
Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics
Master in Computing

Master Thesis

Real-time Realistic Rain Rendering

Student: Carles Creus López
Director: Gustavo Ariel Patow

Date: June 23, 2010

ii

iii

Abstract

Artistic outdoor filming and rendering need to choose specific weather conditions in order to
properly trigger the audience reaction; for instance, rain, one of the most common conditions, is
usually employed to transmit a sense of unrest. Synthetic methods to recreate weather are an
important avenue to simplify and cheapen filming, but simulations are a challenging problem due
to the variety of different phenomena that need to be computed. Rain alone involves raindrops,
splashes on the ground, fog, clouds, lightnings, etc. We propose a new rain rendering algorithm
that uses and extends present state of the art approaches in this field. The scope of our method is
to achieve real-time renders of rain streaks and splashes on the ground, while considering complex
illumination effects and allowing an artistic direction for the drops placement.

Our algorithm takes as input an artist-defined rain distribution and density, and then creates
particles in the scene following these indications. No restrictions are imposed on the dimensions
of the rain area, thus direct rendering approaches could rapidly overwhelm current computational
capabilities with huge particle amounts. To solve this situation, we propose techniques that, in
rendering time, adaptively sample the particles generated in order to only select the ones in the
regions that really need to be simulated and rendered.

Particle simulation is executed entirely in the graphics hardware. The algorithm proceeds by
placing the particles in their updated coordinates. It then checks whether a particle is falling as a
rain streak, it has reached the ground and it is a splash or, finally, if it should be discarded because
it has entered a solid object of the scene. Different rendering techniques are used for each case.
Complex illumination parameters are computed for rain streaks to select textures matching them.
These textures are generated in a preprocess step and realistically simulate light when interacting
with the optical properties of the water drops.

iv

Contents

1 Introduction 5
1.1 Objectives . 5
1.2 Document overview . 6

2 Rain phenomena 7
2.1 Rain streaks . 7
2.2 Clouds . 7
2.3 Rainbows . 9
2.4 Lightning . 9
2.5 Puddles, splashes, coronas and ripples . 9
2.6 Dripping water . 11
2.7 Fog and glows . 11

3 Previous Work 13
3.1 Off-line . 13
3.2 Real-time . 15

3.2.1 Simplistic approaches . 15
3.2.2 Particle systems . 15
3.2.3 Multiple phenomena . 18

3.3 Summary . 20

4 Rain rendering 23
4.1 Algorithm overview . 23
4.2 Rain simulation model . 24

4.2.1 Simulation subspaces . 26
4.3 Generation of the rain data . 26

4.3.1 Rain streak atlases . 28
4.3.2 Particle generation . 32
4.3.3 Particle packets . 33

4.4 Real-time simulation . 35
4.4.1 CPU steps . 35
4.4.2 GPU steps . 38

5 Results, Conclusion and Future work 41
5.1 Test settings . 41
5.2 Performance . 42

5.2.1 Local space height . 42
5.2.2 Culling radius distance . 43
5.2.3 Packet size . 43
5.2.4 Number of light sources . 43

5.3 Discussion . 43
5.4 Conclusion . 48

1

2 CONTENTS

5.5 Future Work . 51

A Physics 53

Bibliography 55

List of Figures

2.1 Rain streak with complex oscillating lighting; raindrop shape and splitting dimen-
sions (image c©Wikipedia user Pbroks13). 8

2.2 Thunderstorm clouds over Chaparral, New Mexico. 8
2.3 The first image shows the complex path that light follows when entering raindrops,

refracting twice and reflecting one time, separating its various wavelengths. The
second image depicts a rainbow caused by this optic effects. 9

2.4 Real lightning strikes. 10
2.5 Rain drop splashes on almost dry surface. 10
2.6 Water dripping on glass. 11
2.7 Golden Gate shrouded in dense fog at noon. 12
2.8 A scene in the early morning. Notice how the lights in the background are scattered

in their surroundings by the mist. 12

3.1 Raindrop model of [Garg and Nayar, 2006]. 14
3.2 Rendering results in [Garg and Nayar, 2006]. 14
3.3 Splash simulation in [Garg et al., 2007]. 15
3.4 Double cone used in [Wang and Wade, 2004] to simulate rain and snow. 16
3.5 Resulting composite image of the algorithm presented in [Wang et al., 2006]. . . . 16
3.6 The drop refraction approach of [Rousseau et al., 2006]. 17
3.7 Rain render of [Tariq, 2007] . 18
3.8 Rain simulation area in [Puig-Centelles et al., 2009]. 18
3.9 Rain effects of [Tatarchuk, 2006]. 20
3.10 Detail of dripping water in [Tatarchuk, 2006]. 20

4.1 Rain simulation model basic scheme. (Using the “Happy Buddha” model, courtesy
of Stanford University.) . 24

4.2 Scheme of the various states of particle: drop, splash or invisible. 25
4.3 Rain space with a perspective frustum. (Using the “Happy Buddha” model, cour-

tesy of Stanford University.) . 26
4.4 Rain simulation model subspaces. 27
4.5 Visualization errors caused by too narrow simulation volume. (Using the “Happy

Buddha” model, courtesy of Stanford University.) 27
4.6 Raindrop model of [Garg and Nayar, 2006]. 28
4.7 Organization of the rain streak atlases. 29
4.8 Rain streak atlases. 30
4.9 Rain streak atlases with scaled brightness. 31
4.10 Camera used to define the rain space. (Using the “Happy Buddha” model, courtesy

of Stanford University.). 32
4.11 Tree packet approach. (Using the “Happy Buddha” model, courtesy of Stanford

University.) . 34
4.12 Particle bucket for the grid packet approach. 35

3

4 LIST OF FIGURES

4.13 Drops’ height correction in two different frames. (Using the “Happy Buddha” model,
courtesy of Stanford University.) . 37

4.14 Packet selection. (Using the “Happy Buddha” model, courtesy of Stanford University.) 37
4.15 Dynamic depth map computation. (Using the “Happy Buddha” model, courtesy of

Stanford University.) . 39
4.16 Final rain simulation. (Using the “Happy Buddha” model, courtesy of Stanford

University.) . 40

5.1 City model used in the tests, by Daz3D. 42
5.2 Renders of the local space size tests, first camera position. 45
5.3 Renders of the local space size tests, second camera position. 46
5.4 Renders of the culling radius distance tests. 47
5.5 Renders of the packet size tests. 48
5.6 Renders of the light amount tests. 49
5.7 Image using various light sources. 50
5.8 Example of shadows affecting streak lighting. 51

A.1 Vertical slice of a raindrop, showing its shape as a function of its size. From [Ross
and Bradley, 2002]. 53

Chapter 1

Introduction

One important aspect of artistic outdoor scene filming is the need to choose specific weather
conditions in order to properly trigger the audience reaction. Depending on which mood the
artist desires to transmit, different weather conditions must be used. For instance, sunny days
are typically associated with alert and cheerful states, while cloudy and rainy conditions are felt
more oppressive and may enhance a sense of unrest. Filming scenes with specific conditions may
be laborious and expensive; furthermore, it is subject to the ungovernable atmospheric weather.
For this reasons, synthetic methods to simulate weather are an important avenue to simplify the
task and have already been widely used to produce visually appealing computerized graphics in
films. These simulation techniques can be broadly classified into two groups: real-time and off-line.
The former group is used in interactive applications like video-games and virtual reality while the
latter produces more realistic results and is the one used in filming, where processing can take
long times. In this document we will focus on rendering in real-time one of the most common
weather conditions: rain.

Rain simulation is a challenging problem due to the variety of different phenomena that need to
be computed, all of them with complex physical evolutions. These phenomena include raindrops,
splashes on the ground, fog, clouds, lightnings, etc. The amount of small details and particles that
need to be simulated rapidly overwhelm current computational capabilities. This forces real-time
applications to limit the phenomena simulated and use approximations of their visualizations,
while still striving to achieve realistic results.

1.1 Objectives

The essential goal of this project is to propose and explore a new approach for real-time rain
rendering. One of our self-imposed constraints is to achieve realistic simulations comparable to
state of the art implementations in this field. In order to do so, we plan to build our system around
the work done in [Garg and Nayar, 2006]. In it, the authors have developed a database of rain
streak textures capturing the drop’s complex illumination effects. Realistic rendering employing
these textures can be done in the manner of [Tariq, 2007], except that we seek greater simulation
accuracy by using the complete database and its lighting parameters.

Raindrops will be animated using a particle system. We propose an approach different from
the ones used this far that is both simpler and faster to animate, yet allowing us to perform
various kinds of adaptive sampling of the regions that need to be simulated and rendered. Finally,
interaction of the raindrops with the whole scene is also considered. This avoids drops penetrating
geometry and it will also provoke splashes when collisions are detected, a phenomenon that gives
good visual clues to identify rainy weather.

5

6 CHAPTER 1. INTRODUCTION

1.2 Document overview
The remaining of this document is structured as follows. First, in Chapter 2 we describe the
various phenomena that comprise rain, giving tips on what simulation of each of them would
imply. In Chapter 3 we detail the previous work done in this field, remarking some of the results
that we use in our approach and how we extend them. Chapter 4 is devoted to our rain simulation
proposal. We first introduce a brief summary of the whole algorithm and then we extend each of
its parts, giving full detail of the steps that our approach performs. In Chapter 5 we show final
results of the algorithm, along performance of our reference implementation. We also comment
how it compares to the state of the art and list possible future work modifications to our current
proposal. Appendix A lists a few studies related to raindrop’s physics.

Chapter 2

Rain phenomena

Rain as a whole consists of a plethora of different phenomena, most of them related to water, how
it moves and how it affects lighting. Since water in rain is present in a wide variety of forms, these
phenomena require radically different simulation algorithms in order to adapt to each condition.
Below we give a summary of what rain simulation implies and the difficulties it encounters, hinting
some of the principal physical properties known about it.

2.1 Rain streaks
Water drops falling are the most identifiable phenomenon in rain. When cloud’s water vapor is
condensed, it forms drops that, when they reach enough mass, fall to the ground. On the ground
level, drops have already reached terminal velocity and, given a small area, their distribution can
be considered random and uniform.

As shown in Figure 2.1(b), a drop’s shape is elliptic. For small drops it is almost spheric, but
as they get bigger aerodynamic forces deform their shape. Moreover, drops cannot get bigger than
a specific threshold because their own motion through the air splits them. See Appendix A for a
brief explanation of the main known physical properties of raindrops, along the classical references
on this topic. The air also induces complex oscillations on the drops, further distorting their
shape and creating complex optic effects. Pure raindrops are colorless but their reflections and
refractions can be perceived with proper lighting conditions. Although these are the raindrops’
intrinsic properties, human perception takes a more important role in the way they are seen: since
images in the eye have some persistence and raindrops move relatively fast, falling raindrops are
perceived as streaks (see Figure 2.1(a)). In a camera this phenomenon is called motion blur and
is caused by its integration time, or exposure time.

2.2 Clouds
Cloud rendering is one of the most important aspects in order to correctly transmit the mood
produced by rain. They are also highly complex systems with simulations that need to take into
account many different effects. First of all, they are participating media where light suffers a high
degree of scattering and absorption. The density of droplets suspended in the cloud determines the
way light is distorted, and variations of this density may produce lighting conditions with a wide
difference in coloring and attenuation, as in Figure 2.2. Moreover, simulations are hindered by the
fact that light absorption is low, and thus convergence of the algorithms is very slow. Another
problem is that the shape of clouds varies depending on their types, some being soft while others
like cumulus are sharp. With the latter group, high resolution simulations are needed, increasing
even further the computation times. Finally, wind influence must be taken into account to animate
the shape of the cloud. These shape changes modify how light is scattered inside it, and thus the
illumination simulation must be updated along the animation.

7

8 CHAPTER 2. RAIN PHENOMENA

(a) Synthetic
rain streak.

(b) Drop shape and maximum size due to aerody-
namic forces.

Figure 2.1: The first image depicts a rain streak in front of a black background, taken from the simulation
model of [Garg and Nayar, 2006]. Complex lighting effects due to the drop’s oscillations are
visible as white patterns. The second image shows the raindrop shape when it has different
sizes and the approximated maximum size it is capable to achieve before splitting due to
aerodynamic forces and surface tension.

Figure 2.2: Thunderstorm clouds over Chaparral, New Mexico.

2.3. RAINBOWS 9

2.3 Rainbows
When a wave changes between mediums with different propagation speeds, it suffers refraction.
Furthermore, the angles at which the waves are refracted depend on their frequencies. These
properties cause that, when rain is mild or has just finished, small droplets suspended in the air
produce rainbows by refracting the sunlight: light first enters a droplet, reflects in the opposite
side and exits the droplet again from the front face, refracting twice in total and causing sunlight’s
different colors to get separated. A scheme of this phenomenon is shown in Figure 2.3(a). This
takes place at the same time in all the droplets, making visible a spectrum of light in the form of
an arc (see Figure 2.3(b)), with red on the outer part and violet on the inner one.

(a) Light refracted inside a rain-
drop.

(b) Rainbow over an Alaskan lake.

Figure 2.3: The first image shows the complex path that light follows when entering raindrops, refracting
twice and reflecting one time, separating its various wavelengths. The second image depicts a
rainbow caused by this optic effects.

2.4 Lightning
A lightning is an atmospheric discharge of electricity, typically originating in a cloud and hitting the
ground. Visually its path seems erratic, branching while it advances, and its color is mainly white
but produces deep blue or violet illumination in its surroundings, as in Figure 2.4. Simulation of
this phenomenon must produce pseudo-random paths and change the illumination of the hole scene
to respond to its varying-intensity flashes. To produce strong flashes that are visually plausible,
an important aspect to consider is the computation of the shadows that they cast. Also note that
lightnings are produced at the sky but hit the ground, so parts of the scene away from it may
receive their illumination almost as a uniform directional light, but the parts of the scene close
to the hit point must consider more complex lighting methods. It is also important to highlight
that, due to its high altitude, this illumination affects globally the whole scene at the same time,
making it more difficult to simulate because a huge amount of data may be needed to be processed
for the computation. Most current rendering approaches of lightings only consider distant light
approximation to speed up computations.

2.5 Puddles, splashes, coronas and ripples
An immediate consequence of rain is that objects get wet, with water accumulating on the ground
creating puddles. These create two optic effects that properly simulated enhance the visualiza-

10 CHAPTER 2. RAIN PHENOMENA

Figure 2.4: Various real lightning strikes, where its complex paths and global lighting effects are visible.

tion of rain: refraction of the ground under the puddles and reflection of the objects over them.
Moreover, since raindrops hit the ground continuously, these effects are distorted by the ripples
that the impacts produce. Another consequence of the hits are the splashes they produce. If the
ground is still dry or has a thin layer of water, splashes are formed by small droplets and a thin
and small corona (see Figure 2.5 as an example). If a puddle is present, the mass of water absorbs
the impact and the corona is more noticeable and the splash droplets are not so numerous.

Figure 2.5: A water drop splashes onto the ground. The impact surface has a thin layer of water, thus
producing a thin corona and many droplets. Reflection on the ground and refraction through
the corona are clearly visible.

2.6. DRIPPING WATER 11

2.6 Dripping water
When raindrops fall on non horizontal surfaces they do not accumulate on it but trickle down
following the forces they receive, mainly gravity and wind. Movement of the drops is also influenced
by properties of the material they lay on, like its impurities and whether it is hydrophilic or
hydrophobic. Wetness of the surfaces also modifies the path of the drops by reducing its resistance.
Finally, these properties combined with water’s surface tension also modify the shape of the drops:
the more hydrophobic the surface is, the more spherical the droplets are. Simulation of the drops
while they move must take into account that they leave behind part of their mass, creating a trail.
Moreover, a drop may split or merge into another drop or trail. Note also that, as simulation
proceeds, moving drops either accumulate in a basin of the surface or they fall off of it.

As in the previous phenomena, reflections and refractions must be carefully considered. A
relevant case where refraction becomes noticeable is when water drips on glass surfaces. This case
is important because visualization of the scene behind the glass can be highly distorted if objects
are far away. A simulation of this effect is shown in Figure 2.6.

Figure 2.6: Water dripping on glass as simulated by [Wang et al., 2005].

2.7 Fog and glows
Raindrops reduce visibility for far away objects, producing a haze-like effect. The heavier the rain
is, the more pronounced this effect gets. In heavy storms this phenomenon may become like a fog
due to the high humidity levels that the air reaches. In rain simulation it is important to mimic
these types of atmospheric states because of the obvious effect that they have on lighting. For
uniform and static fogs, there are two main aspects to consider. First of all, the accumulation of
small water drops in the air absorbs part of the light and thus visibility is reduced, occluding far
away objects and lowering the details and depth perception of midrange objects (see Figure 2.7).
The other aspect is that fog is a participating media, and thus light is scattered when traversing
it. This is specially perceived in the glows around light sources produced by the scattering of the
emitted light in their immediate vicinities, as in Figure 2.8.

12 CHAPTER 2. RAIN PHENOMENA

Figure 2.7: Golden Gate shrouded in dense fog at noon.

Figure 2.8: A scene in the early morning. Notice how the lights in the background are scattered in their
surroundings by the mist.

Chapter 3

Previous Work

Many different techniques have been developed in recent years to simulate rain, most of them
focusing on a concrete subset of rain phenomena. In this section we explore the most recent ones
and give a quick overview of each of them. We first consider two important off-line approaches
that are image-based, meaning that they add rain to still images or video. Even though this
makes them not suitable for interactive animation, some of their techniques can be applied in this
area. Then we focus on real-time rendering algorithms. We start with common simple approaches
that are not able to achieve realistic simulations, but that have been widely used due to their low
impact on performance. After that, we concentrate on the particle-based simulations. Finally,
we detail two singular approaches that have a wider focus than all the previous ones, proposing
algorithms that render at the same time many of the phenomena detailed in Chapter 2.

3.1 Off-line
In [Garg and Nayar, 2006] a rain streak simulation model and a rain rendering algorithm are
presented. The first part consists of an analysis of a raindrop oscillation model developed in
atmospheric sciences in order to infer the parameters that best match the reality. This analysis is
done by actually capturing real rain streaks and visually comparing them to the synthetic images
produced by their software. To fully capture all the possible illumination conditions, they use a
setup as depicted in Figure 3.1, where they proceed by changing camera’s θview and light’s θlight
and φlight. Once the parameters of their procedural simulations are properly tuned to achieve
good visual matchings with the real raindrop captures, they produce a database of high quality
renders for various values of the illumination parameters. Finally, they propose an algorithm to
add rain streaks in still images and animations by blending carefully chosen renders of the database
onto them. This approach to simulate realistically illuminated rain is an image-based algorithm
that takes as input the image (or video), a coarse depth map of the image (video), camera and
lighting parameters and rain configuration. The camera and lights are used to select and shade the
renders of the database, the depth map culls the streaks behind solid occluders and the final result
is blended onto the input image (video). All this is done as an off-line process with a performance
of about 10 seconds per frame on their test machine. An example of their results can be seen
in Figure 3.2.

In [Garg et al., 2007] they analyze another rain phenomenon: splashing of water drops. They
proceed analogously to their previous paper. First of all, they use a real setup to capture a wide
variety of splashes in order to be able to empirically infer a mathematical model. As their analysis
show, this model must depend on the inclination of the surface relative to the raindrop direction,
the material of this surface and the size and velocity of the droplet (see Figure 3.3). The rendering
algorithm is also image-based and takes as input an image (or video), a coarse depth map of the
image (video), a partition of the image (video) in different materials and the lighting and camera
configurations. The rain is then generated as in [Garg et al., 2007], but now they also check

13

14 CHAPTER 3. PREVIOUS WORK

Figure 3.1: Garg and Nayar raindrop model parameters as depicted in [Garg and Nayar, 2006]. The
raindrop is located at the origin of coordinates and falls in the opposite direction of the Y
axis, the θ and φ are the elevation and azimuthal angles for the camera and the light. The
xdrop is the natural orientation of the raindrop.

Figure 3.2: One of the images shown in [Garg and Nayar, 2006] where rain has been added with their
algorithm. A coarse depth map is used to avoid far away rain streaks in front of the traffic
light.

collisions in order to add splashes using the probability distributions of their model.

3.2. REAL-TIME 15

Figure 3.3: Simulated splash distribution in [Garg et al., 2007] for different materials (rusted iron and
plastic, as shown on the top right corner of each image) and varying surface inclinations.

The papers [Garg and Nayar, 2006; Garg et al., 2007] represent the most comprehensive analysis
of two of the main rain phenomena, i.e. rain streaks and splashes. With thorough studies of
the water behavior and its lighting under various conditions, they infer mathematical models
that closely match both phenomena. Coupling this result with off-line image-based rendering
algorithms they achieve realistic rain renders. These algorithms are CPU-based and thus their
performance does not allow interactive framerates. Moreover, their main goal is to add rain in
film sequences so an artist must provide the depth map that their approach requires, making it a
cumbersome method for animated scenes where the depth map changes each frame.

3.2 Real-time
In this section we focus on approaches similar to our proposal, i.e. the ones whose simulations
are performed in real-time. First, simple algorithms are presented in order to give an idea of the
most basic rain algorithms, even though they do not actually produce realistic renderings. Then
particle-based simulations are detailed to give an overview of the state of the art. In the last part,
we explain two special approaches that have been designed to render more rain phenomena than
the previous ones.

3.2.1 Simplistic approaches
Traditionally, real-time rain rendering techniques are approximations to the real phenomena. They
have a high performance and are mainly used in demanding applications like video-games and
virtual reality, where rain simulation time is constrained by the whole logic engine, other physics
computation and scene rendering. When little time is available to simulate and render the rain,
one of the typical approaches consists of just rendering a few line primitives in front of the observer,
using a translucent white material. This method is not able to produce realistic rain streaks and
usually it is only used for mild rain. Another solution whose computational cost is independent
from the amount of raindrops, and thus is able to simulate heavy rain in the same fraction of
time as mild rain, is to use a precomputed texture of rain streaks and blend it onto the scene,
scrolling it down at each frame to simulate the drops’ fall. Drop parallax is not possible with this
approach unless various textures simulating different depths are used. In [Wang and Wade, 2004]
a refinement of this technique is presented. Instead of a textured quad in front of the camera, two
cones that encompass the observer are used (see Figure 3.4). Four artist-generated rain (or snow)
textures are used for the cones. The cones are tilted to adjust for camera movement, the textures
are elongated to simulate motion blur and also scrolled to mimic the rain fall. This scroll is done
at different speeds for the 4 textures in order to simulate streaks’ depth with parallax.

3.2.2 Particle systems
In [Wang et al., 2006] the optical properties of spheric raindrops are analyzed. Even though
real raindrops are not spheric, this simplification allows them to derive a closed formula for their
algorithm. In a preprocessing step, they compress the environment map and the transfer function
of their model using spherical harmonics. To render the raindrops they use real video analysis in

16 CHAPTER 3. PREVIOUS WORK

Figure 3.4: Double cone used in [Wang and Wade, 2004] to simulate rain and snow.

order to extract real rain streaks that are later used as textures for the particle system. These
textures are shaded using their model, transformed to match the scene’s camera and blended to the
scene’s image. They also add to the output renders homogeneous fog, light glows approximated
by Gaussian blurring and rain splashes designed by an artist. The raindrops and the splashes are
uniformly distributed in the scene by their particle system. A real image with their rain added can
be seen in Figure 3.5. This proposal works in real-time at high frame rates, but it also has some
drawbacks: requires real rain video to extract the streak textures, splashes are artist-generated
and the preprocessing step forces that the scene where the rain is to be added must remain static.

Figure 3.5: Resulting composite image of the algorithm presented in [Wang et al., 2006].

Raindrop refraction is used in [Rousseau et al., 2006] as the main defining factor of raindrop
coloring. They start by analyzing the optic properties of the raindrop and conclude that reflections
are limited to its silhouette and thus can be neglected without reducing image quality. In order
to model refraction in real time, at a precomputation step they generate a texture mask that
determines the direction of the refracted viewing vector for a quasi spherical raindrop. This vector
is later used to index a texture storing a wide field of view render of the background. The particle
system is stored in a texture where each texel represents a particle’s position, information that is

3.2. REAL-TIME 17

updated per frame. During rendering time the particles are expanded to quad billboards and their
color is computed using the mask: either the quad’s texel lies outside the drop and the background
is directly outputted, or the mask’s refraction is used to perturb the direction of view and compute
which part of the background is visible. Figure 3.6 summarizes the idea. This allows the rendering
of clear refracting raindrops. To add motion blur they change the particles to vertical streaks and
render a few drops along this streak, blending them together to simulate the camera’s integration
time. Finally, they also consider light interaction with the raindrops by modifying their color. The
resulting algorithm achieves good visual results when all the objects that can be refracted through
the raindrop are far behind the rain (in the background), closest objects are not considered. The
authors also mention that raindrop collisions with the ground could be computed, but they do not
comment it further.

Figure 3.6: The drop refraction approach of [Rousseau et al., 2006]. The red quad is the wide field of view
render of the background, P0 the texel seen from the original view direction, Pc the texel seen
after using the refraction perturbation of that specific raindrop and view direction.

In [Tariq, 2007] rain is rendered in real-time as quads textured with a simplified version of the
image database presented in [Garg and Nayar, 2006]. By doing so, they achieve realistically looking
raindrops at the cost of texture lookups. The animation is done by using the graphics pipeline
to update the raindrop positions, then GPU state is changed and the actual render proceeds.
This render creates a quad for each particle and computes its lighting parameters needed to use
the simplified database. The final color is produced by blending together the 4 textures of the
database that are closest to these lighting parameters. To enhance the visualization, they also use
fog to add glows around light sources and change the reflectance of the surfaces (see Figure 3.7).

The work done in [Puig-Centelles et al., 2009] is a new rain rendering algorithm based on a
particle system. Its setting is a simplified raining area defined by an ellipse and a rain container
where actual particles are simulated. This container is a semi-cylindrical volume whose size is big
enough to allow the observer to rotate and move a certain amount without needing to compute
new particles to populate the container. This is an important difference to the previous methods
of [Tariq, 2007] and [Rousseau et al., 2006], where recomputation is needed when the camera
changes. Figure 3.8 depicts this container as seen from above it. In the figure, another important
property of the algorithm can be seen: the density of the particles far away from the observer
is lower than that of the particles close to it. This adaptive scheme, along with a technique

18 CHAPTER 3. PREVIOUS WORK

Figure 3.7: Rain render of [Tariq, 2007] where rain streaks area clearly visible, along with light glows and
wet surfaces.

that changes the particles’ size depending on the distance, allows to simulate heavy rain with
less particles than the previous methods. They also handle movements from the rainy area to
outside of it by having a transition area surrounding the ellipse where the rain is computed.
All the method is GPU-based and consists of two main steps: the first execution of the render
pipeline just updates the particle positions, a second render actually updates the frame buffer by
blending the particle colors. These particles are expanded to quads in a geometry shader, with a
semitransparent material that tries to mimic the rain streaks.

Figure 3.8: Bird’s eye view of the semi-cylindrical area where rain is simulated, as shown in [Puig-Centelles
et al., 2009]. In blue are shown the particles closest to the observer, in red the most distant
ones. It can also be perceived how the density of the particles is adapted to this distance.

3.2.3 Multiple phenomena
Some of the state of the art rain rendering techniques include a combination of a wide variety
of rain phenomena in order to achieve more complete simulations. In this category most of the

3.2. REAL-TIME 19

solutions are off-line due to their high computational costs. Nonetheless they are widely used
in cinema special effects thanks to the fact that rendering times in cinema production are not
constrained by the necessity of real-time frame rates. Examples include the work in [Borshukov,
2005] or the use of [Herman, 2001] by Pixar R©. If physically correct simulation is not needed, in
recent years there have been proposed some approximations that run in real-time and still produce
visually pleasing results.

In [Changbo et al., 2008] they propose a set of methods to simulate various rain effects. The
most basic effect is the simulation of the actual raindrops. Their approach consists of treating the
raindrops as microfacets and precompute the lighting for them, storing the result in a spherical
texture. With this step they proceed to simulate the camera’s integration time to produce a rain
streak. This is done by taking the 3 main oscillation types for raindrops and animate them along
the streak in order to disturb its thickness. They also develop a new method for the participating
media, namely the fog produced by tinny raindrops in the air. There are two different kinds of
light that are scattered through the media: skylight’s and lamp’s. The former is precomputed
in a lookup table that depends on the height of the drop from the ground. For the latter they
separate the light source single scattering formula into two parts, one is precomputed and another
is executed per drop, allowing a real-time computation thanks to this split. The participating
media also generates rainbows when the density of the rain decreases. They take into account how
the rain changes the properties of the ground, i.e. it is rendered differently depending on whether
it is a dry area, wet area or a puddle. For dry areas they use the usual diffuse reflections, wet
areas have specular reflections and puddles have both specular reflections and refractions. On the
ground, splashes and ripples are also computed.

The ATI R© demo documented in [Tatarchuk, 2006] is a set of techniques that approximate the
rain phenomena without trying to use physically correct simulations. Figure 3.9 shows an example
of its results. Rain streaks are animated with a particle system and rendered using an image-based
algorithm that composes the final image with a single pass. Dripping raindrops are set up by an
artist and rendered as billboards using the same shading algorithm as normal rain streaks. Splashes
are uncorrelated to the actual drop collisions, being instead randomly started on the ground. Their
animation is done using billboards textured with a real video of a milk drop splashing on the
ground. To avoid repeating effects, the billboards are randomly perturbed by changing their size
and transparency and flipping their texture. Their lighting is brighter when the source is located
behind the splashes. In heavy rain situations, objects receive a huge amount of drop collisions,
each of them creating splashes of small particles that surround the object. This produces an halo
like effect along the object’s silhouette. To simulate this phenomenon a technique similar to the
ones used to render fur is used: series of semi-transparent shells are rendered encompassing the
object. Ripples on water surfaces are simulated on a tinny texture that is tiled over the whole
scene, changing the bump-mapping of the objects. To avoid repetitions, different scale and rotation
factors are used for the objects. In the demo, water droplets trickling down on glass surface are
also simulated using the force of gravity, static friction, surface wetness and affinity, wipers and
mass lose and merge. The rendering includes reflection of the objects in front of the surface
and refraction of the scene behind it. This part of the scene, the one behind the glass, receives
shadows casted by the water and an approximation of caustic highlights (see Figure 3.10). The
technique used for this last phenomenon builds upon the algorithm of [Kaneda et al., 1999], but
it is simplified and adapted to high performance GPU evaluation and rendering. The ATI R© demo
also includes a certain amount of predefined lightnings whose casted shadows are precomputed
and stored in textures. When a lightning strikes, its illumination affects the whole scene casting
the precomputed shadows and modifying the shading of all the rain phenomena by making them
less opaque. A participating media is taken into account by attenuating light depending on the
distance to the observer and rendering glows at the scene’s light sources. Finally reflections due to
wet materials are computed using impostors that create stretched reflection towards the observer,
distorted so that only dominant colors are made distinguishable. This plethora of phenomena
comes at the cost of 300 unique shaders to render just the rain system.

20 CHAPTER 3. PREVIOUS WORK

Figure 3.9: Various of the rain effects of [Tatarchuk, 2006] can be seen in the render, most notably the
rain streaks and reflections on wet surfaces.

Figure 3.10: Detail of water droplets trickling down on glass in [Tatarchuk, 2006]. Caustic-like effects can
be seen on the shadows projected on the toys.

3.3 Summary
In Table 3.1 a brief summary of the previously explained algorithms is presented. They are grouped
as in the preceding sections, i.e. the off-line algorithms, the simple approach, particle systems
and multiple rain phenomena methods. For each of them its main properties are highlighted;

3.3. SUMMARY 21

columns from left to right: which rendering primitive is used for the simulation of raindrops,
whether it is a real-time algorithm, use of the GPU to accelerate the rendering or the simulations,
rendering of raindrops, raindrop particles removal when the ground is hit or when the raindrops
are behind solid occluders, wind, rainbow and lightning simulations, reflection and refraction of the
water (including wet surfaces or raindrops), participating media that modifies the illumination,
simulation of splashes on the ground, adaptive schemes for Level-Of-Detail optimizations, and
simulation of ripples and dripping water.

As can be seen in the table, none of the methods simulate at the same time all the phenomena.
[Tatarchuk, 2006] is the most comprehensive one, but at the cost of a highly complex implemen-
tation and limiting camera movement. [Changbo et al., 2008] is also extensive, but few details
are given in the paper, so its evaluation is hardly possible. Even though [Garg and Nayar, 2006;
Garg et al., 2007] are included in the table, they are not real-time algorithms and so they are not
the focus of our proposal. The simplistic approach in [Wang and Wade, 2004] only simulates the
effect of raindrops, which is the only phenomenon common to all the presented algorithms. Their
method is out of our scope since they do not use realistic rendering in order to speed up their
system. [Wang et al., 2006] is able to achieve good visual results, but requires as input real rain
video in order to extract the streak textures. None of the remaining works in [Rousseau et al.,
2006; Puig-Centelles et al., 2009; Tariq, 2007] consider collision of the raindrops with the ground.
Interaction of the rain with the scene is one of our important objectives, since it avoids that rain
penetrates geometry. In [Puig-Centelles et al., 2009] they do not consider realistic streaks either,
instead they use uniform transparent materials. Finally, let us note that the work done in [Tariq,
2007] is similar to our approach, but, apart from the missing collisions, it also uses a simplified
illumination computation.

22 CHAPTER 3. PREVIOUS WORK

D
ripping

(rain
drops

dripping
on

glass
surfaces)

R
ipples

(w
aters

surfaces
w
ith

anim
ated

ripples)
LO

D
(texture

m
ipm

aping,adaptive
particle

sim
ulation)

Splashes
(raindrop

anim
ated

splashes
on

the
ground)

Participating
m
edia

(fog,light
glow

s)
R
efraction

(in
puddles

or
in

raindrops)
R
eflection

(on
ground

or
on

raindrops)
Lightning
R
ainbow

W
ind

M
oving

cam
era

G
round

collision
R
aindrops

G
PU

R
eal-tim

e
A
nim

ation
[G

arg
and

N
ayar,2006]

particle
7

7
3

3
3

7
7

7
7

7
7

7
3

7
7

[G
arg

et
al.,2007]

particle
7

7
3

3
3

7
7

7
7

3
7

3
3

7
7

[W
ang

and
W
ade,2004]

texture
3

3
3

7
3

7
7

7
7

7
7

7
7

7
7

[W
ang

et
al.,2006]

particle
3

3
3

3
3

7
7

7
3

3
3

3
7

3
7

[R
ousseau

et
al.,2006]

particle
3

3
3

7
3

7
7

7
7

3
7

7
7

7
7

[Tariq,2007]
particle

3
3

3
7

3
3

7
7

7
7

3
7

3
7

7
[Puig-C

entelles
et

al.,2009]
particle

3
3

3
7

3
7

7
7

7
7

3
7

3
7

7

[C
hangbo

et
al.,2008]

particle
3

3
3

3
3

3
3

7
3

3
3

3
3

3
7

[Tatarchuk,2006]
particle

/
texture

3
3

3
3

7
3

7
3

3
3

3
3

7
3

3

Table
3.1:

Sum
m
ary

ofthe
essentialpropertiesofthe

presented
algorithm

s.
See

Section
3.3

foran
explanation

ofeach
colum

n
and

classification
ofthe

algorithm
s.

Chapter 4

Rain rendering

In this chapter we detail all the aspects of our rain rendering method. First of all, we give a brief
overview of the whole approach, mentioning its scope and enumerating the main steps it performs
for the simulation. Then we proceed by describing in greater detail the conceptual model of our
rain simulation system, defining all its related terms. In the following sections, we extend on the
computations performed in order to generate all the data used by the algorithm and, finally, we
comment on the real-time simulation and the rendering pipeline.

4.1 Algorithm overview
The main objective of our method is to achieve a real-time rain rendering algorithm that uses an
artist-generated particle distribution, takes into consideration complex illumination effects on the
raindrops and, finally, considers interaction of the drops with the scene in order to avoid having
rain inside solid objects and to produce splashes where collisions are detected.

Our rain is added into a scene as the final rendering step, that is: once a scene has been
rendered, the rain streaks and splashes are blended to the color buffer. The only requirement of
the scene is that it provides a well-defined depth buffer that can be used to cull the particles that
are occluded. This implies that the current approach cannot add rain to volumetric data, nor
treat scenes with semi-transparent geometry.

The proposed method is divided into two different parts, one executed once as a preprocess
and the other one being the real-time simulation and rendering.

The preprocess is used to generate all the rain data that is latter needed for the real-time
simulation. This data is composed by the rain particles and an atlas. The particles are used
during rendering time to animate the falling raindrops and create the splashes when they hit
the ground. Its placement in the scene follows an artist-generated distribution, specified as an
image whose greyscale values define the particle density. The generated atlas stores precomputed
renderings of rain streak simulations where complex drop oscillations and lighting effects are taken
into account to shade them. This atlas is always the same for any rain, and thus only needs to be
created once.

As already hinted, the real-time simulation starts by rendering the scene. After that, the
particles generated in the preprocess are scheduled for simulation depending on various selection
criteria, namely its proximity to the observer and whether they are potentially visible or not.
Particles are transformed in order to set them in their proper places, with respect to their fall, and
sent to the GPU. In the programmable pipeline of the graphics hardware, we compute collisions
of the particles with the scene and render them as billboards that represent rain streaks (if no
collision is found) or splashes (when a collision has happened). The texture for a rain streak
billboard is taken from the pre-generated atlas by selecting its subimage that best fits the illumi-
nation parameters of that particular drop. The final result is blended onto the scene render using
transparency.

23

24 CHAPTER 4. RAIN RENDERING

4.2 Rain simulation model

Figure 4.1(a) depicts a small rain simulation volume along with some of the most important factors
that govern it. The grey box that bounds the scene is the volume where rain is simulated and it
is called the rain space. In order to create it, an orthographic camera is used. Its frustum defines
the space in a way such that its z-near plane corresponds to the top of the space and the z-far
to its ground level. Raindrops move in the view direction of that camera, originating at the top
and going straight to the ground with uniform constant speed. When a drop reaches the ground,
it is respawned again at its original position at the top of the rain space. This produces a cyclic
movement for each particle, followed continuously during the whole simulation.

The spatial distribution of the drops follows an artist-generated probability density function
defined by the means of a density map. In Figure 4.1(a) this map is the circular gradient depicted
at the top, shown on its own in Figure 4.1(b). In the example, the density map is used to make
drops denser at the center and absent at the extremes. This distribution only affects the placement
of drops in the rain space’s horizontal plane, while vertically they are distributed using a uniform
random source that shifts their starting heights.

(a) Example of a rain simulation model, basic scheme.

(b) Density map used in the
example.

(c) Depth map of the exam-
ple, as captured from the
top.

Figure 4.1: The image on the left shows a basic scheme of our rain simulation model. The rain space is
shown as a grey bounding box, raindrops are colored using codes for their height (blue for
top, red for ground level), the density map can be seen at the top as a circular gradient with
maximum density at the center. At the insets on the right, the density map is depicted on
its own (top image) and the depth map of the scene, as captured from its top, is also shown
(bottom image).

4.2. RAIN SIMULATION MODEL 25

The camera used to define the rain space also captures a depth map of the scene (see Fig-
ure 4.1(c)). This information is used to compute the hit height, i.e. the maximum distance each
drop can move before colliding with an object or the ground. During simulation, a particle is
considered a raindrop while it is above its hit height and a splash during a short period of time
when it goes below its hit height. A splash is rendered always at the hit height, ignoring the actual
particle position. When the splash animation finishes, the particle is no longer rendered in the
scene. In Figure 4.2 a scheme of this behavior is presented. Note that, in any case, simulation of
the particle fall is always considered, advancing all the time and respawning normally at the top
when it reaches the ground.

Figure 4.2: Scheme of the various states a particle may be in: raindrop, splash or invisible. Particles in
the image are depicted by the slanted straight lines. The blue part corresponds to the time
when a particle is rendered as a raindrop. When it arrives to the hit height (pink line along
the silhouette of the scene), it changes into a splash animation that stays static in the hit
position. Nonetheless, the particle movement is still off-screen simulated. The orange part
of the lines corresponds to how much the particles move while being rendered as a splash.
Finally, when the animation of the splash finishes, nothing needs to be rendered and thus the
moving particle has no contribution in the screen. In the scheme, this last state is depicted as
the dotted green parts of the lines. Notice how all the orange parts of the lines have the same
length since the splash animation takes the same time for all the particles. Length of the blue
and green parts are particle dependent and are influenced by the scene configuration.

Finally, we have observed that the proposed simulation model is general enough to also work
with a perspective camera, but some considerations must be taken into account. First of all,
each particle’s direction becomes different from each other, making the rain look dispersive. Since
particles move with the same speed and take the same time to be respawned at the top position,
all of them advance the same distance. In an orthographic camera, this implies that each drop
reaches the ground, but in a perspective camera only drops near the center of projection reach
it, the remaining ones only having time to traverse part of the distance since their direction is
not straight to the ground. It is also important to highlight the fact that the depth map is less
precise with the parts of the scene near the ground level, so hit heights are computed with more
error. These effects are depicted in Figure 4.3. Overall, perspective frusta do not produce visually

26 CHAPTER 4. RAIN RENDERING

appealing results if not defined very carefully, and so we will not consider them further in the
remaining of this document.

Figure 4.3: Rain space defined with a perspective camera. Notice how directions are different for each
drop. In the image, it can also be observed how raindrops near the center of the rain space
reach lower positions than the ones at the extremes. This is caused by the fact that all the
raindrops traverse the exact same distance, but not all of them move straight to the ground.

4.2.1 Simulation subspaces
Since the rain space may be orders of magnitude bigger than what the observer can see, the
simulation model is divided into various subspaces to optimize simulation and rendering times.
The objective of this partition is to perform computations only in a small volume surrounding the
observer, as shown in Figure 4.4.

To reduce the volume of the rain space, a local top and a local ground planes are defined (in
green in Figure 4.4). Instead of using the rain space’s top and ground, the particles originate at
the local top and run to the local ground, respawning at the former when they reach the latter.
This reduces the length that the particles must run in their cyclic movement, so less particles are
needed to achieve the same visual density at the expense of increasing repetitiveness of the rain
streaks, but, in all our experiments, we have not noticed any artifact related to this effect. The
rain space that lies between these planes is called local space and, in general, is a subset of the
rain space. During simulation time, these planes are moved up and down to guarantee that the
observer is always at an equidistant position from both of them.

To further reduce the extension of the volume where rain is computed, we use a culling radius
around the observer to ignore the particles outside of it. This radius is presently approximated
with a prism oriented in the same direction as rain fall (also shown in red in Figure 4.4).

Both the local space and the culling radius reduce the distance of the furthest particles that
can be seen, so using too narrow local spaces or small radii may cause errors in the visualization
(see Figure 4.5). Inadequate local spaces cause that particles respawn and disappear too close.
With small radii, rain simulation is only performed in the immediate surroundings, so missing rain
in the vicinity can be perceived.

4.3 Generation of the rain data
In this section we detail the information that needs to be computed prior to the beginning of the
simulation. As mentioned in Section 4.1, we first create an atlas used to texture the raindrops
with realistic precomputed lighting patterns. Then we create the particles that represent drops,

4.3. GENERATION OF THE RAIN DATA 27

Figure 4.4: The grey box corresponds to the whole rain space. Green planes are the local top and local
ground. The red box depicts the approximate culling radius around the camera where sim-
ulation should occur. Intersection of the culling box with the subspaces defined by the local
planes produces the simulation volume, in the picture shown as the blue box bounding the
observer.

Figure 4.5: A capture of a rain scene as seen from inside its rain space. The grey box that bounds it
is visible in the background and its depth map is shown at the top (we only depict the part
inside the culling radius, i.e. the red box). In the image, two visualization errors are evident.
First, the culling radius is set too close to the observer, causing that only the particles in its
immediate vicinity are visible, that is the ones inside the red box. The second one is caused
by the narrow local space (shown in green in the background). The local planes define a space
so thin, that particles are only simulated in a slice of the screen, disappearing at its bottom
and respawning at its top. Wider local space could make this effect invisible by forcing it to
take place outside the viewing frustum.

28 CHAPTER 4. RAIN RENDERING

distributing them following an artist-generated density map. Finally, the particles are packed
together in various groups, forming simulation units that are treated at once during rendering
time.

4.3.1 Rain streak atlases
As has already been mentioned in Section 4.1, we use the database1 generated in [Garg and Nayar,
2006] as textures for the raindrop billboards. This database has in total 15000 individual images
for rain streaks. Unfortunately, this huge amount of data cannot be sent simultaneously to the
graphics hardware as individual textures. Moreover, since we cannot predict in advance which ones
will be needed in a specific frame of an animation, we are unable to select the required texture
subset on a per frame basis. Thus, we are forced to pack all of them in an atlas in order to be
able to access the whole information at any time.

Each texture of the database is parameterized by its lighting configuration. As shown in Fig-
ure 4.6, this configuration is determined by three different variables: θview elevation angle of the
camera, θlight elevation of the light source and φlight azimuthal angle of the light source. Only
positive values are considered for θview and φlight, with negative ones mapping to their correspon-
dent absolute value. Our atlas is a grid where each of its positions is associated to a concrete
combination of values of those three variables, thus uniquely determining which texture of the
database should be placed in them. In Figure 4.7, two atlases used by our system are depicted,
showing the organization of the grid. The atlas on the left corresponds to the textures where
point lighting is considered, the one on the right is for environment lighting. In the latter case,
the texture is smaller since only the θview parameter needs to be taken into account.

Figure 4.6: Garg and Nayar raindrop model parameters as depicted in [Garg and Nayar, 2006]. The
raindrop is located at the origin of coordinates and falls in the opposite direction of the Y
axis, the θ and φ are the elevation and azimuthal angles for the camera and the light. The
xdrop is the natural orientation of the raindrop. Only θview, θlight and φlight need to be
computed in order to identify textures of the database.

1The database can be downloaded from http://www1.cs.columbia.edu/CAVE/databases/rain_streak_db/rain_
streak.php

http://www1.cs.columbia.edu/CAVE/databases/rain_streak_db/rain_streak.php
http://www1.cs.columbia.edu/CAVE/databases/rain_streak_db/rain_streak.php

4.3. GENERATION OF THE RAIN DATA 29

Figure 4.7: Organization of the rain streak atlases using the parameters of [Garg and Nayar, 2006]. Each
row is used for a value of the θview angle parameter (in blue, from 0 to 80 degrees, with steps
of 20 degrees). Each group of 9 consecutive columns corresponds to a value of θlight (in green,
from -90 to 90 degrees, with steps of 20 degrees) and a column in each group corresponds to
a value of φlight (in red, from 10 to 170 degrees, with steps of 20 degrees). This grid encodes
the 450 different streaks associated to all the possible combinations of the lighting parameters
considered by the authors. Environment lighting texture (on the right) only uses θview.

30 CHAPTER 4. RAIN RENDERING

(a) (b)

Figure 4.8: Atlases that pack all the renders of a specific rain streak oscillation from [Garg and Nayar,
2006]’s database. The first image is for point light illumination, the second one for environment
lighting. See Figure 4.7 for a explanation of their organization.

4.3. GENERATION OF THE RAIN DATA 31

(a) (b)

Figure 4.9: Same as in Figure 4.8 but normalizing the brightness of each streak with the database scale
factors.

32 CHAPTER 4. RAIN RENDERING

The database has been created with 10 independent rain streak oscillations. The combinations
of the lighting parameters that the authors have taken produce 370 different images for each streak
oscillation when considering point lights, and 5 more for environment lighting. For each of the
rain streak oscillations, we pack all its renders in two atlases, one with a resolution of 2880 by
3606 for the point light illumination and another one of 32 by 3606 for environment illumination.
See in Figure 4.8(a) an example of the former and in Figure 4.8(b) the results for the latter.
In Figure 4.9 the same atlases are shown when also taken into consideration the brightness scale
factors provided in the database. In order to pack the resulting atlases of each of the 10 available
oscillations, we store them in two texture arrays, one for point light sources and the other for
environment illumination.

To avoid aliasing artifacts, a mipmap of the texture arrays is generated. The first four levels are
directly taken from the original database, since 4 different resolutions are provided, the remaining
8 levels are automatically generated. Since each rain streak texture has a wide black margin,
individual textures do not bleed color into their neighbors in the atlas during the first levels of
these mipmap reductions. Moreover, streak brightness is lost during the reductions, thus the last
levels have almost no contribution in color due to their low opacities.

4.3.2 Particle generation
Particle generation requires as input a few parameters to create the raindrops and the rain space.
The most basic one is the need for an orthographic camera whose frustum is to be treated as the
rain space (see the grey box in Figure 4.10). Information about the camera geometry transforma-
tion, i.e. its matrix, that we call rain matrix, is used during generation and real-time simulation.
This camera is also used to create the depth map for the rain by rendering the scene from it.

Figure 4.10: The camera whose frustum is used as the rain space. Also notice how the camera’s z-near
coincides with the top, and its z-far with the ground.

4.3. GENERATION OF THE RAIN DATA 33

In order to properly distribute the drops, a probability density function must be provided.
Our current approach is to derive it from an artist-generated density map whose 8-bit greyscale
values are treated as the desired density, white being the densest and black being raindrop absence
(see Figure 4.1(b) for a map example). This image is mapped to the camera’s z-near plane and
thus defines the distribution of drops as seen from the top. Drop position along the height of the
rain space follows a uniform distribution.

Particle positions are created in the camera’s clip space, in a way such that each coordinate is
in [−1, 1]. Since the local top and local ground planes define a slice of the whole rain space where
drops are to be simulated, the range of values for the Z coordinate is smaller than for the rest of
the dimensions. If h is the separation between the local planes and H is the rain space height,
then the Z range is [1−2h/H, 1]. Notice how the local ground and the rain space ground coincide
when using this definition. Taking all this into account, placement of the particles in X and Y
needs to choose values in [−1, 1] following the distribution of the density map, and values for Z
have to be uniformly distributed in [1− 2h/H, 1].

With the previously considered parameters, we know the volume to fill with drops and the
probability distributions to use for them. The system uses two extra parameters in order to
actually know how many drops to generate: maximum drops per unit area per second and drop
falling speed. By dividing the two of them the maximum amount of drops per unit volume is
found, and thus local space’s total drop amount can be computed.

As a final step, when the particles are created, the system randomly assigns to each of them
one of the 10 streak oscillations available in the atlases generated in Subsection 4.3.1.

4.3.3 Particle packets
Particles are distributed in packets following one of the three different available grouping schemes.
These packets represent simulation and rendering units, so the system treats all the drops inside a
packet at once. The three schemes have different target usages and imply different performances,
so care must be taken when selecting between them. Packet desired size is another important
factor that affects performance: if it is too big, resources may be wasted by particles that lay
outside the viewing frustum, if it is too small, many packet transfers to the GPU are needed,
hindering performance.

Worldwide packet approach

This is the simplest case: just one packet is used, holding all the particles generated. The existence
of a single packet implies that only one packet is simulated and all the raindrops are rendered at
each frame, assuming an infinite culling radius.

Tree packet approach

In this case, a partition of the rain space is used to group the particles. The approach taken is
to perform two different 2-dimensional partitions on the top plane and then take the one that
maximizes packet usage, i.e. the one with fewer leaves. One of the partitions used is a kd-tree-
like algorithm: the plane is split into two so that each part has a similar amount of drops, if
any of the children has more particles than the desired amount, it is then recursively subdivided
(see Figure 4.11(a)). The other approach is a quad-tree, which is similar to the previous one except
that, each time that a node has more drops than the desired amount, it is recursively subdivided
in four equally sized parts (shown in Figure 4.11(b)).

Grid packet approach

This approach differs from the previous ones in that particles are not created distributing them in
the local space as explained in Subsection 4.3.2. Instead, small buckets of particles are filled with
varying densities. The idea is that these buckets can be latter used to recreate any distribution in
local space: by selecting buckets with proper densities and placing them in the correct positions,

34 CHAPTER 4. RAIN RENDERING

(a) (b)

Figure 4.11: The same scene using two different density maps, partitioned with the tree approach using
a small packet size. The partition’s packets are shown in purple at the top. The image on
the left has a non-symmetric density map and is partitioned with the kd-tree-like algorithm.
Notice how the packets at the extremes, specially the one at the top left corner of the image,
are bigger than the ones in the high density area, the white zone. The image on the right has
the circular gradient of Figure 4.1(b) as a density map and has been regularly partitioned
with the quad-tree algorithm. In total, it uses three levels of subdivision, only needing this
amount in the central part of the map.

the whole local space can be filled in a way such that the particle distribution matches the density
map provided by the artist. In the example of Figure 4.12, 20 of the blue buckets are needed to
occupy the whole local space (in green).

The first step in this approach is to divide the top plane using a regular grid with dimensions
gwidth and gheight. For each position in the grid its corresponding average density is computed
by taking the texels of the density map that are inside its area and filtering them. If various
texels are found, they are mipmap filtered, else linear interpolation of the four closest neighbor
texels is used to find the correct density. Then the artist’s density map is replaced with a new
one of resolution gwidth by gheight and filled with the densities of the grid. The dimensions of this
new density map’s texels match that of the buckets. Finally, a bucket has to be created for each
density value found in the new density map. The particles of all buckets are always uniformly
distributed such that, for any particle p, xp ∈ [−1,−1 + 2/gwidth], yp ∈ [−1,−1 + 2/gheight] and
zp ∈ [1 − 2h/H, 1] (where h is the local space height and H the rain space height, as explained
in Subsection 4.3.2), i.e. particles are created inside the lower left prism of the grid division (shown
in blue in Figure 4.12). Even though particles in the buckets are uniformly distributed, the original
artist’s distribution can be approximated by properly selecting and placing the existing buckets
in specific positions of the grid. This approximation is exact if the filtered density map has equal
or greater resolution than the original one.

The values of gwidth and gheight have to be chosen in a way such that the maximum density
bucket does not exceed the desired amount of particles per packet.

4.4. REAL-TIME SIMULATION 35

Figure 4.12: A bucket is depicted in blue inside the rain space (in grey), all elements of the figure are
in clip coordinates. Bucket dimensions are computed by subdividing the local space (in
green) into a regular grid of prisms, in the example it is a 5 by 4 grid. Coordinates of any
bucket correspond always to the lower left prism as shown in the figure, regardless of the grid
resolution or the particle density.

Automatic packet approach selection

Our present implementation of the algorithm automatically chooses one of the packing approaches
taking into consideration the total amount of particles and the desired packet size: the approach
that needs less packets is chosen. The rationale behind this decision is that a packet is considered
to have the optimal size in terms of simulation and rendering speeds, so taking the one with fewer
packets allows the system to achieve better performance.

4.4 Real-time simulation
In this last section of the present chapter, we explain the steps of the simulation that are executed
in real-time. We detail them in order of precedence, so they sequentially detail the flow of the
algorithm. We start with the computations done in the CPU and then proceed with the steps
done in the programmable graphics hardware.

4.4.1 CPU steps
In order to optimize simulation time, the computations done in the CPU never handle particles
directly, just their packets. Three main steps are entirely performed in the CPU: computation of
the particle fall by checking the time elapsed since the last frame, computation of the updated
position of the particles and finally selection of the packets that need to be sent to the GPU,
placing them in their corresponding positions.

36 CHAPTER 4. RAIN RENDERING

Time animation

To animate the drop fall, a single global parameter is used. This parameter, the run position,
specifies how much distance from the local top the particles have advanced as a whole. Its value
is normalized in [0, 1) such that 1 corresponds to having advanced the whole local space height.
The parameter is incremented at each frame with

∆time
heightlocal/velocityfall

where ∆time is the time elapsed since the last frame, heightlocal is the height of the local space
and velocityfall is the falling speed of the drops. Finally, only the fractional part of the value is
taken in order to keep it in [0, 1).

For the grid packet approach, each position of the grid has a random offset in [0, 1] that is
added to the run position. This offset is needed in order to avoid visual particle repetition when
the same bucket is rendered at various grid positions.

Height correction

As has been commented in Subsection 4.2.1, the local planes are moved up and down in order to
keep the observer at an equidistant position from both of them. When particles are generated,
they are placed in rain clip space assuming that the local ground coincides with the rain space
ground plane (see Subsection 4.3.2). This implies that movement of the local planes requires only
a translation along the Z-coordinate in the rain space clip coordinates. If ho is the distance of the
observer to the top plane (in clip space) and hl the height of the local space (also in clip space),
then the translation needed is ho−1+hl/2. Figure 4.13 shows how the local space is moved when
a camera changes position.

A secondary effect of the previous transform, besides translating the local space along the
observer’s movement, is that particles also follow the observer. In order to keep them in a fixed
position in the rain space regardless of the observer, the run position is modified. The rationale
behind this is that, when observer moves up, the local space also does, and so particles must
move down in order to stay in the same position. Respectively, a symmetric effect happens when
the observer moves down. If h′o is the observer’s distance to the top plane during the previous
animation frame (in clip space), then the run position must be incremented with (h′o−ho)/hl and
then set again in [0, 1). The effect of this correction is highlighted in Figure 4.13.

Packet selection and placement

The packets that are scheduled for rendering and their correct placement in world coordinates
depend on the packet approach used. The world packet approach is the simplest one: the single
existing packet is rendered, and its placement is done by transforming the particles by the inverse
rain matrix.

In the case of the tree packet approach, placement is done in the same way, but selection takes
a few extra steps. First, the culling radius around the observer is projected to the top plane,
defining a rectangular area. Then, in order to optimize the selection, the frustum of the observer’s
camera is also projected to the top plane and a rectangle bounding it is taken as an approximation
(see Figure 4.14). Then, the system searches the nodes of the packet tree that intersect with both
rectangles. The leaves that do so are the packets rendered.

The grid packet approach takes some extra work. As in the tree approach, the culling radius
around the observer and the frustum of the observer’s camera are projected to the top plane to
obtain two rectangles. Their intersection defines the area where simulation occurs. For each grid
position in this area, the bucket matching the density of the position is selected to be rendered.
Placement of the bucket takes two steps. First, a translation in the X and Y coordinates in clip
space moves the bucket to the corresponding position of the grid. Then the inverse rain matrix
sets the particles in world coordinates.

4.4. REAL-TIME SIMULATION 37

Figure 4.13: Two different renders of the same scene with different camera positions: left image has the
observer lower than the right image. Local space is moved with the observer, but particles
remain static in their positions thanks to the height correction (red circles). Particles that
go beyond the local ground appear again at the local top (blue circles). If the observer’s
movement were downwards, particles would be going beyond the local top and appearing at
the local ground.

Figure 4.14: In this image we show an example of packet selection using the same scene as in Fig-
ure 4.11(b), i.e. on that has employed the tree packet approach with a quad-tree partition.
Part of the partition is seen in purple at the top. The culling radius defines a frustum around
the observer where simulation should occur (in red). In order to further reduce this volume,
the frustum from the observer’s camera is projected to the top plane (shown in black at the
top). A rectangle bounding this projection defines the area of the top plane that is visi-
ble. Intersecting the packets inside this area (the ones shown in purple at the top) with the
packets in the culling radius, the final set of particles to render is obtained.

38 CHAPTER 4. RAIN RENDERING

4.4.2 GPU steps
The rendering state setup used for rain rendering consists in activating alpha blending, creating
vertex buffer objects (VBO) for the particle packets and disabling write in the depth buffer. Alpha
blending is needed in order to add the rain into the scene using transparencies. The VBO provide
an efficient way to render geometry, in our case they are used to send the particles to the graphics
hardware. Since the particles are not sorted by their distance to the observer, write in the depth
buffer is disabled to avoid that close particles occlude the ones further away. Each particle, and
thus also each vertex of the buffers, needs 3 floats for its own data. Two of the floats are used to
store the particle position in the local top plane (in clip coordinates). The third float stores two
different informations at the same time in order to reduce the VBO size: the particle’s starting
height inside the local space and also the oscillation texture assigned to the particle. These values
are encoded together by just adding them. To latter recover their original values, we need to take
the fractional and integer parts of the sum, the former for the starting height and the latter for the
oscillation texture. This is possible since the texture identification is an integer index in {0, . . . , 9}
and the starting height in the local space is always a value in [0, 1).

All the simulation in the GPU is done through its programmable functionalities. Three stages
of the programmable pipeline are used: vertex, geometry and fragment shaders.

Vertex shader

The first stage takes the original drop position and transforms it into world coordinates by ap-
plying the transforms computed in the CPU steps: first the translation with the height correction
(see Subsection 4.4.1) and then the packet placement (see Subsection 4.4.1). The end result is
the drop in world coordinates, at the local top. Then a translation in the fall direction is com-
puted using the particle’s starting height inside the local space and the global run position. By
transforming the particle with this translation, its final position is obtained.

Instead of using the drop position to check collisions with the scene, coordinates of the rain
streak billboard are computed and its top position is used for the check. By doing so, when a hit
is found it is guaranteed that the rain streak is already fully below the collided surface, and thus
it is no longer visible. In the collision check, the mentioned position is projected to the depth map
and compared with the depth stored in it: if the value on the map is bigger, then the particle is a
raindrop, else it has collided and it is either a splash or it is not visible (decided in the next stage).

The current version of our system allows the use of a static depth map as generated in Sub-
section 4.3.2 or a dynamic depth map. In the former case, the depth map covers the whole rain
space. In the latter, the render of the scene is taken just around the observer, using the culling
radius to compute the needed frustum, as depicted in Figure 4.15.

Geometry shader

This intermediate stage creates the billboards and computes lighting parameters. If the particle
has collided, the drop fall velocity and the particle’s depth below the hit height are used to compute
how much time has elapsed since the collision (see Figure 4.2). This time and the splash animation
duration are used to know which frame of the animation has to be used. If the shader detects
that the animation has finished, the particle is discarded by not emitting any geometry. In any
other case, a billboard is generated: for rain streak particles, a billboard perpendicular to the view
vector and oriented in the fall direction is computed; for splashes, the scene’s natural up vector
is used as the billboard up. In order to add some variability, the splash billboards are randomly
flipped and scaled by a small percentage.

The lighting parameters of Figure 4.6 are computed for rain streak particles, i.e. camera’s θview
elevation angle and light’s θlight elevation and φlight azimuthal angles are computed for each light
source. Specific subimages of the atlas corresponding to these values can be identified by taking
into account how the individual textures have been placed in the atlas (see Figure 4.7). The atlas
only contains renders that match discretized combinations of the angle parameters. Therefore,
we round to get matches for θlight and φlight, but for θview we compute the two closest streaks

4.4. REAL-TIME SIMULATION 39

Figure 4.15: Scheme of a rain scene analogous to the one shown in Figure 4.4. As in the previous example,
the red box corresponds to the culling radius volume. A render of the scene from the top of
the box is used to capture the dynamic depth map, shown in the figure at the top, where
only half of the Buddha model can be seen. Also notice how raindrops are only rendered in
the intersection of the local space and the culling radius volume.

stored in the atlas in order to latter interpolate between the two of them and reduce visualization
artifacts caused by the discretization. Note that environment lighting contribution only needs to
consider the θview.

Fragment shader

The last stage takes two different execution paths depending on the type of particle the fragment
corresponds to. For splashes, the current time in the animation is used to fetch the two closest
frames, linearly interpolating between them. Then the value is lighted using Lambert’s illumination
for each light. In the case of rain streaks, collision of the fragment with the scene is computed
in order to discard fragments of the billboard that are below the scene’s surface. The fragments
that are not discarded fetch, for each light source, their two textures from the database atlas,
interpolate between them and finally apply Lambert’s illumination. A Shadow Maps technique is
used to cast shadows on the raindrops and splashes. Note that, since write in the depth buffer is
disabled, rain particles cannot cast shadows on the scene nor between them.

Finally, the resulting value is blended onto the color buffer. In Figure 4.16 a final render of
the example scene is presented.

40 CHAPTER 4. RAIN RENDERING

(a)

(b)

Figure 4.16: Final result of the example scene with the textured rain streaks blended onto the image.
The straight white lines are the single light’s frustum. Notice how the streaks inside the
frustum show complex illumination patterns due to the drops’ oscillations. These effects are
highlighted in the second image by not taking into account environment lighting in the drops.
It can also be seen how the raindrops are shadowed by the figure.

Chapter 5

Results, Conclusion and Future
work

In this final chapter, we evaluate how the performance of our method behaves when changing
its configuration to extreme values. We start describing the test machine and the settings of
the experiments, and we latter detail the tests performed and the results obtained. Finally, we
discuss some of the drawbacks of our approach, its main strengths compared to the current state
of the art presented in Chapter 3 and also possible future extensions to improve and optimize the
simulations.

5.1 Test settings
In order to measure the performance of our implementation, series of tests have been executed
using the same equipment and configuration. Our test machine is an Intel R© CoreTM 2 Duo CPU
running at 3 GHz, with an NVIDIA R© GeForce R© GTX 280 with 1GB of memory. All the renders
use a viewport of 1280 by 720 pixels and the same example scene is used in all the experiments
(shown in Figure 5.1). The test scene is a model of a city with 779287 polygons and 149 textures
(totaling 58 megapixels, not considering the mipmap reductions). Roughly, its rain space has an
area of 400 square meters and it is 230 meters high. The circular gradient of Figure 4.1(b) is used
to distribute the particles in the tests, making the rain denser at the city center and absent at the
extremes. We have chosen a rain configuration that mimics heavy rain in order to stress the test
machine. When considering the whole mentioned rain space, a total of 375139000 particles would
be needed to fill our scene with heavy rain (each particle requiring 3 floats, see Subsection 4.4.2),
but recall that subspace optimizations reduce this value to just a small portion of it, approximately
the part inside the observer’s viewing frustum (see Subsection 4.2.1). Unless stated otherwise, the
local space used has 20 meters high, the culling radius has a 20 meters length (see a scheme
explaining these settings in Figure 4.4), the packets store 50000 particles at most and one single
point light is used. In all the tests, rain fall is completely perpendicular to the ground and collisions
are checked with a static depth map of 8192 by 8192 pixels.

In order to texture the rain streaks, all the atlases generated in Subsection 4.3.1 are used. The
mipmap levels of these rain streak atlases have resolutions as detailed in Table 5.1: each oscillation
has a 32 by 3606 pixel atlas for its environment textures (153919 pixels in its entire mipmap) and
a 2880 by 3606 for the one corresponding to the point light sources (13846232 pixels in total).
Overall, 140 megapixels are needed to store the 10 oscillation textures.

The splash animation is taken from [Tatarchuk, 2006]. It consists of 21 individual frames,
each of them with 6 mipmap levels using a 48 by 32 texture at its first level (see their resolutions
in Table 5.2). Therefore, the whole animation and its mipmap filtering need in total 42987 pixels.
The splash animation is a high speed capture of a milk drop colliding onto the floor. In that

41

42 CHAPTER 5. RESULTS, CONCLUSION AND FUTURE WORK

Figure 5.1: City model used in the tests, by Daz3D (www.daz3d.com).

work, the authors explain that milk is used instead of water in order to obtain clearer results when
rendering.

The remaining data used in the tests, i.e. the rain particles, are different for each of our
experiments and will be detailed when appropriate.

5.2 Performance
We have performed a series of different tests in order to infer how efficient our proposed rain
rendering method is and to evaluate how its various parameters affect the framerate. We first
check how the subspace dimensions improve simulation times (see Subsection 4.2.1 for subspace
explanation), then we continue by analyzing particle packet sizes (see Subsection 4.3.3) and finally
we test how the system behaves when increasing the amount of light sources.

5.2.1 Local space height
In this test we change the local space height while keeping the rest of parameters fixed, i.e. a
culling radius of 20 meters, packet size of 50000 particles and one single light. Local space defines

www.daz3d.com

5.3. DISCUSSION 43

a subvolume of the rain space where particles need to be simulated, so the narrower it is, the faster
the system is able to render since less particles are considered. But this also increases visualization
artifacts: missing particles con be noticed in the output. Thus a trade-off between render time
and artifacts must be met for each particular scene.

Two different positions in our test scene are used in order to highlight the artifacts produced
with narrow local spaces. In the first position, the sky looks almost particle-free for the 5 meter
local space (see a comparison in Figure 5.2) and in the second one, a strip of particles at the horizon
becomes evident when using thin local spaces (see Figure 5.3). Numerical results for both of the
positions are listed in Table 5.3. As expected, performance decreases as local space is widened. In
our example, 20 meters are a good compromise of visual quality and framerate.

5.2.2 Culling radius distance
As in the previous case, the culling radius directly affects performance by determining the amount
of particles that are scheduled for rendering. In Table 5.4 performance results are shown for
various values of the radius. Small values achieve faster framerates thanks to the smaller amount
of raindrops that they need to render. Unfortunately, they also have visual artifacts: the user can
perceive how rain disappears in the immediate vicinity (see Figure 5.4). Again, 20 meters come
as a good trade-off between simulation fidelity and performance.

5.2.3 Packet size
In the packet size experiments, we set the camera in a fixed place in the scene and we load the same
rain particles grouped in varying packet sizes. This time, visual results are the same for any of the
tests since the rain density is the same (see Figure 5.5), but performance changes depending on the
packets, as shown in Table 5.5. Packet size has a subtle effect on performance: when packets are
too small, the system has poor performance since many rendering calls must be executed; when
they are too big, packet selection (see Subsection 4.4.1) schedules for render packets that may lay
mostly outside the visible frustum. This causes that, in Table 5.5, the first row of the results has
worse performance than when using bigger packet sizes, and that then again framerates decrease
notably when going beyond the 200000 particles per packet.

5.2.4 Number of light sources
For the light source amount test, a rain scene setup with 1057872 visible particles is used (a render
is depicted in Figure 5.6). The results of Table 5.6 show that lights rapidly decrease performance.
This is so because, for each light, the fragment shader blends together 4 different streak textures
taken from the atlas (see Subsection 4.4.2), so the impact on performance becomes noticeable.
Also memory usage is increased when considering the high resolution shadow maps of each light,
diminishing cache coherence.

5.3 Discussion
Our approach, as explained this far, has a few limitations worth mentioning. One of them, already
stated in Section 4.1, is that our method cannot handle volumetric data, nor treat scenes with
semi-transparent geometry. This limitation comes from the fact that the rain is blended once the
scene has been fully rendered, relying on its depth map in order to properly cull occluded particles.
Volumetric data does not produce well-defined depth maps, so rain should be added in the same
rendering step as the volumetric data instead of being blended in a postprocess of the result.
Semi-transparent geometry also represents a problem since it updates the depth buffer, causing
particles behind transparent objects to be occluded. No easy solution for this case is possible since
raindrops are also semi-transparent, implying that a depth sorting must be performed to obtain
correct results. The cost of this approach, however, is prohibitive when dealing with thousands of
particles.

44 CHAPTER 5. RESULTS, CONCLUSION AND FUTURE WORK

Mipmap reduction level
0 1 2 3 4 5 6 7 8 9 10 11

Environment streak width 32 16 8 4 2 1 1 1 1 1 1 1
height 3606 1803 901 450 225 112 56 28 14 7 3 1

Point light streak width 2880 1440 720 360 180 90 45 22 11 5 2 1
height 3606 1803 901 450 225 112 56 28 14 7 3 1

Table 5.1: Texture resolutions in pixels of the atlases generated in Subsection 4.3.1. Each oscillation has
153919 pixels for the environment textures and 13846232 for the point light sources. The ten
available oscillations total 140 megapixels.

Mipmap reduction level
0 1 2 3 4 5

Splash width 48 24 12 6 3 1
height 32 16 8 4 2 1

Table 5.2: Resolution in pixels of each frame of the splash animation, taken from [Tatarchuk, 2006]. To
store the whole 21-frame animation with mipmaping, 42987 pixels are needed.

Height Total particles First Camera Second Camera
Particles FPS FPS (ng) Particles FPS FPS (ng)

5 13744500 430116 37 56 643442 33 44
10 27489100 426718 35 51 472634 36 49
15 41233600 518903 32 44 786653 28 35
20 54978100 776864 25 32 985408 23.5 28
25 68722700 987093 21 26 1200496 20.5 24
30 82467200 1117591 20 24 1426966 18 21
35 96211700 1218490 18 22 1611413 16.5 18.5
40 109956000 1534222 15 18 1956267 13.5 15
230 625231000 7612526 4 4.2 10307565 3 3

Table 5.3: Results obtained in Subsection 5.2.1 to test how local space height influences performance.
The first column is the height of the local space (in meters) and the second column the total
amount of particles inside it. Two different positions of the camera in the scene have been used,
such that the so called Second Camera is able to see particles further away than the other one.
For each camera position, the table details the amount of visible particles, the framerate when
rendering everything and the framerate when no geometry is sent to be rendered. The last row
entry of the table shows performance when local space equals the rain space. Recall that, even
in this case, we use a culling radius, so only part of the whole rain space needs to be simulated.

Culling radius 5 10 15 20 25 30 35 40
Particles 70303 198818 395778 784812 1204536 1659172 2190468 3133179
FPS 60 53 40 27 20 16 12.5 9

FPS (ng) 200 100 60 37 25 18 14 10

Table 5.4: Results of Subsection 5.2.2 that show how the culling radius (in meters) affects the performance.
In the second row, the amount of particles inside each culling radius is detailed, from a total of
54978100 particles in the whole local space. Third and fourth rows are the frames per second
when everything is rendered or when discarding geometry, respectively.

5.3. DISCUSSION 45

Figure 5.2: The images depict renders for the first camera position of the local space tests of Subsec-
tion 5.2.1. Top image uses a 5 meters height, bottom image a 20 meters. Notice how the
second one has more particle density when looking at the sky.

As discussed in the tests of the local space (Subsection 5.2.1) and culling radius (Subsec-
tion 5.2.2), the subspaces provide an efficient way to limit the simulation volume at the price of
possibly introducing visual artifacts: rain disappearing close to the observer. Just increasing their
volume to solve this problem does not completely fix the handicaps since rendering performance
is diminished. Computing tighter bounds of the visible volume would be a better approach to
improve performance, but our current rain simulation model is highly dependent on the present

46 CHAPTER 5. RESULTS, CONCLUSION AND FUTURE WORK

Figure 5.3: Same as Figure 5.2 but at the Second Camera position of the test of Subsection 5.2.1. The
top image corresponds to the test with 5 meters height for the local space. Notice how a strip
of far away particles can be seen at the horizon (subte effect).

subspace organization, constraining the available options. For instance, it is important to highlight
that, while culling radius can be freely defined in real-time in our implementation, the local space
height is used as a parameter for the particle generation. Thus, adjustment of the local space
becomes cumbersome since particles need to be recreated at each modification.

Finally, particle render should be further studied. Currently, splashes use a single animation,
thus becoming repetitive. In the case of rain streaks, a 140 megapixel texture array is used when

5.3. DISCUSSION 47

Figure 5.4: Renders obtained during the culling radius tests of Subsection 5.2.2. The first image uses a
radius of 5 meters; notice that rain disappearing in the vicinity can be perceived (specially by
looking at the splashes on the ground). Second image uses a 20 meter radius and this artifact
is no longer visible.

influence on screen of individual drops is small. Analysis of the texture array usage could highlight
that parts of its information are wasting resources because they are hardly used during rendering,
thus pointing out how to optimize the atlas generation for specific scenes.

48 CHAPTER 5. RESULTS, CONCLUSION AND FUTURE WORK

Packet size Particles FPS FPS (ng)
100 895322 22.5 32
1000 938875 28 36
5000 938875 26.5 34
25000 934112 26.5 33.5
50000 999467 25.5 32
100000 1055737 24 29.5
150000 981267 24.5 33
200000 1190512 22.2 30
250000 2532449 11.5 13
500000 3787474 7 7.5
1000000 5094436 5 5

Table 5.5: Results for the packet size analysis of Subsection 5.2.3. The first column shows the sizes
considered, the second the amount of particles rendered and the third and fourth columns
detail the frames per second obtained when rendering everything and when ignoring geometry,
respectively. Notice how small packets (100 particles) have bad performance, and that, when
size is bigger than 200000 particles, performance decreases again in our test machine.

Figure 5.5: Part of the scene where packet size is tested. As mentioned in Subsection 5.2.3, this time all
the tests have the same visual quality, regardless of the packet size, since roughly the same
particles are rendered. In the figure, the 50000 particle packet test is shown.

5.4 Conclusion
We have presented a new approach that builds on existing state of the art methods ([Garg and
Nayar, 2006; Tariq, 2007]) and improves them by considering extra significant phenomena. In
particular, we are able to use the entire database of [Garg and Nayar, 2006] instead of simplifying
the illumination parameters as done in [Tariq, 2007], thus achieving high quality images with
complex illumination effects (shown in Figure 5.7). We also apply shadowing techniques in the
particle illumination to enhance the results, see Figure 5.8 for an example.

5.4. CONCLUSION 49

Light sources 1 2 3 4 5 6
Geometry 21.6 12.5 8.8 4.5 1.66 1.51

No geometry 24.5 13.7 8.8 4 1.36 1.34

Table 5.6: Results of Subsection 5.2.4 analyzing performance impact of the light sources. First row cor-
responds to the amount of active lights in the scene, second and third rows are the framerates
obtained.

Figure 5.6: Render of the scene using 6 different light sources, two of them are almost occluded by the
geometry, another one is the global sun light, the remaining three of them are evident in the
image. Notice that our system does not render the actual light source, so they are invisible
except for the lighting effects they cause in their surroundings.

Moreover, our method is designed to allow easier rain configuration and more precise scene
interaction than previous approaches. For the former, we have devised a particle system that
places each particle following an easy to create density map, thus simplifying artistic distribution
of rain in a scene. For the latter, we have considered the particles as an integral part of the
scene and so we simulate them accordingly. In particular, we take into account the geometry to
avoid rendering rain inside solid objects and to produce splashes on the ground. The splashes are
actually rendered in the exact collision points, being the first real-time method that has a direct
correlation between a raindrop particle and its splash. Collisions are computed with a depth map
that, in our implementation, can be updated periodically to handle dynamic scenes.

Finally, another novel aspect of our algorithm is that it automatically adapts the simulation
volume in order to increase performance by reducing the amount of particles to render. Even
though the computations are conceptually tricky, involving a few space transformations, their
implementation is straightforward and implies a small amount of operations. Therefore, we are
able to execute them per-frame even when handling over a million of particles, although, in our
experiments, fewer particles were enough to simulate heavy rain without noticeable artifacts. The
remaining costly computations of the simulation are done per particle and are left to be executed
in the programmable graphics hardware, increasing performance.

50 CHAPTER 5. RESULTS, CONCLUSION AND FUTURE WORK

Figure 5.7: Scene lighted with six different sources, their frustums are shown in the central image: red
and green lights for the semaphores, yellow for the three street lamps and white for the sun.
Notice in the first image how rain streaks and splashes on the left part of the picture are both
red and yellow colored, while on the right part they are in the shadow and look darker. In the
third image particles are highlighted by discarding the geometry and not casting shadows.

5.5. FUTURE WORK 51

Figure 5.8: In the first image, the system casts shadows for the sun’s light (which is located beyond the top
right corner of the image). Rain streaks in front of the sky seam to disappear when reaching
the building’s shadow. In the second image, the shadows are ignored and particles become
visible.

5.5 Future Work
In Section 5.3, we have enumerated the main flaws of the current proposal. Some of them are
intrinsic to how we handle the particles and thus cannot be solved unless we change the whole
system. Other ones, however, could be improved by performing deeper analysis on some of their
characteristics. For instance, tighter bounds on the rendering volume would increase the framerate

52 CHAPTER 5. RESULTS, CONCLUSION AND FUTURE WORK

without reducing image quality. Currently, rectangles are used to bound the projection of the
observer and its viewing frustum onto the top plane. Computing their convex hull instead of
rectangles is a future avenue of work that would reduce the final simulation area. Moreover,
further adaptive techniques could be employed: far away particles do not require illumination
computations as complex as the ones in the foreground, so they could be approximated using
methods similar to the ones in Subsection 3.2.1, i.e. scrolling textures with precomputed rain
streaks. This would effectively change the algorithm to consider two kinds of drops, the ones close
to the observer rendered in high detail and the ones far away, that would use rough textures.

Our current approach for rendering splashes consists on just repeating a single real splash
capture, regardless of the surface material, its wetness and angle of impact. More realistic splash
models are analyzed in [Garg et al., 2007] and could be adapted to real-time simulation by pre-
computing a discretized amount of animations and storing them in atlases, following the same
idea used for our rain streaks. A partition of the scene in different material types and the surface
normal at the collision points could be used to select specific splash animations at the appropriate
times.

Finally, we would also like to study methods to automatically compute subspace minimum
dimensions that have no visual artifacts, instead of manually testing and fine-tuning them for
each scene. This work would previously need to define a way to identify and measure errors, in
order to latter adapt the subspace parameters using automatic evaluations. The artifacts due
to incorrectly parameterized subspaces are made worse when rain is not fully perpendicular, but
slanted. This is so because, in this case, the local space and the culling radius are also slanted with
respect to the scene, so their volumes do not match so well the observer’s view frustum, making
artifacts more evident. Handling this case is important to widen the range of rain types that can
be efficiently simulated without simulation errors.

Appendix A

Physics

Raindrops are a complex dynamic phenomenon that has been widely studied. Research in this area
focuses on its dynamics and the optic properties that raindrops’ shapes have. Specific studies on
the shape of the drops can be found in [Lenard, 1904; Magono, 1954; Pruppacher and Beard, 1970;
Beard and Chuang, 1987; Chuang and Beard, 1990; Ross and Bradley, 2002]. The aerodynamic
pressure exercised on the drop deforms it as it falls, losing its spheric shape. Small drops below
0.5 mm retain almost a spherical form, while greater drops become ellipsoidal (see Figure A.1).
This distortion changes its aerodynamic properties, causing more turbulent regimes in the air
and slowing down the fall. In [Gunn and Kinzer, 1949; Ross, 2000] this speed at ground level
has been studied and tabulated into various categories. Their results show that spheric drops
(when radius is between 0.1 mm and 0.45 mm) have terminal velocities between 0.72 m/s and
3.67 m/s, bigger ellipsoidal drops (when radius is between 0.5 mm and 4.0 mm) can reach speeds
from 4.0 m/s to 9.23 m/s. Even bigger drops are considered in other experiments, but they tend
to split due to aerodynamic forces breaking them. In [Best, 1950] the authors found that raindrop
size follows an exponential two-parametric distribution. The experiments mentioned are taken in
laboratories with specific conditions, which usually include the use of distilled water, control of
the atmospheric pressure and only analyzing drop falls through stagnant air. This implies that,
in real rain conditions, drops may differ from the results found.

Figure A.1: Vertical slice of a raindrop, showing its shape as a function of its size. From [Ross and Bradley,
2002].

53

54 APPENDIX A. PHYSICS

Splashes due to drop collisions are analyzed in [Stow and Stainer, 1977]. In this work the
authors study the amount, size and distribution of the droplets produced in the splashes. They
also consider the effect that the drop size and speed have on the amount of emitted droplets.
These results along with empirical experimentation are used in [Garg et al., 2007] to infer a splash
model. Although this model is not used in the present proposal, future extensions could improve
fidelity by employing it in the simulations.

Bibliography

K. V. Beard and C. Chuang. A new model for the equilibrium shape of raindrops. J. Atmos. Sci.,
44:1509–1524, 1987.

A. C. Best. The size distribution of raindrops. Quarterly Journal of the Royal Meteorological
Society, 76(327):16–36, 1950.

George Borshukov. Making of the superpunch. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses, page 19, New York, NY, USA, 2005. ACM. doi: http://doi.acm.org/10.1145/1198555.
1198599.

Wang Changbo, Zhangye Wang, Xin Zhang, Lei Huang, Zhiliang Yang, and Qunsheng Peng.
Real-time modeling and rendering of raining scenes. Vis. Comput., 24(7):605–616, 2008. ISSN
0178-2789. doi: http://dx.doi.org/10.1007/s00371-008-0241-0.

C. Chuang and K. V. Beard. A numerical model for the equilibrium shape of electrified raindrops.
J. Atmos. Sci., 47:1374–1389, 1990.

Kshitiz Garg and Shree K. Nayar. Photorealistic rendering of rain streaks. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, pages 996–1002, New York, NY, USA, 2006. ACM. ISBN
1-59593-364-6. doi: http://doi.acm.org/10.1145/1179352.1141985.

Kshitiz Garg, G. Krishnan, and Shree K. Nayar. Material Based Splashing of Water Drops. In
Proceedings of Eurographics Symposium on Rendering, Jun 2007.

Ross Gunn and Gilbert D. Kinzer. The terminal velocity of fall for water droplets in stagnant air.
Journal of Meteorology, 6:243–248, 1949.

Daniel Herman. Rainman: Fluid pseudodynamics with probabilistic control for stylized raindrops.
In Conference Abstracts and Applications ACM SIGGRAPH 2001. ACM, 2001.

Kazufumi Kaneda, Shinya Ikeda, and Hideo Yamashita. Animation of water droplets moving down
a surface. Journal of Visualization and Computer Animation, 10(1):15–26, 1999.

P. Lenard. Über regen. Meteorol. Z., 21:249–260, 1904.

C. Magono. On the shape of water drops falling in stagnant air. J. Meteorol., 11:77–79, 1954.

H. R. Pruppacher and K. V. Beard. A wind tunnel investigation of the internal circulation and
shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc., 96:247–256,
1970.

Anna Puig-Centelles, Oscar Ripolles, and Miguel Chover. Creation and control of rain in virtual
environments. Vis. Comput., 25(11):1037–1052, 2009. ISSN 0178-2789. doi: http://dx.doi.org/
10.1007/s00371-009-0366-9.

Oliver N. Ross. Optical remote sensing of rainfall micro-structures. Freie Universität Berlin
Master’s Thesis, 2000.

55

56 BIBLIOGRAPHY

Oliver N. Ross and Stuart G. Bradley. Model for optical forward scattering by nonspherical
raindrops. Applied Optics, 41(24):5130–5141, 2002.

Pierre Rousseau, Vincent Jolivet, and Djamchid Ghazanfarpour. Realistic real-time rain rendering.
Computers & Graphics, 30(4):507–518, 2006.

C. D. Stow and R. D. Stainer. The physical products of a splashing water drop. Journal of the
Meteorological Society of Japan, 55:518–531, 1977.

Sarah Tariq. Rain. NVIDIA White Paper, 2007.

Natalya Tatarchuk. Artist-directable real-time rain rendering in city environments. In SIGGRAPH
’06: ACM SIGGRAPH 2006 Courses, pages 23–64, New York, NY, USA, 2006. ACM. ISBN
1-59593-364-6. doi: http://doi.acm.org/10.1145/1185657.1185828.

Huamin Wang, Peter J. Mucha, and Greg Turk. Water drops on surfaces. ACM Trans. Graph.,
24(3):921–929, 2005. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/1073204.1073284.

Lifeng Wang, Zhouchen Lin, Tian Fang, Xu Yang, Xuan Yu, and Sing Bing Kang. Real-time
rendering of realistic rain. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches, page 156,
New York, NY, USA, 2006. ACM. ISBN 1-59593-364-6. doi: http://doi.acm.org/10.1145/
1179849.1180044.

Niniane Wang and Bretton Wade. Rendering falling rain and snow. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Sketches, page 14, New York, NY, USA, 2004. ACM. ISBN 1-59593-896-2.
doi: http://doi.acm.org/10.1145/1186223.1186241.

	Introduction
	Objectives
	Document overview

	Rain phenomena
	Rain streaks
	Clouds
	Rainbows
	Lightning
	Puddles, splashes, coronas and ripples
	Dripping water
	Fog and glows

	Previous Work
	Off-line
	Real-time
	Simplistic approaches
	Particle systems
	Multiple phenomena

	Summary

	Rain rendering
	Algorithm overview
	Rain simulation model
	Simulation subspaces

	Generation of the rain data
	Rain streak atlases
	Particle generation
	Particle packets

	Real-time simulation
	CPU steps
	GPU steps

	Results, Conclusion and Future work
	Test settings
	Performance
	Local space height
	Culling radius distance
	Packet size
	Number of light sources

	Discussion
	Conclusion
	Future Work

	Physics
	Bibliography

