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We present the numerical results obtained using quantum annealing (QA) in a hard combinatorial
problem: the coloring problem (q-COL) of an Erdős-Rényi graph. We first propose a quantum
coloring Hamiltonian, natural extension of q-COL, based on the quantum Ising model in a transverse
field. We then test several QA schemes and find the one that solves the highest number of graphs
in the smallest number of iterations. Our results suggest that the computation time of QA scales
exponentially in the size and it does not improve the results obtained by thermal annealing (TA)
for q-COL.
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I. INTRODUCTION

There is a great interest in finding solutions of
highly constrained combinatorial problems since they
appear in many fields of study. In a constraint satis-
faction problem (CSP) one must decide if a set of N
discrete variables can fulfill M constraints. An exam-
ple is the q-coloring problem (q-COL): given a graph
with N nodes and M edges, the aim is to find a confi-
guration in which connected nodes have different col-
ors chosen among q possibilities.

A decision problem involving discrete variables is
said to belong to the P class if it can be solved, in
the worst case, in a time scaling polynomially in its
size and to the NP class if it is possible to verify in
a polynomial time whether an assignment of the vari-
ables is a solution or not. Thus, NP contains P. The
hardest instances of NP form the NP-complete class,
to which any other NP problem can be reduced in a
polynomial time [1, 2]. It is widely believed that NP-
complete problems cannot be solved, in the worst case,
in polynomial time on classical computers. Proving
this conjecture is the most important open problem in
theoretical computer science.

Statistical mechanics and quantum mechanics pro-
vide new approaches to study combinatorial problems.
In this report our main interest is to find if we can take
advantage of them to solve q-COL [3]. q-COL belongs
to the NP-complete class, so an efficient algorithm to
solve it would also solve efficiently any other NP prob-
lem. Furthermore, it is quite interesting for physicists
since it can be rephrased in terms of the antiferromag-
netic Potts model by defining a Hamiltonian equal to
the number of unsatisfied constraints:

H =
∑

i

∑

j∈∂i

δσiσj
(1)

where σ ∈ {1, . . . , q} and
∑

j∈∂i sums over all the j
nodes connected to i.

A naive brute-force search of a ground state con-
figuration implies qN assignments of colors, which be-
comes impractical for large graphs. Using quantum
mechanics we are going to build a scheme of annealing
to reach faster the ground state.

This report is organized as follows. Section II is
devoted to explain the two stochastic methods that we
use to find the ground state of q-COL. In Section III we
propose a quantum coloring model. The code and the
followed procedure are analyzed in Section IV. Finally,
we expose the results in Section V and present the
main conclusions in Section VI.

II. QUANTUM AND THERMAL

ANNEALING

Consider a system evolving with a local stochastic
dynamics such as the Metropolis algorithm converg-
ing to the Boltzmann distribution at temperature T .
If the configuration space is rugged and has many local
energy minima (metastable states) the system can get
trapped if T is small in comparison to the energy bar-
riers. Finding a ground state configuration becomes
then a challenge and an annealing scheme improves
notably the search.

The idea of thermal annealing (TA), also known
as simulated annealing, is to start sampling the Boltz-
mann distribution from a high temperature (i.e. large
fluctuations) and lower it slowly so that the system
leaves local minima in order to reach deeper minima. If
we follow the correct schedule it is guaranteed that the
system eventually reaches the global minimum, but, if
T is decreased too quickly, the system might get stuck
in a shallower minimum. The problem is that the pre-
scribed time is exponential in the size of the system
(see [4, 5]).

Quantum annealing (QA) [6] is another proposal
based on quantum tunneling as well as quantum adi-
abatic evolution. Quantum tunneling induces transi-
tions between states, thereby crossing easily high bar-
riers when they are narrow. This may help the system
leave the metastable states and explore faster the rest
of configurations.

The quantum adiabatic theorem (QAT) states
that a physical system remains in an instantaneous
eigenstate of its Hamiltonian if a perturbation acts on
it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian spectrum.
The QAT can be used to find the ground state of a
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Figure 1. To reach the ground state we need to leave con-
figuration A and reach the deeper minimum B. Classically,
the only way to reach it is with thermal fluctuations, but
quantum mechanics gives us the chance to tunnel through
the energy barrier.

classical Hamiltonian, H1, by: 1) converting H1 into

an analogous quantum mechanical system Ĥ1; 2) de-

signing a suitable Ĥ2 that does not commute with Ĥ1

and such that we know how to prepare the system in

an eigenstate of Ĥ2; 3) adding it to Ĥ1, Ĥ = Ĥ1 +

ΓĤ2; 4) starting at Γ ≫ 1 and lowering Γ adiabatically
to 0.

For example, consider the quantum Ising model

(defined, for now, on an arbitrary graph): Ĥ1 =
−J

∑
i

∑
j∈∂i σ̂

z
i σ̂

z
j , where σ̂z

j is the z Pauli spin oper-
ator on the j-th spin, and J is the coupling between
spins. It is the natural extension of the classical Ising
model and it is diagonal in the {|σ〉} basis. Taking ad-
vantage of the QAT we can find the ground state of

Ĥ1 by adding a transverse field:

Ĥ = Ĥ1 + ΓĤ2 = −J
∑

i

∑

j∈∂i

σ̂z
i σ̂

z
j − Γ

∑

i

σ̂x
i (2)

where Γ ≥ 0. The terms σ̂x are off-diagonal in
the |σ〉 basis, and consequently introduce quantum-
mechanical tunneling. When Γ ≫ 1 the ground state

of Ĥ corresponds to the superposition of all classical
configurations. The QAT guarantees that lowering Γ

“slowly”1 we will finally reach the ground state of Ĥ1

when Γ = 0.
This strategy fails if there is a crossing of energy

levels of the ground state and the first excited state. In
particular, quantum phase transitions (QPT) may lead
to a crossing of energy levels. While classical phase
transitions usually happen at a finite temperature and
order is destroyed by thermal fluctuations, QPT occur
at T=0 and fluctuations are driven by Heisenberg’s

1 See [2] for a criterion to choose the rate of variation of Γ.

uncertainty principle. For example, the quantum Ising
model in a transverse field has a certain Γ = Γc at
which spontaneous magnetization appears at T = 0
[7] and another phase transition driven by temperature
for the model on a lattice of dimension larger than two
[8].

As we already saw, Eq. (1) describes q-COL. In
sections IIIA and III B we will give a natural quantum
extension and add a proper non-commuting term.

TA and QA have different inherent natures and
limitations, and sometimes it may not be clear which
performs better. Comparisons between TA and QA for
the Ising model with transverse field, precursor of our
model, have been reported diagonalizing the Hamilto-
nian at T = 0 [9]. In contrast, we will compare both
annealings by sampling the quantum partition func-
tion at T > 0.

III. QUANTUM MONTE CARLO FOR

COLORING

A. Quantum Ising Model in a transverse field

Let us consider the Ising model in a transverse
field defined above. The whole system is described by
a Hilbert space spanned by 2N vectors: |σ〉 = |σ1〉 ⊗
· · · ⊗ |σN 〉, where σ denotes a single configuration.

The partition function is defined by Z =

Tr
(
e−βĤ

)
and using the Suzuki-Trotter formula [10,

11] can be written as (see Appendix A for derivation):

Z = lim
m→∞

K1

∑

{σtot}

m∏

τ=1

eK2

∑
i,j∈∂i σ

τ
i σ

τ
j eΓ̃

∑
i σ

τ
i σ

τ+1
i (3)

where we have introduced m copies of the system (or

layers) and K1 =
(

sinh 2Γβ
2

2

)Nm
2

, K2 = Jβ
m and Γ̃ =

− 1
2 ln tanh

Γβ
m .

The partition function (3) is akin to the partition
function of a classical Ising model with Nm spins, with
Hamiltonian:

−βH = K2

∑

i,j∈∂i,τ

στ
i σ

τ
j + Γ̃

∑

i,τ

στ
i σ

τ+1
i (4)

Hence, for instance, the d-dimensional quantum
Ising model (a special case of Eq. 2 in which the
graph is a d-dimensional lattice) is mapped into an
anisotropic (d+1)-dimensional classical Ising model.
The new dimension is called imaginary time because
when we assign t = −i~β, the density matrix operator

e−βĤ can be interpreted as the Hamiltonian e−i Ĥt
~ .

When Γ → 0+(K3 → +∞) all the layers are per-
fectly correlated and we have exact replicas of the
initial system along the imaginary time direction
(this is must be so, since the quantum Hamiltonian
reduces to the classical one). In the other limit
Γ → +∞(K3 → 0+) the layers are totally uncorre-
lated.



B. Quantum q-coloring model

We are now ready to build a q-coloring quantum
Hamiltonian. Let us consider N nodes, each described
by the eigenvectors |σi〉 with eigenvalues 1, 2, . . . , q.
The qN -dimensional Hilbert space is spanned by the
vectors |σ〉 = |σ〉 ⊗ · · · ⊗ |σ〉.

In analogy with the quantum Ising model, we

propose a Hamiltonian Ĥ = Ĥ1 + ΓĤ2 whose
first part is analogous to the energy of the clas-

sical model (thus, it must be diagonal) Ĥ1 =∑
|σi〉,|σj〉

|σi〉|σj〉〈σi|〈σj |δσi,σj
.

To build the operator Ĥ2 we observe that it

should not commute with Ĥ1. Considering single-
node flips (i.e. changes of color) and assuming
that there are no privileged colors, we propose:

Ĥ2 = −
∑

i

∑
σi 6=σj

|σi〉〈σj |. In particular, for

q = 2: Ĥ2 = −
∑

i σ
x
i , and for q = 3: Ĥ2 =

−
∑

i (L+,i + L−,i + |1i〉〈3i|+ |3i〉〈1i|), where L+,i =
|1i〉〈2i| + |2i〉〈3i|, and L−,i = |2i〉〈1i| + |3i〉〈2i|. It

can be easily shown that [Ĥ1, Ĥ2] 6= 0.
With the Suzuki-Trotter formalism, proceeding in

the same way as in the previous section, we find the
analogous classical Hamiltonian:

−βH = −K2

∑

τ,i,j∈∂i

δστ
i σ

τ
j
+ Γ̃

∑

τ,i

δστ
i σ

τ+1
i

(5)

where K2 = β
m and Γ̃ = − ln

(
1− q

(q−1)+e
qβΓ
m

)
> 0.

Exactly the same analysis in terms of Γ, discussed in
the previous section, applies here.

C. Erdős-Rényi ensemble

We consider the Erdős-Rényi ensemble of random
graphs: given a set of N nodes, we assign an edge to
every pair of nodes (i, j) with probability p, indepen-
dently of all the others2. Thus, the probability to have
M edges is a binomial:

P (M) =

(N(N−1)
2

M

)
pM (1− p)

N(N−1)
2 −M (6)

with a mean number of edges 〈M〉 = N(N−1)
2 p and

variance Var(M) = N(N−1)
2 p(1− p).

This ensemble of graphs has been well character-
ized (see [12]). They have loops of length O(log(N)),
which introduce frustration. When the density of con-
straint α = M

N is small all the edges are likely to be
satisfied. For large N, there is a sharp transition at
αc that separates the phase α < αc where almost all
the instances are unsatisfiable (with probability one as

2 This may give a disconnected graph. We avoid this choosing
only the largest connected component.

N → ∞) from the phase where almost all are satisfi-
able [3]. The region near the transition includes the
hardest problems to solve [13].

IV. PROCEDURE

We have written a C++ program that, given an
Erdős-Rényi graph with N nodes and constraint den-
sity α interacting with the Hamiltonian (1), uses the
Metropolis algorithm following a TA or a QA scheme
to find a ground state configuration for q = 3. We de-
ployed about 6 months of computational time in Quad-
Core Intel Xeon @2.26 GHz processors.

For each value of N and α, we simulate one hun-
dred solvable instances (i.e. instances for which the
ground state energy is zero) so that we know when
we have reached the ground state. These were ob-
tained in [14] using a parallel implementation of the
complete Davis-Putnam-Logemann-Loveland (DPLL)
algorithm. The number of nodes is N = 64, 128, 256
and the range of α includes the hardest instances:
2.10 ≤ α < αc = 2.34.

For both QA and TA, the program initializes the
system in a random configuration and iterates choos-
ing a single random node at a time until it reaches the
ground state3 or a preset maximum number of Monte
Carlo steps per node (MCS), τMCS.

In TA, the program samples the Boltzmann distri-
bution for the Hamiltonian (1) at temperature varying

during the simulation time t as T (t) = Tin

(
1− t

τMCS

)
,

where Tin is the initial temperature and t ∈ [0, τMCS).
In QA, it samples the Boltzmann distribution for

the Hamiltonian (5) at a fixed number of layers m and

temperature T and at Γ̃(t) = Γ̃in

(
1− t

τMCS

)
, where

Γ̃in is the initial Γ̃ and t ∈ (0, τMCS]. We choose T =
m−1 so that K2 = 1 in (5).

In order to find the optimal Γ̃in, we fix m ∼ N
and run simulations for different Γ̃in. Afterwards, with
the optimal Γ̃in fixed, we run several simulations for
different m, yielding an optimal m value. We continue
iterating until both values become stable.

Once we have chosen the optimal parameters we
will study how the fraction of solved graphs increases
with τMCS and compare it with TA.

V. RESULTS

A. Behavior of QA as a function of Γ̃in

Figure 2 shows the fraction of solved graphs as
a function of Γ̃in for different τMCS. As we can see,

3 In QA, when all the edges within a single layer are satisfied,
which was indeed the original goal, we can build a configura-
tion with zero energy by choosing an even permutation of the
colors (e.g. (1, 2, 3) → (2, 3, 1)) in all the subsequent neigh-
boring layers.



there is a peak at Γ̃in ≃ 2 which separates two differ-

ent regimes. We need Γ̃in & K2

(
= β

m = 1
)
in order to

tunnel through the barrier necessary to flip one vari-
able (see Eq. (5)). For Γ̃in . 2, the system cannot
tunnel and can only evolve via thermal fluctuations.
For Γ̃in ≫ 2, the system will spend too much time at
Γ̃(t) ≫ 1, and not enough time in the region of low

Γ̃(t), therefore it will not sample sufficiently Ĥ1.
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Figure 2. Fraction of solved graphs as a function of Γ̃in

for different τMCS. To compute each point we average the
fraction of solved graphs over a total amount of 500 in-
stances: 100 for each value α = 2.10, 2.20, 2.25, 2.30 and
2.32 at m = 4. Each line represents a τMCS value. From
bottom to top, N = 64: τMCS = 3 · 103, 6 · 103, 104, 3 · 104,
6 · 104, 105 MCS; N = 128: τMCS = 3 · 104, 6 · 104, 105,
3 · 105, 6 · 105, 106 MCS. The maximum efficiency is found
at Γ̃in ≃ 2.

As we increase τMCS, the peak becomes a plateau.
This is because there are hard instances that require
a larger τMCS to be solved. To prove their existence,
in Figure 3 we plot the number of MCS that it takes
to solve all the instances that we used in Figure 2 for
two values of Γ̃in (N = 64, Γ̃in = 1.3, 3.0). We observe
that, although there is no general correlation, there is a
large number of common graphs not solved with either
value of Γ̃in (or solved by just one with τ . τMCS).
Moreover, the typical time to solve a graph increases
with Γ̃in, since it takes more time to reach smaller Γ̃.

It is also noteworthy that, for each Γ̃in, there is
a gap (shaded region in the Figure 3 for Γ̃in = 1.3)
with no solved graphs within τMCS and the maximum
number of MCS that took to solve a graph. This is due
to the fact that, for t close to τMCS, Γ̃(t) is too small
for the system to tunnel through energy barriers.

B. Behavior of QA as a function of m

The performance of QA as a function of m is
harder to analyze due to the superposition of vari-
ous effects. In Figure 4 we plot the fraction of solved
graphs versus m at a constant number of total single-
node updates, τit, by choosing τMCS = τit

Nm , at Γ̃in = 2.
We observe two peaks, one at m = 4 and another at
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Figure 3. Scatter plot of the number of MCS that took to
solve a given graph by QA with Γ̃in = 1.3 and 3.0 at m = 4.
Each point represents one of the 500 graphs included in
Figure 2. When a graph is not solved we assign it the
number of MCS τMCS (dashed line). We added some noise
to the number of MCS of the graphs not solved by any of
the two values (see the upper right corner).

m ∼ N that shifts to higher m as τit increases.
The first effect is the rate of variation of Γ̃(t).

At small m, Γ̃(t) is varied more slowly, since τMCS

is larger. That explains, in part, the first peak. On
the other hand, a higher m might cause Γ̃(t) to vary
too fast, if τit is too small. That is why, as we increase
τit, the second peak shifts to higher m.
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Figure 4. Each point represents the fraction of graphs
solved of the same ensemble of 500 instances that we used
for the Figure 2, 100 for α = 2.10, 2.20, 2.25, 2.30 and 2.32.
Each line has a constant τit for different m. From bottom
to top: N = 64, τit ≃ 5.2 · 105, 4.2 · 106, 6.7 · 107, 5.4 · 108;
N = 128, τit ≃ 1.7 · 107, 2.7 · 108, 2.1 · 109, 1.7 · 1010.

The second effect is that a larger m permits a bet-
ter exploration of the configuration space, since we ex-
plore simultaneously m different configurations of the
original system. In the second peak, this multiple ex-
ploration makes up for the fast lowering of Γ̃(t).

The last effect is that at small m , T (= m−1) is



large enough to create thermal fluctuations, and these
help the system to explore better the configuration
space, i.e. in this region we have the superposition of
quantum and thermal exploration. However, we ex-
pect this effect to vanish for large N , since the proba-
bility to visit the ground state by fluctuations vanishes
exponentially with N for any finite T . Then, the peak
at m = 4 is the crossover from a thermal to a quan-
tum regime. For larger N , the only choice in order
to increase the probability to visit the ground state is
T ∼ N−1, so that δN ∼ O(1).

It is important to note that the fraction of solved
graphs increases faster with τit in the first peak than
in the second one (e.g. for N = 64, τit = 6.7 · 107 —
4.3 · 1010, the performances are different in the first
peak, while they are similar in the second). We will
analyze this point further in the next section.

C. Behavior of QA as a function of τit

To study the growth of the fraction of solved
graphs with τit, we apply QA to solve an ensemble
of 100 graphs for all the combinations of N = 64, 128
and α = 2.10, 2.20, 2.25, 2.30, 2.32 for a wide range of
τit at Γ̃in = 2, and at the two m that showed the best
performance, m

N = 24 and m = 4. In order to study
the behavior with N , we also study N = 256 at m = 4.
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Figure 5. The symbols in the right panel are the same as in
the left one. Each point represents the fraction of graphs
solved of the same 100 instances for different values of τit
and fixing Γ̃in = 2, m

N
= 24.

Figure 5 shows long tails4 indicating that there is
a small fraction of instances that take a much longer
time than the median τin to solve.

The plot at m = 4 (Figure 6) shows tails of equal
length and the fraction of solved graphs increases more

4 By tail we mean the region where the fraction of solved graphs
is either & 0 or . 1

progressively than at m
N = 24. It suggests that ther-

mal fluctuations help the system to reach a ground
state configuration for these moderate values of N .
However, the required τit to solve all the instances are
similar.
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Figure 6. The symbols in the left panel are the same as
in the central and the right ones. Each point represents
the fraction of graphs solved of the same 100 instances for
different τit and fixing: Γ̃in = 2, m = 4.

As we increase N the difference for the various α
also increases. To understand this behavior we com-
pute the number of iterations that it takes to solve an
instance with a certain probability: we fix a thresh-
old of solved graphs and obtain by interpolation the
smallest number of iterations to achieve it. The results
are shown in Figure 7. For small probabilities, the be-
havior for small α seems to be a power law, while for
larger α it is not inconsistent with an exponential. For
example, for P = 0.5, α ≤ 2.30 seems to have a power
law behavior, while α = 2.32 seems to behave expo-
nentially. On the other hand, when we increase the
probability, an exponential behavior arises for smaller
α. A possible explanation of this is that: 1) For all α,
there are easy and hard instances that can be solved
in a polynomial and an exponential number of iter-
ations respectively. 2) The ratio of harder instances
increases with α. The exponential behavior and the
different ratios of harder and easy instances lead to
the increasing difference for the various α. These hard
instances make the algorithm scale exponentially in
the size.

D. Comparison with TA

To compare the results with TA, we try to solve
the previous ensemble of graphs for different τit and
following the same annealing schedule. The results
are shown in Figure 8.

The results are consistent with those obtained in
the previous subsection for m = 4: the probability
shows no long tails and the difference for the various
α also increases with N . Therefore, it agrees with the
fact that at m = 4 solutions are found mainly due to
thermal fluctuations. Nevertheless, QA at m = 4 is
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Figure 7. Plot of τit required to solve a graph with proba-
bilities 0.5 and 0.9 respectively at m = 4.

less efficient due to the cost associated to the extra
m− 1 layers.

On the other hand, QA at m
N = 24 has a longer tail

at large t, and the fraction of solved graphs increases
more rapidly. The long tails make QA not to improve
over TA.
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VI. CONCLUSIONS

We have implemented a new approach to tackle a
CSP: we have rewritten the classical coloring problem
in terms of a quantum Hamiltonian in order to use
quantum statistical mechanics to find a ground state

configuration. Using the Suzuki-Trotter formula we
have found a Hamiltonian which can be used to sim-
ulate the quantum coloring problem. We have tested
the algorithm for a wide range of values of the different
parameters and found the optimal ones for the coloring
problem. This choice is crucial to the efficiency of the
algorithm. The initial value Γ̃in shows a peak which
is the middle ground of a value high enough to tunnel
through energy barriers and low enough not to spend
too much time at Γ̃(t) ≫ 1. The number of layers m
shows two peaks, a first one at m = 4, due to thermal
fluctuations, and a second one at m ∼ N , which is the
middle ground of a value high enough to explore fast
the configuration space and low enough so that Γ̃(t)
does not vary to fast. We have pointed the existence
of hard instances, the quantity of which increases with
α, which suggest that the algorithm scales exponen-
tially in the size. However, it does not improve over
TA.

Further studies should focus on studying the be-
havior of QA at larger N . The most interesting point
would be the ratification of the expected exponential
behavior of τit with N . Moreover, it would be inter-
esting to confirm numerically that the probability to
find a ground state configuration at m = 4 tends to
zero for large N .
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Appendix A: Suzuki-Trotter Formula

The Suzuki-Trotter formula states that ρ̂m =
{
eÂ1/m · · · eÂp/m

}m

→ exp

(
p∑

i

Âi

)
as m → ∞ for

a set of operators {Âj}. By means of this formulation
we can compute:

Z =
∑

{σ}〈σ |e
− β

m
(Ĥ1+Ĥ2)m|σ〉 =

= limm→∞

∑
{σ}〈σ |

(
e−

β
m

Ĥ1e−
β
m

Ĥ2

)m
|σ〉

(A1)



Introducing the identity I =
∑

{σi} |σ
i〉〈σi| between

consecutive terms5 leads to:

Z = lim
m→∞

∑

{σtot}

m∏

τ=1

〈στ |e−
β
m

Ĥ1e−
β
m

Ĥ2 |στ+1〉 =

= lim
m→∞

∑

{σtot}

m∏

τ=1

e
Jβ
m

∑
i,j∈∂i σ

z
i σ

z
j 〈στ |e−

β
m

Ĥ2 |στ+1〉

(A2)
where

∑
{σtot} ≡

∑
{σ1} · · ·

∑
{σm} and |σm+1〉 ≡ |σ1〉.

The matrix elements can be easily written:

〈στ
i |e

− β
m

σ̂x
i |στ+1

i 〉 = δστ
i ,σ

τ+1
i

cosh
Γβ

m
+δστ

i ,−στ+1
i

sinh
Γβ

m
(A3)

Taking into account that στ
i can only take the values

±1, we can rewrite Eq. (A2) in an Ising-like fashion,
as in Eq. 3.
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