example, if r is the association HasComponent(assembly:Part,
component:Part), thenmembers(r)={Part, Part}, assoc(Part)={HasComponent,
HasComponent} and conn(Part)={Part}. Look at Fig. 4.1 to see the example.

The last row section in Table 4.1 defines the notation we use to take into
account the inherited properties from the ancestors of entity types. As a special
case, chiinh(e) is the set of descendants of e. The other metrics capture the entire
hierarchy of each entity type (e.g., associnh(e) collects all the associations where

1Note that “\” denotes the difference operation of multisets as in {a, a, b}\{a} = {a, b} and “]”
denotes the multiset (or bag) union that produces a multiset as in {a, b}] {a} = {a, a, b}

46

Chapter 4. Measures, Methods and Extensions

Figure 4.1: Example of basic metrics.

e ∈ E and its parents (and the parents of them, recursively) participates —as
assoc(e) is a multiset, associnh(e) can also contain repeated elements).

The set of basic metrics of Table 4.1 does not include metrics to gather the
knowledge contained in the behavioural schema nor the schema rules of the
structural schema. The reason is that the methods we have selected to study
(described in Section 4.2) do not use such information. The notation for these
new metrics is introduced in Section 4.3 before the description of the extended
versions of the basic methods.

4.2 Methods

This section presents the methods from the literature that were selected to be
included in the study of this thesis. These methods are based on occurrence
counting and on link analysis. A brief description was done at Chpt. 3 about
the state of the art in the field of how to compute the importance of entity
types.

As such methods were principally applied to ER schemas, the definition
here have been adapted with minor changes to accomplish the needs of the
UML modeling language. The knowledge provided by OCL will be included in
the extended versions of the methods in next sections.

Our purpose here is to formally describe a subset of methods in order to
extend them in next sections due to the knowledge they take into account is
not complete. Thus, the next are the base versions of the methods, using the
information gathered into the previously mentioned metrics —a subset of the
structural schema including entity and relationship types, attributes and gen-
eralizations.

47

4.2. Methods

4.2.1 The Connectivity Counter (CC)

The first method we present was firstly introduced by Moody and Flitman in
[37]. They suggest that central entities should be chosen as the entities of
highest business importance —the core business concepts in the model. Of
course, business importance is quite a subjective concept, and requires human
judgment. However a useful heuristic for identifying central entities is to identify
entities with the most relationships. Usually the most highly connected entities
are also the most important entities from a business viewpoint.

Following these indications we define the Connectivity Counter method as
the method that computes the importance of each entity type as the number of
relationships it participates in. Formally:

ICC(e) = |assoc(e)|

Look at the schema shown in Fig. 4.2. There are six entity types representing
information about a simple store with products, customers and more.

Figure 4.2: Example of schema.

The application of this method results in the values shown at Table 4.2 for
the importance of the entity types presented in Fig. 4.2. Then, the most relevant
entities are Customer and Product.

e ICC(e)

CreditCard 1

Customer 2

GoldCustomer 0

Person 0

Product 2

Supplier 1

Table 4.2: Results for CC applied to example of Fig 4.2.

48

Chapter 4. Measures, Methods and Extensions

4.2.2 The Simple Method (SM)

This method was introduced in [55] (called m0) and takes into account only the
number of directly connected characteristics of each entity type. Formally, the
importance ISM (e) of an entity type e is defined as:

ISM (e) = |par(e)|+ |chi(e)|+ |attr(e)|+ |assoc(e)|

Therefore, the importance of an entity type directly depends on the num-
ber of directly connected ascendants and descendants it has, the number of
attributes it owns, and the number of participations in relationship types it
does.

The values obtained after the application of the Simple Method to the pre-
vious schema are indicated in Table 4.3. There, it is possible to check that the
most important entity type is Customer followed by Product.

e |par(e)| |chi(e)| |attr(e)| |assoc(e)| ISM(e)

CreditCard 0 0 1 1 2

Customer 1 1 2 2 6

GoldCustomer 1 0 1 0 2

Person 0 2 1 0 3

Product 0 0 3 2 5

Supplier 1 0 1 1 3

Table 4.3: Results for SM applied to example of Fig 4.2.

4.2.3 The Weighted Simple Method (WSM)

This is a variation to the simple method that assigns a strength to each kind of
component of knowledge in the equation, such that the higher the strength, the
greater the importance of such component [13]. The definition of importance
here is:

IWSM (e) = qinh(|par(e)|+ |chi(e)|) + qattr|attr(e)|+ qassoc|assoc(e)|

where qattr is the strength for attributes, qinh is the strength for general-
ization/specialization relationships, and qassoc is the strength for associations.
Each of them with values in the interval [0,1]. Concretely, we have selected the
same strengths than the originals in [13]: qattr = 1, qinh = 0.6, and qassoc = 0.4.

The results of the application of the weighted simple method to the previ-
ous example are shown in Table 4.4. The most relevant entity type is already
Customer, followed by Product.

49

4.2. Methods

e qinh(|par(e)|+ |chi(e)|) qattr|attr(e)| qassoc|assoc(e)| IW SM (e)

CreditCard 0.6x0 1x1 0.4x1 1.4

Customer 0.6x2 1x2 0.4x2 4

GoldCustomer 0.6x1 1x1 0.4x0 1.6

Person 0.6x2 1x1 0.4x0 2.2

Product 0.6x0 1x3 0.4x2 3.8

Supplier 0.6x1 1x1 0.4x1 2

Table 4.4: Results for WSM applied to example of Fig 4.2.

4.2.4 The Transitive inheritance Method (TIM)

This is a variation of the simple method taking into account both directly defined
features and inherited ones (see m5 in [55]). For each entity type the method
computes the number of ascendants and descendants and all specified attributes
and accessible associations from it or any of its ascendants. Formally:

ITIM (e) = |parinh(e)|+ |chiinh(e)|+ |attrinh(e)|+ |associnh(e)|

As before, the results of the application of the TIM method to the previ-
ous example are shown in Table 4.5. Here, the most important entity type is
GoldCustomer, followed by Customer and Product.

One of the problems of this method is that it gives more relevance to those
entity types deeper in a hierarchy because such entities obtain the value (e.g.,
inherited attributes and participations in relationships) of their parents. That’s
why GoldCustomer is more relevant than Customer.

e |parinh(e)| |chiinh(e)| |attrinh(e)| |associnh(e)| IT IM (e)

CreditCard 0 0 1 1 2

Customer 1 1 3 2 7

GoldCustomer 2 0 4 2 8

Person 0 3 1 0 4

Product 0 0 3 2 5

Supplier 1 0 2 1 4

Table 4.5: Results for TIM applied to example of Fig 4.2.

4.2.5 EntityRank (ER)

The EntityRank method [54, 55] is based on link analysis following the same
approach than Google’s PageRank [11]. Roughly, each entity type is viewed as
a state and each association between entity types as a bidirectional transition
between them.

The importance of an entity type is the probability that a random surfer is
at that entity type with random jumps (q component) or by navigation through

50

Chapter 4. Measures, Methods and Extensions

relationships (1 − q component). Therefore, the resulting importance of the
entity types correspond to the stationary probabilities of the Markov chain,
given by:

IER(e) =
q

|E|
+ (1− q)

∑
e′∈conn(e)

IER(e′)
|conn(e′)|

Such formulation produces a system of equations. Concretely, for the exam-
ple of Fig. 4.2 such system would be as follows:

IER(CreditCard) = q
6 + (1− q)

(
IER(Customer)

2

)
IER(Customer) = q

6 + (1− q)
(
IER(CreditCard) + IER(Product)

2)
)

IER(GoldCustomer) = q
6

IER(Person) = q
6

IER(Product) = q
6 + (1− q)

(
IER(Customer)

2 + IER(Supplier)
)

IER(Supplier) = q
6 + (1− q)

(
IER(Product)

2

)
It is important to note that the relevance of an entity comes from the rele-

vance of the entities connected to it. The relevance flows through associations.
For the case of Customer, its relevance come from CreditCard and from Prod-
uct. As Product is connected with two entity types, a fragment of its relevance
(the middle) goes to each of its connected entities (Customer and Supplier).

To compute the importance of the entity types we need to solve this equation
system. If we fix that

∑
e∈E IER(e) = 1 then the results obtained are shown in

Table 4.6. We have chosen a q = 0.15, which is a common value in the literature.

e IER(e)

CreditCard 0.16

Customer 0.30

GoldCustomer 0.04

Person 0.04

Product 0.30

Supplier 0.16

Table 4.6: Results for ER applied to example of Fig 4.2.

4.2.6 BEntityRank (BER)

This is a variation of the previous method specifying that the probability of
randomly jumping to each entity type is not the same for each entity type, but
it depends on the number of its attributes [54, 55]. The higher the number of
attributes, the higher the probability to randomly jump to that entity type.
That is:

IBER(e) = q
attr(e)
|A|

+ (1− q)
∑

e′∈conn(e)

IBER(e′)
|conn(e′)|

51

4.2. Methods

As in the case of EntityRank, the formulation produces a system of equa-
tions. In this case the system would be as follows:

IBER(CreditCard) = q 1
9 + (1− q)

(
IBER(Customer)

2

)
IBER(Customer) = q 2

9 + (1− q)
(
IBER(CreditCard) + IBER(Product)

2)
)

IBER(GoldCustomer) = q 1
9

IBER(Person) = q 1
9

IBER(Product) = q 3
9 + (1− q)

(
IBER(Customer)

2 + IBER(Supplier)
)

IBER(Supplier) = q 1
9 + (1− q)

(
IBER(Product)

2

)
It is important to note that if an entity type is not connected to others

through associations, its relevance only consists on its percentage of attributes
multiplied by the coefficient of random jumps (q).

Similarly than with EntityRank, to compute the importance of the entity
types we need to solve this equation system. We fix that

∑
e∈E IBER(e) = 1

then the results obtained are shown in Table 4.7. We have already chosen a
q = 0.15, which is a common value in the literature.

One more time, the most important pair of entity types are Product and
Customer. Therefore a focused view of the schema shown in Fig 4.2 could
contain such two entities and the relationship type Buys placed between them.

e IBER(e)

CreditCard 0.15

Customer 0.31

GoldCustomer 0.02

Person 0.02

Product 0.33

Supplier 0.16

Table 4.7: Results for BER applied to example of Fig 4.2.

4.2.7 CEntityRank (CER)

Finally, the method that we call CEntityRank (m4 in [55]) follows the same idea
than EntityRank and BEntityRank, but including the generalization relation-
ships. Each generalization between ascendants and descendants is viewed as a
bidirectional transition, as in the case of associations. Formally:

ICER(e) = q1
attr(e)
|A|

+ q2

∑
e′∈gen(e)

ICER(e′)
|gen(e′)|

+ (1− q1− q2)
∑

e′′∈conn(e)

ICER(e′′)
|conn(e′′)|

The formulation produces a system of equations as in the other two methods

52

Chapter 4. Measures, Methods and Extensions

based on link analysis. In this case the system would be as follows:

ICER(CreditCard) = q1
1
9

+ (1− q1 − q2)
“

ICER(Customer)
2

”
ICER(Customer) = q1

2
9

+ q2
“

ICER(Person)
2

+ ICER(GoldCustomer)
”

+(1− q1 − q2)
“
ICER(CreditCard) + ICER(Product)

2
)
”

ICER(GoldCustomer) = q1
1
9

+ q2
“

ICER(Customer)
2

”
ICER(Person) = q1

1
9

+ q2
“

ICER(Customer)
2

+ ICER(Supplier)
”

ICER(Product) = q1
3
9

+ (1− q1 − q2)
“

IBER(Customer)
2

+ IBER(Supplier)
”

ICER(Supplier) = q1
1
9

+ q2
“

ICER(Person)
2

”
+ (1− q1 − q2)

“
IBER(Product)

2

”
Similarly than with EntityRank and BEntityRank, to compute the impor-

tance of the entity types we need to solve this equation system. We already fix
that

∑
e∈E ICER(e) = 1 then the results obtained are shown in Table 4.8. We

have chosen q1 = 0.1 and q2 = 0.2, which are some good values as indicated in
[55].

As in the previous methods the most important pair of entity types are
Product and Customer. However, we have obtained the similar rankings because
the schema shown in Fig 4.2 is very small. The methods presented here must
be tested with large schemas to bring out the differences between them.

e ICER(e)

CreditCard 0.13

Customer 0.32

GoldCustomer 0.05

Person 0.08

Product 0.27

Supplier 0.16

Table 4.8: Results for CER applied to example of Fig 4.2.

4.3 Extended Measures

This section presents some of the new approaches introduced in this thesis to
gather the knowledge of the whole schema. First of all, we introduce how to
deal with complex relationship types, including relationships whose degree is n
(n > 2) and reified relationships.

Next step consists on describe the power OCL brings us to take into account
the knowledge provided by the schema rules (SR) of the conceptual schema.
Our research here allows to uncover existing relationships between entity types
placed in OCL expressions that are useful in the relevance computation process.

Finally, we mix the previous techniques to introduce new metrics to squeeze
the knowledge previously extracted, mainly from the behavioural schema and

53

4.3. Extended Measures

the schema rules of the structural schema. Such metrics will be the key stone
in the extension of the base versions of the selected methods from the literature
introduced in Section 4.2.

4.3.1 Complex Relationship Types

The Unified Modeling Language (UML) allows to specify a special kind of rela-
tionship types that can have the same behaviour as entity types: the association
classes. Thus, the concept of reification is introduced as viewing a relationship
as an entity. Reification can easily be defined in UML, as shown in left sides of
Fig. 4.3 and Fig 4.4 for binary (entity C) and n-ary (entity AC) relationships.

As current methods in the literature are applied to schemas defined with
ER diagrams but not with UML/OCL, the problem of how to take into account
association classes is not explored in this field. To solve it, we propose to follow
the same approach than Olivé in Chapt. 6 of [40]. It consists on implicitly
reificate the current association class into another entity type associated through
new binary relationships with its previous participants. Look at Fig. 4.3 to see
the process.

It is important to maintain the same semantics before the explicit reification.
Thus, the modeler has to take care of cardinality constraints. In the case of a
binary reified relationship (left side of Fig. 4.3), the cardinality constraints after
the explicit reification are interchanged between the ends of the relationship
and the association class. This way, the cardinality constraints of an end go to
the new relationship between the other end and the new entity representing the
previous association class, in the side of such new entity type. In the side of the
previous ends the cardinality equals 1.

Figure 4.3: Implicit reification of a binary relationship with association class.

Furthermore, to maintain the semantics we also need a new uniqueness con-
straint for the new entity type after the implicit reification. Such constraint
cannot be defined graphically, so the modeler requires the use of OCL. Such
constraint can be written as shown in Fig. 4.3. Roughly, we need and invariant
to check that the same pair of instances of both ends (A and B in the im-
age) cannot be linked with the same instance of the new entity type (C in the
example) more than once.

After this process, it is possible to use the same metrics previously defined

54

Chapter 4. Measures, Methods and Extensions

because the conceptual schema only contain common relationship types —the
association classes have been converted into a group of binary relationships.

To sum up, in the case of binary relationships with association class the
steps are as follows:

1. Define the entity type representing the association class.

2. Define the new binary relationship types with its cardinality constraints.

3. Define the uniqueness constraint.

Association classes in n-ary relationships need a different conversion process
to be converted into explicit reifications. First step consisting on the conversion
of the structure follows the same rules than in the case of binary association
classes. Take a look at Fig. 4.4 to see that the association class (AC in the
figure) is changed by a common entity type with new relationships reaching
each of the initial ends.

Figure 4.4: Implicit reification of a n-ary (n>2) relationship with association class.

After that, the new cardinality constraints (see right side of Fig. 4.4) are
the same for each new relationship between the ends and the implicitly reified
association class 1:Many from the ends to the new entity type.

55

4.3. Extended Measures

As before, in the case of binary relationships with association class the steps
are as follows:

1. Define the entity type representing the association class.

2. Define the new binary relationship types with its cardinality constraints.

3. Define the uniqueness constraint.

4. Define as constraints as needed to maintain the same cardinality con-
straints as before.

In this case a uniqueness constraint is also needed and follows the same
idea than with binary relationships although this time the Tuple inside the
OCL expression has as members as the degree of the current association to
reify —each one of the members is one of the ends. Furthermore, for every
cardinality constraint in the initial phase (left side of Fig. 4.4) a new rule has
to be introduced to maintain the semantics. Such rule must be defined in OCL
following the same layout than the one shown in Fig. 4.4.

Another example of an implicit reification is shown in Fig. 4.5. We have
a ternary relationship with the association class Reservation. Following the
previous steps, Reservation is converted into a new entity type with three rela-
tionships.

Figure 4.5: Implicit reification of a ternary relationship with association class.

Each of these relationships have the same cardinality constraints 1:Many
from Table, Customer and Date to Reservation. After having the new structure,

56

Chapter 4. Measures, Methods and Extensions

it’s time to specify the uniqueness constraint which consists on the uniqueness
of a tuple with three elements as shown in Fig. 4.5.

Finally, the upper cardinality constraint in the end of Customer have to be
maintained. To do that, another constraint taking into account the semantics
of such cardinality constraint is also shown in Fig. 4.5.

As the reader can observe, the implicit reification of association classes solves
the problem of how to use the metrics with association classes. However, a new
doubt appears about whether the relevance of the new entity types representing
the reified association classes should be computed or not. After some evalua-
tions, we decide to include such entities in the importance computation process
because, as entity types, the concepts they represent really matter.

4.3.2 The Power of OCL

The schema rules previously defined are now taken into account. Here we present
a new approach to include the knowledge provided by such rules.

One of the most important type of elements in conceptual schemas are rela-
tionship types between entity types. Such relationships are the key in methods
based on link analysis. Our main goal here is to extract additional links between
entity types from the schema rules.

As explained earlier in this document, the Object Constraint Language pro-
vides a powerful textual notation to specify schema rules in a declarative way.
The notation of the OCL includes a set of expressions (see Fig 4.6), some of
them are used to describe navigations between elements of the schema (e.g.,
access to attributes and navigation to association ends with PropertyCallExp
expression of Fig. 4.7)

Furthermore, inside the body of a schema rule specified in OCL a set of
entity types are referenced through association ends owned by them, access
to attributes of other entity types, call to operations, and so on. Such set of
references can be used in the relevance computation process.

Each schema rule is defined in the context of an entity type. If we go through
the schema rules defined in previous sections and chapters we note that the first
part of each rule is a context environment where to declare the entity that owns
the rule. Of course, if we want to specify an invariant for to constraint the
values of an attribute, it is clear that the context of such rule will be the entity
type that owns the attribute.

Thus, if we mix the references with the concept of context we obtain a set
of links joining the context entity type with each of the referenced (let’s say
participants) entity types in the body of the rule.

The new uncovered links act as virtual edges in the graph of entities and
relationships types that conforms the conceptual schema. Such edges must be

57

4.3. Extended Measures

Figure 4.6: Fragment of the OCL metamodel including and overview of the expres-
sions. Extracted from [38].

Figure 4.7: Fragment of the OCL metamodel including navigation expressions. Ex-
tracted from [38].

included in the computation process in order to take into account the knowledge
added by invariants, derivation rules, and pre- and postconditions, all of them
written in OCL.

To understand our approach we show an example in Fig. 4.8 with a simple
schema containing three entity types and two relationships. The top of the
figure describes a schema rule that check the number of seats of a room. Con-
cretely, such number must be greater or equal than the number of assistants (the
audience) of the related meeting. Furthermore, in the right side of the top of
the figure there is a breakdown of the different sections of the OCL expressions
to show the referenced entity types.

It is possible to distinguish between the entity types that participate in the

58

Chapter 4. Measures, Methods and Extensions

body of this schema rule (indicated with dashed lines) and the context entity
type (indicated with a dotted line). Also, bold arrows indicate the structural
navigations through relationship types in the schema rule (from self, i.e. Room,
to Meeting, and from Meeting to Person using the rolename).

Figure 4.8: Example of uncovered links extracted from the OCL.

On one side, our approach consists on create new virtual links between the
context entity type and each one of the participants. We name these kind of
links Context-Participant Non-Structural links (CPNS). It is important to note
that although an entity type may participate more than once in the same body
of a schema rule, only one CPNS link is created between the context entity
type an such participant entity type to avoid deviation. It is possible to see the
CPNS links of the example in the right side of the bottom part of Fig. 4.8 (and
with dotted lines in the schema).

On the other hand, we also create virtual links between the participants

59

4.3. Extended Measures

that appear as source and target in a navigation expression of the OCL. In the
example of Fig. 4.8, the bold arrows of the top indicate two structural naviga-
tions. We mean structural navigations to such navigations through relationship
types. In this case we have the OCL expression self.meeting, which indi-
cates a navigation through the relationship between Room and Meeting (self
references the context of the schema rule, in this case, Room). Also we have
meeting.audience that shows the navigation through the relationship between
Meeting and Person.

Then, our approach consists on create new special links to note the use of
navigations through relationships in the body of a schema rule. We name these
kind of links Participant-Participant Structural links (PPS). It is possible to see
them in the bottom part of Fig. 4.8, indicated with dashed lines.

Finally, once we have extracted the CPNS and PPS links from the schema
rule, next step consists on avoid repetitions of links. Therefore, the final set
of uncovered links from a schema rule is the union of both sets. This way, the
repeated link Room-Meeting in the example will appear only once.

To sum up, the steps we have follow to obtain new links between entity types
from a schema rule are as follows:

1. Detect the context entity type of the schema rule.

2. Detect the referenced entity types in the body of the schema rule.

3. Construct virtual links between the context and the referenced entity types
(CPNS links).

4. Construct virtual links between the entity types that participate in navi-
gation expressions of the OCL (PPS links).

5. Apply the union operation with the previous sets to delete repetition of
links.

6. The result of the previous step is the set of uncovered links of the schema
rule

Next, we will introduce new metrics that will take into account the extracted
links from each one of the schema rules of the conceptual schema.

Another knowledge in the schema that has not been considered before is
the information provided by cardinality constraints in association ends of rela-
tionship types. Such information can be added to the relevance computation
process of entity types using the OCL.

Cardinality constraints can be converted into schema rules specified in OCL.
The way to do it is very simple. It only consists on create an invariant whose
context will be the entity type in the opposite side of the cardinality constraint,
for each cardinality constraint with a lower multiplicity greater than zero. The

60

Chapter 4. Measures, Methods and Extensions

same has to be done with cardinality constraints with an upper multiplicity
distinct than the asterisk (*).

As an example, if we go back to the example of Fig. 4.8, there is a cardi-
nality constraint whose upper multiplicity is 1 (the one in the side of Meeting).
Therefore, the new schema rule is as follows:

context Room inv: self.meeting->size()<=1

Thus, this schema rule will be processed according to the steps explained
before and the obtained links will be added into the calculation of the values
for the extended metrics of the next section.

4.3.3 Extended metrics

The behavioural schema consists of a set of event types. We adopt the view
that events can be modeled as a special kind of entity type [42]. Event types
have characteristics, constraints and effects. The characteristics of an event are
its attributes and the associations in which it participates. The constraints are
the conditions that events must satisfy to occur.

Each event type has an operation called effect() that gives the effect of an
event occurrence. The effect is declaratively defined by the postcondition of the
operation, which is specified in OCL (see chp. 11 of [40]). Furthermore, entity
and relationship types may be base or derived. If they are derived, there is
a formal derivation rule in OCL that defines their population in terms of the
population of other types.

We denote by SR (Schema Rules) the set of constraints, derivation rules
and pre- and postconditions. Each rule sr ∈ SR is defined in the context of an
entity type, denoted by context(sr). In OCL, each rule sr consists of a set of
OCL expressions (see OCL [38]) which we denote by expr(sr). An expression
exp may refer to several entity types which are denoted by members(exp). The
set of entity types that are referred to in one or more expressions of a rule sr is
denoted by ref(sr).

We also include in SR the schema rules corresponding to the equivalent OCL
invariants of the cardinality constraints. For example, in Fig. 4.9 the cardinality
“1..*” between Company and Employee is transformed into the invariant:

context Company inv: self.employee->size()>=1

A special kind of OCL expression is the navigation expression that define a
schema navigation from an entity type to another through an association (see
NavigationCallExp of OCL in [38]). We use exprnav(sr) to indicate the nav-
igation expressions inside a rule sr ∈ SR. Such expressions only contain two
entity types as its participants, i.e. the source entity type and the target one
(see the example in Fig. 4.9).

61

4.3. Extended Measures

Notation Definition

context(sr) = e ∈ E | sr ∈ SR ∧ sr DefinedIn e

members(exp) = {e ∈ E | e is a participant of exp}

expr(sr) = {expr | expr is contained in sr}

ref(sr) = ∪exp∈expr(sr){members(exp)}

exprnav(sr) = {expr ∈ expr(sr) | expr is a navigation expression}

navexpr(sr) = ∪exp∈exprnav(sr){{e, e′} ⊂ E | {e, e′} = members(exp)})

navcontext(sr) = {{e, e′} ⊂ E | e = context(sr) ∧ e′ ∈ ref(sr)}

nav(sr) = navcontext(sr) ∪ navexpr(sr)

rconn(e) =]sr∈SR{e′ ∈ E | {e, e′} ⊂ nav(sr)}2

rconninh(e) = rconn(e)] {rconninh(e′) | e′ ∈ par(e)}

Table 4.9: Definition of extended metrics.

We denote by navexpr(sr) the set of pairs that participate in the navigation
expressions of sr ∈ SR. We also denote by navcontext(sr) the sets of pairs
of entity types composed by the context of the rule sr and every one of the
participant entity types of such rule (e ∈ ref(sr)). Finally, we define nav(sr)
as the union of navcontext(sr) with navexpr(sr) and, rconn(e) as the multiset of
entity types that compose a pair with e in nav(sr). Note that since we use],
rconn(e) may contain duplicates because it takes into account each rule sr and
an entity type e can be related to another one e′ in two or more different rules.
Intuitively, rconn(e) is the multiset of entity types to which an entity type e is
connected through schema rules.

context(minSalaryRule) = Industry
exprnav(minSalaryRule) = {self.company,

company.employee}
ref(minSalaryRule) = {Industry, Company, Employee}
navcontext(minSalaryRule) = {{Industry, Industry},

{Industry, Company},
{Industry, Employee}}

navexpr(minSalaryRule) = {{Industry, Company},
{Company, Employee}}

nav(minSalaryRule) = {{Industry, Industry},
{Industry, Company},
{Company, Employee},
{Industry, Employee}}

Figure 4.9: Example of navigations of minSalaryRule. Dashed lines (a), (b)
and (c) represent the elements in navcontext(minSalaryRule) while
(d) and (a) are the connections through navigation expressions (see
navexpr(minSalaryRule)).

2Note that “]” denotes the multiset (or bag) union that produces a multiset as in {a, b}]{a} =
{a, a, b}. Apart from it, we also force that rconn(e) = ∅ (empty set) if conninh(e) = ∅.

62

Chapter 4. Measures, Methods and Extensions

4.4 Extended Methods

This section presents the extended versions of the methods introduced in Sec-
tion 4.2. Such extensions take into account the schema rules, including the
conversion of cardinality constraints into OCL invariants.

We formally define the new components of each method and use a extended
schema with a set of schema rules to increase the understandability of the meth-
ods. Such example is a reformulation of the one in Fig. 4.2, shown at Fig. 4.10.

Figure 4.10: Extension of the schema in Fig.4.2 with some OCL invariants.

The conversion of the cardinality constraints of the schema in Fig. 4.10 is as
follows:

context Product inv: self.supplier->size()>=1

context Product inv: self.supplier->size()<=1

context CreditCard inv: self.employee->size()>=1

context CreditCard inv: self.customer->size()<=1

It is important to note that we create a new schema rule defined in OCL for
each cardinality constraint. A possible change here could be were the lower an
upper values of a multiplicity have the same value, as in the previous example
where the value is 1. Thus, the conversion will result in:

context Product inv: self.supplier->size()=1

context CreditCard inv: self.employee->size()=1

However, we select to convert as in the first case because if we would have
a lower value greater than zero and an upper value distinct than asterisk, and
such values were different, then the conversion in this case will produce a pair of
schema rules, while if the values of the upper and the lower values are equal it
produces only one schema rule. To be consistent, we prefer to create a schema
rule for each upper or lower value.

63

4.4. Extended Methods

4.4.1 The Connectivity Counter Extended (CC+)

Our extension to this method follows the same idea than the base version but
also including the number of participations of each entity type in the navigation
relationships extracted from the schema rules specification, i.e., derivation rules,
invariants and pre- and postconditions (and cardinality constraints). On the
other hand, we now take into account (in |assoc(e)|) the associations of each
entity type e with the event types of the behavioural schema (in case of such
events were defined). Formally:

I+
CC(e) = |assoc(e)|+ |rconn(e)|

Table 4.10 presents the obtained results once this method has been applied
to example of Fig 4.10. One more time, we conclude that Product and Customer
are the most relevant entity types.

e |assoc(e)| |rconn(e)| I+
CC(e)

CreditCard 1 6 7

Customer 2 10 12

GoldCustomer 0 4 4

Person 0 0 0

Product 2 14 16

Supplier 1 4 5

Table 4.10: Results for CC+ applied to example of Fig 4.10.

Note that although the value of |rconn(Person)| is not zero, there is a
condition into the extended metrics to be consistent. Such condition states
that the entity types that are not directly or indirectly (with inherited associ-
ations from their parents) connected through relationships with other entities
(conninh(e) = ∅), must have a rconn equal to the empty set. The cause of it is
to avoid give importance to entity types from virtual connections (that should
enforce real connections) when such entities are really unconnected.

4.4.2 The Simple Method Extended (SM+)

As in the extended version of the Connectivity Counter, the Simple Method
has been extended including the number of participations of each entity type
in the navigation relationships extracted from the schema rules specification
(and cardinality constraints). We also take into account (in |assoc(e)|) the
associations of each entity type e with the event types of the behavioural schema
(in case of such events were defined). Formally:

I+
SM (e) = |par(e)|+ |chi(e)|+ |attr(e)|+ |assoc(e)|+ |rconn(e)|

For example, if this extended version of the simple method, and also the
simple method, were applied into the schema shown in Fig. 4.9, we would have

64

Chapter 4. Measures, Methods and Extensions

ISM (Company)=2 and I+
SM (Company)=8, because |par(Company)|=|chi(Com-

pany)|=|attr(Company)| =0, |assoc (Company)|=2, and |rconn(Company)|=6,
of which two come for the invariant (minSalaryRule) and the other four from
the OCL equivalent to the cardinality constraints of multiplicity “1..*” in its
relationships with Industry and Employee.

The values obtained after the application of the extended version of the sim-
ple method to the previous schema shown at Fig 4.10 are indicated in Table 4.11.
There, it is possible to check that the most important entity type is Customer
followed by Product.

e |par(e)| |chi(e)| |attr(e)| |assoc(e)| |rconn(e)| I+
SM(e)

CreditCard 0 0 1 1 6 8

Customer 1 1 2 2 10 16

GoldCustomer 1 0 1 0 4 6

Person 0 2 1 0 0 3

Product 0 0 3 2 14 19

Supplier 1 0 1 1 4 7

Table 4.11: Results for SM+ applied to example of Fig 4.10.

As the reader can observe, it is possible to say that the Simple Method is
also a extended version of the Connectivity Counter (in both base and extended
cases).

4.4.3 The Weighted Simple Method Extended (WSM+)

Our extension to this method consists on adding the schema rules navigation
component to the importance computation. In the same way as the other com-
ponents, we selected a strength (qrule) to specify the weight of navigation rela-
tionships in the schema rules. The definition is now:

I+
WSM (e) = qinh(|par(e)|+|chi(e)|)+qattr|attr(e)|+qassoc|assoc(e)|+qrule|rconn(e)|

We use the same strengths than in the base version of the method. Con-
cretely qattr = 1, qinh = 0.6, and qassoc = 0.4. Furthermore, we use for qrule

the same strength as qassoc. Although it is possible to use a different strength
for qrule, since the behaviour of |rconn(e)| is similar than for |assoc(e)| due to
both represent participations of entities, we decided to use the same strength.

The results of the application of the weighted simple method to the example
in Fig 4.10 are shown in Table 4.12. The most relevant entity type is already
Product, followed by Customer. As the reader can observe, this pair of entities
are selected by all the methods presented here as the most important ones. The
littleness of the example is the main cause of this behaviour.

65

4.4. Extended Methods

e qinh(|par(e)|+ |chi(e)|) qattr|attr(e)| qassoc|assoc(e)|

CreditCard 0.6x0 1x1 0.4x1

Customer 0.6x2 1x2 0.4x2

GoldCustomer 0.6x1 1x1 0.4x0

Person 0.6x2 1x1 0.4x0

Product 0.6x0 1x3 0.4x2

Supplier 0.6x1 1x1 0.4x

e qrule|rconn(e)| I+
W SM(e)

CreditCard 0.4x6 3.8

Customer 0.4x10 8

GoldCustomer 0.4x4 3.2

Person 0.4x0 2.2

Product 0.4x14 9.4

Supplier 0.4x4 3.6

Table 4.12: Results for WSM+ applied to example of Fig 4.10.

4.4.4 The Transitive inheritance Method Extended (TIM+)

In the same way as before, we extend it with the schema rules navigation com-
ponent. This time the computation of such component also takes into account
the rconn of the ancestors:

I+
TIM (e) = |parinh(e)|+ |chiinh(e)|+ |attrinh(e)|+ |associnh(e)|+ |rconninh(e)|

As before, the results of the application of the TIM+ method to the previous
example are shown in Table 4.13. Here, the most important entity type is
GoldCustomer, followed by Product and Customer.

4.4.5 EntityRank Extended (ER+)

In our extension to the EntityRank method we add a new component to the
formula in order to jump not only to the connected entity types but also to the
virtually connected ones through the navigation relationships uncovered in the
schema rules. The definition is now:

I+
ER(e) =

q

|E|
+ (1− q)

 ∑
e′∈conn(e)

I+
ER(e′)
|conn(e′)|

+
∑

e′′∈rconn(e)

I+
ER(e′′)

|rconn(e′′)|


If we fix that

∑
e∈E I

+
ER(e) = 1 then the results obtained are shown in

Table 4.14. Remember that we have chosen a q = 0.15, which is a common
value in the literature.

66

Chapter 4. Measures, Methods and Extensions

e |parinh(e)| |chiinh(e)| |attrinh(e)|

CreditCard 0 0 1

Customer 1 1 3

GoldCustomer 2 0 4

Person 0 3 1

Product 0 0 3

Supplier 1 0 2

e |associnh(e)| |rconninh(e)| I+
T IM(e)

CreditCard 1 6 8

Customer 2 10 17

GoldCustomer 2 14 22

Person 0 0 4

Product 2 14 19

Supplier 1 4 8

Table 4.13: Results for TIM+ applied to example of Fig 4.10.

e I+
ER(e)

CreditCard 0.15

Customer 0.25

GoldCustomer 0.11

Person 0.03

Product 0.34

Supplier 0.12

Table 4.14: Results for ER+ applied to example of Fig 4.10.

4.4.6 BEntityRank Extended (BER+)

Our extension for the BEntityRank method is in the same way as in ER+. The
difference between the formula of ER+ and BER+ is that BER+ takes into
account the values of the attribute measure of BEntityRank. The definition is:

I+
BER(e) = q

attr(e)
|A|

+ (1− q)

 ∑
e′∈conn(e)

I+
BER(e′)
|conn(e′)|

+
∑

e′′∈rconn(e)

I+
BER(e′′)
|rconn(e′′)|



Similarly than other methods based on link analysis, to compute the impor-
tance of the entity types we need to solve an equation system (the same as in
BER but including the new components provided by rconn measure). We fix
that

∑
e∈E I

+
BER(e) = 1 then the results obtained are shown in Table 4.15. We

have already chosen a q = 0.15, which is a common value in the literature.

67

4.4. Extended Methods

e I+
BER(e)

CreditCard 0.15

Customer 0.26

GoldCustomer 0.10

Person 0.02

Product 0.36

Supplier 0.11

Table 4.15: Results for BER+ applied to example of Fig 4.10.

4.4.7 CEntityRank Extended (CER+)

One more time, our extension includes the uncovered navigations of the schema
rules as bidirectional transitions for the random surfer. The new definition is
the same as for CER but including the measure of the knowledge provided by
the schema rules:

I+
CER(e) = q1

attr(e)
|A|

+ q2

∑
e′∈gen(e)

I+
CER(e′)
|gen(e′)|

+ (1− q1 − q2)

 ∑
e′′∈conn(e)

I+
CER(e′′)
|conn(e′′)|

+
∑

e′′′∈rconn(e)

I+
CER(e′′′)
|rconn(e′′′)|



We already fix that
∑

e∈E I
+
CER(e) = 1 then the results obtained are shown

in Table 4.16. We have chosen q1 = 0.1 and q2 = 0.2, which are some good
values as indicated in [55].

As in the previous methods the most important pair of entity types are
Product and Customer, and we have obtained similar rankings because the
schema shown in Fig 4.10 is very small. The methods presented here must be
tested with large schemas to bring out the differences between them.

e I+
CER(e)

CreditCard 0.12

Customer 0.27

GoldCustomer 0.12

Person 0.06

Product 0.31

Supplier 0.12

Table 4.16: Results for CER+ applied to example of Fig 4.10.

68

Chapter 4. Measures, Methods and Extensions

4.5 Comparison

In the previous sections the algorithms that conform a sample of the existing
methods in the literature about how to compute the importance of conceptual
schema’s entity types have been explained. Here we want to discover some
differences between them.

After the study of each method and measure, it is possible to detect two main
characteristics. On one hand, there are two types of methods –those based on
occurrence counting and those that follow the link analysis approach. Take a
look at Table 4.17 to see this classification.

Occurrence Counting Link Analysis

CC ER

SM BER

WSM CER

TIM

CC+ ER+

SM+ BER+

WSM+ CER+

TIM+

Table 4.17: Classification of selected methods according to their approach.

Methods based on occurrence counting are similar to those methods in the
field of text searching that count the frequency of words to select the most
important ones. Remember the example shown in Fig. 2.8 of Chpt. 2. The
difference here is that these methods count for each entity type the number of
related elements to it (or owned by it, as in the case of attributes), plus the
number of occurrences of such entity type in schema rules and in the conversion
of cardinality constraints to rules.

This way, we follow the principle of high appearance –the more occurrences
an item has in an scope, the more important such item becomes.

Methods based on link analysis take into account the importance of the other
related elements to the current one because the importance of the current is an
addition of fragments of the importance of the others. Remember the example
with smileys in Fig 3.10 of Chpt. 3. Thus, methods based on link analysis
approach need special iterative algorithms to solve the importance computation
based on a system of equations.

Such iterative methods attempt to solve a problem by finding successive
approximations to the solution starting from an initial point. These itera-
tive solvers, like the Jacobi algorithm, the power method or the inverse power
method (see [56]), are computationally expensive and slower than the methods

69

4.5. Comparison

based on occurrence counting. However, solutions obtained from these methods
have better results taking into account lower amounts of knowledge, as we will
see in next chapter.

On the other hand, there exists another difference between base methods and
extended ones: the amount of knowledge taken into account in the computation
process of the relevance of entity types.

As explained in the previous chapters, methods to calculate the relevant
entity types of a conceptual schema use some metrics whose values are gathered
from the structural subschema. Our approach introduces some new measures
to convert the knowledge within the whole conceptual schema (including the
behavioural subschema) into meters for relevance.

Table 4.18 shows the different elements of knowledge of the conceptual
schema taken into account for each of the (base and extended) methods. Cells
with an x indicate that the algorithm in the row uses the information of the
column.

First four columns include entity and relationship types, generalization/speci-
alization relationships and attributes in the structural schema. In the base
versions, the methods only use the knowledge of such columns depicted in the
structural schema. Extended versions also use the entity and relationship types,
attributes and generalizations included in the behavioural schema, and therefore
the schema rules and elements of the complete conceptual schema.

Last columns of Table 4.18 represent the knowledge extracted from the
schema rules, including derivation rules, invariants, pre- and postconditions
and, of course, the conversion of cardinality constraints into schema rules.

First rows in the table shows the base versions of the methods. Such methods
only use information from the structural schema. As the event types are part
of the behavioural schema, they are not applicable in this part of the table.
Finally, last rows are the extended versions of the algorithms in the first rows.

The gap in the rows of CC, ER and BER methods referencing the use of gen-
eralization relationships and attributes is maintained in the extended versions
CC+, ER+ and BER+ to follow the same approach than in the base versions.
In the case of ER+ and BER+, the complete link analysis-based method that
takes into account the whole knowledge is the extension of the CEntityRank
(CER+).

It is really clear that the extended versions of the selected methods from the
literature take into account more knowledge from the conceptual schema than
the base versions. Therefore, according to the Principle of High Appearance in
Conceptual Schemas, the results obtained with the extended versions are more
realistic because there is more amount of knowledge that contributes to calculate
the importance of entity types.

70

Chapter 4. Measures, Methods and Extensions

Knowledge

Base
Methods
(Structural Schema)

E
nt

it
y

T
yp

es

R
el

at
io

ns
hi

p
T

yp
es

G
en

er
al

iz
at

io
n

R
el

at
io

ns
hi

ps

A
tt

ri
bu

te
s

C
ar

di
na

lit
y

C
on

st
ra

in
ts

D
er

iv
at

io
n

R
ul

es

In
va

ri
an

ts

P
re

-
an

d
P

os
tc

on
di

ti
on

s

E
ve

nt
T

yp
es

CC x x n/a

SM x x x x n/a

WSM x x x x n/a

TIM x x x x n/a

ER x x n/a

BER x x x n/a

CER x x x x n/a

Extended
Methods
(Complete Schema)

CC+ x x x x x x x

SM+ x x x x x x x x x

WSM+ x x x x x x x x x

TIM+ x x x x x x x x x

ER+ x x x x x x x

BER+ x x x x x x x x

CER+ x x x x x x x x x

Table 4.18: Comparison of knowledge used between both base and extended versions
of the selected methods.

71

72

Chapter 5

Experimental Evaluation

We have implemented the methods described in the previous section, in both
the original and the extended versions. We have then evaluated the methods
using two distinct case studies: the osCommerce [52] and the UML metaschema
[8, 9]. The original methods have been evaluated with the input knowledge
they are able to process: the entity types, attributes, associations and gener-
alization/specialization relationships of the structural schemas. On the other
hand, to evaluate the extended versions we have use the complete conceptual
schemas.

For the osCommerce, the extended versions have been evaluated with the
complete structural schema, and the complete behavioural schema (including
event types and their pre/post conditions). For the UML metaschema there is
no behavioral schema and therefore we have only used the complete structural
schema (also taking into account schema rules and cardinality constraints).

Section 5.1 introduces the two conceptual schemas selected for the evaluation
of the methods explained in the previous chapter. Section 5.2 summarizes the
main conclusions we have drawn from the study of the correlation between the
results of each of the methods. Section 5.4 studies the differences of execution
time for the previous methods in order to extract some ideas about in which
situations could be preferably to use one method or another. And finally Section
5.4 presents a comparison between the most important entity types obtained
from the methods.

5.1 Conceptual Schemas for the Evaluation

Large conceptual schemas are more common than it seems at first. There exists
an important number of organizations that work with big schemas but to get
access to them is not an easy task due to such organizations consider their
schemas as one of the most valuable artifacts they have and, therefore, their

73

5.1. Conceptual Schemas for the Evaluation

aim is to protect the schemas from external persons.

Fortunately, the research group I belong to (GMC1) has a conceptual schema
to make tests with it for the research of the group –the conceptual schema of
the osCommerce [52].

Furthermore, we have found another conceptual schema that should be useful
to check the behaviour of the methods to compute the importance of entity
types. It is an implementation of the UML metaschema [39], which can be
considered as a large schema because of it contains a big amount of entity
types, although the most well-known part was the kernel package, containing
concepts like class, association and so on.

5.1.1 The osCommerce

The osCommerce is an open source solution for e-commerce portals that can
be adapted to the requirements of every business and each geographical zone.
It is composed by two sections: an e-commerce portal or online store, and the
administration of it.

The online store allow users to check the available products of the seller
and purchase them. On the other hand, the administration section provides
a flexible and adaptable way of configure the portal according to the needs of
the owner of the store, including customization of taxes to apply, languages to
support, look&feel of the portal and so on. Look at Fig. 5.1 to see an example
of the osCommerce page for to confirm an order.

Figure 5.1: Order confirmation at osCommerce.

1http://guifre.lsi.upc.edu/index.html

74

Chapter 5. Experimental Evaluation

The osCommerce is maintained by the osCommerce Team and the informa-
tion of the project can be found on the web2. The osCommerce was started
in March 2000 and has since matured to a solution that is currently powering
14,112 registered live shops around the world.

The conceptual schema of the osCommerce was the result of the final project
of Tort for his degree in informatics [52]. It comprises 346 entity types (of which
261 are event types belonging to the behavioural schema), 458 attributes, 183
associations, 204 general constraints and derivation rules and 220 pre- and post
conditions.

The structural schema of the osCommerce contains the concepts that are
useful to maintain in the field of the e-commerce. Such concepts, represented
as entity types and the relationships between them are shown in a reduced way
at Fig. 5.2. The entities that appear there are supposed to be the most relevant
ones, although this diagram was manually constructed by Tort and Olivé in [52]
without the aid of any of our methods.

!

!
!!"#$%&'($)*)!+,-$)./#$/*!0&!/*)*-"#1*!
!"#!"#$%&'&(%&$

23!

!"#$%&'()*!"#$%&+

! !"#$%%&'(&! 4!5!!"#$%"$#&'(!%)*+&!

,-.!/0*#01*2(31&4#&+(

"#$!%&$'&($)!*(+,'+-!'$.'$/$01/!+!/(-.2(3($*!4%04$.15+2!/4#$-+!)#(4#!,(&$/!+0!%&$'&($)!%3!

1#$!-+(0!4%04$.1/!(0!1#$!osCommerce!*%-+(06!7%'$!*$1+(2/!+8%51!$+4#!4%04$.1!+'$!,(&$0!(0!

1#$!0$91!/$41(%0:!)#$'$!1#$!)#%2$!/4#$-+!(/!3522;!/.$4(3($*6!

Session

ShoppingCart Newsletter

Country

Customer

Address

OrderLineAttribute

Currency

ShippingMethod

PaymentMethod

Review

TaxClass

Category

Manufacturer

Product

Banner

Order

Language

Zone

OrderLine

Option

Value

<66=

<66=

ProductAttribute

>>

>=

=>

>

>=

>

=

>

Attribute

>

>

>

>>

<66=

>

<66=

=

>

=66>

=>

=

<66=

<66=

> =

>

=

=>

=66>

=

><66=

>=

=

>

!
!
!Figure 5.2: Simplification of the structural schema of the osCommerce. Extracted

from [52]

2http://www.oscommerce.com/

75

5.1. Conceptual Schemas for the Evaluation

The main characteristic of the conceptual schema of the osCommerce is
that the event types of the behavioural schema are available and, therefore, the
knowledge they provide can be included in the importance computation process.
Such schema will be totally processed by the extended versions of the methods
of the previous chapter. Thus, we consider the osCommerce as a complete and
large conceptual schema.

Each event type of the behavioural schema has its own structure, integrity
constraints and effect defined in UML/OCL and then our methods are able to
work with them. Look at the example of event type at Fig. 5.3.

!

!
!!"#$%&'($)*)!+,-$)./#$/*!0&!/*)*-"#1*!
!"#!"#$%&'&(%&$

234!

!"#$%&'()*!"#$%&+

! !"#$%%&'(&! 5!6!!"#$%&'($)*+,#"-$!

!! Effect

!"#$%&$''()*+$%,-..%#!/0+1-%,2+#3%44%55%!$67'
''')"8$'4''8%159!-..%#!/9:+1-%';'8%159#%<0+1-%'
''')"8$'4''8%159!-..%#!/91+8$()*+$%*';'="<67'
'

!
>:%#$'

()*+$%?.*%.@$+$-8'

!! Event diagram

UpdateOrderStatus

"#$$%&'(!)!*'+,&-!./0012

%33%"'45

ExistingOrderEvent DomainEvent

OrderStatus

Order

&%67+8%+*'9':(

1

1

!

!! Effect

!"#$%&$'',2+#3%?.*%.@$+$-844%55%!$67'
''')"8$'4'''
'''''''"8!9"!1A8=%<67'+#*'
'''''''"8!9"!1A8B/)%?56?.*%.@$+$-8,2+#3%7'+#*'
'''''''"8!9!"CC%#$8';'8%159!"CC%#$8'+#*'
'''''''"8!9".*%.';'8%159".*%.'+#*'
'''''''"8!9".*%.@$+$-8';'8%159#%<?.*%.@$+$-8'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Figure 5.3: UpdateOrderStatus event at osCommerce. Extracted from [52]

Since the event types are modeled as entity types, the same methods to com-
pute the importance of entity types can be applied to compute the importance
of event types. Furthermore, we can obtain two rankings –one for the most
relevant entity types and other for the most relevant event types.

76

Chapter 5. Experimental Evaluation

5.1.2 The UML Metaschema

On the other hand, we have another large conceptual schema to proof the meth-
ods –the conceptual schema of the UML metaschema [39]. This time, such
schema does not contain any information about event types. However its struc-
tural schema contains a big amount of entity types, relationships and schema
rules.

The version of the UML metaschema we have used (see [8, 9]) comprises 293
entity types, 93 attributes, 377 associations, 54 derivation rules and 116 general
constraints. A view of the kernel section of the UML metaschema can be found
in Fig. 5.4. The kernel section is the most well-known section of this schema,
although it worths mentioning that it is only a little fragment of the whole.

Figure 5.4: Shape of the Kernel section of the UML metaschema.

We define the connectivity degree δ of a conceptual schema as the factor that
results from the fraction of the number of relationship types and the number of
entity types. Formally:

δ =
|R|
|E|

Therefore, according to the information of our two schemas, the connectivity
degree is shown at Table 5.1. It is easy to see that although the conceptual
schema of the osCommerce includes the event types in the behavioural schema,
the conceptual schema of the UML metaschema has a higher connectivity degree
δ. Thus, the conceptual schema of the UML metaschema is a more connected
schema.

77

5.2. Correlation Study

Conceptual Schema δ

osCommerce 183
346
' 0.52

UML Metaschema 377
293
' 1, 29

Table 5.1: Connectivity degree δ for the test schemas.

5.2 Correlation Study

This section analyses the similarity between the different methods proposed to
compute the importance of entity types. The main purpose here is to determine
the behaviour of the methods in order to extract some useful conclusions.

Roughly, we define correlation as a measure that indicates the strength and
direction of a linear relationship between two variables.The correlation is 1 in
the case of an increasing linear relationship, -1 in the case of a decreasing linear
relationship, and some value in between in all other cases, indicating the degree
of linear dependence between the variables. The closer the coefficient is to either
-1 or 1, the stronger the correlation between the variables. If the variables are
independent then the correlation is 0.

This way, we compute the correlation between the results for each pair of
methods in order to estimate whether the obtained rankings of entity types
according to the computed relevance are dependent or not. If such results have
a high degree of linear dependency, it is possible to say that the results are
similar in both methods.

5.2.1 Correlation Between the Original and the Extended
Versions

Firstly, we study the correlation between the original and the extended version
for the methods described in the previous chapter. Our research wants to answer
if there are some of the base versions that maintain a higher degree of similarity
with their extended versions.

Figure 5.5 shows, for each method, the results obtained in the original and
the extended versions for the conceptual schema of the osCommerce. The hori-
zontal axis has a point for each of the 85 entity types of the structural schema,
ordered descendently by their importance in the original version. The vertical
axis shows the importance computed in both versions. The importance has
been normalized such that the sum of the importance of all entity types in each
method is 100. Therefore we can consider the vertical axis as the percentage of
relevance each entity type has.

It worths mentioning that for the case of the conceptual schema of the os-
Commerce, to compare the results of the base and extended versions we only use
the structural schema for the base versions and the whole schema (containing

78

Chapter 5. Experimental Evaluation

the behavioural schema, with event types) for the extended versions. However,
in the comparison shown at Fig. 5.5 we only use 85 entity types that are the ones
that belong to the structural schema due to the event types cannot be compared
because the base versions only take into account the structural schema.

As shown in Fig. 5.5(g) the highest correlation between the results of both
versions is for the CEntityRank (r=0.931), closely followed by the BEntityRank
(r=0.929). The lowest correlation is for the Weighted Simple Method (r=0.61).
Similar results are obtained for the UML metamodel. In this case the correlation
between the two versions of the Weighted Simple Method is 0.84 and that of
the CEntityRank is 0.96 (see those results at Fig. 5.6).

An important behaviour is for the Connectivity Counter in the case of the
conceptual schema of the osCommerce. The reader can observe at Fig. 5.5(a)
that the correlation between the results obtained by CC and CC+ have a higher
degree of linear dependency. This behaviour is a little bit lower in the case of
the UML metaschema. It is possible to say that in the case of osCommerce,
the schema has a lower degree of connectivity (see Table 5.1) therefore, the
power given by relationships generates a higher amount of relevancy to those
entity types that have a high number of participations in relationships. In
the case of the UML metaschema, due to its higher connectivity degree, the
importance of being connected is relatively lower because almost all the entities
have participations in relationships.

The conclusion from this result is that the method that produces more sim-
ilar results in both versions is the CEntityRank, followed by the BEntityRank.
The conclusion is significant because it implies that if we have to compute the
importance of the entity types of a schema, but we only have its attributes, as-
sociations and generalization/specialization relationships, the original method
that gives results more similar to those that would be obtained in the extended
method is the CEntityRank, followed by the BEntityRank.

Obviously, the methods based on link analysis are more constant than those
based on occurrence counting. The main reason for this behaviors is the re-
cursive definition of its formulas. Such methods need the importance of other
entity types in order to compute the importance of an entity. Therefore, it im-
plies the existence of a dependency that implies an iterative computation from
an initial point to achieve the convergence to the final result. In the case of
occurrence counting methods, the computation of the relevance for an entity is
totally independent from the other entity types.

We tend to believe that these are the methods of choice when one wants to
compute the relative importance of entity types taking into account the whole
schema, but only a fragment of it is available (or only a fragment of it can be
processed with the available tools).

This conclusion contrasts with the results reported in [55], which, based on
subjective evaluations given by expert evaluators (oracles), concludes that the
method that gives the best results is the Simple Method. However, Fig. 5.5(b)
shows that the result given by that method has a lower similarity when the
whole schema knowledge is taken into account.

79

5.2. Correlation Study

(a) CC+ vs CC (b) SM+ vs SM

(c) WSM+ vs WSM (d) TIM+ vs TIM

(e) ER+ vs ER (f) BER+ vs BER

(g) CER+ vs CER

Figure 5.5: Comparison between base and extended importance-computing methods
once applied to the osCommerce schema.

80

Chapter 5. Experimental Evaluation

(a) CC+ vs CC (b) SM+ vs SM

(c) WSM+ vs WSM (d) TIM+ vs TIM

(e) ER+ vs ER (f) BER+ vs BER

(g) CER+ vs CER

Figure 5.6: Comparison between base and extended importance-computing methods
once applied to the UML metaschema.

81

5.2. Correlation Study

5.2.2 Variability of the Original and the Extended Ver-
sions

Another interesting experiment is to study the correlation between base ver-
sions and extended versions separately. This way it is possible to compare the
results of such methods and to search for a common behaviour according to
if the methods take into account the complete conceptual schema or only the
structural subschema.

Table 5.2 shows the correlation between each pair of methods (separately,
originals and extended versions), in the case study of the UML metaschema.
It can be seen that, if we exclude the Transitive Inheritance Method (TIM)
because it gives the worst results, the correlation in the original versions of the
methods ranges from 0.73 to 0.98, while in the extended versions the range is
from 0.81 to 0.99.

ICC ISM IWSM ITIM IER IBER ICER

ICC 0.87 0.79 0.06 0.96 0.85 0.86

ISM 0.98 0.15 0.82 0.79 0.92

IWSM 0.16 0.73 0.77 0.90

ITIM 0.06 0.07 0.11

IER 0.82 0.83

IBER 0.91

I+
CC I+

SM I+
WSM I+

TIM I+
ER I+

BER I+
CER

ICC 0.99 0.97 0.23 0.93 0.82 0.81

I+
SM 0.99 0.26 0.93 0.83 0.86

I+
WSM 0.27 0.91 0.85 0.89

I+
TIM 0.25 0.24 0.30

I+
ER 0.84 0.84

I+
BER 0.91

Table 5.2: Correlation coefficients between results of original and extended methods
for the UML metaschema.

On the other hand, Table 5.3 shows the correlation between each pair of
methods (separately, originals and extended versions), in the case study of the
conceptual schema of the osCommerce. It can be seen that, if we exclude the
Transitive Inheritance Method (TIM) because it gives the worst results, the
correlation in the original versions of the methods ranges from 0.59 to 0.98,
while in the extended versions the range is from 0.92 to 0.99. Furthermore, the
correlation of all the pairs in which TIM appears have an increased value in the
extended version.

Both tables (Table 5.2 and Table 5.3) are summarizations for the linear

82

Chapter 5. Experimental Evaluation

regression plots contained inside Fig. 5.7 and Fig. 5.8, for the case of the UML
metaschema, and Fig. 5.9 and Fig. 5.10, for the case of the conceptual schema
of the osCommerce. It is important to note that in the linear regression plots
we show the square of the correlation instead of the simple correlation of the
previous tables.

ICC ISM IWSM ITIM IER IBER ICER

ICC 0.76 0.61 0.43 0.98 0.94 0.94

ISM 0.97 0.79 0.74 0.87 0.88

IWSM 0.79 0.59 0.78 0.76

ITIM 0.40 0.54 0.61

IER 0.94 0.94

IBER 0.97

I+
CC I+

SM I+
WSM I+

TIM I+
ER I+

BER I+
CER

I+
CC 0.99 0.99 0.78 0.98 0.92 0.92

I+
SM 0.99 0.79 0.98 0.93 0.93

I+
WSM 0.79 0.98 0.94 0.94

I+
TIM 0.78 0.73 0.83

I+
ER 0.94 0.93

I+
BER 0.97

Table 5.3: Correlation coefficients between results of original and extended methods
for the osCommerce.

The conclusion from this result is that the extended versions of the methods,
excluding TIM, produce remarkably similar results, which does not happen in
the original version. We mean that the results obtained by extended versions
have a lower degree of variance.

This conclusion is also significant because it assures that the use of the
Simple Method (extended version) or also the Connectivity Counter extended
(CC+) whose computational cost is very low, and on the other hand they allow
the incremental recalculation of the importance of entity types when the schema
changes, produces “good-enough” results.

Furthermore, we can conclude that the more knowledge of a conceptual
schema the methods take into account to compute the importance of entity
types, the more similar the obtained results will be. It induces a inverse propor-
tional relationship between the quantity of knowledge and the variance of the
results. This way, to choose a method or another we must study the amount of
available knowledge we have for a conceptual schema.

83

5.2. Correlation Study

R² = 0,75752

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

SM

CC

(a) CC vs SM

R² = 0,6193

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

W
SM

CC

(b) CC vs WSM

R² = 0,00399

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

TI
M

CC

(c) CC vs TIM

R² = 0,93807

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

ER

CC

(d) CC vs ER

R² = 0,73467

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

BE
R

CC

(e) CC vs BER

R² = 0,74893

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

CE
R

CC

(f) CC vs CER

R² = 0,97014

0,00

2,00

4,00

0,00
 2,00
 4,00

W
SM

SM

(g) SM vs WSM

R² = 0,02339

0,00

2,00

4,00

0,00
 2,00
 4,00

TI
M

SM

(h) SM vs TIM

R² = 0,67724

0,00

2,00

4,00

0,00
 2,00
 4,00

ER

SM

(i) SM vs ER

R² = 0,63994

0,00

2,00

4,00

0,00
 2,00
 4,00

BE
R

SM

(j) SM vs BER

R² = 0,85288

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R

SM

(k) SM vs CER

R² = 0,0278

0,00

2,00

4,00

0,00
 2,00
 4,00

TI
M

WSM

(l) WSM vs TIM

R² = 0,54005

0,00

2,00

4,00

0,00
 2,00
 4,00

ER

WSM

(m) WSM vs ER

R² = 0,60021

0,00

2,00

4,00

0,00
 2,00
 4,00

BE
R

WSM

(n) WSM vs BER

R² = 0,82113

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R

WSM

(o) WSM vs CER

R² = 0,00449

0,00

2,00

4,00

0,00
 2,00
 4,00

ER

TIM

(p) TIM vs ER

R² = 0,0053

0,00

2,00

4,00

0,00
 2,00
 4,00

BE
R

TIM

(q) TIM vs BER

R² = 0,01401

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R

TIM

(r) TIM vs CER

R² = 0,6856

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00

BE
R

ER

(s) ER vs BER

R² = 0,71177

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R

ER

(t) ER vs CER

R² = 0,8309

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R

BER

(u) BER vs CER

Figure 5.7: Comparison between base methods applied to the UML meta-schema.

84

Chapter 5. Experimental Evaluation

R² = 0,97755

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

SM
+

CC+

(a) CC+ vs SM+

R² = 0,94894

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

W
SM

+

CC+

(b) CC+ vs WSM+

R² = 0,05349

0,00

2,00

0,00
 2,00
 4,00
 6,00

TI
M

+

CC+

(c) CC+ vs TIM+

R² = 0,87262

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

ER
+

CC+

(d) CC+ vs ER+

R² = 0,66574

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

BE
R+

CC+

(e) CC+ vs BER+

R² = 0,65488

0,00

2,00

4,00

0,00
 2,00
 4,00
 6,00

CE
R+

CC+

(f) CC+ vs CER+

R² = 0,99318

0,00

2,00

4,00

0,00
 2,00
 4,00

W
SM

+

SM+

(g) SM+ vs WSM+

R² = 0,0704

0,00

2,00

0,00
 2,00
 4,00

TI
M

+

SM+

(h) SM+ vs TIM+

R² = 0,86348

0,00

2,00

4,00

0,00
 2,00
 4,00

ER
+

SM+

(i) SM+ vs ER+

R² = 0,69421

0,00

2,00

4,00

0,00
 2,00
 4,00

BE
R+

SM+

(j) SM+ vs BER+

R² = 0,74296

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R+

SM+

(k) SM+ vs CER+

R² = 0,07752

0,00

2,00

0,00
 2,00
 4,00

TI
M

+

WSM+

(l) WSM+ vs TIM+

R² = 0,84287

0,00

2,00

4,00

0,00
 2,00
 4,00

ER
+

WSM+

(m) WSM+ vs ER+

R² = 0,71823

0,00

2,00

4,00

0,00
 2,00
 4,00

BE
R+

WSM+

(n) WSM+ vs BER+

R² = 0,78654

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R+

WSM+

(o) WSM+ vs CER+

R² = 0,06375

0,00

2,00

4,00

0,00
 2,00

ER
+

TIM+

(p) TIM+ vs ER+

R² = 0,05763

0,00

2,00

4,00

0,00
 2,00

BE
R+

TIM+

(q) TIM+ vs BER+

R² = 0,09133

0,00

2,00

4,00

0,00
 2,00

CE
R+

TIM+

(r) TIM+ vs CER+

R² = 0,69927

0,00

2,00

4,00

0,00
 2,00
 4,00

BE
R+

ER+

(s) ER+ vs BER+

R² = 0,70545

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R+

ER+

(t) ER+ vs CER+

R² = 0,83747

0,00

2,00

4,00

0,00
 2,00
 4,00

CE
R+

BER+

(u) BER+ vs CER+

Figure 5.8: Comparison between extended methods applied to the UML meta-
schema.

85

5.2. Correlation Study

R² = 0,58374

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00
 8,00

SM

CC

(a) CC vs SM

R² = 0,37375

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00
 8,00

W
SM

CC

(b) CC vs WSM

R² = 0,1879

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00
 8,00

TI
M

CC

(c) CC vs TIM

R² = 0,96042

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00
 8,00

ER

CC

(d) CC vs ER

R² = 0,88354

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00
 8,00

BE
R

CC

(e) CC vs BER

R² = 0,89353

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00
 8,00

CE
R

CC

(f) CC vs CER

R² = 0,93863

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00

W
SM

SM

(g) SM vs WSM

R² = 0,62869

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00

TI
M

SM

(h) SM vs TIM

R² = 0,54651

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00

ER

SM

(i) SM vs ER

R² = 0,76014

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

BE
R

SM

(j) SM vs BER

R² = 0,77232

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

CE
R

SM

(k) SM vs CER

R² = 0,63002

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00

TI
M

WSM

(l) WSM vs TIM

R² = 0,34887

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00

ER

WSM

(m) WSM vs ER

R² = 0,60898

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

BE
R

WSM

(n) WSM vs BER

R² = 0,58666

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

CE
R

WSM

(o) WSM vs CER

R² = 0,16442

0,00

2,00

4,00

6,00

0,00
 2,00
 4,00
 6,00

ER

TIM

(p) TIM vs ER

R² = 0,2975

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

BE
R

TIM

(q) TIM vs BER

R² = 0,3767

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

CE
R

TIM

(r) TIM vs CER

R² = 0,89637

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

BE
R

ER

(s) ER vs BER

R² = 0,89039

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00

CE
R

ER

(t) ER vs CER

R² = 0,9544

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00
 8,00

CE
R

BER

(u) BER vs CER

Figure 5.9: Comparison between base methods applied to the osCommerce.

86

Chapter 5. Experimental Evaluation

R² = 0,99815

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

SM
+

CC+

(a) CC+ vs SM+

R² = 0,98978

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

W
SM

+

CC+

(b) CC+ vs WSM+

R² = 0,61444

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

TI
M

+

CC+

(c) CC+ vs TIM+

R² = 0,96981

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

ER
+

CC+

(d) CC+ vs ER+

R² = 0,85009

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

BE
R+

CC+

(e) CC+ vs BER+

R² = 0,84457

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

CE
R+

CC+

(f) CC+ vs CER+

R² = 0,99646

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

W
SM

+

SM+

(g) SM+ vs WSM+

R² = 0,62151

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

TI
M

+

SM+

(h) SM+ vs TIM+

R² = 0,96792

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

ER
+

SM+

(i) SM+ vs ER+

R² = 0,86595

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

BE
R+

SM+

(j) SM+ vs BER+

R² = 0,8629

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

CE
R+

SM+

(k) SM+ vs CER+

R² = 0,62374

0,00

2,00

4,00

6,00

8,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

TI
M

+

WSM+

(l) WSM+ vs TIM+

R² = 0,96024

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

ER
+

WSM+

(m) WSM+ vs ER+

R² = 0,88628

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

BE
R+

WSM+

(n) WSM+ vs BER+

R² = 0,8829

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

CE
R+

WSM+

(o) WSM+ vs CER+

R² = 0,60468

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00

ER
+

TIM+

(p) TIM+ vs ER+

R² = 0,53591

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00

BE
R+

TIM+

(q) TIM+ vs BER+

R² = 0,69007

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00

CE
R+

TIM+

(r) TIM+ vs CER+

R² = 0,89034

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

BE
R+

ER+

(s) ER+ vs BER+

R² = 0,85777

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

CE
R+

ER+

(t) ER+ vs CER+

R² = 0,93813

0,00

2,00

4,00

6,00

8,00

10,00

0,00
 2,00
 4,00
 6,00
 8,00
 10,00

CE
R+

BER+

(u) BER+ vs CER+

Figure 5.10: Comparison between extended methods applied to the osCommerce.

87

5.3. Timing Evaluation

5.3 Timing Evaluation

In the evaluation of every computational method, an important thing is the
execution time. In our case, to study the required time to compute the im-
portance of the entity types of a conceptual schema for the selected methods
is a main task because of the execution time can be one of the non-functional
requirements to choose between a method or another one.

As in previous sections, to evaluate the execution time of each method we
have used the conceptual schema of the osCommerce and the UML metaschema.
It is important to note that in the case of the osCommerce we have both the
structural and behavioural schemas, therefore we applied the structural one
(around 80 entity types) to the base versions of the methods, while the extended
ones use the complete conceptual schema (around 350 entity types, including
the behavioural part). On the other hand, since the UML metaschema does
not have behavioural subschema, we applied to all type of methods the same
structural part (around 300 entity types).

To compute the execution time we have placed one timer before the call
of each method, and another one after such call. The difference between the
measures of these pair of timers results in the execution time. It is worth
mentioning that we do not take into account the spended time in the load of
each schema, in order to achieve a higher degree of independence of the schema
size. This experiment has been done in a Macbook with Mac OS X Tiger
v10.4.11, a 2GHz Intel Core 2 Duo processor and 1Gb 667 MHz DDR2 RAM
memory. Table 5.4 shows the results obtained by base and extended methods,
measured in milliseconds, for both conceptual schemas.

osCommerce UML Metaschema

CC 8 17

SM 20 40

WSM 22 46

TIM 28 98

ER 102 2104

BER 130 1893

CER 150 2886

CC+ 38 36

SM+ 51 48

WSM+ 57 53

TIM+ 93 113

ER+ 3704 2216

BER+ 3711 2093

CER+ 4042 2957

Table 5.4: Values in milliseconds (ms) of execution time.

Furthermore, Fig. 5.11 shows a plot with the values. It is possible to see
that the slower methods are the methods based on link analysis due to to com-
pute the importance of entity types they need to solve an equation system by

88

Chapter 5. Experimental Evaluation

iterative steps until to reach to the convergence point where the solution is a
valid solution.

An interesting behaviour here is the difference between the execution time
of the EntityRank (ER) and BEntityRank(BER) methods (in both base and
extended cases). We see that although the BER takes into account more in-
formation from the schema, it is a little bit faster than the ER. The reason is
that BER uses the percentage of attributes for the random jump to reach each
entity type (that is the relevance of the first step in the iterative computation
required to solve the equation system, as we will explain in the next chapter).
Such value is more significant than the used by the ER (the same value for each
entity type) and implies a closest way to reach the convergence to a solution for
the equation system.

Another important characteristic is that the base versions ER, BER and
CER are faster with the osCommerce than with the UML metaschema. As we
explained before, it is due to the number of entities of each schema. While to
these methods we use the structural part of the osCommerce with over 80 entity
types, the number of entity types of the UML metaschema is clearly higher. If we
look at the ER+, BER+ and CER+, there the behaviour is different according
to we use the complete osCommerce schema with around 350 entity types.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

CC
 SM
 WSM
 TIM
 ER
 BER
 CER
 CC+
 SM+
 WSM+
TIM+
 ER+
 BER+
 CER+

osCommerce
 UML metaschema

Figure 5.11: Values in milliseconds (ms) of execution time.

Another important experiment that is interesting is to compute the average
time dedicated for each entity type to compute its relevance value. It is only
necessary to divide the previous values by the number of entity types in every
case. Table 5.5 shows these values.

As the reader can see in Fig. 5.12, the behaviour is very similar than those

89

5.3. Timing Evaluation

osCommerce UML Metaschema

CC 0.09 0.06

SM 0.24 0.14

WSM 0.26 0.16

TIM 0.33 0.35

ER 1.20 7.18

BER 1.53 6.46

CER 1.76 9.85

CC+ 0.11 0.12

SM+ 0.15 0.16

WSM+ 0.17 0.18

TIM+ 0.27 0.39

ER+ 10.71 7.56

BER+ 10.72 7.14

CER+ 11.68 10.09

Table 5.5: Values in milliseconds (ms) of execution time per entity type.

presented in Fig. 5.11. We can conclude that the methods that are more affected
by the size of the conceptual schema are those based in link analysis. It is
important to highlight the good results of the methods based on occurrence
counting being very similar in both original and extended versions. It implies
that although the knowledge used in the extended versions is clearly higher
in size, the execution time is not affected. It is different for the link analysis
methods, as shown in the case of the osCommerce where the execution time
highly increases due to the increment of knowledge taken into account by ER+,
BER+ and CER+.

0

2

4

6

8

10

12

CC
 SM
 WSM
 TIM
 ER
 BER
 CER
 CC+
 SM+
 WSM+
 TIM+
 ER+
 BER+
 CER+

osCommerce
 UML metaschema

Figure 5.12: Values in milliseconds (ms) of execution time per entity type.

90

Chapter 5. Experimental Evaluation

5.4 Evaluation of Results

To conclude the chapter, this section presents the results obtained by the original
and extended versions of the selected methods once applied to the conceptual
schema of the osCommerce and the UML metaschema. Table 5.6 shows the
top-10 entity types of the osCommerce, Table 5.7 shows the top-10 entity types
of the UML metaschema and, finally, Table 5.8 shows the top-10 event types
of the osCommerce obtained by the application of the extended versions of the
methods.

Although the results have some differences, it is easy to verify that there
exists a set of entity types that appear in almost all the top-10 rankings shown.
In the case of the osCommerce, we have Product, Language, Customer, Order,
Attribute, TaxZone and OrderStatus as examples of such top relevant entities.
On the other hand, the UML metaschema contains a big amount of entity types
belonging to the kernel part of such schema (have the prefix Kernel in their
name) as for example Classifier, Property, Type, Operation and Element.

Furthermore, as we introduced in earlier chapters, modeling event types of
the behavioural schema as entity types implies that the methods for compute
the relevance of entity types can be applied to event types. This way we ob-
tain the top-10 rankings shown in Table 5.8. A set of the most relevant event
types for the osCommerce are OrderConfirmation, NewProduct, EditProduct
and NewCustomerAddress.

The experience obtained from the study done along this chapter allows us
to draw some conclusions about which method should be according to our re-
quirements:

• Use a link analysis based method (ER, BER, CER) in its original version
in case the behavioural schema were not available to contribute in the
importance computing process. Such methods are the ones that better
approximate the results obtained using extended versions of the methods.

• Use an occurrence counting based method in its extended version (CC+,
SM+, WSM+) in case the behavioural schema were available to contribute
in the importance computing process. Such methods give similar results
than extended link analysis based ones, with a better execution time.

• Avoid using link analysis based methods if your main requirement is to
minimize the execution time and your schemas are big enough.

• Remember that these are only basic orientations. Try to test more than
one method with the same schema, if possible, in order to select the one
that better adapts to your needs.

91

5.4. Evaluation of Results

(a) CC vs CC+

CC CC+

1 Product Language

2 Language Product

3 Store Customer

4 Customer TaxZone

5 Order Order

6 Attribute Attribute

7 Currency OrderStatus

8 OrderStatus Category

9 Country Zone

10 TaxZone Session

(b) SM vs SM+

SM SM+

1 Customer Product

2 Store Language

3 Product Customer

4 Language TaxZone

5 MinimumValues Order

6 Currency Attribute

7 Address OrderStatus

8 PaymentMethod Category

9 Session Session

10 Banner Zone

(c) WSM vs WSM+

WSM WSM+

1 Customer Product

2 Store Language

3 MinimumValues Customer

4 Product TaxZone

5 Address Order

6 Currency Attribute

7 Language OrderStatus

8 Banner Category

9 Session Session

10 PaymentMethod Zone

(d) TIM vs TIM+

TIM TIM+

1 Special Special

2 Customer Product

3 Store Language

4 Product Customer

5 PaymentMethod TaxZone

6 Language Order

7 MinimumValues Attribute

8 Currency OrderStatus

9 Address Category

10 USPostalService Session

(e) ER vs ER+

ER ER+

1 Product Language

2 Language Product

3 Store Customer

4 Customer TaxZone

5 Order OrderStatus

6 Country Order

7 Attribute Category

8 Currency Attribute

9 OrderStatus Country

10 TaxZone Zone

(f) BER vs BER+

BER BER+

1 Product Product

2 Language Language

3 Customer Customer

4 Store Banner

5 Country TaxZone

6 Currency Country

7 Address Zone

8 Order Currency

9 Banner Order

10 Session Address

(g) CER vs CER+

CER CER+

1 Product Product

2 Language Language

3 Customer Customer

4 Store TaxZone

5 Currency Currency

6 Order OrderStatus

7 Country Order

8 Address Banner

9 OrderStatus Special

10 Banner Zone

Table 5.6: Comparison between the top-10 of the methods for the osCommerce.

92

Chapter 5. Experimental Evaluation
(a) CC vs CC+

CC CC+

1 BasicActivities
InputPin

BasicActivities
InputPin

2 Kernel Classifier Kernel Property

3 BasicActivities
OutputPin

Kernel Classifier

4 Kernel ValueSpeci-
fication

BasicActivities
OutputPin

5 BasicBehaviors
Behavior

Kernel Type

6 Kernel Constraint Kernel Operation

7 Kernel Property BehaviorStateMa-
chines Transition

8 Kernel Operation Kernel ValueSpec-
ification

9 BehaviorStateMa-
chines State

Kernel Constraint

10 BasicActivities
ActivityNode

Kernel Association

(b) SM vs SM+

SM SM+

1 Kernel Classifier BasicActivities
InputPin

2 BasicActivities
InputPin

Kernel Property

3 BasicActivities
Action

Kernel Classifier

4 Kernel ValueSpeci-
fication

BasicActivities
OutputPin

5 Kernel NamedEle-
ment

Kernel Operation

6 Kernel Element Kernel Type

7 Kernel Property BehaviorStateMa-
chines Transition

8 BasicActivities
OutputPin

Kernel ValueSpec-
ification

9 BasicBehaviors
Behavior

Kernel NamedEle-
ment

10 Kernel Operation Kernel Association

(c) WSM vs WSM+

WSM WSM+

1 Kernel Classifier BasicActivities
InputPin

2 BasicActivities
Action

Kernel Property

3 Kernel NamedEle-
ment

Kernel Classifier

4 Kernel Property Kernel Operation

5 Kernel Element BasicActivities
OutputPin

6 Kernel ValueSpeci-
fication

Kernel Type

7 BasicActivities
InputPin

Kernel NamedEle-
ment

8 Kernel Operation BehaviorStateMa-
chines Transition

9 BehaviorStateMa-
chines State

Kernel ValueSpeci-
fication

10 BasicBehaviors
Behavior

BehaviorStateMa-
chines State

(d) TIM vs TIM+

TIM TIM+

1 Nodes Node Nodes Node

2 Nodes Device Collaborations
Collaboration

3 Nodes Execution-
Environment

Nodes Device

4 Collaborations
Collaboration

Nodes Execution-
Environment

5 PackagingCompo-
nents Component

PackagingCompo-
nents Component

6 BasicComponents
Component

StructuredClasses
Class

7 StructuredClasses
Class

BasicComponents
Component

8 Kernel Element Kernel Classifier

9 Kernel NamedEle-
ment

Kernel Element

10 InternalStructures
StructuredClassi-
fier

Kernel NamedEle-
ment

(e) ER vs ER+

ER ER+

1 BasicActivities
InputPin

BasicActivities
InputPin

2 BasicActivities
OutputPin

Kernel Classifier

3 Kernel Classifier BasicActivities
OutputPin

4 Kernel ValueSpeci-
fication

Kernel ValueSpeci-
fication

5 BasicBehaviors
Behavior

Kernel Property

6 Kernel Constraint Kernel Operation

7 Kernel Property BasicBehaviors
Behavior

8 Kernel Operation Kernel Constraint

9 Interfaces Interface Kernel Type

10 BehaviorStateMa-
chines State

BehaviorStateMa-
chines Transition

(f) BER vs BER+

BER BER+

1 Kernel Property Kernel Property

2 Kernel Classifier Kernel Operation

3 BasicBehaviors
Behavior

BasicBehaviors
Behavior

4 Kernel ValueSpeci-
fication

Kernel Classifier

5 BasicActivities
InputPin

Kernel ValueSpeci-
fication

6 Kernel Operation BasicActivities
InputPin

7 BehaviorStateMa-
chines State

BehaviorStateMa-
chines State

8 Kernel Constraint Kernel Parameter

9 BasicActivities
OutputPin

Kernel NamedEle-
ment

10 Kernel Parameter Kernel Multiplicity-
Element

(g) CER vs CER+

CER CER+

1 Kernel Classifier Kernel Classifier

2 Kernel ValueSpeci-
fication

Kernel Element

3 BasicBehaviors
Behavior

Kernel NamedEle-
ment

4 Kernel Property Kernel ValueSpeci-
fication

5 Kernel Element Kernel Property

6 BasicActivities
InputPin

Kernel Operation

7 Kernel NamedEle-
ment

BasicActivities
InputPin

8 Kernel Operation BasicBehaviors
Behavior

9 BehaviorStateMa-
chines State

Kernel Parameter

10 Kernel Constraint BehaviorStateMa-
chines State

Table 5.7: Comparison between the top-10 of the methods for the UML metaschema.

93

5.4. Evaluation of Results

(a) CC+

CC+

1 OrderConfirmation

2 ExistingCustomerEvent

3 ProductDownload

4 NewCustomerAddress

5 EditPaymentMethodEvent

6 ExistingProductEvent

7 NewProductAttribute

8 LogIn

9 EditProduct

10 AddProductToShoppingCart

(b) SM+

SM+

1 DomainEvent

2 OrderConfirmation

3 ExistingCustomerEvent

4 EditPaymentMethodEvent

5 NewCustomerAddress

6 ProductDownload

7 ExistingProductEvent

8 EditProduct

9 NewProductAttribute

10 NewProduct

(c) WSM+

WSM+

1 DomainEvent

2 OrderConfirmation

3 ExistingCustomerEvent

4 NewCustomerAddress

5 EditPaymentMethodEvent

6 ExistingProductEvent

7 ExistingProductEvent

8 ProductDownload

9 NewProduct

10 NewDownloadableProductAttribute

(d) TIM+

TIM+

1 Event

2 DomainEvent

3 ProductDownload

4 NewCustomerAddress

5 LogIn

6 RestorePreviousShoppingCart

7 EditProduct

8 OrderConfirmation

9 EditCustomerAddress

10 DeleteCustomerAddress

(e) ER+

ER+

1 OrderConfirmation

2 ExistingCustomerEvent

3 EditPaymentMethodEvent

4 ProductDownload

5 NewCustomerAddress

6 ExistingNewsletterEvent

7 EditProduct

8 ExistingProductEvent

9 NewProduct

10 NewProductAttribute

(f) BER+

BER+

1 NewCustomerAddress

2 OrderConfirmation

3 EditBanner

4 NewBanner

5 ExistingCustomerEvent

6 EditProduct

7 NewProduct

8 ExistingBannerEvent

9 ExistingNewsletterEvent

10 ProductDownload

(g) CER+

CER+

1 DomainEvent

2 ExistingCustomerEvent

3 EditPaymentMethodEvent

4 OrderConfirmation

5 NewCustomerAddress

6 ExistingSpecialEvent

7 ExistingBannerEvent

8 ExistingProductEvent

9 EditBanner

10 NewBanner

Table 5.8: Comparison between the top-10 event types of the methods for the os-
Commerce.

94

Chapter 6

Implementation

One of the main points in scientific research that sometimes is hidden to the au-
dience consists on the implementation of the methods or techniques described in
scientific papers, conference proceedings or journals. Obviously, the availability
of the implementation in computing is always a good thing because it promotes
the research in the area of study and allows a way of check the value of the
experiments.

This chapter introduces the implementation we have done of the methods
presented in previous chapter in order to apply their functionality to an existing
tool. Thus, we provide other researchers the manner to repeat the experiments
explained in Chapter 5, and to check the methods with their own schemas
without the need of coding them from the scratch. The conceptual schema of
the osCommerce and the UML metaschema are contained in our release.

Section 6.1 describes the USE tool [26] as the selected piece of software that
allows to work with conceptual schemas. Such tool has been extended with
the functionality of create focused views containing the most relevant subset
of entity types of a conceptual schema. This behaviour is achieved by the
application of the importance computing methods, that are also included in the
extended version of the USE tool.

Section 6.2 shows the architecture we have follow in our approach of im-
plementation. The main objectives here are the reusability and independence
of the code that implement the explained methods. Section 6.3 explains the
process we have follow to compute the link analysis methods and their equation
systems. Our approach will be the same as the one by Tzitzikas and Hainaut
[54] using linear algebra versions of the methods. Finally, Section 6.4 includes
an example of how to use the final version of the extended USE in order to
compute the ranking of entity types and the focused views.

95

6.1. The USE Tool

6.1 The USE Tool

The USE (UML-based Specification Environment) tool [26] is a system for the
specification of information systems implemented in Java. According to its web
page1, it is based on a subset of the Unified Modeling Language (UML)[39].
Roughly, it is an interpreter for a subset of UML and OCL.

To load a conceptual schema inside USE, a specification file has to be written
containing a textual description of the schema using features found in UML class
diagrams (classes, associations, etc.) and expressions written in the Object
Constraint Language (OCL) to specify additional integrity constraints.

Figure 6.1: Snapshot of the USE tool.

The USE system supports developers in analyzing the model structure (classes,
associations, attributes, and invariants) and the model behavior (operations and
pre- and postconditions) by generating typical snapshots (system states) and
by executing typical operation sequences (scenarios). Developers can formally
check constraints (invariants and pre- and postconditions) against their expec-
tations and can, to a certain extent, derive formal model properties. One of the
main characteristics of the USE tool is its OCL interpreter. It is possible to
specify schema rules in OCL and to validate their syntax and semantics against
a schema.

As we will explain in next sections, our main purpose is to include the metrics
and methods explained in Chapter 4 into the core of USE.

1http://www.db.informatik.uni-bremen.de/projects/USE/

96

Chapter 6. Implementation

6.2 The Architecture

One of the main reasons to select USE to implement the methods in is the
well-structured source code it has. To understand the code and the different
functional areas is an easy task because of the good comments and the division
of the components in different packages.

Although we think that USE is a good tool to test the methods, one of the
main objectives here is to achieve a sufficient degree of independence between our
extension and the USE itself. Thus, we have designed an architecture where the
relevance computing methods do not work directly with the USE Java objects
but with a middleware piece of code that defines all characteristics required by
such methods. Fig. 6.2 shows with a high level of detail the main pieces of our
design.

First step consists on to define a set of interfaces to maintain information
about the schema elements. Such interfaces must be implemented (including
all its operations that are not shown here for the sake of simplicity) for every
tool we want to extend. As an example, in the case of Generalization, we have
implemented such interface in USE with the Java class USEGeneralization.
Such class allows us to maintain information about a generalization object of
USE but in a way that our implemented methods can understand.

Figure 6.2: Architecture design for the implementation of the relevance computing
methods.

97

6.2. The Architecture

The reader can also see that there is another interface to implement in
Fig. 6.2. The SchemaManager interface has the task of manage the information
of the original conceptual schema (loaded in USE or any similar tool) and to
index it in order to obtain the information needed by the metrics used by the
methods. It must be implemented according to the tool where the extension is
placed. In the case of USE, the implementation of the SchemaManager converts
the main elements of the original schema in USE format to instances of the im-
plementation of the schema element interfaces presented before. These objects
and the information of the metrics are maintained by the schema manager.

Finally, we observe in Fig. 6.2 the hierarchy of relevance computing methods.
These methods are fully implemented and there is no necessary to add more code
to them unless new functionalities could be required. The implementation of
such methods obtain the information about the conceptual schema to work with
through the platform specific implementation of the SchemaManager. Fig. 6.3
shows the steps followed once a request to compute the importance of the entity
types has been done.

Figure 6.3: Steps to compute the importance of the entity types belonging to a
conceptual schema.

98

Chapter 6. Implementation

The SchemaManager acts as a bridge between the platform specific area
(in our case, the USE tool) and the platform independent area (the imple-
mentation of the relevance computing methods). This way changes in the way
the conceptual modeling platform loads and maintains the information about
the conceptual schema implies changes in the SchemaManager, but not in the
importance-computing methods.

For the special case of the schema rules, the USE tool creates a tree for
each rule according to an ad-hoc structure of expressions similar to the OCL
metamodel. To be able to manage and discover the new relationships extracted
from the schema rules, the SchemaManager has been extended with a piece
of code to visit the trees representing such rules. This mechanism is platform
dependent and has to be change for each platform.

6.3 Computing Link Analysis based Methods

The relevance computation of entity types belonging to a conceptual schema
can be a very simple process if we choose to apply an occurrence counting based
methods. In that case, it consists only in to add the values of each of the metrics
taken into account in the method. However, as explained in previous chapters,
there exists a set of methods based on link analysis that require a more complex
computation process to be applied.

In this section we introduce new versions of the ER, BER, CER and their
extensions in order to be computed using a mix of linear algebra concepts and
Markov chain theory.

6.3.1 The Power of Linear Algebra

Chapter 4 introduced the formal definition for the link analysis based methods.
As explained there, such methods produce an equation system that must be
solved in order to obtain the relevance value for each entity type. In a sense,
we affirm that the relevance of an entity type e ∈ E has a proportional relation
with the addition of the relevance values of those entity types that are linked
with e. Look at Fig. 6.4:

Figure 6.4: Example of simple conceptual schema.

99

6.3. Computing Link Analysis based Methods

Therefore we have:

I(e1) = K(I(e2) + I(e3) + I(e4))
I(e2) = K(I(e1) + I(e4))
I(e3) = K(I(e1))
I(e4) = K(I(e1) + I(e2)),

where K is a proportionality constant and each I(e) is the importance or
relevance of the entity type e.

Such equation system can be transformed into a matrix equation:


I(e1)
I(e2)
I(e3)
I(e4)

 = K


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0




I(e1)
I(e2)
I(e3)
I(e4)


Now we can rewrite the previous matrix equation: we call i to the impor-

tance vector. The nxn matrix (in this example n = 3) of the system is the M
associated to the schema graph. So that we can write the importance assignment
that we want as a solution of

Mi = λi.

Now we take λ as a proportionality constant (λ = 1/K). Therefore the prob-
lem has become into an eigenvalues and eigenvectors problem. Our importance
vector i is an eigenvector of the M matrix, which contained the structure of the
schema graph.

To obtain such eigenvector, the Perron-Frobenius theorem asserts that a real
square (n× n) matrix with positive entries has a unique largest real eigenvalue
u > 0 and that the corresponding eigenvector v has strictly positive components
[10]. Therefore, our work consists on decompose the matrix M to obtain its
eigenvalues and eigenvectors. Then, according to the theorem, the eigenvector
v associated to the largest eigenvalue u will be the desired importance vector i.

Finally, to compute the importance of entity types, we redefine the link
analysis based methods formalization into the formalization of a Markov chain.
We define for each method a transition matrix T . According to the Markov chain
theory, the stationary distribution of importance is the principal eigenvector of
the transpose of the matrix T .

To decompose such matrix we use JAMA2, which is a basic linear algebra
package for Java. It provides user-level classes for constructing and manipulating
real, dense matrices. It is meant to provide sufficient functionality for routine
problems, packaged in a way that is natural and understandable to non-experts.
Concretely, it provides the eigenvalue decomposition of both symmetric and
non-symmetric square matrices.

2http://math.nist.gov/javanumerics/jama/

100

Chapter 6. Implementation

Our implementation obtains the vector of eigenvalues and selects the one
with a greater positive value. Then, we obtain the matrix of eigenvectors and
select the one associated to the previous selected eigenvalue. Such eigenvector
contains for each component the importance of one entity type.

i =


I(e1)
I(e2)

...
I(en)



6.3.2 EntityRank (ER)

EntityRank is based on a Markov chain on the entity types with a transition
matrix

TER = q · U + (1− q) ·M,

where A[ei, ej] = |{ej | ej ∈ conn(ei)}| and M is the stochastic matrix from
A, that is, the normalization of A with each row summing to 1. It is possible
to say that A is the adjacency matrix of the entities and relationships of the
conceptual schema.

Furthermore, U is the transition matrix of uniform transition probabilities
where U [ei, ej] = 1/|E|. And q is the same random jump factor as explained in
the original definition of the EntityRank method. In this case, all entity types
have the same initial probability due to we use the matrix U . As we explained
in Chapter 5, it implies a little bit more execution time to reach the convergence
of the method.

The resulting matrix for the example of Fig. 6.4 would be

TER = q ·


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

+ (1− q) ·


0 1/3 1/3 1/3

1/2 0 0 1/2
1 0 0 0

1/2 1/2 0 0

 ,

and the decomposition of eigenvectors and eigenvalues must be done with the
transpose of TER.

If we choose q = 0.15, we have the following matrix to decompose:
0, 0375 0, 4625 0, 8875 0, 4625

0, 32083333 0, 0375 0, 0375 0, 4625
0, 32083333 0, 0375 0, 0375 0, 0375
0, 32083333 0, 4625 0, 0375 0, 0375



Then, we obtain the eigenvectors and eigenvalues shown in the Table 6.1:

101

6.3. Computing Link Analysis based Methods

Eigenvalues

1 -0,62 0,19 -0,42

Entity Types Associated Eigenvectors

E1 0.6988 0.8933 0.4339 0.0000

E2 0.4686 -0.2423 -0.5332 -0.7071

E3 0.2694 -0.4086 0.6324 -0.0000

E4 0.4686 -0.2423 -0.5332 0.7071

Table 6.1: Eigenvalues and associated eigenvectors

The greater positive eigenvalue is 1, then we select its associated eigenvector
(IER(e1) = 0.6988, IER(e2) = 0.4686, IER(e3) = 0.2694, IER(e4) = 0.4686) as
the resulting importance vector. If we normalize the components to sum 1, we
have the next ranking:

Entity Type Relevance

E1 0,36

E2 0,25

E4 0,25

E3 0,14

Table 6.2: Ranking of entity types for the example of Fig. 6.4 using the linear algebra
version of the ER.

6.3.3 BEntityRank (BER)

BEntityRank is based on a Markov chain on the entity types with a transition
matrix

TBER = q ·B + (1− q) ·M,

where A[ei, ej] = |{ej | ej ∈ conn(ei)}| and M is the stochastic matrix from
A, that is, the normalization of A with each row summing to 1. It is possible
to say that A is the adjacency matrix of the entities and relationships of the
conceptual schema.

Furthermore, B is the transition matrix of of transition probabilities where
B[ei, ej] = |attr(ej)|

|A| . B is stochastic, meaning that should be normalized in
order to each row sums 1. And q is the same random jump factor as explained
in the original definition of the EntityRank method. In this case, each entity
type has a different initial probability due to we use the matrix B taking into
account the attributes. Thus, the more attributes an entity type has, the more
relevant is.

102

Chapter 6. Implementation

The resulting matrix for the example of Fig. 6.4, if we imagine that attr(e1) =
1, attr(e2) = 0, attr(e3) = 4 and attr(e4) = 2, would be

TBER = q ·


1/7 0 4/7 2/7
1/7 0 4/7 2/7
1/7 0 4/7 2/7
1/7 0 4/7 2/7

+ (1− q) ·


0 1/3 1/3 1/3

1/2 0 0 1/2
1 0 0 0

1/2 1/2 0 0

 ,

and the decomposition of eigenvectors and eigenvalues must be done with the
transpose of TBER.

6.3.4 CEntityRank (CER)

CEntityRank is based on a Markov chain on the entity types with a transition
matrix

TCER = q1 ·B + q2 ·H + (1− q1 − q2) ·M,

where A[ei, ej] = |{ej | ej ∈ conn(ei)}| and M is the stochastic matrix from
A, that is, the normalization of A with each row summing to 1. It is possible
to say that A is the adjacency matrix of the entities and relationships of the
conceptual schema.

Furthermore, B is the transition matrix of of transition probabilities where
B[ei, ej] = |attr(ej)|

|A| . And q is the same random jump factor as explained in the
original definition of the EntityRank method. In this case, each entity type has
a different initial probability due to we use the matrix B taking into account
the attributes. Thus, the more attributes an entity type has, the more relevant
is.

And H is the transition matrix taking into account generalizations where

H[ei, ej] =

{
1, if ej ∈ gen(ei)
0, otherwise

,

and H is stochastic, meaning that should be normalized in order to each row
sums 1.

The resulting matrix for the example of Fig. 6.4, if we imagine that attr(e1) =
1, attr(e2) = 0, attr(e3) = 4 and attr(e4) = 2, and that gen(e1) = e2 would be

TCER = q1 ·


1/7 0 4/7 2/7
1/7 0 4/7 2/7
1/7 0 4/7 2/7
1/7 0 4/7 2/7

+ q2 ·


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



+(1− q1 − q2) ·


0 1/3 1/3 1/3

1/2 0 0 1/2
1 0 0 0

1/2 1/2 0 0

 ,

103

6.3. Computing Link Analysis based Methods

and the decomposition of eigenvectors and eigenvalues must be done with the
transpose of TCER.

6.3.5 EntityRank Extended (ER+)

The EntityRank extended method is based on a Markov chain on the entity
types with a transition matrix

TER+ = q · U + (1− q) · (M +R),

where U and M are the same than in case of the TER and the transition
matrix R takes into account the relationships extracted from the schema rules of
the conceptual schema. Formally, R[ei, ej] = |{ej | ej ∈ rconn(ei)}|. Roughly,
R[ei, ej] contains the number of participations that ei has with ej , in the ex-
tracted relationships from the schema rules. It is important to note that R is
stochastic, meaning that should be normalized in order to each row sums 1.

6.3.6 BEntityRank Extended (BER+)

The BEntityRank extended method is based on a Markov chain on the entity
types with a transition matrix

TBER+ = q ·B + (1− q) · (M +R),

where B and M are the same than in case of the TBER and the transition
matrix R takes into account the relationships extracted from the schema rules
of the conceptual schema. Formally, R[ei, ej] = |{ej | ej ∈ rconn(ei)}|. It is
important to note that R is stochastic, meaning that should be normalized in
order to each row sums 1.

6.3.7 CEntityRank Extended (CER+)

The CEntityRank extended method is based on a Markov chain on the entity
types with a transition matrix

TCER+ = q1 ·B + q2 ·H + (1− q1 − q2) · (M +R),

where B, H and M are the same than in case of the TCER and the transition
matrix R takes into account the relationships extracted from the schema rules
of the conceptual schema. Formally, R[ei, ej] = |{ej | ej ∈ rconn(ei)}|. It is
important to note that R is stochastic, meaning that should be normalized in
order to each row sums 1.

104

Chapter 6. Implementation

6.4 User Manual

This section presents how work with the modified version of the the USE tool
that includes the implemented extension to compute the relevance of entity
types. First we generally show the way to execute the USE environment and to
load conceptual schemas. Then, a description of the three main functionalities
of our extension is presented to conclude the section and the chapter.

6.4.1 Working with USE

The extended version of the USE tool can be downloaded from the web site of
the author of this thesis3. We call this version as USE 2.4.0 WIC to indicate that
is the same distribution than official USE 2.4.04 but including the importance
computing methods (WIC – With Importance Computing).

First step consists on to open the USE environment. To do this task, the
user must have installed a Java Runtime Environment 1.5 or greater5. Once
it is accomplished, to start USE a windows user must open the base directory
of the distribution (downloaded from the author’s web) and access to the bin
directory. There, the user must double click on the use.bat file and a new USE
window should appear as follows:

Figure 6.5: USE main window.

3http://www.lsi.upc.edu/~avillegas/Resources/use-2.4.0-wic.zip
4http://www.db.informatik.uni-bremen.de/projects/USE/
5http://www.java.com/en/download/manual.jsp

105

6.4. User Manual

The Unix-based user (Linux, MacOS X, ...) must open a terminal and
execute the next command within the same bin directory:

$use-2.4.0-wic\bin\>sh use
or also
$use-2.4.0-wic\bin\>./use

The next step is to load a specification of a conceptual schema in USE
format. To do that, the user must click on the first icon of the toolbar (a typical
open folder image) or also go to the File->Open specification... command
of the Menu bar.

Then, after selecting the desired .use file, the log message area shows the
characteristics of the loaded schema. To access to the conceptual schemas of this
thesis (the osCommerce and the UML metaschema) the user must access the
examples directory of the base distribution, and then go to the AVillegas-Thesis
directory. Look at Fig. 6.6.

Figure 6.6: Open a conceptual schema in USE.

The current specification format for to describe conceptual schemas for the
USE environment is described in the use-documentation.pdf document that
is included in the base directory of the USE 2.4.0 WIC distribution. Such
document also explains in more detail the main functionalities of the USE tool.
As an example, Fig. 6.7 shows the class diagram view of the osCommerce schema
loaded in USE. To open such view, the user must click on the sixth icon of the
menu bar (the one with an UML class picture).

As the user can see, the class diagram shown in Fig. 6.7 is not useful to
comprehend the main aspects of the osCommerce schema. By the way, we

106

Chapter 6. Implementation

Figure 6.7: Class diagram view of the osCommerce schema in USE.

only have shown the entities and relationships, hiding another elements like
multiplicities of associations, attributes or role names.

6.4.2 Compute the Relevance of Entity Types

Now, we present how to compute the relevance of the entity types of a conceptual
schema loaded into the USE environment. The most important buttons of the

toolbar here are . Such icons are new from the original version of USE
and have been included in our extension.

First button in the toolbar of USE ()allows users to select one of the
14 methods to compute the importance of entity types and to apply it to the
current loaded schema. Fig. 6.8 shows an screenshot of that selection.

It is important to note that USE does not identify event types as a special
kind of entity types. Therefore, to separate the events from the entities is not
provided here. Of course, a possible solution could be to mark as event each
entity type that directly or indirectly is a descendant of another entity type
named Event. However, we do not implement it due to a conceptual schema
could have an entity type with such name but not being an event type.

Once the method is selected, the user must choose a text file where the
complete results of the method are stored in order to be consulted in more detail.
For the case of occurrence counting methods, this output file contains the values
of each entity type for all the metrics taken into account in the method. On the
other hand, link analysis methods produce only the final relevance value into

107

6.4. User Manual

the output file.

Furthermore, the result output file is written as a table with each column
separated with tabs in order to simplify the import process into other tools like
Excel, R or any other data mining environment.

Figure 6.8: Selection of the importance computing method in USE.

Figure 6.9: Saving the results of an importance computing method in USE.

108

Chapter 6. Implementation

6.4.3 Visualization of Results

Once we have one of the importance computing methods applied to the schema
in USE, next step consists on the visualization of the results. Our extension to
the original USE environment allows to both view a ranking list of the entity
types and a reduced view of the whole class diagram of the schema.

The second button we have included in the original tool bar () is disabled
until a method is applied to the schema. Afterwards, the button becomes active
and therefore a ranking list view as the one shown in Fig. 6.10 appears.

Figure 6.10: Ranking list of the osCommerce in USE.

Finally, the third button included in the extended USE () is probably the
most useful one. It is also disabled until a method is applied to the schema.
Once enabled, it provides a reduced top-20 view of entity types. We have chosen
20 entity types because is a number of entities that in major cases can be placed
into a single page. Loot at the example in Fig. 6.11.

It is important to note here that once we have the top-20 entity types se-
lected, all other types are filtered. We only show those relationship types whose
participants are all included in the top-20. Furthermore, the initial view only
shows the entities and relationships.

The user can reduce the number of entity types shown by selecting those
entity types to hide and using the contextual menu (right click on the class
diagram view with some entities selected) that provides a set of options to
modify the information shown in the diagram.

To conclude the section, we show in Fig. 6.12 the top-10 entity types of the

109

6.4. User Manual

osCommerce once the extended version of the EntityRank (ER+) method is
applied. We have successfully hide the entities in the position 11 to 20 and also
we have chosen to see the information about attributes, multiplicities, and role
names in associations. The user can compare this view with the one in Fig. 6.7
to be aware of the benefits of filtering.

Figure 6.11: Top-20 entity types of the osCommerce in USE.

Figure 6.12: Top-10 entity types of the osCommerce in USE.

110

Chapter 7

Conclusions

This chapter states some conclusions about the research topic of the relevance
computing on conceptual modeling. The aim is to summarize the main contri-
butions of this document and the state of the art in this research field.

In the same way we did with conceptual schemas, this chapter gives a focused
view of the main contents of the thesis, in order to check the fulfillment of the
main objectives presented in the first chapter. Afterwards, we also show some
possible extensions to the work presented along the document that could be
completed in future research.

7.1 Conceptual Modeling

We have explained the importance of conceptual modeling in the development
process of information systems. This subject has increased its relevance from
consisting into merely documentation activities to be a key set of tasks in the
analysis and design phases of the development cycle.

Furthermore, one of the main reasons for this important growth in concep-
tual modeling interest is the increasing need for information management. Since
conceptual schemas, as the key artifacts in conceptual modeling, have to main-
tain big amounts of concepts, relationships and so many other characteristics of
an specific information domain, end-users are getting more uncomfortable with
such schemas.

As we have seen in some chapters, conceptual modeling needs the aid of
specific techniques to reduce the amount of information that stakeholders of
the information system have to manage. Humans are not able to process big
amounts of information because their perception and cognitive systems are not
prepared to do that. We presented some references that confirm humans cannot
deal with such quantities of data.

111

7.2. State of the Art

So there exists a problem in conceptual modeling when the conceptual
schemas get big enough to overtake the limit of human perception. However,
there also exists a set of methods to reduce the information to deal with. The
main objective of the thesis was to study such methods and to deliver whether
they are useful or not. In addition, another purpose was to establish a set
of extended methods to take into account the whole information included in
conceptual schemas.

7.2 State of the Art

The research field this thesis is included in covers a huge amount of subjects.
Some of them are visualization of information, graph theory, or data mining.
As the reader can observe, such areas are so many general and our intention
was to study a more specific problem. Concretely, the thesis was centered in
computing the importance of entity types because entities are the main element
in conceptual schemas. Nevertheless, we presented a complete state of the
art in the whole research field in order to get a correct overview of the main
contributions other researchers have submitted until now.

One of the main methods to reduce the amount of information were the
clustering methods. As early explained, these kind of methods group together
similar elements into sets of similar information, also known as clusters. The
research contributions in this area was big, although their application in real
cases was not so large.

On the other hand, there were another methods following a different ap-
proach. It consists on hide the irrelevant information putting the focus in the
most important concepts. To know which are the most relevant concepts, this
techniques make ranking lists. This way, end users are able to get an overview
of the whole with a reduced effort. This filtering methods were less studied than
clustering, so they have become into the main research point of this document.

It is also important to note that existing contributions had some deficiencies.
Major research articles in this field do not include cognitive justification, having
based their approaches or solutions in principles different than of human infor-
mation processing. Furthermore, a big limitation in most of the contributions
was the lack of automation. Only a little part of the whole proposals contain
notes about the implementation the authors have done, and only an even more
reduced part includes the algorithms, or at least a pseudo-code version of them.

But the most important problem about the methods that try to reduce the
information overload in conceptual schemas is their lack of empirical testing.
Most of the proposals are only limited to argue or affirm that the solution they
provide has a better result than others. The cause of this deficiency is the
subjectivity of the different ways of evaluate the benefits of the methods. Major
evaluations are based on the advises of experts or oracles in the field of the
conceptual schema. Thus, the most similar solution to the solution given by an
oracle is chosen as the better one. However, to share the same oracle in two or

112

Chapter 7. Conclusions

more different articles is not an option and, therefore, the comparisons are not
easily done.

Another thing that increases the limitations of the proposals is the use of
only a little subset of the whole conceptual schema to discover the most im-
portant entity types. Since a conceptual schema contains not only a structural
schema, but also a behavioural schema full of event types and new relation-
ships that conform a valuable amount of information, to be limited in the use of
only a subset of the structural schema (entities, relationships and, sometimes,
attributes) is not a good thing.

The power that the OCL language provides must be taken into account and
the central part of this thesis was dedicated to discover new ways of uncover
information of the conceptual schema traditionally forgotten from the point of
view of the importance computation process.

7.3 Thesis Contribution

The main contribution this thesis provides is the extension of a set of repre-
senting methods in the literature with new knowledge traditionally forgotten.
Our approach takes into account not only a subset of the structural schema but
also the behavioural schema and all the schema rules. Furthermore, we con-
vert graphical constraints like the multiplicities of associations into new schema
rules thanks to the OCL language. We use that extra knowledge because of
our main idea is to avoid the need of having the collaboration of experts in the
field of the conceptual schema. Concretely, we propose a more objective way
to compute the importance of schema elements, and particularly entity types,
based on the amount of information dedicated to each entity type. Therefore,
the more knowledge an entity type has in the conceptual schema, the higher
degree of relevance it owns.

As we explained in previous chapters, the usage of the information provided
by the schema rules and the event types and pre- and postconditions of the
behavioural schema gives a component of subjectivity to the final relevance
value of the entity types. This is due to the requirements engineers that adapt
the requirements of an information system not only into the structural schema
defining concepts and the relationships between them, but also including be-
haviour information about the actions and events the information system must
and must not perform. Thus, from the point of view of the users, their require-
ments are included in the conceptual schema and, afterwards, in the importance
computing process.

Our contribution also includes the implementation of the methods explained
in the document in order to be tested and evaluated with our conceptual schemas
or others. This way, the researchers with interest in this are can repeat our
experiments to check the correctness of them or also imagine new situations
that worth study. We do not close the code we have used, but we offer it as a
free open source contribution that can be extended to include new methods or

113

7.4. Future Work

to be adapted to other modeling environments. Furthermore, we chose USE as
the main environment of our extension due to its simplicity and because to add
new functionality is an easy job.

Another important aspect is the brief explanation we did about the limits
on human perception. This way, we decided to reduce the whole conceptual
schemas to a focused view which can fulfill in a single page. Although there
were some indications in the literature that state a number in the range of
5 to 10 concepts as the limit of human information processing capacity, we
implemented the application of the methods giving a top-20 diagram, which is
reasonable because there exists the possibility of hiding elements. Thus, the
user has the last word to decide the size he/she wants to work with.

Some other lack in the literature is the use of little schemas to check the
proposals in the field of conceptual modeling in the large. Our contribution
here is the proof of our methods with two large conceptual schemas, including
a real business case (the osCommerce) and a more theoretical case (the UML
metaschema). Both schemas contain around 300 entity types, so we consider
them as clear cases of large schemas that are correct to be used in our experi-
ments.

Finally, we have shown an experimental evaluation with the original methods
and the proposed extensions. Concretely we have concluded that link-analysis
methods are the best methods when the behavioural schema or the schema rules
written in OCL are not available, but such methods are slower than occurrence
counting ones due to its recursive definition. In addition to it, we showed some
advice to choose the best method in each situation that state occurrence count-
ing methods are good when the knowledge we dispose is bigger. Thus, having
big amounts of knowledge implies use occurrence counting methods while hav-
ing less knowledge is a situation where the link-analysis methods obtain better
results.

After the study done along this research work we conclude that the more
amount of information we have available in the conceptual schema, the better
are the results of the importance computing process. So, this is a reason to
spend some time describing not only the structure but also the behaviour in
conceptual modeling.

7.4 Future Work

The realization of this research work has produce some new ideas that were not
included in this thesis. Anyway, it is worth mentioning some of them as future
work to complete the research in this field. Probably the most relevant task we
have to improve is the evaluation of the methods with more conceptual schemas.
As explained, to have the opportunity of work with real conceptual schemas at
our disposal is not a real situation. Organizations take a special care of their
schemas as a main artifact in the business strategy, therefore to convince such
organizations to let us to look at their schemas is not an easy task.

114

Chapter 7. Conclusions

However, we have tested our methods with two large schemas which is not
a common situation in most of the existing contributions. Furthermore, a good
future research work could be to create a repository of free large conceptual
schemas in the same format to be accessed by everyone interested in this topic.
Also, a benchmark should be described in order to have a place where to compare
the results obtained by the methods and, therefore, select those that are the best
ones.

Another future task could be the relevance computing of the elements that
were not valuated in the scope of this document. We mean attributes, relation-
ships and also schema rules. This way the reduced overview of the conceptual
schema could contain not all the attributes, but only the most relevant ones,
and in the same way select the most important relationships and hide the irrel-
evant. We know that although we compute the importance of entity types and
(with a minor degree) event types, other elements must be taken into account
to be evaluated.

In addition to the previous future tasks, an interesting future activity should
be the study and improvement of the visualization techniques used to increase
the usability of conceptual schemas. Carrying out the state of the art in this
topic, we looked at some references but we realize that there exists a need of
more in-deep work in order to profit the benefits that good and usable interfaces
could provide to the work with conceptual schemas. As we explained, there is
a big amount of visualization techniques that are not really taken into account
in real cases that require to be studied and implemented.

Finally, we have discovered new methods in the field of community struc-
ture detection that could be added to our selected methods. Such approaches
compute the centrality of the edges in a graph and then pass their importance
to the nodes that are connected to them. This idea could be adapted to the
scope of conceptual schemas processing the centrality of relationship types and
then converting such values into importance for the entity types.

115

116

Bibliography

[1] Abreu, F. Metrics for Object Oriented Software Development. In 3rd
International Conference on Software Quality, Lake Tahoe, Nevada, EUA
(1993).

[2] Akoka, J., and Comyn-Wattiau, I. Entity-relationship and object-
oriented model automatic clustering. Data & Knowledge Engineering 20,
2 (1996), 87–117.

[3] Baeza-Yates, R., Ribeiro-Neto, B., et al. Modern information re-
trieval. Addison-Wesley Harlow, England, 1999.

[4] Baroni, A., and Abreu, F. Formalizing object-oriented design metrics
upon the UML meta-model. In Brazilian Symposium on Software Engi-
neering, Gramado-RS, Brazil (2002).

[5] Baroni, A., and e Abreu, F. A formal library for aiding metrics ex-
traction. In International Workshop on Object-Oriented Re-Engineering at
ECOOP (2003).

[6] Baroni, A., and e Abreu, F. An OCL-based formalization of the
MOOSE metric suite. Proc. of QUAOOSE (2003).

[7] Baroni, A. L. Formal definition of object-oriented design metrics. Mas-
ter’s thesis, Vrije Universiteit Brussel, 2002.

[8] Bauerdick, H., Gogolla, M., and Gutsche, F. UML
2.0 Validation Results in Form of an EXCEL, PDF, and
USE File. University of Bremen. 2004. ftp://ftp.informatik.uni-
bremen.de/local/db/papers/uml2004/ocl uml2.[xls|pdf|use].

[9] Bauerdick, H., Gogolla, M., and Gutsche, F. Detecting OCL Traps
in the UML 2.0 Superstructure: An Experience Report. In UML (2004),
T. Baar, A. Strohmeier, A. M. D. Moreira, and S. J. Mellor, Eds., vol. 3273
of LNCS, Springer, pp. 188–196.

[10] Berman, A., and Plemmons, R. Nonnegative matrices in the mathe-
matical sciences. Society for Industrial Mathematics, 1994.

[11] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web
search engine. In Computer Networks and ISDN Systems (1998), Elsevier
Science Publishers B. V., pp. 107–117.

117

[12] Campbell, L., Halpin, T., and Proper, H. Conceptual schemas with
abstractions making flat conceptual schemas more comprehensible. Data
& Knowledge Engineering 20, 1 (1996), 39–85.

[13] Castano, S., Antonellis, V. D., Fugini, M. G., and Pernici, B.
Conceptual schema analysis: Techniques and applications. ACM Trans.
Database Syst. 23, 3 (1998), 286–332.

[14] Chen, P. The entity-relationship model–toward a unified view of data.
ACM Transactions on Database Systems (TODS) 1, 1 (1976), 9–36.

[15] Chidamber, S., and Kemerer, C. MOOSE: Metrics for object ori-
ented software engineering. In Workshop on Processes and Metrics for
Object-Oriented Software Development (OOPSLA’93), Washington DC,
EUA, September (1993).

[16] Cockburn, A., Karlson, A., and Bederson, B. A review of
overview+detail, zooming, and focus+ context interfaces. ACM Computing
Surveys 41, 1 (2008).

[17] Cowan, N. Evolving conceptions of memory storage, selective attention,
and their mutual constraints within the human information processing sys-
tem. Psychological Bulletin 104, 2 (1988), 163–191.

[18] DeRemer, F., and Kron, H. Programming-in-the large versus
programming-in-the-small. In Proceedings of the international conference
on Reliable software table of contents (1975), ACM New York, NY, USA,
pp. 114–121.

[19] Estivill-Castro, V. Why so many clustering algorithms: a position
paper. ACM SIGKDD Explorations Newsletter 4, 1 (2002), 65–75.

[20] Feldman, P., and Miller, D. Entity model clustering: Structuring a
data model by abstraction. The Computer Journal 29, 4 (1986), 348–360.

[21] Francalanci, C., and Pernici, B. Abstraction levels for entity-
relationship schemas. Lecture Notes in Computer Science (1994), 456–456.

[22] Gandhi, M., Robertson, E., and Gucht, D. Leveled entity relation-
ship model. Lecture Notes in Computer Science (1994), 420–420.

[23] Geerts, F., Mannila, H., and Terzi, E. Relational link-based ranking.
In Proceedings of the Thirtieth international conference on Very large data
bases-Volume 30 (2004), VLDB Endowment, pp. 552–563.

[24] Genero, M., Poels, G., and Piattini, M. Defining and validating
metrics for assessing the maintainability of entity-relationship diagrams.
Faculteit Economie en Bedrijfsjunde Hoveniersberg – Working Paper Series
11 03/199 (2003).

[25] Genero, M., Poels, G., and Piattini, M. Defining and validating
metrics for assessing the understandability of entity–relationship diagrams.
Data & Knowledge Engineering (2007).

118

[26] Gogolla, M., Büttner, F., and Richters, M. Use: A uml-based
specification environment for validating uml and ocl. Sci. Comput. Pro-
gram. 69, 1-3 (2007), 27–34.

[27] Han, J., and Kamber, M. Data mining: concepts and techniques. Mor-
gan Kaufmann, 2006.

[28] Jaeschke, P., Oberweis, A., and Stucky, W. Extending ER model
clustering by relationship clustering. Lecture Notes in Computer Science
(1994), 451–451.

[29] Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., and Gi-
annopoulou, E. Ontology visualization methods–a survey. ACM Com-
puting Surveys 39, 4 (2007).

[30] Kleinberg, J. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM 46, 5 (1999), 604–632.

[31] Kleppe, A., Warmer, J., and Bast, W. MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA, 2003.

[32] Kosara, R., Miksch, S., and Hauser, H. Focus+ context taken liter-
ally. IEEE Computer Graphics and Applications 22, 1 (2002), 22–29.

[33] Lindland, O. I., Sindre, G., and Sølvberg, A. Understanding quality
in conceptual modeling. IEEE Software 11, 2 (1994), 42–49.

[34] Marois, R., and Ivanoff, J. Capacity limits of information processing
in the brain. Trends in Cognitive Sciences 9, 6 (2005), 296–305.

[35] Miller, G. The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information. Psychol. Rev 63 (1956), 81–
97.

[36] Moody, D., and Flitman, A. A decomposition method for entity rela-
tionship models: a systems theoretic approach. In International Conference
on Systems Thinking in Management (2000), pp. 462–469.

[37] Moody, D. L., and Flitman, A. A Methodology for Clustering Entity
Relationship Models – A Human Information Processing Approach. In ER
1999 (1999), J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and E. Métais,
Eds., vol. 1728 of LNCS, Springer, pp. 114–130.

[38] Object Management Group (OMG). Object Constraint Language
Specification (OCL), version 2.0, May 2006.

[39] Object Management Group (OMG). Unified Modeling Language
(UML) Superstructure Specification, version 2.2, February 2009.

[40] Olivé, A. Conceptual Modeling of Information Systems. Springer-Verlag,
2007.

119

[41] Olivé, A., and Cabot, J. A research agenda for conceptual schema-
centric development. In Conceptual Modelling in Information Systems En-
gineering, S. B. John Krogstie, Andreas Lothe Opdahl, Ed. Springer Verlag,
2007, pp. 319–334.

[42] Olivé, A., and Raventós, R. Modeling events as entities in object-
oriented conceptual modeling languages. Data & Knowledge Engineering
58, 3 (2006), 243–262.

[43] Papazoglou, M. P. Unraveling the semantics of conceptual schemas.
Commun. ACM 38, 9 (1995), 80–94.

[44] Richters, M., and Gogolla, M. OCL: Syntax, semantics, and tools.
Lecture Notes in Computer Science 2263 (2002), 42–68.

[45] Salton, G. Automatic text processing. Addison-Wesley Series In Com-
puter Science (1988), 450.

[46] Salton, G., and McGill, M. Introduction to modern information re-
trieval. McGraw-Hill, Inc. New York, NY, USA, 1986.

[47] Shoval, P., Danoch, R., and Balabam, M. Hierarchical entity-
relationship diagrams: the model, method of creation and experimental
evaluation. Requirements Engineering 9, 4 (2004), 217–228.

[48] Shoval, P., Danoch, R., and Balaban, M. Hierarchical ER Dia-
grams (HERD)-The Method and Experimental Evaluation. Lecture Notes
in Computer Science (2003), 264–274.

[49] Streit, A., Pham, B., and Brown, R. Visualization support for man-
aging large business process specifications. Lecture Notes in Computer
Science 3649 (2005), 205.

[50] Tavana, M., Joglekar, P., and Redmond, M. An automated entity–
relationship clustering algorithm for conceptual database design. Informa-
tion Systems 32, 5 (2007), 773–792.

[51] Teorey, T. J., Wei, G., Bolton, D. L., and Koenig, J. A. Er model
clustering as an aid for user communication and documentation in database
design. Commun. ACM 32, 8 (1989), 975–987.

[52] Tort, A., and Olivé, A. The osCommerce Conceptual Schema. Univer-
sitat Politécnica de Catalunya. http://guifre.lsi.upc.edu/OSCommerce.pdf,
2007.

[53] Tzitzikas, Y., and Hainaut, J. On the visualization of large-sized
ontologies. In Proceedings of the working conference on Advanced visual
interfaces (2006), ACM New York, NY, USA, pp. 99–102.

[54] Tzitzikas, Y., and Hainaut, J.-L. How to tame a very large ER diagram
(using link analysis and force-directed drawing algorithms). In ER 2005
(2005), L. M. L. Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, and
O. Pastor, Eds., vol. 3716 of LNCS, Springer, pp. 144–159.

120

[55] Tzitzikas, Y., Kotzinos, D., and Theoharis, Y. On ranking rdf
schema elements (and its application in visualization). J. UCS 13, 12
(2007), 1854–1880.

[56] Varga, R. Matrix iterative analysis. Springer, 2000.

[57] Warmer, J., and Kleppe, A. The object constraint language: pre-
cise modeling with UML. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1998.

[58] Yu, C., and Jagadish, H. V. Schema summarization. In VLDB (2006),
U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L.
Kersten, S. K. Cha, and Y.-K. Kim, Eds., ACM, pp. 319–330.

121

