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Chapter 1

Introduction

1.1 Scope of the thesis

The calibration of any Earth Observation sensor is a key stage which encompasses those
tasks which are necessary to convert the raw measurement data into science data. The
characterization of the instrument is a requirement for the development of the calibra-
tion activities. Characterization consists of the measurement of the typical behavior of
instrument properties, including subsystems, which may a�ect the accuracy or quality of
its response or derived data.

The scope of this master thesis is the characterization of non-linearity of the power de-
tectors used to denormalize the digital correlations in interferometric radiometers, which
may degrade the performance of the calibration procedures (image distortion).

This thesis has been mainly developed in the frame of projects devoted to assess and
characterize the Microwave Imaging Radiomenter by Aperture Sythesis (MIRAS), the
single payload of the European Space Agency (ESA) Soil Moisture and Ocean Salinity
(SMOS) mission :

� 2008-2010: MIDAS-5. �Microwave measurement analysis devoted to SMOS algo-
rithm development�. Ministerio de Educación y Ciencia Plan Nacional I+D+I
ESP2007-65667-C04-02/FEDER (ongoing activities, SMOS Commissioning Phase
preparatory work).

� 2007-2011: �Speci�c collaboration agreement between the Universitat Politècnica
de Catalunya and the Consejo Superior de Investigaciones Cientí�cas to found
the SMOS-Barcelona Expert Centre on Radiometric Calibration and Ocean Salin-
ity (SMOS-BEC)�. UPC and CSIC Consejo (Superior Investigaciones Cientícas)-
Instituto de Ciencias del Mar (ongoing activities, SMOS Commissioning Phase
preparatory work).

1.2 Objectives of the thesis

This thesis presents a comprehensive analysis of the impact of detector non-linearity and
related correction techniques in the performance of the MIRAS instrument, which is the
single payload of the European Space Agency (ESA) Soil Moisture and Ocean Salinity
(SMOS).
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2 CHAPTER 1. INTRODUCTION

Two di�erent methods, the so-called Slope method and De�ection method have been
developed and fully analyzed in order to characterize the non-linearities of the detectors
�rst and �nally to correct them. This study is focused to assess the best procedure to
correct the non-linear response of the detectors, in the frame of calibration procedures of
the SMOS mission.

1.3 Organization of the thesis

This section is devoted to describe the thesis organization, which is divided into eight
chapters. The �rst chapters are devoted to introduce the reader in the context of the
SMOS mission, as well as to give a general description of the instrument and the basic
concepts of amplitude calibration. The following chapters present two di�erent calibration
methods in order to measure and correct the non-linearity of the power detector: the Slope
method and the De�ection method. The two methods are analyzed in a similar way. First
the characterization of the non-linearity and the correction technique are shown, to follow
with the study of measurement uncertainty.

In this sense, Chapter 2 gives an overview of the SMOS mission and the instrument,
in order to describe the context in which this thesis has been carried out.

Chapter 3 describes the amplitude calibration approach, and shows the need for non-
linearity correction.

Chapter 4 shows the measurement test set-up calibration, and describes the measure-
ment data set that are used in the performance analysis of the two calibration methods.

Chapters 5 and 6 give a comprehensive description of the Slope Method and the
De�ection method respectivelly. As it has been said before, both chapters have the same
structure. First the characterization of the non-linearity and the correction technique are
described, to follow with a study of measurement uncertainty is performed.

Chapter 7 asseses the two non linearity correction procedures with relation to the
MIRAS amplitude calibration requirements.

Finally, chapter 8 summarizes the mean conclusions of this work. This is completed
by the list of publications as presented in appendix A.



Chapter 2

The SMOS mission

SMOS, acronym for Soil Moisture and Ocean Salinity, is an ESA Explorer Opportunity
science mission, a technology demonstration satellite project in ESA's Living Planet Pro-
gram, in cooperation with Centre National d'Etudes Spatiales (CNES) in France and the
Centro para el Desarrollo Tecnológico Industrial (CDTI) (Center for Technological and
Industrial Development) in Spain [1].

Known as ESA's `Water Mission', SMOS has been designed to observe Soil Moisture
[2] over the Earth's landmasses and Ocean Salinity [3] over the oceans for a period of at
least 3 years. The observation of these two geophysical parameters will improve our un-
derstanding of Earth's water cycle, providing data useful for weather and climate models.
[4]

The mission is comprised of a satellite in a low sun synchronous orbit, with an altitude
of 755 Km and a revisit time of 3 days, that passively measures the electromagnetic noise
generated by Earth at L-band (1.4 GHz) with a spatial resolution of 50-100 Km and
radiometric sensitivity of 5K, in addition to a ground operations segment for the control
and processing of data. The satellite was succesfully launched on 2nd November 2009
and at the moment of writting this thesis, it is on its Commissioning Phase.

Another important aspect of this mission is that it will demonstrate a new measuring
technique. SMOS will carry the �rst-ever polarorbiting satellite-borne 2-D interferometric
radiometer, the Microwave Imaging Radiometer with Aperture Sythesis (MIRAS) [5], [6],
[7], which has been designed as a two-dimensional interferometer, which acquires bright-
ness temperatures at L-band (1.4 GHz). Therefore, this mission will not only contribute
to the understanding of the climate but it will also demonstrate a new techonology.

2.1 Scienti�c objectives

The main scienti�c objective of the SMOS mission is to provide global maps of Ocean
Surface Salinity over oceans and Soil Moisture over land to advance climatologic, meteo-
rologic, hydrologic, and oceanographic applications.

Measuring Soil Moisture means measuring the amount of water within a given volume
of material and is usually expressed as a percentage. From space, the SMOS instrument
can measure as little as 4% moisture in soil on the surface of the Earth - which is about
the same as being able to detect less than one teaspoonful of water mixed into a handful
of dry soil.

3



4 CHAPTER 2. THE SMOS MISSION

Parameter Accuracy Spatial Resolution Revisit Time

Soil Moisture
0.04m3m−3

4 % < 50Km ≤ 3 days

Ocean Salinity 0.2− 0.1 psu 200− 100Km 10− 30 days

Table 2.1: The primary SMOS mission requirements for soil moisture and ocean salinity

(a) Artistic view of MIRAS (b) MIRAS at Maxwell anechoic chamber

Figure 2.1: The MIRAS payload

While Salinity describes the concentration of dissolved salts in water. It measures in
practical salinity units (psu), which expresses a conductivity ratio. The average salinity
of the oceans is 35 psu, which is equivalent to 35 grams of salt in 1 litre of water. SMOS
aims to observe salinty down to 0.1 psu (averaged over 10-30 days and an area of 200 km
x 200 km) - which is about the same as detecting 0.1 gram of salt in a litre of water.

2.2 The SMOS payload: MIRAS

The single payload of the mission is the Microwave Imaging Radiometer with Aperture
Synthesis (MIRAS). Its operating principle is based on a totally new technique for space-
borne Earth observation: 2-D interferometric aperture synthesis. In order to achieve the
required spatial resolution at this frequency band (1.4 GHz), a too large antenna would
normally be necessary, using real aperture techniques. For the SMOS mission, however,
the antenna aperture has been synthesized through a multitude of small antennae.

MIRAS instrument consists of a Y-shape synthetic aperture radiometer operating
at L-band formed by 72 receivers called LICEFs (LIghtweight Cost-Eective Front end),
equally distributed along the three deployable arms, which are connected to a central
structure called hub. Each arm is divided into three segments, containing 6 receivers per
segment. Three Noise Injection Radiometer (NIR) receivers have been included in the
central hub. Each NIR comprises two LICEF receivers connected to a single antenna,
thus the instrument is composed of 72 receivers but only 69 antennas. Each segment
contains a Control and Monitoring Node (CMN) that provides power and a phased local
oscillator to each LICEF.

Each LICEF is an antenna-received integrated unit that measures the radiation emit-



2.2. THE SMOS PAYLOAD: MIRAS 5

Figure 2.2: Block diagram of a single baseline relating the measurement of a sample of
the visibility fuction.

ted from the Earth at L-band (1.4 GHz). The acquired signal is then transmitted to
a central correlator unit, which performs interferometry cross-correlations of the signals
between all possible combinations of receiver pairs (so-called baselines), providing the
samples of the so-called visibility function [8]:

Vkj(u, v) =
1

kB
√
BkBj

√
GkGj

· 1
2
< bk · b∗j > (2.1)

where (u, v) correspond to the set of spatial frequencies where the visibility function is
sampled (antenna separation in wavelengths), Gk, Gj are the power gains of each receiver
chain and Bk, Bj correspond to the equivalent noise bandwiths.

One of the main di�erences between real aperture and interferometric radiometers is
that the interferometric radiometers give a multipixel image after a Fourier Transform
of the visibility function. It is, the interferometric radiometer does not perform a direct
measurement of the brightness temperature but of a set of samples of its Fourier Trans-
form. The following expression shows the visibility function of any pair of receivers k and
j in terms of the brightness temperature:

Vkj(u, v) =

¨

ξ2+η2≤1

TB(ξ, η)− Tr√
1− ξ2 − η2

·
Fnk (ξ, η) · F ∗nj (ξ, η)√

ΩkΩj
· ¯̃rkj

(
−uξ + vη

f0

)
· e−j2π(uξ+vη)dξdη (2.2)

where r̄kj() corresponds to the Fringe Washing function normalized to unity at origin
and it is related to the spatial decorrelation errors, TB(ξ, η) is the brightness temperature,
Fnk(ξ, η), Fnj (ξ, η) are the normalized voltage antenna patterns, Ωk, Ωj correspond to the
equivalent solid angle of the antennas, and (ξ, η) are the director cosines with respect to
X and Y axes, respectively.

The calibrated visibility samples are inverted by the image reconstruction algorithm
to get the brightness temperature maps as a function of the director cosines at the an-
tenna reference plane. In a �rst approach, (identical antenna patterns, negligible spatial
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decorrealation and no antenna positioning errors), this image reconstruction algorithm is
performed by an inverse Fourier transform:

Vkj(u, v) = F [TB(ξ, η)] (2.3)

2.2.1 MIRAS calibration fundamentals

End-to-end calibration of MIRAS radiometer [9] refers to processing the measured raw
data up to brightness temperature maps over the Earth's surface. The procedure starts
with a self-correction of comparators o�set and quadrature errors and it is followed by
the calibration procedure itself. Regarding the calibration procedure, it is based on the
injection of correlated and uncorrelated noise in the receivers and post-procesessing on
ground the correlation results. The theoretical behind the concept was established in
[10]. A noise distribution network called the calibration subsystem (CAS) [11] is applied
to calibrate the receiver noise temperature and the relative phase characteristics of the
receivers that compouned MIRAS. Some ancilliary data of di�erent subsystems (such as
relative S-parameters of the CAS and of the input switch), that are measured on ground
by the di�erent manufacturers, are required for the calibration procedure. While the
whole process is independent of the exact value of the noise source power and of the
noise distribution network (NDN) physical temperature. However, the approach relies
on having at least one very well-calibrated reference receiver, which is implemented as a
Noise Injection Radiometer (NIR) [12].

The detailed procedure, step by step calibration equations and correction techniques
are included in [9] , [13] furthermore �rst results of the evalution of these procedures in
the fully intagrated instrument can be found in [14].

Figure 2.3 shows a detailed block diagram of a baseline, which consists in two LICEF
receivers and the complex 1-bit correlator. Moreover it includes the reference radiometer
(NIR) and the di�erent planes where the calibration equations are de�ned.

In summary the visibility samples can be denormalized and corrected from instrumen-
tal errors according the following expression:

V Akj =

√
TAsyskT

A
sysj

GAkj
·Mkj = Hkj ·Mkj · ejφkj (2.4)

where Mkj is the normalized complex correlations computed from the correlatons
counts after the self-calibration procedure. TAsysk and TAsysj are the sysstem temperature

referred to the antenna plane of LICEF k and LICEF j, respectively. GAkj is the Fringe
Wash function term referred to the antenna plane.
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Figure 2.3: Block diagram of a single baseline, which consists in two LICEF units and a
complex 1-bit correlator.





Chapter 3

The amplitude calibration

The amplitude calibration consists of estimating the unkonwn parameter Hkj in expres-
sion (2.4), which includes the system temperatures and the non-separable amplitude term.
Both are determined by di�erent procedures:

� TAsysk and TAsysj are the global system temperature measured at system input of
receivers k, j. They are measured by means of a Power Measurement System (PMS)
placed at each LICEF receiver. The PMS provides a voltage signal proportional
to the input noise, and it must be either on-ground or in-orbit calibrated. This
calibration method uses the two-level four-point method, that will be envisaged in
section 3.1.

�

∣∣∣GAkj∣∣∣ is the modulus of the fringe-washing term evaluated at the origin, where it

has been assumed that the modulus of the fringe-wash term is the same for the (ii)
and (qi) paths. It is measured by means of the correlated noise injection.

3.1 The four-point measurement technique

This technique as proposed in [15] is based on a linear model of the PMS. Hence, the
measured voltage out of the PMS, vPMS , when an equivalent system temperature Tsys is
present at system input, is given by

vPMS = voff +GTsys (3.1)

where Tsys can be split into two terms relating the equivalent system noise temperature
Tr, and the external temperature to be characterized Text:

Tsys = Text + Tr (3.2)

The PMS is calibrated once the unknown parameters voff , G and Tr are estimated.
If the desired magnitude to be estimated is Tsys, then only voff and G are required:

Tsys =
vPMS − voff

G
(3.3)

Note that in such cases where only di�erential knowledge of Text is required, the
Tr term is irrelevant since Tsys2 − Tsys1 = Text2 − Text1. Now, let's have two known

9



10 CHAPTER 3. THE AMPLITUDE CALIBRATION

external temperatures TC1 and TC2 where TC1 < TC2. Hence TC1 is the so-called WARM
temperature and TC2 the so-called HOT temperature. Now the overall system gain can
be switched between two values G and G/L by means of a suitable attenuator placed in
the signal path at a point that it can be considered noiseless (Figure 2.3). Then, the four
voltage measurements out of the PMS are given by the following set of equations:

v1 = voff +G(TC1 + Tr) PMS outputWARM noise source = ON andL = OFF
v2 = voff +G(TC2 + Tr) PMS outputHOT noise source = ON andL = OFF

v3 = voff + G
L

(TC1 + Tr) PMS outputWARM noise source = ON andL = ON

v4 = voff + G
L

(TC2 + Tr) PMS outputHOT noise source = ON andL = ON

(3.4)

The desired parameters can be readily obtained as

voff = v2v3−v1v4
(v2−v4)−(v1−v3) and G = v2−v1

TC2−TC1
(3.5)

and the estimated system temperature is obtained through

Tsys =
v − voff
v2 − v1

(TC2 − TC1) (3.6)

It is worth to notting that a major advantage of this method is that only the di�erential
value of TC1 and TC2 is required. Also note that actual value of the attenuator, L, is not
required. However, it has a large impact in the estimation of voff , since the values into
parenthesis in expression (3.5) tend to zero as L tends to 1 (0 dB).

Now, relating calibration of the PMS within each LICEF unit, it has been proposed
up to now to use the U source (matched load) to implement the low level noise source
TC1 and the C source (correlated noise source) to implement the HOT noise source TC2.
In this sense, TC1can be written as:

TC1 = TU + ∆TU (3.7)

where TU is the physical temperature of the matched load at the TU port and ∆TU
a bias that depends on the return loss of the matched load and the ohmic losses of the
connection path to the U port of the switch.

The HOT temperature is injected through the noise distribution network (NDN) to
the C port of the switch. It can be expressed as:

TC2 = TS |Sko|2 + ∆T[S],Tph (3.8)

Where TS is the temperature of the HOT noise source, connected to the port �0� of
the NDN and Sk0 is the S-parameter from the noise source and the �k� port of the NDN
(receiver �k� has been considered). The term ∆T[S],Tph stands for the error contribution
of the NDN itself. It depends on its physical temperature and the uncertainty in the
measurement of its S-parameters.

At this point, the system temperature can be written as:

Tsys =
v − voff
v2 − v1

(TS |Sk0|2 − TU + ∆T[S],Tph −∆TU ) (3.9)
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As it is readily seen, since uncertainties in the HOT and WARM measurements are
independent they will add in a quadratic sense. Moreover, the uncertainty in the measure-
ment of the HOT temperature is very large due to the noise contribution of the NDN itself
that cannot be neglected. In order to remove this contribution, absolute measurement of
the NDN S-parameters would also be required.

Hence, in order to eliminate systematic errors and the noise contribution of the NDN,
the next section proposes to perform a relative amplitude calibration approach.

3.2 Relative amplitude calibration approach

This section shows a relative amplitude calibration approach that eliminates systematic
errors and the noise contribution of the NDN.

Figure 2.3 shows a simpli�ed block diagram to illustrate the relative amplitude calibra-
tion approach. As shown, both the HOT and the WARM temperatures are synthesized
by the common external noise source and injected to each LICEF through the noise
distribution network (NDN). That means that two equivalent noise temperatures TS1

(WARM) and TS2 (HOT) are delivered to the port �0� of the NDN (Figure 2.3). These
temperatures are measured by the NIR, giving the equivalent external temperatures at
NIR plane TNS1 and TNS2 (port �1� of the NDN). The equivalent external temperatures
at the calibration plane of the LICEF units (ports �k� and �j� of the NDN) are TCS2k,
TCS2j , TCS1k and TCS1j . However, it must be taken into account that the NDN is a lossy
network which introduces additional temperature terms related to its physical tempera-
ture. For instance, from eq.44 chap 3 of [16], the equivalent temperatures at ports �1�
and �k� of the NDN when the HOT temperature is injected by the noise source are given
by:

TCS2k = TS2 |Sk0|2 + ∆T[S],Tph

TNS2 = TS2 |S10|2 + ∆T
′

[S],Tph

(3.10)

Where the ∆T and ∆T
′
terms include the contribution of the NDN due to its physical

temperature.
Now, we can write TCS2k and TCS1k as a function of the temperatures measured by

the NIR.

TCS2k =
TNS2−∆T

′
[S],Tph

|S10|2
|Sk0|2 + ∆T[S],Tph

TCS1k =
TNS1−∆T

′
[S],Tph

|S10|2
|Sk0|2 + ∆T[S],Tph

(3.11)

Introducing these expressions into (3.6), the system temperature for receiver k can be
rewritten eliminating its dependence with the physical temperature

Tsysk =
v − voff
v2 − v1

|Sk0|2

|S10|2
(TNS2 − TNS1) (3.12)

It must be pointed out that Tsysk derived from 3.9 gives the equivalent system tem-
perature at plane C, no matter where it has been originated. To make this explicit we
will write TCsysk as system equivalent noise at the calibration plane (�k� port of the NDN).
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TCsysk =
v − voff
v2 − v1

|Sk0|2

|S10|2
(TNS2 − TNS1) (3.13)

Now, if we desire to know the equivalent system temperature at the antenna plane
TAsysk in �gure 2.3 (THsysk for the horizontal mode and TVsysk for the vertical mode), then
a plane transformation must be performed, taking into account that

THsysk = TCsysk
|SLC |2

|SLHk |
2
ηHk

(3.14)

substituing expression (3.13)in (3.14):

THsysk =
vHk − voffk
v2k − v1k

|Sk0|2

|S10|2
|SLCk |

2

|SLHk |
2
ηHk

(TNS2 − TNS1) (3.15)

Where |SLCk | and |SLHk |are the modulus of the switch S-parameters relating ports C
and H with port L in receiver k (Figure 2.3). ηHK is the ohmic e�ciency of antenna k in
H mode.

The same procedure can be applied to receiver j

THsysj =
vHj − voffj
v2j − v1j

|Sj0|2

|S10|2

∣∣SLCj ∣∣2∣∣SLHj ∣∣2 ηHj (TNS2 − TNS1) (3.16)

and the amplitude calibration term Hkj in (2.4) can be rewritten as

HH
kj =

1∣∣∣GHkj∣∣∣
√
vHk − voffk
v2k − v1k

vHj − voffj
v2j − v1j

|Sk0| |Sj0|
|S10|2

|SLCk |
|SLHk |

∣∣SLCj ∣∣∣∣SLHj ∣∣ (TNS2 − TNS1)
√
ηHkηHj

(3.17)

At this point, we can make explicit that the calibration amplitude term is di�erent
for the horizontal and vertical measurement modes:

HV
kj =

1∣∣∣GVkj∣∣∣
√
vVk − voffk
v2k − v1k

vVj − voffj
v2j − v1j

|Sk0| |Sj0|
|S10|2

|SLCk |
|SLVk |

∣∣SLCj ∣∣∣∣SLV j ∣∣ (TNS2 − TNS1)
√
ηVkηVj

(3.18)

where vHk and vVk are the PMS voltage readings when the switch of the LICEF �k� is
in the H and V positions respectively. Now the only unknown is the fringe-washing term
Gkj .

The next section shows the estimation of the fringe-washing term Gkj .

3.3 Estimation of the fringe-washing amplitude term

When a single source is used to inject noise simultaneously to a set of receivers, such
as the hub or each one of the sections, the complex cross-correlation of a given baseline
depends on the di�erence between the noise temperature of the source TS and the physical
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temperature of the network Tph [16]. In particular, assuming certain approximations
discussed in chapter 3 of the mentioned reference, (2.4) can be written as:

Sk0S
∗
j0 (TS − Tph) = HC

kjM
C
kje

jαkj (3.19)

In principle, the fringe-washing amplitude term need not be explicitly estimated. In
fact, by dividing (2.4) by and taking into account the de�nition of amplitude calibration
Hkj (2.4), the following compact expression for the corrected visibility is obtained:

V̂kj = Sk0S
∗
j0 (TS − Tph)

√
TsyskTsysj√
TCsyskT

C
sysj

Mkj

MC
kj

(3.20)

where Tsysk is measured at the antenna plane of receiver �k� and TCsysk is measured
at its calibration plane C (port �k� of the NDN in Figure 2.3).

Although, while this equation is useful to obtain the phase of the corrected visibility,
its direct application to infer its amplitude relies on the knowledge of the absolute modulus
of the S-parameters and of the physical temperature distribution throughout the system.

A very robust estimation of Gkj can be obtained, performing two measurements at
two di�erent correlated temperatures TS1 and TS2. The modulus of (3.19), evaluated at
TS1 and TS2 can be written as:

1
Gkj

√
TC1
sysk

TC1
sysj

∣∣∣MC1
kj

∣∣∣ = |Sk0| |Sj0| (TS1 − Tph)
1
Gkj

√
TC2
sysk

TC2
sysj

∣∣∣MC2
kj

∣∣∣ = |Sk0| |Sj0| (TS2 − Tph)
(3.21)

Now, subtracting one equation from the other and arranging terms, the fringe-washing
term is obtained

Gkj =

√
TC2
sysk

TC2
sysj

∣∣∣MC2
kj

∣∣∣−√TC1
sysk

TC1
sysj

∣∣∣MC1
kj

∣∣∣
|Sk0| |Sj0| (TS2 − TS1)

(3.22)

Since the equivalent temperatures of the noise source are measured by the NIR as

TNS1 = |S10|2 TS1 and TNS2 = |S10|2 TS2 (3.23)

the fringe-washing term can be rewritten as

Gkj =
|S10|2

Sk0S∗j0

√
TC2
sysk

TC2
sysjM

C2
kj −

√
TC1
sysk

TC1
sysjM

C1
kj

(TNS2 − TNS1)
(3.24)

Note that dependence on the physical temperature of the estimation equation relating
Gkj has disappeared, even in the general case when physical temperatures are di�erent
at the noise distribution network and the LICEF receivers. Moreover, only relative mea-
surements of the S-parameter modulus of the noise distribution network are required.
Additionally if we take into account that system temperatures in calibration mode are
also measured through the NIR as:
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TC1
sysk

= v1k−voffk
v2k−v1k

|Sk0|2

|S10|2
(TNS2 − TNS1)

TC2
sysk

= v2k−voffk
v2k−v1k

|Sk0|2

|S10|2
(TNS2 − TNS1)

(3.25)

the fringe-wash term can be written as

Gkj =

√
(v2k − voffk )

(
v2j − voffj

)
MC2
kj −

√
(v1k − voffk )

(
v1j − voffj

)
MC1
kj√

(v2k − v1k) (v2j − v1j)

|Sk0| |Sj0|
Sk0S∗j0

(3.26)

which only depends on PMS linearity, normalized correlations and the relative phases
of the noise distribution network S-parameters.

3.4 Impact of PMS non linearity

As it has been seen in the previous section, the performance of the PMS used to de-
normalize the digital correlations in interferometric radiometers is degraded due to its
non-linear behaviour. In [17] it was shown that the PMS behaviour is very well modelled
by means of a second order response:

vk = voffk +GkTsysk + akT
2
sysk

(3.27)

The non-linear term ak can not be measured in-orbit by the scheme (four point
method) explained in section 3.1 and will introduce an error in the estimation of system
temperature. Since non-linearity is assumed to present low sensitivity to temperature, it
can be partially corrected from PMS in orbit measurements assuming that an estimation
of the non-linear term ak is availabe from ground measurements. The core of this thesis
has been devoted to study di�erent non-linear characterization and correction methods.
The following chapters include the results of the work carried out.



Chapter 4

PMS non-linearity measurement test

set-up

MIER Comunicaciones [18] was responsible for the design, development and manufacture
of the 72 L-band LICEF receivers. These receivers must accomplish very strict require-
ments: low dispersion, noise �gure, high gain and selectvity, low consumption and mass
characteristics, and be reliable in space.

MIER COMUNICACIONES developed a methodology to experimentally calibrate
and validate the di�erent radiometer prototypes that have been manufactured. Some
tests required �eld experiments, such as measuring the receiver noise �gure, including the
antenna, which was done by measuring the temperature of sky noise, or measuring and
characterizing the non-linearity of PMS. UPC agreed to participate in data processing of
EM and PFM tests, providing a tool for real-time monitoring of LICEF EM tests. During
the developement of this thesis, the measurement data set provided by MIER has been
used to performed the two non-linear characterization measurement methods proposed:
the Slope Method and the De�ection Method. For this reason, the following section is
devoted to brie�y describe the measurement test set-up and the measurement data set.

Figure 4.1: EM LICEF-3 �ight model manufactured by MIER COMUNICACIONES

15
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Figure 4.2: PMS linearity test basic setup

4.1 PMS linearity test set-up

The PMS linearity test setup consists in using a directional coupler to add an extra
noise to the noise level supplied from NOSU (Noise System Unit). In case the PMS was
perfectly linear, this extra noise should produce a constant voltage variation.

The test procedure is the following:

1. Perform the 4-point calibration of the LICEF under test.

2. Set NOise Source the Unit (NOSU) to the minimum power level (maximum atten-
uation). Acquire 100 samples of output reading voltages

3. Connect the extra Noise Source to the coupler (NS switch position = 2) and acquire
100 samples of the output reading voltages

4. Switch o� the extra noise source.

5. Increase the power level of the NOSU. Acquire 100 samples of output reading volt-
ages,

6. Repeat (3) to (7) until the whole power range is covered (11 NOSU levels).

This procedure was performed at three di�erent physical chamber temperatures (5ºC,
21ºC and 45ºC). Hence, the resulting measurement data set consists of 100 samples of
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PMS voltages, for each of the 11 levels supplied and for two di�erent con�gurations: when
the extra noise is swithched o� and when it is switched on. This is repeatable for each
one of the three measurement temperatures (5ºC, 21ºC and 45ºC) and for each receiver.

4.1.1 Summary of equations

This section summarizes the equations and the di�erent steps followed to estimate the
system temperature at the input of the LICEF under test, which will be necessary to
performe and analyze the two di�erent characterization proposed in this thesis. In order
to clarify the procedure, the upper index in all intermidate system temperature is related
to the corresponding plane of Figure 4.2.

The procedure of the estimation of the system temperature at the input of the LICEF

under test when the extra noise is switched o�, and when it is switched on, T
(3)
inOFF

, T
(3)
inON

respectivelly, are detailed in the following subsections (4.1.1.1 and 4.1.1.2).
LEXTERNALNDN = −12.0809dB

4.1.1.1 Estimation of System Temperature when extra noise is OFF

The system temperature at the input of LICEF under test (plane (3) in Figure 4.2), when
the extra noise is switched o� can be estimated following the procedure detailed hereafter:

1. From the Exces Noise Ratio (ENR) of the Noise Source Unit (NOSU), the temper-
ature supplied by the noise source can be computed as:

ENRNOSU = 33.75dB ⇒ TsourceNOSU = 290
[
10

ENRNOSU
10 + 1

]
(4.1)

2. Eleven di�erent power levels can be generated, varying the attenuator (LNOSU ).
Hence, the system temperature at the NOSU output plane (plane (1) in Figure 4.2)
can be written as:

T
(1)
inOFF = TsourceNOSULNOSU + (TphNOSU (1− LNOSU )) (4.2)

3. The system temperature up to the TVT (Thermal Vacumm Test) chamber (plane
(2) in Figure 4.2) can be computed as:

T
(2)
inOFF = T

(1)
inOFFLEXTERNALNDN + Tph (1− LEXTERNALNDN ) (4.3)

4. Finally the system temperature at the LICEF under test input (plane (3) in Figure
4.2) when the extra noise is switched o� can be estimated as:

T
(3)
inOFF = T

(2)
inOFFLinside + Tamb (1− Linside) (4.4)

where Tambis the physical chamber temperature and Linside is de�ned as:

Linside = LoutNOSU EM01/02 − LEXTERNALNDN (4.5)
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4.1.1.2 Estimation of System Temperature when extra noise is ON

The system temperature at the input of LICEF under test (plane (3) in Figure 4.2), when
the extra noise is switched on can be estimated following the procedure detailed hereafter:

1. The system temperature at the NOSU output plane when the extra noise is switched
on is the same that when it is switched o� (2):

T
(1)
inON = T

(1)
inOFF = TsourceNOSULNOSU + (TphNOSU (1− LNOSU )) (4.6)

2. The system temperature up to the TVT (Thermal Vacumm Test) chamber (plane
(2) in Figure 4.2) can be computed as:

T
(2)
inON = T

(1)
inONLEXTERNALNDN + Tph (1− LEXTERNALNDN ) +

+TN source 2Lnoise2
(4.7)

3. Finally the temperature at the LICEF under test input (plane (3) in Figure 4.2)
when the extra noise is switched on can be estimated as:

T
(3)
inON = T

(2)
inONLinside + Tamb (1− Linside) (4.8)

where Tambis the physical chamber temperature and Linside is de�ned as:

Linside = LoutNOSU EM01/02 − LEXTERNALNDN (4.9)



Chapter 5

The Slope Method

5.1 Introduction

Several methods to characterize the radiometer linearity can be found in the literature
[19] [20]. This chapter presents the non-linearity characterization by the so-called Slope
Method of the 72 power detectors of each receiver that compouned the MIRAS instrument.
This method was used to characterize the non-linearity by Mier Comunicaciones [21], who
also performed the set up and the measurements.

During the development of this thesis, this method has been performed using the
same measurement data set provided by Mier Comunicaciones. Some slightly di�erences
between both results were found, corrected and reported in [22].

5.2 PMS non linearity characterization

This section presents the PMS non-linearity characterization by the Slope method, which
basically consists of the estimation of the second order parameter ak in expression (3.27).
This characterization is based on the measurement set-up described in the previous chap-
ter. As it has been seen, it basically consists o� using a directional coupler to add an
extra noise to the noise level supplied from NOSU. The rationale of the non linearity char-
acterization is based on a quite simple principle: in case the PMS was perfectly linear,
any extra noise should produce a constant voltage variation.

When the extra noise source is turned o� the PMS output voltage can be written as
a function of input system temprature (plane (3) Figure (4.2)) as:

vPMS (Nsource = OFF ) = vA = voffk +GCk T
C
sysk

+ akT
C2
sysk

(5.1)

When the extra noise source is turned on, it adds an extra noise 4TN at the LICEF
input, and once more considering the second order model of the PMS, the ouptut voltage
can be written as a function of input system temperature as:

vPMS (Nsource = ON) = vB = voffk +GCk
(
TCsysk +4TN

)
+ ak

(
TCsysk +4TN

)2
(5.2)

Thus the voltage di�erence observed at the ouput of PMS can be computed as a
function of input system temperature and the extra noise added, substrating expressions
(5.1) and (5.2).

19
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4vPMS = vPMS (Nsource = ON)− vPMS (Nsource = OFF ) = vB − vA
4vPMS = GCk4TN + ak

(
4T 2

N + 2TCsysk4TN
) (5.3)

Hence, rearranging terms in (5.3) the measured di�erences in the output voltage will
present a linear response with TCsysk :

4vPMS = K1 +K2T
C
sysk

(5.4)

where,

K1 = GCk4TN + ak4T 2
N

K2 = 2ak4TN
(5.5)

So in order to retrieve the second order parameter (ak), the estimation of the slope
(K2) of delta voltage response (4vPMS) with respect to the system temperature (Tsys)
is needed, as well as, the added extra noise injected (4TN ), which has been computed
from the measurement data set provided by Mier as:

4TN = T
(3)
inON

− T (3)
inOFF

(5.6)

where T
(3)
inON

, T
(3)
inOFF

correspond with the system temperature at the LICEF under
test input ( plane (3) from Figure 4.2), when the extra noise is switched on, and when it
is switched o�, respectivelly. Their estimation has been detailed in sections 4.1.1.2 and
4.1.1.1, respectively .

Finally, it has been shown that the non linearity term of the PMS can be estimated
within the presented mesurement set-up as:

ak =
K2

24TN
(5.7)

5.2.1 Experimental results

This section presents the experimental results of the characterization of second order
(ak) by the Slope Method of all the 72 PMS that compound MIRAS at three di�erent
measurement temperatures (5ºC, 21ºC and 45ºC).

In order to clarify the procedure a brief description of the acquired data measured
by Mier Comunicaciones is needed. As it has already seen, the basic linearity test setup
consists o� using a directional couple to add an extra noise to the noise level supplied
from NOSU (Figure 4.2). This NOSU supplies 11 di�erent noise levels by varying the
attenuator LNOSU . For each PMS unit, for the three di�erent measurement temperatures
and for the di�erent 11 noise levels, 100 samples of PMS output readings were measured
and stored. This samples were measured for two cases:

� Extra noise source ON

� Extra noise source OFF



5.2. PMS NON LINEARITY CHARACTERIZATION 21

0 10 20 30 40 50 60 70 80 90 100
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Samples

P
M

S
 o

ut
pu

t 
re

ad
in

gs
 [

V
]

SLOPE METHOD: 11 levels vPMS(ON) Rec:10 Temp:21ºC

(a) Extra noise source ON
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SLOPE METHOD: 11 levels vPMS(OFF) Rec:10 Temp:21ºC

(b) Extra noise source OFF

Figure 5.1: PMS non linearity measurement data set: PMS output readings for the 11
di�erent noise levels supplied by NOSU

Figure 5.1 shows an example of the measurement data set for a particular receiver
(number 10) at 21ºC. These 100 PMS output reading samples are avaraged, so its uncer-
tainty is decreased a factor 1/10, obtaining 11 values for vA (5.1) and vB (5.2) respectively.
These two magnitudes are used to compute the voltage di�erence observed (5.3), which
is represented as a function of system temperature in Figure 5.2, where the blue points
correspond to the measurement data and the green line corresponds to the best �rst order
�t in a least-squares sense. Once the slope of voltage di�erence (K2) is estimated in a
least-squares sense, the non linearity term ak can be retrieved from expression (5.7).

Finally Figure 5.3 shows the retrieved values of non linearity term ak for each one of
the measurement temperatures: 5ºC, 21ºC and 45ºC. This non linearity term at 21ºC has
been included in the MIRAS Data Base (MDB), and it is usefull to model and analyze
the non linearity error (see Chapter 7).
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SLOPE METHOD: Difference voltage ∆V Rec:10 Temp:21ºC 

Figure 5.2: Voltage di�erence ∆v as a function of Tsys. The blue points correspond
to the measurement data and the green line corresponds to the best �rst order �t in a
least-squares sense.
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(a) Measurement temperature 5ºC
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Figure 5.3: Retrieved second order parameter (a) by the Slope method of the 72 receivers
that compound MIRAS at the temperature 5ºC, 21ºC and 45ºC.

5.3 Linearity correction procedure

This section presents the performance of a simple method to correct the second order PMS
response even in the case when the diode non-linear behaviour is not perfectly known.

The PMS response is linearized by subtracting from the PMS voltage readings an
estimate of the second order contribution. This estimate is computed by assuming a
linear behaviour of the PMS. That is, from PMS voltage readings and applying the four-
point calibration method can be computed as a �rst approach as:

TSC(1)
sysk

=
v
SC(1)
k − v(1)

offk

G
(1)
PMSk

(5.8)

where the superscript (1) indicates that not correction has been done yet.
From the estimated system temperature and from on ground measurements of the

PMS second order parameter ak, the non linearity contribution from the PMS readings
can be corrected:
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v
(2)
ik = v

(1)
ik − ak

[
TSC(1)
sysk

]2
(5.9)

where the superscript (2) indicates that second order correction has been performed.
Once the non linearity contribution has been corrected, the four point calibration

method is again performed in order to obtain a PMS linear model that takes in to account
the non linearity correction:

v
(2)
offk = v

(2)
2k v

(2)
3k −v

(2)
1k v

(2)
4k(

v
(2)
2k −v

(2)
4k

)
−
(
v
(2)
1k −v

(2)
3k

)
G

(2)
PMSk

= v
(2)
2k −v

(2)
1k

|Sk0|2
∑6
N=1

(TC2C
sysN

−TC1C
sysN )

|SN0|2

(5.10)

Now the system temperature System temperature at CIPk plane with second order
non linear correction can be computed as:

TSC(2)
sysk

=
v
SC(2)
k − v(2)

offk

G
(2)
PMSk

(5.11)

5.3.1 Summary of equations

Table 5.1 details the step by step equations in order to correct the non-linearity from the
PMS output readings by the Slope Method.

5.4 Impact of measurement uncertainty

This section is devoted to asses the impact of errors or uncertainties in the di�erent
parameters that are involved in the estimation of the non linear term (ak).

As it has been shown in section 5.2, the non-linerarity term (ak) (5.7) can be retrieved
from the estimation of the slope (K2) of the di�erence voltage observed (4v). Figure 5.4
shows a schematic representation of the di�erence voltage (4v) observed as a function of
system temperature. The relationship between the di�erent parameters in the �gure is
detailed hereafter:

T1 → vA1

T1 +4TN1 → vB1

}
4v1 = vB1 − vA1

T2 → vA2

T2 +4TN2 → vB2

}
4v2 = vB2 − vA2

(5.12)

Tanking into account a second order model of the PMS, the di�erence voltage can be
written as:

vA1 = voff +GT1 + aT 2
1

vB1 = voff +G (T1 +4TN ) + a (T1 +4TN )2

}
4v1 = vB1 − vA1 = G4TN + a

(
4T 2

N + 2T14TN
)

vA2 = voff +GT2 + aT 2
2

vB2 = voff +G (T2 +4TN ) + a (T2 +4TN )2

}
4v2 = vB2 − vA2 = G4TN + a

(
4T 2

N + 2T24TN
)

(5.13)



24 CHAPTER 5. THE SLOPE METHOD

OUTPUT DATA

Linearized PMS o�set at
CIP plane at LICEF
calibration temperature
(orbit position)

G
C(2)
PMSk UNITS: [mV/K] v

(2)
offk UNITS: [V]

T
HH(2)
sysk , T

HH(2)
sysk , T

UV (2)
sysk , T

UV (2)
sysk UNITS: [K]

INPUT DATA
Descript Variables Origin

PMS voltages in CAL
MODE. 4-point method.
The superscript (1)
indicates that no
correction has been done
yet.UNITS [V]

v
(1)
1k ,v

(1)
2k ,v

(1)
3k ,v

(1)
4k PMS voltages in CAL mode

ANCILLIARY DATA Origin
Estimation of non linear
term [V]

ak LICEF PMS characterization by Slope method

STP EQUATIONS COMMENT

1

v
(1)
offk = v

(1)
2k v

(1)
3k −v

(1)
1k v

(1)
4k(

v
(1)
2k −v

(1)
4k

)
−
(
v
(1)
1k −v

(1)
3k

)
G

(1)
PMSk

= v
(1)
2k −v

(1)
1k

|Sk0|2
∑6
N=1

(TC2C
sysN

−TC1C
sysN )

|SN0|2

LICEF calibration (4 point method) :PMS gain and
o�set at CIP plane at LICEF calibration temperature

(orbit position)

2 T
SC(1)
sysk =

v
SC(1)
k −v(1)offk
G

(1)
PMSk

System temperature at CIPk plane. Switch in S=H, V,
U positions.

3 v
(2)
ik = v

(1)
ik − ak

[
T
SC(1)
sysk

]2
Linearity correction of PMS readings

4

v
(2)
offk = v

(2)
2k v

(2)
3k −v

(2)
1k v

(2)
4k(

v
(2)
2k −v

(2)
4k

)
−
(
v
(2)
1k −v

(2)
3k

)
G

(2)
PMSk

= v
(2)
2k −v

(2)
1k

|Sk0|2
∑6
N=1

(TC2C
sysN

−TC1C
sysN )

|SN0|2

Calculation of PMS gain and o�set from the corrected
voltages

5 T
SC(2)
sysk =

v
SC(2)
k −v(2)offk
G

(2)
PMSk

System temperature at CIPk plane with non linear
correction. Switch in S=H, V, U positions.

T
HH(2)
sysk = T

HC(2)
sysk

|SLCk |
2

|SLHk |
2
ηHk

System temperature at HAP plane with non linear
correction. Switch in H

6 T
V V (2)
sysk = T

V C(2)
sysk

|SLCk |
2

|SLVk |
2
ηV k

System temperature at VAP plane with non linear
correction. Switch in V

T
UH(2)
sysk = T

UC(2)
sysk

|SLCk |
2

|SLHk |
2
ηHk

System temperature at HAP plane with non linear
correction. Switch in U

T
UV (2)
sysk = T

UC(2)
sysk

|SLCk |
2

|SLVk |
2
ηVk

System temperature at VAP plane with non linear
correction. Switch in U

Table 5.1: Summary of PMS linearity correction by the slope method
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Figure 5.4: Schematic representation of voltage di�erence ∆v as a function of Tsys

From Figure 5.4 and from the previous expressions, it is clearly seen that the param-
eters that most a�ect the estimation of the non linearity term (ak) are:

� the extra noise injected (4TN ), which absolute value is needed to retrive ak from
the slope (K2) of the di�erence voltage (4v)

� the uncertainty in PMS output voltages readings, which are also involved in the
estimation of the slope K2

� the uncertainty in input system temperature Tsys

The following subsections are devoted to analyze the impact of the uncertainty in these
parameters in the measurement of the second order model a by the Slope Method. For
this purpose, the Slope Method is simulated, taking into account a second order model
of the PMS, which is the mean values of all the receivers, and the same input system
temperature that in the experimental case. These values are detailed in table 5.2.

The parameters under study are modeled as a normal random variables of length N,
with its mean value and di�erent values of standard deviation. Hence for each standard
deviation value considered, and after performing the Slope method, N values of the second
order parameter a are obtained, representing N di�erent realizations of the experiment.
Thus the uncertainty of the second order parameter σa can be evaluated as a function of
the uncertainty of the parameter under study.

Another way to evaluate the impact of the uncertainty of these parameters in the
measurement of the second order parameter a, is computing the relative error of the mean
of all realizations 〈â〉 with respect to the nominal case a considered in the simulations.
This error can be computed as:
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TA [K] 0,100,200,300,500,700,900,1100,1300,1500
TO [K] 290
Tr [K] 180

∆TN [K] 136
TAN TA + ∆T
TON TO + ∆T

TsysX
TX + Tr

whereX = A,O,AN,ON

PMS second order Model
a = 4.4875 nV/K2

G = 1.2 mV/K
voff = −1.7818V

N:Number of measurement realizations 1000

Table 5.2: Parameters of the simulation of the impact of measurement uncertainty by
Slope Method

errorX [%] =
〈â〉 − a
a

· 100 (5.14)

where X stands for the parameter under study: 4TN , vPMS or Tsys.

5.4.1 Impact of uncertainty in 4TN
In this section the impact of uncertainty in the extra noise injected 4TN in the measure-
ment of the second order parameter (a) is evaluated. For this purpose, the slope method
has been simulated, considering that the extra noise injected 4TN involved in the pro-
cedure is modeled as random variable with its mean and di�erent standard deviation
values.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

σ∆T
N

 [K]

σ a [
nV

/K
2 ]

SLOPE METHOD: Uncertainty of a [nV/K2]

(a) Absolute [nV/K]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

σ∆T
N

 [%]

σ a [
%

]

SLOPE METHOD: Uncertainty of a [%]

(b) Relative [%]

Figure 5.5: Uncertainty of a as a funciton of untertainty in 4TN

Figure 5.5 shows the uncertainty of the second order parameter as a function of the
uncertainty in the extra noise injected 4TN .
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Figure 5.6: Error of a [%] wrt the mean as function of uncertainty in 4TN [%]

Figure 5.6 shows the error of the parameter a with respect to the mean as a function
of uncertainty in the extra noise injected 4TN . However, 4TN is more likely to present
a systematic error (bias) than a random error and these results are not very signi�cative.
The impact of a systematic error in 4TN is analyzed in section 5.4.4.

5.4.2 Impact of uncertainty in PMS output voltage readings

In this section the impact of uncertainty in PMS output voltage readings in the measure-
ment of the second order parameter (a) is evaluated. For this purpose, the slope method
has been simulated, considering that all the PMS output voltages involved in the proce-
dure are modeled as random variables with their mean and di�erent standard deviation
values.

Figure 5.7 shows the uncertainty in the second order model as a function of the
uncertainty in the PMS output voltages.

Figure 5.8 shows the error of the parameter a with respect to the mean as a function
of uncertainty in the ouput voltage readings.

As it can be seen in the �gure 5.7 the slope method is very sensitive to the uncertainty
in the PMS voltage, for an uncertainty of 0.1% we obtain an uncertainty in the second
order parameter (a) over 100%. Regarding the mean, the error for the same uncertainty
value in the PMS voltage is over 1% (Figure 5.8).

5.4.3 Impact of uncertainty in System Temperature

In this section the impact of uncertainty in system temperature in the measurement of
the second order parameter (a) is evaluated. For this purpose, the slope method has been
simulated, considering that all the system temperatures involved in the procedure are
modeled as random variables with their mean and di�erent standard deviation values.

Figure 5.9 shows the uncertainty in the second order model as a function of the
uncertainty in the PMS output voltages.
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Figure 5.7: Uncertainty of a [%] as a function of uncertainty in output voltage readings
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Figure 5.10: Error of a [%] wrt the mean as function of uncertainty in system temperature
[%]

Figure 5.10 shows the error of the parameter a with respect to the mean as a function
of uncertainty in the system temperature.

As it can be in �gures 5.9 and 5.10 the uncertainty in the system temperature has
practically no e�ect in the measurement of the second order parameter, when comparing
with the uncertainty in the PMS output voltage readings.

5.4.4 Impact of systematic error in 4TN
In order to evaluate the impact of systematic error in the measurement of a parameter,
di�erent simulated measurements have been performed considering di�erent values of the
extra noise injected 4TN [126 K, 146 K], and then, when the a parameter is retrieved
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(5.7), the mean value of 4TN (136 K) is considered.
The left plot of Figure 5.11 shows the retrieved a parameter versus the di�erent values

of 4TN considered (in red) and the value of the parameter a (4.4875 nV/K2) considered in
order to make simulations in green. The right plot represents the error of the retrieved a
with respect to the mean value versus the systematic error of 4TN .
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Figure 5.11: Impact of a systematic error in 4TN in the measurement of a

As it can be seen, an error in 4TN translates directly in the estimation of a.

5.5 Conclusions

This section is devoted to summarize the main conclusion of this chapter.
A method to characterize the non-linearity of the PMS has been presented. It basically

consists of estimating the second order parameter ak, which models the non-linearity of
power detector as a function of the system temperature at plane C. This second order
response is a useful tool to model the non-linearity of the detector and allows to per-
form di�erent studies such as the impact of measurement uncertainties, which has been
presented in this chapter.

Regarding the impact of measurement uncertainty, it has been seen that the main
sources of error in the measurement of a by the Slope method depends on:

� systematic errors in the extra noise injected (∆TN ), which translate directly in the
estimation of a,

� the uncertainty in the PMS output readings,

� the uncertainty in the knowledge of input system temperature Tsys (Figure 5.2).



Chapter 6

De�ection Method

6.1 Introduction

The constant de�ection method [23] has been used to test and characterize the radiometer
linearity. Using this approach, non-linearities are observed as deviations of the noise diode
de�ection as the antenna noise temperature changes. This method o�ers the advantage
that it can be applied to the complete radiometer system.

The PMS linearity test set up was described in section 4.1, it basically consists of
using a directional coupler to add an extra noise to the noise level supplied from NOSU.
This extra noise (4TN ) may be su�cient to characterize the linearity of the PMS, since if
it was perfectly linear, this added extra noise should produce a constant voltage variation.
Hence the linearity can be examined with the following ratio:

D =
vAN − vA
vON − vO

(6.1)

Where the four voltages represent the response to the NOSU power supplied (vA),
NOSU plus extra noise diode (vAN ), temperature reference (vO) and reference plus extra
noise diode (vON ) respectivelly .

If the PMS second order model is considered, any detected voltage can be written as
a function of input system temperature, by the following well-kown expression:

vdet = voff +GTsys + aT 2
sys (6.2)

Then the de�ection ratio can be written as:

vAN − vA = a
(
4T 2

N + 2TA4TN
)

+ G4TN
vON − vO = a

(
4T 2

N + 2TO4TN
)

+ G4TN

}
D =

a
(
4T 2

N + 2TA4TN
)

+ G4TN

a (4T 2
N + 2TO4TN ) + G4TN

(6.3)

Hence in the case that the PMS has a perfectly linear behavior (a = 0), the de�ection
ratio D is equal to 1. Therefore the De�ection ratio is a good and simple technique to
measure non-linearities in the end to end radiometer system.

On the other hand, it is possible to perform a new non linearity correction at a voltage
level.

If a �rst estimation of voff , by the 4 point method or by a �rst order �t, is considered,

then it is posible to work with a zero mean signal v
′

det as:

31
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v
′

det = vdet − voff = GTsys + aT 2
sys (6.4)

Now if it is taken into account that the linearized voltage can be written as:

vlin = GTsys (6.5)

then expression (6.4) can be written as a funcion of the linearized voltage as:

v
′

det = vdet − voff = GTsys + aT 2
sys = vlin +

a

G2
v2
lin (6.6)

Hence if the following second order equation is solved, the linearized voltage vlin can
be written as a function of the low signal detected voltage v

′

det:

a
G2 v

2
lin + vlin − v

′

det = 0

vlin = −G
2

2a ±
√

G4

4a2 + G2

a v
′
det

(6.7)

If a correction factor C is de�ned as:

C =
G2

2a
(6.8)

expression (6.7) can be rewritten as:

vlin = C

√
1 +

2
C
v
′
det − C (6.9)

Thus, once the correction parameter C is estimated or measured, it can be used
to correct the non-linear contribution of any detected voltages. Section 6.2 details the
procedure proposed in order to measure and retrieve the correction parameter C, while
section 6.3 details the non-linearity correction in the current calibration scheme of MIRAS.

6.2 Characterization of non linearity

In order to estimate the value of C the following procedure has been applied. The mean
steps are summarized hereafter:

1. Compute the de�ection coe�cient D as a function of Tsys. This step is used
exclusively to display the non-linearity e�ect, but not to process the data.

D =
vAN − vA
vON − vO

(6.10)

2. Compute voff by the four point method and remove it from the voltages measure-
ment set.

voff = v2v3−v1v4
(v2−v4)−(v1−v3)

v
′

A = vA − voff
v
′

AN = vAN − voff
v
′

O = vO − voff
v
′

ON = vON − voff

(6.11)
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3. Perform a swept of posible candidates values of C, linearized the voltages data set
and compute a linearized De�ection ratio.

vA lin = C
√

1 + 2
C v
′
A − C

vAN lin = C
√

1 + 2
C v
′
AN − C

vO lin = C
√

1 + 2
C v
′
O − C

vON lin = C
√

1 + 2
C v
′
ON − C


Dlin =

vAN lin − vA lin
vON lin − vO lin

(6.12)

4. De�ne the error function as:

error [%] =

√√√√ 1
N − 1

N−1∑
i=1

(Dlini − 1)2 · 100 (6.13)

Where N is the number of noise level supplied by the noise source. Note that the upper
index in the sum is N-1, since the lower level of the Noise Source is used as a reference
voltage (vON , vO) in the computation of De�ection ratio and the other 10 levels are used
to compute the numerator of the De�ection ratio D in expression (6.12).

5. Find minimum error by sweeping C, that is, for each value of the sweep, compute
the error function de�ned in step 3. The estimated value of C is the one that minimizes
the error function.

The main advantage of this method consists of not requiring the absolute calibration
of the injected noise ∆TN , as well as, the knowledge of Tsys. The value of C is obtained
directly.

6.2.1 Experimental results

This method has been applied in order to characterize the non-linearity by De�ection
Method, using the same data set available from the linearity test (slope method) per-
formed and measured by Mier. That is, the estimation of the correction parameter C,
for all the 72 receivers that compouned MIRAS instrument, and for each of the three
measurement temperatures (5ºC, 21ºC and 45ºC) has been performed. A large e�ort
of this thesis has been devoted to characterized and measure the non linearity by the
De�ection Method. All this work has been re�ected in di�erent Technical Notes, however
for the sake of simplicity, in this thesis only the intermidiate steps and the �nal results
are included, in order to give an overview of the proposed method.

To sum-up, the characterization of non linearity by the De�ection Method basically
consists of performing a swept of posible values of C, linearizing all the PMS voltages,
recomputing a linearized De�ection Ratio (Dlin) and its rms error with respect to the
theoretical value (Dlin = 1) . The retrieved value of C is the one that minimizes this rms
error.

Figure 6.1 shows an example of the error function to minimize as a fuction of the swept
values of C. As it can be seen, this function presents a clear minimum, that corresponds
to the retrieved value of C. In order to check the correct performance of the method,
once the value C is retrieved, the De�ection ratio is represented (Figure 6.2) for both
cases: before (red plot) and after (green plot) applying the linearization correction. As
it is shown in Figure 6.2, the De�ection ratio once the correction is performed is about
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Figure 6.2: De�ection ratio, green line corresponds to the linearized defection ratio and
the red one to the de�ection ratio without any correction.

1, what indicates that the correction has been applied properly. The legend of the �gure
also indicates the retrieved value of C used to linearize the voltages, as well as the rms
error obtained.

Finally Figure 6.3 shows the retrieved values of C for each one of the measurement
temperatures: 5ºC, 21ºC and 45ºC. This retrieved correction parameter at 21ºC have
been included in the MDB (Miras Data Base) and they will be used in the o�cial SMOS
Level-1 processor, as well as in the MIRAS-TS developed by UPC, in order to correct the
non-linearity of the detectors.
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Figure 6.3: Retrieved non linearity correction parameter (C) by De�ection Method of
the 72 receivers that compound MIRAS at di�erent physical temperature 5ºC, 21ºC and
45ºC.

6.2.2 De�ection Testing Software

De�ection Testing Software, from now on DTS, is a tool designed during the developement
of this thesis. The main objective of this software package is to measure and characterize
the non linearity by the De�ection Method, although it also has another package to asses
the stability of the detector by means of the Allan Variance.

The Software is capable to read and process automatically the measurement data
set �les, in order to characterize the non linearity of the PMS, following the procedure
explained in this section.

Figure 6.4 shows the user graphical interface of DTS. As it can be seen in the �gure,
the software shows the same intermidate graphics that have been presented in last section
in order to check the correct performance of the measurement. The other two graphics
correspond to the non-linear error and the residual non-linear error, respectivelly, as a
function of system temperature. These two error de�nitions are presented in Chapter 7. It
is worth to mention, that the software also performes the characterization of non-linearity
by the slope method, which is necessary to compute these errors.
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Figure 6.4: User graphical interface of De�ection Testing Software

6.3 Linearity correction procedure

This section presents the performance of the De�ection method to correct the second
order contribution of the PMS response.

Linearity correction procedure by De�ection method is an iterative procedure in which
PMS response is linearized from PMS voltage readings or detected voltages (vdet ) directly
as:

vlin = C

√
1 +

2
C
vdet − C (6.14)

As it has been already said, the parameter C has been estimated using same data
set available from linearity test performed and measured by Mier following the procedure
explained in section 6.2. Therefore it allows to correct non linearity response of PMS
from on ground characterization of each PMS. This linearization expression (6.14) can
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only be applied to a zero o�set voltage, hence the o�set voltage has to be �rst estimated
in order to subtract it from the PMS voltage readings, and that makes the linearization
procedure an iterative method. So �rst, considering a lineal model of PMS, the o�set
voltage is estimated by the four point method:

v
(1)
offk =

v
(1)
2k v

(1)
3k − v

(1)
1k v

(1)
4k(

v
(1)
2k − v

(1)
4k

)
−
(
v

(1)
1k − v

(1)
3k

) (6.15)

Once the �rst estimation of the o�set voltage is obtained, it is subtracted to the four
voltages involved in the four point method, in order to linearize them with expression
(6.14):

v
′

ik = v
(1)
ik − v

(1)
offk

v
(2)
ik = Ck

√
1 + 2

Ck
v
′
i − Ck

(6.16)

where superscript (1) indicates that no correction has been performed yet, and (2)
indicates that the voltage has been corrected or linearized, whereas the subscript i stands
for the four point voltages (from 1 to 4) and the subscript k stands for the receiver name
(from 1 to 72) .

The following step in order to compute a linearized o�set voltage is compute the
residual o�set by the four point method, taking in to account the linearized voltages.

vresoffk =
v

(2)
2k v

(2)
3k − v

(2)
1k v

(2)
4k(

v
(2)
2k − v

(2)
4k

)
−
(
v

(2)
1k − v

(2)
3k

) (6.17)

Hence the linearized o�set will be the contribution of (6.15) and (6.17):

v
(2)
offk = v

(1)
offk + vresoffk (6.18)

Once the linearized o�set v
(2)
offkhas been computed, any PMS voltage can be linearized

by:

v
′

k = v
(1)
k − v

(2)
offk

v
(2)
k = Ck

√
1 + 2

Ck
v
′
k − Ck

(6.19)

where v
(1)
k is the PMS voltage reading to linearize and v

(2)
k is the linearized one and the

subscript k incidicates the receiver number.

6.3.1 Summary of equations

Table 6.1 shows the step by step equations in order to linearized the calibration voltages
and computed a o�set voltage that takes into account the linearization by De�ection

Method. Note that if no correction is performed, the output data will be: v
(2)
offk = v

(1)
offk

Whereas, Table 6.2 shows the step by step equations in order to linearized any other
voltages by De�ection Method. Note that if no correction is performed, the output data

will be: v
(2)
k = v

(1)
k − v

(2)
offk, where v

(2)
offk was not linearized in the calibration procedure.



38 CHAPTER 6. DEFLECTION METHOD

OUTPUT DATA

Linearized PMS o�set at
CIP plane at LICEF
calibration temperature
(orbit position)

v
(2)
offk UNITS: [V]

INPUT DATA
Descript Variables Origin

PMS voltages in CAL
MODE. 4-point method.
The superscript (1)
indicates that no
correction has been done
yet.UNITS [V]

v
(1)
1k ,v

(1)
2k ,v

(1)
3k ,v

(1)
4k PMS voltages in CAL mode

ANCILLIARY DATA Origin
Estimation of non linear
term [V]

Ck LICEF PMS characterization by De�ection method

STP EQUATIONS COMMENT

1 v
(1)
offk = v

(1)
2k v

(1)
3k −v

(1)
1k v

(1)
4k(

v
(1)
2k −v

(1)
4k

)
−
(
v
(1)
1k −v

(1)
3k

) Computation of a �rst estimation of PMS
o�set

2
v
′

ik = v
(1)
ik − v

(2)
offk

v
(2)
ik = Ck

√
1 + 2

Ck
v
′
ik − Ck

Linearity correction of PMS readings.Before
correction o�set has to be removed from

PMS readings.

3
vresoffk = v

(2)
2k v

(2)
3k −v

(2)
1k v

(2)
4k(

v
(2)
2k −v

(2)
4k

)
−
(
v
(2)
1k −v

(2)
3k

)
v

(2)
offk = v

(1)
offk + vresoffk

Computation of linearized PMS o�set from
corrected voltages.

Table 6.1: Summary of PMS linearity correction of calibration voltages

6.4 Impact of measurement uncertainty

6.4.1 Impact of uncertainty in PMS output voltage readings

In this section the impact of uncertainty in PMS output voltage readings in the measure-
ment of the parameter C is evaluated. For this purpose, the de�ection method has been
simulated, considering all the PMS output voltages involved in the procedure are modeled
as random variable with their mean values and standard deviation . In order to evaluate
this impact, the De�ection method procedure explained before has been simulated consid-
ering the second order model of a typical PMS (a=4.4875 [nV/K2], G= 1.2 [mV/K], voff=
-1.7818 [V]). Table 6.3 summarizes other parameters of the simulation, such as: the ten
levels of input system temperature, references level, and equivalent noise temperature.

Figure 6.5 shows the uncertainty in the measurement of C parameter, by the procedure
explained in previous sections, as a function of the uncertainty in PMS output voltage
readings.

Figure 6.6 shows the intermediate steps of the evaluation of the impact of PMS output
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Figure 6.5: Error of C [%] wrt the mean as a function of uncertainty in output voltage
readings [%]

readings in the measurement of C parameter by the de�ection method for di�erent values
of uncertainty in PMS voltages output readings. The graphics from the left column show
the error function to be minimized by sweeping C, presented and de�ned in section 6.2,
and the graphics from the right column represent the retrieved C in order to show its
distribution or standard deviation.

The graphics show that for lower values of uncertainty in PMS output voltages read-
ings, the function error to minimize has a clearly de�ned minimum, and so the retrieved
value of the C parameter is the same for each realization. As the uncertainty of PMS volt-
age is increased, the minimum of the error function is wider and the standard deviation
of the retrieved C also increases (clouds of points of retrieved C are wider). For uncer-

OUTPUT DATA

Zero o�set linearized PMS
voltages
UNITS [V]

v
(2)
k UNITS: [V]

INPUT DATA
Description Variables Origin

Linearized PMS o�set
voltage.
UNITS [V]

v
(2)
offk ,v

(1)
k PMS o�set at CIP plane at LICEF

calibration temperature and PMS voltage
reading to be linearized.

ANCILLIARY DATA Origin
Estimation of non linear
term [V]

Ck LICEF PMS characterization by De�ection
method

STP EQUATIONS COMMENT

1
v
′

k = v
(1)
k − v

(2)
offk

v
(2)
k = Ck

√
1 + 2

Ck
v
′
k − Ck

Computation of a �rst estimation
of PMS o�set

Table 6.2: Summary of PMS linearity correction of other voltages
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(g) Error to minimize σv = 0.1% (h) Retrieved C parameter σv =
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Figure 6.6: Impact of uncertainty in PMS voltage readings
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TA [K] 0,100,200,300,500,700,900,1100,1300,1500
TO [K] 290
Tr [K] 180

∆TN [K] 136
TAN TA + ∆T
TON TO + ∆T

TsysX
TX + Tr

whereX = A,O,AN,ON

Table 6.3: Parameters of the simulation of the impact of uncertainty in PMS output

tainties of PMS output voltages readings values higher than 0.01%, the error function
does not present a de�ned minimum, and the retrieved value of C parameter correspond
to extremes of the interval of the sweep, since as it has been in section 6.2 the C retrieved
value is the one that minimizes the error function.

It could be concluded that when the uncertainty in the PMS output readings is compa-
rable to the function error to be minimized, the value of C parameter can not be correctly
retrieved. That is, in order to characterize non-linearity by the De�ection Method, these
non-linearity error should be higher than the noise, e.g.: if non-linearity error is about
0.2 %, in order to properly characterize this non-linearity, the noise level should be below
0.02%.

6.4.2 Impact of reference level

This section evaluates the impact of the reference level (TO, vO) selected in order to
compute the De�ection Coe�cient (6.1) in the estimation of C parameter by the de�ection
method. For this purpose, same procedure than the one followed in the last section has
been applied, but for di�erent values of TO.

In this case, the uncertainty in PMS voltages output readings selected is 0.02% for all
cases. The reason of selecting this uncertainty is due to the PMS uncertainty is about
0.18%, and since there are 100 measurements of each level this uncertainty is reduced
a factor of

√
100 (0.018%) by averaging. In a similar way than in the last section, the

graphics from the left column show the error function to be minimized by sweeping C,
presented and de�ned in section (6.2), and the graphics from the right column represent
the retrieved C in order to show its distribution or standard deviation, for di�erent values
of TO.
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(c) Error to minimize TO = 100K
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(d) Retrieved C parameter TO = 100K
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(e) Error to minimize TO = 290K
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(f) Retrieved C parameter TO = 290K
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(g) Error to minimize TO = 500K
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(h) Retrieved C parameter TO = 500K
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(i) Error to minimize TO = 700K
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Figure 6.7: Impact of reference level in the characterization of non-linerarity by the
De�ection method (σv = 0.02%).
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As it is shown in Figure 6.7 the uncertainty in C increases for higher values of reference
levels of TO. Since the reference level has a high impact in the estimation of C by the
De�ection method, in order to reduce the impact in the uncertainty of C, vO has to be
well determined or known, that means that its uncertainty has to be low or in the present
measurement set-up schema, it would be necessary to take more samples of the reference
voltage vO . Figure 6.8 shows the impact of reducing the uncertainty of reference level
a factor 10 respect to the uncertainty of the other PMS output reading involved in the
procedure (σvA,AN = 0.02%, σvO,ON = 0.002% ). Within the present measurement test
set-up, it means measuring 100 samples for vAN and vA, and 10.000 samples for vON and
vO.
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(b) Retrieved C parameter TO = 100K
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(c) Error to minimize TO = 290K
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Figure 6.8: Impact of reference level in the characterization of non-linerarity by the
De�ection method (σvA,AN = 0.02%, σvO,ON = 0.002%).

It can be seen that when the uncertainty of the reference level is reduced, the uncer-
tainty of C is also reduced.
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6.5 Conclusions

This section summarizes the main conclusions of this chapter.
A second method to characterize and correct non-linearities of the PMS has been

presented. The de�ection method is a more robust estimator of non-linearity when com-
pared with the solpe method, basically because it does neither require the knowledge of
the added noise nor the exact injected temperature at each level, and provides a quite
simple non-linearity correction at voltage level.

The main sources of error in the measurement of C by the De�ection method depends
on the uncertainty in PMS voltage reading (very sensitive). In order to characterize
non-linearity by the De�ection Method, the non-linearity error should be higher than
the noise, e.g.: if non-linearity error is about 0.2 %, the noise level in order to properly
characterize this non-linearity should be below 0.02%.

In addition, it has been shown that a way to reduce the measurement uncertainty in
C is by selecting a low reference level with a low uncertainty.



Chapter 7

Non linearity correction assesment

7.1 Introduction

This chapter is devoted to quantify the non-linearity error and to assess the impact
of PMS linearity correction with relation to MIRAS amplitude calibration. Linearity
correction is performed by the two procedures that have been presented in this thesis:
Slope and De�ection methods. The impact of linearity correction is assessed by analyzing
calibration data adquired in the Large Space Simulator (LSS) tests performed by EADS-
CASA Espacio at ESA- ESTEC facilyties in Noordwijk during spring 2007. The following
calibration parameters are analyzed:

1. Error on PMS Gain in percentage [%]
2. Error on PMS o�set [mV]
3. Error on amplitude of FWF at origin Gkj(0)
4. Error on Tsys in measurement mode in percentage [%]

7.2 Impact of non linearity error in calibration parameters

This section analyzes the impact of linearity errors in the following calibration parameters:
PMS Gain (GPMS), PMS o�set (voff ), amplitude of the Finge Washing Function (FWF)
at origin (Gkj(0)) and System Temperature (Tsys).

The error on these magnitudes due to the non-linearity of the detector is evaluated
by means of comparing these calibration parameters when no correction has been applied
with the ones computed after applying the non-linearity correction, which is performed
by the two procedures that have been presented in this thesis: Slope and De�ection
methods. These calibration parameters are computed using the calibration data from
LSS test, in particular IVT2 Stability Test 1 and Test PLM-DATA-PHASE-11-COLD-
FUNCTIONAL, as input of the MIRAS-Testing Software developed by UPC, from now
on MIRAS-TS. This software package fully processes SMOS data from level 0 up to
Brightness Temeperature at antenna plane (level 1B) [24].

Hence in a general way, the relative error on parameterX due to the PMS non linearity
can be computed as:

errorX [%] =
X(2) −X(1)

X(1)
· 100 (7.1)

45
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and the absolute error can be computed as:

errorX = X(2) −X(1) (7.2)

where the same nomenclature used in previous chapters is used in this section: su-
perscript (1) indicates that no correction has been performed yet, and (2) indicates that
the non linearity correction is already performed. On the other hand, X(2) is computed
applying the two di�erent correction methods that have been presented in this thesis:
lope and Defelction Methods, following the procedures explained in sections 5.3 and 6.3
respectively.

7.2.1 Error on PMS Gain

Figure 7.1 shows the mean non-linearity error of all the calibrations performed during the
test IVT2 Stability Test 1, for each of the 72 PMS receivers. The blue line represents the
mean error of all receivers, which is around 0.8% for the slope method correction case and
0.81 % for the De�ection method. The standard deviation is 0.3% for the Slope Method
and 0.29 % for the De�ection method. As it can be seen in the graphic, the non linearity
error on PMS Gain presents a peak to peak dispersion of 1.6 % approximately for the
slope method and 1.5% for the De�ection method.
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Figure 7.1: Impact of non linearity in GPMS

Figure 7.2 shows for each receiver the maximum and minimum error of all the cali-
brations performed during the test, red and green points respectively, and the di�erence
between the maximum and the minimum error has been represented in blue. As it can
be seen in the graphic, the di�erence between maximum and minimum di�erence error is
very low, below around 0.1% for the slope method, and even lower, arround 0.02%, for
the de�ection method.
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Figure 7.2: Impact of non linearity in GPMS . The red points correspond to the maximum
error of all calibrations, the green points to the minimum and the blue ones indicate the
di�erence between maximum and minimum.

7.2.2 Error on PMS o�set

This section shows the mean absolute non-linearity error on PMS o�set for all the cal-
ibrations performed during the test IVT2 Stability Test 1. As it can be seen in Figure
7.3, both correction methods give a similar error on PMS o�set.
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Figure 7.3: Impact of non linearity in voff

7.2.3 Error FWF at origin

In a similar way than the previous sections, and for the same test (IVT2 Stability1 Test),
the error on amplitude of FWF at origin has been evaluated. Figure 7.4 shows the mean
non linearity error of all the calibrations performed during the test IVT2 Stability 1 Test,
for each of the 2556 baselines. The mean error of all the baselines is represented in red,
and it is around 0.22%.
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(a) Slope Method (b) De�ection Method

Figure 7.4: Impact of non linearity in Gkj

7.2.4 Error on Tsys

Figure 7.5 shows for each receiver the maximum and minimum error on system temper-
ature of all the calibrations performed during the IVT2 Stability 1 Test, red and green
points respectively, and the di�erence between the maximum and the minimum error has
been represented in blue. As it can be seen in the graphic, the di�erence between maxi-
mum and minimum di�erence error is very low, below around 0.1% for the slope method,
and even lower, arround 0.02%, for the de�ection method. As it can be seen, this value
is the same than the error on PMS gain. Therefore it can be conclude that the main non
linearity error contribution to the system temperature non linearity error is due to the
non linearity error on PMS gain.
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Figure 7.5: Impact of non linearity in Tsys: The red points correspond to the maximum
error of all calibrations, the green points to the minimum and the blue ones indicate the
di�erence between maximum and minimum.
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Figure 7.6: Non linearity error as function of system temperature

7.3 Non linearity error de�nition

This section shows and summarizes the non linearity error computed (at 21ºC) for all
PMS receivers as de�ned in [21], which basically consists of the di�erence between the
second order model with an ideal linear curve that joins the minimum and maximum
system temperature points.

The main steps of the calculation of the non linearity error are summarized here after:
� Compute PMS second order model voltages as:

vk = voffk +GkTsys + akT
2
sys (7.3)

Where voffk , Gk and ak are available in the MIRAS Data Base (MDBfactory_v2xls)
and Tsys is a 13,26 dB range [93.7K ,1990 K]

� Compute a linear curve that joins the minimum and maximum system temperature:

videalk = voffidealk +GidealkTsys (7.4)

� The non linearity error [%] is de�ned as:

non linearity error [%] =
videalk − vk
GidealkTsys

· 100 (7.5)

Figure 7.6 shows the non linearity error as a function of Tsys for each of the 72 PMS
receivers, computed following the procedure explained before. As it can be seen in Figure
7.6, all PMS receivers accomplish the requirement of non linearity error, which was set
to 1%.

7.4 Residual non linearity error de�nition

This section is devoted to compute the residual non linearity error, after linearizing by the
De�ection Method. For this purpose, a linearized second order model alin is estimated
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Figure 7.7: Non linearity error and residual non linearity error
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Figure 7.8: PMS non linearity term: before (red) and after (green) linearizing by the
De�ection Method

by applying the Slope Method, after linearizing the data set available measured by Mier
following the linearization procedure explained in section 6.3.

Figure 7.8 compares the second order parameter of both models before linearizing
(red) and the one estimated after linearizing (green) all the PMS readings involved in the
estimation by the De�ection linearization procedure detailed in section 6.3.

As it can be seen in Figure 7.8 the mean value of the second order parameter available
in the MDB is about 4.51nV/K2(red) and once the linearization procedure is applied, the
mean of all the receivers after linearization is about 0.021 nV/K2 (green). That is, all the
PMS have been linearized to the noise level.
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Figure 7.9: Non linearity error and residual non linearity error

Figure 7.9 shows the non-linearity error (red) and the residual non-linearity error
(green) for all the 72 PMS. These values are computed as the maximum of Figures 7.6
and 7.7 respectivelly, for each receiver.

7.5 Evaluation of linearity correction by the consistency tool

The performance of the linearity correction by the De�ection method has been evaluated
by means of the consistency tool [25], a key tool devoloped by the UPC Remote Sensing
Group.

The rationale of the amplitude self-consistency tool is based on a quite simple principle:
when all PMS in a section are fed by the same noise source, the di�erence in the system
temperatures at their inputs between two noise injection levels (hot and warm) must be
the same except for the Noise Distribution Network (NDN) unbalance. The remaining
di�erences are an indicator of the cosistency of all the calibration procedure.
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(a) Linearity correction is not performed (b) Linearity correction performed

Figure 7.10: Output of consistency tool

The output of the consistency tool for two di�erent cases is shown in Figure 7.10:
� Figure 7.10a shows the output of consistency tool, when the S parameters ampli-

tude correction has been calculated, without considering the linearity correction by the
De�ection Method.

� Figure 7.10b shows the output of consistency tool, when the linearity error correction
has been applied and the S parameters amplitude correction has been recalculated taking
in to account the linearity correction by the De�ection method.

As it can be seen in the previous �gures, the di�erence between the magnitude
TsysHOT −TsysWARM when receivers are fed by even and odd noise sources is lower when
the linearity correction is applied (Figure 7.10b). This fact shows the correct performance
of linearity correction by the De�ection method.

Although in almost all receivers, the di�erence TsysHOT − TsysWARM when the re-
ceivers are fed by even and odd noise sources are more similar when the linearity correction
is applied, the peak to peak dispersion is the same order of magnitude.

The total standard deviation in the di�erence TsysHOT − TsysWARM (Figure 7.10a)
( σT = 0.82%) can be written as a contribution of the standard deviation in the S
parameters and the PMS non linearity error:

σT =
√
σ2
|S| + σ2

NL (7.6)

When the linearity correction is performed, the standard deviation in the di�erence
TsysHOT − TsysWARM (Figure 7.10b) can be written as:

σ
′

T =
√
σ2
T − σ2

NL = σ|S| (7.7)

In order to compute σNL, the di�erence between the magnitude ∆v = v2 − v1 when
no linearity correction is performed versus when it is performed (∆vlinearized ) is shown
in Figure 7.11.

Since PMS Gain is about 1 mV/K, it is assumed that the contribution of non linearity
error in the standard deviation of the magnitude TsysHOT − TsysWARM (Figure 7.10a)
can be computed at a PMS voltage level (Figure 7.11). Hence σNL = 0.2729%.
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Figure 7.11: The di�erence between the magnitude ∆v = v2 − v1 when no linearity
correction is performed versus when it is performed (∆vlinearized)

Taking in to account that the error or uncertainty in the estimation of standard
deviation of a set of 126 samples (Figure 7.10 and Figure 7.11) (72 odd+54 even) is about
6.3%, it can be shown the standard deviation of the non linearity error is in the range of
the uncertainty of the estimation of :

σ
′

T = σ
′

T ± 3σσ′T = [0.6341%, 0.9124%] (7.8)

That is the reason why Figure 7.10a and Figure 7.10b have similar peak to peak
dispersion.





Chapter 8

Conclusions

As main outcome of this thesis the non-linear error of the 72 PMS units in the MI-
RAS/SMOS instrument has been fully evaluated by means of both the so-called slope
and the de�ection methods. Both methods can be implemented with the same measure-
ment set-up.

De�ection method is more robust than the slope method, basically because does nei-
ther require the knowledge of the added noise nor the exact system temperature at each
level.

The main sources of error in the measurement of a by the Slope method depends on:
systematic errors in the extra noise injected and the uncertainty in system temperature.
On the other hand, the main sources of error in the measurement of C by the De�ection
method depends on the uncertainty in PMS voltage reading (very sensitive). However
it does not require neither the knowledge of the extra noise injected nor the system
temperature.

In order to reduce the uncertainty in the measurement of C, a low reference level
should be selected with low uncertainty. It can be achieved by taking and averaging more
samples.

The main advantage of the linearization correction by the De�ection method is that it
is a more simple procedure when compared with the linearization correction by the Slope
Method, which requires one more iteration (estimation of Tsys) and provides a quite
simple non-linearity correction at voltage level. In addition the correction paremeter C
does not depend on the input plane, so it can be used to correct any PMS voltage. On
the other hand, the slope method directly estimates the second order term, which is very
useful to simulate the non-linearity error both in the PMS measurements and theoretical
assessments.

After analyzing the results, the De�ection method is adopted as the technique to
correct non-linearity of the PMS. The De�ection method has been implemented in the
o�cial SMOS Level-1 processor and the correction parameters C obtained during this
thesis are included in the MIRAS Data Base, and will be used in the correction procedure.
The consistency tool has been used to assess the correct performance of the non linearity
correction by the De�ection method.

MIRAS/SMOS power detectors have shown a moderate non-linear error before correc-
tion in the range of 0.1% to 1% that has been reduced to a negligible residual non-linear
error after correction by means of the De�ection method (below 0.1%).
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