Titol: Processador d’expressions OCL en un entorn de
modelitzacio conceptual

Volum: 1/1

Alumne: Villegas Niiio, Antonio

Director/Ponent: Olivé Ramon, Antoni
Departament: Llenguatges i Sistemes Informatics

Data: Juny 2008

DADES DEL PROJECTE

Titol del Projecte: ~ Processador d’expressions OCL en un entorn de modelitzacid

conceptual

Nom de l'estudiant: Villegas Nifio, Antonio

Titulacio: Enginyeria en Informatica

Credits: 37,5

Director/Ponent: Olivé Ramon, Antoni
Departament: Llenguatges 1 Sistemes Informatics

MEMBRES DEL TRIBUNAL (rnom i signatura)

President: Teniente Lopez, Ernest

Vocal: Gonzalez Alastrue, José Antonio
Secretari: Olivé Ramon, Antoni
QUALIFICACIO

Qualificacio numerica:

Qualificacio descriptiva:

Data: Juny 2008

To those who supported me,
and specially to my sister and family.

Contents

1 INTRODUCTION........ciiirrrrrrrrsee s 2
1.1 ABOUT THE PROUJECT euuiirieeuuiirrnmssssrrsmssssermmsssssssnnsssssennsssssssnnssssssnnsssssnsnnssssnsnnsssses 2
1.2 MOTIVATIONS ..ceeeeiiirieenarirrmnsssrrnmssseremsssssrnmassssrsnnsssssennsssssennnsssssnnnsssssnsnnssssnnnnsnnnes 2
I o 0 = P 3
1.4 DEVELOPMENT METHOD ...cccuuiiiiieuiiirecassernmnssssrsnnsssssenmsssssesnnssssssnnsssssnsnnssssnsnnsssses 5
1.5 ABOUT THIS REPORTuiiiiieiiiriiensirrsmsssernmnssssrsnnsssssenmsssssennnssssssnnsssssnsnnssssnsnnsnnnes 6

2 CONCEPTUAL MODELING ...t s snnesnsnnnes 10
2.1 INTRODUCTION ...ciiceuuiirrmmnssrrnmnssssrsnasssernmsssssrsnnsssssenmssssssenssssssnnnsssssnsnnssssnsnnssnses 10
2.2 CONCEPTUAL MODELINGcotecusesirrrassserrmsssserrmnssssernmsssssrsnsssssssnnsssssesnnssssssnnsnnses 1
2.3 CONCEPTUAL SCHEMAScccccuuiirmransserrmnsssersmnssssrsnmsssssrsnssssssmnnsssssnsnnssssssnnsnnses 12
2.4 THE UNIFIED MODELING LANGUAGEcccuuiiimremsnsirrnmassssrennssssssnnsssssssnnssssssnnnsnses 13

2.4.1 ENbity BYPOS .o 13
2.4.2 ReIAHONSRIPS ..ottt e e eanans 15
2.5 THE NEED OF TEXTUAL CONSTRAINTS ...cctcuuiirrremssssrrnmsssssrennssssrmnnsssssrsnnssssssnnnnnses 16
2.6 MODEL DRIVEN ARCHITECTURE.....ccuuuttirtmnssserenmssssrenmsssssrsnssssssmnnsssssssnnssssssnnnsnses 18
2.6.7T MDA PIOCESS ...ttt e e e ettt sa e e e e e e e e eeatssaaeeaaaeeanans 18
2.6.2 AClOSErrealitycoooovveeaiiii 19

3 METAMODELING. ... 22
3.1 INTRODUCTION ...ciiceuuiirimmnssrrnmassssrnnasssssrnmsssssrsnnsssssenmsssssrsnssssssnnnsssssnnnnssssnnnnssnses 22
3.2 LEVELS OF REPRESENTATIONciittuuiiirrensserrnmssssrrnmsssssrnnnsssssmnnsssssrsnnssssssnnsnnses 22
3.3 METASCHEMAScceuiiiiieeiiriemasssrrrassserrmsssssrsnnssssrrnmsssssrenssssssnnnsssssnsnnssnsssnnsnnses 24
3.4 THE UML METAMODEL ...c..ciiteiuuiirenassaserrmnsssersnmssssrsnmsssssrsnsssssssnnsssssnsnnssssssnnssnses 24

3.:4.1 DiAgramscoooeeeeeiieiieeeeeeee e 25
AT EIBMENTS ..o 25
3.4.1.2 MUIIPlICIty @1EMENTS ... e 26
Bi4.1.3 CONSITAINTS ...ttt 27
3.4.1.4 GeneraliZatiONScoociiiiiiiei e e 28
K N IR O oTT 1 (1] - SRR TURPTS 29
3.4.1.6 Classes and asSOCIAtIONScceiiiiiiiiiiiieiee ettt 30

3417 DAta tYPES ...ttt e e et e e a e e 31

3.5 META-METASCHEMAS........ccotiiirrrrmmmnssssassrrrrnrnnmssssssssssemrnnnmsssssssssssmmsnnmnnnssssssssees 33

3.6 THE META-OBJECT FACILITY (MOF) ...ccucuimeererereeesenssseseseessssseseseesssssssseneseas 33
4 XML METADATA INTERCHANGEcccciiiiiiiiirrrrrrrnneeeeaanns 38
4.1 THE NEED OF SHARING INFORMATION.....cccurereeucuesssrsresesssesssssssresesssssnsssssesssnsnss 38
4.2 XML AND ORIGINSciiiississssssssssssssssssss s s s ssnsssnssnnnnnn 39
4.3 XML METADATA INTERCHANGEccueueuesrsreresscsesssssresesssssssssssesessssssasssssenesasass 40
4.4 UML, MOF AND XMI....ciiiiiiiiiiiini s snsssnnsas 40
4.5 XMIREPRESENTATION OF UNML SCHEMASc.ccueusurererecaesesssssresessssssssssseseasasas 41

5 EINA GMC: A CONCEPTUAL MODELING ENVIRONMENT ...48

5.1 WHATIS EINA GIMC?oiieeiieeieeeesssee s ssesssss s s s s sssssessssssessssssssssssssssssssssnssssssnnssnnns 48
5.2 EINA GIMC CORE ...ccoevetrmmrirrrrermenmmssssssssessssssssssmssmssssmemmsemeeeeeseeeeeeemmesmeeemeesees 48
5.3 OTHER COMPONENTS ...cetttttremmmmnmressmmssmesmmmsmmmmmmmmmmmmmmmmmmmmesmmeemeemmeemmemmmemmmsmmmmmn 50
LR R B {1 [I 00T 1V =T 4 (- 50
5.3.2 XMI EQition INTEITACEcooeeeeeeeeeeeeeeeeeee ettt 51
5.3.3 Cardinality Constraints CRECKE!ccooi i 51
5.3.4 XMIZDOT CONVEITEN ...ttt 51

£ T o [0 o T 1= 3 o 51
5.5 AN EXAMPLE ...ceeeeteetteeeemerrenrsnsnnnssssssssssessssssssssnennsssmmenssemeseeeseeseeeesmeeseeemeesmeesmnnnn 52
5.5.1 Instantiation through Poseidon FOr UMLccccoioioiiiiieiec 54
5.5.2 DireCt inStANtiQtONcoeeeeeieeeee et 57
B5.5.3 XMI QUIPULFIlE..........ccceeeeeeeeeeeeee ettt 60

6 THE OBJECT CONSTRAINT LANGUAGE...........ccceeeeciiiinneens 66
6.1 WHATIS THE OCL?uuuiunuunnnnnnnnnnsnnssnnnnnnnnnnnnnnnnnnnnnnnnnnnssnnsssnnsnnssnnsnnnsnnnsnnsnnnnns 66
6.2 A CONCEPTUAL SCHEMA EXAMPLEcuuuusssssssssnssmmnsmmnmmnmmemnsssnmsssssnssnnsmssnsnnssnnnes 67
6.3 OCL 2.0 EXPRESSIONSccuuuusssssssssssssssnsssnsssnsnnsmsnsmmssmnnsnnssssnssssssnsssnssnnnsnnssnnnns 69
6.3.7 BASIC TYPES ... 69
(S0 Tt R B 101 =T 1= PP P PP PP PPPRPP 69
B.3.1.2 REAl......ouieietiicecee ettt ettt ettt bttt 70

L Tt IR TS (4 [T RSO SUPRPR 70

LOIRC T I = o o[- T o PSS 71
6.3.2 BaSIC OPEIatiONSeeeeeeeeeeeeeeee ettt ettt e et 71
6.3.2.1 Integer and Real OPErationNSiiiiiiiiiiiiie e 71
6.3.2.2 StrNG OPEIAtiONSuiiiiiiiiiiiie ettt e et e e e e st e e e e s et be e e e e s essntaeeaeessnsbaeeeeeaanraaaeaean 73

6.3.2.3 BOOICAN OPEIAtIONSciiiiiiiiiee et 74

6.3.3 COHBCLIONS ... ettt 75

6.3.3.1 COlleCtion HEIAIScoouiiiiieii et 76
6.3.3.2 Collections Of COIIECLIONS.ccuiiieiiiie e 77
6.3.4 COlECHION TYPES ... 77
6.3.5 Basic Collection OPerationS...............cuuweeeuuuueeaseeeeeeeeeiiieaa e aeeeesinesaanae e 78
6.3.5.1 General ColleCtion OPEratioNSc.uiiiiiiiiiiii et 78
6.3.5.2 BAQG OPEIAtIONS ...ttt e s 80
6.3.5.3 St OPEIAtIONSceiitiii ittt as 81
6.3.5.4 OrderedSet OPEratioNS.uiiiiii it 82
6.3.5.5 SEQUENCE OPEIALIONSeiiiiiieiitie ettt e et e e et e e seneeas 83
6.3.6 JTOIATONS......oeeeeeeeeeee e 85
LG I A VT o) = 87
LRI Vo) (= I o= 1 88
6.3.9 NAVIQALIONS ... 89
6.3.9.1 ARIIDULES ... s 89
6.3.9.2 Association ends and association Classes............ccoccuiiiiiiiiiiiiici 91
6.3.9.3 Class OPEIAtiONSeeeiuiiiiiiiie ittt ettt b e ae e e et e s abe e e sa b e e ebae e enne e e neneeas 93
6.4 CONSTRAINTS CONSTRUCTIONcceeuuecrirrmnsserrnmssssrrnmsssssrsnsssssssnnsssssnsnnsssssnnnsnnses 94
B.4.7T ClASSES ...ttt et 94
B.4. 1.1 INVAFIANTS ...ttt e e e et e e e e e s 94
6.4.1.2 DEfiNITIONSeiiieiie ettt 96
O Y 1] o] (= T 97
6.4.2.1 DEIVALIONSeeiieiite ettt e e e e e e e s 97
6.4.2.2 INItIALIZALIONS ..o 98
L @ o T= = 1[0 o 98
6.4.3.1 PreCoNditioNSocuiiiiiiiii s 99
6.4.3.2 BOAY Of OPEIAtIONSeiiiiiiiiiiiie ettt e e e et e e e s e s e e e e s s snsbaeeeeeeensaaeeaeas 99
6.4.3.3 POStCONAItIONS. ...t e 100
6.5 COMPLEX CONSTRUCTIONS ...ccuuuiirrianeirirrmnssserrmnssssrsnmsssssrsnsssssrsnnsssssennnssssnnnnnnns 101
(I = (=3 o L 101
6.5.2 COMMENES ... 102
6.5.3 MUIEIDIE CONEEXES ...ttt 102
B.5.4 If @XPIrESSIONS. ...ttt ettt 103
B.5.5 LEt ©XPIESSIONS. ...ttt ettt et 104
6.5.6 JTOFALE........oeeeeeeeeee e 104

6.5.7 @Pre KEYWOIT ...t a e e e 105

6.5.8 RESUIt KEYWOIT ... 106

6.5.9 OCIISNeW() OPeration................coooee e 106
6.5.10 USE OFf QUANITIOIS ...ttt 107

7 THE OCL 2.0 METAMODEL.........co e e 110
7.1 INTRODUCTIONuuuuunnnnnssnnsssssssnsssssssssssssssnsssssssssssssssssnsssnnssnnsnnnnsnnnsnnnsnnnnnnnnnnn 110
7.2 THE BASIC OCL AND ESSENTIAL OCLcuuuueuennnnnnnnnnnnnnnnnnnnnnnnnnnsennnnnnnennnnnes 110
7.3 DIAGRAMSccceiiisnssnssnnssnnnnnnnsnnnsnnnnnnnnnnnnnnn 111
F G T B N/ o= 1 PR 112
7.3.2 The top container @XPreSSIONuuueieeeeeeeeeiieeeae e e eeeeetiteas e e e e e aaeeaainnnas 115
7.3.3 Main expresSSion CONCEPL.........ccceeeeeeeeeeeee et eeetess e e e ae e 116
7.3.4 Feature call @XPreSSIONS..........ccuueeeeeeeee ettt e e eeesss e e e e e aaeeaainnaas 119
7.3.5 If @XPIESSIONS.cccee oottt ettt e e et rae e e e e e 121
7.3.6 LOE @XPIESSIONS.ccceeeeeeeee ettt e e e e e e e etasas e e e e e e e eeaaannas 122

T A A (=] - S 123
7.3.8 Collection and tuple literals................ueeeeeeeieeeiieeeee e 124

8 COMPILER BASICS ... e s s e e e 128
8.1 INTRODUCTIONuuuuunnnsnssnnssssssssssssssssssssssssssssssnssssssssssnnssnnssnnssnnnsnnnsnnnsnnnnnnnnnnn 128
8.2 FORMAL LANGUAGE THEORYoosssssssssssssssssssssssssssssssssnnssnnnsmnnsnnssnnnsnnsnnnnnnnn 128
8.2.1 Words and [anguages..............ccooo e 128
8.2.2 Operations on 1angQUagES.ccoeeeeieee i 130
8.2.2.1 UNION......ouitviieiect ettt ettt s et a bbbt na e a bbb ns 130

L I A 1] aTor- 1 (=] =1 i o] o WSO 130
8.2.2.3 KIBENE SN ...t e e e e e e e e e e e e e e e e be bt areeeeeas 131
8.2.2.4 KIEBENE PIUS ...ttt ettt e e e et e e e ettt ettt e et e e e e aaaaeeeeeeaeaaaaannneaebenrraeeeeeeeas 132
8.2.3 ReqQUIAIr @XPIreSSIONSc..cceeeeeeeeeee ettt e e e et 132
8.2.4 Grammars and autOMatONSccceeeeeeeeeeeeee et 133
8.3 THE COMPILATION PROCESS.......cuuussssssssssssssssssssssssssssssssssnssnnssmnnsnnssnnssnnsnnnnnnnns 136
8.3.1 Lexical @nalySiS..........ccooe oo 136
8.3.2 Syntax @nalysSiS............coooo oo 137
8.3.2.1 ST OF AST oottt ettt ettt sttt ss et ea b s et s e s s 138
8.3.3 Semantic @analysis...............cooooi i 139
8.3.4 Code generationcoooeeeieeiii i 139

8.4 COMPILER ARCHITECTUREccetteeemnssssssssrerrrrmnmnssssssssssmmsmnmnssssssssssmmmnsnnnnsnssnes 140

9 OCL TOOLS......coeeeiieerrrrrs s s 144

9.1 STATE OF THE ART ...uiiiicciiiiiicasssrenasssrsrmsssssrrmsssssesnmsssssrsnsssssrennsssssennnssnssnnnnnnns 144
L2 T © 1 0 I T I 145
9.2.1 UML-based Specification Environment (USE).................cccoiiiiiiiiiiiiie. 145
9.2.2 Dresden OCL2 TOOIKItccooeuueeeeeeeeeeeeee ettt 149

9. 2.3 MOVA PIOJECE ...ttt e e e e e e a e e e e aaaeaes 154
9.2.4 IBM OCL PAISEI ...ttt ettt 159
9.3 SUMMARY ...t rrrcsr s s s s s s s e e em s s e e ma s s e e e nmn e e e nnn e e nnnmnnns 163
10 DECISION MAKING PROCESS.........coc o 166
10.1 INTRODUCTIONiiieeuriirrenansssrnrmsssssrrmnsssssennsssssrnnnssssersmsssssrsnnsssssennssssssnnnnsnsens 166
10.2 MULTI-CRITERIA DECISION ANALYSIS (MCDA)cooeeeeeeeceeere e e reere s eeeeene 166
10.2.1 A decCisSioNal ProbIEMcoeeeeeeeeeeeee ettt a e eeaes 167
10.2.2 Alternatives t0 CROOSEccuueeeeeieeeeeeeeeee et 167
10.2.2.1 USE TOON...uiueveieeeee ettt ettt ettt ettt as et e et e seseesanenens 168
10.2.2.2 Dresden OCL2 TOOIKItvieiieeiiiiiee et e e e e e e et e e e e et e e e e e s sntbaeeeeseennnes 168
10.2.2.3 MOVA PrOJECEecueveeetieeeeeeeeee ettt ettt ettt ee et e s eeee s eaene 169
10.2.2.4 IBM OCL PAISE.........c.coieeeeeeeeeeeeeeeeeeeeeetee et ee ettt es et ee et en et sesnee e 169
10.2.3 Structuring the problem: Value Tree.........c.cccccvvevviiiiiiiiiiiiiiiiiiiiiii 170
10.2.4 Attribute valuation: Smart methodccooovvieeieiriiiiiiieieeeieeeeeeen 173
L0 11U o T PRSP 174
L0 €] o 1o PRSP 175
L0 R I €] (o 1U o T PRSPPI 176
L0 A € o 1N o T PRSP 177
T0.2.4.5 GrOUP Bttt h et eh bt e et s bt e h e e et nb et e et 177
L0 G € o 1N o TN PRSPPI 177
L0 A €1 o 1V o T APPSR 179
10.2.4.8 FINaAl VAlUE trE@ttt et et e e e e e e e e e e e e e e e e e s e s e nnnnenes 179
10.2.5 Evaluation of alternatives.................oeeeeeeueieeeeieieeeieeeeeeieeeeeeeee e 180
10.2.5.1 USE 00].....uiueieieieeeeeetee ettt ettt ettt ae et n et e s s s enens 181
10.2.5.2 Dresden OCL2 TOOIKItuviiiiiiiiiiiiee et e ettt e e e e et e e e e e st e e e e e s sntbaeeeesennnnes 182
10.2.5.3 MOVA PrOJECEoeeeeetieeeeeeeeeee ettt ettt en et e s seee s s 183
10.2.5.4 IBM OCL PAISE........c.coieeeeeeeeeeeeeeeeeeeeeetee et e st es et ee st ee s e sees s 184
10.2.6 NOIrMaAliZAtioN............c.cccovuueeeeeeeeeeeeeee ettt 185
T0.2.6.1 UML VEISIONuuniiiieieeeeeee ettt e e ettt e e e e e e e e e e e e e e eeeeeeeeeeeasssa e eeeas 186
10.2.6.2 UML model interchange formatcoooiiiiiiiiiiie e 186

OB T T O 1O IR Y 1 oY o [187

10.2.6.4 Metamodel iNStantiationoouuiiiiiiii e 187

10.2.6.5 Syntax and SEMEANTICSc.uuiiiiiiiiiie et 188
10.2.6.6 TYPE CONFOMMANCEveiieiiiieeiie ettt ettt et e e sttt e b e et e e 188
10.2.6.7 OCL execution or interpretation ... 188
10.2.6.8 Quality Of SOUICE COEc.uviiiiiiiiiiiie ettt et 189
10.2.6.9 USEI MANUAL......coiiiiiiiii ittt e e e e e e e et e e e eeneee 189
10.2.6.10 TechniCal ManUAL..........cc.uiiiiiii e 190
10.2.6.11 EXPEIIENCEA USEIS ...coiiiiiiiiiee ettt ettt et e e e e e e e e et e e e e neneee 190
10.2.6.12 INEXPEMIENCEA USEISuueiiiiiieiiitiie ettt e et e e e e e s et e e e e et e e e e e s eeneees 190
10.2.7 Aggregation Of ValUues...............ccooevveeviiiiiiiiiiiiiiiiiiiiiiiiiiii 191
0T Ay U 1] = (o T | PR R 192
10.2.7.2 Dresden OCL2 TOOIKITcc.uiiiiiiieiiee ettt e 193
10.2.7.3 MOVA PIOJECE ...ttt ettt sttt ettt e et e saeeenbeesreeenbeeneeas 194
10.2.7.4 IBM OCL PaAISEr......uieiueiiiieiiitetee st siee ettt e ate et e st e steesnbeesteeeseesaeeanteesseeanteesneeenseesrnas 195
10.2.8 Final deCISION..........cooovveeiieiiiiiiiiiiiiiiieeieeeeeeee e 196
10.3 SUMMARY ...oiiiiieiimmnsesasssrrrnrnnmssssssasssrrrnrnnmnssssssssssmmmsnnmmsssssssssssmmnsnnnnssssssssnnnnnns 197
11 THE VISITOR PATTERN ... 200
11.1 INTRODUCTIONiiiiieueciirneasssssnrmsssserrmssssssennsssssennnssssessmsssssrsnnsssssennnsssssnnnnsnsens 200
11.2 A COMMON PROBLEMcccccuuiiirrmnsserrmnssssrennsssssrnnnssssersmsssssrsnnsssssennssssssnnnnsasens 200
11.3 DOUBLE DISPATCH ..cceeuuiiiiicessirrrassssrrmsssssrennsssssennnssssersmsssssnsnnsssssennssssssnnnnsnsens 203
11.4 VISITOR PATTERN STRUCTUREccuuiiirimensirrrnnasssrnnnssssersmsssssrsmnsssssennssssssnnnssasens 206
11.5 THE ROUTER CONFIGURATOR EXAMPLEccccuuiiimmeenesirrrmnssserrmnsssssennssssssnnnssnsens 209
12 DEVELOPMENT INFRASTRUCTURE..........c.iirreecieerreeenns 216
12.1 INTRODUCTIONuiiiieusiirreassssrnrmsssserrmnsssssennsssssennnssssessasssssrsnnsssssennssssssnnnnsnsens 216
12.2 SABLECCooooeeccirr e s rrr s nmesss s s s s e e e s s mm s s s s s e e e e rmnm s na s e e e e e e rnmm s nanennnann 217
12.2.7 INErOAUCHION ... 217
12.2.2 Steps to build @ COMPIIETcceeeeeeeeeee et 217
12.2.3 SPECIfiCAtiION File........cccoeeeeeeee ettt eaaaaeaes 219
12.2.3.1 Package declarationcoooiiiiiiiiie e 220
T2.2.3.2 HEIPEIS. ...ttt ettt e e e e e et e e et e e e e 221
T2.2.3.3 TOKENS ..ttt ettt ettt e e e ettt e e s et e e e e e e e e 222
12.2.3.4 1gN0FEd TOKENSottt e e e e e et e e e eneeee 223
12.2.3.5 PrOAUCHIONScciieiteee ettt e et e e e e et e e e e 223
12.2.4 Generated infraStruCture.cooouveeiiieiiiiiiiiiiiiiiiiiiiiiiieee 225
12.2.4.1 GENEIAtiON PrOCESS. ... utiieiitiieiiie ettt ettt et e e ettt e st e s et e e et et e sbe e e e bt e e e snteeenanee 226

12.2.4.2 Visitor Pattern adapted to SableCC..........cocciiiiiiiiiii e 231

12.2.4.3 AST WaAIKEI CIASSES......cuvuueiiee et e e e e e e e et e e e e e e e e e e e raaaa e eeeas 233

12.2.4.4 Compiler compilation @nd USAEccuuiiiiiiiiiiiiiiiie e 235

12.3 OCL2.0 PARSER SUBSYSTEMccciuiirrrrrmmmssssssssssmmmmrmmmsssssssssssmmnsmmmnssssssssssnnnes 236
12.3. 7 INEOAUCTION ... 236
T2.3.2 SHUCKUI® ... 237
12.3.3 Development of the OCL2.0 Parser SubSysStem.............c.ccccccoevvveennnei.. 238
(P ST = I 0 O g 240
12.4.7 INEOAUCTION ... 240
12.4.2 Why extend S@bleC Coee oottt a e aaeaes 241
12.4.3 SableCC-Ext ChAnges...........cooueweeeiieeiiiiiiiiiiiiiiiiiieieeeeeeeee e 243
12.4.4 New Extended Visitor ArchiteCtureccccoovoeiieeiiieiiiecceeeeee 244
12.4.5 Attribute EValutorcccuvmiiiiiiiieeeeee e 248
12.5 INTEGRATED DEVELOPMENT ENVIRONMENTSccecuuiimrrmnssserrmnssssmenmnsssssnnnssasens 251
12.5. 7 INEOAUCTION ... 251
T2.5.2 ECHIDSE ..ottt ettt e et n e e e e aaae 251
T12.5.3 NEIDEANS ... 252
13 OCL 2.0 GRAMMAR.........oo e 256
13.1 INTRODUCTIONuiiiieeueirirrmasssssnrmsssssrrmssssssennsssssennnssssessmsssssrsnnsssssennssssssnnnnsnsens 256
13.2 ABOUT GRAMMARS ...ccouuiirmiannsirrrmsssserrmsssssmenmssssssnnnssssersasssssssnnsssssennssssssnnnssssens 256
13.3 OCL 2.0 GRAMMAR DESCRIPTIONccccuuuierrmmnsssrrnnnssssmmmmssssersnnsssssennssssssnnnssasens 257
13.3.1 ConStraint SIrUCHUIES............cccuuiiiiiieee e 257
13.3.1.1 Operation SIGNALUIEcc.uviiiieiiiiii et e e e e e e e st e e e e e s nntbaeeeesennnnees 259
13.3.1.2 Invariants and defiNitioNScocuiiiiiiiiii e 261
13.3.1.3 Initializations and derivations.............cccccoiiiiiiiii 263
13.3.1.4 Preconditions, postconditions and body eXpressionsccuvveviiiiiieeie e 264
13.3.2 Names and identifiers...............cccooeeeiiiiiciieee e 265
13.3.3 OCL EXPIrOSSIONS....ccceeeeeeeeeeee ettt e ettt sa e e e e e e e e eeataaaaeenaanenes 266
13.3.3.1 PriNCipal @XPIreSSIONSuuutiiiiiiiiiiiiitiiteeee e e e e e e e e e sese s et ee et eeeeeeeaaaaaaaaeaaeaesssasaaannnnsne 266
13.3.3.2 LOGiCal @XPreSSIONSeiiiiiiiiiiiiie et 268
13.3.3.3 Relational @XPreSSIONS.........ciiiiiiiiiiiie et 269
13.3.3.4 AddItiVE EXPIrESSIONS ..ottt 270
13.3.3.5 MUltipliCatiVe EXPreSSIONSuueiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e s e enenenes 270
13.3.3.6 UNAIY ©XPrESSIONSceeiiiiitiieeieeiiteee e e e ettt e e e ettt e e e et e e e et e e e et e e e e e et e e e e e e eenenes 271
13.3.4 Property Call EXPre@SSIONScccveeeeieeeeeee e e e eeeetasaaeaaaaaeaes 273

13.3.4.1 QUANTIEIS ...ttt et sttt st 275

13.3.5 ArTOW EXPIrOSSIONSccceeeeeeeee ettt ettt ta e e e e e e e etaaa e e e e e aeeees 276

13.3.6 TiME@ ©XPIESSIONS. ...ccceeeeeeeeee ettt e e et sa e e e e e e e e eeatasaneanaaneees 277
13.3.7 VArT@DIES........cccooieeeeeee e 278
13.3. 7.1 lterate variables ..o 278
13.3.7.2 Iterator variablescoooiiiiii 279
13.3.7.3 Initialized variables...............ccooiiiiiiii 280
13.3.8 PArametersooccuuuieeieee e 281
13.3.8.1 ACtUAI PAramMETErSooiiiiiiiii e 281
13.3.8.2 FOrmMal PArameEters........ooiuuiiiiiiii e 282

R TR A I/ o= 1 284
13.3.9.1 SIMPIE EYPES ...ttt sttt 285
13.3.9.2 COllECHON TYPES. ...ttt ettt et e e st s e e b e e nnee e 285
13.3.9.3 TUPIE LYPES .ottt s e e e 286
13.3.70 Literal @XPreSSIONS.......c..uuuueeseeeeeeeeeee e eeees e e e e e e eeatsaaaeeeaaeenes 287
13.3.10.1 Primitive TIterals ..o 288
13.3.10.2 TUPIE HEIAIS. ... e e e 290
13.3.10.3 ColleCtion [ItEralS.ccouiiiiieiie it 291

14 DEVELOPMENT PROCESS............ccco e 296
14.1 AN ITERATIVE APPROACH ...cc..ciiiimeiiirrcansisrenmssssssnnsssssrsmsssssrsmnsssssennnsssssnnnssssens 296
14.2 FIRST STEPS ..covveecuuuuecssrsrrrrrnnmsssssssssserrnrnnmnssssssssssmmmsnnmmsssssssssssmmnsnnnnssssssssnnnnnns 297
14.2.1 Adapting S@bI@CC-EXE..........coeeeeeeieeeeeeee et eeeaaaa e e e aaeaes 297
14.2.2 Adapting the Parser SUbSYSIEMcoooeevveeiiiiiiiiiiiiiiiiiiiiiie 299
L I [To Lo = o1 (o] oY PRSP 299
14.2.2.2 AST GENEIAION. ...ttt ettt ettt ee e e e 300
T4.2.2.3 TYPE CRECKET ...ttt et e e e e aeaaaaaeeeeeeaeaaaannnnnnnnes 301

14.3 A NEW ITERATION: SWITCH=CASEcctcuuiirrmmnnisrrrnnssssrrrmssssersmnsssssennssssssnnnssssens 301
T4.3.7T A NEW PIrOPOSAI ..o oottt ettt e e e e et e e e e e aaeeaes 302
14.3.2 Grammar CRANGESccooeeeeeeieeiiiiiiieiiiiieeeeeeee e 304
14.3.3 Generated ClaSSes............ccouiuuiiiiiiii e 306
14.3.4 Generated traversal...............cccciiiiiiieeiceeee e 308
14.3.5 Completing the new methodsoooovviiiiiiiiiiiiiiiiiii 310
14.3.6 Testing the new statement................ooovveeviiiiiiiiiiiiiiiiiiiiii 312
15 THE OCL 2.0 PARSER.......co e 316
15.1 INTRODUCTIONuiiiiieeiiiirrcasssssnrmsssserrmnssssrennsssssennnssssersmsssssrsnnsssssennnsssssnnnnsnsens 316

15.2 STRUCTURE ...cceviiieiiiiiisnsis s s s s 317

15.2.1 Package @StQeNoooueeeeiiiiiiiiiiiiiiieeieeeeeeeeeee e 317

15.2.1.1 LAHrGMCASIGENEIratOrJAVAeeiiieiii ettt 318
15.2.1.2 NOAEFACIOINY JAVAeeiiiiiiiie e e 318
15.2. 1.3 HEMEAGE JAVA...ccc ittt 318
15.2.1.4 ENVIFONMENT....coiiiitiiiie ettt e e e e e e e e e et e e e e e e eeneees 319
15.2.2 Package astlibcoooeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieee 320
15.2.3 Package SablecCC.............ooooeeeeeeeeiiiiiiiiiiiiiiiiiiiiiie 321
15.2.3.1 PACKAGE @NAIYSISeeiiiiiiiiiii ettt 321
15.2.3.2 PACKAGE IEXEI ...ttt e e e e e 322
15.2.3.3 PACKAGE NOTE ...ttt et e e e e e e e e e e e e 322
15.2.3.4 PACKAGE PAISEIeeeiieiiiiiitiee ettt e et ettt e e e et e e e s et e e e e et e e e e e eeneees 323
15.2.4 Package Uloooooveeeveiiiiiiiiiiiiiiiiiiieiieeeee e 323
ST S R U 111V 1Y TR 323
15.2.4.2 RefleCtiVEVISItOr JAVA.cc.eeiiiii e e e et e e e e e ennees 324
15.2.4.3 TYPECNECK.JAVA ...ttt 324
15.2.5 Package OCHIbraryiweiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 325
15.2.6 Package examplescooooweeeiviiiiiiiiiiiiiiiiiiiiiiiieiiee e 326
15.3 HOW TO USE THE PARSER.......ciittmusiirrmnssasrrnnssssrnnnssssersmsssssmsnnsssssennssssssnnnssasens 326
15.3.1 Usage example..............ooooeeeemiieiiiiiiiiiiiiiiiiiiiiiiieeeee e 326
15.3.1.1 How to obtain @an XMI ilccocuuiiiiiiiie e 327
15.3.1.2 Creating @ NEW PrOJECT.......uuiiiieiiiiiiiie et e e e et e e e et e e e et e e e e e sntre e e e s s sntbaeeaeeennnnees 327
15.3.1.3 Creating the components of OUr Parserccccoiiiiiiiiii e 328
15.3.1.4 Processing OCL @XPreSSIONS.coiuuiiiiiiieiiiieiiiee sttt stee e sieee et e st e e snbee e s 329
15.3.1.5 Store results into an XMI iloooiiiiiii e 330
15.3.2 Error fe@dbackoooeeeeeeieiiiiiiiiiiiiiiiiiiiiiiieeeee 330
(RS TR A (o] o - T G 331
15.3.4 FaAcade OPEratiONsS............uuuueeeeeeeeeeeeeee ettt e e et aa e e e aaeeaes 333
15.4 CONVERSION PROCESScccuuuiiirrmnssierrmnssssmrnmsssssmnnnssssemmasssssmsnnsssssennssssssnnnssssens 333
15.4.1 Constraint CONtAINErS.oooeeveeiiiiiiiiiiiiiiiiiiiiiiieie e 333
15.4.1.1 Invariants and definitionsooiiiiiiiii e 333
15.4.1.2 Initializations and derivationScoiiiiiiiii e 336
15.4.1.3 Preconditions, postconditions and body of operationsccc.ccceviiiiiiiiinieeiccee 338
RS R A Y/ oT= 1 340
15.4.2.1 DaAl@TYPES. ..ttt ettt e e e a e 340
LR A A 7o]| [=Ter (1] o 1Y/ o 1= TSP TPR 341
T5.4.2.3 TUPIETYPE ..ttt ettt e et e e e et e e e e e et e e e e eneee 341

15.4.3 Literal @XPreSSIONS.......cceeeeeeeeeeee et e ettt te e e e e e e e et aaeenaaneaes 343

15.4.3.1 NUMEHIC IIEEIAIScovneieiieee et e e e e e e e e e et e e e eaaeeeees 343

15.4.3.2 SHrING HEEIAIS ...eeeeeeiii ettt e 344
15.4.3.3 BOOIEAN [ItEralS ... e e e e e e e e e e e e 344
15.4.3.4 ENUMEration [HEalSuuiiiiiiiiiiieieieiee et e e e e e e e e e e e e e s nenenes 345
15.4.3.5 COlIECtioN THEIAIS.......coiiiiieiiiiii e e e e e e e st e e e e eennnes 346
15.4.3.6 TUPIE TILEIAIS. ...coci i e e 349
15.4.4 Let @XPIESSIONS.cceeeeeeeeeeeee ettt e ettt se e e e e e e ettt aaeeeaaaeaes 351
T5.4.5 [F @XPIrOSSIONS. ... eeeeeeeee ettt ettt s e e e e e e et a e e e e aaaeaes 352
15.4.6 IteratOr @XPreSSIONScceeveeeeeee e et eeetese e e e e e e et aaeaeaaneaes 354
15.4.7 Iterat@ @XPreSSIONScoeeveeeeeee ettt e e e e et aa e e e e aaeees 355
15.4.8 Property call @XPreSSIONS..........cceuveeeeieeeeee e eeeeeeeeea e e eeaeaaeaaaaaeans 356
15.4.9 Association class call @XPreSSIONS...........ccceeeueeeeeiiiiieeeeeeeeeeiiiieeaaeaaaaeeans 357
15.4.10 Operation call @XPreSSIONScoouuuueeeeeeeeeeeeiieeeeee e eeeeeiiasaaeaaaaaeans 358
15.5 INVERSE CONVERSIONcceiiiiiiieiirerrrssissnnns 360
15.6 DELETE CONSTRAINTS ..cciiiiiiiiiriirrsrsssissnnes 362
15.7 XMICONVERTER AND OUR OCL PROCESSOR.......ccisssrssssssssssssssssssssssssssssssssssnes 364
16 CASE STUDY:DBLP ... e e e 368
16.1 INTRODUCTIONcceiiieceiecieseesseessnsssssssnsssssssnssnnns 368
16.2 THE DBLP SYSTEM....ccciiiiiiiiiiiiieeeissssssss s s s s ssssssssssssssssnsssssssssssssssssssssssssnsssssssnes 368
16.3 CONVERSION EXAMPLES......ccettriiieriresisesisssnns 370
16.3.1 Identification CONSIraiNtSccovveeeiieeeeee et aaea 370
16.3.2 Integrity CONSIraiNtS.oooveeveeeiiiiiiiiiiiiiiiiiiiiieeee e 372
T16.3.3 DEIIVALION TUIES........cceeeeeeeeeee ettt ettt s e e e e e e et aaeanaaeeees 375
16.3.4 QUErY SPECIFICALIONcceveeeveeeeeeeieeiiiiiiieiieeieeeeeeei et 378
17 FUTURE WORK.......c st srrmss s e s s s e r e e e 384
17.1 WAYS TO IMPROVE THE PARSERcocviiiiiiiiisniisssssssssssssssssssssssssssssssssssssnsssnsssnes 384
17.1.1 Complete some OCL CONSIIUCHONScccceeeeeeeeeieieeeeeeeeeeeeaaeaeaaaea 384
17.1.2 Type conformance extended.c..ccccccvuevveeiiiiiiiiiiiiiiiiiiiiiiiie 385
17.1.3 OCL interpretationeeee oot esaaa e e aaeaes 386
17. 1.4 A Ul @NVIFONMENL ...ttt e e e e e aaeeees 387
18 PROJECT PLAN ... e e e e 390
18.1 INTRODUCTION ...ccceieieeeeseeeeessssesssansssssssnsssnsssnssnnns 390
18.2 ESTIMATED PLAN....cittiieeieeeereseerersssnss 391

18.3 REAL PLAN ..o s 393

19 COST ... 396

19.7 INTRODUGCTION ..euuteuueeusseusesassnsssnsssnssmsssmsssmsssmsssnsssnsssnsssnssenssenssanssanssenssenssnnssen 396
19.2 WORK DEDICATION 1euuceuueeuseeussnssnsssnsssmssmsssmsssnsssnsssnsssnsssnssenssenssanssanssenssenssnnssen 396
19.3 ECONONMIC REPORT .uceuuieueeuemssmsssnsssnssasssmsssnsssnsssnsssnsssnssenssenssanssanssenssenssennsen 398
20 CONCLUSIONSoiiieriereri s e raressaras s sasassasassasassnsasnnsns 402
20.1 ABOUT THE FINAL CAREER PROUJUECT 1euuteuureuureusrensresssnnssnnssssssssssnsssnnssnnssnnssnnssnns 402
20.2 ABOUT CONCEPTUAL MODELING ...cuuteuueeussenssenssnnssnsssnnssnnssnsssssssnsssnsssnnssnnssnnssnns 402
20.3 ABOUT MODELING LANGUAGES.....cuiteureureurensrnnssnnssnnssnsssssssssssnsssmsssnsssnnssnnssnns 403
20.4 ABOUT MODELING TOOLS .euuteuureuurensrenssnnssnsssesssesssnsssnsssnsssssssssssnsssnnssnsssnnssnnssnns 403
20.5 ABOUT THE PROCESSOR OF OCL 2.0 EXPRESSIONS ...cuceuvtuirermnresresresrensensensens 404
20.6 ABOUT IMPROVEMENTS AND EXTENSIONSceuuieurearensrmnrnssrnnssnssrmnssnnssnnssnnssnns 405
20.7 ABOUT THE ACQUIRED EXPERIENCE ..c.ueeuureusresssesssssssnsssnnssnsssnsssnsssnsssnnssnnssnnssnns 405
A GLOS S ARY .eieiiiiiirrierre s s s rasessasassarassssasassasassnsassnsnns 408
B OCL 2.0 GRAMMAR ... rreseressnsasessasassarassnsasassasanen 414
C BIBLIOGRAPHY ..o riesesesase s sasassasassasassssassssasassasanes 426
[0 T {1 | 0 1 =, 430

Definitions

Definition 2.1: Conceptual SCHEMA..........cccuieiiiiiiieiieeie et eee st eee st er e eteeebeeteessbeenseessseensnesnseenses 12
Definition 3.1: MetaSCREMA.......cccuiieiiiiie ittt ettt et e st e et essbeeteessbeeseessseenseesnseenses 24
Definition 3.2: Meta-metasChEmMaccueeiiieiiieiiieiieeie ettt eiee sttt e etaeesbeeteessbeenseessseensnesnseenses 33
Definition 6.1: Invariant CONtEXt NOLALIONc.eevvieruieriiieriieeieesiesteerieeeteesteeeteestaeebeesseessreenseessseensnesssesnses 94
Definition 6.2: Definition CONtEXt NOTATIONSccuvierureeiieiieeieerieesteeieesteestteeteestaeebeesseessseenseessseensnesssesnses 96
Definition 6.3: Derivation CONtEXt NOTATIONeiuviertieeiieriieeieeteesteeteeeteesteesteestaeebeenseessseenseessseesseesssesnses 97
Definition 6.4: Initialization CONtEXt NOTATIONeevvieeiieriieeieertieeteerite st et e eeeesteeebeesteesebeesaeesebeenseessseenses 98
Definition 6.5: Precondition CONtEXt NOTATIONccueeevieriierieeriieiieeite st esteeeteesieeebeenseesereenaeessseensnesssesnses 99
Definition 6.6: Body expression CONtEXt NOtAtIONccuvieviereieriiierieeiieneeesieeseeereesereereesreeseessneesseenseeans 100
Definition 6.7: Postcondition CONtEXt NOLAtIONcc.eeruvieriierieeiierreeiteesteesieesteeereesereebeesreeseessneeseenseeans 100
Definition 6.8: Let NOLAtION ...ccuviiiiieeieiiieeie ettt ettt ete et e s teebeestaeebeessaessseesseesnseesssesnseessseanseenseeans 104
Definition 6.9: TEerate NOTALIONeccviiiierieeitiesieeieeste et e ete et e st e e teestaeebeesteesnseesaeesnseesssesnseessseenseenseeans 105
DefiNtion 8.1: WOT.....ccuviiiieiieeiieie ettt ettt et e st e et e esbaeebeesseesnseenaeesnseesssasnseessseenseenseeans 129
Definition 8.2: LANGUAZEcevvieiierieeiieeie et e sttt eieestteeteestteebeesebeebeessaeesseessaesnseesseessseesssesnseessseenseenseenns 129
Definition 8.3: Formal definition Of UNIOMociiiiiiiriiiiieie ettt ettt ae e ens 130
Definition 8.4: Exponential notation of repeated concatenation and Kleene star definition..................... 131
Definition 8.5: Formal notation of Kleene plus Operation..........cccceeceeriierieenieiniienieeiieeneeeieesveesveeniee s 132
Definition 8.6: Rules to construct regular €XPreSSIONSecuueeevierreerreerieerieerreereesresseesresnseessseesseesseeans 133
Definition 8.7: Grammar COMPONENLSeecueerieerieerireeteenreeteesreesseesseerseesseessseesseesseessessseessseessessseeans 134
DefiNItion 8.8: TOKEM....cc.uiiiiiiiiiiieeie ettt ettt ettt et eette et eseteeabeestaeeseessaesnseesssesnseesssaenseessseanseenseeans 137
Definition 11.1: Double dispatch MEChaNISIMc.coviiiiiieiieiiiecieeieere et ere e 203
Definition 11.2: VISTEOT PAtLEIN...c..eeiieiiierieeitieiieeieeriteeteeetteeteesreebeestaeebeesseessseesseessseessseenseessseenseenseeans 206
Definition 12.1: Package declaration...........cccveiiieiiieriiiiiieiie sttt ettt et eseeesteesaeesbeeseeesbeeseaeenseensneans 221
Definition 12.2: ComMPIeX CRATACIET SELSveeivieiuiieiieriieeiierieette e eteeste et eseee et eseresbeesereeseessaeeseenseeans 222
Definition 12.3: Naming alternatives and elements inside a production rule...........ccecverveeiienveeneennnnns 224
Definition 13.1: Grammar rules for CONStraint StrUCTUIES.......cccuterreeriieriierieerieeieenreeteesreereesreesseesseeens 258
Definition 13.2: Grammar rules for Operation SIZNATUIES.........c.eeeverrreerieereerieeieenreereeseeesseesreesseesseenns 260
Definition 13.3: Grammar rules for invariants and definitionscccceeveerciiiiienieeiierieeee e 261
Definition 13.4: Grammar rules for initializations and derivations...........cccceecveerienieeiieniieeceenreeseeseeens 263
Definition 13.5: Grammar rules for operation CONSIrAINTS.cecvveerrierirerierieeriienreeteesreereesreesseeneeeens 264
Definition 13.6: Grammar rules for names and 1dentifiers.........ccocvevieriiierieniiiiiierie e 265
Definition 13.7: Grammar rules for principal €XPIeSSIONSc.eeeveerrieriiereerieerieenreereesreesseesreesseeseenns 266
Definition 13.8: Grammar rules for 10gical €XPreSSIONScccverveeriieriieriienieeiienreeiee e ereesreeveeneeeens 268
Definition 13.9: Grammar rules for relational XPreSSIONSc.veeveeciierieereerieerienreetee e eveesreesseeseeeens 269
Definition 13.10: Grammar rules for additive eXPreSSIONScccveeeveeriierieerieiriienreeieesreereesveesveenieeens 270
Definition 13.11: Grammar rules for multiplicative eXpreSSIONScccueerueerieerieerreeiieenieeireesveeseeeneeens 271
Definition 13.12: Grammar rules for Unary eXPreSSIOnS ...ee.ueiierreeieerieerieenieeieesresreesseesseesaeesseesseeens 272
Definition 13.13: Grammar rules for property call €XPreSSIONScvevviereerieerienreerieeneeeereesveerseeneeeens 274
Definition 13.14: Grammar rules for qUAlITIErS.........cccuviiirriiiiieiieeeere e e 275
Definition 13.15: Grammar rules fOr arrOW eXPIeSSIONSeecvierreerteeriueerieerieeteesreereesreenseessreesseesseeans 276
Definition 13.16: Grammar rules for time EXPreSSIONScc.eervierveeriierieerieerieeieesreeteesreeeseesneesseesseeens 277
Definition 13.17: Grammar rule for iterate Variablescccceecierieeiiieiiieiierie e eae e 278
Definition 13.18: Grammar rule for iterator variables..........cceecierieeiiieniieiierie et eve e 279
Definition 13.19: Grammar rules for initialized variables............ccceevieriiieiieniiiiiiere e 280
Definition 13.20: Grammar rules for actual parameters...........cceevcveeeierieerienieeienie et seeereesreeeeeneeeens 281
Definition 13.21: Grammar rules for formal parameters............cccveeeuieiiierieniiieiierie e 283
Definition 13.22: Grammar 1ules fOr tYPeS.....ueiiiiriierieiiiieeie et ete ettt ste et e e ebeesreebeessaeeseenseeans 284
Definition 13.23: Grammar rule for SIMPIE tYPEScevvvieriierieiiieiieeiterie ettt sre et sreereesaeereeneaeens 285
Definition 13.24: Grammar rule for COIIECtION tYPESecvveerureriiieriieiieiie ettt sre et e e ereesveeveeneee e 286
Definition 13.25: Grammar rule for tUPIE LYPES ..eeveeruiiiiierieiiiecie ettt ettt et reebeeseaeebeeneeeens 286

Definition 13.26: Grammar rule for literal @XpreSSions........ceecierveerieeiiieriienieeieeseeeree e ereesaeeaeeseeeens 287

Definition 13.27: Grammar rules for primitive leTalsc.ccccverieeiieiiieriierie e 289

Definition 13.28: Grammar rules for tuple TIteralsccevvereiieriieiieiiceiere e 290
Definition 13.29: Grammar rules for collection literalscccoceeieririiiniieiinieninec e 292
Definition 14.1: Switch-case proposed StAtEMENTccveerreriiierieeitiesieerieereeeieeneeebeesreereessreeseeneeeens 302
Definition 14.2: Changes made to OCL 2.0 grammar to support switch-case statement..............cccce....... 306
Definition 14.3: Generated methods inside LAttrEvalAdapter.java class.........cooceveveeviieriieeceenieenieeneens 310
Definition 14.4: Methods to control the new switch-case statement behaviour, which are placed inside

LAttrGMCAStGENETAtOr.JAVA CLASS ...vevuvieriieeiieiiiieiieniieeieeeteettesteeteesiaeeaeesseessseesseesnseesssesnseesssesnseenseeans 311
Definition 15.1: XMI representation for an invariant context CONStruCtioncoccevereenerrienenienennens 335
Definition 15.2: XMI representation for an initialization context constructionceccevevveereruerennens 338
Definition 15.3: XMI representation for a precondition context CONStUCHIONccueervireeniereenerienennens 339
Definition 15.4: XMI representation for datatypes of Dasic tyPeS.....ceevvierieeriiirierieeiiienieeeenreeieenieeens 340
Definition 15.5: XMI representation for a Bag collection tyPe........cccvevvieviieriiiiiienieeiiereeeeesve e 341
Definition 15.6: XMI representation for @ tUPIE TYPEcveeeveeiiierieeiiieiie et ereesre et sre e seveeve e ens 342
Definition 15.7: XMI representation for NUMETic IIteralS.........ccverveeriieriieriieniiiiierie e 343
Definition 15.8: XMI representation for String literal..........cccccverieeiiiiiiienieicee e 344
Definition 15.9: XMI representation for Boolean literalccoocveeviieiiieiiiiniiiiienie e 345
Definition 15.10: XMI representation for an enumeration literal...........c.ecceeviiiiieniieiiiieniiecierie e 346
Definition 15.11: XMI representation for a Bag collection literalcccevvvievienieriieniieeienieeieeniens 348
Definition 15.12: XMI representation for a tuple literal...........ccevveeeiieiiieiieniiiiece e 350
Definition 15.13: XMI representation for a let €XPreSSIONcuverveerieeriieriienieeiieenreeieesreereesreesseesseeens 352
Definition 15.14: XMI representation for an if @XPreSSionee.ieeeeeceerieereenieeieeniesiee e ereesneesveeseeeens 353
Definition 15.15: XMI representation for an iterator €XPreSSIONccvvierveerveerieereeerieerreeireesveesseeneeans 354
Definition 15.16: XMI representation for an iterate eXPreSSION......ecieruiereereeereerreerieesreesreesveesseeseeans 355
Definition 15.17: XMI representation for a property call eXpresSioncceeeveereerieerienieeieeneeenieeneeens 357
Definition 15.18: XMI representation for an association class call eXpressionc.ccoccevevveercnienennns 358
Definition 15.19: XMI representation for an operation call eXpresSionecveeveerveerieeriveecreenveerieeneenns 360

Example 2.1: DerivVation TULE.........ceccuiiiiieiiieitieiiieriee et eieeeteeiee e eteesebeeaeessaeetaeenbeenseesnseenseessseenseesnsesnses 17
Example 4.1: Overall structure of @ XIMI flle........ccviriiiiiiiiiiieiie et 41
Example 4.2: XMI representation of an UML Class........ccueecueeiieiiienieniieeeeie ettt eae s 43
Example 4.3: XMI representation of UML model shown at Figure 4.1........ccccoeviveviienieiiieneeniieeeeeeene 44
Example 5.1: Conversion from Poseidon For UML to Eina GMC formatccccceevverieeneeniieneeeeeenne 56
Example 5.2: Java program that instantiates the conceptual schema found at Figure 5.3c.cccveeneenne. 60
Example 5.3: XMI file relative to Figure 5.3 modelcoocviviiiiiieiieiiieieee e 64
EXAMPIE 6. 12 INEEZEIS ..eevviiniieeiiieiieeie ettt ettt et e e et e s e et e s eteesbeesabeenaeeesseestaeensaenseessseenseesnseenseesnsennses 69
EXAMPIE 6.2: REAIS ..cuviiiiiiiieciie ettt ettt ettt et st e et e st e eaeesnb e e taeenbeenseesnbeeseeenbeesaeenseenses 70
EXAMPIE 6.3: SIINESeeiuiieiieeiieeiieeteeite st et te st et e sttt et esaeesteeseseesseessseenseessseessaesnsaenseesnseenseessseenseesnseenses 70
Example 6.4: BOOICAN VAIUESc.eeeiiiiiiiiiieiieiii ettt sttt st tee st e et e st e etaeeabeeseesnbaenseessseensnesnseenses 71
Example 6.5: COlleCtion HEETALScc.eecuieiiieriieiiieiieeie et etee st eee sttt e et e eteeenbeeteessbeeseesnseesnesnsesnses 76
Example 6.6: Collections Of COIECHIONSeecuieiirieriieeiieiie et eiee st eee ettt e et e eieeebeeeeessbeenaeesebeesaesnseenees 77
Example 6.7: How to define a COllECtion tYPe.......ccueeeiieriieeiieiieiieeiee ettt ettt sveesaeesebeessneenae s 78
Example 6.8: Tterators NOAtION.ecueeitieiieeitieiteetee et eiee et eteeste e teesebeeaeessaeestaeenseenseesnsaeseessseesnesnsennses 85
EXample 6.9: TUPLE TIEETALSc..ieiieeieeiiecieeie ettt sttt sttt e e et eeabeeteessbeeseessbeesaeenseenses 87
Example 6.10: Access t0 tUPIE IE1AS.uiiiieriiiiiieieeie ettt st st 88
EXAMPIE 6.1 11 TUPLE LYPES cuveeerieiieeiieeiie ettt sttt et e ettt et e s teesteesebeeaeeesbeestaeenbaenseesnsaenseessseensnennsesnses 88
Example 6.12: Tuple literals inside tuple Tteralsccccveecieeiieiiiienienii e 89
Example 6.13: Access t0 attribULE OF CIASS ...cvieiuvieriieeiieiie ettt ettt st aee st e eeaneeneee 90
Example 6.14: Navigate through aSSOCIAtIONSccveevuieriierieeitieeieete ettt e eeeeste e esteesbeesaeesebeeseeesnneenees 92
Example 6.15: Navigation t0 Class OPETatiONS.ccveecuierieriieeriiesieerieenteeseeeteesteeeseesseessseesseessseesseesssesses 93

Example 6.16: Operation call With Parameters...........cceerieriiieiieiiiierie ettt eree e estee e esaeesebeeseaesreenees 94

Example 6.17: EXample Of INVATIANTS......cccuierieiiieriieeieeiieeieeieesteeieesereesieeesreestaeesseenseessseenseessseenseesssesnses 95

Example 6.18: Example of defiNItiONSccccueiiiiriieeiiieiieeieeiie sttt sttt ere et ebeeeeesbeesaeeseseenseesnseenees 96
Example 6.19: EXample of deTiVationccccveiiieriieriiieiieeieeiee st etee sttt e steesiaeeteeeeessbeenaeessseensnesnseenees 97
Example 6.20: Examples of iNitialiZAtIONSeeiuvieriieriieriieeieeiiesieeieeste et e ereeiteeseeseeesebeesaeeseseensnesnseenses 98
Example 6.21: Example of preCONAitionc.cocvierieeiieriieeieeie st eite st eve et ebeeeee e saeesebeessaesnseenees 99
Example 6.22: Example 0f DOAY CONEEXL......ccuiiiiiiriierieiiiieeieeiiesteeieeste et eseeeeteeseeesbeesareeseessneeseenseeans 100
Example 6.23: Example of POStCONAItION. ...cccuiiiiiiiiieriieiiierieeite e et site et eseeeseeeseresbeeseeenseessaeenseensneans 101
Example 6.24: Example of SEIf KEYWOTd.c.ooiiiiiiiiiiiiiieeie ettt st eve e en 101
EXamMPIE 6.25: COMIMENTS.....ceiuviiiieiieeiierieeiteestteerteestteeteesteeesteessseeseessaeeseesseesnseesseessseesssesseessseessessseeans 102
Example 6.26: Combination of invariants and definitionscceeeveriierierieisienie e eiee e 102
Example 6.27: Combination of initializations with derivations, and preconditions with postconditions and
DOAY EXPIESSIONS...ueveeutieiuiieiieetiestte et ertte et etteeste e teeeabeesaaeesseeseessseenseesnseeseesaseesssesnseensseenseensnesnseenseesnses 103
EXamPIE 6.28: Tf @XPIESSION .ouvvieurieiieeiieiiieeiteesiieeteestteeteestteeeteessseeseessaeesseessaesnseesseesnseesssesnseessseensesnseeans 103
Example 6.29: Let XPression EXaAMPIEcccuieiiieriierieiiienieeitesteeiteeseeesieesseeeseessresseesssesseesssessseessesans 104
EXamPIE 6.30: TEETALE USAZE...cuveerierureriierieeiteesieeteestteeteestteesteessreeseessseesseesssesnseesseesnseesssesseessseensessseeans 105
EXaMPIE 6.3 11 (@PTC USAZE .veevvveeurieireeiieeiieeteesiteeteestteeteesttessteeseteeseessseesseesseesnseesssessseesssesnseessseenseenseeans 106
EXample 6.32: RESUIL USAZE...cuuieivierieiiieiieeieeciieeieeste et estte et e seteebeestaeesbeesseessseenssessseesssesnseessseeseenseeans 106
EXample 6.33: OCIISINEW() USAZE ...eeuveeiieriieeiieriieeieesiteeteestteetteseteebeestaeesseesseeenseenssesnseesssesnseessseanseenseeans 107
Example 6.34: Qualified navigation through recursive assoCiations..........cceeeveerveerreerieerveesreesveenieennenns 108
Example 8.1: AIphabets and WOTAScccueeiiieriiiiiierieeieeeie ettt ste et seeeebeeseeesbeeseaeenseessaeenseenseeans 129
Example 8.2: Alphabet and 1anguages OVET 1tcceervieriierieeiiienieeieesie et esee et e sereebeeseeebeeseaeeseensneans 129
Example 8.3: Union Of tW0 Jan@UAZES.......c.eecuieriieiiierieeiienieeteesteeteesteesieesseesseessressseesssesnseesssessseesseeans 130
Example 8.4: Concatenation 0f tWO WOTAScccuieriieriiiriienieiiie e eieesteerieesetesieeseresbeeseeeeseessaeeseenseeans 130
Example 8.5: Concatenation of tWo languages..........cccuieiierieiiiienieeiieiie ettt veereesaeeveeseaeens 131
Example 8.6: Kleene star operation applied to a three-word [anguage.ccceeeevverrieriieecienieeieeneens 132
Example 8.7: Kleene plus applied to both single-word and three-word languages...........ccccccverveevieennnnns 132
Example 8.8: Regular expressions and their associated [anguagesccceerveeriereeeiieniieeieenieesieeneeeens 133
Example 8.9: Grammar and recognized langUage...........ccueeverruierieeiienieeieesieeieenereereeseeereesaeeseeneeeens 134
Example 8.10: DFA recognizing the 1anguage a™cccoeieiiiiiieeiiieniieeere et eve e 135
Example 8.11: Lexical analysis with tokens (input, tokens and output tokenized)...........cceeeverveereennnns 137
Example 8.12: Syntactic analysis (input tokenized, grammar productions and output parse tree)........... 138
Example 9.1: USE specification file extracted from [USEW]cccccceiiieiieniiiiienieeieceeeeesee e 146
Example 9.2: Constraints section of a USE specification file...........cccovvuievieniiiiieniieiienieccecieeieeeene 147
Example 10.1: Ordering first group of value CONCEPLS......eeviirriierieeiiieiiieieerieereesre et sre e e sreeveeneeeens 175
Example 10.2: Weights of group 1 MEMDETSccceeviiiiiienieiiieiie ettt eieesee et sere st reereesaeeseeneaeens 175
Example 10.3: Ordering third group of value CONCEPLS......ccverriiiriieeiiieiieeiierieeieesee et sre e sveeveeneaeens 176
Example 10.4: Weights of Sroup 3 MEMDETScccuiiriiiiiierieiiieeieeieeste et eseeeree e steeseeereeseaeenseenseeans 176
Example 10.5: Ordering 7th group of Value CONCEPLScvveveieiiiierieeiieiie ettt eee et sere e ens 178
Example 10.6: Weights of Sroup 3 MEMDETScccuieriiiiiienieiiiecie ettt esiee et e seresbeeseeereeseaeeseenseeens 178
Example 10.7: Calculation of total WeIZIEccuieiiieriiiiieeie ettt ae e e ens 180
Example 10.8: Normalization of UML VETSIONc.cevuiiiiierieiiienieeiiesteesieeseeeeeeeseresteeseneeseessnesnseenseeans 186
Example 10.9: Normalization of UML model interchange formatccoecueevienieecieniieeiienieeieeneens 186
Example 10.10: Normalization 0f OCL VEISION.......cccuiiriierieriiienieeiieniteesieeseeeereeseresseesnesseessnessseesseeans 187
Example 10.11: Normalization of Metamodel inStantiation..........c.ceceervreriierieenienieeieeneeeiee e eveeseee s 187
Example 10.12: Normalization of Syntax and SEMAaNtiCS.........ccuevvveerueeriierieerieeriienreeieesreereesveesveeneneens 188
Example 10.13: Normalization of Type CONfOIMANCEceecuierieeiiieiiieriienieeieenie et see e e sveeveeneeeens 188
Example 10.14: Normalization of OCL execution or interpretationcceecveereerveerieeriveesreenneeseeneenns 189
Example 10.15: Normalization of Quality 0f SOUICE COAEccuirrririiiriiieiierieeiee e 189
Example 10.16: Normalization of USer Manualcccuerieriiierieeiiieiieeieenieeieesereeiee e eveesaeeveeneeeens 190
Example 10.17: Normalization of Technical manual............cccccoeriiriieiiieniieniieiese e 190
Example 10.18: Normalization of EXPerienced USETScccueeeuierieeriieniieiienieeieenresieesveereeseneeseeneneens 190
Example 10.19: Normalization of IneXperienced USEIS........ceecuierieeiiieriieriienieeiienereeieesveereesneeseeneneens 191
Example 10.20: How to calculate weighed value for an attribute..........c.ceeeeevieriienieecienieeeecre e 191
Example 11.1: If construction and instanceof operation to process different objects.........cccceevveerreennnnns 201
Example 11.2: Identifiers usage to identify each kind of product............cecceeviiiiirniiiiiienieccie e 202

Example 11.3: Wrapping concrete instances into an abstract ObJECT.........ecvervirrienieeiienieeieenveeieenieeens 204

Example 11.4:
Example 11.5:
Example 11.6:
Example 11.7:
Example 11.8:
Example 12.1:
Example 12.2:
Example 12.3:
Example 12.4:
Example 12.5:
Example 12.6:

Double dispatch MeChaniSML.........ccceccuierieriieriieeieeee sttt sreeseeesbeeseaeesee e 204
Double dispatch eXplainedccveeuierieriieiieeieee et s 205
Another double dispatch eXamMPIeecveeiieriiiiiieie et 209
Visitor class implementation €Xamplecccveevueerieriiienieniiesie e esee e 212
Method to apply visitor to every visitable INStanCe..........cceecveerieerieenieerieenie e 213
Specification file for SADIECC........c.coviiiiiieieeiece et 220
Helper deCIarationcccueecieiiieiieeie ettt et e e et e st e e saeeeabeessneenseenens 221
IENOTEA LOKENISeevieiiieiie ettt ettt ettt et e et e st e et e enbeessaeenbeenseesnsaensnesnseas 223
Productions extracted from Example 12.1ccooviieiiiiiiinieciieeeeee e 225
Execution of SableCC with the specification file of Example 12.1........cccoeevveivenveennnnne. 226
Folder structure generated by SabIeCC.........ccvvviieniiiiieieeieeste et 227

Example 12.7: Generated classes inside n0de PaCKagecc.eecvierieeiiieiiieiiierie et 228
Example 12.8: Generation of constraint production of Example 12.1cccooiiiiiiniiiiienieciecieeieeeene 230
Example 12.9: Depth-first traversal for constraint alternative case methodcccceeevverieeiienireneennnnn, 233
Example 12.10: Reverse depth-first traversal for constraint alternative case methodccocceceeneeen. 234
Example 12.11: COMPIIET CLASSveeeuieiiierieeieeciieeitesie et eete et sr e et e seteeteesteessbeesaeessbeesssesaseessneenseeseeans 235
Example 12.12: Constraint dependencis..........ccuieruieriiiriienieeiieiieeieesteesieeseeeereeseeesbeesseeseessneesseesseeans 242
Example 12.13: Example of #customheritage dir€CtiVececvierveeriieiiieriienieeieesieeiee e ereeseeeeveeniee e 248
Example 12.14: Production for OCL 2.0 If CONStIUCLION ...cvvervierireeiieiiiieiierieeieesreeieesveereesveeveesiee e 249
Example 12.15: Apply method for If construction of Example 12.14ccccoociiviniiniiiiniiiiniicnennne 249
Example 12.16: Case method for if expression inside LAttrEvalAdapter skeleton generated by SableCC-

EXt QUEOMALICAILYeeevvieiieeiieeiie ettt ettt ettt et et e st e e st e eabeessaeesbe e saesnseenseesnbeesssasnseessseenseeseeans 250
Example 14.1: Very simple OCL CONSIAINT.........cccverieeriierieeiienreeteesteesieeseeeeseessresseessesseessseesseesseeans 300
Example 14.2: Example of SWItCh-CaS@ USAZE......cccveriiiriierieiiierieeieesiteeieeseteeteeseresbeeseeeseeseaeeseensneans 303
Example 15.1: Usage of the TypeCheck class as a subclass of the ReflectiveVisitorcccevvvevveennnnne 325
Example 15.2: Creating @ NEW PIOJECT.....cccveeriieriieriierreeiteesieettesreeteesaeesseesseesseesssesseesssessseesssesssessseeans 327
Example 15.3: Importing an XIMI fI1€ccueeiuiiiiiiiieiii ettt ee et s aeebeenaaeen 328
Example 15.4: Creation of lexer and parser COMPONENLSc.eerveerreerirerieerieeieenreeieesreesseesreesseesseenns 328
Example 15.5: Processing the COmMPilation tree.........ccuiiriierieriiierieeiiesieeieeseeeiee e eteesreereeseaeeveeneee e 329
Example 15.6: Storing metadata into a New XIMI fIlecoccveviiiiiiieiiiiiieiec e 330
Example 15.7: Method to close the current project and its metadata repoSItOry......ceeevverveeereerveerieennnenns 330
Example 15.8: Basic usage of rollback in tranSactionscceeeeveeeueerirenieenieenieenresieesreereesneenseessneens 332
Example 15.9: Invariants and definitions construction templatesc.cecceervierienieeiieniieeciesreerieeseeens 334
Example 15.10: Initializations and derivations construction templatescecveereverrierieeeieenieeseeneens 336
Example 15.11: Preconditions, postconditions and body of operations construction templates............... 338
Example 15.12: Notation for if @XPreSSIONSuieriieriiiriierieeitiesreeiteesteesieesteeteessresseessseeseesssesnseesseeans 352
Example 15.13: Notation for property call EXPIreSSIONScueecveerreeriienireriierieeieenreeieesreeseesreesseesseeens 356
Example 15.14: Notation for association class call EXPreSSIONSceevvvrerieerieeriienieerieenieeireesreereeeseeens 357
Example 15.15: Notation for operation call @XPreSSIONS........cccuierveerieeriiereerieesieenreeieeseeeereesreesseesseeens 358
Example 15.16: Usage of the TypeCheck class as a subclass of the ReflectiveVisitorccccveevueennnnne 361
Example 15.17: Usage of the DeleteVisitor class as a subclass of the ReflectiveVisitorcccueeuee.n. 363
Example 15.18: Usage of DeleteVisitor with the deleteOclExpression method owned by the ParserFacade
ClaASS ettt h bbbt h bbbt e et h e a e h et e bt et sbe e et ebt e b e beenbeeaten 364
Example 16.1: First constraint t0 ChECKccviiiiiiiieriiiiieeie ettt st aeebeeseeeens 370
Example 16.2: Second constraint t0 ChECKuiiviiiriiiiiieie ettt ee 372
Example 16.3: Hierachical output for the constraint found in the Example 16.2c.ccoceviinininennn. 375
Example 16.4: Original third CONSTIAINTccveiiiiriieiieeiieeie ettt st et e st eseresbeeseeebeeseaeeseenseeans 376
Example 16.5: Third constraint With CHANZESccccccuieiiierieiiiieiieeeesee et ve e 376
Example 16.6: Hierarchical output for the constraint found in the Example 16.5c.cccoceovininininnen. 378
Example 16.7: Specification for PublicationDetails Class.........ceccveevuieiiieriieniiiiesie e 379
Example 16.8: Fourth constraint t0 CheCKccuiiiiiiiiiiiiieie ettt 379
Example 16.9: Hierarchical structure for constraint found in the Example 16.8ccccooceviininninnnn. 380
Example 16.10: Fifth constraint to0 CheCKcccuiiiiiiiiiiiieie et 381
Example 17.1: Named self cOnteXt CONSIIUCTIONeevvviiiiereieeiienreeieesieeieesieeetee e ebeesereereeseaeenseenseeens 385

Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:

Entity types modeled With UML..........cooiiiiiiiiiiieiieeiecieeeese ettt sere e sbe e ens 13
Hierarchy and eNUMETAtIONSccervieriieriieeiienieeiee st eteeseeeieestaesbeesatessseeseseeseessaesnseenseenns 14
Relationships i UMLooiiiiiiiiiecieeteee ettt ettt st esateesbeeseaeenseebaesnseeseeans 15
MoOdel-Driven ATCRItECTUIEecvuieriieiieeieetie et ette sttt eee et steesbeesateesbeeseaeenseesaesnseenseenns 19

RePresentation 18VEISc.eeciiiiiiiieiiieieee ettt ettt ettt et esaeeeabe e seaeenbe e baesnbeeaeeens 23
UML 2.0 metamodel. EICMENLScocvieriieeieeiierieeite sttt ettt eteesiteseteeseneeaeessaesnseenaee e 25
UML 2.0 metamodel. Multiplicity €lementccceevieeriiniiiniienieeieesie e 26
UML 2.0 metamodel. CONSLIAINTecuvieruieeieeiieeieeiteesieesieesieeeieeseaesteesetessseeseseesseesseessesnseesns 27
UML 2.0 metamodel. GeNneraliZation..........cueeveerieerieeniierieeniieeieeneesreeseesseeseneenseessaesseenseesns 28
UML 2.0 metamodel. OPErations.......c.ceceeecueeriierieeriierieerieenieeeseeseessseesssessseesseessessseesssessseesns 29
UML 2.0 Metamodel. Classes and aSSOCIAtIONS.......c.eevveerueerireerieenieeiieesresreesreenseesseessseenseenns 30
UML 2.0 metamodel. Data tyPeScecvieriieeieeiienieeite ittt esieeereesiteeteesetesnbeeseaeeaeessaesnseenseeens 32
MOF metamodel extracted from [ODJO2]cccvveriieiiieiiieieerie ettt et sre e stee e 34
Simple conceptual SChEMAccuiiiiiiriieeie ettt e e e e saeesebeensaeenseenees 42
Eina GMC Core (Image from [EINW])cccoieiieriieiieiieeieesie ettt e 49
Components of the Eina GMC (Image from [EINW]) ...ccccvviiiiriiiiiieiieeiecitereeee e 50
Conceptual model to practice with Eina GMC t0O]........cccuieviiieiiiiieiiieiecieeeece e 53
POSEIAON FOT UML.....cuiiiiiiiieiiteiieete ettt ettt ettt e et estaessbeesatesnbeeseseenseesaesnseenseenns 54
Export option inside Poseidon FOr UMLcccooiiiiiiiieniieiiieiee et 55
Export window inside Poseidon FOr UMLccccoooiiiiiiiiiiiniieiecie et 56
Model for the upload and share system eXampleceeveeriierieniieiiienieeieerre e 67
ASSOCTATIONS <.evtentieiteieeite sttt sttt ettt ettt et b et s bt et s bt e bt eb b e s bt eatesb e e st e eb e et ebeenaeeaeenaeenees 91
USEI CLASS ..ttt ettt sttt st beeb e h et b et b et e b ettt e nae e 93
Operation declared in an UML ClassS........cccveriierieniieriienie et eieesteeiee s seee e eseesseeeee e 99
RECUISIVE TRIATION. .. .ottt ettt sttt ettt s 107

Figure 7.8 Collection and Tuple LIteralsccoerieriiiiniiiiniiieneteeeteee et 125

Figure 8.1:
Figure 8.2:
Figure 8.3:
Figure 9.1:
Figure 9.2:
Figure 9.3:
Figure 9.4:
Figure 9.5:
Figure 9.6:
Figure 9.7:
Figure 9.8:

(0103011 o1 1< g o) 1 OSSPSR 136
Front-end and back-end of @ COMPILETcceeviiiiiiiiiieii e 140
Parser OCL 2.0 ATCHItECIUTIE......ccouiiuiiiiriieieniieieeiceteet ettt 141
USE graphical USer INEETTACE........ccuieriieriieiieeieeiie ettt et eae e e sbeesaeesebeesaneenseenees 147
Different views inside the USE interface.........ccccocevirieniiiiniiiiiniienecieneeeeeseeeeeene 148
OCL expression checking inside USEcccciiiiiiiiiiiiiiniicieee ettt 149
Main window of the OCL 2.0 parser subsystem of the Dresden OCL2 Toolkit 150
Parsed constraints into CST format..........cccooieiiiiiiiinieniiiiee e 151
Visualization of CST generated by OCL 2.0 parser SUbSYStem.........cccceereverrreereercreenvenineennns 151
XMI model loaded within the OCL 2.0 parser SUDSYSIEM........cccvverveerueenireereeneresveenreeaeeens 152
Attribute evaluation and XMI generation within the OCL 2.0 parser subsystem................... 153

Figure 9.9: MOV A t00] initial WINAOWcocceviiiiiiiiiiiiiieenteneteeee et 155
Figure 9.10: MOV A UML modeling tool. Class diagram...........ccceevueeriieriieniiiniienieeieeneeeieesneeveeneeeens 155
Figure 9.11: Object instantiation inside MOV A t00]c.ccooiriiriiiiniiiinieienceiecee et 156
Figure 9.12: OCL Editor owned by the MOV A t00]....c..cocueiiiiiiiiiiniiiieieieceescee e 157
Figure 9.13: Invariants in MOVA £00]c..ooiiiiiiiiiiiiiiieeeee ettt 158
Figure 9.14: Result of invariant evaluations within MOV A t00]ccccooiiiiiniininiiniiincicccecee 158

Figure 9.15: IBM OCL Parser 0.3c..ooiiiiiiiiiiieiiteeeiteneetest ettt ettt st st st siee b eane s 160

Figure 9.16:
Figure 9.17:
Figure 10.1:
Figure 10.2:
Figure 10.3:
Figure 11.1:
Figure 11.2:
Figure 11.3:
Figure 11.4:
Figure 11.5:
Figure 11.6:
Figure 11.7:
Figure 12.1:
Figure 12.2:
Figure 12.3:
Figure 12.4:
Figure 12.5:
Figure 12.6:
Figure 13.1:
Figure 13.2:
Figure 13.3:
Figure 13.4:
Figure 13.5:
Figure 13.6:
Figure 13.7:
Figure 13.8:
Figure 13.9:

Figure 13.10:
Figure 13.11:
Figure 13.12:
Figure 13.13:
Figure 13.14:
Figure 13.15:
Figure 13.16:
Figure 13.17:
Figure 13.18:
Figure 13.19:
Figure 13.20:
Figure 13.21:
Figure 13.22:
Figure 13.23:
Figure 13.24:
Figure 13.25:
Figure 13.26:
Figure 13.27:
Figure 13.28:
Figure 13.29:

Figure 14.1:
Figure 14.2:
Figure 14.3:
Figure 15.1:
Figure 15.2:
Figure 15.3:
Figure 15.4:
Figure 15.5:
Figure 15.6:

Opening UML file into IBM OCL Parser 0.3ccceoviiriiiinieiiienieeieeree et 161
Checking OCL into IBM OCL Parser 0.3........ccccuveiierireiienieeieesiee e eieeseresveesneevee e 162
Tree value with value concepts that are essential in our decision analysis.......c..cc.cceeueneenee. 172
Value tre€ With SIOUDSoevveeeiieiieeieetie ettt st stee st taeebeestbesnbeeseesnseensnesnseas 174
Result values of the decision Making ProCESS.........ccvuevevierieerienieetienieeieesreesieesveesveeseeeens 196
Hierarchical structure of Product ODJECtS......covviiiiirieeiieiieeieeie ettt 201
Object structure where to apply double dispatch mechanism...........ccccoecveeviienieeciienieenenne. 203
VASTEOT INTETTACES ..ottt ettt sttt st sb et 206
Visitable hierarchy with double diSpatch..........cccoviveciiiiiiiiiiee e 207
Visitor hierarchy with two extended ViSitor ClasSes..........cecvieriereiierieeiiienieeieeee e eee e 208
Basic structure of the router configurator eXample..........occveevieriiirieniieeciienieeeesee e 210
Visitor pattern applied to router configurator eXample.........ccccveveveerveeciienieenieenieeeeeee e 211
Steps to make a compiler through SableCC..........ccievieriiiiieeieeie e 218
SableCC visitor structure generated for Example 12.1ccccoevveeiiiiieeiieniieeeeee e, 232
OCL 2.0 Parser Subsystem MOAUIESccueerieriiiiiierieeiierieeieesreeteesee e e seresbeesaeeeee e 237
OCL 2.0 Parser Subsystem CONStIUCHIONccueervreriierieeiienreeieenireeieesteebeeseresreeseneenseenens 239
SableCC-Ext Visitor Pattern StruCtUIe..........coouevieiiiiiiniiiiniciieccee e 245
Screenshot of the Demo used to check the correct behaviour of our processor 253
SableCC-Ext generated classes for constraint StruCtUIESc.eevveerveerieerieerieenreeieeneeenens 259
SableCC-Ext generated classes for operation SIgnature...........ceeveerveerieenveeneenveerveesvennnens 260
SableCC-Ext generated classes for invariants and definitions............cccceevevveveencreenieennennnen. 262
SableCC-Ext generated classes for initializations or derivationscccceeveerveerveennennnen. 263
SableCC-Ext generated classes for operation COnStraints..........ecceeeeveerueerveereenveenveenvennnens 264
SableCC-Ext generated classes for names and identifierscccevvveeveeniieneenieenieeneeennen. 265
SableCC-Ext generated classes for principal eXpressionseceeeveereerveenieenveerreesvennnens 267
SableCC-Ext generated classes for logical eXpressions..........ccueeveerveerieenieenieeneeesieenneennens 268
SableCC-Ext generated classes for relational eXpresSions........eeeevveeeeenveenieenveerieenvennnens 269

SableCC-Ext generated classes for additive eXpresSions........eeveerveeveerieenieeneenveesieenneens 270
SableCC-Ext generated classes for multiplicative eXpressionseeveeceeeveereenveereennens 271
SableCC-Ext generated classes for Unary eXpressions.eeeeeveerieerveerieesiveesseenveeseennenns 273
SableCC-Ext generated classes for property call eXpressionsecceecverveereenveereennens 274
SableCC-Ext generated classes for qUAlifiersceevveriieiieniieiece e 275
SableCC-Ext generated classes for arrow eXpreSSionseceeeveerieerveerieeniveeneesveeseeenneens 277
SableCC-Ext generated classes for time eXPresSSionsS.......ueeeerveerverveerieenreesieesveesieenneens 278
SableCC-Ext generated classes for iterate variables..........occveeeiieriieniieeiienieeieenie e 279
SableCC-Ext generated classes for iterator variablescceeceerveriieeiienieeieenie e 279
SableCC-Ext generated classes for initialized variables...........cccocvveveveeiiienieeieenieeeeeens 280
SableCC-Ext generated classes for actual parametersceecveervenveerieenieeseenveesieenneens 282
SableCC-Ext generated classes for formal parameterscceccveevverveeciienieeneeneeesieeneneens 283
SableCC-Ext generated classes fOr tYPES.....eeviiiieriierieiiieieeeie ettt sre et eae e ens 284
SableCC-Ext generated classes for SIMPIe tyPesveevveeeiieriieniieiienieeieesie e 285
SableCC-Ext generated classes for COllection tyPesccveereeriieriienieeiiesieeiee e eieesiee s 286
SableCC-Ext generated classes for tUPIE TYPES....uevvierieiiieriieeiieieeeie et 287
SableCC-Ext generated classes for literal eXpressionsceeeveervercieeriienieeneenieeseenneens 288
SableCC-Ext generated classes for primitive literals.........cccevevierieniiniienieeiiecieeeeeeens 289
SableCC-Ext generated classes for tuple literalsccovvvievieeiiiinienieeiecieeeece e 291

SableCC-Ext generated classes for collection literals...........ceeeveerivenieeriienieeiienieesieeseens 293
Fragment of the OCL 2.0 metamodel including the new switch-case statement.................. 303
OclCaseBranchEXPreSsion Classc.eecvieriierierireriienieeiienreeieesereeseesseesseesssesnseessnessseensns 306
Complete SableCC-Ext generated classes for switch-case productionsccceeeveeevennee. 307
Hierarchy of packages 0f OUI PrOCESSOT........ueviiiiierieeiieiie et erteeeteeste et esreeaeeseaeeveeneee e 317
Instantiation for an invariant context CONSIUCTION.cc.uerveerierirrieriererieieeieeeeee e 334
Instantiation for an initialization context CONSIIUCTION.cecvieruirerieerieeiierreeree e eaeesieens 337
Instantiation for a precondition CONSIIUCTIONc.eevvereiierieeriieniieeieenteeieesreereesreeveeneee e 339
Instantiation for DataTypes 0f DasiC tYPeS.....cccueeriierieriiieriieiierie ettt e et sve e e seee e 340
Instantiation for a BagType whose element type is INteger..........cocvevierciienieeciienieeseeneens 341

Figure 15.7: Instantiation for a tuple type with only one owned attributeccceeeveeviveriveecienieeneeniens 342

Figure 15.8: Instantiation for Real and Integer literalS........c..cocueririiriiiiiniiiiinieincecceee e 343
Figure 15.9: Instantiation for an String literal representing the 'John' value.........ccccceeeveriveecieniieneennnnns 344
Figure 15.10: Instantiation for a Boolean valuec.ccooeiiiiiiiiiiiiiiccec e 344
Figure 15.11: Instantiation of an enumeration literalcccooiiiiniiiiiniiiine e 345
Figure 15.12: Instantiation for a Bag literal €XPreSSIOncc.veeciierveeriieniierieenieeieenreeieesreereeseveeseeneneens 347
Figure 15.13: Instantiation of a tuple literal eXPreSSiONcccierveeriieriierierieeieesreeiee e ereesveereeneeeens 349
Figure 15.14: Instantiation for @ 1et @XPreSSIONc..cooviriiiiririienirieneetetee ettt 351
Figure 15.15: Instantiation for an if @XPression........cocoviiiiririenirienieieeescee e et 353
Figure 15.16: Instantiation for an iterator EXPreSSION.cueririeririeriirientieienieete et stee et eee e 354
Figure 15.17: Instantiation for an iterate eXPreSSIONceveriererieriieienieeiesieeteeieente et siee e see e einens 355
Figure 15.18: Instantiation for a property call €XPreSSiON........cverveeriieriierieerieereenreereeseeereesereeveeneeeens 356
Figure 15.19: Instantiation for an association class call @XPIeSsion.........coceevvereeriineenireeneniienenienennens 357
Figure 15.20: Instantiation for an operation call EXPIeSSIONccueecvieriiereerieeriienieeiee e ereesreeveeneeeens 359
Figure 15.21: Usage of constraints inside Poseidon to be checked by our OCL processorc..c...... 365
Figure 16.1: DBLP model used in the case StUdY........ccoeiieririeniiiinieieeesiceescec et 369
Figure 16.2: Complete instantiation for constraint "namelsSKey".........ccccoovieiiniiininiiniiniience 371
Figure 18.1: EStMated PLamccc.ooiiiiiiiiiiiei ettt et 392
Figure 18.2: REAL PLAN.c..ccuiiiiiiiiiiieieeeeee ettt ettt st st 394
Figure 19.1: Comparison between salary evolutions of analyst versus programmer from July 2007 to

March 2008 extracted frOm [TTTW].....ccciiruieiiieiieeiierie ettt et e et estee s beeseeeesbeesaeesaseessseenseenseeans 398

Table 6.1: Integer and Real OPETatioNSccueeivieriieeiiieriieeieeeesteeiee st esteeeeeestaeebeesteessbeenseessseensnesssesnses 73
Table 6.2: StrING OPETATIONS.iervieereeitieeteeittesteesteeeteetteeteeteesseeseeseseeseeasseessaesnseeseessseenseessseenseenssesnses 74
Table 6.3: BOOICAN OPETATIONSc.veeeeiieiieiieeiiecitteiee et et e steeteeste e beesebeeaeessseestaeesseeseesssaeseesnseenseesnsennses 75
Table 6.4: COllECtiON OPETALIONS.ccuveeitierieeitieririerieeeteeitesteesteesreeseeseseesseessseesseasseenseessseesseessseenseessesses 79
Table 6.5: BAZ OPETATIONSeerivieiieeieeiie st ette et etee sttt e bt este e teeseteesseesaseesseeesseessaesssaenseesnseenseessseenseesnsesnses 80
Table 6.6: SEt OPEIALIONS ...cuvveeeiieiieeieetie et ette st etee ettt e bt e steeteeseteesseeseseeseessseessaeessaenseessseeseessseeseesnsennses 82
Table 6.7: OrderedSet OPETALIONSeevveeriieriieitierieeeteerte et esteesteesteesebeesseessseessaeesseenseessseenseessseenseesssesnses 83
Table 6.8: SEQUENCE OPETALIONSeeeuveeiieiiieiieiirierteeeteeteesteesteesreeseessseesseessseesssessseenseessseesseessseenseessesnses 84
TADLE 0.9: TEETALOTS ...c.euteiieiietiete ettt ettt ettt et b e st sbe et sbe et sbt et e e bt e bt ease st e entenbeenee 87
Table 10.1: Weights Of VAU CONCEPLS....ccvieiiieiiiiiierieeiteeie ettt st et seeesbeeseeesbeeseseenseessaeenseensneans 179
Table 10.2: Allowed values for the terminal nodes of the value tree...........coocueeveeveieecieniieecienieeeeeee 181
Table 10.3: Evaluation 0f USE t00L.....cc.cooiiiiiiiiiiiiiiiieeeeeetesteeee et 182
Table 10.4: Evaluation of Dresden OCL2 TOOIKILeevvirrieriiienieeiieiie et eeesiee et sve e sre e eneeeens 183
Table 10.5: Evaluation 0f MOV A PIOJECT.....c.eeiiiiiiieiieeiieeie ettt ettt et sieeeveeseeesbeeseeenseessaeenseensneans 184
Table 10.6: Evaluation of IBM OCL Parser.........cccccoctiviiiiniiiieniiiienieeiesiceiesicete et 185
Table 10.7: Table of aggregated values for USE t00]cccueeiiiiriieiiieiiieiierie ettt 192
Table 10.8: Table of aggregated values for Dresden OCL2 ToOIKitccceeviiiriienieeiiienieeiienie e 193
Table 10.9: Table of aggregated values for MOV A Project........cccueeeuieiiierieenieiiienieeiienieeiee e eveenieeens 194
Table 10.10: Table of aggregated values for IBM OCL Parser.........c.ccccuveviieriiiniienieeiienieecieesveeveeneeeens 195
Table 18.1: Activites finished before the inscription of the Projectecceevviiviencieeiienieciere e 390
Table 19.1: Work dedication for an analyst...........cccceccuiiiierieiiiieiieeieeste ettt saeeve e ens 397
Table 19.2: Work dedication fOr @ PrOZIammIMETccvierviereieriiienieetieseeesieeseeereesereebeeseseeseessneesseenseeens 397

Table 19.3: Final CoSt OF the PIOJECEcuviiiieiieiiieiiecie ettt ettt e et e e eabeeseaeenbeensaeans 399

INTRODUCTION 1

OCL| Expressions

2.8 Processor Introduction | 1

1 INTRODUCTION

1.1 ABOUT THE PROJECT

The OCL EXPRESSIONS PROCESSOR IN A CONCEPTUAL MODELING ENVIRONMENT project is a
final career project made by Antonio Villegas, student of computer engineering at
the Barcelona School of Informatics, member of the Technical University of

Catalonia (UPC).

This project was born thanks to a pleasant collaboration with the Research Group
in Conceptual Modeling of Information Systems (GMC) of the Languages and
Systems Department of the UPC, which began at the second trimester of 2007.
Their people granted to me a research fellowship in order to improve their
conceptual modeling tool, called Eina GMC [GMCO07], in the way of adding the
processing of Object Constraint Language (OCL, [Obj06]) expressions into it.

Now I present you here the work made during that time. The document that you

are reading is the report of this final career project.

1.2 MOTIVATIONS

At the beginning of my collaboration with the GMC Research Group, [had several
conversations about what would be my contribution to the group’s work. At that
time, I was studying a subject on compilers in my penultimate year of the career,
and Antoni Olivé, as chief of the group, asked me if I could develop an OCL
expressions processor, as | explained before. I accepted the proposal and Antoni

became my project director.

Antonio Villegas Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Introduction | 1

It was a great opportunity for me to continue learning about compilers in a
practical way, applying my recent knowledge to a different problem. During my
years at Barcelona School of Informatics, [enjoyed my lessons about both Software
Engineering and Compilers and this was the perfect excuse to mix those topics and

develop a final career project, which finalizes my studies.

1.3 PURPOSE

First of all I must specify what are our purposes to achieve during both the
development phase and the time after the end of it. This point is very important
because to know the purposes of a project is the best way to check if a project is
correctly made. You only have to verify the completeness degree of your objectives

and assure that they pass the quality threshold of the future users.

The main purpose of this project is to develop an OCL expressions processor in
order to use it within a conceptual modeling environment. At this section we will

explain this in detail.

When we speak about OCL expressions we refer to grammatical constructions
belonging to the Object Constraint Language, in its version 2.0. This language, as
we will see deeply at next chapters, allows us to describe formally several rules

over a conceptual model, commonly written in UML[Obj07].

The processor, which is the case study of this project, should work with OCL2.0
expressions related to a model as input, in order to fragment them in basic parts, to
analyze them, and to create instances of such expression according a
superstructure called metamodel, established by the specification that defines the

OCL2.0 language.

These instances should be stored in order to keep the data along the time, in a

standard format that allows users of the processor to exchange their models with

Antonio Villegas Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Introduction | 1

other researchers. Moreover, the processor should distinguish between well-
formed expressions and bad ones in order to help users to avoid specification

errors while they are writing constraints in OCL2.0 over models.

In the same way, we should offer the inverse processing path, i.e., from stored
instances to textual constraints that allow us to recover our parsed expressions

from the repository in which they are stored.

As a conclusion, when the project will be finished its users should save time and
work on making the specification of information systems thanks to the usability of

the processor and its functionality.

To summarize, the purposes over the OCL 2.0 expressions processor are the

following:

e Convert textual constraints in OCL 2.0 over a model written in UML 2.0 to
metamodel instances according the specification of both OCL 2.0 and UML

2.0 modeling languages.

¢ (Convert metamodel instances to textual constraints in OCL 2.0, or in other

words, the inverse processing path of our tool.

* Detect possible errors and give feedback to users in order to help them to
solve the possible mistakes and obtain well-formed expressions (for apply

to the UML models).

* Import/export stored OCL 2.0 expressions from/to a standard interchange

format that allow users to keep them safe.

* Delete OCL 2.0 expressions that have been previously processed and stored.

Antonio Villegas Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Introduction | 1

1.4 DEVELOPMENT METHOD

Nowadays, to carry out the task of building a software system from the ground up
isn’t worth it because there are a lot of ways to find some pieces of code that you

can reuse or adapt to your needs.

Following this philosophy, first of all we studied the existent alternatives of OCL
2.0 tools and their features in order to choose the one that adjust better to our
solution in mind. This decision problem has a huge importance, so we decided to

dedicate the treatment of it in a full chapter, as we can find at chapter 10.

Once we chose our alternative we proceed to study it in detail, including its
features and the respective source code in order to understand them better and to

know how we can adapt the alternative to our purpose.

Then, we selected a minimum subset of the Object Constraint Language and
develop the complete functionalities of our processor with both the adaptation of
our chosen alternative and the features of the conceptual modeling environment
tool (in our case, Eina GMC). When we covered this hard challenge, we decided to

begin an iterative process.

This process follows the next development cycle:

1. Select a new subset of the OCL 2.0 adding more language structures and
elements to the previous one.

2. Implement the behaviour of the processor for the new elements in the
subset.

3. Test the processor in order to find errors and fix them.

4. Go to step 1 until the subset becomes the complete OCL 2.0.

Antonio Villegas Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Introduction | 1

This iterative and incremental method allowed us to have a complete release
version at every iteration end, with all the functionalities working for the subset of

the OCL 2.0 that is available.

This way, we could show to final users how the processor works and change it if
necessary since the first release version, which implies a low cost, an easiest

changeability and a greater degree of users conformity.

1.5 ABOUT THIS REPORT

The aim of this report is to compile and explain all the different phases of work
done during the project development. In order to make it more readable for
inexperienced users, all the relevant concepts will be explained here. However,
some bibliographical notes can be found at the end of the report for to complete
and extend the contents that are included here. The rest of this report is structured

as follows.

Chapter 2 introduces the conceptual modeling topic and presents why it is
important in software development. The Unified Modeling Language (UML,
[Obj07]) is explained here as standard modeling language, and a little introduction
to the Model Driven Architecture will note why UML alone is not sufficient for

make complete models.

Chapter 3 studies the metamodel concept, showing a small subset of the UML
Metamodel and explaining it. Also, the Meta-Object Facility (MOF) is explained
according to its relationship with UML. Related to it we found at chapter 4 the XML
Metadata Interchange (XMI) as a tool with which we are able to represent and

share models and metamodels.

Chapters 5 and 6 introduce the conceptual modeling environment (CME) used to

be the basis of our project, and the Object Constraint Language (OCL, [Obj06]),

Antonio Villegas Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Introduction | 1

respectively. Some notions about how to use Eina GMC as CME and what kind of

expressions are possible to make with OCL version 2.0 will be shown there.

Chapter 7 is related with all explained before and shows a description of the OCL
2.0 Metamodel. In addition, some problems found on it during development that

force us to make little changes on it are explained next to its solutions.

Because of our purpose is the development of a software tool similar to a compiler,
to know the basis about compilers theory and its structure is mandatory. Chapter 8
will show the notions that should be precondition to understand the following

chapters.

Chapter 9 and 10 introduce different existent tools made for similar purposes than
ours, and the decision making process to choose the one that approximates in a
closer way to our solution in mind, respectively. This decision will be taken thanks

to a formal process explained there.

Chapter 11 shows the design pattern called Visitor Pattern. This pattern is very
related to the development infrastructure of the OCL tool chosen at chapter 9, so

this is why is important to know its purpose and implementation.

Chapter 12 introduces what tools were used during the development phase in two
ways. Firstly, we will see some tools for help a programmer in the task of
constructing a compiler. And then we will pay attention to some Integrated
Development Environments (IDEs) where the programming experience becomes

easy.

Chapter 13 shows the grammar used to construct the OCL 2.0 expressions
processor and its more remarkable aspects and particularities to note. And chapter
14 denotes the development process used, as we partly introduce before at section

1.4 of this starting chapter.

Antonio Villegas Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions .
2.8 Processor Introduction | 1

The OCL 2.0 expressions processor (also known as OCL 2.0 parser) and all its
details are introduced deeply at chapter 15. All the conversions and their

particularities are exemplified there.

To finish the report, some chapters follow chapter 15. Chapter 16 explains
different ways to improve and complete the processor in possible future
development extensions over it. Immediately, chapter 17 shows the project
planning and chapter 18 indicates an estimation of the economic cost of the

project.

Last pages are completed with a glossary, a bibliography where to find interesting

links, articles and books to consult, and an index of terms.

[hope that you consider the reading of this final career project report useful and,

especially, entertained.

Antonio Villegas Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

CONCEPTUAL MODELING 2

OCL| Expressions
2.8 Processor

Conceptual Modeling | 2

2 CONCEPTUAL MODELING

2.1 INTRODUCTION

Since human beings are able to write computer programs and to develop software

systems, the way of doing this task has totally changed.

First programmers were used to write code directly with huge concatenations of
Os and 1s to specify the instructions that a computer had to execute. Obviously,
now someone can thing that this is not the best way but it was a common job

during a big period of time. Debugging task had to be a heroic work.

The birth of assembler languages was a big revolution in computer programming.
Programmers forgot binary arrays to be used with assembler instructions. This
simple change provided by programs that convert assembler instructions into
machine code introduced a first abstraction layer. At this time, most people did not
think that such change could be become in a revolution because first converters
had problems. But when such first compilers achieved a minimum degree of

quality, assembler programming was the best way of writing code.

Second revolution arrived when a new abstraction layer was introduced by means
of the high-level programming languages. Such languages provide simplicity of use
that allows programmers to write more readable and easy to debug code with a

diminution of work time.

Nowadays a new computer programming generation is growing. Most of people
think that it is a chimera that never will work. But we should remember that this

situation is the same that happened with assembler instructions, and every day we

Antonio Villegas 10 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Conceptual Modeling | 2

are closer to make it reality. We talk about conceptual modeling in the scope of

both a model-driven architecture and a model-driven development.

Along this chapter we will introduce this idea in order to show that it is the next
step in software development. Furthermore we explain why an OCL 2.0
expressions processor is required to help this new abstraction layer become a

reality.

2.2 CONCEPTUAL MODELING

In software engineering, we use the name conceptual modeling for the activity that

specifies and describes the general knowledge a software system needs to know.

Conceptual modeling is a necessary activity in the development of a software
system, the main purpose of which is to define the conceptual schema of such

system.

Every software system owns a conceptual schema although it is not always written
in a physical document. The whole team of developers of a software system,
including designers, programmers and also users, have a conceptual schema of

such system in their minds.

The worst problem here is that every member of this team thinks in a different
version of the conceptual schema. Therefore, it is a hard but important task to
write the conceptual schema of the software system in order to avoid future

problems that will not appear at the beginning, if this job is not done.

It is important to emphasize that the later a problem appears the more expensive
the solution is, so to find problems early it is important in order to maintain both

the time and cost planning.

Antonio Villegas Languages and Systems Department

11

Barcelona School of Informatics Technical University of Catalonia

E i .
gcaL Ptsi:frns Conceptual Modeling | 2

There exists a principle named as uncertainty principle of the requirements
engineering, which describes that the requirements of a software system cannot be
validated as well-chosen requirements until the user gets in touch with such

system.

Therefore, in the conceptual modeling activity of a software system is important to
involve the user of such system in order to create the conceptual schema with his

requirements.

A full view about conceptual modeling in the scope of information systems can be

found in [Oli07].

2.3 CONCEPTUAL SCHEMAS

A conceptual schema is the result of the conceptual modeling activity. It provides
the description of a domain that consists of objects, relationships, and concepts.
Conceptual schemas are similar to ontologies, and the languages in which they are

written are called conceptual modeling languages.

Specifically, a conceptual schema describes the things of significance to an
information system (entity classes), about which it is inclined to collect
information and characteristics of their attributes and associations between pairs

of those things of significance (relationships).

Conceptual schema: description of the things of significance (objects,
relationships and attributes) of a domain. This describes the semantics of
an organization and represents a series of assertions about its nature.

Definition 2.1: Conceptual schema

Antonio Villegas 12 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Conceptual Modeling | 2

One such language is the Unified Modeling Language (UML) that we will explain
along this chapter and later, showing examples of conceptual modeling using the

UML with different concepts in a well-known domain.

2.4 THE UNIFIED MODELING LANGUAGE

A complete explanation about the Unified Modeling Language in its version 2.0 can
be found in [RJB04]. Our aim in this section is only to describe how to model
common concepts like entity types, relationships and attributes about a concrete

domain with the Unified Modeling Language.

2.4.1 ENTITY TYPES

An entity type is a concept whose instances at a given time are identifiable

individual objects that are considered to exist in the domain at that time.

Let us imagine that our domain is a company that sells products over the world
and wants to develop an information system in order to increase the control over
its products in an easiest way. It is obvious to think about products and clients as
entity types of such system. Therefore we have to model the knowledge about

these concepts, and we choose the UML language to do such task.

Product Client
-name : String -name : String
-p_id : Integer -address : String
-price : Real -c_id : Integer

Figure 2.1: Entity types modeled with UML

Antonio Villegas 13 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Conceptual Modeling | 2

At Figure 2.1 we can see how to model product and client entity types with the

UML. It is easy to do because we only have to draw a rectangle with three divisions.

First one is used to place the name, in upper case, of the entity type. Second field of

this rectangle is the place for the attributes owned by the entity type. And the last

division is for to place operations that belong to such entity.

The whole rectangle is known in UML as UML class. It is important to note that the

attributes of a class are the properties or characteristics of the entity type that such

class represents.

Furthermore, we have the possibility of model hierarchies of classes. It behaviour

can be expressed with a triangular arrow placed from specific classes to the

general, as shown in next schema.

Antonio Villegas

Product
-name : String
-p_id : Integer
-price : Real
A
Book DVD T-shirt
-author : String -director : String -size : Size

-ISBN : String -length : Integer -gender : Gender
<<gnumeration=>> <<gnumeration>=
Size Gender
XL male
L female
M
S
XS

Figure 2.2: Hierarchy and enumerations

14

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Conceptual Modeling | 2

It is important to note the possibility of use enumeration of values as types for the
attributes in a class. In Figure 2.2 we see that both size and gender attributes
owned by T-shirt subclass of product have an enumeration as a type. The way of
model and enumeration is similar than modeling a class but indicating with the
<<enumeration>> notation that such element is an enumeration of different

values.

There exist many Computer Aided Software Engineering (CASE) tools that provide
facilities to draw conceptual schemas, so we can use them to model knowledge

domains in UML.

2.4.2 RELATIONSHIPS

The Unified Modeling Language also provides the possibility of model

relationships between entity types represented as classes.

Order
+order| 5 id : Integer
* -data: Data |°
-/total : Real
contains orders
1.* 1
+orderedProducts +owner

Product Client
-name : String -name : String
-p_id : Integer -address : String
-price : Real -c_id : Integer

Figure 2.3: Relationships in UML

Antonio Villegas 15 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Conceptual Modeling | 2

As we can see in Figure 2.3 binary relationship types in UML are represented by a
line between the two members of the association. Each member end can be named
with a role name that will be useful to navigate through relationships.
Furthermore, such member ends have a multiplicity number representing the

number of instances of the class that must have the association.

For example, the Contains association has a multiplicity 1..* in its orderedPoducts
end. It indicates thatan instance of the Order class has at least one instance of
Product owned through this association. The * symbol indicates that the upper
value of the number of instances is infinite. If in a multiplicity only appears the *
symbol, it is the same as 0.* i.e.,, the number of instances may be any positive

integer number including 0.

It is important to emphasize that in Order class we can see the attribute total with
a slash ‘/’ preceding its name. It represents that the attribute is derived, so its value
is calculated each time that it is consulted. In this case we can imagine that its
value results from the addition of the price attributes of the products in the

orderedProducts end.

With these simple constructs we are able to model complex information systems
using the Unified Modeling Language in order to obtain conceptual schemas

representing such systems.

2.5 THE NEED OF TEXTUAL CONSTRAINTS

The information contained in a model has a tendency to be incomplete, informal,
ambiguous or imprecise. It is caused by the limitations of the diagrams used, and

therefore these limitations are also within the Unified Modeling Language.

Antonio Villegas Languages and Systems Department

16

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Conceptual Modeling | 2

For example, in the UML schema shown in Figure 2.3, attribute named total of
Order class is derived but this derivation is not specified anywhere. It is impossible

to express this derivation rule in the diagram.

context Order::total: Real

derive totalPrice : orderedProducts.price->sum()

Example 2.1: Derivation rule

In the previous example we indicate that the evaluation for such attribute is the
addition of the price attribute of all products accessible through the navigation by
the contains relation. We have used the Object Constraint Language (OCL) to

express this derivation.

OCL is a precise and unambiguous language that offers benefits over the use of
diagrams to specify systems. For instance, different people cannot interpret

expressions written in such language differently.

The combination of UML and OCL offers the best of both languages to software
developers. To obtain a complete model, both the diagrams and the OCL

expressions are essential because without OCL the model becomes underspecified.

It is important to emphasize that OCL expressions alone are not possible because

they need UML elements to refer.

We must remember that our aim in this project is to develop a processor for OCL
2.0 expressions. Both UML and OCL are computable with different tools in order to
achieve a new abstraction layer in computer programming. This new programming

method is the case study of the next section.

Antonio Villegas Languages and Systems Department

17

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Conceptual Modeling | 2

2.6 MODEL DRIVEN ARCHITECTURE

Model-driven architecture (MDA) is a software design approach launched by the
Object Management Group (OMG, [MDAw]) in 2001. It is becoming an important

aspect of software development.

The keystones in MDA are the models. The aim of MDA is that a PIM (high-level
model) can be transformed into more than one PSM (low-level model). Therefore,
to develop a software system we only have to design its conceptual schema with all

constraints using UML and OCL respectively.

This is a new level of abstraction because programmers will change programming

languages for modeling languages.

2.6.1 MDA PROCESS

The MDA process is divided into three steps:

1. Build a Platform Independent Model (PIM), that is, a conceptual model of
our desired system, which is independent of any implementation

technology.

2. Transform the PIM into one or more Platform Specific Models (PSMs) that
are based on elements and concepts of the implementation in a specific

technology.
3. Transform such PSMs into code.

Therefore, first step is to model the system with a high-level technology-
independent language, as for example the combination of UML and OCL. Then we

convert such models with other ones that contain elements of the implementation

Antonio Villegas 18 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Conceptual Modeling | 2

technology chosen. For instance, we could convert our model into a Java model,

where UML classes are transformed into Java classes and so on.

Knowledge
Domain

'

PSM

'

source code

PSM PSM

Figure 2.4: Model-Driven Architecture

Finally, last step is to transform the Java model in our case into code. This

conversion process is easier that the one between PIM to PSMs.

2.6.2 A CLOSER REALITY

Most of software developers do not believe that MDA may change the future of
software development. In my opinion, MDA is still in development because to

achieve a MDA tool without problems need a big effort.

Antonio Villegas 19 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Conceptual Modeling | 2

Nevertheless, we think that it will become the next step in how to develop a
software system in a mid term. In the near future this new paradigm will obtain

the respect that deserves.

We should remember that people thought the same with assembler languages and
then with programming languages, so we have to wait to know if MDA will change
the way we develop software. Anyways, it is a very interesting framework to study
and we expect that our processor of OCL expressions could be a small contribution

to MDA’s cause.

Antonio Villegas Languages and Systems Department

20

Barcelona School of Informatics Technical University of Catalonia

METAMODELING 3

OCL| Expressions
2.8 Processor

Metamodeling | 3

3 METAMODELING

3.1 INTRODUCTION

Metamodeling is an activity that produces, among other things, metamodels. We
can define a metamodel as a precise definition of the constructs and rules needed

for creating models. It is possible to consider a metamodel as a model plan.

This chapter begins with an introduction to the different levels of representation of
real-world concepts. Next step is to deal with metaschemas, the basic elements in
metamodeling. As an example of metaschema we will show a simplified view of the

UML metamodel.

Finally, we will introduce the concept of meta-metaschema, whose best-known

representative is the Meta-Object Facility (MOF).

3.2 LEVELS OF REPRESENTATION

The classical framework for metamodeling is based on an architecture with four
layers of representation (see [Obj02]). These layers are described as follows

according to their abstraction level from bottom to top:

* The information layer is comprised of the data that we wish to describe or

model.

* The model layer is comprised of the metadata that describes the data in the

information layer. Such metadata is aggregated as models.

Languages and Systems Department

Antonio Villegas 22
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

* The metamodel layer is comprised of the description that defines the
structure and semantics of metadata. This meta-metadata is aggregated as

metamodels.

* The meta-metamodel layer is comprised of the description of the structure

and semantics of meta-metadata.

In the next figure we can see this four-layered architecture and the important

concepts over it placed in their correct layer.

<> /" META-METAMODEL LAYER N\
Class Meta-Object Facility
(MOF)
Meta-metaclasses]
METAMODEL LAYER 0\
| Property I
i Class DataType UML and OCL
w
q metamodels
UML metaclasses /
o
5 MODEL LAYER N
g User
Q name:String UML models
Fge'lnleger
UML class J
INFORMATION LAYER I
Real-world concepts
[| 4

Figure 3.1: Representation levels

Antonio Villegas 23 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Metamodeling | 3

As we will see at next sections, UML classes are instances of the UML metamodel

that is already an instance of the Meta-Object Facility meta-metamodel.

3.3 METASCHEMAS

At previous chapter we defined a conceptual schema as a representation of general
knowledge about a domain. Therefore, a metaschema can be defined as a schema

that represents knowledge about a schema.

Metaschema: a schema that represents knowledge about a schema.

Definition 3.1: Metaschema

The objects and relations of a domain are represented by symbols in a conceptual
schema. Thus, such representation is an instance of another model in an upper
level of abstraction. This model, or schema, contains information about the data in

the first-level schema, so it is a metaschema.

The UML metamodel is the metaschema that we will explain in this chapter
because it is the metaschema used in the Eina GMC tool and therefore in our OCL
2.0 expressions processor, due to UML is the modeling language used to write our

models.

3.4 THE UML METAMODEL

Since our purpose is to parse OCL 2.0 expressions related with an UML schema and
to instantiate them as instances of the OCL metamodel, to understand the UML
metamodel is mandatory in order to know how an UML model is represented as

instance of its metamodel.

Antonio Villegas Languages and Systems Department

24

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

In this section we will introduce a simplified version of the UML 2.0 metamodel in
order to make easier the understandability of the elements within such

metamodel. A full version can be found at the UML 2.0 superstructure [Obj07].

3.4.1 DIAGRAMS

At this point we show the relevant diagrams of the UML 2.0 metamodel. It is
important to note that blue-coloured classes are part of the OCL 2.0 metamodel

that will be explained at next chapters.

3.4.1.1 Elements

Element is the base concept in the UML 2.0 metamodel. It generalizes all the

components of the UML, as we will see in the next diagrams.

Element <<gnumeration=>=
VisibilityKind

public
private
protected
package

NamedElement

-name : String
-visibility : Visibility Kind
-/qualifiedName : String

TypedElement . ‘YPE| Type
0.1

Figure 3.2: UML 2.0 metamodel. Elements

Antonio Villegas Languages and Systems Department

25

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

On the other hand, NamedElement class represents all the elements that can have a
name. Furthermore, as a subclass of NamedElement we have TypedElement, which
obviously represents all the elements that can have a name and a type. Type class
is an abstract class that will be explained in a next diagram and represents the

possible different types that a TypedElement can have.

3.4.1.2 Multiplicity elements

A multiplicity is a definition of an inclusive interval of non-negative integers
beginning with a lower bound and ending with a (possibly infinite) upper bound. A
multiplicity element embeds this information to specify the allowable cardinalities

for an instantiation of this element.

Element TypedElement
FaAY
MultiplicityElement
+owningUpper +upperValue
-isOrdered : Boolean '51 0.1 ValueSpecification
-isUnigue : Boolean " "
:jmp:rr_: Il:tnelg;t:edlnteger towningLower +lowerValue
' 0.1 0.1
LiteralSpecification
thoralintogor

-value : Integer

Figure 3.3: UML 2.0 metamodel. Multiplicity element

Antonio Villegas Languages and Systems Department

26

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

A MultiplicityElement has two relations with ValueSpecification element

representing the upper and the lower multiplicities. In an association end 0..1

these two numbers are stored in these relations as instances of Literallnteger

metaclass. Note that such metamodel class has an Integer attribute where to place

these multiplicity numbers.

In our special case of the Eina GMC tool, when an association end has a multiplicity

of 1..*, the asterisk value is denoted with the Integer value -1.

3.4.1.3 Constraints

Next diagram deals with the representation of Constraints.

+constrainedElement| Element

-

Constraint

+ownigConstraint
==

+specification

-

ValueSpecification

0.1

Antonio Villegas

1

Expression

-symbol : String

ExpressioninOcl

Figure 3.4: UML 2.0 metamodel. Constraint

27

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

This element is the nexus between UML and OCL metamodels. It contains a relation
with an ExpressionlnOcl metaclass that belongs to the OCL 2.0 metamodel. All
constraints that can be defined are converted into instances of the OCL metamodel,

and ExpressionInOcl is the wrapper class of them.

When OCL metamodel will be explained, such class will be described with its

complete structure.

Furthermore, Constraint metaclass has a relation with general class Element,

representing the element where the constraint must be applied.

3.4.1.4 Generalizations

A generalization is a hierarchical relation between two Classifier instances. One of
these instances represents the general element while the other represents its

subclass, or specific element.

For example, in a model hierarchy with two classes, Fruit and Banana, where
Banana is subclass of Fruit, this relation is represented by means of a
Generalization class whose general Classifier is Fruit and whose specific Classifier

is Banana.

Namespace Type

Classifier ~ |+general : Generalization
1
-isAbstract : Boolean Jspecific +generalization | -isSubstitutable : Boolean
1 -

Figure 3.5: UML 2.0 metamodel. Generalization

Antonio Villegas Languages and Systems Department

28

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

Note that Classifier is a subclass of Type. So when Classifier subclasses will be

explained we will emphasize that they can be used as types for other elements.

3.4.1.5 Operations

To represent operations the UML metamodel provides the Operation metaclass.

Parameter

-direction : ParameterDirectionKind

Constraint

T +bodyCondition

Hitype| Type
0.1
Operation +operation +ownedParameter
-isQuery : Boolean 0.1 y
-/lisOrdered : Boolean
-fisUnigue : Boolean +preContext
-flower : Integer 0.1
-fupper : UnlimitedNatural
0.1 postContext —
+bodyContext 0.1 +precondition
+postcondition
0.1
0.1
<<gnumeration>=
ParameterDirectionKind
in
inout
out
return

Figure 3.6: UML 2.0 metamodel. Operations

Such class has a multiple relation with the Parameter metaclass that represents all

the parameters that an operation can own. Each Parameter instance has an

attribute indicating the direction of the represented parameter, i.e., in, in-out, out

or return.

Antonio Villegas

29

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

Operation also has a derived (pay attention to the slash before the association end)

relation with Type class. It is important to emphasize that it is derived due to the

fact that the type of an Operation is equal to the type of its parameter that has a

return direction, if it exists. So, to store the type of an operation we have to create

an instance of the Parameter class with a return direction and such type.

Finally, Operation metaclass has another three relations with Constraint metaclass

to store possible preconditions, postconditions or body expression written in OCL,

as we will explain when the OCL metamodel will be explained.

3.4.1.6 Classes and associations

This is one of the most important diagrams in the UML metamodel.

Classifier

+ownedAtribute

—plClass |2class
Jo..1
0.1
+class

-

-isDerivedUnion : Boolean

-aggregation : AggregationKind
-lisComposite : Boolean

+ownedOperation | Operation

I MultiplicityElement ’ Classifier
pay
StructuralFeature
Property Association
-isDerived : Boolean +memberEnd _ +association | _jsDerivedBoolean
-isReadOnly : Boolean 2. 0.1 yay

Antonio Villegas

<<gnumeration>>
AggregationKind

none
shared
composite

AssociationClass

Figure 3.7: UML 2.0 Metamodel. Classes and associations

30

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

Metamodeling | 3

Class metaclass represents UML classes. Such metaclass has a relation with
Property class that represents both the attributes owned by such class and the
association ends that are part of an association with such class as a member. In

concrete, it contains the association ends that are placed at such class end.

This is a change from UML version 1.1 because Property covers attributes and
association ends. Before that an Attribute and an AssociationEnd metaclasses were

within the metamodel.

Class also contains a relation with Operation class representing the operations

owned by a UML class.

The last elements are Association and AssociationClass. First of them represents an
association in a model and has relation with at least two Property instances

representing the association ends that are members in such association.

Furthermore, we have AssociationClass that is subclass of both Association and
Class. Therefore it represents an association (binary or with more than two
members) that has an associative class. Since is a subclass of Class metaclass,
AssociationClass can have the same relations with Property and Operation because

they are directly inherited.

Finally, it is important to note that both Class and AssociationClass are also valid
types to use because both are subclasses of Classifier, and therefore are indirectly

subclasses of Type.

3.4.1.7 Data types

Our last diagram deals with data types and enumerations. DataType metaclass

represents data types in the UML language. For example, Integer, Real, String or

Antonio Villegas 31 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Metamodeling | 3

Boolean types are instances of DataType int the UML language and are represented

by such metaclass in the UML metamodel.

On the other hand, enumerations are special UML types that can own a set of
elements specifying the values that such type can have. For example we can create
an enumeration called Gender that can have two values Male and Female. Such
enumeration is represented by the Enumeration metaclass, and its two values will
be EnumerationLiteral instances linked with such Enumeration through the

association shown in Figure 3.8.

Classifier

DataTypo

Enumeration [2enumeration +ownedLiteral g merationLiteral
0.1 *

Figure 3.8: UML 2.0 metamodel. Data types

So, we have seen all the essential metaclasses of the UML 2.0 metamodel along this
section. Some of them will be remembered when OCL 2.0 metamodel will be

explained.

Antonio Villegas 32 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Metamodeling | 3

3.5 META-METASCHEMAS

A meta-metaschema is a schema that represents general knowledge about a
domain consisting of a metaschema. The instances and relations in a metaschema

are represented by symbols in the meta-metaschema.

Meta-metaschema: a schema representing general knowledge about a
metaschema.

Definition 3.2: Meta-metaschema

So, meta-metaschemas are the highest level of representation of real-world
concepts. Metaschemas and meta-metaschemas can be written in the same

language or a different language.

The best-known meta-metaschema is the Meta-Object Facility (MOF) that will be

introduced at next section.

3.6 THE META-OBIJECT FACILITY (MOF)

The Meta-Object Facility is a meta-metaschema specified by the OMG [Obj02]. The
UML metaschema is an instance of the MOF, but it can also be the meta-

metaschema of other languages.

The MOF is also the basis of XMI, a metadata interchange language that will be

described at next chapter.

Figure 3.9 shows a simplified version of the MOF model that is similar than the
UML metamodel. MOF is smaller than the UML metaschema and both share
concepts like for example Class metaclass. But in MOF, Class is a meta-metaclass

whereas in the UML metaschema Class is an instance of the Class in MOF.

Languages and Systems Department

Antonio Villegas 33
Barcelona School of Informatics Technical University of Catalonia

Metamodeling | 3

Expressions
Processor

2.0

adsy adA], adAL ELEYS
adAy seny uonao) UONRIAWNUT] 2Umonng aanmuug
pazapio sy un) ¢
<0 <0
<0
A0UIAY anqumy uondaoxy uonniadQ ad<y mng SSRID) UONRIDOSSY
«0
sasodxiy) +
0] S43§3)
L \V4 V
pus EYCIEEN 2N03.J
UONTID0SSY NN S [PANOIADYS G 43Y1551)) afmyong
[
PI3L] FEET
IR monng WTISUO)) EXULEN 1GOZIDIEUS
SITYVIFUGEY
ad<y fo sp
¢ l\\\\\\\\\\\\\\\\\\\\\\i 0
iy | o
padsy WUIRIISUO)) drg, sondsawny woduig
0 / 0 /
paiapaoe

SuMsUO7)

ar sayoony

¢ pazapio
20

JuFwA
PO

« 0

An

SUIDIUO)

ug¢) spuadacy)

Figure 3.9: MOF metamodel extracted from [Obj02]

Languages and Systems Department

Antonio Villegas

Technical University of Catalonia

34

Barcelona School of Informatics

OCL| Expressions
2.8 Processor

Metamodeling | 3

On the other hand, MOF cannot be used as conceptual modeling language because
it lacks important features, such as association classes that are needed when

modeling.

Therefore as a conclusion we have to remember that real-world concepts can be
modelled using conceptual modeling languages like the UML. The resultant models
of this modeling process are instances of a metaschema that specifies and
describes the conceptual modeling language, like the UML metaschema for the

UML language.

Finally, each metaschema is an instance of a meta-metaschema that is a general
schema shared by most of languages. The use of meta-metaschemas allows
conversion from a language to others. For example, if we have a model written in
UML and we want to convert it into Entity-relationship (ER) model we only have to
go up in the abstraction hierarchy until the MOF instantiation of such model and
then convert such MOF representation into an ER instantiation going down. It is
possible because both the UML metaschema and the ER metaschema may have the

same meta-metaschema, i.e., the Meta-Object Facility.

Antonio Villegas 35 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Metamodeling | 3

Antonio Villegas Languages and Systems Department

36

e
Barcelona School of Informatics Technical University of Catalonia

XML METADATA INTERCHANGE 4.

OCL| Expressions
2.8 Processor

XML Metadata Interchange | 4

4 XML METADATA
INTERCHANGE

4.1 THE NEED OF SHARING INFORMATION

We live in a changing society where the information is an essential keystone.
Therefore sharing information is a task that we perform every day although we do

not realize it.

In order to be successful when you are involved in a software project, the main
task to do properly is the exchange of information between the different parts

implicated on it.

In our scope, the conceptual schemas are the guidelines and construction plans of
the building that represents our final software. So, to guarantee that this

information is accessible and understandable for everyone is a priority job.

Understandability is provided by the Unified Modeling Language because it is a
common standard language to model software systems. Moreover, to ensure the
accessibility of the conceptual schemas we have the help of general representation
languages that are very useful to share information between different formats of

representation in order to simplify this process of interchange.

The most common representation language as standard of data storing and
interchange language is the eXtensible Markup Language (XML), where is the basis
for the XML Metadata Interchange (XMI). The object of this chapter is the study of
the XMI.

Antonio Villegas Languages and Systems Department

38

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

XML Metadata Interchange | 4

4.2 XML AND ORIGINS

The Extensible Markup Language (XML, [XMLw]) is a general-purpose

specification for creating custom markup languages.

A markup language is a set of annotations to text that describe how it is to be
structured, laid out, or formatted. Markup languages have been in use for
centuries, and in recent years have also been used in computer typesetting and

word-processing systems.

XML is classified as an extensible language because it provides the functionality of
defining own elements. Its primary purpose is to facilitate the sharing of
structured data across different information systems, particularly via the Internet

where has become in a standard.

XML is also used both to encode documents and to serialize data. Its facility to be
processed makes both the data recovery and the data interchange process faster

and simple for everyone.

XML was born as a simplified subset of the Standard Generalized Markup Language
(SGML), which is a descendant of IBM’s Generalized Markup Language (GML),
created in the 1960s.

SGML was originally created to enable the sharing of machine-readable documents
in very large projects. Nevertheless, XML was designed to be relatively human-

readable.

As descendants of the XML, there has appeared a huge range of other languages
based on it, like XHTML, RSS or XMI.

Antonio Villegas 39 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

XML Metadata Interchange | 4

4.3 XML METADATA INTERCHANGE

The XML Metadata Interchange is a markup language descendant from XML. It is

an OMG standard for exchanging metadata information.

When two or more systems need to share information, their designers have to
agree with the format they use to represent such information in order to obtain a

success communication.

XMI simplifies this job because it provides a standard format to represent and
exchange data from a conceptual schema. For this reason, in our OCL 2.0
expressions processor we chose the XMI as a base format for to represent and

serialize our models.

Furthermore, most Computer Aided Software Engineering (CASE) tools use this
format to export the models made on them, and this situation implies that with
some little changes such XMI files representing models could be used with our

processor directly.

4.4 UML, MOF AND XVlI

XML Metadata Interchange (XMI) is a standard for representing data about
instances of types of MOF schemas in XML. Using XMI, two systems that share the
same MOF schema can exchange data about its instances in a standard way, and no

further explicit agreement is required.

In our case, we will use XMI to represent UML models through the UML

metamodel, which is a descendant of MOF, as we seen at previous chapter.

Antonio Villegas Languages and Systems Department

40

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

XML Metadata Interchange | 4

XMl rules can be applied to obtain an XML representation of any set of instances of
classes, attributes and associations of any schema whose classes, attributes, and

associations are instances of the corresponding MOF classes.

Since the UML metaschema is a schema whose classes, attributes and associations
are instances of the corresponding MOF classes, the instances of the UML
metaschema can be represented using XMI. That is, we can use XMI rules to

achieve a standard XML representation of UML schemas.

4.5 XMI REPRESENTATION OF UML SCHEMAS

A complete presentation of XMI can be found at [GDBO0Z2]. In this section we only

show how to represent in XMI a conceptual schema made in UML.

The overall structure of an XMI document representing a UML model with classes

and relations is:

<xmi:XMI xmi:version = “2.1” xmlns:xmi = “http://www.omg.org/XMI">
<!-- Classes and relations -->

</xmi :XMI>

Example 4.1: Overall structure of a XMI file

Note that all concepts inside a markup language like XMI are represented between
angle brackets (‘<’ and ‘>"). Furthermore, such concepts are placed inside tags. A
tag is a wrapper that starts with an open structure like <xmi:XMI ... > and ends
with a close one like </xmi:XMI>. It is important to emphasyze that all tags must
have both open and close marks. Special tags starting with <!-- and ending with -->

are considered comments.

Antonio Villegas Languages and Systems Department

41

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

XML Metadata Interchange | 4

All the concepts inside an outer concept are members of such concept. For
instance, in the Example 4.1 all the concepts placed inside the xmi:XMI tag are

members of such tag.

Within this hierarchical tree structure all elements must be placed according to
their conceptual schema. Therefore, this structure is easy to process with a single-

sweep depth algorithm.

Student o Subject
+participant study +subject
-name : String | . . |=name : String
-age : Integer -area . String
+responsability
Teacher
0..1 teach
-name : String | , ible
-range : String responsi

Figure 4.1: Simple conceptual schema

This previous conceptual model will be our example to know how to represent a

conceptual schema in UML into an XML file according to the rules of the XMI.

First of all we will show the representation of the Student class with its owning
attributes in XMI format. Note that both attributes have the reference of their type.
In this case there are two DataType classes representing the String type and the

Integer Type, respectively DT1 and DT2.

Antonio Villegas a2 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

. :
gcaL p?ﬁfiﬁ:frm XML Metadata Interchange | 4

Furthermore, some extra information for each attribute is shown, like boolean

attributes indicating if it is composite or derived.

<Class xmi:id = “Cl” name = “Student” isAbstract = “false”>
<ownedAttribute xmi:id = “Al” name = “name” lower = 1 upper = 1
isComposite = “false” isDerived = “false”>

<type xmi:type = "DT1"”/>
</ownedAttribute>

<ownedAttribute xmi:id = “A2” name = “age” lower = 1 upper = 1
isComposite = “false” isDerived = “false”>

<type xmi:type = "DT2"/>
</ownedAttribute>
</Class>

Example 4.2: XMI representation of an UML class

Once we have introduced a little part of our resulting XMI file, the next step is to

show the whole file in order to study its particularities.

<xmi:XMI xmi:version = “2.1” xmlns:xmi = “http://www.omg.org/XMI"”>
<l!-Data types -->
<DataType xmi:id = “DT1” name = “String”>
<DataType xmi:id = “DT2” name = “Integer”>
<!-- Classes -->
<Class xmi:id = “Cl” name = “Student” isAbstract = “false”>
<ownedAttribute xmi:id = “Al” name = “name” lower = 1
upper = 1 isComposite = “false” isDerived = “false”>
<type xmi:type = ”“DT1”/>
</ownedAttribute>
<ownedAttribute xmi:id = “A2” name = “age” lower = 1
upper = 1 isComposite = “false” isDerived = “false”>
<type xmi:type = ”“DT2"/>
</ownedAttribute>
</Class>
<Class xmi:id = “C2” name = “Subject” isAbstract = “false”>
<ownedAttribute xmi:id = “A3” name = “name” lower = 1
upper = 1 isComposite = “false” isDerived = “false”>
<type xmi:type = ”“DT1”/>
</ownedAttribute>
<ownedAttribute xmi:id = “A4” name = “area” lower = 1
upper = 1 isComposite = “false” isDerived = “false”>
<type xmi:type = ”“DT1”/>

</ownedAttribute>

Antonio Villegas 43 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

XML Metadata Interchange | 4

</Class>

<Class xmi:id = “C3” name = “Teacher” isAbstract = “false”>
<ownedAttribute xmi:id = “A5” name = “name” lower = 1
upper = 1 isComposite = “false” isDerived = “false”>

<type xmi:type = "“DT1"”/>
</ownedAttribute>

<ownedAttribute xmi:id = “A6” name = “range” lower = 1
upper = 1 isComposite = “false” isDerived = “false”>

<type xmi:type = "“DT1"”/>
</ownedAttribute>

</Class>

<!-- Relations -->

<Association xmi:id = “AS1” name = “study” memberEnd = “PR1
PR2" />

<Association xmi:id = “AS1” name = “teach” memberEnd = “PR3
PR4" />

<Property xmi:id = “PR1” name = “participant” lower = 0 upper
= * isComposite = “false” isDerived = “false” type = “Cl”
association = “AS1”/>

<Property xmi:id = “PR2” name = “subject” lower = 0 upper = *
isComposite = “false” isDerived = “false” type = “C2”
association = “AS1”/>

<Property xmi:id = “PR3” name = “responsible” lower = 0 upper
= 1 isComposite = “false” isDerived = “false” type = “C3”
association = “AS2"/>

<Property xmi:id = “PR4” name = “responsibility” lower = 0
upper = * isComposite = “false” isDerived = “false” type =
“C2" association = “AS2"/>

</xmi :XMI>

Example 4.3: XMI representation of UML model shown at Figure 4.1

It is important to note that for each Property representing the association ends it is
shown its multiplicity and the type of the UML class where it belongs.

Furthermore, the identifier of the association where it participates is also shown.

In next chapters we will see more examples of conceptual schemes represented in
XMI language, but we will see that they will have some differences in their syntax

compared with the XMI shown here.

This is a common problem about standards. Although XMI is a standard, different
people can interpret it in different ways, and therefore, this is the cause of the

existence of some small differences in the syntax of the language. Furthermore, to

Antonio Villegas a4 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

XML Metadata Interchange | 4

use different version of the UML metamodel is another cause for differences in the

XMI format.

As we will see, Eina GMC designers and programmers met this problem and to
solve it, they implemented the XMI Converter. This software tool converts XMI files

from CASE tools to the inner format of Eina GMC and vice versa.

To summarize, we have seen the possibilities of XMI and how to represent UML
models into an XML file in order to serialize and share our model data. This

representation is done according to a UML metaschema instance of MOF.

Antonio Villegas a5 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

XML Metadata Interchange | 4

Antonio Villegas 46 Languages and Systems Department
e
Barcelona School of Informatics Technical University of Catalonia

EINA GMC: A CONCEPTUAL MODELING ENVIRONMENT 5

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

5 EINA GMC: A CONCEPTUAL
MODELING ENVIRONMENT

5.1 WHATIS EINA GMC?

Eina GMC [EINw] is a project developed by members of the Research Group in
Conceptual Modeling of Information Systems (GMC, [GMCw]) from the Technical
University of Catalonia (UPC, [UPCw]) and the Open University of Catalonia (UOC,
[UOCw]).

The aim of this project is to provide a full environment for working with
conceptual schemas specified with both the Unified Modeling Language (UML) and
the Object Constraint Language (OCL).

5.2 EINA GMC CORE

The best way of get in touch with the Eina GMC conceptual environment is through
its Start Guide document that can be found at [GMCO07]. All the concepts explained
along this chapter are described in detail at such document and we consider highly

recommendable to read it.

The Core of Eina GMC is a library written in Java, which helps working with
conceptual schemas. It provides a set of classes implementing the UML 2.0 and OCL

2.0 metamodels.

A conceptual schema is an instantiation of UML and OCL metamodels. Therefore,

using the Eina GMC Core it is possible to instantiate conceptual schemas as a set of

Antonio Villegas Languages and Systems Department

48

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Eina GMC: A Conceptual Modeling Environment | 5

Java objects. Furthermore, these schemas can be stored in XMI files, as we will see

when we explain the XMI Converter.

Implements

jocveranoce: N idese |
= T Instance - |‘ Instance

I [

Figure 5.1: Eina GMC Core (Image from [EINw])

With the Eina GMC Core, the development of applications and functionalities

related with conceptual modeling in a Java framework is a reality.

In our context, we are interested in processing OCL 2.0 expressions for to
instantiate them into the OCL 2.0 metamodel, so this library allows us this

behaviour.

As we explained earlier, our project is placed in the context of the Eina GMC
project, and our aim is to extend this tool with the processing of OCL 2.0
expressions. Before the development of our project, if someone needs to
instantiate an OCL 2.0 constraint into the Eina GMC conceptual environment
metamodel, he or she has to program such conversion by instantiating each

metaclass for each current constraint element.

Before our project, this person only has to write the OCL 2.0 constraint and call our
processor with it. All the instantiation into the metamodel is made automatically
and we can be centred only in conceptual modeling tasks, not in conversions or

compilers programming.

Antonio Villegas 49 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

Therefore, saving time is one of the consequences of our processor of OCL 2.0

expressions.

5.3 OTHER COMPONENTS

In this section we will explain the different components that conform the Eina GMC

conceptual environment and complements the Core of such tool.

=
‘d_-.s-
= y 9 9 g 4
MC XM Cardinality
L Edition Constraints “MI200T & u w u u >
Conversor Ilaace Checker Conversor

Figure 5.2: Components of the Eina GMC (Image from [EINw])

Our intention is not to show the details of these components because it can be
found in [EINw]. We only want to explain what is the purpose of each one and also

to give a brief description.

5.3.1 XMI CONVERTER

This is the most useful component of the Eina GMC, after the Core. It allows
conversion between XMI files representing a conceptual schema from CASE tools
format to Eina GMC format and vice versa. With this conversion we can see in a
graphical way inside Poseidon conceptual schemas made by Eina GMC Core. In the

current version the only CASE tool supported by now is Poseidon For UML.

Antonio Villegas 50
Barcelona School of Informatics Technical University of Catalonia

Languages and Systems Department

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

5.3.2 XMI EDITION INTERFACE

The XMI Edition Interface is a graphical user interface (GUI) that allows editing
XMI files representing conceptual schemas from Eina GMC in order to create new

UML elements like classes, attributes or associations.

It allows us to avoid the programming task of doing changes in a conceptual

schema.

5.3.3 CARDINALITY CONSTRAINTS CHECKER

This component allows us to check the satisfiability of conceptual schemas
expressed in the Eina GMC format. For example, to verify that there exists a set of
instances that can be instantiated in a conceptual schema or if the cardinalities of a

set of relations are correct.

5.3.4 XMI2DOT CONVERTER

The XMI2DOT converter allows creating a DOT file with the graphical
representation of the conceptual schema specified in an EinaGMC XMI file. Images
(JPG, GIF, PNG...) can be generated from the DOT file using Graphviz tools. The
current version allows converting a subset of UML elements, which is specified in

the documentation of such component that can be found at [EINw].

54 HOW TO USE IT

Eina GMC can be used in two different ways. The simple way is using Eina GMC for
drawing the conceptual model directly within Poseidon For UML [PFUw], and then
export it to an XMI file and convert it to Eina GMC format through the XMI

Converter component.

Antonio Villegas Languages and Systems Department

51

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

Once we have the saved XMI file, we can open it with Eina GMC in order to add

changes or modifications with the XMI Edition Interface.

The complex way of using Eina GMC is by constructing the conceptual model and
its instantiation directly with such library in a Java program. The Eina GMC
conceptual environment provides a facade class for each UML and OCL metaclass

that allows the necessary methods to create and instantiate such elements.

With such facades we can create a conceptual schema and the store it in an XMI file

that can be shared or converted into the Poseidon format.

At next section we will study a simple conceptual schema specified in the UML
language and the two existing methods to instantiate it into the UML metamodel of

the Eina GMC tool.

5.5 AN EXAMPLE

To show how to use the Eina GMC tool we will start from a simple model and we
will follow the necessary steps until obtain an XMI file representing such

conceptual schema as instances of the UML metamodel.

First of all we present the model that represents our case study. It contains only
five UML classes and one associative class, but we can see that a lot of common

constructions appear on it.

We have a hierarchy of classes with Person class as general class and two

subclasses under it, Employee and Client.

Furthermore, inside this conceptual schema there are two different relations, one

of these has an associative class.

Antonio Villegas Languages and Systems Department

52

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Eina GMC: A Conceptual Modeling Environment | 5

We chose this conceptual schema its constructions usually appear in most

conceptual models that one can imagine.

Person
-hame:String
-age:lnteger
Employee Client
-salary:Real -idClient:Integer
-isPremium:Boolean
+employee | 1.%
T I Work
* H-employer -years:Integer
Company -range:string
Department
0.1 -hame:String
i
o~
w

Figure 5.3: Conceptual model to practice with Eina GMC tool

Antonio Villegas Languages and Systems Department

53

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Eina GMC: A Conceptual Modeling Environment | 5

5.5.1 INSTANTIATION THROUGH POSEIDON FOR UML

First of all it is important to own a copy of Poseidon For UML [PFUw] CASE tool

installed in our computer.

000 modelo - Poseidon for UML Professional Edition

Fichers Editar Ver Creardiagrama Aweglar Generacion Flug-lns Ayuda
ROEESHE & % @ 9 <8 $EDRAe RRAERRREMA
indice de paquetes B modelo 1.1 ‘
D(entvadncneldiagvama QI Ebia? /I\ -p v E(aé Q v i : BB AD. ,.!.‘.‘ﬁ 2

2] Centrado en el paquete

@ P modelo 1 (4]
- Djid Boolean
D iteger -namesString]

s -ageilnteger
- Dt Real

> B Work
? B e
B years
- B modelo 1.1
- By java
- B Client E Employee Client
t B idClient -salary:Real ~idClientinteger
B isPremium Q i Boolean d
- B Company
B work +employee | 1.
? +— employee LI U S) o R Work
+— employer « |+ employer

-years Integer
o— Company -> Department Company -range:String

Person

— company =

— department
>~ B Department

> B Employee 0.1 -name:String
pBrpeson [I

0 ol

.mmwew \ - = © © OB ouen X ®- O 2 Al]
|| | Bropiedates | Estilo | Documentacién | | [I 1
=] I) o B modelo 1.1 ® (=] Nombre l"‘“""““ ‘ 5
= ° - - B pepartment Espacio de nombres [modelo 1 -3
$ 100%| I~ E Company | Zoomfactor =

Wrote /Users /lotendil / Desktop. [

Figure 5.4: Poseidon For UML

With such tool we can create a class diagram representing the model shown at

Figure 5.3.

Once we have modelled this conceptual schema, we have to export it to an XMI file.
To do this task we have to open the File menu and select the “Export Project to

XMI...” option.

Then, another window is open where we have to deselect the option that indicates

if we want to store diagram information inside the XMI file.

Antonio Villegas Languages and Systems Department

54

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Eina GMC: A Conceptual Modeling Environment | 5

i e 06 modelo - Poseidon fi

:Eicrhero | Editar Mer Crear diagrama Arreglar Generacion Plug-Ins Ayuda
D Nuevo proyecto Comando-N |~ | &) @ y @ ab 6@ @ E
f‘) Abrir proyecto... Comando-0 ; modelol.l l

Guardar proyecto Comando-$ AT BBz2E4$ - BQ=* ¢

Guardar proyecto como...

ST

Person
e Importar proyecto...

B¢ . -name:String
e Import files -age:integer

L Exportb;tuect to XMI...
Guardar graficos...

“ 4 Imprimir... Comando-P
=

Imprimir diagramas...
Print Preview...

E(‘ii Salir Alt-F4 Employee Cli

-salary:Real -idClient:
-isPremiu

{Users{lotendil/Desktop/modelo.xmi @
fUsersflotendil/.../multiPxmi.zuml -

fUsersflotendil/Desktop/.../pos.xmi
fUsersflotendil/Des.../pos.xmi.zuml +employee | 1..*
fUsersflotendil/Deskt... /multiP.xmi

5 +— employer * |+ employer —years:|

&— Company -> Department Company -range:

(f- — company

Figure 5.5: Export option inside Poseidon For UML

This diagram information consists in graphical information like how are placed the
elements in the class diagram, so it does not contain relevant information,

therefore we choose to avoid it.

Once we have exported the model into an XMI file the next step is to convert it into
the Eina GMC format. To do this task we have the XMI Converter tool. To use it we
only have to write a Java program that creates an instance of the

ConverterToEinaGMC class and call the convert method as shown at Example 5.1.

Antonio Villegas 55 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Eina GMC: A Conceptual Modeling Environment | 5

OO0 Export Project to XMI...: modelo

Save |n: lu Desktop E" I@ QJ |QJ |@

) FUPC __| modeloeinaxmi [T] save with diagram data
U Imagenes

) Inglés

U models

J PrC

() sablecc-2.18.2
U Trabajo

U Universidad
|| modeloxmi

File Name: |modeloxmi |

Files of Type: |Imercambiu de Metadatos XML (*.xmi) E]l

Guardar || Cancelar]

Figure 5.6: Export window inside Poseidon For UML

ConverterToEinaGMC ctgmc = new ConverterToEinaGMC();

ctgmc.convert ("poseidon.xmi", "eina.xmi", "Poseidon");

where poseidon.xmi is the XMI file created on Poseidon For UML and
eina.xmi is the output file in Eina GMC format.

Example 5.1: Conversion from Poseidon For UML to Eina GMC format

The last step is to open the new XMI file with the Eina GMC conceptual
environment. We only have to create an instance of Project class and import the

XMI file with the importXMI(“xmi-path”) method applied to such instance.

It is important to note that to do these steps we need a copy of the Eina GMC
library and the XMIConverter in our computer. These libraries can be found at

[EINw].

Antonio Villegas Languages and Systems Department

56

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

5.5.2 DIRECT INSTANTIATION

As we explained earlier, the complex way of instantiating a conceptual schema is
creating each UML element inside such schema through the facade classes of the

Eina GMC library.

At next example we will see how to use such facades in order to instantiate the

model shown at Figure 5.3.

It is important to note that to specify a multiplicity through direct instantiation we
have to know that infinite cardinalities are specified with a -1 number
representing the * symbol in the XMI format for the Eina GMC tool. Therefore, an

association end with cardinality 1..* is represented by values 1, -1.

public static void makeModel() throws Exception {
Project p = new Project();

// Facade classes (Eina GMC uses UmlClass instead of Class
// because Class is a reserved word in Java)

UmlClassFacade ucf = new UmlClassFacade(p);
PropertyFacade pf = new PropertyFacade(p);
DataTypeFacade dtf = new DataTypeFacade(p);
LiteralIntegerFacade 1lif = new LiteralIntegerFacade(p);

// Creation of the basic types

DataType integer = dtf.createDataType();
DataType real = dtf.createDataType();
DataType booleantype = dtf.createDataType();

DataType string dtf.createDataType();
integer.setName("Integer");

real.setName("Real");

booleantype.setName("Boolean");

string.setName("String");

// Creation of the UML Classes

UmlClass person = ucf.createUmlClass();
UmlClass employee = ucf.createUmlClass();
UmlClass client = ucf.createUmlClass();
UmlClass company = ucf.createUmlClass();
UmlClass department = ucf.createUmlClass();

person.setName("Person");
employee.setName("Employee");
client.setName("Client");

Antonio Villegas 57 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

company.setName ("Company") ;
department.setName("Department");

// Creation of the owned attributes for the previous classes

Property personName = pf.createProperty();
Property personAge = pf.createProperty();
Property employeeSalary = pf.createProperty();
Property clientId = pf.createProperty();
Property clientIsPremium = pf.createProperty();
Property departmentName = pf.createProperty();

// Set name and type
personName.setName("name") ;
personName.setType(string);
personAge.setName("age");
personAge.setType(integer);
employeeSalary.setName("salary");
employeeSalary.setType(real);
clientId.setName("idClient");
clientId.setType(integer);
clientIsPremium.setName("isPremium");
clientIsPremium.setType (booleantype);
departmentName.setName("name");
departmentName.setType(string);

// Place attributes into their owner UML class
personName.setUmlclass (person);
personAge.setUmlclass (person) ;
employeeSalary.setUmlclass (employee);
clientId.setUmlclass(client);
clientIsPremium.setUmlclass(client);
departmentName.setUmlclass (department);

// Creation of the Person hierarchy
GeneralizationFacade gf = new GeneralizationFacade(p);
gf.createGeneralization(person, client);
gf.createGeneralization(person, employee);

// Create association between Company and Department
AssociationFacade af = new AssociationFacade(p);

// These are the two association ends
Property companyEnd = pf.createProperty();
Property departmentEnd = pf.createProperty();

companyEnd.setType (company) ;
departmentEnd.setType (department) ;

// Create and set the multiplicity 0..1 to Company end
LiteralInteger lowermultiplicity = lif.createLiteralInteger();
LiteralInteger uppermultiplicity = lif.createLiteralInteger();
lowermultiplicity.setvValue(0);
lowermultiplicity.setVisibility(VisibilityKindEnum.PUBLIC);
uppermultiplicity.setValue(1l);
uppermultiplicity.setVisibility(VisibilityKindEnum.PUBLIC);

Antonio Villegas Languages and Systems Department

58

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

companyEnd.setLowerValue (lowermultiplicity);
companyEnd.setUpperValue (uppermultiplicity);

// Create and set the multiplicity 0..* to Department end
LiteralInteger lowmultiplicity2 = lif.createLiterallInteger();
LiteralInteger uppmultiplicity2 = lif.createLiterallInteger();
lowmultiplicity2.setValue(0);
lowmultiplicity2.setVisibility(VisibilityKindEnum.PUBLIC);
uppermultiplicity2.setvValue(-1); // -1 indicates *
uppermultiplicity2.setVisibility(VisibilityKindEnum.PUBLIC);
departmentEnd.setLowerValue(lowmultiplicity2);
departmentEnd.setUpperValue (uppmultiplicity2);

LinkedList ends = new LinkedList();

ends .add (companyEnd) ;

ends.add(departmentEnd) ;

Association companytodepartment = af.createAssociation(ends);

// Create association between employee and company with
// associative class Work
AssociationClassFacade acf = new AssociationClassFacade(p);

// These are the two association ends
Property companyEnd2 = pf.createProperty();
Property employeeEnd = pf.createProperty();
companyEnd2.setType (company) ;
companyEnd2.setName("employer");
employeeEnd.setType (employee) ;
employeeEnd.setName("employee") ;

// Create and set the multiplicity 0..* to Company end
LiteralInteger lowmultiplicity3 = lif.createLiterallInteger();
LiteralInteger uppmultiplicity3 = lif.createLiterallInteger();
lowmultiplicity3.setValue(0);
lowmultiplicity3.setVisibility(VisibilityKindEnum.PUBLIC);
uppmultiplicity3.setValue(-1); // -1 indicates *
uppmultiplicity3.setVisibility(VisibilityKindEnum.PUBLIC);
companyEnd2.setLowerValue (lowmultiplicity3);
companyEnd2.setUpperValue (uppmultiplicity3);

// Create and set the multiplicity 1..* to Employee end
LiteralInteger lowmultiplicity4 lif.createLiteralInteger();
LiteralInteger uppmultiplicity4 lif.createLiteralInteger();
lowmultiplicity4.setValue(1l);
lowmultiplicity4.setVisibility(VisibilityKindEnum.PUBLIC);
uppmultiplicity4.setValue(-1); // -1 indicates *
uppmultiplicity4.setVisibility(VisibilityKindEnum.PUBLIC);
employeeEnd.setLowerValue (lowmultiplicity4);
employeeEnd.setUpperValue (uppmultiplicity4);

LinkedList ends2 = new LinkedList();
ends2.add(companyEnd2) ;
ends2.add(employeeEnd) ;

Antonio Villegas Languages and Systems Department

59

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment

AssociationClass work = acf.createAssociationClass(ends2);
work.setName ("Work") ;

// Create the owned elements of Work associative class
Property years = pf.createProperty();

Property range = pf.createProperty();
years.setName("years");

years.setType(integer);

years.setUmlclass (work);

range.setName("range");

range.setType(string);

range.setUmlclass (work) ;

// Store the conceptual schema into an XMI file

p.saveXMI (" /Documents/models/newmodel.xmi") ;
p.closeProject();

Example 5.2: Java program that instantiates the conceptual schema found at Figure 5.3

It is important to emphasize that in the same way we have created our model we

are able to modify it with the setter methods that exists on each element class.

5.5.3 XMI OUTPUT FILE

Finally, the same output XMI file for both methods should have the similar content

than as follows.

<?xml version = '1.0' encoding = 'ISO-8859-1' 2>
<XMI xmi.version = '1.2' xmlns:uml = 'org.omg.xmi.namespace.uml'
timestamp = 'Fri May 02 18:27:15 CEST 2008'>
<XMI.header>
<XMI.documentation>
<XMI.exporter>Netbeans XMI Writer</XMI.exporter>
<XMI.exporterVersion>1.0</XMI.exporterVersion>
</XMI.documentation>
</XMI.header>
<XMI.content>

<uml2.Kernel.Property xmi.id = 'al' name = 'employee'>
<uml2.Kernel.MultiplicityElement.lowervValue>
<uml2.Kernel.LiteralInteger xmi.id = 'a2' visibility = 'public'
value = '1'/>
</uml2.Kernel.MultiplicityElement.lowerValue>
<uml2.Kernel.MultiplicityElement.uppervValue>
<uml2.Kernel.LiteralInteger xmi.id = 'a3' visibility = 'public'
value = '-1'/>
</uml2.Kernel.MultiplicityElement.upperValue>
<uml2.Kernel.TypedElement.type>
Antonio Villegas 60 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

<uml2.Kernel.Class xmi.idref = 'a
</uml2.Kernel.TypedElement.type>
<uml2.Kernel.Property.association>

<uml2.AssociationClasses.Associat
</uml2.Kernel.Property.association>

</uml2.Kernel.Property>
<uml2.Kernel.Property xmi.id = 'a6' n

4'/>

ionClass xmi.idref =

<uml2.Kernel.MultiplicityElement.lowerValue>

<uml2.Kernel.LiteralInteger xmi.i
value = '0'/>
</uml2.Kernel.MultiplicityElement.1l
<uml2.Kernel.MultiplicityElement.up
<uml2.Kernel.LiteralInteger xmi.i
value = '-1'/>
</uml2.Kernel.MultiplicityElement.u
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.Class xmi.idref = 'a
</uml2.Kernel.TypedElement.type>
<uml2.Kernel.Property.association>
<uml2.AssociationClasses.Associat
</uml2.Kernel.Property.association>
</uml2.Kernel.Property>
<uml2.Kernel.Property xmi.id = 'al0'>

ame = 'employer'>
d = 'a7' visibility
owerValue>

perValue>
d = 'a8' visibility

pperValue>

9'/>

ionClass xmi.idref =

<uml2.Kernel.MultiplicityElement.lowervValue>

<uml2.Kernel.LiteralInteger xmi.i
value = '0'/>
</uml2.Kernel.MultiplicityElement.1l
<uml2.Kernel.MultiplicityElement.up
<uml2.Kernel.LiteralInteger xmi.i
value = '-1'/>
</uml2.Kernel.MultiplicityElement.u
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.Class xmi.idref = 'a
</uml2.Kernel.TypedElement.type>
<uml2.Kernel.Property.association>
<uml2.Kernel.Association xmi.idre
</uml2.Kernel.Property.association>
</uml2.Kernel.Property>
<uml2.Kernel.Property xmi.id = 'al5'>

d = 'all' visibility
owerValue>
pervValue>
d = 'al2' visibility

pperValue>

13'/>

f = 'al4'/>

<uml2.Kernel.MultiplicityElement.lowerValue>

<uml2.Kernel.LiteralInteger xmi.i
value = '0'/>
</uml2.Kernel.MultiplicityElement.1l
<uml2.Kernel.MultiplicityElement.up
<uml2.Kernel.LiteralInteger xmi.i
value = '1'/>
</uml2.Kernel.MultiplicityElement.u
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.Class xmi.idref = 'a
</uml2.Kernel.TypedElement.type>
<uml2.Kernel.Property.association>
<uml2.Kernel.Association xmi.idre
</uml2.Kernel.Property.association>
</uml2.Kernel.Property>
<uml2.Kernel.DataType xmi.id = 'al8'
<uml2.Kernel.Type. typedElementOfTy
<uml2.Kernel.Property xmi.idref =

d = 'alé' visibility
owerValue>
perValue>
d = 'al7' visibility

pperValue>

9'/>

f = 'ald'/>

name = 'String’'>
pe>
'al9'/>

'a5'/>

'public’

'public’

'a5'/>

'public’

'public’

'public’

'public’

0CL
2.0

<uml2.Kernel.Property xmi.idref = 'a20'/>
<uml2.Kernel.Property xmi.idref = 'a2l'/>

</uml2.Kernel.Type. typedElementOfType
</uml2.Kernel.DataType>

>

<uml2.Kernel.DataType xmi.id = 'a22' name

<uml2.Kernel.Type. typedElementOfType>

= 'Boolean'>

<uml2.Kernel.Property xmi.idref = 'a23'/>

</uml2.Kernel.Type. typedElementOfType
</uml2.Kernel.DataType>

>

<uml2.Kernel.DataType xmi.id = 'a24' name = 'Real'>

<uml2.Kernel.Type. typedElementOfType>

<uml2.Kernel.Property xmi.idref = 'a25'/>

</uml2.Kernel.Type. typedElementOfType
</uml2.Kernel.DataType>

>

<uml2.Kernel.DataType xmi.id = 'a26' name = 'Integer'>
<uml2.Kernel.Type. typedElementOfType>
<uml2.Kernel.Property xmi.idref = 'a27'/>
<uml2.Kernel.Property xmi.idref = 'a28'/>
<uml2.Kernel.Property xmi.idref = 'a29'/>

</uml2.Kernel.Type. typedElementOfType
</uml2.Kernel.DataType>
<uml2.Kernel.Class xmi.id = 'al3' name =

<uml2.Kernel.Type. typedElementOfType>

>

'Department '>

<uml2.Kernel.Property xmi.idref = 'al0'/>

</uml2.Kernel.Type. typedElementOfType
<uml2.Kernel.Class.ownedAttribute>
<uml2.Kernel.Property xmi.id = 'a20'
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref
</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>
</uml2.Kernel.Class.ownedAttribute>
</uml2.Kernel.Class>
<uml2.Kernel.Class xmi.id = 'a9' name =
<uml2.Kernel.Type. typedElementOfType>

>

name = 'name'>

'al8'/>

Company '>

<uml2.Kernel.Property xmi.idref = 'a6'/>
<uml2.Kernel.Property xmi.idref = 'al5'/>
</uml2.Kernel.Type. typedElementOfType>
</uml2.Kernel.Class>
<uml2.Kernel.Class xmi.id = 'a30' name = 'Client'>
<uml2.Kernel.Classifier.generalization>
<uml2.Kernel.Generalization xmi.id = 'a3l'>

<uml2.Kernel.Generalization.general>
<uml2.Kernel.Class xmi.idref = 'a32'/>
</uml2.Kernel.Generalization.general>

</uml2.Kernel.Generalization>

</uml2.Kernel.Classifier.generalization>

<uml2.Kernel.Class.ownedAttribute>
<uml2.Kernel.Property xmi.id = 'a28'
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref
</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>
<uml2.Kernel.Property xmi.id = 'a23'
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref

name = 'idClient'>

'a26' />

name = 'isPremium'>

'a22'/>

OCL| Expressions
2.8 Processor

Eina GMC: A Conceptual Modeling Environment | 5

</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>
</uml2.Kernel.Class.ownedAttribute>
</uml2.Kernel.Class>

<uml2.Kernel.Class xmi.id = 'a4' name = 'Employee'>
<uml2.Kernel.Type. typedElementOfType>
<uml2.Kernel.Property xmi.idref = 'al'/>

</uml2.Kernel.Type. typedElementOfType>
<uml2.Kernel.Classifier.generalization>

<uml2.Kernel.Generalization xmi.id = 'a33'>
<uml2.Kernel.Generalization.general>
<uml2.Kernel.Class xmi.idref = 'a32'/>

</uml2.Kernel.Generalization.general>
</uml2.Kernel.Generalization>
</uml2.Kernel.Classifier.generalization>
<uml2.Kernel.Class.ownedAttribute>

<uml2.Kernel.Property xmi.id = 'a25' name = 'salary'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'a24'/>

</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>
</uml2.Kernel.Class.ownedAttribute>
</uml2.Kernel.Class>
<uml2.Kernel.Class xmi.id = 'a32' name = 'Person'>
<uml2.Kernel.Classifier. generalizationOfGeneral>
<uml2.Kernel.Generalization xmi.idref = 'a33'/>
<uml2.Kernel.Generalization xmi.idref = 'a3l'/>
</uml2.Kernel.Classifier. generalizationOfGeneral>
<uml2.Kernel.Class.ownedAttribute>

<uml2.Kernel.Property xmi.id = 'a2l' name = 'name'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'al8'/>

</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>

<uml2.Kernel.Property xmi.id = 'a29' name = 'age'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'a26'/>

</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>
</uml2.Kernel.Class.ownedAttribute>
</uml2.Kernel.Class>
<uml2.Kernel.Association xmi.id = 'al4d'>
<uml2.Kernel.Association.memberEnd>
<uml2.Kernel.Property xmi.idref 'als'/>
<uml2.Kernel.Property xmi.idref = 'al0'/>
</uml2.Kernel.Association.memberEnd>
</uml2.Kernel.Association>

<uml2.AssociationClasses.AssociationClass xmi.id = 'a5' name='Work'>
<uml2.Kernel.Class.ownedAttribute>
<uml2.Kernel.Property xmi.id = 'a27' name = 'years'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'a26'/>

</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>
<uml2.Kernel.Property xmi.id = 'al9' name = 'range'>
<uml2.Kernel.TypedElement.type>

Antonio Villegas 63 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Eina GMC: A Conceptual Modeling Environment | 5

<uml2.Kernel.DataType xmi.idref = 'al8'/>
</uml2.Kernel.TypedElement.type>
</uml2.Kernel.Property>
</uml2.Kernel.Class.ownedAttribute>
<uml2.Kernel.Association.memberEnd>
<uml2.Kernel.Property xmi.idref = 'a6'/>
<uml2.Kernel.Property xmi.idref = 'al'/>
</uml2.Kernel.Association.memberEnd>
</uml2.AssociationClasses.AssociationClass>
</XMI.content>
</XMI>

Example 5.3: XMI file relative to Figure 5.3 model

It is important to note that some fields (e.g., isAbstract, isDerived, isStatic, and
others) that appear into the real XMI file have been deleted here in order to

improve the understandability of the XMI.

Antonio Villegas 64 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

THE OBJECT CONSTRAINT LANGUAGE 6

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6 THE OBJECT CONSTRAINT
LANGUAGE

6.1 WHATIS THE OCL?

The Object Constraint Language (OCL, [Obj06]) is a modeling language defined
within the Unified Modeling Language (UML, [Obj07]). It is the standard for
specifying expressions that complete the information of object-oriented models

and other software artifacts.

Initially, OCL was only a formal specification language extension to UML but now it

can be used with other modeling languages beyond UML.

OCL is a descendant of Syntropy, an object-oriented modelling language, and it was
firstly used in a business-modelling project within IBM. Its design is based on both

formality and simplicity.

The OCL syntax is very understandable and it is easy to use for everyone familiar
with programming language concepts, according to its design as a declarative

language.

This language was firstly added to UML at version 1.1 and was restricted to
constraints definition. In UML 2.0, it was extended in order to provide support for

defining queries, pre and post conditions, derivation rules or initializations.

To conclude this introduction, we can affirm that without OCL, the application of
the Model Driven Architecture is bound to fail, because using UML alone is not

enough.

Antonio Villegas Languages and Systems Department

66

Barcelona School of Informatics Technical University of Catalonia

Processor

E [. .
rpreson The Object Constraint Language | 6

6.2 A CONCEPTUAL SCHEMA EXAMPLE

In this chapter we will introduce the whole allowed constructions defined at the
OCL formal specification in its version 2.0. The example of Figure 6.1 will be used

to illustrate the features of the language.

Channel

-name : String
-description : String

1.

Administrator Transactioh?l/
+deleteFile(String title) |
Transaction
-day : Integer
-month : Integer
-year : Integer +Besronse .
1.° -
T ~ File
Y title : String
-nickname : String -size : Real
-password : String Vote Upload -description : String
-age : Integer - - -views : Integer
-mail * Stri -value : Integer -ispublic : Boolean
+friend mail : String ege ~
-~ +getNumOfFiles() : Integer viownedFile
1| viowner Comment
-message : String
<<gnumeration=>>
Quality Video Image Audio Text
high -length : Integer -resolution : Quality -length : Integer -pages : Integer
mid -definition : Quality -sound : Quality -author : String
low

Figure 6.1: Model for the upload and share system example

Nowadays, due to the growing proliferation of web sites where to upload and

share multimedia files like videos, photos or audio files, we decided to introduce a

Antonio Villegas Languages and Systems Department

67

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

possible conceptual schema describing one of such web systems as our base

example. Such schema can be shown in Figure 6.1.

At this diagram we can find a hierarchy of files representing the multimedia files
that can be present into the system. We introduce four types of subclasses of File
abstract class: Video, Audio, Image and Text. These are the different files to upload

and share.

Furthermore, the User class represents the users of the system, and maintains a
derived relation with File class in order to indicate which user is the owner of each

file, i.e., the one that uploads such file.

Between File, User and Channel classes there is a ternary association with an
associative class representing the transactions that users can do. There are three
kinds of transactions and every one store the current data when is executed. Note
that the representation of the ternary association is made by means of a rhombus

shape.

Users can comment a file, vote it or upload a new one. It is important to note that
an upload can be described as a response to another previous uploaded file.

Furthermore, the Channel indicates where is the thematic of such file.

Moreover, users can define who are their friends. There exists a subclass of User,
the Administrator, which has the power of delete files that can be unsuited for

sharing into the system.

This simple model will allow us to explain the expressions and constructions of the
Object Constraint Language 2.0 with examples over it. If needed, it will be

completed with extra classes, attributes, operations or relations.

Antonio Villegas Languages and Systems Department

68

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.3 OCL 2.0 EXPRESSIONS

Along this section our aim is to introduce the different elements that can be used
inside OCL 2.0 expressions. First of all we will describe the different types and
literals that conforms the basis of the language, with a mention to the standard

operations over them.

Furthermore, we show the concept of iterator expression and the possibilities of

navigation through the different elements of an UML model.

6.3.1 BAsIC TYPES

Our first step in the learning phase of the OCL 2.0 language is the explanation of

the basic types that will be used as constants within the expressions.

These types are basic data types and are well-known concepts for those that have

experience with programming languages.

6.3.1.1 Integer

This is a numbered type, whose instances are all the numbers that can be written
without fractional or decimal component, including both their negatives and O.

Examples of Integer numbers can be shown below.

w-3,-2,-1,01,2,..,256,257, 258, ...,10234, ..., 45674, ... and so on

Example 6.1: Integers

It is important to note that in the OCL 2.0 language, the Integers are not written
separating thousands by neither dot nor comma symbols. All the digits are written

preceding the previous one without any character between them.

Antonio Villegas 69 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.3.1.2 Real

It is another numbered type, whose instances are all the numbers that exist, and

therefore the Integers are a subset of them.

There are different notations to use in order to write Real numbers. Furthermore,

to separate the decimal component the dot sign is used.

At next examples we will show all the three different notations.

1)..-3,-2,-1,0, 1, 2, ..., 256, 257, 258, ..., 10234, ... like the Integers.

2) 23.56, 45.0001, 0.00001, -0.9873 using the dot .’ to separate the
decimal component from the integer one.

3) 3.6e45, 3.6e+45, 3.6e-45, 3.6E45, 3.6E+45, 3.6E-45 using the
exponential notation for big or litte numbers.

Example 6.2: Reals

6.3.1.3 String

This basic type is used to represent arrays of characters, like words. The notation
for using Strings within OCL 2.0 expressions is very simple. It is only necessary to
brace the alphanumerical characters representing each array of characters with

single quotation marks.

‘This is a large String’ like the next one
‘Numbers are allowed’ likein '3456'
* + denotes the empty String.

Remember to use single quotation marks ‘1ike here’ instead of double
ones “like here”. Double quotation marks are not allowed.

Example 6.3: Strings

A useful example of how to write Strings in the OCL 2.0 is shown above.

Antonio Villegas 70 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

6.3.1.4 Boolean

Our last basic type is the Boolean type. It is useful to denote if something is true or

not. Its instances are only two keywords: true and false.

Boolean values: true (positive, or 1) and false (negative, or 0)

Example 6.4: Boolean values

As itself indicates, true represents a positive affirmation and false a negative
affirmation. They are useful in conditions and comparisons, or as members in

logical operations.

6.3.2 BASIC OPERATIONS

At this point, we are going to show the operations that can be used with the basic

types explained before.

6.3.2.1 Integer and Real operations

The following operations are the ones that work with numbers as much Integers as

Reals.

Results in the addition value of two
+ numbers. If one of these numbers is Real, the
result of applying this operation is also Real.

3 + 2 = Integer
3+ 0.9 = Real

Results in the subtraction value of two
= numbers. If one of these numbers is Real, the
result of applying this operation is also Real.

4 - 1 = Integer
5-7.9 = Real

Results in the multiplication value of two
& numbers. If one of these numbers is Real, the
result of applying this operation is also Real.

5*9 = Integer
3.5* 3 = Real

Antonio Villegas 71 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

Unary operation that changes the symbol of

the number that precedes. The result type of —3 = Integer
applying this operation is the same of its -2.56 = Real
source data.

Binary operation that results in the value of

the first operand divided by the value of the 5 / 2 = Real
/ second one. It can be used with both Integer

and Real numbers. However, the result is

always a Real number.

4.7 /] 6 = Real

Similar than / division but only for Integer. It
div cannot be used with Real numbers, and the
result of applying it is always Integer.

6.div(5) = Integer
4.div(2) = Integer

Unary operation that returns the absolute
abs value of the source data. This operation can
be used with Integer or Real numbers.

1.abs() = Integer
(-5.7).abs() = Real

Binary operation that results in the
remainder of dividing the first number by the

mod one between parentheses. This operation
cannot be used with Real numbers, and its
result is always Integer.

6.mod(4) = Integer
2.mod(3) = Integer

Real unary operation that results in the (5.2).floor() = Real
floor largest integer that is less or equal to the 0.9\ 41 e
source operand. (0.9).floor() = Rea

Real unary operation that results in the (3.4).round()=Real
round Integer value that is closest to the source
operand. (-2.3).round()=>Real

Binary operation that results in the
max maximum of the two Integer or Real
operands.

4.max(4.5)=Integer
(1.2).max(0)= Real

Binary operation that results in the 5.min(3)= Integer

min minimum of the two Integer or Real ;
operands. (9.9).min(4)=>Real
) Binary operation that returns true if the first 4.5 <4 = Boolean
operand is less than the second one. 2 < 8 = Boolean
. Binary operation that returns true if the first 6 > 4.4 = Boolean

operand is greater than the second one. 16 > 15 = Boolean

Antonio Villegas 72 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

Relational binary operation that results in a 4t .- 4 — Boolean
<= Boolean value according to if the first

operand is less or equal than the second one. 2 <=8=Boolean

Relational binary operation that results in a

Boolean value according to if the first 6 >=4.4=> Boolean
operand is greater or equal than the second 16 >=15 = Boolean
one.

Relational binary operation that results in a
= Boolean value according to if the first
operand is equal than the second one.

56 = 4 = Boolean
16 = 16 = Boolean

Relational binary operation that results in a 4t .5 44 — Boolean
<> Boolean value according to if the first

operand is distinct than the second one. 1 <>1= Boolean

Table 6.1: Integer and Real operations

It is important to note that there are operations that can be used with both Integer

and Real numbers because Integers are a subset of Reals, as we explained before.
6.3.2.2 String operations
At this point, the String operations are introduced into Table 6.2.

Relational binary operation that results in
= a Boolean value according to if the first
operand is equal than the second one.

‘hello’=‘bye’=Boolean
‘John’=John’=Boolean

Relational binary operation that results in 33 .s4q’—Boolean
<> a Boolean value according to if the first

operand is distinct than the second one. Joe’<>Joe’=Boolean

Results in the Integer value indicating the
size number of characters of the source
operand.

‘Maria’.size()=Integer
’.size() = Integer (0)

Results in the concatenation String of the
concat two operands present in this binary
operation.

‘a’.concat(‘b’) = String
‘U.S’.concat(‘.A’)=String

Antonio Villegas Languages and Systems Department

73

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

substring

tolnteger

toReal

Unary operation that results in the sub-

String of the source String starting from ‘Linux’.substring(3,4)

start index to the end index. Both indexs = ‘nu’String

must be Integer numbers.

Converts the source String into an Integer
number if possible.

Converts the source String into a Real
number if possible.

Table 6.2: String operations

It is important to remember that String constants are always written between

single quotation marks ‘’ but not with double quotation marks

6.3.2.3 Boolean operations

To conclude the basic operations, we introduce the operations that work with

28’ .tolnteger()=Integer

7.9’.toReal()=Real

o

Boolean values. Remember that these values can be only true or false.

<>

or

Xor

and

Antonio Villegas

Relational binary operation that results in a
Boolean value according to if the first Boolean
operand is equal than the second one.

Relational binary operation that results in a
Boolean value according to if the first Boolean
operand is distinct than the second one.

Logical binary operation that results in the
Boolean value true according to if at least one of
the two operands is true.

Logical binary operation that results in the
Boolean value true according to if either one of
the two operands is true, but not both.

Logical binary operation that results in the
Boolean value true according to if both of the
two operands are true.

74

true = true
true = false

false <> true
true <> true

true or true
false or true

true xor true
false xor true

true and true
true and false

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

Logical unary operation that results in the nottrue

not .
Boolean value opposite than the source one not false

Logical binary operation than returns Boolean
implies value true if first operand is false or if it is true
and the second one is also true.

true implies true
false implies true

Table 6.3: Boolean operations

So, inside these three previous tables all the basic operations and their explanation
and usage are contained. Such operations are well known for those that have

experience in mathematics, logic or programming languages.

6.3.3 COLLECTIONS

Collections are structured data types that allow encapsulating more than one

element of a same type inside.

There are four kinds of collections in the OCL 2.0 language: Set, Bag, OrderedSet,
and Sequence. A Set is a container where each element inside appears only one
time. Therefore, it does not contain duplicate elements. On the other hand, a Bag is

like a Set but with duplications allowed.

Moreover, OrderedSet and Sequence are the same as Set and Bag in which the

elements are ordered.

All of these constructions can be used as literals inside OCL 2.0 expressions in the
same way we can use Integers, Reals, Strings or Booleans within them. Therefore,
to know the explicit notation to use with such constructions is mandatory in order

to advance a step in the comprehension of the OCL 2.0 language.

Antonio Villegas 75 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.3.3.1 Collection literals

At next example we can see how to use collections as literals and which are the

main differences between the four kinds of collections.

Set Literals:
set{5, 4, 9, 6, 1, 0} isa SetofInteger.
Set{6.5, 99.34, 6123.45, 0.001, 45e+12} isa Setof Real.
Set{’this’, ‘is’, ‘a’, ‘set’} isa SetofString.
Set{true, false} isa Setof Boolean.

Set{l..10, 30..(30+2)} is the same Set of Integer than Set{1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 30, 31, 32}

Bag Literals:
Bag{5, 4, 5, 6, 5, 0}isa Bag ofInteger.
Bag{5.98, 7, 8, 7, 5.98, 4}isa Bag of Real.
OrderedsSet Literals:
OrderedSet{l, 2, 5, 8, 11, 25, 67} isan OrderedSet of Integer.

OrderedSet{’any’, ‘ball’, ‘dance’, ‘eat’} isan OrderedSet of
String.

Sequence Literals:
Sequence{-3, -3, -2, -1, 0, 1, 1, 1} isaSequence of Integer.
Sequence{2.45, 2.46, 2.46, 2.47} isa Sequence of Real.
Sequence{’bed’, ‘class’, ‘class’, ‘do’} isa Sequence of
String.

Example 6.5: Collection literals

Note that to construct a collection literal we use the kind name of the collection
preceding the inside elements, which are written separated by commas and braced

with curly brackets.

As shown before, an OrderedSet or Sequence of String is ordered following the

alphabetical order of the characters from left to right.

Antonio Villegas 76 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

Furthermore, to define a range we can use two delimiter numbers separated by

two dots between them, as shown at last Set literal of the Example 6.5.

6.3.3.2 Collections of collections

In addition, to define a collection inside another collection is allowed. This way we
can use a collection literal as an element member of another outer collection.
Nevertheless, it is important to note that if we use collections inside collections, we
cannot also use primitive literals like Integers, Reals, Strings or Booleans in the

same element level than a collection literal.

To clarify this behaviour we present the following example showing what is and

what is not allowed working with collections of collections.

Set{set{1, 3, 5}, set{9, 12, 2}} isavalid Set of Sets of Integer.

Set{set{1, 3, 5}, 8, set{9, 12, 2}} isnota valid Set of Sets of
Integer because it mixes collection literals and primitive literals as
elements inside a collection. The 8 Integer literal cannot be used here.

A correct version of the previous Set could be as follows:
Set{set{1, 3, 5}, set{8}, set{9, 12, 2}}

An inverse solution is to avoid using collections of collections like in:
set{1, 3, 5, 8, 9, 12, 2}

Example 6.6: Collections of collections

6.3.4 COLLECTION TYPES

In some OCL 2.0 constructions it is necessary to define a type. Examples of these
constructions are the let expressions, the iterate construction or the parameter

description inside a new operation defined in a def constraint.

As we will study these constructions in next sections, it is important to know how

to define a collection type.

Antonio Villegas 77 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

Notation: ‘CollectionKindName’ + ‘(“ + ‘ElementType’ + ‘)’

Examples:
Set (Integer) is a collection type of a Set of Integer
Set (Set(Integer)) is a collection type of a Set of Sets of Integer
Bag(Set (Real)) is a collection type of Bag of Sets of Real
OrderedSet (String) is a collection type of OrderedSet of String
Sequence (Sequence (Sequence(Real))) is a collection type defining
a Sequence of Sequences of Sequences of Real.

Set (User) is a collection type defining a Set of User objects.
Remember that User is a UML class of our previous example model to
constraint and a UML class can be used as a Type.

Example 6.7: How to define a collection type

In the example above we have shown ways of how to define collection types. It is
important to observe that here we use parentheses to brace the type of the
element inside a collection type whereas with collection literals we use curly

brackets.

6.3.5 BASIC COLLECTION OPERATIONS

At this section we will introduce the operations that appear in the OCL 2.0

specification as allowed to be applied to collections.

First of all we show the basic operations and then at next section we will explain

the concept of iterator over a collection, including its notation and behaviour.

6.3.5.1 General collection operations

All the operations over collections defined here can be applied to any kind of
collection, so they can be used with a Set, a Bag, an OrderedSet and a Sequence. For
each operation its notation and usage are shown, including a sample description of

what it does with the source collection.

Antonio Villegas 78 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor

ocL
2.0

The Object Constraint Language | 6

In all of the next usage notations in the following tables, a collection will be noted

with the C character. Furthermore, T will denote the type of the elements inside

the collection C. Finally the word elm indicates an object element.

size

includes

excludes

count

includesAll

excludesAll

isEmpty

notEmpty

sum

product

Operation without parameters that returns an
Integer representing the number of elements in
the source collection.

It returns true if the parameter is included
inside collection C. Such element must have the
same type as the elements of the collection.

It returns true if the parameter is not included
inside collection C. Such element must have the
same type as the elements of the collection.

Return the number of times the parameter
element occurs in the source collection.

Returns true if all the elements in collection C2
are members of the C collection. Both
collections must have compatible elements to
be correct.

Returns true if all the elements in collection C2
are not members of the C collection. Both
collections must have compatible elements to
be correct

Returns true if the collection has no elements.

Returns true if the collection has elements
inside.

Returns the addition of the elements inside the
collection. These elements must support the +
operation (e.g., Integers or Reals).

It is the Cartesian product of C with C2. Returns
a Set containing tuples of two elements, where
first one belongs to C and second one belongs
to C2.

Table 6.4: Collection operations

Antonio Villegas

79

C->size()
returns Integer

C->includes(elm:T)
returns Boolean

C->excludes(elm:T)
returns Boolean

C->count(elm:T)
returns Integer

C->includesAll(C2)
returns Boolean

C->excludesAll(C2)
returns Boolean

C->isEmpty()
returns Boolean

C->notEmpty()

returns Boolean

C->sum()
returns elm:T

C->product(C2)
returns Set(Tuple)

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

6.3.5.2 Bag operations

At this point we will introduce the Bag operations. B character indicates a Bag

here, and S a Set.

B =B2

= Returns true if both Bags are equal.
returns Boolean

This operation can have a Bag or a Set

as a parameter. Returns the parameter B->union(B2 or S)
elements including the source returnsBag
elements in a new Bag.

union

Returns the collection parameter with
intersection only the elements that also appear
inside the source Bag.

B->intersection(B2 or S)
returns Bag or Set

Returns the Bag with the source Bag B->including(elm:T)

includin
& elements plus the parameter. returns Bag
. Returns the source Bag without the B->excluding(elm:T)
excluding
element parameter. returns Bag
I— Returns the number of occurrences of B->count(elm:T)
the element in the source Bag. returns Integer
If the source Bag is a collection of
collections, it results in the Bag B->flatten()
flatten ..
containing all the elements of all the returns Bag
elements of it.
_ _ B->asBag()
asBag Returns a Bag identical to source one.
returns Bag
Returns a Sequence containing all the B->asSequence()
asSequence . .
source elements in undefined order. returns Sequence
asSet Returns the Set containing all the B->asSet()

source elements without duplicates. returns Set

Returns an OrderedSet containing all
B->asOrderedSet
asOrderedSet the source elements without 0

duplicates, in undefined order. returns OrderedSet

Table 6.5: Bag operations

Antonio Villegas Languages and Systems Department

80

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

6.3.5.3 Set operations

In this section we will show the Set operations.

union

intersection

including

excluding

symmetric
Difference

count

flatten

asSet

asBag

Antonio Villegas

Returns true if both Sets are equal.

Returns the parameter including
the elements belonging to the
source Set. The input parameter
can be a Bag or a Set.

Returns a Set with only these
elements that appear inside both
the source Set and the parameter.

Returns a Set with the elements of
the source Set, which are not in the
parameter.

Returns the Set with the source Set
elements plus the parameter.

Returns the source Set without the
element parameter.

Returns the set containing all the
elements that are in source Set or
S2 parameter, but not in both.

Returns the number of
occurrences of the element in the
source Set.

If the source Set is a collection of
collections, it results in the Set
containing all the elements of all
the elements of it. If not, the source
Set is returned.

Returns a Set identical to source
one.

Returns a Bag identical to source
Set.

81

S=S2
returns Boolean

S->union(S2 or B)
returns Set or Bag

S->intersection(S2 or B)
returns Set

S->0i(S2)
returns Set

S->including(elm:T)
returns Set
S->excluding(elm:T)

returns Set

S->symmetricDifference(S2)
returns Set

S->count(elm:T)
returns Integer

S->flatten()
returns Set

S->asSet()
returns Set

S->asBag()
returns Bag

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

Returns a Sequence containing all S->asSequence()
asSequence the source elements in undefined

order. returns Sequence

Returns an OrderedSet containing S->asOrderedSet
asOrderedSet all the source elements without asOrderedSet()

duplicates, in undefined order. returns OrderedSet()

Table 6.6: Set operations

Note that when an operation has a parameter, it has to be compatible to the source
Set or the elements inside it, according to whether the parameter is a collection or

an element.

6.3.5.4 OrderedSet operations

At this section the OrderedSet operations are shown. The character O identifies an

OrderedSet, and I an Integer value.

Returns the source OrderedSet 0->append(elm:T)

append containing the parameter at last

position. returns OrderedSet
repend Returns the source OrderedSet with O->prepend(elm:T)
prep the parameter at first position. returns OrderedSet
. Returns the source OrderedSet with O->insertAt(i:l, elm:T)
insertAt

the parameter inserted at position i. returns OrderedSet

Returns an OrderedSet containing the 0->subOrderedSet(i:Li:]
subOrderedSet elements of the source OrderedSet SO EEREY R RRD

placed between i and j positions. returns OrderedSet

Returns the element of the source O->at(i:l)

at e
OrderedSet at position i. returns elm:T

Returns the Integer value indicating 0->indexOf(elm:T
indexOf the position of the parameter inside indexOf{elm:T)

the source OrderedSet. returns Integer

Antonio Villegas Languages and Systems Department

82

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

Returns the first element of the source O->first()
OrderedSet. returns elm:T

first

last

Returns the last element of the source O->last()
OrderedSet. returns elm:T

Table 6.7: OrderedSet operations

6.3.5.5 Sequence operations

In this section the Sequence operations are shown.

Sequence, and I an Integer value.

count

union

flatten

append

prepend

insertAt

subSequence

Antonio Villegas

Returns true if both sequences operands
are equal.

Returns the number of occurrences of
the element in the source Sequence.

Returns the parameter including the
elements belonging to the source
Sequence.

If the source Sequence is a collection of
collections, it results in the Sequence
containing all the elements of all the
elements of it. If not, the source
Sequence is returned.

Returns the source Sequence containing
the parameter at last position.

Returns the source Sequence containing
the parameter at first position.

Returns the source Sequence with the
parameter inserted at position i.

Returns a Sequence containing the
elements of the source Sequence placed
between i and j positions.

83

S character identifies a

S=S2
returns Boolean

S->count(elm:T)
returns Integer

S->union(S2)
returns Sequence

S->flatten()
returns Sequence

S->append(elm:T)
returns Sequence
S->prepend(elm:T)
returns Sequence
S->insertAt(i:I,elm:T)
returns Sequence

S->subSequence(i:1,j:I)
returns Sequence

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

Returns the element of the source S->at(i:l)

at cee .
Sequence at position i. returns elm:T

Returns the Integer value indicating the S->indexOf(elm:T
indexOf position of the parameter inside the indexOfelm:T)

source Sequence. returns Integer

Returns the first element of the source S->first()

first
Sequence. returns elm:T
last Returns the last element of the source S->last()
Sequence. returns elm:T
includin Returns the Sequence with the source S->including(elm:T)
& Sequence elements plus the parameter. returns Sequence
excludin Returns the Sequence without the source S->excluding(elm:T)
& Sequence elements plus the parameter. returns Sequence
asBag Returns a Bag containing all the source S->asBag()

elements. returns Bag

S->asSequence()

asSequence Returns a Sequence like the source one.
returns Sequence

Returns a Set containing all the source S->asSet()

asSet : .
elements without duplicates. returns Set

Returns an OrderedSet containing all the S->asOrderedSet

asOrderedSet . .
source elements without duplicates. returns OrderedSet

Table 6.8: Sequence operations

Once we have studied all the collection operations it is important to note that such
operations use the arrow operator (->) to link the source collection with the

operation header.

Although the distinct (<>) operation is not specified in the OCL 2.0 specification for
collections, we think that to use it is not a mistake. Therefore, we assume that all

the collection kinds can be applied as operands of such relational operation.

Antonio Villegas 84 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.3.6 ITERATORS

Once we know how to use collection as literals and which are the operations that
can be used with them, the next step is to study another special constructions that

also have a collection as source: the iterators.

These constructions provides a powerful way of create new collections from
existing ones. All the inner elements of a collection are scanned and in many cases

all of them that fulfill a condition are returned.

The notation of the iterator expressions can be written in three ways of

complexity. At next example we can see how to write them properly.

Simple notation:

collection->iteratorName (expression)

Notation with iterator variables:

collection->iteratorName(vl,..,vn|expression-with-v’s)

Notation with typed iterator variables:

collection->iteratorName(vl,..,vn:Type|expression-with-v’s)

Example 6.8: Iterators notation

The notation with iterator variables implies that such variables may appear into
the body expressions of the iterator. Furthermore, the type of these variables must

be compatible with the type of the elements inside the source collection.

If the type is not specified, it will be used the same type of the inner elements of the
source collection. Therefore it is important to know what is the type of such

element before using an iterator expression.

At next table we will introduce the different iterators that are specified into the
OCL 2.0 specification file that can be found at [Obj06]. The C character identifies a

collection here.

Antonio Villegas Languages and Systems Department

85

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

SELECT

C->select(boolean-exp)
C->select(v|boolean-exp-with-v)
C->select(v:Type|boolean-exp-with-v)
REJECT

C->reject(boolean-exp)
C->reject(v|boolean-exp-with-v)
C->reject(v:Type|boolean-exp-with-v)

Returns a subcollection of the source
collection containing all elements for
which boolean-exp is true

Returns a subcollection of the source
collection containing all elements for
which boolean-exp is false.

Returns the collection of elements that

COLLECT results from applying exp to every
C->collect(exp) element of the source collection. If such
C->collect(v|exp) elements are already collections, it just

returns their inner elements but not the

C->collect(vTypelexp) collection at all

COLLECT NESTED
C->collectNested(exp)
C->collectNested(v|exp-with-v)

Returns the collection of elements that
results from applying exp to every
element of the source collection.

C->collectNested(v:Type|exp-with-v)
FOR ALL

C->forAll(boolean-exp)
C->forAll(v|boolean-exp-with-v)
C->forAll(v:Type|boolean-exp-with-v)
EXISTS

C->exists(boolean-exp)
C->exists(v|boolean-exp-with-v)
C->exists(v:Type|boolean-exp-with-v)
IS UNIQUE

C->isUnique(exp)
C->isUnique(v|exp-with-v)

Returns true if the boolean-exp
evaluates to true for each element in the
source collection.

Returns true if boolean-exp evaluates to
true for at least one element in the
source collection.

Returns true if exp evaluates to a
different value for each element in the
source collection

C->isUnique(v:Type|exp-with-v)
ANY

C->any(boolean-exp)
C->any(v|boolean-exp-with-v)
C->any(v:Type|boolean-exp-with-v)

Returns any element in the source
collection for which boolean-exp
evaluates to true.

Antonio Villegas Languages and Systems Department

86

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

ONE

C->one(boolean-exp)
C->one(v|boolean-exp-with-v)
C->one(v:Type|boolean-exp-with-v)

Returns true if there is exactly one
element in the source collection for
which boolean-exp is true.

SORTED BY Returns an OrderedSet or a Sequence,
depending on if source collection has
duplicates, with the same elements than

source collection but ordered according
C->sortedBy(v:Type|exp-with-v) to exp.

C->sortedBy(exp)
C->sortedBy(v|exp-with-v)

Table 6.9: Iterators

Even if in the previous table we only have shown iterators with one variable, we

can use as much variables as we need.

6.3.7 TUPLES

Another structured data type similar to collections are the Tuples. These are also

containers of other data elements but in this case such elements can have different

types.

Each element belonging to a tuple is identified by its name and has a type and a
value. At next example we will show an example of tuple literal in order to

understand their notation.

Tuple{number:Integer=0, word:String='my String’}

is a tuple with two fields, number and word. First one is an Integer, which
value is 0, and second one is a String with ‘my String’ as its value.

Therefore, to create a tuple literal we begin with the keyword Tuple
followed with an expression between curly brackets. Inside such
expression each field of the tuple appears with its name (required) and
type (optional) separated for a colon and preceding its value (required)
with an equal sign. Each field description is separated with commas.

Example 6.9: Tuple literals

Antonio Villegas Languages and Systems Department

87

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

It is important to note that the way of access to a field of a tuple literal is using the

dot *” operator. At following example we show some accesses to tuple fields.

Tuple{number:Integer=0, word:String='my String’}.number = 0
Tuple{a:String='a’, b:Integer=10, c:Real=0.1l}.c = 0.1

Tuple{b:Set(Integer)=Set{l..10}, d:Real=1.1l}.b =
set{1,2,3,4,5,6,7,8,9,10}

With these examples we can see different ways of define a tuple literal
and access one of its fields. The third example is interesting because it
declares a Set as its first field.

Example 6.10: Access to tuple fields

6.3.8 TUPLE TYPES

In the same way we explained how to declare a collection type, at this section we

will introduce the concept of tuple type and its notation into the OCL 2.0 language.

At next example we show the notation, which is similar than such that was used to

define collection types.

TupleType(a:Integer, b:Real, c:String, d:Boolean) is a tuple
type with four fields. It is important to note that both the name and the
type of each field are required. In this case, the value of each field cannot
be used here.

TupleType(a:TupleType(al:Integer,a2:Real), b:Set(Real))

We also can define tuple types as a field type inside a tuple type as in the
previous example.

Be carefully with the collection and tuple type declaration because they
use common parentheses instead of curly brackets, which are only used
when defining literals.

Example 6.11: Tuple types

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

Once we have seen how to define a tuple type, we can use it to define tuple literals

as fields of another outer tuple literal, as in next example:

Tuple{a:TupleType(al:Real,a2:Real)=Tuple{al:Real=0.2,
a2:Real=0.3},b:Real=0.1}.a.al = 0.2

To define a tuple literal inside another tuple literal as a field, we have to
do the same than explained at Example 6.9. So we can access to this inner
tuple literal by its name, as in the previous example. In this case we use ‘a’
to acces the first field, and then we access to ‘al’ attribute of this inner
tuple literal resulting in the 0.2 Real.

Example 6.12: Tuple literals inside tuple literals

6.3.9 NAVIGATIONS

Working with UML model elements is a basic task when using the OCL 2.0
language to create constraints. Therefore, to know how to access to different
elements of a model from one specific location is mandatory. These accesses are

known as navigations through the model.

If we remember the schema presented in Figure 6.1 at the beginning of this
chapter, we can find classes, attributes, operations and relationships between

classes.

At next subsections we will explain how to navigate over them in an OCL 2.0

expression. This will be useful to make complex constraints in an easiest way.

6.3.9.1 Attributes

First of all we will be centred into the concept of attribute and the access to it from

an UML class.

Antonio Villegas 89 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

We can define an attribute as a class member field, which is identified by a name
and a type. For example, in our model we have the UML class User that has four

attributes: nickname and password Strings, an Integer named age, and another

String representing a mail direction.

In

inside a Class we must fix such class as current context, and then to access the

the OCL 2.0 language, if we want to apply a constraint or rule to an attribute

attribute by its own name.

But if we are in the middle of an expression that has a UML class as a result type,

we can access its attributes like we did in tuple literals. At next example we can see

how it works.

Imagine that p is a Set of User instances and we want to apply the forAll
operation to it:

p->forAll(ul,u2:User|ul.nickname = u2.nickname
implies ul = u2)

As you can see, we have defined two iterator variables inside the forAll
iterator, and both variables have the same type than the source collection
elements. In this case, it is a Set of User, so both ul and u2 have User as
type, and User is an UML class.

Therefore, as we explained before, the body expression of a forAll iterator
must be Boolean. We access to the nickname attribute of User class by
means of the dot "." notation as in tuple literal case.

In this body expression we compare the nickname attributes of two
instances of User. This comparison can be made because such attributes
are Strings and the equality operation is defined for this data type. With
the implies operation we have indicated that if both instances have the
same nickname they are the same instance.

This is a way of note that nickname attribute is the identifier of the UML
class User and must be different for all its instances.

Example 6.13: Access to attribute of class

It is important to emphasize that with the dot *’ notation we can access to both

attributes of class and fields of tuple literals.

ocL

Expressions

2.8 Processor

The Object Constraint Language | 6

6.3.9.2 Association ends and association classes

Another element of an UML model is the association. To navigate over an

association we should use the role name of the opposite end in the association with

the dot ‘.’ notation.

If such role name is not specified, the class name in the opposite end must be used

instead. Furthermore, when the association has more than two ends (e.g., ternary

or quaternary associations) to navigate from one end to another it is mandatory to

pass through the association class representing such association. If the association

class does not appears the name of the relation should be used instead.

+friend

Channel

-name : String
-description : String

User

-nickname : String
-password : String
-age : Integer
-mail : String

Transactioh:;/

Transaction
-day : Integer
-month : Integer
-year : Integer
FAY
Vote Upload
-value : Integer -ispublic : Boolean

+getNumOfFiles() : Integer

1| viowner

Comment

-message : String

48.?’.54)0[158

File

-title : String

-size : Real
-description : String
-views : Integer

-

+/ownedFile

Antonio Villegas

91

Figure 6.2: Associations

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

0CL
2.0

At next example we will show how to navigate through associations.

If we have a variable u, which type is User class:

u.ownedFile navigates from User to File classes and results in a Set of
File.

u. friend navigates from User to User class and results in a Set of User.

u.file is not a valid navigation because exists and associative class and
the association has more than two members. In this case to go through
such class is mandatory to navigate to the opposite end.

A solution for this case should be: u.transaction.file which results in
a Bag of File. It is important to note that the name of the classes in a
navigation must be used with the first character in lower-case.

Example 6.14: Navigate through associations

The result of navigation through an association depends on the multiplicity of the
association end. If such multiplicity is 1, the result is an instance of the target class.

On the other hand, if the multiplicity is greater than 1 it results in a Set.

Moreover, the navigations through associations can be chained, so in this case if we
have a Set and navigate to an association end that has multiplicity greater than 1,

the result will be a Bag.

If we are in an associative class and navigate to one of its ends, it will result in a
single instance of the end class. And if we navigate to an associative class, the

result is a Set of instances of such associative class.

All of these results of navigations have some complexity. A complete explanation
can be found in [Obj06]. If during some constraint construction or next example it
was necessary to explain in more detail this behaviour, it will be clarified there
because the previous description should be sufficient for to understand the basis of

the navigations.

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

6.3.9.3 Class operations

Finally, we can use operations of classes in our OCL 2.0 expressions. The way of
use them is easy. We only have to follow the same instructions than with a class

attribute, but indicating the parameters of the operations.

User

-nickname : String
-password : String
-age : Integer
-mail : String

+friend

+getNumOfFiles() : Integer

Figure 6.3: User class

In the User class of our model we find the getNumOfFiles() operation. At next

example we will see how to call this operation.

Our operation to call has the next header:
getNumOfFiles(): Integer

So, imagine that u is a variable with User as a type. To call this operation
we can do as follows:

u.getNumOfFiles() <= 100

With this constraint we limit the maximum number of files per user.

Example 6.15: Navigation to class operations

If the operation needs any parameter, we only have to insert a literal expression in
the same place where the parameter is located. At next example we will show a

simple case where a parameter is needed.

Antonio Villegas 93 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

If our operation to call has the next header:
getNumOfFiles(String name): Integer

So, imagine that u is a variable with User as a type. To call this operation
we can do as follows:

u.getNumOfFiles (‘JohnSmith’) <= 100

With this constraint we only limit the maximum number of files of the
indicated user.

Example 6.16: Operation call with parameters

6.4 CONSTRAINTS CONSTRUCTION

At previous sections we have shown different basic constructions to make OCL 2.0
expressions. All of these must be placed inside a specific context. This is the
moment to introduce the concept of context and the different constraints and rules

that one can make with the OCL 2.0 language over an UML model.

6.4.1 CLASSES

In the context of an UML class, the OCL 2.0 language provides the possibility of

state invariants and to make definitions of new attributes or query operations.

6.4.1.1 Invariants

An invariant is a boolean rule that always must be true. At next definition we show

the correct notation for an OCL 2.0 invariant context.

context Classname inv constraintName : boolean-expression

Definition 6.1: Invariant context notation

Antonio Villegas 94 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

Between the context and inv keywords we have to place the name of the UML class
that will be the context of our invariant. As context, such class will become in the

starting point for navigations. The constraint name is optional.

It is important to note that an invariant may be written in different contexts. To

choose the one that simplifies the expression is part of our job.

Example of invariants over the model in Figure 6.1:

“File size must be less than 10 MBytes”

context File inv lessthanlOMB : size <= 10.0

“A File is identified by its title”
context File inv titleID
File.allInstances()->forAll(fl,f2:File|fl.title = f2.title
implies f1l = £2)
Note that the application of alllnstances() to a class returns a Set
containing all the instances of such class.

“The uploaded files of a user are owned by such user”
context User inv uploadersAreOwners:

ownedFile = transaction->select(t:Transaction |
t.oclIsTypeOf (Upload)).file->asSet()

Note that the application of ocllsTypeOf{() to a class returns true if such
class is of type specified in the parameter.

In this case we navigate to transaction in order to obtain the Set of
Transaction belonging to the context User. Then we select those instances
that are Upload instances. And finally we navigate to the association end
File in order to obtain the File instances of such transactions, i.e., the
uploaded files of the user. It results in a Bag, so we convert it to a Set with
the asSet() operation.

We compare this instances with the Set resulted of the navigation to File
class through the owning association. They must be equal to fulfill the
invariant.

Example 6.17: Example of invariants

E i . .
gch p?ﬂiizgﬂs The Object Constraint Language | 6

6.4.1.2 Definitions

A definition is a construction that creates a new attribute of class or a new query

operation. At next definition we will describe the correct notation for an OCL 2.0

definition context.

Attribute definition:
context Classname def constraintName :
attributeName : attributeType = definition-expression
Query operation definition:
context Classname def constraintName :
operationName (parameterlist): returnType =

definition-expression

Definition 6.2: Definition context notations

It is important to note that the definition expression type must be compatible with

the attribute type defined, or with the return type in a query operation case.

At next example we will see different definitions in order to clarify the notation

and to understand how to use definitions in our models with the OCL 2.0 language.

Definition of a new attribute ‘votations’ in File class that shows the
number of votations of a file.

context File def numOfVotes : votations : Real =
transaction->select(t:Transaction|t.oclIsKindOf (Vote))

->size()

Definition of a new query operation that returns the transactions of a
concrete year.

context Transaction
def : anualTransactions(year:Integer): Set(Transaction)

= Transaction.allInstances()->select(t|t.year=year)

Example 6.18: Example of definitions

Antonio Villegas 96 Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.4.2 ATTRIBUTES

Attributes are other possible contexts for our OCL 2.0 constraints. At this point,
when we use the attribute word we talk about both class attributes and association

ends.

We can write derivations and initializations for those elements of a UML model. At

next subsections we will study in detail such context constructions.

6.4.2.1 Derivations

A derivation allows to describe how is calculated the value of a derived attribute or
association end. At next definition we will note how to construct a derivation

context.

context Classname::attributeOrAssociationEndName : Typename

derive constraintName : derivation-expression

Definition 6.3: Derivation context notation

It is important to note that the type of the attribute or association end must be
compatible with the derivation expression. Furthermore, such attribute or

association end must exist in the class of the context in the UML model.

Imagine that in File class we have a derived String attribute called
‘ownerName’ representing the name of the owner of such file. Its
derivation rule must be as follows:

context File::ownerName : String

derive : owner.nickname

Example 6.19: Example of derivation

Antonio Villegas Languages and Systems Department

97

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.4.2.2 Initializations

An initialization allows to describe how is initialized an attribute or association

end. At next definition we will show how to construct an initialization context.

context Classname::attributeOrAssociationEndName : Typename

init constraintName : initialization-expression

Definition 6.4: Initialization context notation

It is important to note that the type of the attribute or association end must be
compatible with the derivation expression. Furthermore, such attribute or

association end must exist in the class of the context in the UML model.

We want to denote that the initialization value for the attribute views of a
File instance is 0

context File::views : Integer

init : 0

We want to denote that the initialization value for the association end
friends of a User instance is an empty Set

context User::friend : Set(User)
init : set{}

Example 6.20: Examples of initializations

6.4.3 OPERATIONS

Finally, we can use an operation as a context for OCL 2.0 language expressions. It
provides the possibility of describe pre and post conditions of an operation.
Furthermore we can write expressions showing the body of an operation, that is,

describing the tasks that it should do when is called.

Antonio Villegas 98 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

E i . .
gcal ptsz:;orns The Object Constraint Language | 6

At next subsections we will introduce the concepts of preconditions,

postconditions and body expressions, showing their notations and some examples.

6.4.3.1 Preconditions

A precondition is an expression that must be true before calling the operation in

which it is declared.

context Classname: :operationName(paramlist) : resultType

pre constraintName : boolean-expression

Definition 6.5: Precondition context notation

It is important to note that the header of the operation defined in the precondition

context must exist in the UML model that we are using to constraint.

Administrator

+deleteFile(String title)

Figure 6.4: Operation declared in an UML class

In our model, we have an operation inside the Administrator class, named
deleteFile. If we want to specify a precondition for such operation to note
that a File with the title parameter must exist, we should do as follows:

context Administrator::deleteFile(title:String)

pre fileExists: File.allInstances()->one(f|f.title = title)

Example 6.21: Example of precondition

6.4.3.2 Body of operations

Since the OCL 2.0 language is a declarative language, we can indicate what an

operation should do without writing how should do it.

Antonio Villegas 99 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

context Classname: :operationName(paramlist) : resultType

body constraintName : body-expression

Definition 6.6: Body expression context notation

A body constraint allows us to show the tasks that are done inside an operation. So,
at next example we will show a body constraint for the operation getNumOfFiles of

User class.

context User::getNumOfFiles():Integer

body : ownedFile->size()

Example 6.22: Example of body context

It is important to emphasize that we indicate that the number of owned files must

be counted, but we do not explicit how to make this compute.

6.4.3.3 Postconditions

A postcondition is an expression that must be true after the call of the operation

defined in the postcondition context.

context Classname: :operationName(paramlist) : resultType

post constraintName : boolean-expression

Definition 6.7: Postcondition context notation

We have to remember that a postcondition is a boolean rule, therefore the

expression inside a postcondition context must be Boolean.

In the next example we can find a simple postcondition in which the result of it is a

boolean value.

Antonio Villegas Languages and Systems Department

100

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

If we want to make a postcondition for the deleteFile operation of
Administrator class, we should do as follows:

context Administrator::deleteFile(title:String)
post fileWasDeleted:
not File.allInstances()->one(f|f.title = title)

Example 6.23: Example of postcondition

6.5 COMPLEX CONSTRUCTIONS

At this section we will introduce other constructions of the OCL 2.0 language that

can be useful.

6.5.1 SELF KEYWORD

Within the context of an OCL 2.0 constraint we are able to use a keyword that
represents the instance of the contextual UML class: the self keyword. It can be
useful when in an expression we have two elements with the same name, but one

is an attribute of the contextual class.

context User::setNewPassword(password:String)

post newPwd: self.password = password

Here the use of self is mandatory to differentiate the password attribute
of User from the String parameter, because both have the same name.

To avoid the use of self, we only have to change the name, like in next
constraint where self is implicit:

context User::setNewPassword(pass:String)

post newPwd: password = pass

Example 6.24: Example of self keyword

At example above, we have shown a constraint where self is optional and other one

where using self is mandatory.

Antonio Villegas 101 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.5.2 COMMENTS

In the OCL 2.0 language we have the possibility of writing comments inside the

constraints in order to clarify their understandability.

To write a comment we only have to precede each comment line with two hyphens

like in the next example:

-- This is an OCL comment
context User::getNumOfFiles():Integer
body : ownedFile->size() -- Another comment

-— A final comment

Example 6.25: Comments

6.5.3 MULTIPLE CONTEXTS

The OCL 2.0 language provides the possibility of reuse a context for more than one
constraint. We can write more than one invariant or definition in the same context.
Or also it is possible to combine derivations with initializations, and preconditions

with postconditions and body expressions.

context Classname

inv: invariant-expression

def: newattribute : Type = definition-expression

def: newoperation(paramlist) : Returntype = definition-exp

inv: another-invariant-expression

Example 6.26: Combination of invariants and definitions

At previous example we show this behaviour combining invariants with
definitions. At next example we will show how to combine derivations with

initializations, and preconditions, postconditions and body expressions.

Antonio Villegas Languages and Systems Department

102

Barcelona School of Informatics Technical University of Catalonia

E i . .
gcal Ptsz:;orns The Object Constraint Language | 6

context Classname::attributeOrAssociationEnd:Type
init: invariant-expression

derive: derivation-expression

context Classname: :operation(paramlist):returnType
pre: boolean-expression

pre: another-boolean-expression

body: body-expression

post: postcondition-expression

Example 6.27: Combination of initializations with derivations, and preconditions with
postconditions and body expressions

6.5.4 IF EXPRESSIONS

Like the complete programming languages, the OCL 2.0 provides a condition

structure that allows choosing between two alternatives: the if expression.

Such construction evaluates a condition and according to if the result is true or

false, it chooses one alternative or the other one.

context User

def: adult:Boolean = if age < 18
then false
else true

endif

Example 6.28: If expression

It is important to emphasize that both branches inside an if expression are
mandatory. In the previous example, the new attribute adult will be true only if the

age of the user is greater or equal than 18 years.

Antonio Villegas 103 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

6.5.5 LET EXPRESSIONS

A let expression is a construction that allows us to define a temporary variable that

can be used inside an expression in order to avoid repetitions or complex rules.

Note that the scope of such variable is only the current context where it is defined.

At next definition we will describe the two accepted notations to write let

expressions.

Single notation
let variableName:Type = expression

in expression-using-the-previous-variable

Multiple notation
let varNamel:Type = expl, ..., varNameN:Type = expN

in expression-using-these-variables

Definition 6.8: Let notation

At next example the usage of this kind of expression is shown:

context File inv onlyOneUploadPerFile :
let files:Set(File) = File.alllInstances()
in files-> forAll(f:File|f.transaction

->one(t:Transaction|t.oclIsTypeOf (Upload)))

Example 6.29: Let expression example

6.5.6 ITERATE

The iterate construction is similar than the iterators, but it is more general. Such
construction can be useful to iterate over a collection of elements and return a

custom result.

Antonio Villegas 104 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

At next definition we can see how to construct an iterate expression.

Collection->iterate(variable-list;acc:Type=expression|

expression-with-variables-and-acc)

The acc variable is the accumulator of the result of the iterate.
Furthermore, the variable list can be used like in iterators.

Note that the type of the inner expression should be compatible with the
type of the accumulator.

Definition 6.9: Iterate notation

At next example we show how to use an iterate expression inside an OCL 2.0

contraint.

context File::voters:Set(User)
derive : let votes:Set(Transaction) =
transaction->select(t|t.oclIsTypeOf (Vote))
in votes->iterate(v;res:Set(User)=Set{}|

res->including(v.user))

First of all we define a variable votes including all the Vote transactions
from a file. Then we iterate over such variable adding the User of each
Vote transaction into the result Set.

Example 6.30: Iterate usage

6.5.7 @PRE KEYWORD

In a postcondition, if we want to reference some UML element in precondition time
in order to note its changes once the operation is applied, we can use the @pre

keyword after the name of such element.

At next example we will use the @pre in order to access to the value of an attribute
at precondition time. Note that @pre is placed always after the name to qualify. It

also can be use with operations, placed before the parameters.

Antonio Villegas 105 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

context User::birthday()
post: age = agef@pre + 1

context Administrator::deleteFile(title:String)

post: let user:User = File.alllInstances@pre() ->
select(f|f.title = title).owner

in user.ownedFile->size() =

user.ownedFilel@pre->size() - 1

Example 6.31: @pre usage

6.5.8 RESULT KEYWORD

In a postcondition we also can use a special variable called result, which type is
equal than the result type of the operation of the context. Look at next example

how to work with such variable.

It is important to emphasize that result variable can only be used in a

postcondition.

context User::getNumOfFiles():Integer

post: result = ownedFile->size()

Example 6.32: Result usage

6.5.9 OCLISNEW() OPERATION

The oclisNew() operation can only be used in a postcondition and evaluates to true
if its source element is created during the execution of the operation, i.e., such

element does not exist at precondition time.

This operation is useful in postcondition of creator operations to note that an

element is a new instance of a class.

Antonio Villegas 106 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Object Constraint Language | 6

At next example it is shown how to use this operation in the context of an

operation that creates a new Administrator.

context Administrator::newAdmin(nickname:String)

post: adm.oclIsNew() and adm.oclIsTypeOf (Administrator)
and adm.nickname = nickname

Example 6.33: oclIsNew() usage

6.5.10 USE OF QUALIFIERS

The last construction that we will explain at this chapter is related with the
navigations. In case of navigate through a recursive relation, i.e., a relation whose
end classes are the same class, and such relation has an associative class, if we
want to go from to the end class to the associative class, we have to define from

which end we are navigating.

Person « +teacher

-name : String

+student

Ranking
[

I
Ranking

-score : Integer

Figure 6.5: Recursive relation

Antonio Villegas Languages and Systems Department

107

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Object Constraint Language | 6

At Figure 6.5 if we want to navigate from Person class to Ranking associative class
we have to specify if we come from student or teacher end. This specification is

made by means of a qualifier between square brackets.

At next example it is shown how to do this navigation properly.

From Person to Ranking (student branch)
context Person inv:

self.ranking[student].score->sum() >= 0

in this case the navigation self.ranking[student] evaluates to the set of
Ranking belonging to the collection of students.

From Person to Ranking (teacher branch)
context Person inv:

self.ranking[teacher].score->sum() >= 0

in this case the navigation self.ranking[teacher] evaluates to the set of
Ranking belonging to the collection of teacher.

From Person to Ranking (unspecified)
context Person inv:

self.ranking.score->sum() >= 0 -- Incorrect usage

in this case the unqualified use of the association class name is not
allowed in such a recursive situation.

Example 6.34: Qualified navigation through recursive associations

Antonio Villegas 108 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

THE OCL 2.0 METAMODEL /

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

7 THE OCL 2.0 METAMODEL

7.1 INTRODUCTION

Along this chapter we will explain the OCL 2.0 metamodel defined at [Obj06]. This

is an essential piece in the puzzle that represents our OCL expressions processor.

As we explained earlier, the aim of our project is to convert textual constraints to
their representation as instances of the OCL 2.0 metamodel. Therefore, to know the

different elements that are members of such metamodel is mandatory.

In the following sections we will discuss about the different versions of the OCL
metamodel and the one chosen and implemented by our conceptual modeling

environment, that is, the Eina GMC tool (see chapter 5).

After that, we will introduce the class diagrams where the different elements and
also the relations between such elements of the metamodel are shown. To
complete the diagrams, we will note some changes applied into the original OCL

2.0 metamodel in order to fix some problems found along the development phase.

7.2 THE BASIC OCL AND ESSENTIAL OCL

First of all we will note that the programmers of the Eina GMC tool did the
development of the OCL 2.0 metamodel. So, we work with this tool like current
users once the metamodel was finished, and all the problems found at this stage

had to be reported to the Eina GMC staff.

Antonio Villegas Languages and Systems Department

110

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

Therefore, one of our purposes was to test the OCL 2.0 metamodel implemented
into the Eina GMC environment in order to find possible errors and achieve a more

stable version ofit.

Analysing the OCL 2.0 metamodel implemented into the Eina GMC tool, we found
that its version was a mixture of the abstract version of the complete OCL 2.0
metamodel defined at chapter 8 of the OCL 2.0 Formal Specification (see [Obj06])
and the basic and essential versions introduced at chapter 13 of the same

document.

The basic and essential versions of the OCL metamodel contain the minimal OCL
elements to work with the common UML metamodel elements: Property,
Operation, Parameter, TypedElement, Type, Class, DataType, Enumeration,

PrimitiveType, and EnumerationLiteral.

This version was the one implemented initially into Eina GMC environment.
Because of our needs of adding more elements to this metamodel in order to
support complex OCL 2.0 constructions, a few elements of the complete version

were included there.

So, at next section we will show and explain the OCL 2.0 metamodel implemented
into the Eina GMC tool, which contains the basic and essential versions completely,

and the complete version partially.

7.3 DIAGRAMS

In the OCL 2.0 specification [Obj06], the metamodel is introduced by means of the
representation of eight diagrams containing the elements that belong to it. Each
diagram denotes a part of the OCL 2.0 constructions and syntax, and together

conform the full OCL 2.0 language.

Antonio Villegas Languages and Systems Department

111

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

We will comment each diagram and the elements that it contains. Furthermore, we
will discuss the changes made to them if necessary and the causes that prompted

such changes.

Note that the blue coloured classes are members of the UML 2.0 metamodel. Since
OCL is part of the UML, both metamodels have a closer relation and there are

elements of the UML metamodel that appear at OCL metamodel.

7.3.1 TYPES

The OCL 2.0 language is a typed language, so the whole set of elements that
conform such language have a type that indicates the result type of their

evaluation.

A simple example of it could be seen when we use integer constants into our
constraints. As we will see when we explain the diagram of literals, an integer
constant is defined in the OCL metamodel as an IntegerLiteralExp, which indirectly

is a subclass of TypedElement metamodel class from UML metamodel.

Therefore, IntegerLiteralExp is an element with type, and such type must be a

DataType with ‘Integer’ as name.

In the types diagram shown at Figure 7.1 we found all the classes that represent

the different types that an OCL element can have.

We must emphasize the CollectionType class and its subclasses. They represent
the different kinds of collection types that could appear as a result of the elements
into an OCL constraint. OrderedSetType, SequenceType, BagType and SetType are

such kinds, according to the collection types shown at chapter 6.

Antonio Villegas Languages and Systems Department

112

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Metamodel | 7

' [Type
+elementType T
InvalidType VoidType TypeType AnyType
DataType Class
*_ CollectionType PrimitiveType TupleType
Fal
OrderedSetType SequenceType BagType SetType

Figure 7.1: Types

Note that to represent the type of the elements inside a collection, the OCL 2.0
metamodel provides a relation between CollectionType class and Type class that

allows the collection types to indicate the respective type of their elements.

Another important concept is the DataType. As we can see, it is represented as an
abstract class. We decide to maintain this notation because it appears as abstract
into the OCL 2.0 metamodel shown at [Obj06], but it is not an abstract class into
the UML 2.0 metamodel.

In the implementation of the UML and OCL metamodels into the Eina GMC

environment, the DataType is a concrete class as indicated in the UML 2.0

Antonio Villegas Languages and Systems Department

113

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

metamodel found at [Obj07]. Therefore, we use this class to represent the four

basic types of the OCL 2.0: Integer, Real, Boolean and String.

We either cannot forget the tuples. A tuple type could be represented by different
ways depending on what version of the OCL metamodel we choose. In the basic
and essential versions, it is indicated that a tuple type is a subclass of Class class of
the UML metamodel. Therefore, the members of a tuple are represented by its

Property attributes, as a common UML class definition.

In this version, a tuple type (TupleType in the metamodel) also is a subclass of
DataType. This double inheritance, that is, subclass of both Class and DataType,
was a problem in the implementation of the TupleType in the Eina GMC
metamodel. It was caused because DataType also inherits from Class, so we have
two ways of extend the internal operations of Class, i.e., extending the operations
already extended in DataType or extending directly from Class. So, it caused errors
in the metadata repository and we chose to extend TupleType directly from Class

and avoid the inheritance of DataType. That is shown in the types diagram.

On the other hand, in the complete OCL version is indicated that TupleType
inherits only from DataType. In our alternative we chose to inherit only from Class
because we only need the characteristics of a UML class to represent a tuple type
and its members, and to inherit from DataType does not provide any additional

feature. So it was the reason of our decision.

Finally, we have to note that a Class representing an UML class is also a valid type

for an element, as we can see at the previous diagram.

The other classes in the types diagram represent minority types that will be
explained if necessary along this document. All of them are implemented as shown

in the Figure 7.1 into the OCL 2.0 metamodel of the Eina GMC environment.

Antonio Villegas Languages and Systems Department

114

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Metamodel | 7

7.3.2 THE TOP CONTAINER EXPRESSION

In this diagram we show the part of the OCL 2.0 metamodel that has the

responsibility of be the wrapper of the OCL expression in a constraint.

As we explained earlier in chapter 3 where we introduce a subset of the UML
metamodel, a Constraint metamodel class has an attribute that contains the
specification of an OCL expression. This expression is the whole tree representing
the textual constraint converted into metamodel instances and it is defined as the

ExpressionIlnOcl metamodel class shown at Figure 7.2.

TypedElement
+selfOwner +contextVariable
‘0..1 0.1
ExpressioninOcl Variable
0.1 0.1 0.1
+topExpression +resultOwner +resultVariable
0.1 0.1
+varOwner +parameterVariable

+bodyExpression
1

OclExpression

Figure 7.2: Top container expression

Antonio Villegas Languages and Systems Department

115

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

Note that ExpressionInOcl has a relation with OclExpression class, which is the
superclass of all the expression constructions that can be used in the OCL 2.0

language.

ExpressionInOcl also contains a Variable that represents the context of the OCL 2.0
constraint. This Variable is used into the body OclExpression. It also contains
another Variable as the result of the interpretation of the constraint, but we do not
use it because the aim of our project is to evaluate and convert textual constraints
into metamodel instances, but not to interpret these constraints according to a set

of instances of a UML model and to return the result of this interpretation.

It is important to emphasize that both ExpressionIlnOcl and Variable are subclasses
of TypedElement metamodel class. Therfore, they must have a Type indicating
their evaluation. The type of and ExpressionInOcl should be the type of its body

expression.

On the other hand, the type of a Variable class indicates what element represents
this Variable. As an example, a Variable that has a Type, which is a Class
representing a UML class of a UML model, could be used in the same way a UML
class can be used in a OCL expression. As we will explain after that, these Variable

classes are used as iterator variables or with let expressions.

7.3.3 MAIN EXPRESSION CONCEPT

In this section we introduce the different subclasses of OclExpression that
represent the distinct constructions that the OCL2.0 provides in order to make

constraints.

At Figure 7.3 it is possible to find the LiteralExp and the IfExp metamodel classes.

Both metamodel elements will be explained in next sections with their own

Antonio Villegas 116 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Metamodel | 7

metamodel diagram. Despite it, these classes are shown here in order to note that

are part of the OCL 2.0 expressions.

TypedElement
Fay
+b°dy L 0c'Expmsslon "‘iﬂitExpreSSioﬂ
+source 0..1 FaY o
0.1 CallExp LiteralExp IfExp VariableExp TypeExp
+appliedElement x
+referlringExp *
FeatureCallExp LoopExp e 20PEXP srofams s reforredType
0.1 titerator « -
+loopBodyOwner? vresult 0.1 Variable Type
0.1 - 0.1
+variable | finitializedElement
0.1
IteratorExp IterateExp
+baseExp
0..1| +representedParameter
Parameter

Figure 7.3: Main expression concept

Another metamodel class shown here is the VariableExp that provides the

possibility to encapsulate the Variables into an OclExpression. It is useful when we

have a Variable as source of a CallExp, which will be explained after that.

Each VariableExp should have a Variable linked as referenced element of this

expression. In addition, the Variable class should have an OclExpression as init

expression. This can be used in a let expression where a Variable is defined by

means of another expression. Once we have converted the let expression into

metamodel instances, the init expression is stored in this field of the Variable class.

Antonio Villegas

117

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

Similar than VariableExp, we find the TypeExp in this part of the OCL 2.0

metamodel. It is useful to wrap a Type in order to be used as an OCL expression.

As we indicated before, the blue coloured metamodel classes shown at all of these
diagrams are part of the UML 2.0 metamodel, but are included here to note the

closer relation that exists between these two metamodels.

Finally, the essential expression shown here is the CallExp and its subclasses. This
section of the metamodel involves the treatment of operations, iterators, the
iterate construction, and even the navigation to attributes, association ends and

association classes.

It is important to note that CallExp has a relation with OclExpression representing

the source expression that is the element where to apply such CallExp.

The first subclass is FeatureCallExp that contains the navigations and usage of

operations. This part will be explained at next section in its own diagram.

We will be centred in the iterators and the iterator construction. Both are LoopExp
and have a link with another OclExpression that conforms the body of these
constructions. Particularly, this body expression represents the expressions tree

included inside both the iterators and the iterator construction.

LoopExp also has a set of Variable objects that represents the iterator variables of
the iterators or the iterate construction. These iterator variables are the Variable

objects used inside the body expression of such constructions.

Finally, the IterateExp metamodel class representing the iterate construction of the
OCL 2.0 language contains another relation with a Variable object defining the

common result variable used in this construction.

Antonio Villegas Languages and Systems Department

118

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Metamodel | 7

7.3.4 FEATURE CALL EXPRESSIONS

As we introduce at previous version, the FeatureCallExp metamodel class

represents both the operation usage and the navigation to attributes, association

ends and association classes.

FeatureCallExp

I

+referringExp g b arationCallExp NavigationCallExp
i i FAY
0.1 0..1
+parentCall +parentNav
. OclExpression .
+argument +qualifier
{ordered} {ordered}
0.1
| Operation PropertyCallExp AssociationClassCallExp
+referredOperation
+referringExp +referringExp
6rr%ferredPropcrty 6r%ferredAssociationClass
Property AssociationClass

Figure 7.4: Feature call expressions

First of all, the OperationCallExp class defines how to store an operation

expression as metamodel instances. Each OperationCallExp has a link with a UML

Operation that references the operation used into such expression.

It also contains an optional set of OclExpression that can be used to store the

parameters of the operation. However, this set can store the right expression in a

Antonio Villegas

119

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

binary operation (e.g., the divisor in a division or the right operand of a binary

addition).

On the other hand, we have the NavigationCallExp metamodel class to represent
the navigation expressions. It has a set of qualifiers, i.e., OclExpression objects, to

provide the way of store the qualifying elements in a qualified navigation.

As subclass of NavigationCallExp we have the PropertyCallExp that represents
both the call of attributes and the navigation through association ends. This is a
change from OCL 1.1 to OCL 2.0 because of the change of the UML in his version
2.0.

In previous versions of the UML, there existed the Attribute and AssociationEnd
classes, but now they are joined into the Property metamodel class. So, the
AttributeCallExp and AssociationEndCallExp are removed and instead of them we

must now use the PropertyCallExp metamodel class.

This change introduces more complexity in the parsing of OCL constraints because
one element can be used with different concepts. The PropertyCallExp metamodel
class has a link with a Property that can represent an attribute of class or an
association end. This complexity will be found in the evaluation process of the type

of these PropertyCallExp expressions.

The other subclass of NavigationCallExp is the AssociationClassCallExp metamodel
class. Such class is not part of the basic and essential versions of the OCL 2.0
metamodel and we had to add it from the complete OCL in order to support the
conversion from textual constraints to metamodel instances of the navigations to

association classes.

In the same way of the PropertyCallExp, the AssociationClassCallExp metamodel

classes have a reference to the AssociationClass that is the object of the navigation.

Antonio Villegas 120 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Metamodel | 7

7.3.5 IF EXPRESSIONS

The If expressions, which are OCL 2.0 constructions, are part of the OCL 2.0
metamodel. The IfExp metamodel class represents such expressions and contains

the common parts of a if construction.

+ifOwner 0.1 +elseOwner
i IfExp
- " 0.1
&
+thenOwner
+ther~,Expressior1'.

1 OclExpression ’.17
+condition +elseExpression

Figure 7.5: If expressions

As we can see in Figure 7.5, there are three OclExpression class references linked
to the IfExp. Such expressions store the condition, the then branch and the else

branch of an if expression.

Note that as we explained earlier in this document, the then and else branches are
mandatory, as indicated with the 1 in the cardinality of the associations from IfExp

to OclExpression metamodel class.

Finally, it is important to emphasize that the type of the condition OclExpression

will be Boolean if the evaluation of it has no errors.

Antonio Villegas 121 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Metamodel | 7

7.3.6 LET EXPRESSIONS

Let expressions are the last OCL 2.0 constructions to explain. As we explain at
previous chapter, a let expression allows defining a variable in order to use it into

an expression.

Therefore, the LetExp metamodel class contains a link to an OclExpression
representing the expression where the variable can be used, and also contains a

Variable reference that is the variable defined into the let expression.

This init expression for such variable is mandatory, so the Variable metamodel

class has to contain this reference.

0.1
LetExp Lo
0.1 '
+variab%e
Variable
'0..1
-initializedElement
+in
1

1~ OclExpression ’(0.1
+initExpression

Figure 7.6: Let expressions

Note that if we use the let construction with multiple variable definitions, we have
to make a tree of LetExp where the in expression of the outer LetExp will be
another LetExp and this behaviour is repeated until all the variables are stored.
The last variable is stored in the inner LetExp and its in expression will be the

expression where to use all the variables.

Antonio Villegas 122 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Metamodel | 7

7.3.7 LITERALS

In this diagram we found the metamodel classes of the OCL 2.0 language

representing the literal expressions.

LiteralExp
EnumLiteralExp PrimitiveLiteralExp NullLiteralExp InvalidLiteralExp
Py
+literalExp | «
+referredEnumLiteral | o 4
EnumerationLiteral StringLiteralExp NumericLiteralExp BooleanLiteralExp
-stringSymbol : String a -booleanSymbol : Boolean
ReallLiteralExp UnlimitedNaturalExp IntegerLiteralExp
-realSymbol : Real -symbol : UnlimitedNatural -integerSymbol : Integer

Figure 7.7: Literals

The most important classes here are the EnumlLiteralExp and the

PrimitiveLiteral Exp.

The first represents the usage of an enumeration literal into an OCL 2.0 expression.
It contains a reference to the enumeration and works like a wrapper for such

enumeration in order to be used like an expression.

On the other hand, PrimitiveLiteralExp is the superclass for the literals that
represent the basic types of the OCL 2.0 language, i.e., the Integer, String, Real and

Boolean types.

Antonio Villegas Languages and Systems Department

123

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

As subclasses of PrimitiveLiteralExp we found StringLiteralExp and
BooleanLiteralExp metamodel classes. Both classes have an attribute that is the

container of the constant in the textual constraint.

For example, if we use a String into an expression, this String will be converted into
a StringLiteralExp, which stringSymbol will be such String. In the same way, the
BooleanLiteralExp contains a Boolean attribute to contain the Boolean values used

in an expression.

Another subclass of PrimitiveLiteralExp is the NumericLiteralExp class. It class has
RealLiteralExp and IntegerLiteralExp as its subclasses. Both of them have a symbol
attribute in order to wrap the numeric constant used into an expression. These

metamodel classes follow the same behaviour than previous ones.

At Figure 7.7, we can find another literal metamodel classes, like NullLiteralExp,
InvalidLiteralExp or UnlimitedNaturalExp. The first two classes are not used in our
project because we do not need them since our purpose is to convert textual
constraints to metamodel instances and not to interpret the result or to execute

these constraints.

In addition to it, the UnlimitedNaturalExp is not used because we decided to use
only Integers, so when we use a Natural number we convert it into an

IntegereLiteralExp and not into an UnlimitedNaturalExp.

7.3.8 COLLECTION AND TUPLE LITERALS

Our last diagram contains the metamodel representation of another literal

expression defining the collection and tuple expressions.

In one side, we have the TupleLiteralExp metamodel class that represents the

usage of a tuple as an OCL 2.0 expression. This class contains a set of

Antonio Villegas Languages and Systems Department

124

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor

ocL
2.0

The OCL 2.0 Metamodel | 7

TupleLiteralPart objects. Such TupleLiteralPart represents a member of the tuple

and has a Property storing the name and the type of such member. In addition, it

contains a reference to an OclExpression to store the value of such member in the

tuple.
LiteralExp
<<gnumeration=>> CollectionLiteralExp TypedElement TupleLiteralExp
CollectionKind | "4y CollectionKind ol
Set [
OrderedSet 1
Bag
Sequence
. #part . *par‘t
CollectionLiteralPart TupleLiteralPart
0..1' 0.1
+attribute
0.1
CollectionRange Collectionitem g2 Property
0.1 0.1
+irstOwner +lastOwner
+item
+last 1 1 1
OclExpression
irst 1 +value

Figure 7.8 Collection and Tuple literals

This value expression does appear neither in the basic and essential OCL versions

nor in the complete OCL version, but to store this init value for each member of a

tuple is mandatory.

Antonio Villegas

125

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Metamodel | 7

Therefore, to provide this functionality we have decided to add this relation
between TupleLiteralPart and OclExpression, indicating that it is mandatory with

the 1 cardinality.

Note that the type of a TupleLiteralExp is a TupleType, which was defined at

diagram shown at Figure 7.1.

On the other side, we have the CollectionLiteralExp that has an attribute indicating
what kind of collection represents. The type of CollectionLiteralExp is a type

subclass of CollectionType according to the kind of the collection literal.

Every member of a collection is represented as in a tuple with a set of a metamodel

class. In this case, such class is the CollectionLiteralPart.

As we explained when we introduced the concept of collections, we can define
collection items by means of a range or a list of items. First way of defining
collection items is represented by a CollectionRange, which is a subclass of

CollectionLiteralPart.

CollectionRange contains two OclExpressions representing the first and last

delimiters of such range. The type of these delimiters should be Integer.

Finally, the other way to represent an item inside a collection is by means of using
the Collectionltem metamodel class, which also is subclass of CollectionLiteralPart.
Such metamodel class contains a reference to an OclExpression, which represents

the expression item of the collection.

To summarize, along this chapter we have seen the different metamodel classes
(also known as metaclasses) that conform the OCL 2.0 metamodel used into the
Eina GMC environment. Therefore, this will be the metamodel used in our OCL 2.0

expressions processor.

Antonio Villegas Languages and Systems Department

126

Barcelona School of Informatics Technical University of Catalonia

COMPILER BASICS 8

OCL| Expressions

2.8 Processor Compiler Basics | 8

8 COMPILER BASICS

8.1 INTRODUCTION

Since the purpose of this project is to construct an OCL parser, to understand some
concepts about compilers is mandatory. In this chapter we introduce concepts like
languages, grammars and automatons, as a part of the formal computation
theory[CMO03], with a few examples in order to make more understandable the
next chapters. Furthermore, to know the different phases of the compilation
process is important in this context therefore it will be exposed showing the

relationships with the development of the OCL parser.

8.2 FORMAL LANGUAGE THEORY

The formal language theory [HMUO1] provides the basis of the compiler theory
since compilers have language expressions as their input or output. In this section
we explain the existing way to cover from words to automatons, that is, from the
minimum unity which could be input of a compiler to the mechanisms that a

compiler uses to process.

8.2.1 WORDS AND LANGUAGES

Human beings use words every day. Each word, denoted as w, is a finite sequence
of symbols over an alphabet (e.g. the ASCII alphabet of characters or the decimal
alphabet whose symbols are the numbers from 0 to 9). It can be said that we are
compilers of information given in words and our output is a mixture of feelings,

more information to exchange or store, and orders for our nervous system to do

Antonio Villegas Languages and Systems Department

128

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

different tasks. In other words, we process input data and turn it to another format

that we are able to use. This is how a compiler works.

Word(w) : finite sequence of symbols over and alphabet X.

Definition 8.1: Word

Binary alphabet = 31={0,1} ,0,EX]
w,=01110010 and w,=110001111
ASCII alphabet = X ,={a..z,A..Z, 0..9} w3w4EY,

wz=Compilation and w4=Formulal

Example 8.1: Alphabets and words

Similarly, we define languages (L) as any set (finite or not) composed with words w
over a determined alphabet 2. Following the previous example, human beings
work with languages and know the (greater part of) words that conform them. We
can see the compilation process as the communication process in a conversation. If
we want to achieve a correct communication between two persons, they have to
know the same language and use it properly. At the compilation process, if we
want a perfect result of the compilation, the compiler has to master the input and

output languages.

Language(L): any set (finite or not) composed with words over a
determined alphabet (e.g. the English, Spanish or Catalan languages).

Definition 8.2: Language
21={0..9} decimal alphabet Li and Lz languages over X1

L1={0,2,4,6,8 10,12, ...}
L2={1,3,5,7,9,11,13, ..}

even numbers

odd numbers

Example 8.2: Alphabet and languages over it

OCL| Expressions

2.8 Processor Compiler Basics | 8

8.2.2 OPERATIONS ON LANGUAGES

In order to work with languages and words there are some operations that allow
specifying new ones with more complexity by means of basic constructions or

iteratively. Next, we explain the three most common operations that can be found.

8.2.2.1 Union

The union operation (U) is the common binary operation in set theory that results

in the elements that belong to any of the two set sources.

LiULz={w/wisinLior wisinLz}
Definition 8.3: Formal definition of union
Y={a, b} Li={a, ab, bbb, aa} and L2={aaa, bbaa}
Li ULz = {a, ab, bbb, aa, aaa, bbaa}

Example 8.3: Union of two languages

8.2.2.2 Concatenation

In words case, the result of a concatenation of two words (or symbols) is the word
composed by the first word followed by the second one without any space between

them. The common notation for the concatenation is to use the dot (“-”) symbol

between the two members of the operation.

Y={a,b,c} if w,=aba and w,=cba then w,w,=abacba

Example 8.4: Concatenation of two words

Antonio Villegas Languages and Systems Department

130

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions . .
2.8 Processor Compiler Basics | 8

On the other hand, in languages case, the result of a concatenation of two
languages is the language that contains words composed by a word from the first

language concatenated with a word from the second language.

Y={a,b} if L,={a, bb, aba} and L,={a, cc}

then L,-L,={aa, acc, bba, bbcc, abaa, abacc}

Example 8.5: Concatenation of two languages

8.2.2.3 Kleene star

Also known as Kleene closure, this operation is related with the concatenation,
which was defined previously. The Kleene star of a language or word results in the
set containing the repeated concatenation of them with the same language or word

respectively. In order to be more explicit, we introduce the following notation:

L is a language, w is a word and A is the empty word, which length is zero.
L°={A} and Vi=0 L*#1 =Li-L
w%=A and Viz0 o'l =wi o
Then, L*=LOULTUL?UL3UL*UL>U~UL"
and o*=0’Uw!U?Uw?Uao*Uw® U~ Uo™

Definition 8.4: Exponential notation of repeated concatenation and Kleene star definition

These expressions allows us to show the result of the concatenation of languages
and words with themselves i times, using an exponential notation. Therefore, the
Kleene star must be represented as L" and ", indicating that the number of
repeated concatenations is undefined. Applying Kleene star to a finite language or

a word results in an infinite one because of the infinity of the number of

concatenations.

Antonio Villegas 131 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions . .
2.8 Processor Compiler Basics | 8

>={a, b} if L={a, bb, aba} then L*={4, a, aa, bb, aaa, abb, bba, ...}
where L= L°UL1ULZ2UL3U-UL"

and L%= {1}, L= {a, bb, aba}, L?= {aa, abb, aaba, bba, bbbb, bbaba,
abaa, ababb, abaaba} and so on ...

Example 8.6: Kleene star operation applied to a three-word language.

8.2.2.4 Kleene plus

Similarly to the Kleene star, the Kleene plus, also known as positive Kleene closure,

is defined as follows:

L"=L"-{A}
o’ =any o' wherei=1

Definition 8.5: Formal notation of Kleene plus operation

It indicates that L” results in the same set as the Kleene star but without the empty
word and o” results in a word that must have length greater than zero, i.e., it

cannot be the empty word.

Y={a,b} if L={a} then L*={ a, aaq, aaa, aaaa, aaaaa, ...}
ifL={a, bb, aba} as in Example 8.6
then L*={ a, aa, bb, aaa, abb, bbaq, ... } = L*—{}L }

Example 8.7: Kleene plus applied to both single-word and three-word languages
8.2.3 REGULAR EXPRESSIONS

Regular expressions are expressions that represent (part of) a language and define
it by means of the combined use of operations, words and languages. Here we

present the rules that define a regular expression over an alphabet 3

Antonio Villegas 132 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Compiler Basics | 8

1. A is a regular expression.

2. A symbol s in alphabet X is a regular expression.

3. If r1 and r2z are regular expressions, then r1 U rz and r1 * r2 are regular
expressions.

. . * .
4. If r is a regular expression, then r and r* are reqgular expressions.

5. All regular expressions over X are made applying rules 1 to 4.

Definition 8.6: Rules to construct regular expressions

We define L(r), as associated language L to a regular expression r, to the language

recognized by r.

ri=a* then L(r1)={A, a, aa, aaa, aaaa, aaaaa, ...}

rz=ba*b then L(rz)={bb, bab, baab, baaab, baaaab, baaaaab, ...}
r3=(ba)*a* then L(r3)={ba, baa, baaa, baba, baaaa, babaa, ...}
rs=b*U a* then L(r4)={A, b, a, bb, aa, bbb, aaa, bbbb, aaaa, ...}

Example 8.8: Regular expressions and their associated languages

8.2.4 GRAMMARS AND AUTOMATONS

Another way to recognize and represent a language is by means of grammars and
automatons. They are formal mechanisms used in different phases of the
compilation process, as we will see in next chapters. To write a grammar is one of
the most common ways to begin the construction of a compiler because of the
existence of compiler compilers. These tools have a grammar as input and generate
the full compiler (semi) automatically. Every word that can be constructed through

the grammar belongs to the recognized language of it.

A simple grammar G is a formal structure like G=(V, 3 P, S) where their

components are:

Antonio Villegas Languages and Systems Department

133

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

- Vis an alphabet which symbols are called variables.

- 2 is another alphabet, disjoint of V, which symbols are called terminals.
: P is a set of production rules A=>a, where AEV and a€(VUZ3)*

+ S is called start variable.

Definition 8.7: Grammar components

Grammar G=(V, X, P, S)

V={S, T, X, Y, Z} are the variables
3={0,1,2,3,45,6,7,8 9, +Xx, ()} are the terminals
The productions P are:

S—X|X+S

X—>T|YxZ

Y->T/[(X+S)

Z-Y|YxZ

T—0/1/2]3]4]/5/6/7]8]9

With this grammar we can recognize the language of aritmetical
expressions with add or product operations. The | caracter separates
different alternatives for the right side of a production rule.

For example, the expression “(3+4) x 2” can be derivated as follow:
S=2X=2YxZ=X+S)xZ=(T+X)xZ=(3+T)xZ=(3+4)xZ=
(3+4)xT= (3+4)x 2

Or in tree form:

S
X
7y
(>|<+|s) \:(
T i
3 0T 2
:

Example 8.9: Grammar and recognized language

0CL
2.0

In

about finite automatons. They can be deterministic or non-deterministic

depending on whether their state traversal is a single path or multiple one, that is,

the context of this document, when we use automaton as word we are talking

if starting in a state we can only move to another one or to a set of them.

A deterministic finite automaton (DFA) is a formal structure drawn like a graph
where their states are crossed according to the symbols of an input word. There
are one start state and one or more final states. If the input word crossing ends in a

final state, the automaton recognizes the word, i.e., it belongs to the associated

language.

Graph representing the automaton:

a a, b

q0 > g1

There are two states q0 and q1, represented with a circle. The start state
is q0, denoted with the first left arrow. The arcs from one state to another
one indicate the way to follow for every symbol of the word in processing.

For example, for the word “aba”, we begin with the first symbol ‘a’ at the
state q0. Then, we go to the state q1 with the second symbol ‘b’. Finally,
the last symbol is ‘a’, so we continue at state q1.

Every state with a cross is a final state. If when we finish the symbols of
the input word we are in a final state, the word is recognized by the
automaton and belongs to the language.

The automaton of the image recognizes words that belong to the
language a*. It is easy to understand because when a ‘b’ arrives we go to

a non-final state, which we cannot leave. This language is not a* because
the start state is already a final state, so even the empty word is accepted.

Example 8.10: DFA recognizing the language a*

OCL| Expressions

2.8 Processor Compiler Basics | 8

8.3 THE COMPILATION PROCESS

Once we have seen and understoodd the basic concepts, we are ready to begin with
the explanation of how the compilation processfWM95] works. In the image below
the different phases of the process as well as the connexions between them can be

distinguished.

Input source code
Language A

Input tokenized
(token stream)

Abstract Syntax
Tree (AST)

Intermediate
code

v Dependent Output code
Language B

Intermediate
code optimized

Figure 8.1: Compiler phases

8.3.1 LEXICAL ANALYSIS

The main purpose of this phase is to partition and classify the input of the compiler

(see Example 8.11). It is made by means of tokens.

A token is a lexical component that has a coherent meaning in some language. They
are the most basic elements on which all translation of a program is based.
Examples of tokens are the key words (e.g, if, while or int), identifiers, numbers,

signs or operators, in the context of programming languages.

Antonio Villegas Languages and Systems Department

136

e
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Compiler Basics | 8

Token: identifies a unit of information.

Usually, “tokens” are the result of some processing pass that has
performed lexical analysis and divided a data set into the smallest units
of information used for subsequent processing.

Definition 8.8: Token

Input: context Person inv mustBeAdult: age >= 18
Tokens:

CONTEXT : context

ID : (a..zA..Z2)*

INV : inv

COLON : “”

GREQTHAN : “>="

NUMBER : (0..9)"

Output: CONTEXT ID INV ID COLON ID GREQTHAN NUMBER

Example 8.11: Lexical analysis with tokens (input, tokens and output tokenized)

8.3.2 SYNTAX ANALYSIS

In this phase, also known as parsing, the input is the main input code tokenized at
the previous phase and the output is a parse tree, whose nodes represent the input
with more additional information that allows an easiest scanning in order to work
with it and to make the correct translation process. Commonly, the parse tree is
known as concrete or abstract syntax tree (CST or AST) and it is created thanks to

a grammar specification.

The compiler analyzes the tokens of the input and the different productions of the
grammar in order to construct the corresponding parse tree following those rules.

A little example can be found at Example 8.12.

Antonio Villegas 137 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions . .
2.8 Processor Compiler Basics | 8

Input: CONTEXT ID INV ID COLON ID GREQTHAN NUMBER

Grammar productions:

constraint = CONTEXT name INV name COLON expression
name = ID

expression = operand (operation operand)*

operation = GREQTHAN

operand ID | NUMBER

Parse Tree:

constraint

AN

CONTEXT name INV name COLON expression

ID ID
operand

D operation operand

| I
GREQTHAN NUMBER

Example 8.12: Syntactic analysis (input tokenized, grammar productions and output parse tree)

8.3.2.1 CST or AST

Commonly, the parse tree can be named as Concrete Syntax Tree (CST) or Abstract
Syntax Tree (AST). It depends on the process used to develop the compiler.
Usually, we obtain a CST, that is, our parse tree, and then we transform it to an

AST.

An AST differs from a CST by omitting nodes and edges for syntax rules of the
grammar that do not affect the semantics of the output language. Only significant
output language constructs are included. The classic example of such an omission
is grouping parentheses, since in an AST the grouping of operands is implicit in the
tree structure. The CST usually is the output of syntax analysis and AST the one of

semantic analysis.

Antonio Villegas 138 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Compiler Basics | 8

For example, the parse tree at Example 8.12 is a CST because has information
about irrelevant tokens like CONTEXT or COLON. The corresponding AST should

only have the constraint name, the constrained element name and the expression.

8.3.3 SEMANTIC ANALYSIS

This phase tries to obtain that the parse tree does not have errors in order to
continue with the translation process of the compilation. If any error is found, the
process is stopped and a notification is thrown to the user of the compiler with the

corresponding feedback that can help to solve it.

To search every possible error can be a huge task, but is necessary to help the user
in his work with the compiler. The more the compiler offers feedback to users, the

more usable become it to them.

To achieve a minimum degree of usability, an actual compiler should show for
every error found, a simple description and the place where the error happens.

Sometimes, a short advice to solve it is always welcome.

8.3.4 CODE GENERATION

Once we have a parse tree decorated with some extra information and empty of
errors, the code generation phase is ready to begin. At this point, for every kind of
node in the parse tree, a translation to the output language has to be defined in
order to convert the input. For instance, when we compile some programming
code, a translation is being done from the programming language to the machine

code that the computer can interpret and execute.

To know all the possible translations and formats from one language to the output

one, in order to obtain the best results, is mandatory.

Antonio Villegas 139 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Compiler Basics | 8

8.4 COMPILER ARCHITECTURE

In the figure below we can distinguish a complete compiler structure[WM95] with

the different phases of work.

Front end

: Intermediate-code
Lexical Analyzer Generator

Machine-dependent code
Generator

Intermediate-code Optimizer

Figure 8.2: Front-end and back-end of a compiler

Our purpose is to develop a front-end compiler that translate OCL2.0 code into XMI
according to the OCL2.0 metamodel shown on previous chapters. We need neither
a code optimizer nor a machine code translation because our output will not be

executed.

Our XMI output might be considered as an intermediate code that could be used by

several tools. To share models information is one of our purposes.

Antonio Villegas 140 Languages and Systems Department
e
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Compiler Basics | 8

= =

g
Lexical Analysis

Syntax/Semantic Analysis

UML model
(XMl File)

/Conceptual Modeling\

v

Environment
(EinaGMC)

UML Model
Information

Instance Generator

OCL
Instances

(PARSER OCL 2.0
4 4 (

g

Metadata

UML model with
constraints
(XM File)

Figure 8.3: Parser OCL 2.0 Architecture

Following this idea, our desire is to develop the front-end of an OCL2.0 compiler

(sometimes we will refer to it as parser) which output should be in a standard

language format (we have chosen XMI according to MOF). An outline of the

architecture can be seen in the following image.

At Figure 8.3 there are two main structures to analyze. Firstly, the conceptual

modeling environment to use, named Eina GMC, in which we emphasize the

metadata repository, containing both UML and OCL 2.0 metamodels. In addition, it

also contains all the instances over them representing the input UML model. All the

classes, attributes and so on UML models are instantiated as objects in the

repository. This information is necessary for the syntax and semantic analysis of

our intended OCL parser in order to verify the correctness of the constraints.

Antonio Villegas

141

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions

2.8 Processor Compiler Basics | 8

Secondly, our OCL Parser itself has the same phases as we have seen before in the
chapter. However, the intermediate-code generator phase is called instance
generator phase here because of our intermediate language are the OCLZ2.0

instances of the metadata repository.

Finally, we have to remember that with a UML model instances information and a
OCL 2.0 set of constraints we will be able to verify the correctness of the
constraints and then generate their instantiation on the repository, in order to
obtain a UML model with constraints in a standard language (XMI) that can be

shared between the users, thanks to our OCL 2.0 parser/compiler.

Antonio Villegas 142 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL Tools | 9

9 OCLTOOLS

9.1 STATE OF THE ART

There exist some tools that are capable of supporting and handling OCL
expressions. These tools aim at making this language easier to use for analysts and
developers who already use the language, as well as to those who intend to use it

in the near future.

Along this chapter we will introduce some of these tools in order to choose the OCL
tool which best adapts to our requirements. It is important to remember that our
aim is to develop a processor of OCL 2.0 expressions in order to convert textual
constraints into metamodel instances. Therefore, to choose a tool that seems to be
similar than our processor in mind will help us to begin the development of it with

a good basis.

Nowadays to start a software development process from scratch is not a good idea.
As in our case, it is very easy to find people with our needs that thought solutions
to our problems before us, and probably own a software tool that could be similar
than our desired tool. Therefore, to do a little effort searching similar solutions to
our problem could help us decreasing the development time and the complexity of

our project.

Papers, articles and the whole Internet are good places where to do our searching
task. If exists a (partial) solution to our problem, probably it has a web page where
its functionalities and other features are described. So, in the next section we will
study some tools that work with OCL expressions and could be useful to our

development phase.

Antonio Villegas 144 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL Tools | 9

9.2 OCLTOOLS

After searching on the Internet, we have chosen a set of tools that work with OCL

expressions and could be (partially) similar to our processor.

At next subsections we will discover their functionalities and features that are
provided. Moreover, a link to the place where to find each alternative is given in

order to allow readers of this document to test these tools by themselves.

9.2.1 UML-BASED SPECIFICATION ENVIRONMENT (USE)

As indicated in [USEw] USE is a system for the specification of information systems
developed inside the Database and Systems Group of the Bremen University. It is

based on a subset of the Unified Modeling Language (UML).

A USE specification contains a textual description of a model using features found
in UML class diagrams (classes, associations, etc.). Expressions written in the
Object Constraint Language (OCL) are used to specify additional integrity
constraints on the model. A model can be animated to validate the specification

against non-formal requirements.

Such USE specification files have a special syntax. USE does not support import or
export models from/to XMI format. Its syntax for declare a model is shown in

Example 9.1

model Employee
-- classes
class Person
attributes

name : String

age : Integer

Antonio Villegas 145 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions OCL Tools | 9

2.8 Processor

salary : Real
operations
raiseSalary(rate : Real) : Real
end
class Company
attributes
name : String
location : String
operations
hire(p : Person)
fire(p : Person)
end
-- associations
association WorksFor between
Person[*] role employee
Company[0..1] role employer

end

Example 9.1: USE specification file extracted from [USEw]

Keywords are emphasized with bold notation in order to note the different

sections of the specification syntax.

System states (snapshots of a running system) can be created and manipulated
during an animation. For each snapshot the OCL constraints are automatically
checked. Information about a system state is given by graphical views. OCL
expressions can be entered and evaluated to query detailed information about a

system state.

USE allows adding real instances to UML classes in order to do such evaluation of
the system and their constraints. These instance objects represents a system state

that is evaluated in order to check its correctness.

Antonio Villegas Languages and Systems Department

146

Barcelona School of Informatics Technical University of Catalonia

OCL] Expressions OCLTools | 9

2.8 Processor

006 USE: Employee.use

File Edit State View Help

BRI EIEERRERHEERE

P ee=e=B=B=}]=Tr = .
Employee e 06 Class diagram
¥ | Classes
_ Person
__ Company
P | Associations Company
> | Invariants "ame.'St_rmg.
o location : String
» | Pre-/Postconditions hire(p : Person)
fire(p : Person)
employgr
Worl{sFor
= employee
class Person plov
attributes Person
name : String name : String
age : Integer age : Integer
salary : Real salary : Real
operations raiseSalary(rate : Real) : Real
raiseSalary(rate : Real) : Real
end
Log
compiling specification Employee.use...
done.

Model Employee (2 classes, 1 association, 1 invariant, 3 operations, 7 pre-/postconditions)

Ready.
Figure 9.1: USE graphical user interface

USE can be executed by a command line interface (CLI) or through a graphical user
interface (GUI). Anyways the first step is to load a USE specification file with the
model description. Such file can also contain OCL constraints into another section

after the previous one shown at Example 9.1 like in next example.

-— OCL constraints

constraints
context Person inv invl: self.age >= 18

Example 9.2: Constraints section of a USE specification file

Once we have loaded the specification file in USE format we will obtain a window
like in Figure 9.1. It contains a view of packages with the elements of the model

and USE also provides different views as class or object diagrams. At Figure 9.2 we

Languages and Systems Department

Antonio Villegas 147
Technical University of Catalonia

Barcelona School of Informatics

Expressions
Processor OCLTools | 9

can find the USE interface with three windows including a class diagram with the
two classes indicated into the specification file, an object window with the
instances of the previous classes and relationships, and finally a invariant with the

result of applying the invariant constraints to the object instances.

806
File Edit State View Help

USE: Employee.use

% — - | -
EEEIBREIEERRE LRI
4 = x ;
_ Employee 000 Class diagram Tooo ob Object ...
¥ | Classes
_ Person Company .
__ Company name : String | lohnperson
¥ | Associations location : String :;;n_e;sjohn
" WorksFor hire(p : Person) salary=1000.0
: fire(p : Person)
¥ . Invariants mployee
~ Person::invl employgr 0..1
. " WorksFor
P | Pre-/Postconditions
* gmployee
2 Person employe
context Person inv invl: - name : String IBM:Company
(self.age >= 18) age : Integer name='1BM'
salary : Real location="USA'
raiseSalary(rate : Real) : Real

® O O & Class invariants

Invariant
Person::invl

Result

Log
checking structure...

A
checking structure... ~
checking structure, ok. m
checkina structure...)4
Ready.

Figure 9.2: Different views inside the USE interface

Inside the USE window it is possible to create object instances but not classes or

relationships to add to the model specified before.

Antonio Villegas Languages and Systems Department

Technical University of Catalonia

148

Barcelona School of Informatics

OCL| Expressions
2.8 Processor

OCL Tools | 9

The OCL parser and interpreter of USE allows the evaluation of arbitrary OCL
expressions. The menu item Evaluate OCL expression opens a dialog where
expressions can be entered and evaluated. An example is shown at next image. The

direct interpretation of OCL expressions is the best feature of this tool.

SEONG) Evaluate OCL expression

Enter OCL expression:
Sequence{l..10}->prepend(0)

Result: (Browser)
Sequence{0,1,2,3,4,5,6,7,8,9,10} : Sequence(Integer)

(Clear)
Ne—

(Close

Figure 9.3: OCL expression checking inside USE

Since USE contains a subset of the complete UML and OCL languages, some
constructions or operations are not included in its implementation. For example,
OrderedSet is not a known kind of Collection or operations like insertAt are not

recognised.

USE is implemented in Java and its distribution comes with full sources. A final
version (last is 2.4.0) can be downloaded from [USEw]. Furthermore, a whole
explanation about how to use all USE functionalities can be found at its user guide

in [USE07].

9.2.2 DRESDEN OCL2 TOOLKIT

The Dresden OCLZ2 Toolkit is a complete framework composed by several
components. In this section we are interested in the OCL 2.0 parser subsystem,

which consists of a number of modules that interoperate to create an abstract

Antonio Villegas 149 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL Tools | 9

syntax tree from textual OCL 2.0 constraints. It is currently developed by members
of the Technische Universitit Dresden. The OCL 2.0 parser subsystem was

developed by Ansgar Konermann [DOTw].

e 06 Experimental OCL20 Parser GUI [OCL-Syntaxtest.ocl]
{ Constraint | CST CSTViz Repo Model ASTGCen log]

derive: 'abc'.concat('def' - -
¢ d ~ Load from file
context Car::driveTo(x: Integer, y: Integer): Boolean Save to file
pre precondl: x > 0 and y > 0 and x <= 100 and y <= 100 and n
body: true Line 91, Column 1
-~ test parsing of def: constraints for operations
context Car
def: isMyCar(me: Person): Boolean = owner->includes(me)
-~ test parsing of operation contexts
context Car::getTopSpeed(): Real
post: true
-~ test parsing of operations with type argument
context Car
inv: self.oclIsTypeOf(OclAny)
-~ test parsing of real literals
context Car
inv: topSpeed >= 10.0
inv: topSpeed >= 1l.0el
inv: topSpeed >= 1l.0e+l
inv: topSpeed >= 1.0e+001
inv: topSpeed >= 100.0e-1
inv: topSpeed >= 100.0e-01
endpackage
N
<€ J >

Figure 9.4: Main window of the OCL 2.0 parser subsystem of the Dresden OCL2 Toolkit

As we can see at Figure 9.4, the graphical interface of such parser is divided into 6
different sections. First one is implemented to write OCL 2.0 constraints or also

load/save them from/to a file.

Next step is to parse the OCL 2.0 constraints in order to obtain a concrete syntax
tree (CST). This process is similar than such explained at chapter 8 when

describing compilation process.

Antonio Villegas 150 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

% Expressions
Processor

OCL Tools | 9

e 06 Experimental OCL20 Parser GUI [OCL-Syntaxtest.ocl]

! Constraint " €CST | CSTViz Repo Model ASTGenlog -

|| Start "package carworld context Car inv : let fourtytwo : oclLib :: Integer = 4;4
¥ | OclFile "package carworld context Car inv : let fourtytwo : oclLib :: Intege
¥ | PackagedConstraintListCs “package carworld context Car inv : let fou Expand All
¥ | PathNameCs “carworld "

_ SimpleldentifierCs “carworld " _

¥ | ContextDeclarationListCs “context Car inv : let fourtytwo : oclLib ::
¥ [ClassifierContextDeclarationCs “context Car inv : let fourtytwo :
¥ | PathNameCs "Car "
_ SimpleldentifierCs "Car "
¥ | InvariantClassifierConstraintCs “inv : let fourtytwo : oclLib ::
¥ | WithLetOclExpressionCs “let fourtytwo : oclLib :: Integer
¥ [LetExpCs "let fourtytwo : oclLib :: Integer = 42 in let
¥ | InitializedVariableListCs “fourtytwo : oclLib :: Inte
¥ | InitializedVariableCs "fourtytwo : oclLib :: Inte
¥ | FormalParameterCs “fourtytwo : oclLib :: |
v f‘ﬂ FormalParameterTypeSpecifier " oclLil
¥ | SimpleTypeTypeSpecifier “oclLib ::
¥ | SimpleTypeSpecifierCs “oclLib :
¥ | PathNameCs “oclLib :: Inte

v P
Rl)

Figure 9.5: Parsed constraints into CST format

It is important to note that the CST can be shown in a hierarchical package form or
in a graphical notation.

e 06 Experimental OCL20 Parser GUI [AttrEvalTest-CarWorld-1.ocl]
[Constraint | CST ['GSTWiz| Repo Model | ASTGenlog)
A

package carworld :: nested context Classifier1 inv : size >= 0 endpackage

package carworld :: nested context Classifier1 i
|

J

!

package carworld :: nested context Classifier1 i

Figure 9.6: Visualization of CST generated by OCL 2.0 parser subsystem

Antonio Villegas

Languages and Systems Department
Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL Tools | 9

Once we have the CST, the OCL 2.0 parser subsystem needs to load a UML model to
check if the OCL constraints are correctly constructed. Into model section of the

GUI we can load an XMI file representing the UML model.

It is important to emphasize that UML version allowed is 1.5 instead of the last 2.0.

Nevertheless, the version of OCL supported is 2.0.

e 06 Experimental OCL20 Parser GUI [AttrEvalTest-CarWorld-1.ocl]
! Constraint CST CSTViz Repo Model | ASTGen log '

Metamodel Load XMI
UML 1.5 .
Reservel
OCL model origin
‘abajo/dresden-ocl2-src-1.2/resources /PoseidonProjects /CarOwner.xmi Reserve2
Model name

UML15instancel210668151370

Figure 9.7: XMI model loaded within the OCL 2.0 parser subsystem

Finally, last step in the workflow of the OCL 2.0 parser subsystem is to generate the
evaluation of the constraints according to the UML 1.5 model loaded. If any error is

found at this process, this tool informs the user in order to solve it.

Antonio Villegas Languages and Systems Department

152

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL Tools | 9

One of the most important features of the OCL 2.0 parser subsystem is that it
provides the possibility of exporting the current UML 1.5 model with the new

constraints into an XMI file, according to the standard metamodels.

Such functionality is very similar than our intention of instantiating textual

constraints and then adding them into the XMI model file.

OO0 Experimental OCL20 Parser GUI [AttrEvalTest-CarWorld-1.ocl]

! Constraint CST CSTViz Repo Model ASTGen log '

Attribute evaluation completed successfully. e

Clear

Export XM|

e 06 | CarOwner.xmi
<M1 .content> “
<JML:Model xmi.id = 'al' name = 'example' isSpecification = 'false' isRoot = 'false’ m;
isLeaf = 'false' isAbstract = 'false's

<ML :Namespace .ownedE lement=
<ML :Package xmi.id = 'a2' name = 'oclLib' visibility = 'public' isSpecification = 'false’
isRoot = 'false' islLeaf = 'false' isAbstract = 'false's
<ML :Namespace .ownedE lement=
<JML150CL . Types.SequenceType xmi.id = 'a3' name = 'Sequence{OclAny)' visibility =
‘public’
isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'=
<0CL.Types.Col lectionType.elementType=
<ML :DataType xmi.idref = 'a4'/>
</0CL.Types.Col lectionType.elementTypes>
<ML :GeneralizableElement .generalization=
<ML :Generalization xmi.idref = 'a5'/>
</UML:GeneralizableElement .generalization=
<JML:Classifier.feature>
<ML :Operation xmi.id = 'a6' name = 'count' visibility = 'public' isSpecification =
'false'
ownerScope = 'instance' isQuery

'true' concurrency = 'sequential' isRoot =
'false'
isLeaf = 'false' isAbstract = 'false's
<JML :BehavioralFeature.parameter=
<JML:Parameter xmi.id = 'a?' name = 'result' isSpecification = 'false’ kind = v
'return'=

JIMl o D) o de,

Figure 9.8: Attribute evaluation and XMI generation within the OCL 2.0 parser subsystem

To conclude, it is important to know that the Dresden OCL2 Toolkit contains other

tools that work with OCL 2.0 expressions. An example of such tools is the OCL

Antonio Villegas 153 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL Tools | 9

Editor, which provides a text editor for OCL constraints, or the OCL22Java that

generates Java code from OCL expressions.

9.2.3 MOVA PROJECT

The MOVA Project is a software development project developed by the MOVA
(Modeling and Validation) Group that has the MOVA tool as a result.

According to the explanation extracted from their web site [MOVw], the MOVA tool
is a modeling and validation experimental tool developed at the Universidad
Complutense de Madrid by the MOVA group. The MOVA tool is part of a broader
effort for integrating rigorous modeling and validation into the industrial software

engineering process.

The MOVA tool consists of three applications:

e UML modeling: it allows the user to draw UML class and object diagrams,
write and check OCL invariants, write and evaluate OCL queries, and define

OCL operations to be used in invariants and queries.

* SecureUML modeling: it allows the user to draw SecureUML diagrams, write
and evaluate OCL security policies, and define OCL operations to be used in

security policies.

* UML modeling with metrics: it allows the user draw UML class and object
diagrams, write and check OCL invariants, write and evaluate OCL queries,
write and evaluate OCL metrics, and define OCL operations to be used in

invariants, queries, and metrics.

We are interested only in the first application included in the MOVA tool related to
UML modeling. First step when executing MOVA tool is to choose the UML

modeling option in order to start such application.

Languages and Systems Department

Antonio Villegas 154
Barcelona School of Informatics Technical University of Catalonia

OCL] Expressions OCLTools | 9

2.8 Processor

\/ Initial window (=3

Please, choose your MOYA application

C] UML modeling
SecureUML modeling

UML modeling with metrics

Accept ‘ | Cancel

Figure 9.9: MOVA tool initial window

Once we have opened the correct application, next step is to load or draw a UML
class diagram. MOVA uses its own XML format to load and save models, which is

very simple and different from XMI.

\/ MOVA::UML modeling tool

File Edit View Insert Help

@ ox 2 v 9 Bl
/D5 [[OD5.1 |

| BB

Project
= id : Integer
empkloyee
Employee :
hame : String
age : Integer

&8
Dl

Figure 9.10: MOVA UML modeling tool. Class diagram

Antonio Villegas Languages and Systems Department

155

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL Tools | 9

MOVA provides an area to draw classes, relations and hierarchies. Furthermore it
is possible to create object instances that will be useful to evaluate OCL constraints

over them.

\/ MOVA::UML modeling tool
File Edit View Insert Help

g BxX |[E=e v/, @

CD5 0DS5.1 |
L3
e -] worksin id: =
Objectl:Employee Wld.lnteger 1
age : Integer= 20
=N N name : String = "John"

Figure 9.11: Object instantiation inside MOVA tool

The process to create instances is as simple as draw classes. We only have to select
which class will be the container of the instance and then complete the attributes
and relationships of such instance. An example of instantiation can be found at

Figure 9.11

When we have defined both class and object diagrams it is the moment to write the
OCL constraints over the class elements. MOVA tool provides a step-by-step

window where to write constraints. We must select our current start point of a

Antonio Villegas 156 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor OCL Tools | 9

constraint and then MOVA shows us what are the possibilities to choose in order to

complete the expression.

Ocl Editor X

Select a pattern

nreyer -
<string>>
<type:>- =
Employee.allInstances 2
if(<Boolean:>)then{< <type:-:1>)else{ < <type=:2:>)fi
not{<Boolean:>)

Project.allinstances

self:Employee

Set{<<type>>}->union{<Set[<type>]=)
Set{} =

Context

Current Type

Expression

OK ‘ Cancel

LIL

|

Start

Figure 9.12: OCL Editor owned by the MOV A tool

For example, if we select the Employee.allinstances alternative we can press the ->
button to obtain a list containing all the possibilities to use (e.g., forAll, exists, ...,

and all collection operations).

The editor provides three buttons, arrow (->), dot (.) and Space to complete
constraints. We only have to note that it is not possible to edit a constraint to add
more contents (e.g., in a boolean expression to add another condition with an and
operator). Nevertheless, this tool is excellent for people that are not used to work

with OCL because it helps them to make correct constraints from the beginning.

Antonio Villegas 157 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL Tools

9

\/ Invariant displayer

B=1E3

ID

AU

context Employee inv: Employee.allinstances->>forall{(e:Employee | (e:Employee.age:>=(18)))
context inv: Employee.allinstances--exists(e:Employee | (e:Employee.name=_(}"Mike\,")))

<

[«

[»

Select all H Remove selected H Send selected H Cancel

Figure 9.13: Invariants in MOVA tool

employee Object2:Project

iect!: worksin id - Int =1
Object! :Employee W id : Integer

age : Integer= 20
name : String = "John"

V Invariant displayer

v

context Employee inv: Employee.allinstances->forall(e:Employee | (e:Employee.age>>=(18)))
¥ context inv: Employee.allinstances--exists(e:Employee | (e:Employee.name=(}, "Mike',")))

|

[]

{ Accept

Figure 9.14: Result of invariant evaluations within MOV A tool

Antonio Villegas Languages and Systems Department

158
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL Tools | 9

At Figure 9.13 we can see the invariants written by the step-by-step editor. It is
important to note that such invariants can be sent to the object diagram to be
executed and evaluate the system. For to do this we have the “Send selected” button

on this view.

Last step is to evaluate the constraints with the object instances. Pushing the
evaluation button in the object diagram we obtain a window with all the
constraints sent and an image, which precedes each of them. Such images denote if
the invariant constraint evaluates to true (denoted with a green tick symbol) or

false (denoted with a red cross), as we can see at Figure 9.14.

As a conclusion for the MOVA too], it is important to emphasize that the way of
writing invariant expressions is very interesting in order to learn how the OCL 2.0
works. Nevertheless, for those that are used to work with this constraint language

it is more useful to write expressions directly by hand.

MOVA tool is being an essential tool for students from the Universidad
Complutense de Madrid, so this is a proof of its value as learning software for

future computer engineers.

9.2.4 IBM OCL PARSER

Among the first tools developed for OCL, OCL PARSER 0.3 by Jos Warmer (co-author
also of the book about OCL that can be found at [WK03]) stands out.

It is an analyser written in Java and is limited to syntactic analysis and a partial
checking of types. It allows the analysis of constraints included in UML models, but
requires a specific format of the tool. “OCL Parser 0.3” is available inside IBM web

at [IOPw].

Antonio Villegas Languages and Systems Department

159

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor OCL Tools | 9

OCL Parser

OCL Parser, (c) 1997, IBM Corporation

K"Open OCL types) (Open UML model) (Open OCL invaria) (Exit)

Figure 9.15: IBM OCL Parser 0.3

OCL Parser 0.3 provides support for UML and OCL versions 1.1. Once we open this
tool we found a graphical interface like shown at Figure 9.15. A window comes up

with four buttons:

* Open OCL types: this button opens a file containing all predefined OCL
types. The OCL types file contains type, attribute and operation
declarations, including subtype-supertype relationships of the predefined

OCL types.

* Open UML model: this button is used to open a file that contains all
information from a UML model that is needed in OCL expressions. The UML
model file contains type, attribute and operation declarations, including

subtype-supertype relationships.

Antonio Villegas 160 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor OCL Tools | 9

* Open OCL invariants: this button is used to open and check a file containing
OCL invariants on the types defined in the UML model file. The file will be

read and all expressions will be checked.

e Exit: quits the application.

e 06 OCL Parser
OCL Parser, (c) 1997, IBM Corporation

(‘Open OCL types) (Open UML model) (Open OCL invaria) (Exit)
Tstart file read.. 006 Open UML Model
parsed file Ok (7o) [E |m' | ocl-parser-03 Folder m Q buscar
B MacLotendil - RN
™ M umimodel.ocl 22/09/97
! Macintosh... = Readme.txt 01/10/97
b |~ Oclumll.l Hoy
u Escritorio M ocltypes.ocl 22/09/97
: ¢ manual.htm 01/10/97
"?‘ lotendil = install.txt 01/10/97
o W chap4.ocl 09/09/97
s Aplicaciones
=1
l:l Documentos
E Peliculas
| 6 Mdasica |
| | [Imagenes
(Carpeta nueva) (Cancelar) Abrir

Figure 9.16: Opening UML file into IBM OCL Parser 0.3

This tool uses a predefined format for both OCL and UML files because XMI was not
implemented yet. Nevertheless, the format of these files is a simplified version of

the XML language.

According to the user documentation within the release package of the IBM OCL

Parser, version 0.3 is an incomplete implementation of OCL. It contains the

following restrictions:

Antonio Villegas 161 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL Tools | 9

* There is no difference between an identical named attribute and operation

without parameters. They are currently treated as being the identical.

* Type checking is not completely implemented. Therefore not all type errors

are caught.

* Only invariants can be checked properly, pre and postconditions in the

context of an operation are not handled yet.

e The source code is not documented well, but it is contained in the

distribution.

e It has only been tested on the Windows95 platform, using SUN

Microsystems JDK, version 1.1.

000 OCL Parser

OCL Parser, (c) 1997, IBM Corporation

(Open OCL types) (Open UML model) (Open OCL invaria) (Exit \)

start parsing OCL expressions...

OCL expressions syntax check done, starting type check...

AssociationClass [opl] 23 : union (Set(CeneralizableElement)) not found for type Set(AssociationEnd)
BehavioralFeature [opl] 44 : hasSameSignature (BehavioralFeature) not found for type BehavioralFeature
Class [3] 64 : hasSameSignature (Classifier) not found for type Operation

Classifier [1] 83 : hasSameSignature (Feature) not found for type BehavioralFeature

Classifier [4] 98 : union (Set(ModelElement)) not found for type Set(AssociationEnd)

Classifier [5] 100 : union (Set(ModelElement)) not found for type Set(Attribute)

Classifier [op1] 105 : allFeatures () not found for type GeneralizableElement

Classifier [op6] 123 : allAssociations () not found for type GeneralizableElement

Classifier [op8] 129 : allOppositeAssociationEnds () not found for type GeneralizableElement

number of type errors: 9

OCL expressions typecheck done

Figure 9.17: Checking OCL into IBM OCL Parser 0.3

Antonio Villegas 162 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL Tools | 9

IBM OCL Parser 0.3 development seems to be stopped, because there are no
changes since its last release version in 1997. Nevertheless, we have the source

code available with the release package.

9.3 SUMMARY

Once we have seen a brief explanation of a set of tools that have the OCL as an
important part of their functionality, we are able to affirm that they contain some
similarities with our processor, like usage of the XMI format, parsing and

instantiation of constraints, and error handling.

Nevertheless, some of these tools also have differences with our processor like
usage of earlier versions of UML or OCL, or treatment of only a subset of these

languages.

At next chapter we will select one of them in order to be the basis of our

processor’s design and development phases according to a formal process.

Antonio Villegas 163 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCLTools | 9

Antonio Villegas Languages and Systems Department

164

e
Barcelona School of Informatics Technical University of Catalonia

DECISION MAKING PROCESS

OCL| Expressions

2.8] Processor Decision Making Process | 10

10 DECISION MAKING PROCESS

10.1 INTRODUCTION

It is possible to define human beings as decisional machines. Along the day we are
used to make lots of decisions that affect to our behaviour or way of life. To make
these decisions our brain does a process in which a set of alternatives are
evaluated in order to choose such one that (sometimes) seems to be more

reasonable.

There exist some decisions that are hard to make according to the consequences of
their alternatives. For those problems we can use a formal method called multi-
criteria decision analysis that can help us in order to convince us in that we are

choosing the best alternative in a decision between different ones.

Along this chapter we will apply this process to the problem of choosing the best

OCL tool to be the basis of our processor of OCL expressions.

10.2 MULTI-CRITERIA DECISION ANALYSIS (MCDA)

The multi-criteria decision analysis (MCDA) process is a discipline aimed at
supporting decision makers who are faced with making numerous and conflicting
evaluations. MCDA aims at highlighting these conflicts and deriving a way to obtain

a good solution in a transparent process.

Our MCDA process applied to our problem will be based in a multi-attribute

analysis and evaluation for each alternative that can be chosen.

Antonio Villegas 166 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

10.2.1 A DECISIONAL PROBLEM

First step is to define our problem as a decisional problem. We are trying to choose
an existent software tool between a set that will be the basis of our development
phase for to implement a processor of OCL 2.0 expressions, which have to be
instantiated into the OCL 2.0 metamodel. Such expressions should also be checked
according to an UML model in order to find possible errors and help users to solve

them.

Furthermore, the chosen alternative should be easy to adapt to the Eina GMC
modeling tool due to the metamodels in which to instantiate the constraints are

owned by such tool.

It is obvious that the one that has to make the decision is who is writing this
document, but such decision can also affect future users of the processor.
Therefore to know what the users need is an important task that has influence in

the decision making process.

10.2.2 ALTERNATIVES TO CHOOSE

Another important task is to know and understand the alternatives that are part of
the decisional problem. In our case, the software tools that contain OCL

functionalities are the alternatives to choose.

It is important to emphasize that we don’t want to open a fight between these tools
in order to decide which one is the best. We only want to decide which tool best

fits to our processor in mind to become the basis of its development.

Therefore we are not deciding if one tool is better that other one. We are choosing
an alternative that owns features that can be adapted to our processor or that can

be extended in order to be useful in our development.

Antonio Villegas 167 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

10.2.2.1 USE Tool

The UML-based Specification Environment (USE) is one of our alternatives and has
the advantage of provide a complete set of features related with the OCL language.
USE is able to check syntax and semantics of OCL expressions as well as to

interpret them in order to make queries to the system.

The main disadvantages of this tool are that the format used to load and save UML
diagrams is not a standard like XMI, and the UML supported within USE is a subset
of the whole. Nevertheless USE is already in development, so future version will

include more functionalities that could solve such lacks.

A brief description about USE was done at section 9.2.1 of chapter 9. A full
explanation can be found in [USEQ7].

10.2.2.2 Dresden OCL2 Toolkit

Inside Dresden OCL2 Toolkit we found the OCL 2.0 parser subsystem as a

component. It is another alternative in our decisional problem.

The disadvantage of this tool related to our processor’s needs is that UML version
supported is 1.5 instead of later 2.0. Despite, it could be possible to adapt the base

version in order to support UML 2.0 version.

On the other hand, the OCL 2.0 parser subsystem has the advantage of provide
parsing support for the whole OCL 2.0 and UML 1.5, therefore it does not support
only a subset. Moreover, it uses XMI format similar than Eina GMC one to load and

store models.

A brief description about this tool was done at section 9.2.2 of chapter 9. A full

explanation can be found in [Kon05].

Antonio Villegas Languages and Systems Department

168

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

10.2.2.3 MOVA Project

The MOVA tool as member of the MOVA project is our third alternative that we

have presented to be chosen as a basis for the development of our processor.

Its main disadvantage is that it is not possible to write OCL expressions directly
without using its step-by-step OCL editor. This lack implies that experienced users

could consider such tool a little discomfort.

Nevertheless, MOVA tool has been tested with students of software engineering
with success, so it is a proof of its usability with people that has not sufficient

experience with modeling and constraint languages.

A brief description about MOVA tool was done at section 9.2.3 of chapter 9. A full

explanation can be found in [MOVw].

10.2.2.4 IBM OCL Parser

The IBM OCL Parser is one of the first tools supporting OCL. It is the last alternative
that will be studied in our multi-criteria analysis process in order to be the basis

for our tool.

Its disadvantages are that it seems to be unfinished and that does not support last
OCL 2.0 language. It only holds versions 1.1 of UML and OCL. Furthermore, the IBM
OCL parser does not instantiate OCL expressions into a metamodel. It only checks

syntax and semantics of such expressions.

On the other hand, its main advantage is its simplicity that can make easy the task

of understanding its source code, although it is not documented in precise detail.

A brief description about IBM OCL Parser was done at section 9.2.4 of chapter 9.
This tool can be found in [IOPw].

Antonio Villegas Languages and Systems Department

169

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

10.2.3 STRUCTURING THE PROBLEM: VALUE TREE

Next step in this process is to find measurable values in order to act as guides to
the correct decision. A value can be defined as a concept that matters and identifies

our needs.

This section aims to create a structure that simplifies the analysis process. As you
can imagine if you are an experienced user in computer science or mathematics,
best simple structure to use is a tree. In our case, it will be a value tree containing

all the important values according to our problem.

For each criterion or essential purpose we have to think about value concepts that

could measure it in order to create a hierarchical structure in tree form.

Remembering our problem, we need a tool that supports both UML and OCL
languages in their 2.0 versions. In addition, such tool should check OCL
expressions in order to verify syntax and semantics. A type conformance analysis

is another important feature that cannot be forgiven.

We are also interested in a tool that supports XMI as model interchange format,

and that instantiates OCL expressions into the OCL metamodel.

Furthermore, it is important to select a tool that provides documentation for its
users and also more technical information, like design and implementation

manuals or a well-structured source code with useful comments.

Finally, we don’t have to forgive that such tool should be easy to use for both

experienced and inexperienced users.

With such wish list we have to be able to make a value tree that will be the basis of
this analysis process from now on. Therefore, to continue we will show the final

list of value concepts and the tree-form structure.

Antonio Villegas 170 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

UML and OCL versions supported.

¢ UML model interchange format supported.

* OCL verification: syntax and semantics, and type conformance.

* OCL execution or interpretation.

* Usability of experienced and inexperienced users.

* User documentation provided.

¢ Technical documentation provided.

Quality of source code.

Splitting and aggregating these previous value concepts we are able to present the

hierarchical structure of the Figure 10.1.

It is important to emphasize that the information has been structured through
three main nodes: features, documentation and usability. We think that these are

the three pillars that contain all the other nodes inside the tree hierarchy.

As descendants of features we find the related nodes to the UML and OCL
languages supported for our tools. Both contain information about version,
instantiation, interchange format supported and all those concepts that we defined

as concepts with an important role in the decision making process.

Documentation and usability nodes also contain their respective descendants with

all the information required before.

Antonio Villegas 171 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Expressions .. .
Processor Decision Making Process | 10

R

UML version

UML)

supported UML model
interchange
format

Features OCL version

Metamodel

instantiation

Syntax and
OCL semantics

supported OCL

verification

. Type
conformance

OCL execution
or

interpretation

Quality of -

source code

Decision

Documentation
User manual

O

Technical
manual

\ Experienced
Usability USELS

Inexperienced
users

Figure 10.1: Tree value with value concepts that are essential in our decision analysis

At next section we will explain each node in detail in order to make a valuation of
these value concepts that will be useful when evaluating every alternative that has

possibility of to be chosen.

To do this qualifying process we will use the SMART method that will be explained

before it.

Antonio Villegas 172 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

10.2.4 ATTRIBUTE VALUATION: SMART METHOD

The Simple Multi Attribute Rating Technique, also known as SMART method, was
firstly introduced by Edwards in 1977. The version applied at this chapter was
explained during my classes on decision making and project management on

business [PDGPE] at Barcelona School of Informatics.

The purpose of the SMART technique is to value the importance of each node of the
value tree. This task consists on assign a weight to each attribute taking care that

each group of siblings must have a total weight of 100%.

First of all, we have to start with the root attributes group, valuate them, and then

continue this process with the descendant groups.
* Stepsin the SMART process:
1. For each group of attributes, sort them according to their importance

2. Compare the importance of each attribute with respect the less

important one.
3. Transform importance values into weights.

In our value tree we can distinguish 7 different groups of attributes as we can see
at Figure 10.2. Next to it we will apply this process to each group in order to obtain

the correct weights of each leaf node.

Antonio Villegas 173 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Expressions .. .
g% Processor Decision Making Process | 10

Features OCL version

Metamodel
instantiation '
— Syntax and
' ocL \ semantics
verification
Type
. conformance
OCL execution
‘ Decision on
interpretation

Quality of
source code

Documentation
User manual

Experienced
users

Usability

Inexperienced
users

Figure 10.2: Value tree with groups

10.2.4.1 Group 1

This group contains the three root nodes about features, documentation and
usability. As we indicated before, first step of the SMART technique is to sort these
value concepts according to their importance. At next example we will see the

result of this ordering.

Antonio Villegas 174 Languages and Systems Department
|

e
Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

Features = Documentation > Usability

We think that according to our needs, it is more important a tool with
good and well-documented features than another one that has a good
usability, because this last characteristic could be obtained by ourselves
doing a good development although our base tool didn’t have such
characteristic.

Example 10.1: Ordering first group of value concepts

Then, next step is to compare the importance degree of each value concept with

respect the others, and finally, convert importance values into weights.

Less important concept: Usability = 1
How many times is more important Documentation than Usability? 2

How many times is more important Features than Usability? 2
Weight(a) = importance(a) / £ importance
Weight of Usability: 1/(2+2+1) = 0.2 ~ 20%

Weight of Documentation: 2/(2+2+1) = 0.4 ~ 40%
Weight of Features: 2/(2+2+1) = 0.4 ~ 40%

Example 10.2: Weights of group 1 members

Therefore, once we have done the weight calculation for this first group applying

the SMART technique, we only have to repeat it with the other groups.

10.2.4.2 Group 2

Within second group there are only two nodes representing the UML and OCL

languages supported, so here it is not necessary to apply the SMART method. We

think that both concepts should have the same weight, so due to the sum of such

weights must be 100%, each one of these concepts has a weight of 50%.

0CL
2.0

10.2.4.3 Group 3

Within the Documentation node we found three nodes: Quality of source code, user

manual and technical manual. Then we will apply the SMART method first step

consisting in ordering such nodes according to their importance degree.

Source code = Technical manual > User manual

We think that according to our needs, it is more important a tool with a
good-structured source code and a technical manual where all design
and implementation decisions are explained in detail than another one
that has a good user manual, because this last characteristic will be not
as important as others in the development phase of our processor.

Example 10.3: Ordering third group of value concepts

Then, next step is to compare the importance degree of each value concept with

respect the others, and finally, convert importance values into weights.

Less important concept: User manual = 1

How many times is more important a Technical manual than a User
manual? 3

How many times is more important a well-documented Source code than
a User manual? 3

Weight(a) = importance(a) / £ importance
Weight of User manual: 1/(3+3+1) = 0.143 ~ 14%

Weight of Technical manual: 3/(3+3+1) = 0.428 ~ 43%
Weight of Source code: 3/(3+3+1) = 0.428 ~ 43%

Example 10.4: Weights of group 3 members

OCL| Expressions

2.8] Processor Decision Making Process | 10

10.2.4.4 Group 4

Within fourth group there are only two nodes representing the usability for
experienced and inexperienced users of the tool, so here it is not necessary to
apply the SMART method. We think that both concepts should have the same
weight, so due to the sum of such weights must be 100%, each one of these

concepts has a weight of 50%.

10.2.4.5 Group 5

Within 5th group there are only two nodes representing the UML version
supported by the tool being evaluated, and the kind of interchange format for to
represent UML models, so here it is not necessary to apply the SMART method. We
think that the interchange format concept is more important here because our
processor will work with XMI. On the other hand, if UML version is earlier than last
2.0 we think that to adapt it to new UML version could be easier than to adapt

interchange format to XMI.

Therefore, we our decision is to add a 40% weight for UML version and a 60% for

the interchange format node.

10.2.4.6 Group 6

Within the OCL supported node we found four nodes: OCL version, OCL
instantiation into a metamodel, OCL verification and OCL execution or

interpretation.

Then we will apply the SMART method first step consisting in ordering such nodes

according to their importance degree.

Antonio Villegas Languages and Systems Department

177

Barcelona School of Informatics Technical University of Catalonia

Metamodel instantiation = OCL verification > OCL version > OCL execution

We think that according to our needs, it is more important a tool that
instantiates OCL into a metamodel because it is the main purpose of our
processor. This concept has the same importance than the verification of
OCL due to we need a tool that will be able to find errors in OCL
expressions.

Finally, we think that OCL version supported is more important than if the
tool executes OCL expression because we are more interested in tools that
support OCL 2.0 than in tools that are able to execute OCL expressions
because it is not our purpose, although a tool with this feature will be
well-valued.

Example 10.5: Ordering 7th group of value concepts

Then, next step is to compare the importance degree of each value concept with

respect the others, and finally, convert importance values into weights.

Less important concept: OCL execution = 1

How many times is more important the OCL version supported than the
execution of OCL? 2

How many times is more important a tool with OCL verification than the
execution of OCL? 3

How many times is more important a tool that instantiates OCL
expression than the execution of OCL? 3

Weight(a) = importance(a) / £ importance

Weight of OCL execution: 1/(3+3+2+1) =0.11 ~ 12%

Weight of OCL version: 2/(3+3+2+1) = 0.22 ~ 22%

Weight of OCL verification: 3/(3+3+2+1) = 0.33 ~ 33%

Weight of metamodel instantiation: 3/(3+3+2+1) = 0.33 ~ 33%

Example 10.6: Weights of group 3 members

OCL| Expressions

2.8 Processor Decision Making Process | 10

10.2.4.7 Group 7

Within 7th group there are only two nodes representing if the tool being evaluated
checks both syntax and semantics, and type conformance of OCL expressions, so
here it is not necessary to apply the SMART method. We think that both concepts
should have the same weight, so due to the sum of such weights must be 100%,

each one of these concepts has a weight of 50%.

10.2.4.8 Final value tree

Partial
Weights
Features 40%
UML supported 50%
UML version 40% 8,0%
UML model interchange 60% 12,0%
format
OCL supported 50%
OCL version 22% 4,4%
Metamodel instantiation 33% 6,6%
OCL verification 33%
Syntax and 50% 3,3%
semantics
Type 50% 3,3%
conformance
QCL execu@on or 12% 2,4%
interpretation
Documentation 40% \Q’
Quality of source code 43% 17,2%
User manual 14% 5,6%
Technical manual 43% 17,2%
- 0
Usability 20% RN
Experienced users 50% 10,0%
Inexperienced users 50% 10,0%
100%

Table 10.1: Weights of value concepts

Antonio Villegas 179 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

This table contains the total weights of the leaf nodes. They are calculated

multiplying all percentages from the root to each terminal node.

For example, we can see that the weight of type conformance node is computed as

follows:

Partial Weight(Features) = 40%

Partial Weight(OCL supported) = 50%
Partial Weight(OCL verification) = 33%
Partial Weight(Type conformance) = 50%

Therefore,
Total Weight(Type conformance) = 40% x 50% x 33% x 50% = 3,3%

Example 10.7: Calculation of total weight

10.2.5 EVALUATION OF ALTERNATIVES

Once we have all weights for our terminal nodes of the value tree, next step is to

define how to evaluate each alternative through these nodes.

The aim of this section is to complete a table for each alternative composed by the
terminal nodes of the value tree. For each terminal node there is a cell in the table
that must contain the evaluation of the alternative for such concept. For example,
inside the cell of the concept UML version we could write 2.0 representing that such

tool supports UML 2.0 version.

In the next table we can understand which are the values that can be placed for
each terminal node of the value tree. Next to it we will show one table for each

alternative that participates in our decision problem.

Antonio Villegas 180 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Decision Making Process | 10
Total Allowed
weigth values
; o version
UML version 8,0% number
UML model interchange format 12,0% kind of format
; o version
OCL version 4,4% nurmber
Metamodel instantiation 6,6% Yes or no
Syntax,
Syntax and semantics 3,3% semantics,
both or none
Type conformance 3,3% Yes or no
. . . Way of doing
0,
OCL execution or interpretation 2,4% this feature
Quality of source code 17,2% 0-10
User manual 5,6% 0-10
Technical manual 17,2% 0-10
Experienced users 10,0% 0-10
Inexperienced users 10,0% 0-10
100,0%

Table 10.2: Allowed values for the terminal nodes of the value tree

So, our decision will be determined with the values of these 12 concepts. Note that
last five concepts of Table 10.2 are evaluated using numbers in a 0-10 quality scale

where 0 is lower value and 10 is upper value.

10.2.5.1 USE tool

Next table represents the evaluation of USE tool for the current terminal nodes of

our value tree.

It is important to note that it has a lower value in quality of technical manual
concept due to in USE web [USEw] not exists a technical manual explaining the

design and implementation in detail of such tool.

Antonio Villegas 181 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Decision Making Process

Alternative: USE Tool

J;gatlh Evaluation
UML version 8,0% 2.0
UML model interchange format 12,0% own format
OCL version 4,4% 2.0
Metamodel instantiation 6,6% No
Syntax and semantics 3,3% Both
Type conformance 3,3% Yes
OCL execution or interpretation 2,4% ?ri';rcgrr:tcgjy
Quality of source code 17,2% 8
User manual 5,6% 8
Technical manual 17,2% 4
Experienced users 10,0% 8
Inexperienced users 10,0% 6

Table 10.3: Evaluation of USE tooi.

10.2.5.2 Dresden OCL2 Toolkit

Next table represents the evaluation of Dresden OCL2 Toolkit for the current

terminal nodes of our value tree.

AR

Dresden OCL2 Toolkit

Alternative:

WT;E;L Evaluation
UML version 8,0% 1.5
UML model interchange format 12,0% XMI
OCL version 4,4% 2.0
Metamodel instantiation 6,6% Yes

Antonio Villegas

182

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

Expressions
Processor

Decision Making Process

10

Syntax and semantics 3,3% Both
Type conformance 3,3% Yes
OCL execution or interpretation 2,4% Gencizja;ing
Quality of source code 17,2% 8
User manual 5,6% 5
Technical manual 17,2% 9
Experienced users 10,0% 8
Inexperienced users 10,0% 5

Table 10.4: Evaluation of Dresden OCL2 :Il‘ooli(.i.t

It is important to emphasize that Dresden tool provides support to interpret OCL

through generation of Java code, but such feature has a lower quality than USE tool,

so this value will be lower than in USE.

10.2.5.3 MOVA Project

Next table represents the evaluation of MOVA tool for the current terminal nodes

of our value tree.

Alternative: MOVA Project

vx-/reoig?clh Evaluation
UML version 8,0% 2.0
UML model interchange format 12,0% own format
OCL version 4,4% 2.0
Metamodel instantiation 6,6% No
Syntax and semantics 3,3% Both
Type conformance 3,3% Yes

Antonio Villegas

183

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions

2.8 Processor Decision Making Process | 10

. . . OoCL
0,

OCL execution or interpretation 2,4% interpreted

Source code
Quality of source code 17,2% not

available

User manual 5,6% 8
Technical manual 17,2% 4
Experienced users 10,0% 7
Inexperienced users 10,0% 9

Table 10.5: Evaluation of MOVA Project

The main problem of MOVA project is that source code is not directly available for
everybody. Therefore we cannot evaluate in a positive way this decision because
we need the code to adapt it to our processor. In spite of it, we think that we could

obtain this source code making a request to MOVA developers.

It is also important to note that within this tool OCL is interpreted and executed
but not directly as in USE. MOVA can only execute OCL placed as constraints of a
model whereas USE can execute OCL expressions without a model as for example

operations with collection of Integers.

10.2.5.4 IBM OCL Parser

Next table represents the evaluation of IBM OCL Parser for the current terminal

nodes of our value tree.

Alternative: IBM OCL Parser

Total :
. Evaluation
weigth
UML version 8,0% 1.1
UML model interchange format 12,0% own format
OCL version 4,4% 1.1

Antonio Villegas 184 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Decision Making Process | 10

Metamodel instantiation 6,6% No
Syntax and semantics 3,3% Both
Type conformance 3,3% Yes
OCL execution or interpretation 2,4% No
Quality of source code 17,2% 7
User manual 5,6% 4
Technical manual 17,2% 3
Experienced users 10,0% 6
Inexperienced users 4

Table 10.6: Evaluation of IBM OCL Parser

The main problem of this tool is that support older version of both UML and OCL

languages, so it will penalize this alternative.

10.2.6 NORMALIZATION

In order to evaluate each alternative we have chosen a value for each attribute that
is important in this analysis process. But these attributes (or terminal nodes of the

value tree) are defined in different scales.

The normalization process consists on transforming the values of the attributes to
a unique scale in order to aggregate them and then obtain the total value of each

alternative.

We will use a 0 - 100 scale, so we will describe what we have to do with each

attribute for to obtain its normalized values.

Antonio Villegas Languages and Systems Department

185

Barcelona School of Informatics Technical University of Catalonia

E [. .
g[.:al P?EZE:frns Decision Making Process | 10

10.2.6.1 UML version

This attribute represents the UML version supported for the tool that is evaluated.

Its values are 1.1, 1.5 or 2.0.

We have followed the next rule to normalize such values:

Normalization of attribute UML version:
UML version = Normalized value
1.1= 30
1.5= 60
2.0 =90
We have chosen these scale change to indicate that tools with an earlier

version of UML are better valued.

Example 10.8: Normalization of UML version

10.2.6.2 UML model interchange format

This attribute represents which is the format used to load, store and share UML
models by the tool that is evaluated. Such formats are XMI, which is the better

valued, and a format owned by each tool, i.e., not standard format.

Normalization of attribute model interchange format:
Interchange format = Normalized value
own format = 40
XMI = 100

Example 10.9: Normalization of UML model interchange format

Antonio Villegas 186 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

E [.. .
g[.:al p?ﬂzifrm Decision Making Process | 10

10.2.6.3 OCL version

This attribute represents the OCL version supported for the tool that is evaluated.

Its values are 1.1 or 2.0.

We have followed the next rule to normalize such values:

Normalization of attribute OCL version:
OCL version = Normalized value
1.1= 30
2.0 =90

We have chosen these scale change to indicate that tools with an earlier
version of OCL are better valued.

Example 10.10: Normalization of OCL version

10.2.6.4 Metamodel instantiation

This attribute represents if a tool instantiates OCL expressions and UML elements
in a metamodel. This feature is very important for us, so it has followed the next

rule to do the normalization.

Normalization of attribute Metamodel instantiation:
supports instantiation? = Normalized value
No = 30
Yes = 100

We put 30 instead of 0 for the ‘No’ value in order to avoid large deviations
between the two possibilities.

Example 10.11: Normalization of Metamodel instantiation

Antonio Villegas 187 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8] Processor Decision Making Process | 10

10.2.6.5 Syntax and semantics

This attribute represents if a tool checks if OCL expressions are well formed and
use correctly UML elements of the models. This feature is normalized following the

next rule.

Normalization of attribute Syntax and semantics:
checks syntax and semantics? = Normalized value
No =0
Only Syntax = 30
Both = 100

Example 10.12: Normalization of Syntax and semantics

10.2.6.6 Type conformance

This attribute indicates if a tool checks if the types of different elements in OCL
expressions are compatible. Such feature is essential for correct usage of

operations and for a possible future interpretation of the language.

This feature is normalized following the next rule.

Normalization of attribute Type conformance:
checks type of OCL expression? = Normalized value
No = 30
Yes = 100

Example 10.13: Normalization of Type conformance

10.2.6.7 OCL execution or interpretation

This attribute indicates if a tool executes or interprets OCL expressions. Although

this feature is not an objective for our processor of OCL expressions, tools

Antonio Villegas 188 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

E [.. .
gcal Pisz:frm Decision Making Process | 10

providing this functionality will be compensated with a better value in this

attribute.

This feature is normalized following the next rule.

Normalization of attribute OCL execution or interpretation:
value = Normalized value
OCL directly interpreted = 100
OCL interpreted = 75
Generating code = 50
No = 25

Example 10.14: Normalization of OCL execution or interpretation

10.2.6.8 Quality of source code

This attribute represents with a number from 0 to 10 the quality of the source code

of the tool that is evaluated.

Normalization of attribute Quality of source code:

value = Normalized value

0-10 number multiplied by 10 to obtain a 0-100 scale

Example 10.15: Normalization of Quality of source code

It is important to note that the particular case of MOVA tool where the source code
is not directly available with the release of the tool will be evaluated with a value of

20 in order to avoid large deviations between the values of this attribute.

10.2.6.9 User manual

This attribute represents with a number from 0 to 10 the quality of the user

manual of the tool that is evaluated.

Antonio Villegas 189 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

E [.. .
gcal ptsz:frns Decision Making Process | 10

Normalization of attribute Quality of User manual:

value = Normalized value

0-10 number multiplied by 10 to obtain a 0-100 scale

Example 10.16: Normalization of User manual

10.2.6.10 Technical manual

This attribute represents with a number from 0 to 10 the quality of the technical

manuals of the tool that is evaluated.

Normalization of attribute Quality of Technical manuals:
value = Normalized value

0-10 number multiplied by 10 to obtain a 0-100 scale

Example 10.17: Normalization of Technical manual

10.2.6.11 Experienced users

This attribute represents with a number from 0 to 10 the usability of the tool that

is evaluated with respect to experienced users.

Normalization of attribute Experienced users:
value = Normalized value

0-10 number multiplied by 10 to obtain a 0-100 scale

Example 10.18: Normalization of Experienced users

10.2.6.12 Inexperienced users

This attribute represents with a number from 0 to 10 the usability of the tool that

is evaluated with respect to inexperienced users.

Antonio Villegas 190 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

E [.. .
gcal Ptgii:frns Decision Making Process | 10

Normalization of attribute Inexperienced users:
value = Normalized value

0-10 number multiplied by 10 to obtain a 0-100 scale

Example 10.19: Normalization of Inexperienced users

10.2.7 AGGREGATION OF VALUES

This final process calculates the utility of each alternative according to both the

weight of each attribute and the normalized value of them.

Adding the values that result from this process we obtain the final value of each
alternative. At next example we will see how to calculate these values, also called

weighed values.

How to calculate weighed value for UML version attribute for USE
alternative:

Weight of UML Version attribute: 8.0%
Evaluation for USE Tool alternative: 2.0

Normalized value: 2.0 = 90

Weighed value = Weight x Normalized value = 8.0% x 90 = 7.2

Example 10.20: How to calculate weighed value for an attribute

Next step is to show the four tables for our four alternatives, including normalized

values, weighed values, and the aggregation of these ones.

It is important to note that we can find the final evaluation value for each

alternative inside these tables.

Antonio Villegas 191 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Expressions .. .
Processor Decision Making Process | 10

10.2.7.1 USE tool

This table shows the complete evaluation for the USE tool. Weighed values are

calculated as explained at Example 10.20.

Alternative: USE Tool
Total : Normalized | Weighed
. Evaluation
weigth values values
UML version 8,0% 2.0 90 7,2
.UML model 12,0% own format 40 4,8
interchange format
OCL version 4,4% 2.0 90 3,96
!Vletam_od(_el 6,6% No 30 1,98
instantiation
Syntax and 3,3% Both 100 3,3
semantics
Type conformance 3,3% Yes 100 3,3
OCL execution or 2.4% OCL directly 100 2.4
interpretation interpreted
Quality of source 17.2% 8 80 13,76
code
User manual 5,6% 8 80 4,48
Technical manual 17,2% 4 40 6,88
Experienced users 10,0% 8 80 8
Inexperienced 10,0% 6 60 6
users
TOTAL

Table 107 T.a.l;le o.fl :.:lggregated values for USE tool

It is important to note that this alternative has a utility value of 66.06, which is the

addition of each attribute utility.

Antonio Villegas Languages and Systems Department

192

Barcelona School of Informatics Technical University of Catalonia

Expressions .. .
Processor Decision Making Process | 10

10.2.7.2 Dresden OCL2 Toolkit

This table shows the complete evaluation for the Dresden OCL2 Toolkit. Weighed

values are calculated as explained at Example 10.20.

Alternative: Dresden OCL2 Toolkit

Total : Normalized | Weighed
. Evaluation

weigth values values
UML version 8,0% 1,5 60 4,8
_UML model 12,0% XMI 100 12
interchange format
OCL version 4,4% 2.0 90 3,96
!Vletam_od_el 6,6% Yes 100 6,6
instantiation
Syntax and 3,3% Both 100 3,3
semantics
Type conformance 3,3% Yes 100 3,3
QCL execu_tlon or 2.4% Generating 50 12
interpretation code
Quality of source 17.2% 8 80 13.76
code
User manual 5,6% 5 50 2,8
Technical manual 17,2% 9 90 15,48
Experienced users 10,0% 8 80 8
Inexperienced 10,0% c 40 4
users

100% TOTAL 79,20

Table 10.8: Table of aggregated values for Dresden OCL2 Toolkit

It is important to note that this alternative has a utility value of 79.20, which is the

addition of each attribute utility.

Antonio Villegas 193 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor

Decision Making Process

10

10.2.7.3 MOVA Project

This table shows the complete evaluation for the MOVA Project. Weighed values

are calculated as explained at Example 10.20.

Alternative: MOVA Project
Total : Normalized | Weighed
. Evaluation
weigth values values

UML version 8,0% 2.0 90 7,2
.UML model 12,0% own format 40 4,8
interchange format
OCL version 4,4% 2.0 90 3,96
!Vletam_od(_el 6,6% No 30 1,98
instantiation
Syntax _and 3,3% Both 100 3,3
semantics
Type conformance 3,3% Yes 100 3,3
QCL execu_tlon or 2.4% ~ocL 75 1,8
interpretation interpreted

: Source code
Qudallty of source 17.2% ot 20 3,44
code available
User manual 5,6% 8 80 4,48
Technical manual 17,2% 4 40 6,88
Experienced users 10,0% 7 70 7
Inexperienced 10,0% 9 90 9
users

TOTAL

Table 10.9: Table of aggregated values for MOVA Project

It is important to note that this alternative has a utility value of 57.14, which is the

addition of each attribute utility.

Antonio Villegas

194

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

Expressions .. .
Processor Decision Making Process | 10

10.2.7.4 IBM OCL Parser

This table shows the complete evaluation for the IBM OCL Parser. Weighed values

are calculated as explained at Example 10.20.

Alternative: IBM OCL Parser

Total : Normalized | Weighed

i Evaluation

weigth values values
UML version 8,0% 1.1 30 2,4
.UML model 12,0% own format 40 4,8
interchange format
OCL version 4,4% 1.1 30 1,32
!Vletam_od(_el 6,6% No 30 1,98
instantiation
Syntax _and 3,3% Both 100 3,3
semantics
Type conformance 3,3% Yes 100 3,3
OCL execution or 2,4% No 25 0,6
interpretation
Quality of source 17.2% ; 20 12,04
code
User manual 5,6% 6 60 3,36
Technical manual 17,2% 3 30 5,16
Experienced users 10,0% 6 60 6
Inexperienced users 10,0% 4

> A
Table 10.10: Table of aggregated values for IBM OCL Parser

It is important to note that this alternative has a utility value of 48.26, which is the

addition of each attribute utility.

Antonio Villegas 195 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

28] Processor Decision Making Process | 10

10.2.8 FINAL DECISION

As we have seen along this chapter, Dresden OCL2 Toolkit and particularly OCL
Parser subsystem within it is the best tool for to be the basis of our processor of

OCL expressions.

At next image we can see in a graphical way the result values of the Multi Criteria

Decision Analysis (MCDA) process applied.

Result values

100,00

90,00
79,20

80,00

70,00 66,06

60,00

50,00

Value

40,00

30,00

20,00

10,00

0,00

USE Tool Dresden OCL2 MOVA Project IBM OCL Parser
Toolkit

Alternatives

Figure 10.3: Result values of the decision making process

First position is for Dresden tool followed by USE, MOVA, and finally the IBM tool.

Antonio Villegas 196 Languages and Systems Department

e
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Decision Making Process | 10

10.3 SUMMARY

In this chapter a formal analysis process has been used to determine which is the

best alternative to choose in a complex decision.

There are a lot of situations where a formal process could be useful and respected

by a majority instead of using only our feelings or sixth sense to make a decision.

In our case, a simple method is sufficient to obtain a good result and to make us
able to decide which will be the OCL tool that we need to use as a basis for our

design and implementation tasks of our processor of OCL expressions.

Antonio Villegas 197 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

28] Processor Decision Making Process | 10

Antonio Villegas 198 Languages and Systems Department
e
Barcelona School of Informatics Technical University of Catalonia

THE VISITOR PATTERN

OCL| Expressions
2.8 Processor

The Visitor Pattern | 11

11 THE VISITOR PATTERN

11.1 INTRODUCTION

Once we have chosen the existent OCL tool that will be the basis of the
development phase of our project, in our case, the OCL 2.0 Parser Subsystem of the
Dresden OCL2 Toolkit, to understand a basic design pattern that conforms the core

of such tool becomes an essential job.

Therefore, along this chapter we will introduce the visitor pattern and its principal
characteristics. If a more exhaustive explanation is needed, it can be found at

[GHO5].

11.2 A COMMON PROBLEM

Imagine you have different classes of products in an interactive web. For each
product its cover image is displayed. Such products are DVDs, CDs, Books and
Videogames, all derived from class Product (see Figure 11.1). Every time a user

clicks an image, a method is called with the corresponding object as a parameter.

Such method needs to do a different job according to the class type of the object
passed as a parameter. For example, it will print a message indicating the object

class that was selected.

It could be implemented using if constructions and an operation that identifies the
class type of an object (e.g., instanceof in Java programming language). One way to

do this is as shown at Example 11.1.

Antonio Villegas Languages and Systems Department

200

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Visitor Pattern | 11

Product
-name : String
-image : Image
Dvd Cd Book Videogame
-director : String -author : String -author : String -genre : String
-genre : String -numer_of_tracks : Integer -number_of_pages : Integer -age : Integer
-genre : String

Figure 11.1: Hierarchical structure of Product objects

void process (Product p)
{
if (p instanceof Dvd) {
System.out.println(”You have chosen a DVD”);
}
else if (p instanceof Cd) {

System.out.println(“You have chosen

Q

cD");

}

else if (p instanceof Book) {

System.out.println(“You have chosen a Book”);

}

else if (p instanceof Videogame) {

System.out.println(“You have chosen a Videogame”);

Example 11.1: If construction and instanceof operation to process different objects

The solution proposed at Example 11.1 is O(n) at worst case because if we have n
different classes of products, it could need n-1 comparisons to find the correct case

inside the if structure.

Antonio Villegas 201 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Visitor Pattern | 11

Therefore, we need a more efficient alternative to solve this problem. Another way
to do this job but with a O(1) cost is to implement a method for each class that

returns a number identifying each kind of product.

void process (Product p)

{

switch (p.identifier())

{

case Dvd.IDENTIFIER:
System.out.println(“You have chosen a DVD”);
break;

case Cd.IDENTIFIER:
System.out.println(“You have chosen a DVD”);
break;

case Book.IDENTIFIER:
System.out.println(“You have chosen a DVD”);
break;

case Videogame.IDENTIFIER:
System.out.println(”“You have chosen a DVD”);

break;

}

// Every class has a new attribute and a getter method as follows:
public static final int IDENTIFIER = x; //where x is a number

public int identifier()

{

return IDENTIFIER;

Example 11.2: Identifiers usage to identify each kind of product

However, since this solution delegates the control and responsibility of
maintaining the identifiers to the programmer, it becomes error-prone because

exists the possibility of having repetitions in the numbering of the identifiers.

Before explaining the correct solution using the visitor design pattern, we must

introduce the concept of double dispatch mechanism.

Antonio Villegas

202 Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Visitor Pattern | 11

11.3 DOUBLE DISPATCH

Double dispatch mechanism is useful in situations where the result of a
computation depends on the run-time types of the objects that are part of it. It
consists in a mechanism that sends a function call to different concrete methods

depending on the run-time types of the objects involved in the call.

A B
-a : Integer -b : Integer
+methodA(B objB) +compute(A1 objAt)
? +compute(A2 objA2)
A1 A2
B1 B2
-a1 : Integer -a2 : Integer
+compute(A1 objA1) +compute(A1 objA1)
+compute(A2 objeA2) +compute(A2 objAZ)

Figure 11.2: Object structure where to apply double dispatch mechanism

If we are in a situation similar than shown at Figure 11.2, we can instantiate
objects of type Al or A2, but not of type A because it is an abstract class. Similar

behaviour happens with B structure.

Double dispatch mechanism: a way of send a function call to different
concrete methods in two steps depending on the run-time types of the
objects involved in the call.

Definition 11.1: Double dispatch mechanism

The A hierarchy represents a common object structure, and the B one represents

the classes that contain methods to work over that hierarchy.

Antonio Villegas 203 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Visitor Pattern | 11

However, we can wrap a concrete class inside an abstract class as follows:

A myal new Al(); // myal wraps and object of type Al

A mya?2 new A2(); // mya2 wraps and object of type A2

Example 11.3: Wrapping concrete instances into an abstract object

This case is correct because a superclass can be instantiated with a subclass

instance. Then, we can work with A objects that internally are A1 or A2 objects.

Now, if we describe the methodA inside abstract class A as follows, we are able to

introduce the double dispatch concept with an example.

We define methoda in abstract class A as follows:
void methodA (B objB)

{

objB.compute(this);

Example 11.4: Double dispatch mechanism

Since in B there are two methods named “compute” with different parameters, i.e.,
one with a A1 parameter and other with a A2 parameter, the method that will be

called is determined by the run-time type of the A object.

The double dispatch mechanism is known with this name because of this double
call. At Example 11.4 the outer call is needed to determine the type of the class that
calls it, and the inner call determine the type of the parameter in the outer call to
know which is the inner method because it is called over the outer parameter

object, i.e., such method belongs to it.

We will see this behaviour in detail at following example. Its important to note that
this double call mechanism is faster and avoids to use identifiers or other

constructions that can introduce errors.

Antonio Villegas Languages and Systems Department

204

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

Our purpose is to maintain a structure of objects and another one where to declare
the working classes, that is, the classes that have the responsibility to do the work

needed over the object structure.

If we declare:

A myal = new Al();
A mya2 = new A2();
B mybl = new Bl();
B myb2 = new B2();

we have now two A objects and two B objects and we can call the
following:

myAl.methodA (myb2); // that internally calls myb2.compute(this);
this call will do:

1- myal is a reference to a a1 instance, so at run-time this is known So, the
call method is 2: :methoda that is common for both r1 and 22 instances

2- Internally myb2 .compute (this) is called, where myb2 is a reference to a
B2 Instance. So, it will use one of the two compute methods declared
into B2 class. Concretely, it will be decided once the type of this is
evaluated. Then, we are calling the compute method inside the methoda
called for mya1, which is the ‘this’ instance, and we agree that mya1
is of a1 type. Therefore, the compute method of B2 used is the one that
has a »1 object as a parameter, i.e., the B2 : : compute (Al).

Example 11.5: Double dispatch explained

With this kind of double calls we can separate the hierarchy of objects from the

algorithms that work over them, as we said before.

Now, at next section we will study how to apply the double dispatch as a core of

the visitor pattern using the previous example of products.

OCL| Expressions
2.8 Processor

The Visitor Pattern | 11

11.4 VISITOR PATTERN STRUCTURE

We have defined the visitor pattern structure as a way of separating an algorithm

from an object structure. At this section we will study how is the pattern structure

to apply.

Visitor pattern: design pattern that allows adding methods to an existing
object hierarchy without modifying it and separating such object
structure from the algorithms that works over it.

Definition 11.2: Visitor pattern

Fist step is to create two interfaces that will identify the two different parts of the
hierarchy to separate. The Visitable interface determine the accept method that
must be included at every concrete class extending it, and the Visitor interface
introduces the visit method. At each subclass in the Visitor hierarchy must appear

one visit method for every concrete object of the Visitable hierarchy.

Visitable Visitor

N

+accept(Visitor v) +visit(Object o)

Figure 11.3: Visitor interfaces

Once we have a structure like in Figure 11.3, it is the moment to derivate it with
our previous product hierarchy. Then, at Product class implementing Visitable
interface we must complete the accept method applying the double dispatch

explained before.

Antonio Villegas 206 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Visitor Pattern | 11

Visitable ()

+accept(Visitor v)

T

-genre : String

-numer_of_tracks : Integer

Product
-name : String void accept (Visitor v)
B inage | v.visit{this);
+accept(Visitor v)+~ |}
Dvd Cd Book Videogame
-director : String -author : String -author : String -genre : String

-genre : String

-number_of_pages : Integer -age : Integer

Figure 11.4: Visitable hierarchy with double dispatch

Then, at Visitor hierarchy we must create an abstract class with a visit method for

every concrete Visitable object in order to provide a different method with the

needed algorithm for every type of product.

At Figure 11.4 we can observe that the accept method is implemented inside the

abstract class Product, so every subclass of it will have this method internally and

it is not necessary to redefine it for each kind of Product.

Therefore, the only change to make respect to the previous object hierarchy is to

add the Visitor interface defining the accept method and implement it into the

Product class.

Antonio Villegas

207

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

E i .
gcal P:EZZZZfrnS The Visitor Pattern | 11

Visitor ()

+visit(Objecto)

T

I
ProductVisitor

+visit{ Dvd dvd)
+visit{ Cd cd)

+visit{ Book book)
+visit(Videogame vg)

1

FirstProductVisitor AnotherProductVisitor

+visit(Dvd dvd) +visit(Dvd dvd)
+visit(Cd cd) +visit(Cd cd)
+visit(Book book) +visit(Book book)

+visit(Videogame vg) +visit(Videogame vg)

Figure 11.5: Visitor hierarchy with two extended visitor classes

Therefore, when the double dispatch mechanism is working, to find the correct
method to call according to the run-time class of the caller object will be successful

because a method for every object will exist.

Once we have our complete hierarchy, to process every product is very simple. For
each kind of product we have to call the accept method, which is the first step of
the double dispatch mechanism, with an instance of a concrete visitor. At second
step, that is, calling the visit method of such visitor instance, the correct visit
method is chosen according to the class type of the product where the accept

method is called.

Antonio Villegas 208 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Visitor Pattern | 11

At next example of calling this behaviour is explained:

Being p a Product of any concrete class and myVisitor an instance of
FirstProductVisitor, we have to apply the double dispatch as follows:

p.accept(myVisitor);//that internally calls myVisitor.visit(this);

As we have seen before, the visit method called is selected according to the
type of the ‘this’ instance, which is the same p. For example, if p is a Dvd
instance, the called method will be FirstProductVisitor::visit(Dvd dvd)

Example 11.6: Another double dispatch example

Therefore, the visitor pattern core is the double dispatch mechanism as we said

earlier.

In order to understand the behaviour of this pattern definitively, we will introduce

another example of problem solved applying such design pattern.

11.5 THE ROUTER CONFIGURATOR EXAMPLE

As an example of the visitor pattern, at this section we will study how to apply this
pattern to a real case. Imagine that we need to develop a driver for every router
model and operating system that allows each router to be configured. A short view

of the object structure can be found at Figure 12.6.

We know that there exists a huge range of routers and a lot of different operating
systems. To add a concrete method for each operating system configuration

settings inside every router instance is not a good solution.

Therefore, to apply the visitor pattern in order to separate the object structure

from the algorithms that configure each kind of router can be a good chance.

Antonio Villegas Languages and Systems Department

209

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2 @1 Processor The Visitor Pattern | 11
Router
-model : String
+connect()
+disconnect()
+send()
+receive()
Fa
SpeedMaster AlwaysOn SwitchNet
-configuration : Integer -client : Integer -user : String
-id : String -configuration : String -password : String
-channel : Integer

Figure 11.6: Basic structure of the router configurator example

As we can see, there are three different drivers in the example that implements the
generic methods described at Router abstract class, one that drives a SpeedMaster
router, another that drives a AlwaysOn router, and a third that drives the

SwitchNet router.

We need to add a method to every router driver that puts the configuration
parameters according to the operating system, but the object structure cannot be
changed. Our aim is to avoid putting a configuration method in every driver for

each operating system.

Applying the visitor pattern to our object structure results in an organization like

shown at Figure 11.7.

Antonio Villegas 210 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor The Visitor Pattern | 11
Visitable Visitor C
saccept(Vistorv), -
void accept (RouterVisitor rv) {
' rv.visit(this);
| }
Router -
/ 1
-model : String / RouterVisitor O
+connect() / +visit(SpeedMaster sm)
+disconnect() / +visit(AlwaysOn ao)
+send() y, +visit(SwitchNet sn)
+receive()
+accept(RouterVisitor rv) ?
FaY L — — — — |
|
RouterUnixConfigurator |
|
SpeedMaster AlwaysOn SwitchNet |
-configuration : Integer -client : Integer -user : String |
-id : String -configuration : String -password : String - gurator 4
-channel : Integer
|
|
RouterMacConfigurator .

Figure 11.7: Visitor pattern applied to router configurator example

[s important to note that our job is to implement the custom visit methods of every
class extending RouterVisitor. At image before, there are three router configurator
classes to implement, one that makes the configuration of the modems for a Unix

system, another for a Windows system, and a final one for a MacOs system.

As explained before at this chapter, the accept method is called over a router
object, with a RouterVisitor as a parameter. So, inside this method, the visit
method of the RouterVisitor parameter is called with the router object as input.
This is the double dispatch, where at first step the router object is identified at run
time as a concrete class (SpeedMaster, AlwaysOn or SwitchNet) and its accept
method is called. Then, at second step, the correct instance for the RouterVisitor

parameter is determined at run time and its visit method is finally called.

Antonio Villegas 211 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Visitor Pattern | 11

Therefore, thanks to the double dispatch mechanism, it is possible to find out at
run time the correct instance type and to call the correct method without using if,

switch/case, instanceof or similar programming constructions.

As an example, we will show the custom code of the RouterMacConfigurator class:

class RouterMacConfigurator implements RouterVisitor {
public void visit(SpeedMaster sm) {
sm.configuration = 15643;
sm.id = “ip?10.1.1.4&mask?255.255.0.0";

public void visit(AlwaysOn ao) {
ao.client = 34;
ao.configuration = “10.1.1.4:255.255.0.0";

public void visit(SwitchNet sn) {
sn.user = “default;255.255.0.0;10.1.1.4;"
sn.password = “=B34&3@5";

sn.channel = 34;

Example 11.7: Visitor class implementation example

To configure a router with the router configurator classes only have to call the visit
method of the selected router configurator class implemented (at this example,

RouterMacConfigurator) with the router driver instance as a parameter.

On the other hand, if our aim is to configure all the router, we can create a new
method as follows at Example 11.8. This implementation implies that all drivers

will be initialized.

Antonio Villegas 212 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The Visitor Pattern | 11

public void configureAll (List rdrivers, RouterVisitor rv) {
for (Iterator it = routerdrivers.iterator(); it.hasNext();) {
Router rdriver = (Router) it.next()

rdriver.accept(rv);

Example 11.8: Method to apply visitor to every visitable instance

To summarize, the visitor pattern allows us to separate the object hierarchy and
the methods that work over it. The explanation shown at this chapter should be a
great help to understand the next chapter, and particularly the SableCC and

SableCC-Ext visitor structure.

Antonio Villegas Languages and Systems Department

213

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The Visitor Pattern | 11

Antonio Villegas Languages and Systems Department

214

e
Barcelona School of Informatics Technical University of Catalonia

DEVELOPMENT INFRASTRUCTURE 12

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12 DEVELOPMENT
INFRASTRUCTURE

12.1 INTRODUCTION

At this chapter we will study some tools that have been essential in the

development of our OCL 2.0 expressions processor.

Since we chose at chapter 10 the OCL 2.0 Parser Subsystem, as part of the Dresden
OCL2 Toolkit [DOTw], as our preferred alternative, to understand its basic
structure is mandatory. Therefore, at this stage of the development, SableCC
([SCCw] and [Kon05]) has an increasing responsibility because the major part of

the OCL 2.0 Parser Subsystem development is based on that tool.

In addition, we introduce a complete explanation (a full one can be found at
[Kon05]) about the OCL 2.0 Parser Subsystem and its construction process.
SableCC-Ext, as an extension of SableCC, is the compilers compiler used there. To
study its syntax and grammar possibilities is a precondition to Chapter 13, where
the OCL 2.0 grammar of our processor is described in detail according to SableCC-

Ext syntax.

To conclude this chapter, a brief description of the Integrated Development
Environments used on our project is showed in order to note that programming

task can become easier than we expect.

Languages and Systems Department

Antonio Villegas 216
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.2 SABLECC

12.2.1 INTRODUCTION

SableCC is an object-oriented framework that generates compilers in the Java
programming language. This tool allows us to obtain a compiler with a shorter
development cycle, and its structure is based on an object-oriented hierarchy. As
an open source project, we can study its code and adapt it in the way that we

prefer.

The generated framework by SableCC includes an intuitive strictly typed abstract
syntax tree and tree walker classes. With these structures, SableCC keeps a clean
separation between generated code and user-written code which makes the code

easier to read and maintain.

SableCC is known as compilers compiler because it is a compiler of specification
files, which have a token declaration zone and a production rules zone, i.e., a
grammar recognizing a specific language. The result of the compilation of this
specification file is a compiler structure. When we compile such structure, we have

the binary source of the compiler that we wanted to construct.

12.2.2 STEPS TO BUILD A COMPILER

SableCC specifies a concrete list of steps to follow in order to obtain a compiler

through its framework. This list is shown below:

1. Create a SableCC specification file containing the token definitions and the

grammar of the language that we want to recognize.

2. Execute SableCC on such specification file to obtain the generated classes of

the framework.

Antonio Villegas 217 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Infrastructure | 12

3. Implement a tree walker class inherited from classes generated at previous
step. These classes will do the treatment over the parse tree in order to
convert it to another data structure or to interpret the input data from the

tree to a specific output.

4. Program a main compiler class that uses both previous classes, generated

and written ones.

5. Compile the main compiler class with a Java compiler in order to obtain the

binary classes that form the compiler.

Another view of this list can be found at Figure 12.1.

Figure 12.1: Steps to make a compiler through SableCC

Antonio Villegas Languages and Systems Department

218

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.2.3 SPECIFICATION FILE

Once the steps to create a compiler using SableCC are known, it is necessary to
focus on the specification file, which is the keystone of the SableCC-based code

generation.

Such file contains different zones where to define the different elements and rules
that conform our language to compile. These zones on the specification file need to

be written following a concrete syntax as shown in Example 12.1.

As we can see at such example, there are five main sections in the specification file
of SableCC. These sections are Package, Helpers, Tokens, Ignored Tokens
and Productions. In order to understand the next part of this chapter we
recommend to remember concepts shown at chapter 8, where the compilation

process is described in detail.

Every specific zone will be explained, including his special syntax, during the next
sections of this chapter in order to introduce the different characteristics that a

well-formed specification file must fulfill.

It could be said that we can write comments in the specification file, using the
double slash ‘//’ preceding our comment line or encapsulating a more-than-one-

line comment between /* and */ like in most of programming languages.

Antonio Villegas Languages and Systems Department

219

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor

ocL
2.0

Development Infrastructure | 12

Package OCLcompiler;

Helpers

alpha

decimal

alphadec

Tokens

context
id =

inv =

colon

greqthan

number

blank
Ignored Tokens

blank;

Productions

/*

constraint
name

expression

operation

operand

[[lal .. IZI]+[IAI
[IOI . 191];

[alpha + decimal]

‘context’;
alpha alphadec*;

‘inv’;

grammar */

ee 27115

= context [class]:id inv [name]:id colon

expression;
= id;

= {basic} operand

| {comparison} expression operation

operand;
= greqgthan;
= {attribute} id

| {constant} number;

Example 12.1: Specification file for SableCC

12.2.3.1 Package declaration

As we saw at Example 12.1, the specification file for SableCC can begin with a

package declaration. The declaration is made using the keyword Package

followed by a pathname that indicates the folder where SableCC puts the generated

files.

Antonio Villegas

220

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

Case 1: single pathname = Package OCLcompiler;
Generated code inside package OCLcompiler

Case 2: multiple pathname = Package ocl.code.parser;
Generated code inside package parser, which is placed inside package
code, which is also placed inside package ocl

Case 3: without package declaration

Generated code inside default (empty) package

Definition 12.1: Package declaration

This declaration is optional, and if it does not appear, the generated classes will be
placed at the same directory where SableCC is executed, i.e., the default folder.
Since SableCC uses Java programming language, if we use a specific package

directory, every generated source class will use it as package in his Java file.

12.2.3.2 Helpers

At helpers zone we can describe constructions like macros, which simplify the aim

writing complex tokens by means of character sets or regular expressions.

When SableCC finds a helper inside a token declaration, it replaces the helper by its

declaration in a semantic way (see Example 12.2 below).

Helpers
myhelper = ‘x'|'y’
Tokens
mytoken = ‘w’ helper ‘z’

The language that represents ‘mytoken’ is {'wxz’, ‘wyz’} but not {'wx’, ‘yz’}.
It is used the semantic meaning.

Example 12.2: Helper declaration

Antonio Villegas Languages and Systems Department

221

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

Every helper have to be written in an equality equation which left side is the helper
name and the right one can be a regular expression or a character set, as we said

earlier.

12.2.3.3 Tokens

As we defined earlier at chapter 8, tokens are the minimum unit that represents
information. They are essential at the specification file, because are the basis of the

grammar rules.

Below the label Tokens, the syntax for a token list is very simple. Only have to
write an identifier followed by an equal sign and a regular expression or character

set, similarly as we did with helpers.

A character set consists of a single character or a complex construction as we can

found at Definition 12.2.

-a range: [‘a’ .. ‘7] indicates the characters from ‘a’ to ‘z’

«_))

- an union of character sets: [['a’..’z'|+['A’."Z’]] indicates all characters

«.))

- a difference of character sets: [['a’..’z’]-['n’+'0’]] indicates from ‘a’ to ‘m’
and from ‘p’to ‘z’

Definition 12.2: Complex character sets

On the other side, the syntax for regular expressions is very similar than syntax
explained at Definition 8.6, found at chapter 8. However, there exist some little
changes with SableCC implementation. SableCC supports union (using symbol ‘|’
between two expressions), concatenation (writing one expression preceding next
one) and Kleene closure (using * or + symbols, according to Kleene star or Kleene

plus), as well as parentheses.

Antonio Villegas Languages and Systems Department

222

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

Furthermore, SableCC allows to use the symbol ‘7’ that can be used to indicate that
an expression is not mandatory, i.e., it can appear or not. This optional behaviour is
expressed putting the ‘7 symbol at the end of the expression (e.g., “expl exp2?”
indicates that the second expression is optional and it could be omitted inside the

full expression).

12.2.3.4 Ignored Tokens

At this section appear the token names that have to be ignored by the Lexer
algorithm during the lexical analysis (e.g., blanks, returns, comments, tabs), which
output is the input tokenized as seen at Example 8.11. Obviously, these tokens will

not appear at such output.

Tokens

blank

(* * | 13 | 10)+; //Kleene star of space and
//return chars
tab = 9; // Unicode char for tabulation

Ignored Tokens

blank, tab; //token names separated by commas

Example 12.3: Ignored tokens

12.2.3.5 Productions

The principal difference between SableCC and other compiler compilers is that
SableCC does not allow using explicit program code inside the grammar
production rules. As we explain earlier, one of the principles of SableCC is to
achieve a perfect separation between generated and programmed code. Since that,

to write custom code inside the production rules is not a possibility.

SableCC does not completely support EBNF syntax (we will describe this concept

at chapter 9) for production rules, because of SableCC’s design. There exist some

Antonio Villegas 223 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

naming rules to follow that EBNF syntax does not carry out. These naming rules

are explained at Definition 12.3.

- For every production with more than one alternative, each one must be
preceded with a name between curly brackets as follows:

production = {myalt1} alt1 | {myalt2} alt2;

As an exception for this rule, if there are only two alternatives, on of them
can be written without name.

- Inside an alternative, if an element appears twice, it must be preceded
with a name between simple brackets and connected to the element itself
with a colon as in the next example:

production = [myelem1]:elem token1 [myelem2]:elem token2;

The same exception explained for first case is valid for this context.

Definition 12.3: Naming alternatives and elements inside a production rule

SableCC uses the names that we chose to follow the naming rules to name its
generated classes, as we will see at next sections. Therefore, to choose the most
suitable names helps us when we have to program the custom code of the walker

classes.

Finally, the syntax of the productions rules is very similar than that one explained
at chapter 8, section 8.2.4. Below the Productions directive, every production
rule must be written indicating the name of the production itself, a equal sign and a
list of alternatives separated by ‘|". Note that every production rule must finish

with a semicolon.

When writing productions we have to think in what we want and how it can be
expressed. To understand all the allowed constructions for the expressions of the
language that we want to process is mandatory. Therefore, the easier we write the

grammar, the easier it will be to understand and maintain for other people. It is

OCL| Expressions
2.8 Processor

Development Infrastructure | 12

highly recommendable to use comments in order to provide descriptions that can

be useful even for the one that is writing.

Productions

constraint
name

expression

operation

operand

/*

grammar */

= context [class]:id inv [name]:id colon
expression;

= id;

= {basic} operand
| {comparison} expression operation

operand;
= greqthan;
= {attribute} id

| {constant} number;

Example 12.4: Productions extracted from Example 12.1

12.2.4 GENERATED INFRASTRUCTURE

Once we have written the specification file, we have to execute SableCC with it in

order to generate the classes that will conform our compiler framework.

As a compiler of language specification files, SableCC could find errors on our

specification. Therefore, if it happens, we have to solve them before to continue

with the compilation process.

At this subsection we will explain what we obtain through the SableCC execution

by means of generating the framework of the specification file that contains the

tokens, helpers and productions shown at Example 12.1.

Antonio Villegas

Languages and Systems Department

225

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.2.4.1 Generation process

First of all we have to save the specification in a file (e.g.,, named oclgrammar) and
open a terminal in our computer. Then, we should have a version of SableCC (file
sablecc.jar) that can be found at [SCCw]. In the terminal we have to write and

execute the command that we can see at Example 12.5.

In our terminal execute this (oclgrammar is the name of the specification
file):

~/myfolder$ java -jar sablecc.jar oclgrammar

and if no error found, we obtain the next output:
-- Generating parser for oclgrammar in /myfolder
Verifying identifiers.
Generating token classes.
Generating production classes.
Generating alternative classes.
Generating analysis classes.
Generating utility classes.
Generating the lexer.
State: INITIAL
- Constructing NFA.

- resolving ACCEPT states.

Generating the parser.

Example 12.5: Execution of SableCC with the specification file of Example 12.1

Antonio Villegas 226 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

At the output found at the previous example we can see the different phases that
SableCC needs to generate the framework from the specification file. First of all, it
verifies the file and then generates the classes for every part of the specification,
i.e., tokens, productions and alternatives, and tree walker classes. Finally, it creates
a non-deterministic automaton in order to generate the Parser class. Such
automaton is processed and converted into a deterministic one (DFA) to avoid
multiple paths. Finally, the accept states are resolved and the SableCC process

ends.

The output of this process follows the next folder hierarchy:

OCLcompiler (main folder indicated with the Package directive)
+--analysis

-- Analysis.java

-- AnalysisAdapter.java

-- DepthFirstAdapter.java

-- ReversedDepthFirstAdapter.java
+--lexer

-- lexer.dat

-- Lexer.java

-- LexerException.java
+--parser

-- parser.dat

-- Parser.java

-- ParserException.java

-- State.java

-- TokenIndex.java
+--node

-- all node hierarchy classes ...

Example 12.6: Folder structure generated by SableCC

Antonio Villegas Languages and Systems Department

227

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

The lexer package contains the Lexer class that performs the lexical analysis. In
case of error, the LexerException is thrown. On the other hand, the parser package
contains the Parser class that performs the syntax analysis. In case of error, the
ParserException is thrown. Also in this package we found the TokenIndex class,
which maintains an identification index for every token of the specification file. At
this two packages, the .dat files contains internal information about the tokens and

the grammar specified before. Without them, the parser cannot work.

The analysis package contains the tree walker classes. Specifically, such package
contains an interface, called Analysis.java and three walker classes that implement

it.

Finally, the node package contains a class for every token, production and

alternative of the specification file. At Example 12.7 we can see the classes inside

this package.
Token.java Productions
—-—- TBlank.java ——- PConstraint.java
—-— TColon.java -- PExpression.java
—-— TContext.java —— PName. java
-- TGregthan. java -- POperand.java
—-— TId.java -- POperation.java

—-— TInv.java

—— TNumber. java Alternatives

—— EOF.java -- AAttributeOperand.java
-- ABasicExpression.java

-- AComparisonExpression.java

Superclass of Productions, -- AConstantOperand. java
alternatives and Token —— AConstraint.java
—— Node. java —— AName. java

-- AOperation.java

Example 12.7: Generated classes inside node package

Languages and Systems Department

Antonio Villegas 228
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

As we explain earlier, the names chosen to follow the naming rules of SableCC are

used to identify every generated class.

The main class at package node is Node.java, which is the ancestor of all of the
other classes at such package. At the same time, every class representing a token is
named preceding a ‘“T” before the token name with the first character in upper case
(e.g., token classes for colon, id or context are named TColon.java, Tld.java and

TContext.java, respectively).

In the case of productions, each one is represented by means of an abstract class,
which name begins with a ‘P’ character followed by the production name with the
first character in upper case (e.g, productions constraint and name are

represented by PConstraint.java and PName.java, respectively).

The alternative classes extend these abstract classes. Each alternative class is
named similarly than the other classes explained before. In this case, the name is
formed with an ‘A’ character followed by both the alternative element name (if
exists) and the name of the production where it belong, each one with the first

character in upper case.

Each alternative class has an attribute for every element inside the alternative.
These attributes are private and must be accessed using the setter and getter
methods included at such class. As we explained before, if an element appears
more than one time at the same alternative, it must be named according the
naming rules of SableCC. This element name is now the name of the attribute
inside the alternative class. The setter and getter methods are named using “set”
and “get” keywords followed by the custom name of the element inside the

alternative (if exists), or the current one (if not).

At next example we study the case of the context production rule seen at Example

12.1.

Antonio Villegas Languages and Systems Department

229

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

- Production at specification file:

constraint = context [class]:id inv [name]:id colon expression;

- Abstract class representing this production:

PConstraint.java

- Concrete class that extends this production class and represents the
alternative “context [class]:id inv [name]:id colon expression;” :

AConstraint.java that has the next private attributes:
+ private TContext _context_;

+ private TId _classifier_;

+ private TInv _inv_;

+ private TId _name_;

+ private TColon _colon_;

+ private PExpression _expression_;

Such class also contains the next setter and getter methods
+ setContext(TContext node)

+ setClassifier(TId node)

+ setlnv(TInv node)

+ setName(TId node)

+ setColon(TColon node)

+ setExpressions(PExpression node)
+ getContext()

+ getClassifier()

+ getlnv()

+ getName()

+ getColon()

+ getExpressions()

Example 12.8: Generation of constraint production of Example 12.1

Antonio Villegas 230 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.2.4.2 Visitor Pattern adapted to SableCC

At chapter 11 we saw how the visitor pattern works. Now, we are going to explain

the visitor pattern used by SableCC and implemented in its tree walker classes.

A definition of the visitor pattern could be as “a solution to the problem of adding
operations on the elements of an object structure without changing the classes of the

elements on which it operates”[GH95].

The first change of the visitor pattern implemented by SableCC with respect to the
original design is the name of the main methods that realises the pattern. In
SableCC (and in SableCC-Ext, as we will see later), the accept method is named
apply, and each visit method of the Visitor interface is named case method.
According to the SableCC authors, these names are more appropriated for the

visitor pattern concept.

The case methods are named adding the name of the element that it belongs after
the case word. As an example, for the token Colon (TColon class, as we explain

earlier) the case method name is caseTColon, with a TColon parameter.

Moreover, the Visitor interface is named Switch, and the Node class, which is the
ancestor of all AST classes, implements an interface called Switchable, similar than
the Visitable one. Such Switchable interface contains the description of the apply
(remember, accept) method in order to be implemented for every class that

implements this interface, i.e., all the classes inherited from Node.

According to this explanation, the SableCC structure for the visitor pattern looks

like at Figure 12.2.

Antonio Villegas 231 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Infrastructure | 12

Switchable O Switch ()
+apply(sw : Switch) : void ?
? |
l |
| Analysis ®
Node =

+caseStart(node : Start) : void

+caseAConstraint(node : AConstraint) : void

+caseAName(node : AName) : void

+caseABasicExpression(ABasicExpression node) : void
+caseAComparisonExpression(AComparisonExpression node) : void
+caseAOperation(AOperation node) : void

f +caseAAttributeOperand(AAttributeOperand node) : void
ﬁ +caseAConstantOperand(AConstantOperand node) : void
— +caseTContext(TContext node) : void
Production Token +caseTld(Tld node) : void
and Alternative +caseTInv(Tinv node) : void
classes +caseTColon(TColon node) : void
~ N +caseTGregthan(TGregthan node) : void
A I +caseTNumber(TNumber node) : void
\ +caseTBlank(TBlank node) : void
\ | +caseEOF(EOF node) : void
Token ZP
\
classes 1
! \ 4 AnalysisAdapter
/
\ / +caseStart(node : Start) : void

+caseAConstraint(node : AConstraint) : void
+caseAName(node : AName) : void
+caseABasicExpression(ABasicExpression node) : void
+caseAComparisonExpression(AComparisonExpression node) : void
+caseAOperation(AOperation node) : void
+caseAAttributeOperand(AAttributeOperand node) : void
+caseAConstantOperand(AConstantOperand node) : void
+caseTContext(TContext node) : void

+caseTId(Tld node) : void

+caseTInv(Tinv node) : void

+caseTColon(TColon node) : void

+caseTGregthan(TGregthan node) : void
+caseTNumber(TNumber node) : void

+caseTBlank(TBlank node) : void

+caseEOF(EOF node) : void

Every apply method for each
node follows the next model:

void apply (sw: Switch) {
((Analysis)sw)caseXxx(this);

Figure 12.2: SableCC visitor structure generated for Example 12.1

We can see that Switch interface is empty and Switchable one has only the apply
method. The introduction of these low-restrictive interfaces allows us to add new

elements to the visit engine without modifying any existing class.

Therefore, to add a new element, we define a new interface implementing Switch
interface, with a new case method for every new element. The apply method for
such elements will call the case methods of this new interface. So, the previous

object structure remains equal than before.

Antonio Villegas Languages and Systems Department

232

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Development Infrastructure | 12

The Analysis interface denoted at the last figure includes the headers for every

case method to

AnalysisAdapter

implement. As a utility class, SableCC provides us with the

class that contains a default implementation for each case method

and implements the Analysis interface.

12.2.4.3 AST Walker classes

SableCC provides two AST walker classes that extend AnalysisAdapter class. First

one, called DepthFirstAdapter visits the nodes in a normal depth-first traversal

(see Example 12.

visit in a reverse

9), and second one, called ReversedDepthFirstAdapter, makes the
depth-first traversal (see Example 12.10).

class DepthFirstAdapter extends AnalysisAdapter

{

public void caseAConstraint(AConstraint node)

{

inAConstraint (node);

node.
node.
node.
node
node.

node.

getContext().apply(this);
getClassifier().apply(this);
getInv().apply(this);

.getName () .apply(this);

getColon().apply(this);
getExpression().apply(this);

outAConstraint (node);

Example 12.9: Depth-first traversal for constraint alternative case method

It is necessary to note that these two default tree walker classes provide two

methods for each case method of a node class that allows the programmer to

introduce custom code inside this predefined traversal. These methods are called

inXxx and outXxx, where the Xxx is the name of the case alternative or token.

Antonio Villegas

Languages and Systems Department

233

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

As we can check at both Example 12.9 and Example 12.10, these methods are
called before and after visiting a node. By the way, at these examples how to
traverse the hierarchical structure of nodes is shown by means of calling the apply
method of each attribute. Such attributes are the descendant nodes obtained
thanks to the respectively getter method that belongs to the parent node being

visited, as we explained earlier.

class ReversedDepthFirstAdapter extends AnalysisAdapter

{

public void caseAConstraint(AConstraint node)

{

inAConstraint (node);
node.getExpression().apply(this);
node.getColon().apply(this);
node.getName() .apply(this);
node.getInv().apply(this);
node.getClassifier().apply(this);
node.getContext().apply(this);

outAConstraint (node);

Example 12.10: Reverse depth-first traversal for constraint alternative case method

To conclude, if we want to create a custom tree walker class, we only have to
develop a new class extending one of the two default classes shown before
(DepthFirstAdapter or ReversedDepthFirstAdapter) overriding the necessary

inXxx and outXxx method.

Nevertheless, we also can use these classes as a template and implement our
custom tree walker class by our own. But this alternative has an increased level of

difficulty and is error-prone.

Antonio Villegas 234 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.2.4.4 Compiler compilation and usage

Once we have implemented our preferred tree walker class, the next step is to
program a compiler class with the main method to execute. This task is very simple
due to the structure of the framework generated by SableCC according to our

specification file.

The code for this Compiler class should be similar than the next Java example.

class Compiler

{

public static void main(String[] args) throws Exception

{

System.out.println(“Type a constraint:”);

// Creation of the Lexer
InputStreamReader in = new InputStreamReader (System.in);
PushBackReader pbr = new PushBackReader(in, 1024);

Lexer lexer = new Lexer(pbr);

// Creation of the parser

Parser parser = new Parser (lexer);

// Parse the input constraint

Start parsetree = parser.parse();

// Start the visitor pattern analysis
parsetree.apply(new MyDepthFirstAdapter());
// MyDepthFirstAdapter is our tree walker class extending

// the DepthFirstAdapter class

Example 12.11: Compiler class

As we can see at Example 12.11, we only have to create the lexer with the

preferred input (at this example, the input is the standard input of the terminal

Antonio Villegas 235 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

where we execute the Compiler class). The next step is to create the parser

instance with the lexer as a parameter, and to parse the input.

Finally, we have to start the process made by the tree walker class that will do
some specific actions with the parse tree (e.g., create the AST from the parse tree,
or translate the input into another language). This action is very simple. We only
have to init the visitor process by means of calling the apply method of the Start
node class, which always is our initial node because it is the output of the parse
method. Once we have program the Compiler class, we only have to compile it and

to execute it to check if all it’s ok.

To summarize, at this section we have understood how SableCC can help us to
develop a compiler following all the required steps, from the creation of a

specification file to the programming of a main Compiler class.

12.3 OCL2.0 PARSER SUBSYSTEM

12.3.1 INTRODUCTION

The OCL 2.0 Parser Subsystem is the OCL 2.0 expressions processor of the Dresden
OCL2 Toolkit. This tool has a similar functionality than our processor. But these
tools also have a set of differences. If interesting, a complete explanation of this

subsystem can be found at [Kon05].

Nevertheless, the structure used by the Dresden team is a perfect base in which
begin our development. Throughout this phase, the OCL2.0 Parser Subsystem
infrastructure and source code will become in our user manual for implement our

processor.

Due to this design decision, to study and explain what is and how this tool works is

mandatory. Then, firstly we will show the structure and the construction process

Antonio Villegas Languages and Systems Department

236

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor Development Infrastructure | 12

of the OCL 2.0 Parser Subsystem along this chapter. And at next chapter we will see
the changes needed in SableCC to adapt it to OCL 2.0 particularities.

12.3.2 STRUCTURE

The OCL 2.0 Parser Subsystem has four main modules. Three of them are the
known compiler phases studied before at chapter 8, that is, a lexical and syntax
analyzers (lexer and parser, respectively) and an attribute evaluator, which can be

seen as a semantic analyzer.

The fourth module is an AST node factory that creates the Abstract Syntax Tree
nodes on demand. This factory is based on a hash map storing (node name, method

that creates the node) pairs.

Metadata Repository

Figure 12.3: OCL 2.0 Parser Subsystem modules

This processor of OCL 2.0 expressions is connected with a UML model stored in a
metadata repository. The attribute evaluator makes a match between the UML
elements used in the OCL 2.0 input constraints and their representation in the

repository (if exists) in order to find errors and return feedback to users.

As we saw at earlier chapters, the lexical analyzer divides and organizes the input

into tokens. Then, the syntax analyzer transforms the token stream into a concrete

Antonio Villegas 237 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

syntax tree according to the specification file. And finally, the attribute evaluator

converts the CST into the abstract syntax tree according to the OCL 2.0 metamodel.

12.3.3 DEVELOPMENT OF THE OCL2.0 PARSER SUBSYSTEM

At this point of the chapter, to explain how to construct the OCL 2.0 Parser
Subsystem is mandatory to know what are the steps to change or adapt with a

view to the development of our OCL 2.0 expressions processor.

Firstly, an extended version of SableCC, that is, a SableCC-Ext version is needed. At
section 12.4 we will show how to obtain it. Once we have the SableCC-Ext version,
the next step is to write a specification file like we did earlier generating a compiler
with SableCC. Nevertheless, this specification file has some changes in comparison

with SableCC specifications. All these changes will be shown at section 12.4.3.

Then, executing SableCC-Ext with our specification file containing the tokens, and
productions defining OCL 2.0 will result in the generation of an OCL 2.0 lexer and
an OCL 2.0 parser. These two files have the responsibility of create the parse tree,

also known as concrete syntax tree (CST).

In this generation process we also obtain an attribute evaluator base class, which is
essential in the new visitor structure defined by SableCC-Ext’'s design. Such
attribute evaluator is an abstract class that implements the SwitchWithReturn
interface, which is similar than Switch interface as was seen before. All this

changes in the visitor pattern will be explained in detail in following sections.

The base class must be extended implementing the required methods with the
necessary rules to convert the CST nodes to their AST form as indicated in the OCL

2.0 specification.

Languages and Systems Department

Antonio Villegas 238
Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor Development Infrastructure | 12

Start

| |

SableCC-Ext - OCL20
compiler generator specification file

. J

" Generate lexer, parser
and attribute
| evaluator base class

\L v
OCL 2.0
OCL 2.0 Lexer OCL 2.0 Parser Attribute Evaluator
base class

evaluator class extending

Implement attribute
previous base class

F OCL 2.0
Attribute Evaluator

\ J

N

‘ Compile OCL

2.0 parser
subsystem

OCL 2.0
Parser Subsystem
Executables

Contruction done

Figure 12.4: OCL 2.0 Parser Subsystem Construction

Antonio Villegas Languages and Systems Department

239

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

A full node evaluator will be derived joining the two classes. The base class is
responsible to make a correct node traversal, and our extension constructs the

node conversion.

After that, we have to create the main Compiler class mixing the three previous
components, i.e., the OCL 2.0 lexer and parser and the attribute evaluator, in the

same way that we did before with SableCC.

Final step consists in to compile this Compiler Java class with all its dependencies
and to execute it in order to check the correct behaviour of the OCL 2.0 Parser

Subsystem.

At Figure 12.4 we can see in blue colour the modules that we have to develop by
hand. On the other side, the rest of shapes indicate processes or modules made or

generated automatically.

12.4 SABLECC-EXT

12.4.1 INTRODUCTION

At this section we introduce SableCC-Ext as the compiler generator chosen to
construct the framework for our OCL 2.0 expressions processor. The reason for
this decision is because SableCC-Ext is the generator of the OCL 2.0 Parser
Subsystem of the Dresden OCL2 Toolkit, and has all the functionality required by

our project.

At next parts of this chapter we will study SableCC-Ext’s creation, the changes that
it implies in both the specification file and the node visitor process in order to
make easier to understand the following chapters that explain our OCL 2.0

grammar and the development process, among other things.

Antonio Villegas Languages and Systems Department

240

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.4.2 WHY EXTEND SABLECC

As we explained before, SableCC is a good tool to generate the necessary
framework to develop a compiler. Nevertheless, there exist some languages to
compile that need special features that SableCC is not able to provide. In this set of

more complex languages we found the OCL 2.0.

The main limitation of SableCC generated framework is found at the tree walker
classes. They are unusable for the attribute evaluator of the OCL 2.0 Parser

Subsystem.

Such tree walker classes provide the methods inXxx and outXxx that are only called
before and after the descent into the child nodes of a current node. But OCL 2.0

needs to inject custom code between the descent to each child node.

The reason for this required behaviour is the data dependencies that exist in the
evaluation of the OCL 2.0 nodes. Since OCL is a left-to-right language, there exist

data needed by the siblings of a node to compute their own evaluation.

Moreover, these data dependencies should be resolved by passing the required
information to the nodes that could need it, but SableCC not allows introducing
additional parameters in the visitor infrastructure to descent into other nodes.
Another possibility is to return this information by each node when its evaluation
finish, but SableCC visitor pattern design implies that both the apply and caseXxx

methods are void.

Antonio Villegas Languages and Systems Department

241

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

To understand the data dependencies, look at next OCL 2.0 constraint:

context Person::salary : Real init: self.agesWorking*1000.00

Analysing this simple constraint, we can see that exists information to
share between the differente sections of such constraint.

Dividing the constraint in parts, we found:

- Person: :salary, the constrained element

- Real, the type of the constrained element

- self.agesWorking*1000.00, the initializer expression that is made by:
- self.agesWorking, a property to consult, that belogns to self

-1000.00, a real constant

A list of data dependencies should be:

- Person: :salary must return its type to be compared with the type
written in the constraint (in this case real).

- self.agesWorking needs to know the type of self in order to check if
agesWorking exists in such type. This type must be passed when
Person: :salary is computed.

- self.agesWorking has to return its type in order to check if it matches
with 1000.00 type.

- self.agesWorking*1000.00 has to return its operation result type in
order to check if it matches with person: :salary type.

As we have seen, even a simple constraint hides a lot of dependencies.

Example 12.12: Constraint dependencies

The Dresden team, in the development of their OCL 2.0 Parser Subsystem as a part

of the Dresden OCL2 Toolkit, found these handicaps and solved them by extending

the basic version of SableCC with additional features that provided the needed

behaviour without losing the power of the original.

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.4.3 SABLECC-EXT CHANGES

The SableCC-Ext generation process was done using SableCC. The Dresden team
wrote a grammar specifying the changes that SableCC-Ext must fulfill. Such
grammar, as a specification file, was the input of a new SableCC execution. On the
other hand, the source code of SableCC was adapted to produce as output for every

execution the abstract class that is the attribute evaluator skeleton.

Then, the output of this process was a complete version of the SableCC extension,
known as SableCC-Ext that provides the necessary functionalities for the OCL 2.0

language.

As we explained before, this new version allows passing information between a
node and its descendants and vice versa. The top-down sharing is made by passing
a parameter with the necessary information to the descendants in the apply
method. As well, the bottom-up sharing is made by a return parameter in each

apply method, which represents the AST node processed for each descendant.

With this design, a node can share information with its descendants introducing a
parameter (defined as inherited information) into the header call of the apply
method, and then each method will return a parameter with the AST information

(defined as synthesized information) that can be essential for the current node.

To customize the generation of the attribute evaluator base class, SableCC-Ext
introduces four directives, that is, #chain, #nocreate, #customheritage and
#maketree, which change the behaviour of such skeleton. These directives can be

used in the specification file for SableCC-Ext and will be explained at section 12.4.5.

Such file has a new syntax that must be known. Every production rule must
indicate what is the type of the AST node that returns once the evaluation process

finishes. This type name must appear between by the production name and the

Antonio Villegas Languages and Systems Department

243

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

equal sign and must be flanked by angle brackets. By the way, this type name usage

can be applied to alternatives in a production.

Other change is the possibility to mark a token or alternative element with a v’
symbol preceding such token or alternative. This action involves that the token or
alternative marked will be skipped during the attribute evaluation. This way, the

syntactic sugar! can be erased.

These ones are part of SableCC-Ext changes with respect to common SableCC. The

main change is the new visitor structure that will be introduced at next section.

12.4.4 NEw EXTENDED VISITOR ARCHITECTURE

The new visitor architecture included in SableCC-Ext can be found at Figure 12.5. It
is important to note that previous SableCC visitor classes are still generated, but

are not shown at image in order to improve understandability.

Now, Switch and Switchable interfaces are SwitchWithReturn and
SwitchableWithReturn, which pay attention on the parameter return functionality

added.

At the same way than with SableCC, SwitchableWithReturn defines the apply
method that includes a new object parameter as input in addition to the
SwitchWithReturn one. It also returns another object that will be the AST node

object computed for each node.

On the other hand, SwitchWithReturn interface is empty and it is implemented by
AnalysisWithReturn interface that contains the same case methods than in

Analysis class, but with a new parameter as input.

! syntactic sugar: additions to the syntax of a computer language that do not affect its functionality but
make it "sweeter" for humans to use.

Antonio Villegas Languages and Systems Department

244

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Infrastructure | 12

SwitchableWithReturn C.

/

+apply(SwitchWithReturn sw, Object param) : Object

ZP

| Every apply method for each node follows the next model:
Node | | iect apply (SwitchWithReturn sw, Object param) throws AttrEvalException
{
((AnalysisWithReturn)sw)case<NodeName=(this, param);
}
r
- — — /
| 1 y /
Production Token / /
and Alternative 4 /
classes T~ / /
* /
| /
| Token /
| classes /
l /
SwitchWithReturn O
1
AnalysisWithReturn O

+caseStart(Start node, Object param) : Object

+caseA<Alternative Name>(A<Alternative Name> node, Object param) : ASTnode
+... all the case alternatives()

+caseT<Token Name=>(T<Token name> node, Object param) : String

+... all the case tokens()

+caseEOF(EOF node, Object param) : Object

K
I

LAttrEvalAdapter

+caseStart(Start node, Object param) : Object

+caseA<Alternative Name=>(A<Alternative Name=> node, Object param) : ASTnode
+... allthe case alternatives' methods()

+caseT<Token Name>(T<Token name> node, Object param) : String

+... allthe case tokens' methods()

+caseEOF(EOF node, Object param) : Object

+computeAstFor_A<Alternative Name=>{ Siblings’ Ast nodes, Heritage hrtg) : ASTnode
+... all the computeAstFor methods()
+inside<AlternativeName>_computeHeritageFor_<ElementName=>(Siblings’ nodes, Heritage parentHrtg) : Heritage

AN
The computeAstFor methods and the inside<Alt>_computeHeritageFor_<Elem> methods are |
abstract and must be implemented in the attribute evaluator.
Both set of methods are defined in LAttrEvalAdapter that is the attribute evaluator base class
generated by SableCC-Ext according to the specification file.

Figure 12.5: SableCC-Ext Visitor Pattern Structure

Antonio Villegas 245 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

These case methods also contain the return AST node, as synthesized attribute to
share in bottom-up direction. Each method is implemented in LAttrEvalAdapter

abstract class.

LAttrEvalAdapter also contains the headers for the computeAstFor methods, which
are the methods that make the attribute evaluation (semantic analysis) and create
the corresponding AST node for every node class. These methods contain as
parameters the previous siblings’ AST nodes and a special data structure called

Heritage.

The Heritage contains all needed information about the context of the node (e.g.,
what is the contextual class or the constrained element in the constraint in process,
what is the class of self keyword, what iterator variables can be used inside the
body expression of an iterator, what is the source expression of an operation, and

So on).

The Heritage can be computed by means of the inside<Alternative
Name>_computeHeritageFor_<Element Name>, which is processed before to
descent into an element node of an alternative node. The name of this method is
made adding the alternative node name and the element name inside the places
denoted with angle brackets in the previous definition. As we will se next to it, this
method is not mandatory. If needed, we must use the directive #customheritage at
the end of an alternative in the specification file, to create it in the skeleton class. If
this directive does not appear, a copy of the parent node heritage is passed instead

to the descendants.

Then, since we have a skeleton class that makes the tree traversal and call the all
nodes for itself, as specified by the specification file, our job is to extend this class
to compute the computeAstFor and the custom heritage methods in order to create

the AST nodes and make the AST tree linking them.

Antonio Villegas Languages and Systems Department

246

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

LAttrEvalAdapter, as a skeleton class, contains the case methods implementation

that follows the next algorithm:

1. Begin with the Start node and call its apply method, with a class extending

LAttrEvalAdapter and an empty Heritage as parameters.

2. The apply method calls the case method for the current node, and this method

do the following actions:
2.1. Obtain one of its descendant nodes to be processed,

2.2. If custom heritage object needed, call the inside_computeHeritageFor_

method for the current descendant in order to calculate its Heritage

2.3. Call the apply method for the current descendant with the Heritage as an

additional parameter. Get the return AST node object and store it.
2.4. Repeat from 2.1 to here for every descendant that has not been processed.

3. Call the AST node factory to create the AST node of the current node being
processed. This behaviour can be skipped marking the alternative with the

#nocreate alternative.

4. Call the computeAstFor method for the current node with the Heritage and the
AST node object of every previous descendant node processed, as parameters.
This parameters contain the AST node of step 3, if exists. The return of this

method is the AST of the current node.

5. Return this AST node.

Finally, it is important to note that the name of the skeleton class is not casual.
LAttrEvalAdapter is the attribute evaluator base class name because the OCL 2.0
grammar is an l-attribute grammar. It means that all productions of the grammar
have an attribute assigned to evaluate according to a set of rules (that can be found
at [Obj06]). And the first ‘" indicates that the algorithm to make the attribute

evaluation uses a left-to-right depth-first tree walk.

Antonio Villegas 247 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

12.4.5 ATTRIBUTE EVALUATOR

At this section we will show in detail the attribute evaluator inside the visitor

architecture of SableCC-Ext with an example.

First of all we must complete the explanation of the specification file directives

#chain, #nocreate, #customheritage and #maketree.

Directive #chain is used to note that the alternative marked with it must contain
only one element inside, and its synthesized attribute have to be returned as
synthesized attribute of this alternative directly. It skips to do unnecessary

processing.

On the other hand, #nocreate directive delegates the responsibility to create the
AST node for an alternative or element to the computeAstFor method instead of to

the caseXxx method directly.

Also, the #customheritage directive indicates that the element marked with it
needs a custom code to compute its Heritage object. The result of this directive is

the creation of the inside..computeHeriteageFor.. method to implement.

Look at next production of an hypothetical OCL 2.0 specification file:
let_exp_cs <LetExp> = let [variables]:initialized_variable_list_cs
in [expression]:expression #customheritage ;

Note that the AST node type of this production is LetExp, as indicated
between angle brackets.

The #customheritage directive implies the generation of the
insideALetExpCs_computeHeritageFor_Expression method that in this
case probably create an Heritage with the let variables inside because
expression needs to know them to its computation.

Example 12.13: Example of #customheritage directive

Antonio Villegas 248 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

Finally, #maketree indicates that the responsibility to keep and store the left
siblings’ AST nodes is delegated to the computeAstFor method o the currently
processed node. Therefore, such method produces an AST tree from a CST list of

nodes.

At this moment, we will study how SableCC-Ext works with an example based on
the If construction of the OCL 2.0 language. First of all, we must to write the
necessary tokens and productions inside the specification file according to its new

syntax.

if_exp_cs <IfExp> = if [condition]:logical_exp_cs
then [then_branch]:ocl_expression_cs
else [else_branch]:ocl_expression_cs
endif ;

logical_exp_cs <..>=...;

ocl_expression_cs <..> =...;

Example 12.14: Production for OCL 2.0 If construction

The first step of the visitor pattern when someone calls the apply method of an
AIfExpCs node, which is the alternative name for the grammar production if_exp_cs
in Example 12.14, is to call the case method of this alternative, i.e., the

caseAIfExpCs method.

public Object apply(SwitchWithReturn sw, Object param)
throws AttrEvalException

return ((AnalysisWithReturn) sw).caseAIfExpCs(this, param);

Example 12.15: Apply method for If construction of Example 12.14

The Object parameter called param in Example 12.15 is the Heritage that is shared

in a top-down traverse.

Antonio Villegas 249 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor Development Infrastructure | 12

The case method generated automatically inside the LAttrEvalAdapter abstract

class (the attribute evaluator skeleton class) should be similar than as follows:

public final IfExp caseAIfExpCs(AIfExpCs node, Object param)
throws AttrEvalException {

// All this code is generated automatically by SableCC-Ext
Heritage nodeHrtg = (Heritage) param;

Heritage childHrtg = null;

// Descending to condition

PLogicalExpCs childCondition = node.getCondition();
OclExpression astCondition = null;

if(childCondition != null) {

astCondition = (OclExpression)
childCondition.apply(this, nodeHrtg.copy()):

}

// Descending to then branch

POclExpressionCs childThenBranch = node.getThenBranch();
OclExpression astThenBranch = null;

if(childThenBranch != null) {

astThenBranch = (OclExpression)
childThenBranch.apply(this, nodeHrtg.copy()):;

}

// Descending to else branch

POclExpressionCs childElseBranch = node.getElseBranch();
OclExpression astElseBranch = null;

if(childElseBranch != null) {

astElseBranch = (OclExpression)
childElseBranch.apply(this, nodeHrtg.copy()):;

}

// create AST node for current CST node here.

// 1f #nocreate appears, the next line will be skipped

IfExp myAst = (IfExp) factory.createNode("IfExp");

// Next method is abstract here and must be implemented
myAst = computeAstFor AIfExpCs(myAst, nodeHrtg, astCondition,

astThenBranch , astElseBranch);

return myAst;

Example 12.16: Case method for if expression inside LAttrEvalAdapter skeleton generated by
SableCC-Ext automatically

Antonio Villegas 250 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

Finally, as we explained earlier, we have to implement a concrete class that
extends LAttrEvalAdapter with both the computeAst and the custom heritage

methods completed.

Therefore, SableCC-Ext provides a framework that allows us to delegate the task of
make the node traversal to a generated skeleton class. Our job is only to complete
the abstract methods defined at such skeleton with their correct evaluation inside

another class in order to create the AST nodes properly.

Such new class must extend the abstract one. This design allows us to have
different implementations in different files, and to use the one that we decide in

every moment.

12.5 INTEGRATED DEVELOPMENT ENVIRONMENTS

12.5.1 INTRODUCTION

An Integrated Development Environment is a software tool that provides facilities

to computer programmers for software development.

When the number of classes and code lines to manage and compile become huge,
to continue with the development process is a hard job. To avoid this problem,
IDEs integrate different systems such as source code editors, compilers,

interpreters or debuggers that deal with our code and make our job easier.

Examples of IDEs supporting Java language are Eclipse and NetBeans.

12.5.2 ECLIPSE

Eclipse is the IDE used in the whole development phase of this project. It can be
found at [ECLw] and a full manual is [Dau04].

Antonio Villegas Languages and Systems Department

251

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8| Processor Development Infrastructure | 12

Using Eclipse allows us to have a perfect error control of our code. It also contains
syntax highlighting and code completion. Such aids were essential during the

programming phase because the source code becomes evil and wild without them.

In addition, there exist a huge amount of plug-ins for Eclipse that provide more
functionality to this tool. As an example, to connect with a control version
repository is possible. In our case, the conceptual modeling environment
(EinaGMC) tool used in the project was stored and maintain in one on-line
repository, therefore to synchronize with it in order to always have the last version

of the code was a very simple job through Eclipse.

12.5.3 NETBEANS

On the other hand we have NetBeans [NETw], as another alternative IDE to use in

the development process of a software system.

Nevertheless, in our case NetBeans was only used to develop the GUI (Graphical
User Interface) for our Demo program that test the correctness of the OCL
expressions processor. NetBeans provide an easy-to-use interface to create GUIs
by means of drag and drop the elements that we want to appear in the user

interface to a window containers.

With only the power of a mouse, you can construct the interface like a Lego system,
i.e., selecting the visual elements and placing them in a custom position inside a

container.

Once we have the interface made, NetBeans automatically generates the code that

controls the buttons, text fields and so on.

Antonio Villegas Languages and Systems Department

252

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Infrastructure | 12

aXaXa)

Demo Parser OCL 2.0 Eina GMC

Grup de Recerca en Modelitzacié Conceptual Universitat Politécnica de Catalunya (UPC)

Create a new project | [Constraints OCL 2.0

Insert a project's name: --Constraints loaded automatically from prepostbody.xmi

myproject

context Person

(Create) def c1: Person::getName(p:Persona) : String = p.nom
" Load XMI Model context Person::getName(p:Persona) : String

Insert XM filename: pre c2: true

prepostbody.xmi context Person::getName(p:Persona) : String

body c3: result = p.nom
Load
context Person::getName(p:Persona) : String
~Save Model to XMl post c4: result = p.nom and p.edat > 18

Insert XMl filename:

(_ Load OCL File) (Erase) (Parse)

(Save)

~Parser Feedback

Loading from file prepostbody.xmi ...OK!
Load time: 681 ms

Figure 12.6: Screenshot of the Demo used to check the correct behaviour of our processor

In the development process of the Demo explained before, the code generated for
this interface by NetBeans was edited and customized inside Eclipse because this
IDE has a more comfortable look in its MacOS X version, and seems to be more

adapted to MacOS X graphical window system.

Antonio Villegas 253 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Infrastructure | 12

Antonio Villegas 254 Languages and Systems Department
e
Barcelona School of Informatics Technical University of Catalonia

OCL 2.0 GRAMMAR

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

13 OCL 2.0 GRAMMAR

13.1 INTRODUCTION

At previous chapters we have explained the concept of grammar as a structure that
is used to recognize a concrete language. Furthermore, we showed the special

syntax for writing grammars as input for SableCC and SableCC-Ext.

At this point we will introduce the OCL 2.0 grammar used as the core of our
processor of OCL expressions. It is important to note that this grammar is strongly
based in OCL grammar of the Parser Subsystem of the Dresden OCLZ Toolkit
[DOTw], which is similar than OCL grammar explained at chapter 9 of the OCL
specification document [Obj06].

A complete view of our grammar can be found at B OCL 2.0 grammar section at the
end pages of this document. In this chapter we will explain the main sections of
this grammar including a description of the important characteristics of the
production rules and diagrams showing the generated classes by SableCC-Ext for

each rule within package node of the generated framework.

13.2 ABOUT GRAMMARS

As we introduced in previous chapters, our OCL 2.0 grammar is a L-attribute
grammar. An attribute grammar is a formal way to define attributes for the
productions of a formal grammar, associating these attributes to values. The

evaluation occurs in the nodes of the abstract syntax tree.

Antonio Villegas Languages and Systems Department

256

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

Such attributes are can be synthesized attributes and inherited attributes. The
synthesized attributes are the result of the attribute evaluation rules, and may also
use the values of the inherited attributes. The inherited attributes are passed down
from parent nodes to its descendants. Synthesized attributes are used to pass
semantic information up the parse tree, while inherited attributes help pass

semantic information down it.

This grammar is also a L-attribute grammar because attributes are evaluated in

one left-to-right depth-first traversal.

13.3 OCL 2.0 GRAMMAR DESCRIPTION

To continue with our grammar description we will explain the most important

production rules of the OCL 2.0 grammar in next sections.

13.3.1 CONSTRAINT STRUCTURES

As you should know there are different kinds of constraints depending on the
context where they have to be applied. Next production rules show this

differentiation in order to divide the processing in three branchs.

First rule allows writing more than one constraint because grammar provides
parsing a list of constraints, as shown in context_declaration_list_cs production.
Note that directive #nocreate is used in order to avoid calling to the factory to
create the AST node for tail element. Remember that each node is created through

a factory class.

The creation of such resultant AST for tail of this production rule element will be
done inside the processing of this element. Therefore it is not necessary to call the

factory here.

Antonio Villegas 257 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

context declaration list cs <List> =
[context]:context declaration cs
[tail]:context declaration list cs? #nocreate

~e

context declaration cs <OclContextDeclaration> =
{classifier} <OclClassifierContextDecl>
context [context name]:path name cs
[constraints]:classifier constraint cs+ #customheritage
| {attr or assoc} <OclAttrOrAssocContextDecl>
context [context name]:path name cs
colon [type]:type specifier
[constraints]:init or_der value cs+ #customheritage
| {operation} <OclOperationContextDecl>
context [context name]:path name cs
[signature]:operation_signature cs
[constraints]:operation constraint cs+ #customheritage

~e

Definition 13.1: Grammar rules for constraint structures

Furthermore, result of context declaration_list_cs production is a List containing

the ASTs of all constraints, as indicated between angle brackets.

Next production rule contains the alternatives that conform the three branches. An
element inside such previous list of constraints can be a classifier constraint, an
attribute or association constraint, or an operation constraint. It is important to
emphasize here that we maintain the usage of several intermediate classes
introduced by Dresden OCL2 Toolkit that provides an easy management of AST
nodes within the tree traversal. We must highlight that such class names begin
with the “Ocl” tag and they do not belong to the OCL metamodel. As we said, they
are used to facilitate the processing of the ASTs providing a wrapper that allows

passing more than one element as a parameter for a parent or descendant node.

In each alternative of this production we can see how is made each context header.
Note that all begin with context token. At next section we will explain the particular

productions of every one.

Languages and Systems Department

Antonio Villegas 258
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

PContextDeclarationListCs PContextDeclarationCs
] |
AContextDeclarationListCs

AAttrOrAssocContextDeclarationCs

AClassifierContextDeclarationCs ~colon_: TColon

-_constraints_ : LinkedList -_constraints_ : LinkedList
-_contextName_ : PPathNameCs -_contextName_ : PPathNameCs
-_context_ : TContext -_context_: TContext

-_type_: PTypeSpecifier

AOperationContextDeclarationCs

-_constraints_ : LinkedList
-_contextName_ : PPathNameCs
-_context_ : TContext

-_signature_ : POperationSignatureCs

Figure 13.1: SableCC-Ext generated classes for constraint structures

Figure 13.1 shows the generated classes by SableCC-Ext once we have passed the
previous productions to its process. If we spend a seconds comparing such
diagram with the related grammar rules we will see their relation between these

two elements.

13.3.1.1 Operation signature

When we are writing a constraint for an operation we have to write its header
inside the header of the constraint. To do this, we introduce the next grammar

rules that describe how to construct such header.

Antonio Villegas 259 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

It is very easy to understand because contains a list of parameters between
parentheses and a return type at the end. Note that the name of the operation is

not placed here because it was introduced at previous context_declaration_cs rule.

operation_signature cs <OclOperationSignature>
paren_open

[parameters]:formal parameter list cs?
paren_close

[return type]:operation return type specifier cs?

operation return type specifier cs <Classifier> =

colon [return_ type]:type specifier #chain

Definition 13.2: Grammar rules for operation signatures

Another time, the relation between production rules and their generated classes by

SableCC-Ext is very simple. Here only have one alternative for each production.

POperationSignatureCs POperationReturnTypeSpecifierCs
FAY FAY
AOperationSignatureCs

AOperationReturnTypeSpecifierCs

-_parameters_ : PFormalParameterListCs -_colon_: TColon
-_parenClose_: TParenClose -_returnType_ : PTypeSpecifier
-_parenOpen_ : TParenOpen

Figure 13.2: SableCC-Ext generated classes for operation signature

It is important to note that obviously, each production is an abstract class

beginning with a P in its name. Its alternatives are concrete subclasses of it with an
A in the beginning of its name.

Antonio Villegas 260 Languages and Systems Department
Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

13.3.1.2 Invariants and definitions

First kinds of constraints are invariants and definitions, which share the same
context construction. As we can see, invariants are only OCL expressions but

definitions include an entity declaration that can be an attribute or an operation.

classifier constraint cs <OclClassifierConstraint> =
{invariant} <OclInvariantClassifierConstraint>
inv [name]:simple name? colon
[invariant]:ocl expression cs
| {definition} <OclDefinitionClassifierConstraint>
def [name]:simple name? colon
[definition]:definition constraint cs

~e

definition constraint cs <OclDefinitionConstraint> =
[entity]:defined entity decl cs
lequals
[definition]:ocl expression cs #customheritage

~e

defined entity decl cs <OclDefinedEntityDecl> =
{attribute} <OclAttributeDefinedEntityDecl>
[attribute]:formal parameter cs
| {operation} <OclOperationDefinedEntityDecl>
[operation name]:simple name
[operation]:operation signature cs

~e

Definition 13.3: Grammar rules for invariants and definitions

(l'"

It is important to note that “!” symbol before a token indicates that such token

must be ignored in the parsing process.

Attribute declarations use the same production as a formal parameter of an
operation signature because, as we will see when explaining parameters, both

need a name and a type to be defined.

In case of operation declaration it is only necessary to reuse operation_signature_cs

production to describe the new defined operation.

Antonio Villegas 261 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor OCL 2.0 Grammar | 13

PClassifierConstraintCs
AlnvariantClassifierConstraintCs ADefinitionClassifierConstraintCs
-_colon_: TColon -_colon_: TColon
-_inv_:Tinv -_def_: TDef
-_invariant_ : POclExpressionCs -_name_ : TSimpleName
-_name_ : TSimpleName

PDefinitionConstraintCs I(

ADefinitionConstraintCs PDefinedEntityDeclsCs
-_definition_ : POclExpressionCs B
-_equals_ : TEquals

AAttributeDefinedEntityDecICs e myDaciCs

-_operationName_ : TSimpleName

-_attribute_ : PFormalParameterCs operation_ : POperationSignatureCs

Figure 13.3: SableCC-Ext generated classes for invariants and definitions

Figure 13.3 shows the generated classes for the invariant and definition rules of
the grammar introduced before. Here we can observe the two subclasses of
production defined_entity_decls_cs, one for attributes and the other one for

operation definitions.

Antonio Villegas 262 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.1.3 Initializations and derivations

Second kinds of constraints are initializations and derivations. As shown in the
next piece of code the only difference between these constraint constructions is

the preceding token: init or derive.

init or_der value cs <OclAttrOrAssocConstraint> =
{init} <OclInitConstraint>
init [name]:simple name? colon
[initializer]:ocl expression cs
| {derive} <OclDeriveConstraint>
derive [name]:simple name? colon
[derive expression]:ocl expression cs

~e

Definition 13.4: Grammar rules for initializations and derivations

The generation of the classes is very obvious here due to both alternatives are very
similar. It is important to emphasize that simple_name here is a token representing

a String that starts with an alphabetic (and not numeric) character.

PinitOrDerValueCs
AlnitinitOrDerValueCs ADerivelnitOrDerValueCs
-_colon_: TColon -_colon_: TColon
-_init_: Tinit -_deriveExpression_ : POclExpressionCs
-_initializer_ : POclExpressionCs -_derive_: TDerive
-_name_: TSimpleName -_name_ : TSimpleName

Figure 13.4: SableCC-Ext generated classes for initializations or derivations

Antonio Villegas 263 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.1.4 Preconditions, postconditions and body expressions

Finally, last kinds of constraints are preconditions, postconditions and body
expressions. All three have the same construction elements including the
stereotype of the constraint (pre, post or body), the name of the constraint and the

OCL expression of it.

operation constraint cs <OclOperationConstraint> =
[stereotype] :op_constraint stereotype cs
[name] :simple name? colon
[expression]:ocl expression cs #customheritage

~e

op_constraint stereotype cs <OclOperationConstraintStereotype> =

{pre} pre #nocreate
| {post} post #nocreate
{body} body #nocreate

~e

Definition 13.5: Grammar rules for operation constraints

POperationConstraintCs POpConstraintStereotypeCs
FaY
AOporatIoannstralntCs APreOpConstraintStereotypeCs
-_colon_: TColon -_pre_: TPre

-_expression_ : POclExpressionCs
-_name_ : TSimpleName

[|
ABodyOpConstraintStereotypeCs APostOpConstraintStereotypeCs

-_body_ : TBody -_post_: TPost

Figure 13.5: SableCC-Ext generated classes for operation constraints

Antonio Villegas Languages and Systems Department

264

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.2 NAMES AND IDENTIFIERS

In our grammar, identifiers can be simple String names, the iterate token, an
iterator name (e.g., forAll, exists, one, ...) or an operation name. On the other hand,

a path name is a concatenation of identifiers with a double colon “::” between them.

identifier cs <String> =
{simple} simple name #chain
| {iterate} iterate #chain
| {iterator name} iterator name cs #chain
{ocl op name} ocl op name #chain

~e

path_name_cs <List> =
[qualifier]:path name head cs* [name]:identifier cs #nocreate;

path name head cs <String> =
identifier cs dbl colon #chain;

Definition 13.6: Grammar rules for names and identifiers

PldentifierCs

?.

| |
ASimpleldentifierCs AlteratorNameldentifierCs

-_simpleName_ : TSimpleName -_iteratorNameCs_ : PlteratorNameCs

AlterateldentifierCs AOclOpNameldentifierCs

-_iterate_: Tlterate -_oclOpName_ : POclOpName
PPathNameCs PPathNameHeadCs
APathNameCs APathNameHeadCs
-_gualifier_ : LinkedList ~|-_dbiColon_ : TDbiColon

Figure 13.6: SableCC-Ext generated classes for names and identifiers

Antonio Villegas 265 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

13.3.3 OCL EXPRESSIONS

In this section we will describe the grammar rules for to construct and recognize

OCL expressions.

13.3.3.1 Principal expressions

In our grammar we separate OCL expressions in two different branches,
expressions with let or without let. An OCL expression with let is a let expression
where one or more than one variables can be initialized to be used within the

expression of the let construction.

ocl expression cs <OclExpression> =
{with let} let exp cs #chain
| {without let} logical exp cs #chain

.
4

let _exp cs <LetExp> =
let [variables]:initialized variable list cs
in [expression]:expression #customheritage #nocreate

if exp cs <IfExp> =
if [condition]:logical exp cs
then [then branch]:ocl expression cs
else [else branch]:ocl expression cs
endif

expression <OclExpression> = ocl expression cs #chain;

Definition 13.7: Grammar rules for principal expressions

As we will see in next sections an OCL expression without let is an expression that
could be a logical expression. We use logical expression here due to the OCL 2.0
operators’ precedence order. Logical operators have a lower precedence

importance so logical expressions must be the first in the expression’s hierarchy.

Antonio Villegas 266 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

Note that both branches have the #chain directive in their rules. It indicates that
the synthesized attribute of an OCL expression is calculated in its descendants and

here it's not necessary to do any processing.

When we have a rule like A->B->C->D, we can use #chain directive to directly
transfer AST node computed within D to C, and then from C to B, and finally from B

to A without extra processing.

elseBranch_
POclExpressionCs
? _thenBranch_
AWithLetOclExpressionCs AWithoutLetOclExpressionCs
-_logicalExpCs_ : PLogicalExpCs
PLetExpCs PIfExpCs
AlLetExpCs AIfExpCs
-_in_:TIn .
et : TLet '-g; AL .y
-_variables_ : PinitializedVariableListCs :—e!s;‘— ; TES’; —
-_expression_PExpression -:en dif—_ - TEndif
-_condition_ : PLogicalExpCs

PExpression

I

AExpression

Figure 13.7: SableCC-Ext generated classes for principal expressions

In the diagram we can observe that attributes beginning with a T in their name are

Token objects.

Antonio Villegas 267 Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.3.2 Logical expressions

Alogical expression can be the chained result of a relational expression, or a binary
operation between a relational expression and other logical expression containing
an operator and a relational expression. Logical operators allowed here are and, or,

xor and implies operators.

logical exp cs <OclExpression> =
{chain} <OclExpression> [operand]:relational exp cs #chain
| {binary} <OperationCallExp> [operand]:relational exp cs
[tail]:logical exp tail cs+

~e

logical exp tail cs <OclBinaryExpTail> =
[operator]:logic_op [operand]:relational exp cs

~e

Definition 13.8: Grammar rules for logical expressions

PLogicalExpCs
AChainLogicalExpCs ABinaryLogicalExpCs
-_operand_ : PRelationalExpCs -_operand_ : PRelationaExpCs
-_tail_: LinkedList

PLogicalExpTailCs

]

AlLogicalExpCs

-_operand_ : PRelationaExpCs
-_operator_ : PLogicOp

Figure 13.8: SableCC-Ext generated classes for logical expressions

Antonio Villegas 268 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.3.3 Relational expressions

A relational expression can be the chained result of an additive expression, or a
binary operation between an additive expression and other relational expression
containing an operator and an additive expression. Relational operators allowed

here are =, <>, <=, >=, <, and > operators.

relational exp cs <OclExpression> =
{chain} [operand]:additive exp cs #chain
| {binary} <OperationCallExp> [operand]:additive exp cs
[tail]:relational exp tail cs

relational exp tail cs <OclBinaryExpTail> =
[operator]:rel op [operand]:additive exp cs

Definition 13.9: Grammar rules for relational expressions

PRelationalExpCs \:R:IatlonalExp TailCs
Fa
AChainRelationalExpCs
-_operand_ : PAdditiveExpCs A'RolatlonalExpTaIICs
-_operand_ : PAdditiveExpCs
-_operator_ : PRelOp

ABinaryRelationalExpCs

-_operand_ : PAdditiveExpCs

Figure 13.9: SableCC-Ext generated classes for relational expressions

It is important to emphasize that here we place productions as attributes of
alternative classes instead of use a relationship between such two parts due to the

aim of improve the understandability of the diagrams.

Antonio Villegas 269 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.3.4 Additive expressions

An additive expression can be the chained result of a multiplicative expression, or
a binary operation between a multiplicative expression and other additive
expression containing an operator and a multiplicative expression. Relational

operators allowed here are + and - operators.

additive exp cs <OclExpression> =
{chain} [operand]:multiplicative exp cs #chain
| {binary} <OperationCallExp> [operand]:multiplicative exp cs
[tail]:additive exp tail cs+

~e

additive exp tail cs <OclBinaryExpTail> =
[operator]:add op [operand]:multiplicative exp cs

~e

Definition 13.10: Grammar rules for additive expressions

PAdditiveExpCs PAdditiveExpTailCs
AN

AChainAdditiveExpCs AAdd tIvoExpTaIl Cs

e PcaiveExpCs - operand_: PMultiplicativeExpCs

-_operator_ : PAddOp

ABinaryAdditiveExpCs

-_operand_ : PMultiplicativeExpCs
-_tail_: LinkedList

Figure 13.10: SableCC-Ext generated classes for additive expressions

13.3.3.5 Multiplicative expressions

A multiplicative expression can be the chained result of a unary expression, or a

binary operation between a unary expression and other multiplicative expression

Antonio Villegas 270 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

containing an operator and a unary expression. Relational operators allowed here

are * and / operators.

multiplicative exp cs <OclExpression> =
{chain} [operand]:unary exp cs #chain
| {binary} <OperationCallExp> [operand]:unary_exp cs
[tail]:multiplicative exp tail cs+

~e

multiplicative exp tail cs <OclBinaryExpTail> =
[operator]:mult _op [operand]:unary exp_cCs

~e

Definition 13.11: Grammar rules for multiplicative expressions

PMultiplicativeExpCs PMultiplicativeExpTailCs
FaAY

AChainMultiplicativeExpCs ANuRIpicativeExpTallCs

-_operand_ : PUnaryExpCs
-_operator_ : PMultOp

-_operand_ : PUnaryExpCs

ABinaryMultiplicativeExpCs

-_operand_ : PUnaryExpCs
-_tail_: LinkedList

Figure 13.11: SableCC-Ext generated classes for multiplicative expressions

13.3.3.6 Unary expressions

Last elements in the hierarchy of expressions are the unary expressions. Such
expressions can be a unary operator followed by a postfix expression, or the

chained result of a postfix expression. Unary operations are not and unary minus

“o »n

Antonio Villegas 271 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

First alternative results in an OperationCallExp as shown in the next definition.

A postfix expression can be a primary expression or a primary expression followed
with a postfix tail expression. Primary expressions are literals, expressions

between parentheses, property calls or if expressions.

unary_exp cs <OclExpression> =

{unary op} <OperationCallExp> [operator]:unary_ op
[operand] :postfix exp cs

{unary nop} [postfix]:postfix exp cs #chain

~e

postfix exp cs <OclExpression> =
{primary}[primary]:primary exp cs #chain
| {with tail} [leftmost exp]:primary exp cs
postfix exp tail cs+ #maketree #nocreate

~e

postfix exp tail cs <OclExpression> =
{prop} dot [prop call]:property call exp cs #customheritage
#nocreate
| {arrow prop} arrow right [tail]:arrow property call exp cs
#chain

~e

primary exp cs <OclExpression> =
{literal} literal exp cs #chain
| {parenthesized} paren open expression paren_close #chain
| {property} [prop call]:property call exp cs #customheritage
#nocreate
{if} if exp cs #chain

~e

Definition 13.12: Grammar rules for unary expressions

On the other hand a postfix tail expression is a property call expression preceded
by a dot token or an arrow property call expression preceded by an arrow token.
Such constructions are the right part of a «call expression like

expressionl.expressionZ or expressionl->expressionZ.

Antonio Villegas Languages and Systems Department

272

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

PUnaryExpCs

PPostfixExpTailCs

AUnaryOpUnaryExpCs AUnaryNopUnarExpCs
-_operator_ : PUnaryExpCs ?

APropPostfixExpTailCs AArrowPropPostfixExpTailCs

-_dot_: TDot -_arrowRight_ : TArrowRight
-_propCall_: PPropertyCallExpCs | |-_tail_: PArrowPropertyCallExpCs

PPostfixExpCs

APrimaryPostfixExpCs AWithTailPostfixExpCs
-_postfixExpTailCs_ : LinkedList

PPrimaryExpCs

Fal
AParenthesizedPrimaryExpCs AlfPrimaryExpCs APropertyPrimaryExpCs
-_expression_ : PExpression -_ifExpCs_ : PIfExpCs -_propCall_: PPropertyCallExpCs

-_parenOpen_ : TParenOpern
-_parenClose_: TParenClose

AliteralPrimaryExpCs
-_literalExpCs_: PLiteralExpCs

Figure 13.12: SableCC-Ext generated classes for unary expressions

The diagram before represents the generated classes for the grammar rules

explained at Definition 13.12

13.3.4 PROPERTY CALL EXPRESSIONS

Following our explanation next section is dedicated to property call expressions.
First alternative of property_call_exp_cs production is a path name with a time
expression. It is used to access attributes or association ends which name matches
with path name. Time expressions are the elements that contain the @pre

directive.

Languages and Systems Department

Antonio Villegas 273
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

property call exp cs <OclExpression> =
{path time} <OclExpression> [name]:path name cs
[time]:time exp cs? #nocreate
| {arg_list} <OclExpression> [name]:path name cs
[time]:time exp cs? parameters]:property call parameters cs
#customheritage #nocreate
| {qualified} <OclExpression> [name]:path name cs
[qualifiers]:qualifiers #customheritage [time]:time exp cs?
#nocreate ;

property call parameters cs <List> =
paren open [param list]:actual parameter list cs?
#customheritage paren close #nocreate ;

Definition 13.13: Grammar rules for property call expressions

Second alternative is a path name with parameters. It can be used to call
operations with parameters. And finally, last alternative use qualifiers to access

elements.

PPropertyCallExpCs PPropertyCallParametersCs
A
APathTimePropertyCallExpCs APropertyCallParametersCs
-_name_ : PPathNameCs -_paramList_ : PActualParameterListCs
-_time_ : PTimeExpCs -_parenOpen_ : TParenOpen
-_parenClose_ : TParenClose

AArgListPropertyCallExpCs

-_name_ : PPathNameCs
-_time_ : PTimeExpCs

AQualifiedPropertyCallExpCs

-_name_ : PPathNameCs
-_qualifiers_ : PQualifiers
-_time_: PTimeExpCs

Figure 13.13: SableCC-Ext generated classes for property call expressions

Antonio Villegas

274 Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.4.1 Qualifiers

Qualifiers productions are common lists of simple name tokens separated by
commas. We can use more than one qualifier in a qualified property call expression
although in our processing of a qualified property call expression we only support
one qualifier for binary relationships with association class and the same class

owner for the association ends.

qualifiers <List> =
bracket open qualifiers list cs #customheritage
bracket close #chain ;

qualifiers list cs <List> =
[element]:qualifiers list element cs

[tail]:qualifiers list tail cs? #nocreate ;

qualifiers list element cs <String> =
{qualifier}simple name #chain ;

qualifiers list tail cs <List> =
comma [tail]:qualifiers list cs #chain ;

Definition 13.14: Grammar rules for qualifiers

PQualifiers PQualifiersListCs PQualifiersListElementCs
FaAY
AQualifiers AQualifiersListCs AQualifierQualifiersElementCs
-_bracketClose_ : TBracketClose -_simpleName_ : TSimpleName
-_bracketOpen_ : TBracketOpen
PQualifiersListTailCs
FAN

AQualifiersListTailCs

-_comma_: TComma

Figure 13.14: SableCC-Ext generated classes for qualifiers

Antonio Villegas 275 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

13.3.5 ARROW EXPRESSIONS

Arrow expressions are such expressions that are preceded by an arrow -> token.

There are three alternatives inside this production.

arrow_property call exp cs <OclExpression> =

{iterate} <IterateExp>
T.iterate paren open
[iterators]:iterate vars cs? #customheritage
[accumulator]:initialized variable cs
vertical bar [body]:expression #customheritage
paren_close

| {iterator} <IteratorExp>
[name] :iterator name cs paren_open
[iterators]:iterator vars cs? #customheritage
[body]:expression #customheritage paren close

| {operation} <OperationCallExp>
[name] :simple name paren_open
[parameters]:actual parameter list cs? #customheritage
paren_close

~e

Definition 13.15: Grammar rules for arrow expressions

First alternative is an iterate constructions. As we explained in earlier chapters,
iterate constructions begins with the iterate keyword followed by an expression
between parentheses including iterate variables, an accumulator variable, and a
body expression preceded by a vertical bar. As indicated, it results in an IterateExp

object.

Second alternative is an iterator construction that begins with a iterator name (e.g.,
forAll, one, select, reject, ...) followed by an expression between parentheses
including iterator variables, with a vertical bar inside, and a body expression. As

indicated, it results in an IteratorExp object.

Last alternative is a collection operation including a list of actual parameters. As

indicated, it results in an OperationCallExp object.

Antonio Villegas Languages and Systems Department

276

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2 @1 Processor OCL 2.0 Grammar | 13
PArrowPropertyCallExpCs
FaY
AlterateArrowPropertyCallExpCs AlteratorArrowPropertyCallExpCs
-_accumulator_ : PlnitializedVariableCs -_body_ : PExpression
-_body_ : PExpression -_iterators_ : PlteratorVarsCs
-_iterate_ : Tlterate -_name_ : PlteratorNameCs
-_iterators_ : PlterateVarsCs -_parenClose_ : TParenClose
-_parenClose_ : TParenClose -_parenOpen_ : TParenOpen
-_parenOpen_ : TParenOpen
-_verticalBar_: TVerticalBar

AOperationArrowPropertyCallExpCs

-_name_ : TSimpleName
-_parameters_ : PActualParameterListCs
-_parenClose_ : TParenClose
-_parenOpen_ : TParenOpen

Figure 13.15: SableCC-Ext generated classes for arrow expressions

13.3.6 TIME EXPRESSIONS

Time expressions productions provide the usage of the @pre directive to be used

in postconditions.

time exp cs <OclTimeExp> =
is_marked pre cs #chain

.
4

is marked pre cs <OclTimeExp> =
at_pre #nocreate

~e

Definition 13.16: Grammar rules for time expressions

The result of these productions is an OclTimeExp object, which is part of the

additional classes of Dresden OCL2 Toolkit that simplifies the parsing process.

Antonio Villegas 277 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

PTimeExpCs PisMarkedPreCs

ATimeExpCs AlsMarkedPreCs
-_atPre_: TAtPre

Figure 13.16: SableCC-Ext generated classes for time expressions

13.3.7 VARIABLES

In this section we will present the set of productions that recognize variables for to

use in the OCL 2.0 language.

13.3.7.1 Iterate variables

The iterate_vars_cs production specifies the first part of an iterate constructions
that consists in a list of variables followed by a semi colon sign. Such variables
share the same production than actual parameters due to they are syntactically

identical.

iterate_vars_cs <List> =
[iterators]:actual parameter list cs #customheritage
semi_colon #chain

~e

Definition 13.17: Grammar rule for iterate variables

Antonio Villegas 278 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

. .
gcal P:EZZ:frns OCL 2.0 Grammar | 13

PlterateVarsCs

AlterateVarsCs

-_iterators_ : PActualParameterListCs
-_semiColon_ : TSemiColon

Figure 13.17: SableCC-Ext generated classes for iterate variables

13.3.7.2 Iterator variables

The iterator_vars_cs production specifies the first part of a iterator expression that
consists in a list of variables followed by a vertical bar that separates these
variables from the iterator body expression. These variables are specified by the

same production than actual parameters because they are syntactically identical.

iterator vars_cs <List> =
[iterators]:actual parameter list cs #customheritage
vertical bar
#chain

~e

Definition 13.18: Grammar rule for iterator variables

PlteratorVarsCs

AlteratorVarsCs

-_iterators_ : PActualParameterListCs
-_verticalBar_ : TVerticalBar

Figure 13.18: SableCC-Ext generated classes for iterator variables

Antonio Villegas 279 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.7.3 Initialized variables

Initialized variables are used to represent variables in different situations like for
example inside a let expression. These productions specify a list of variables
separated by commas. Each element of such list consists in a name and type (like a

formal parameter), and an expression that initializes the element (or variable).

initialized variable list cs <List> =
[item]:initialized variable cs
[tail]:initialized variable list tail cs* #nocreate ;

initialized variable list tail cs <Variable> =
comma [item]:initialized variable cs #chain ;

initialized variable cs <Variable> =
[name_and_ type]:formal parameter cs

[initializer]:variable initializer ;

variable initializer <OclExpression> =
lequals [init value]:ocl expression cs #chain ;

Definition 13.19: Grammar rules for initialized variables

PinitializedVariableListCs PinitializedVariableListTailCs
AlnitializedVariableListCs AlnitializedVariableListTailCs
-_tail_: LinkedList -_comma_: TComma
PinitializedVariableCs PVariablelnitializer
AlnitializedVariableCs AVariablelnitializer
-_nameAndType_ : PFormalParameterCs -_equals_: TEquals
-_initValue_ : POclExpressionCs

Figure 13.19: SableCC-Ext generated classes for initialized variables

Antonio Villegas 280 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

13.3.8 PARAMETERS

In this section we will introduce the productions that recognizes list of parameters
that can be used in the specification of an operation header or directly in an

operation call.

13.3.8.1 Actual parameters

Actual parameters are the parameters used in an operation call. These productions
represent a list of parameters separated by commas. Each parameter can be
directly an expression or a formal parameter depending on if the type specification

is needed or not.

actual parameter list cs <List> =
[element]:actual parameter list element cs
[tail]:actual parameter list tail cs? #nocreate

actual parameter list tail cs <List> =
comma [tail]:actual parameter list cs #chain

actual parameter list element cs <OclActualParameterListItem> =
{untyped} [element]:expression
| {typed} [param]:formal parameter cs

.
4

Definition 13.20: Grammar rules for actual parameters

When we use an operation inside an OCL expression we use the untyped branch

because the parameters are not formal. They are real parameters.

It is important to note here the wusage of the additional class
OclActualParameterListitem to contain the resultant object of the

actual_parameter_list_element_cs production.

Antonio Villegas

281

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

PActualParameterListCs PActualParameterListTailCs
FAY
AActualParameterListCs AActualParameterListTailCs

-_comma_: TComma

PActualParameterListElementCs

FAY
ATypedActualParameterListElementCs AUntypedActualParameterListElementCs
-_param_ : PFormalParameterCs -_element_ : PExpression

Figure 13.20: SableCC-Ext generated classes for actual parameters

13.3.8.2 Formal parameters

Formal parameters are the other kind of parameters that have to been recognised

by our OCL 2.0 grammar.

These productions provide the specification of a list of parameters separated by
commas. Each parameter consists in a simple name followed by a colon and a type

specifier.

It is important to note that here we use Classifier metaclass to specify the return
object of a formal_parameter_type_specifier production instead of Type metaclass.
We maintain Classifier because Dresden grammar use Classifier and due to
although Classifier is an instance of Type, all types that can be used in our
grammar are indirectly also subclasses of Classifier, so to use Classifier is not a

limitation.

Antonio Villegas 282 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

formal parameter cs <OclFormalParameter> =
[name] :simple name
[type] :formal parameter type specifier

~e

formal parameter type specifier <Classifier> =
colon [type]:type specifier #chain

~e

formal parameter list cs <List> =
[item] :formal parameter cs
[tail]:formal parameter list tail cs? #nocreate

~e

formal parameter list tail cs <List> =
comma [tail]:formal parameter list cs #chain

~e

Definition 13.21: Grammar rules for formal parameters

PFormalParameterCs PFormalParameterTypeSpecifierCs
AFormalParameterCs AFormalParameterTypeSpecifier
-_name_ : TSimpleName -_colon_: TColon

-_type_: PTypeSpecifier

PFormalParameterListCs PFormalParameterListTailCs
AFormaIParémotorLlstCs AFormaIParamoiorLlstTalle

-_comma_ : TComma

Figure 13.21: SableCC-Ext generated classes for formal parameters

Antonio Villegas 283 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

. .
gcal P:EEZ:frns OCL 2.0 Grammar | 13

13.3.9 TYPES

This section introduces the productions of our grammar that provide specification

of types in OCL expressions.

type specifier <Classifier> =
{simple type} simple type specifier cs #chain #nocreate
| {collection type} collection_ type specifier cs #chain
#nocreate

| {tuple type} tuple type specifier cs #chain #nocreate

.
4

Definition 13.22: Grammar rules for types

We have three alternatives inside the production rule. First one recognizes simple

types, like Integer, Boolean or String. Last two alternatives recognise collection

types and tuple types respectively.

PTypeSpecifier
FaY

ASimpleTypeTypeSpecifier

-_simpleTypeSpecifierCs_ : PSimpleTypeSpecifierCs

ATupleTypeTypeSpecifier
-_tupleTypeSpecifierCs_ : PTupleTypeSpecifierCs

ACollectionTypeTypeSpecifier

-_collectionTypeSpecifierCs_ : PCollectionTypeSpecifierCs

Figure 13.22: SableCC-Ext generated classes for types

Antonio Villegas 284 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

13.3.9.1 Simple types

Simple types production is very general because includes only a path name as
alternative. This simplicity implies that the semantic checking will be more difficult

although it is better than a more complex grammar.

simple type specifier cs <Classifier> =
path name cs #nocreate

Definition 13.23: Grammar rule for simple types

With this production we can recognise primitive types like Integer, String, Real or

Boolean, and also UML classes or enumeration types, which already are valid types.

PSimpleTypeSpecifierCs

ASimpleTypeSpecifierCs
-_pathNameCs_ : PPathNameCs

Figure 13.23: SableCC-Ext generated classes for simple types

13.3.9.2 Collection types

Collection type’s production is very simple. It consists in a keyword specifying the
collection type (e.g., Set, Bag, OrderedSet and Sequence) followed by another type

specified between parentheses.

Here we do not allow CollectionType as a valid keyword to specify a collection type
kind because of CollectionType class in the OCL metamodel is abstract, therefore it

must not have instances.

Antonio Villegas 285 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

collection_type specifier cs <CollectionType> =
[kind]:collection_ type identifier cs
paren _open [type]:type specifier paren close #nocreate

Definition 13.24: Grammar rule for collection types

PCollectionTypeSpecifierCs

ACollectionTypeSpecifierCs

-_kind_ : PCollectionTypeldentifierCs
-_parenClose_ : TParenClose
-_parenOpen_: TParenOpen
-_type_ : PTypeSpecifier

Figure 13.24: SableCC-Ext generated classes for collection types

13.3.9.3 Tuple types

Tuple types’ productions are also very simple because only consists in the

TupleType token followed by a list of formal parameters between parentheses.

Each element inside a tuple type declaration uses the same production as formal
parameter because they are syntactically identical. They are formed with a name

and a type.

tuple type specifier cs <TupleType> =
tuple type paren open
[tuple members]:formal parameter list cs?
paren close #nocreate

Definition 13.25: Grammar rule for tuple types

Antonio Villegas Languages and Systems Department

286

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

PTupleTypeSpecifierCs

ATupleTypeSpecifierCs

-_parenClose_ : TParenClose
-_parenOpen_: TParenOpen
-_tupleMembers_ : PFormalParameterListCs
-_tupleType_: TTupleType

Figure 13.25: SableCC-Ext generated classes for tuple types

13.3.10 LITERAL EXPRESSIONS

The final section of our OCL 2.0 grammar is dedicated to literal expressions. As we
explained in earlier chapters, literal expressions are divided in three groups. First
one is the group of the primitive literals including Integer, Real, String and Boolean

constant values.

The other groups are the collection and tuple literals, which are very useful in the

OCL 2.0 language.

literal exp cs <LiteralExp> =

i1t primitive primitive literal exp cs chain
{lit _primitive} imitive 1i 1. N #chai
it _collection collection literal exp cs chain
{lit_coll ion} 11 ion 1i 1) | #chai
it tuple tuple literal exp cs chain
{1lit_ le} le 1i 1) | #chai

.
4

Definition 13.26: Grammar rule for literal expressions

As you can see, the production rule here is very simple because it only contains an

alternative for one of these groups.

Antonio Villegas 287 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

PLiteralExpCs
Fal

ALitPrimitiveLiteralExpCs
-_primitiveLiteralExpCs_ : PPrimitiveLiteralExpCs

ALitCollectionLiteralExpCs
-_collectionLiteralExpCs_ : PCollectionLiteralExpCs

ALitTupleLiteralExpCs
-_tupleLiteralExpCs_ : PTupleLiteralExpCs

Figure 13.26: SableCC-Ext generated classes for literal expressions

13.3.10.1 Primitive literals

Primitive literals are divided into three groups. First one includes numeric literal

expressions as written in the primitive_literal_exp_cs production of our grammar.

Such first alternative is also divided in two branches: integer and real literals. Each
one contains a token element that recognises Integer or Real values. The return
object of such productions is an IntegerLiteralExp or a RealLiteralExp. Both are

metaclasses of the OCL 2.0 metamodel.

Second alternative inside primitive literals’ production is the string alternative that

recognises String values and returns an instance of StringLiteralExp metaclass.

Antonio Villegas 288 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

. .
gCaL pfiz:frns OCL 2.0 Grammar | 13

And finally, the last alternative is for to recognise boolean values like true or false.

primitive literal exp cs <PrimitiveLiteralExp> =
{numeric} numeric_literal exp cs #chain
| {string} string literal exp_ cs #chain
{boolean} boolean literal exp cs #chain

~e

numeric_literal exp cs <NumericLiteralExp> =
{int} <IntegerLiteralExp> [integer]:integer literal
{real} <ReallLiteralExp> [real]:real literal

~e

string literal exp cs <StringLiteralExp> =
[value]:string literal

~e

boolean literal exp cs <BooleanLiteralExp> =
{false} false #nocreate | {true} true #nocreate

~e

Definition 13.27: Grammar rules for primitive literals

PPrimitiveLiteralExpCs
pa
ANumericPrimitiveLiteralExpCs ABooleanPrimitiveLiteralExpCs
AStringPrimitiveLiteralExpCs
PNumericLiteralExpCs PStringLiteralExpCs PBooleanLiteralExpCs
FaY Fay FaY
AlntNumericLiteralExpCs AStringLiteralExpCs AFalseBooleanLiteralExpCs
-_integer_ : TintegerLiteral -_value_ : TStringLiteral -_false_: TFalse
' I
. eapCs ATrueBooleanlLiteralExpCs
-_real_: TReallLiteral
-_true_: TTrue

Figure 13.27: SableCC-Ext generated classes for primitive literals

Antonio Villegas 289 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

13.3.10.2 Tuple literals

To recognise tuple literals by means of production rules is very simple here
because we only need a Tuple token followed by a list of tuple elements between

curly brackets.

Note that we do not reuse initialized_variable_list_cs production because although
elements inside a tuple literal expression are syntactically identical to initialized
variables, the type specifier of these elements is optional. Each tuple element has a

name, a type and an expression that defines its value.

tuple literal exp cs <TupleLiteralExp> =
tuple brace_ open
[tuple part]:tuple part list cs
brace close
7
tuple part list cs <List> =
[item] :tuple part cs
[tail]:tuple part list tail cs* #nocreate

tuple part list tail cs <Variable> =
comma
[item]:tuple part cs #chain

tuple part cs <Variable> =
[name] :simple name
tuple part type?
[initializer]:variable initializer

tuple part type <Classifier> =
!colon [type]:type specifier #chain

Definition 13.28: Grammar rules for tuple literals

It is important to note that inside the tuple_part_cs production we can see the type

of the member of a tuple literal expression is syntactically optional.

Antonio Villegas 290 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

OCL 2.0 Grammar | 13

PTupleLiteralExpCs PTuplePartListCs
ATupleLiteralExpCs I = eiCe PTuplePartCs
-_braceClose_: TBraceClose Lt
-_braceOpen_: TBraceOpen
-_tuple_: TTuple
PTuplePartTypeCs r_ ATuplePartCs
-_name_ : TSimpleName
PTuplePartListTailCs T
T ATupIoPartTypo
ATuplePartListTailCs -_colon_: TColon PVariablelnitializer
-_comma_: TComma
PTypeSpecifier

Figure 13.28: SableCC-Ext generated classes for tuple literals

In the previous model we can see the generated classes for the tuple literals
productions. As we can compare with the generated classes for an initialized

variable list, they are very similar.

The relation between ATuplePartCs and PTuplePartTypeCs has a cardinality of 0

or 1 because, as was explained earlier, when writing a tuple part it is optional to

specify it type.

13.3.10.3 Collection literals

Last elements to recognise are collection literals. It is important to remember here
that we can create a collection literal through a list of elements with the same type

or through a range of values.

Antonio Villegas Languages and Systems Department

291

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

First of all we can see collection_literal_exp_cs production that recognises a
collection kind identifier (Set, Bag, OrderedSet or Sequence) followed by a list of

collection elements between curly brackets.

collection literal exp cs <CollectionLiteralExp> =
[kind]:collection_ type identifier cs
brace_open
[parts]:collection literal parts cs?
brace close

~e

collection literal parts cs <List> =
[part]:collection literal part cs
[tail]:collection literal parts_ tail cs? #nocreate

~e

collection literal parts tail cs <List> =
comma [tail]:collection literal parts cs #chain

~e

collection literal part cs <CollectionLiteralPart> =
{range} collection range cs #chain
{single _exp} <CollectionItem> expression

~e

collection range cs <CollectionRange> =
[first]:expression dbl dot [last]:expression

~e

Definition 13.29: Grammar rules for collection literals

Next production rules implement this list of elements separated by commas and
finally collection_literal_part_cs production specifies how an element is made. Each
element can be an expression or a range of values that consists in two expressions

separated by a double dot.

Antonio Villegas 292 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

PCollectionLiteralExpCs | PCollectionLiteralPartsCs |
Fay

ACollectionLiteralExpCs | ACollectioLiteralPartsCs |

-_braceClose_ : TBraceClose
-_braceOpen_ : TBraceOpen
-_kind_ : PCollectionTypeldentifierCs

PCollectionLiteralPartsTailCs | PCollectionLiteralPartCs |

I

ASingleExpCollectionLiteralPartCs |

ACollectionLiteralPartsTailCs |

-_expression_ : PExpression

-_comma_: TComma

ARangeCollectionLiteralPartCs |

PCollectionRangeCs |

T

ACollectionRangeCs |

-_dblDot_: TDbIDot
-_first_ : PExpression
-_last_: PExpression

Figure 13.29: SableCC-Ext generated classes for collection literals

Antonio Villegas 293 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | 13

Antonio Villegas Languages and Systems Department

294

e
Barcelona School of Informatics Technical University of Catalonia

DEVELOPMENT PROCESS

OCL| Expressions

2.8 Processor Development Process | 14

14 DEVELOPMENT PROCESS

14.1 AN ITERATIVE APPROACH

The development of our OCL expressions processor follows an iterative process. As

we briefly introduced in the first chapter these are the steps to make our parser:
1. Select a subset of the OCL 2.0 language and study it.

2. Write a specification file for SableCC-Ext including both tokens and

productions in order to recognize the language of the previous subset.

3. Invoke SableCC-Ext with such specification file in order to obtain the

generated framework that will be useful to do the parsing process.

4. Complete the necessary methods of the skeleton walker class
(LAttrEvalAdapter.java file) with the correct instructions to provide the

instantiation of OCL expressions as metamodel instances.

5. Test the behaviour of the parser with some examples in order to verify a

correct functionality.
6. Go back to first step until our parser supports all OCL 2.0 language.

At this chapter we will explain some changes made to the Parser Subsystem of the
Dresden OCL2 Toolkit to make easier the development of our processor. Then, we
will show an example of development iteration with the addition of a new

hypothetical OCL statement to our parser.

Antonio Villegas 296 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

14.2 FIRST STEPS

Since we have based the design of our processor on the Dresden OCL2 Toolkit, we
began with a release package of such tool and we adapt it until to obtain a new
structure of files that become in our processor. At this section we will introduce
some of the changes made in order to structure the code and adapt it to our

iterative development process.

14.2.1 ADAPTING SABLECC-EXT

SableCC-Ext comes inside the release package of the Dresden OCL2 Toolkit. We
decided to extract it and to have it as an independent tool in its own release
package. To do this task we had to study which were the union points between this

tool and Dresden tool in order to separate them in a correct way.

After to convert SableCC-Ext into a standalone tool we have the next package

hierarchy:

e grammars: inside this directory we find the specification files for SableCC-
Ext. Concretely we are interested in the gmcOCL202.xgrammar file, which
contains all our OCL 2.0 grammar. Such grammar is based on the Dresden
OCL grammar although it has several changes because Dresden one
contains some rules that are related to the UML 1.5 version instead of the

2.0.

* lib: contains all libraries needed to use SableCC and SableCC-Ext including

antlr tool an more.

* o0bj: contains the structure of Java binary files (.class) needed to work with
SableCC-Ext. It is important here the subdirectory obj.jmi-api.uml2 that

owns the binary classes of the metamodel classes used in EinaGMC. This is a

Antonio Villegas Languages and Systems Department

297

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

change in SableCC-Ext standalone version due to adapt it to our conceptual

modeling environment used.

* src: contains the source Java classes (.java). The generated framework of

our grammar is placed here inside the directory src.parser.sablecc.

* build.xml: is the file containing the ant instruction to generate our

framework through SableCC-Ext and our OCL 2.0 grammar.

It is important to note that to generate the framework classes of our processor we
have to use the next ant command in a terminal with the ant tool installed being

located in the base directory of the SableCC-Ext release directory:

~/> ant compiler.generation

Another important concept is that we had to change two special files inside
SableCC-Ext package structure. These files are src.org.sablecc.sablecc.analyses.txt
and src.org.sablecc.sablecc.TypeMap.java both inside the src.org.sablecc.sablecc

subdirectory.

First one contains templates for the code generation of the framework classes.
Such templates have a problem with the imports. The import statements are hard-
wired inside the code generation templates and they references classes of the
Dresden OCL2 Toolkit. Therefore we had to study such file and change these

imports properly with the Eina GMC version of the imported classes.

And finally, second file maps type names to package names of that type. Used in
generator for LAttrEvalAdapter (our generated skeleton walker class) to allow
reflective access to type system and type checks, it contained references to classes

of Dresden OCL2 Toolkit that were changed for Eina GMC environment classes.

Antonio Villegas 298 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

14.2.2 ADAPTING THE PARSER SUBSYSTEM

After separating SableCC-Ext from the whole release package of Dresden OCL2
Toolkit we had to adapt some parts of the framework of the Parser Subsystem in
order to make it compatible with the new generated classes from SableCC-Ext

connected with the Eina GMC conceptual modeling environment.

Here we present the most significant changes made to adapt the Parser Subsystem
to the Eina GMC. Note that we will not introduce the final structure of our
processor here due to it will be explained at next chapter. We only want to show

important elements that were changed.

14.2.2.1 Node factory

The Node Factory (NodeFactory.java) is one of the most important elements in the
Dresden OCL2 Toolkit because it provides the createNode(String type) method.
Such method returns an object whose type is specified by the input parameter
String. For example, if we want to obtain a List, we only have to call such method

with the String “List” as a parameter.

This factory is based on a hash table of pairs <Type name, constructor of such

type>. So, when a name is found, the factory calls the method to create such class

type.

The Node Factory was initialized with pairs on its hash table specifying classes of
the Dresden metamodel. Therefore, we changed this initialization with new pairs
identifying the classes of the UML and OCL metamodels of the Eina GMC
environment. As we explained when we introduced Eina GMC, every class in the
Eina GMC metamodels have a facade class that provides a public creator method
for each element within it. So, we changed the Dresden classes and methods for

these ones to make a correct adaptation to our tool.

Antonio Villegas Languages and Systems Department

299

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

This way we have now a Node Factory that is related to the Eina GMC and is used

in the same way than before.

14.2.2.2 AST Generator

The AST Generator is the class that implements such methods that are not
completed in the skeleton class provided by SableCC-Ext. Dresden provides a class
with all these methods implemented, although it is very related to its own
metamodel classes. Furthermore, such classes implements the UML metamodel in

its 1.5 version and we need a 2.0 adaptation.

Due to these problems, we decided to begin our own implementation of such
methods in a new AST Generator class different than Dresden one. We thought that
directly change the Dresden AST Generator will be a tedious and error-prone task

so to begin a new implementation from the ground up here was the best decision.

Our AST Generator class is inside the LAttrGMCAstGenerator.java file. First of all
we decided to begin with a minimal subset of the OCL 2.0 language and we write a
basic specification file with only invariant constraints and relational expression

with Integers. So we only were able to parse constraints like the following:

context Person inv: 1<9

Example 14.1: Very simple OCL constraint

The attribute evaluation skeleton class generated for the grammar that we wrote
needed between a ten and a twenty of methods to provide the semantic checking

and the metamodel instantiation of such expressions.

Due to the result of these processes was satisfactory, we opted to follow this
iterative method and to add more complexity to the grammar and to the AST

Generator file until complete the whole OCL 2.0 language.

Antonio Villegas Languages and Systems Department

300

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

14.2.2.3 Type checker

The Type checker of the Parser Subsystem of the Dresden OCL2 Toolkit is an

element that works in a second sweep of the parse tree.

We decided to make our own type checker element in the same sweep than the
parsing process. To do this we create a new Java source class called
TypeCheck.java that implements a reflective visitor. This visitor uses the Java
Reflection API that provides the functionality of discover the java class of a java
object and to access to its attributes and methods. With all of it we are able to
determine the correct class of a Java Object, therefore we can implement a type
checker method for every element in the OCL metamodel. Furthermore, we only
have to call the same method with the element to check as a parameter. Our
reflective visitor is able to determine the class of such parameter and then invoke

the correct checker method.

With this design idea we simplify the implementation of the Type Checker with a
divide and conquer strategy that consists in to implement only the type checker

method of each element in the OCL metamodel separately.

Finally we named the type checker global method as typecheck whose parameter is
an element of the metamodel. Calling such method we indirectly call the particular

method written to check the parameter according to its class.

14.3 A NEW ITERATION: SWITCH-CASE

Imagine that the Object Management Group (OMG), which manages both the UML
and OCL modeling languages, decides to add a new expression statement to the set
of expressions of the Object Constraint Language 2.0. Also imagine that such new
statement is a common switch-case construction that is present in most

programming languages.

Antonio Villegas Languages and Systems Department

301

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

With this imaginary context we will explain how to make a complete development

iteration of our processor of OCL 2.0 expressions.

14.3.1 A NEW PROPOSAL

First of all, to understand the new language statement and its metamodel

instantiation is mandatory.

As we can see below a switch-case statement contains three different parts. First
one consists on a switch keyword followed by an expression between parentheses.

Such expression is the element that we will evaluate.

Next section of a switch-case statement is formed by at least one case section. Each
case section consists on a case keyword and two expressions separated by a then
keyword. First expression here is a possible value of the previous element
expression to evaluate, and second one consists on an expression that will be
executed only if the value expression matches with such element expression
executed. It is important to note that each case section ends with an endcase

keyword.

Finally, last section is the default expression that will be executed only if none of
the value expressions of the case sections matches with the value of the first

element expression.

switch (element-oclexpression)
case value-oclexpression then result-oclexpression endcase
case value-oclexpression then result-oclexpression endcase
case value-oclexpression then result-oclexpression endcase
default default-oclexpression enddefault

endswitch

Definition 14.1: Switch-case proposed statement

Antonio Villegas 302 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

As we have explained, all keywords are mandatory and at least one case section

must appear within the switch-case statement.

A common example of use could be as follows:

context Person::baseSalary:Real

init: switch (self.category)
case Category::Director then 5000.0 endcase
case Category::Engineer then 3500.0 endcase
case Category::Employee then 1450.0 endcase
default 1000.0 enddefault

endswitch

Example 14.2: Example of switch-case usage

This example evaluates an attribute of a class that have a type that consists on an
enumeration of values. According to the value of the enumeration a different Real
value is returned to initialize the attribute baseSalary of Person class. If the
category does not match with none of the cases, by default a value of 1000.0 is

returned.

b

SwitchCaseExp .o

+ownery - 1 1
+elemen +default

OclExpression
+value +result

+case | + 1 1

CaseElement .

?

Figure 14.1: Fragment of the OCL 2.0 metamodel including the new switch-case statement

Antonio Villegas 303 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

At this image we can see a possible implementation of the OCL metamodel relative
part to this imaginary switch-case statement. SwitchCaseExp metaclass is a
subclass of OclExpression and contains two instances of it representing the

element expression and the expression contained in the default section.

We decided to represent the case sections with a new metaclass called
CaseElement that contains an OclExpression specifying the value and another one
representing the result to execute if such value matches with the element of the

switch-case statement.

In our opinion, this implementation could be a realistic metamodel structure in
case of OMG decides to add the switch-case statement into the set of OCL 2.0

expressions.

14.3.2 GRAMMAR CHANGES

Once we have understood how the new statement works, next step consists on to

modify our grammar in order to provide the new functionality.

First of all is to add the new tokens into the Token section. In our case we will
introduce six new tokens due to token then was added with the if expressions case.
It is important to note here that we puts an exclamation mark before the token
name to indicate that such token will not be computed. If we do not use this mark,
when SableCC-Ext generates the skeleton traversal class the computeAstFor
methods (remember such methods when we explained SableCC-Ext at section 12.4
of chapter 12) will contain a String with the token name for each token inside the

current production.

Once we have introduced the new tokens, we have to include the new productions
that will construct the switch-case expression. Production switch_case_exp_cs

conforms the main rule that specifies how this statement is made.

Antonio Villegas Languages and Systems Department

304

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

As we can see, the default section within the switch-case construction is
mandatory, although in our case will only be executed (if our parser one day
executes OCL expression) when none of the case values matches with the main

expression value.

Next to it we have three productions that conforms the list of cases inside a switch
expression. This is a common list with at least one case element. It is important to
note here that the return object of a case list element.cs is an
OclCaseBranchExpression object. This class will have to be implemented because is
a utility class that will contain both the value and result expression inside a case
section. Therefore, such list of elements will be a list of OclCaseBranchExpression

objects.

OclCaseBranchExpression class will be like class shown at Figure 14.2. Remember

that such kind of classes is placed inside package astlib of our structure.

Tokens

! switch = 'switch';

! default = 'default';

! enddefault = 'enddefault';
! endswitch = 'endswitch';
! case = 'case';

! endcase = 'endcase';
Productions

switch case exp cs <SwitchCaseExp> =
switch paren open [element]:ocl expression_cs paren_ close
case_list cs
default [defexp]:ocl expression cs enddefault
endswitch

.
4

case list cs <List> =
[element]:case list element cs [tail]:case_list tail cs?
#nocreate

.
4

case_list element cs <OclCaseBranchExpression> =
{case} case [value]:ocl expression cs then

Languages and Systems Department

Antonio Villegas 305
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2 @1 Processor Development Process | 14

[result]:ocl expression_cs endcase

case_list_tail_cs <List> =
[tail]:case_list cs #chain

.
4

primary exp cs <OclExpression> =
{literal} literal exp cs #chain
| {parenthesized} paren open expression paren_close #chain
| {property} [prop call]:property call exp cs #customheritage
#nocreate
| {if} if exp cs #chain
| {switch} switch case exp cs #chain

.
4

Definition 14.2: Changes made to OCL 2.0 grammar to support switch-case statement

Finally we do not have to forget to include a new alternative inside production

primary_exp_cs in order to link with switch_case_exp_cs production.

Q OclCaseBranchExpression

[EL resultExpression:OclExpression
(£, valueExpression:OclExpression

ﬁ getResultExpression(...)
ﬁ% getValueExpression(...)
ﬁ setResultExpression(...)
ﬁ setValueExpression(...)

Figure 14.2: OclCaseBranchExpression class

14.3.3 GENERATED CLASSES

Once we have introduced the new changes made in our SableCC-Ext specification
file, i.e., our OCL 2.0 grammar, next step is to invoke SableCC-Ext in order to obtain
the new generated classes including the new skeleton of tree-walker class that will

be extended with the switch-case processing.

Antonio Villegas Languages and Systems Department

306

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor

Development Process | 14

E PSwitchCaseExpCs

E ASwitchCaseExpCs

[EL _default :TDefault

[EL _defexp_:POclExpressionCs
[EL _element_:POclExpressionCs
[EL, _enddefault.:TEnddefault
[EL, _endswitch_:TEndswitch

[EL _parenClose_:TParenClose
[EL _parenOpen_:TParenOpen
[EL _switch_:TSwitch

E PCaselistCs

E PCaselistElementCs

Q ACaselistCs

Q ACaseCaselistElementCs

ﬁ apply(...)

ﬁ apply(...)

ﬁ clone(...}

ﬁ getCaselistCs(...)
&5 getDefaultt...)
ﬁ getDefexp!...}
ﬁ getElement(...)
ﬁ getEnddefault(...)
ﬁ getEndswitchi...)
ﬁ getParenClosel...)
ﬁ getParenOpen...)
ﬁ getSwitch(...)

*}. setCaselListCs(...)
ﬁ setDefault(...}
&5 setDefexpt...)
&5 setklement...)
ﬁ setEnddefault(...)
ﬁ setEndswitchl...)
ﬁ setParenClosel...)
ﬁ setParenOpent...)
ﬁ setSwitchi...)

ﬁ toString(...)

ﬁ «createsASwitchCaseExpCs(...)
ﬁ «createxASwitchCaseExp(Cs(...)

ﬁ «createrACaselistCs(...)
'ﬁi «createrACaselistCs(...)
ﬁ’i, applyt(...)

ﬁ applyl...)

'ﬁ.}. clone(...}

ﬁ getElement(...}

'ﬁi getTaill...}

ﬁ’i, setElement!...)

&3 setTail(...)

63. toString(...)

Q PCaselistTailCs|

N T

E ACaselistTailCs

ﬁ «createsACaseListTailCs(...)
ﬁ «createsACaselistTailCs(...)

ﬁ applyt...)
ﬁ”. apply(...)
&3 clone(...)
ﬁ gettaill...)
ﬁ setTaill...)
'ﬁ". toString(...)

[EL _case_:TCase

[EL _endcase_:TEndcase

[EL _result :POclExpressionCs
[EL _then_:TThen

[EL _value_:POclExpressionCs

ﬁ «createsACaseCaselistElementCs(...)
ﬁ «createsACaseCaselistElementCs(...)
ﬁ applyl...)

ﬁ applyt...)

ﬁ clonef...}

ﬁ getCasef...)

ﬁ getEndcasel...)

ﬁ getResult(...)

ﬁ getThent(...)

ﬁ getValuel...)

ﬁ setCasef...)

6}. setEndcasel...)

ﬁ setResult(...)

ﬁ setThen(...)

ﬁ setValuef(...)

ﬁ toString(...)

Figure 14.3: Complete SableCC-Ext generated classes for switch-case productions

As you can see in the previous image, each alternative has its own apply method

which is essential part of the visitor pattern.

Antonio Villegas

307

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

14.3.4 GENERATED TRAVERSAL

As explained when we described SableCC-Ext, a skeleton class with the traversal
around the grammar productions is provided. Such class is LAttrEvalAdapter and
our aim is to extend it to implement the methods that compute AST nodes and that

calculate Heritage parameters.

public final SwitchCaseExp caseASwitchCaseExpCs (ASwitchCaseExpCs
node, Object param) throws AttrEvalException {

Heritage nodeHrtg = (Heritage) param;
Heritage childHrtg = null;
// Descending into element OclExpression to obtain its AST
POclExpressionCs childElement = node.getElement();
OclExpression astElement = null;
if(childElement != null) {

astElement = (OclExpression) childElement.apply(this,

nodeHrtg.copy());

}
// Descending into CaseList production to obtain its AST
PCaseListCs childCaseListCs = node.getCaseListCs();
List astCaseListCs = null;
if(childCaseListCs != null) {

astCaselListCs = (List) childCaseListCs.apply(this,

nodeHrtg.copy());

}
// Descending into default OclExpression to obtain its AST
POclExpressionCs childDefexp = node.getDefexp();
OclExpression astDefexp = null;
if(childDefexp != null) {

astDefexp = (OclExpression) childDefexp.apply(this,

nodeHrtg.copy());

// create AST node through factory for current CST node here.
SwitchCaseExp myAst = (SwitchCaseExp)
factory.createNode("SwitchCaseExp");
// Method to implement. Previous ASTs are parameters here
myAst = computeAstFor ASwitchCaseExpCs(myAst, nodeHrtg,
astElement, astCaseListCs, astDefexp);
return myAst;

public final List caseACaseListCs(ACaseListCs node, Object param)
throws AttrEvalException {
Heritage nodeHrtg = (Heritage) param;

Languages and Systems Department

Antonio Villegas 308
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

Heritage childHrtg = null;
// Descending into an element of the case list
PCaseListElementCs childElement = node.getElement();
OclCaseBranchExpression astElement = null;
if(childElement != null) {

astElement = (OclCaseBranchExpression)

childElement.apply(this, nodeHrtg.copy());

}
// Descending into the next elements of the case list
PCaseListTailCs childTail = node.getTail();
List astTail = null;
if(childTail != null) {

astTail = (List) childTail.apply(this, nodeHrtg.copy());

// Method to implement. Previous ASTs are parameters here

List myAst = computeAstFor ACaselListCs(nodeHrtg, astElement,
astTail);

return myAst;

public final OclCaseBranchExpression
caseACaseCaseListElementCs (ACaseCaseListElementCs
node, Object param) throws AttrEvalException {

Heritage nodeHrtg = (Heritage) param;
Heritage childHrtg = null;
// Descending into value OclExpression
POclExpressionCs childValue = node.getValue();
OclExpression astValue = null;
if(childvalue != null) {
astValue = (OclExpression) childValue.apply(this,
nodeHrtg.copy());
}
// Descending into result OclExpression
POclExpressionCs childResult = node.getResult();
OclExpression astResult = null;
if(childResult != null) {
astResult = (OclExpression) childResult.apply(this,
nodeHrtg.copy());

}
// create AST node through factory for current CST node here.
OclCaseBranchExpression myAst = (OclCaseBranchExpression)

factory.createNode("OclCaseBranchExpression");
// Method to implement. Previous ASTs are parameters here
myAst = computeAstFor ACaseCaseListElementCs(myAst, nodeHrtg,
astValue, astResult);
return myAst;

Antonio Villegas 309 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

public final List caseACaseListTailCs(ACaseListTailCs node,
Object param) throws AttrEvalException {

Heritage nodeHrtg = (Heritage) param;
Heritage childHrtg = null;
// Descending into PCaseListCs production
PCaseListCs childTail = node.getTail();
List astTail = null;
if(childTail != null) {
astTail = (List) childTail.apply(this, nodeHrtg.copy());
}

// create AST node for current CST node here.
List myAst = astTail;
return myAst;

Definition 14.3: Generated methods inside LAttrEvalAdapter.java class

As we said before, all this code is automatically generated by SableCC-Ext. At next

section we will implement the methods that compute the AST nodes.

14.3.5 COMPLETING THE NEW METHODS

In code inside Definition 14.3 we have seen three methods that must be
implemented in order to complete the traversal over the elements in our OCL 2.0
grammar. In the next fragment of Java source code owned by

LAttrGMCAstGenerator.java we found the implementation for these methods.

First one returns an OclCaseBranchExpression object. All we must do is to set both
OclExpression AST nodes that are the parameters of this method into the

OclCaseBranchExpression parameter and return it.

This way we can return a synthesized attribute that contains double information:
an OclExpression representing the value expression of a case section and another

OclExpression with the result expression of the same case section.

Antonio Villegas Languages and Systems Department

310

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor Development Process

14

public OclCaseBranchExpression
computeAstFor ACaseCaseListElementCs(OclCaseBranchExpression
myAst, Heritage nodeHrtg, OclExpression astValue,
OclExpression astResult) throws AttrEvalException {
myAst.setValueExpression(astValue);
myAst.setResultExpression(astResult);
return myAst;

public SwitchCaseExp computeAstFor ASwitchCaseExpCs (SwitchCaseExp
myAst, Heritage nodeHrtg, OclExpression astElement,
List astCaseListCs, OclExpression astDefexp)
throws AttrEvalException {
myAst.setElement (astElement);
myAst.setDefault (astDefexp);

for (Iterator it = astCaseListCs.iterator(); it.hasNext();) {
OclCaseBranchExpression cbe =
(OclCaseBranchExpression) iterator.next();
CaseElement ce =
(CaseElement) factory.createNode("CaseElement");
ce.setValue(cbe.getValueExpression());
ce.setResult(cbe.getResultExpression());
ce.setOwner (myAst) ;
}
tc.typecheck(myAst);
return myAst;

public List computeAstFor ACaseListCs(Heritage nodeHrtg,
OclCaseBranchExpression astElement, List astTail)
throws AttrEvalException {
List result = null;
if (astTail != null) {
astTail.add(astElement) ;
result = astTail;
} else {
result = (List) factory.createNode("List");
result.add(astElement);
}

return result;

Definition 14.4: Methods to control the new switch-case statement behaviour, which are placed

inside LAttrGMCAstGenerator.java class

Antonio Villegas Languages and Systems Department

311

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

Second method sets the different expressions into the SwitchCaseExp object. Note
that for every member of the list passed as a parameter, which is an
OclCaseBranchExpression object, we have to create a new instance of CaseElement

metaclass with the correct values.

Note that last instruction before the return statement is a call to the typecheck
method of an object instance of the TypeCheck class (tc, in the code). This method
makes the type conformance analysis of each element passed as a parameter. As
we will in next chapters, TypeCheck class is based in another kind of visitor
pattern. An important restriction here is to check that the element expression and

each value expression of every case section have compatible types.

Last method only constructs a resultant list joining an element and another list.
This method 1is the one in charge to construct the final list of

OclCaseBranchExpression elements.

14.3.6 TESTING THE NEW STATEMENT

Finally, once we have finished the implementation and all these steps it is the
moment to test if the behaviour of the parser is correct. We have to do the next

verifications:

1. Check that the switch-case expression could be written and syntactically

checked without errors.

2. Check this new statement with examples that do not produce errors and

verify that parser’s behaviour is correct.

3. Check the switch-case expression with example that produce errors and

verify that such errors are shown to user in a correct way.

Antonio Villegas 312 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2 @1 Processor Development Process | 14

4. Verify that the correct type is returned for several switch-case examples of

usage.

Once we have done all those kinds of test, we are able to affirm that the processor

of OCL expressions supports the switch-case statement.

Antonio Villegas Languages and Systems Department

313

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Development Process | 14

Antonio Villegas Languages and Systems Department

314

e
Barcelona School of Informatics Technical University of Catalonia

THE OCL 2.0 PARSER

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15 THE OCL 2.0 PARSER

15.1 INTRODUCTION

In previous chapters we have studied different OCL tools to be the basis of our
project until we decided the best tool to adapt was the Parser Subsystem of the
Dresden OCL2 Toolkit. After that, we studied the main components and utilities of
such tool and we showed the specification file containing the OCL 2.0 grammar

used to generate the framework for to implement our processor.

At this chapter we finally introduce the processor of OCL 2.0 expression, also

known as OCL 2.0 parser here.

First of all to show the complete structure of the parser is mandatory to
understand its different components and how are they related. Then, we will

expose a simple example of usage that will be useful to be familiar with our tool.

Finally we show the conversion process made by the OCL 2.0 parser. For every
expression in the OCL 2.0 language we show all the conversion steps from the
textual constraint to the XMI representation of the metamodel instances of such
expression. This section also contains the explanation about the inverse
conversion from metamodel instances to textual constraints, and indications of

how to delete processed constraints.

Therefore, we could affirm that it is the main chapter of this document due to it is

the union point between all concepts explained in the other chapters.

Antonio Villegas Languages and Systems Department

316

Barcelona School of Informatics Technical University of Catalonia

. .
gCBL p:f:zgzzl;ns The OCL 2.0 Parser | 15

15.2 STRUCTURE

Finally, our processor of OCL 2.0 expressions has been included inside the release
package of the Eina GMC conceptual modeling environment. Inside the source
package of such tool we can found the parser directory, which contains all Java

classes of the processor. Additionally, package ocllibrary contains important

information to explain.

Here we will explain in detail the structure of these directories and its
subdirectories in order to understand the different components and to know how

are placed in the hierarchy of packages.

| ocllibrary
| parser
| astgen
7 astlib
I sablecc
I analysis
" lexer
I~ node
| parser
7 util

Figure 15.1: Hierarchy of packages of our processor

15.2.1 PACKAGE ASTGEN

Inside this package we find the most important Java classes of the processor of OCL

2.0 expressions. At next subsections such classes will be explained.

Antonio Villegas 317 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.2.1.1 LAttrGMCAstGenerator.java

Such class, as we explained earlier, contains the implementation of the methods
that deal with the checking and instantiation of the elements inside OCL
expressions. LAttrGMCAstGenerator is subclass of LAttrEvalAdapter, which is the

generated attribute evaluator skeleton automatically generated by SableCC-Ext.

We can affirm that this class is the brain of our processor because includes the
instructions to make the instantiation inside the UML and OCL metamodels and the
calls to the type checker component. If we need to change the behaviour of our

processor we must change the methods of this file.

15.2.1.2 NodeFactory.java

Another important element inside such package is the Node Factory component
that is written inside the NodeFactory.java file. Such element was explained at
previous chapter. As we said then, it is based in a HashMap of pairs consisting in
the name of an element and the methods to create it. Calling the createNode
method with a String as a parameter specifying the name of the object to create we

obtain a new object of such type.

In order to extend this factory of nodes we only have to add a new pair similar than

existent ones into the core HashMap and automatically we will be able to use it.

15.2.1.3 Heritage.java

It is important to remember that in the parsing process there are two kinds of
information shared between nodes. The information passed from parents to its
descendants is known as inherited attributes and to simulate this behaviour we

have the Heritage.java class. Instances of such class store information related to a

Antonio Villegas Languages and Systems Department

318

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

parent node in order to pass it to its descendants or siblings inside the tree

traversal of the compilation process.

This class consists basically in a set of attributes with their setters and getters
methods to access them. It is very similar than Dresden implementation but we
have deleted some attributes that are not needed in our case and we also have

included some new ones.

Among others, Heritage stores information about the contextual class of a
constraint, the type of expressions in where the nodes are placed (e.g., iterators,

postconditions, ...), or also the source expression of the current one.

In order to extend such class we only have to add new attributes with their own

setter and getter methods to be accessed.

15.2.1.4 Environment

The Environment in our traversal is an attribute included within the Heritage
object. It contains information about the accessible elements in a current moment

of the parsing process.

For example, inside a body expression of an iterator with iterator variables
previously declared, we can use such variables to access the elements of the source
expression (that should be a collection). Inside the checking of this body
expression, such variables are not directly accessible because they were processed
before. Therefore, to check inside a body expression if a variable is correctly used
because it was defined in the iterator variables’ zone, we only have to search in the

current environment if such variable exists.

Antonio Villegas Languages and Systems Department

319

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

At the beginning of a constraint parsing process we always introduce a new
variable inside the environment representing the self element due to be used

within the expressions inside such constraint.

Each environment can contain a reference to another subenvironment in order to
provide the possibility of emulate a symbol table, which is a common concept in
compilation that specifies different levels of storage. Therefore, if there are two
elements inside the environment with the same name, when we search by such
name we will find the element that is closer to the environment in use. In the same
way, if we find an element that is not stored in the current environment, the

searching process will continue by the parent environments.

15.2.2 PACKAGE ASTLIB

Inside this package there are placed the utility classes which names begin with Ocl
and are used to simplify sharing information between different productions of our

grammar.

These classes are inherited from the Dresden implementation of their Parser
Subsystem and we only made some little changes to adapt it to the Eina GMC

conceptual modeling environment, although they are very similar than originals.

They are used in the OCL 2.0 grammar for the SableCC-Ext in order to wrap some
elements to be passed as intermediate synthesized attributes to another parent
productions that will use them to create the final synthesized attributes. Inside the
productions of such grammar we can find their names between angle brackets
indicating that the result object of the production is an instance of one of these

classes.

Antonio Villegas Languages and Systems Department

320

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.2.3 PACKAGE SABLECC

This package contains all generated classes by SableCC-Ext, as we explained at

previous chapters. It is divided on four subpackages that will be explained here.

15.2.3.1 Package analysis

The analysis package contains the classes introduced by SableCC and SableCC-Ext

to make the attribute evaluation and the parse tree traversal. Such classes are:

* Analysis.java: basic interface generated by SableCC to specify the methods

of a visitor class.

* AnalysisAdapter.java: basic implementation of the Analysis.java interface to

support the visitor pattern traversal.

* AnalysisWithReturn.java: version of the Analysis.java interface providing
support for to return parameters and to pass objects as parameters in a

extended visitor architecture.

* DepthFirstAdapter.java: subclass of AnalysisAdapter.java in which the

visitor traversal is done following a depth-first strategy.

* ReversedDepthFirstAdapter.java: subclass of AnalysisAdapter.java in which

the visitor traversal is done following a reversed depth-first strategy.

* LAttrEvalAdapter.java: automatically generated attribute evaluator
skeleton by SableCC-Ext. As we explained in previous chapters, makes the
parse tree traversal and makes easier the evaluation because we only have
to implement the empty methods in order to complete the whole treatment

for the elements of the parse tree.

Antonio Villegas 321 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

* AttrEvalException.java: Java exception to thrown in case of error in the

attribute evaluation process.

It is important to note here that the most important class here is the generated
skeleton of the attribute evaluator because is the core of our processor. Changes on

the grammar will directly appear as changes on such class.

15.2.3.2 Package lexer

This package contains both the Lexer.java class and the LexerException.java. First
one is the element that tokenizes the input of our processor according to the token

definition of the specification file for SableCC-Ext that we explained at chapter 13.

The result of the execution of this class is a stream of tokens representing the
processed input. Furthermore, if any error occurs in this process the

LexerException is thrown in order to alert the users.

15.2.3.3 Package node

This package contains all generated nodes by SableCC-Ext according to the
specification file of our OCL 2.0 grammar. At chapter 13 where we explained our
grammar we studied the different productions and alternatives, and then we

showed several diagrams with these generated classes.

It is important to emphasize that generated classes representing productions are
abstract Java classes and their names begin with a ‘P’ character. On the other hand,
generated classes representing alternatives within a production are concrete Java
classes extending abstract ones and their names begin with an ‘A’ character.
Finally, classes representing tokens are also concrete subclasses of Token.java

class and their names begin with a “T’ character.

Antonio Villegas 322 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.2.3.4 Package parser

This package contains the Parser.java class representing the Parser component of
our processor of OCL 2.0 expressions. The result of to apply the parse method of
such class is the first node of the parse tree, represented by an instance of the

Start.java class from node package.

If any error is found during the parsing process, an instance of the

ParserException.java class is thrown in order to alert users.

Inside this package we also find an extra class called Tokenlndex.java that
identifies every token of the Token section of our specification file for SableCC-Ext
with an integer number. Such identifier is internally used by different components

along our parsing process.

15.2.4 PACKAGE UTIL

This is the last package placed inside the package parser. As we will see, inside this

directory we find Java classes used to simplify some processes of our processor.

15.2.4.1 Utility.java

This class contains a lot of methods used inside several components, like the AST

Generator LAttrGMCAstGenerator.java.

Among others, Utility class contains methods to verify if exists connection between
to association ends, to check if a property is owned by an UML class or to create

new OCL metamodel instances from others previously created.

All methods without a specific place were allocated inside this class. Therefore

here we can find a lot of different kinds of methods.

Antonio Villegas 323 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.2.4.2 ReflectiveVisitor.java

This is a very important class that works with the Java Reflective API [JRAw] in
order to make a special visitor that discovers the class type of the objects accessing

to their Java internal description.

As explained at previous chapter, we only have to write a new class extending this
one where a visitor method is implemented for each element to process. Such

methods have a parameter with the same class than we have to compute within it.

Then, there exists a general method to be called for each element. Such method
uses the Reflective API to verify the class type of the object parameter and finally
searches inside the new Java class extending ReflectiveVisitor.java in order to find
the method that has a parameter of such class type. Once it has found the method,

invokes it with the object to compute as parameter.

At next section TypeCheck.java will be studied, as an implementation of the

ReflectiveVisitor.

15.2.4.3 TypeCheck.java

TypeCheck class is the component that does the type checking of the elements of
the OCL metamodel. It implements the ReflectiveVisitor explained before. Inside
this class we found a general method named typecheck that admits one parameter.

Such parameter is the object to need a check for its types.

For every element to check there exists an evaluate method with one parameter.
The parameter of such method identifies the element to process. To understand
this behaviour we will see a simple example of usage with an element instance of

IfExp metaclass representing an if expression.

Antonio Villegas Languages and Systems Department

324

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

There exists a general method to be called for every element to process:
public Type typecheck (TypedElement te)

throws WellFormednessException , AttrEvalException

Such method can be called for an IfExp element:

// imagine that tc is an instance of TypeCheck class
// and ifexp an instance of IfExp metaclass
tc.typecheck(ifexp);

This invocation implies that Reflective Visitor searches and then has to
find a method with the next signature:

public void evaluate(IfExp exp) throws AttrEvalException

This method is called for the ifexp instance of IfExp metaclass. Inside this
method we could do as follows:

OclExpression cond = exp.getCondition();
OclExpression thenBranch = exp.getThenExpression();

OclExpression elseBranch = exp.getElseExpression();

Type condType typecheck(cond) ;

Type thenType typecheck (thenBranch);

Type elseType typecheck(elseBranch);

Using this kind of visitor we only have to obtain the attributes of IfExp
metaclass and then call the typecheck method of each one to obtain their
types. This recursive strategy simplifies the type checking process.

On this example, last step consists in to calculate the type of the IfExp
from the types of its attributes.

Example 15.1: Usage of the TypeCheck class as a subclass of the ReflectiveVisitor

15.2.5 PACKAGE OCLLIBRARY

Inside this package we find the OclLibrary.java file that contains and
implementation of a factory of operations. For each operation specified in the OCL
2.0 specification document [Obj06] we have created an entry in a HashMap. As we
explained at previous chapter related to the NodeFactory component, the

OclLibrary maintains the same structure. We implemented a generic method that

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

needs a String as parameter. Such String is used to indicate the name of the OCL 2.0

operation to find.

This method is called findOclOperationByName and first of all verifies if an
operation with the searching name exists in the metadata repository. If affirmative

returns it but if the operation is not found, it is created and then returned.

With this design decision we avoid to have repeated operations inside the

metadata repository.

Furthermore, inside this Java class we have methods to do the same as with
operations but with the basic types described inside the OCL 2.0 specification.

These types are String, Boolean, Real and Integer.

It is important to emphasize that separating the creation of types and operations of
the OCL 2.0 Library from the main code provides an increasing changeability that

can be useful if the OCL language is extended or modified.

15.2.6 PACKAGE EXAMPLES

Finally, there exists another secondary package named examples that obviously
contains some classes implementing different examples of usage. The main
example here is the DemoOcl20Parser.java file that contains the source code that

constructs the Demo program presented at Figure 12.6.

15.3 HOW TO USE THE PARSER

15.3.1 USAGE EXAMPLE

At this section we will explain the steps that user must follow in order to work

with the processor of OCL 2.0 expressions.

Languages and Systems Department

Antonio Villegas 326
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.3.1.1 How to obtain an XMl file

To begin our job, it is mandatory to own an XMI file that specifies a correct UML

conceptual model.

At chapter where we introduced Eina GMC (see chapter 5, section 5.5) as our
conceptual modeling environment it is possible to find more information about
how to obtain an XMI file from a CASE tool (in our case, Poseidon for UML), or
directly instantiating model elements writing the needed Java code. Here we will

suppose that you know the way of obtaining XMI files.

It is important to emphasize that a precondition for our processor of OCL 2.0
expressions is that every element inside the XMI file representing an UML model
that can have a type has such type specified inside such XMI file. For example, the
type of the attributes inside an UML class must not be empty. Otherwise our
processor cannot work properly due to its type conformance checking process will

fail because it will not find the types to check.

15.3.1.2 Creating a new project

In order to prepare the environment of our processor, we have to create an

instance of the Eina GMC class Project.

Project p; String name = “myProject”;
p = new Project(name);

System.out.println(“Project “+name+” has been created”);

Example 15.2: Creating a new project

We can opt to set a name to such Project instance. Once we have done it, it is the

moment of loading the XMI file containing the representation of an UML model.

Antonio Villegas Languages and Systems Department

327

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

String XMIfileName = “/Users/Desktop/XMI/mymodel.xmi”;
p.importXMI (XMIfileName) ;

System.out.println(“Import finished”);

Example 15.3: Importing an XMI file

With these easy steps we have the project created and the information contained
inside the XMI file loaded within the metadata repository of the Eina GMC

conceptual modeling environment.

It is important to note that Eina GMC library must be imported here in order to
avoid errors of binary files not found. Such library can be found in JAR format at
Eina GMC web site [GMCw]. The binary Java classes of our processor are also

included in such library.

15.3.1.3 Creating the components of our parser

Next step after we have both project and model loaded inside the metadata

repository consists on to construct the components of our parser.

// text variable contains OCL 2.0 constraints
String text = “context Person inv: ...
context Project inv: ...

context Work::salary:Real init: ... ”;

Lexer lexer new Lexer (
new PushBackReader (
new StringReader(text),1024));

Parser parser = new Parser(lexer);

Example 15.4: Creation of lexer and parser components

Antonio Villegas Languages and Systems Department

328

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

As we can see, first of all we use a String variable to store the OCL 2.0 textual
constraints. With such String we must create a Java PushBackReader object in

order to pass it to the constructor method of the lexical analyzer (lexer).

Finally, to construct the parser component we have to use the previous lexer as a

parameter of its constructor method.

At this point lexical and syntactical errors are returned as Java Exceptions as we

will explain later.

15.3.1.4 Processing OCL expressions

To process OCL constraints is a very simple task if we have followed the previous

steps.

Start ast = parser.parse();

ast.apply(new LAttrGMCAstGenerator(p), new Heritage());

Example 15.5: Processing the compilation tree

We have to call the parse() method of the Parser object, which will return us the
AST of the processed constraints. Concretely we will obtain a reference to the first

node of such tree, which is an instance of the Start class.

Next step consists on to use the visitor pattern in order to begin the tree traversal
through all tree nodes. We can do it calling the apply method of the previous

reference, with two parameters.

First parameter is an instance of LAttrGMCAstGenerator class, which needs the
initial Project object of the beginning as a parameter for its constructor method.

This new instance deals with the necessary treatment for each node of the

Antonio Villegas 329 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

compilation tree, creating the correspondent instances into the OCL metamodel of

the metadata repository.

Second parameter is a new instance of Heritage class, which deals with sharing

information between parent nodes and its descendants.

In case of existing problems on this process, each error is returned as a Java

exception.

15.3.1.5 Store results into an XMl file

Once we have processed the OCL expressions, next step is to save the changes
made within the metadata repository (new instantiation of OCL expressions as

OCL metamodel instances) in a new XMI file.

String
outputXMIfile(”/Users/Desktop/mymodelwithconstraints.xmi”);
p.saveXMI (outputxXMIfile);

Example 15.6: Storing metadata into a new XMI file

It is important to close the current instance of Project calling the closeProject()
method once we have finished to work with it in order to avoid inconsistence

problems with the metadata repository of the Eina EMG environment.

p.closeProject();

Example 15.7: Method to close the current project and its metadata repository

15.3.2 ERROR FEEDBACK

In our processor of OCL 2.0 expressions, every time that an error is found a Java

exception is thrown with the information of the error and where it occurs.

Antonio Villegas 330 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

There are different kinds of exceptions depending on the stage of the process in

which the error happens. We will show these kinds in the next list:

* LexerException: exception thrown if an error happens during the lexical

analysis of the input constraints.

* ParserException: exception thrown if an error occurs during the execution

of the parse() method of Parser class.

* AttrEvalException: exception thrown if an error occurs during the
evaluation of attributes and the instantiation into the metamodel of the OCL

input constraints.

* WellFormednessException: this exception is subclass of AttrEvalException
and it is used to be thrown when an error is found during the type

conformance checking process.

15.3.3 ROLLBACK

Actually, Eina GMC uses the MDR[MDRw] metadata repository provided by
Netbeans community[NETw]. Such repository allows using transactions like in

databases.

This feature is useful in case of need a rollback in the changes made inside the
repository, if finally we have to abort the processing of OCL expressions due to

semantic errors (like an incompatibility of types in an arithmetical expression).

We will explain here how to use this feature inside the previous code that
constructs the different components of our processor of OCL 2.0 expressions in

order to avoid an inconsistent metadata repository due to incomplete constraints.

Antonio Villegas 331 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

// get the default repository
MDRepository repository =

MDRManager .getDefault().getDefaultRepository();
// start a write transaction

repository.beginTrans (true);

try {
// Code where the repository is modified

Start ast = parser.parse();
ast.apply(new LAttrGMCAstGenerator(p), new Heritage());
} catch (Exception e){
// We can do something with the exception
e.printStackTrace();
} finally {
// release the transaction

repository.endTrans (true);

Example 15.8: Basic usage of rollback in transactions

We can observe that first we obtain the repository reference that is being used
actually, in order to be able to call the beginTrans and endTrans methods with the

try/catch Java structure.

First parameter that we pass to beginTrans specifies if the current transaction is a
write transaction (true) or a read-only transaction (false). In order to allow
rollback (erase all changes made to achieve to be in an earlier initial state) we have

to pass a true Boolean value.

Such mechanism of rollback is executed when an exception is captured inside the
try construction. Therefore, when an error is found during the parsing process an
exception is thrown and causes that all new instances created within such process
inside the metadata repository are deleted in order to recover the initial state of

such repository.

Antonio Villegas Languages and Systems Department

332

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.3.4 FACADE OPERATIONS

There exists another way of process OCL 2.0 constraints. In order to simplify the
usage of our processor we provide some operations inside a facade class that

directly constructs the processor’s components.

Inside the Java class ParserFacade placed into the package facadeOCL we find the
addOclExpression method that has two parameters. First one is a String
representing the OCL 2.0 constraints to parser. Second parameter consists in one

instance of Project that must have imported a UML model previously.

15.4 CONVERSION PROCESS

Along this section we will introduce the conversion that our processor of OCL 2.0
expressions is able to do. First of all a diagram is shown containing the
instantiation of each element or construction of the OCL language. Then, we will

explain the XMI fragment generated for such diagrams.

15.4.1 CONSTRAINT CONTAINERS

As we explained in previous chapters, the OCL 2.0 language provides a set of
constraint containers, also known as context structures. Here we will show the
conversion process of these constructions as wrappers for the other OCL

expressions.

15.4.1.1 Invariants and definitions

Invariants and definitions are constraint containers that have a Classifier as a
context. At next example we will remember the templates for to write both

invariants and definitions.

Antonio Villegas Languages and Systems Department

333

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor The OCL 2.0 Parser | 15

Invariant:

context Class

inv constraintName : <insert invariant expression here>

Definition of attribute:
context Class

def constraintName : newAttribute:Type

= <insert definition expression here>

Definition of query operation:

context Class

def constraintName : newQueryOperation(parameter list):Type

= <insert query expression here>

Example 15.9: Invariants and definitions construction templates

As we have seen, a definition context can define a new attribute or a new query

operation. Both invariants and definitions share the same structure of

instantiation, as we can see at below image.

constrainedElement, ¢ : Element ’

[c : Constraint -
. - specification z
’ name = "constraintName slo : ExpressioninOcl ’
symbol = “inv" ‘
bodyExpression contextVariable

o : OclExpression v : Variable ’

Figure 15.2: Instantiation for an invariant context construction

At Figure 15.2 we show the instantiation of an invariant. It is important to note

here that the only change between the instantiation of an invariant and the

Antonio Villegas Languages and Systems Department

334

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

instantiation of a definition is the value of symbol attribute owned by the

ExpressionInOcl instance.

Due to Eina GMC does not support stereotypes we decided to identify the kind of a
constraint using such attribute of this instance. Therefore, when we are processing
an invariant the symbol attribute will have the ‘inv’ value whereas when we

process a definition it will have the ‘def value.

When Eina GMC supports stereotypes we will opt to use them to apply an

<<invariant>> or <<definition>> stereotype to the constraint instance.

<uml2.Kernel.Constraint xmi.id = 'idl' name = 'constraintName'
visibility = 'public'>
<uml2.Kernel.Constraint.constrainedElement>
<uml2.Kernel.Class xmi.idref = 'classRef'/>

</uml2.Kernel.Constraint.constrainedElement>
<uml2.Kernel.Constraint.specification>

<uml :ExpressionInOcl xmi.id = 'id2' symbol = 'inv'>
<uml:ExpressionInOcl.bodyExpression>
<uml:OperationCallExp xmi.idref = 'opRef'/>

</uml:ExpressionInOcl.bodyExpression>
<uml:ExpressionInOcl.contextVariable>
<uml:Variable xmi.idref = 'varl'/>
</uml:ExpressionInOcl.contextVariable>
</uml:ExpressionInOcl>
</uml2.Kernel.Constraint.specification>
</uml2.Kernel.Constraint>

<uml:Variable xmi.id = 'varl'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.Class xmi.idref = 'classRef'/>
</uml2.Kernel.TypedElement.type>
<uml:Variable.selfOwner>
<uml:ExpressionInOcl xmi.idref = 'id2'/>
</uml:Variable.selfOwner>
</uml:Variable>

Definition 15.1: XMI representation for an invariant context construction

Finally, at previous definition we can see the conversion of the instantiation for an

invariant constraint. Note that the name of the constraint is stored in the header

Antonio Villegas

335 Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

. _
gtal p?zi:frns The OCL 2.0 Parser | 15

tag of the Constraint element. In this case, the constrained element is a class
because the context is an invariant. In case of a definition, such constrained

element could be the property or the operation defined.

The body expression of the invariant conversion in this case is an
OperationCallExp although it could be another instance of OclExpression.
Furthermore, the context variable is the same in both cases and references the
class where the constraint is placed. We can see the XMI representation of such

variable whose type is the class that we have mentioned.

15.4.1.2 Initializations and derivations

Another kinds of constraints are the initializations and derivations constructions.

They can be written as explained in the example below.

Initialization:
context Class::property:Type

init constraintName: <insert initialization expression here>

Derivation:
context Class::property:Type

derive constraintName: = <insert derivation expression here>

Example 15.10: Initializations and derivations construction templates

It is important to remember here that a property can represent both an attribute

and an association end.

Initializations and derivations are constructions that share the same template. In
this case, the constrained element of these constraints is a property. The only
difference from the instantiation of an invariant or definition with respect to

initializations and derivations is the symbol of the ExpressionInOcl instance that

Antonio Villegas 336 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

identifies the kind of the constraint. In this case, we use ‘init’ for initializations and

‘derive’ for derivations.

constrainedElement| e : Element

c : Constraint
name = “constraintName”

specification | oj : ExpressionlnOcl

symbol = "init"
bodyExpression contextVariable
o : OclExpression v : Variable

Figure 15.3: Instantiation for an initialization context construction

As we can see, both diagram and XMI representation are very similar than

invariants and definitions.

<uml2.Kernel.Constraint xmi.id = 'idl' name = 'constraintName'
visibility = 'public'>
<uml2.Kernel.Constraint.constrainedElement>
<uml2.Kernel.Property xmi.idref = 'propertyRef'/>

</uml2.Kernel.Constraint.constrainedElement>
<uml2.Kernel.Constraint.specification>

<uml:ExpressionInOcl xmi.id = 'id2' symbol = 'init'>
<uml:ExpressionInOcl.bodyExpression>
<uml:IntegerLiteralExp xmi.idref = 'ileRef'/>

</uml:ExpressionInOcl.bodyExpression>
<uml:ExpressionInOcl.contextVariable>
<uml:Variable xmi.idref = 'varl'/>
</uml:ExpressionInOcl.contextVariable>
</uml:ExpressionInOcl>
</uml2.Kernel.Constraint.specification>
</uml2.Kernel.Constraint>

<uml:Variable xmi.id = 'varl'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.Class xmi.idref = 'classRef'/>

Antonio Villegas Languages and Systems Department

337

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser

15

</uml2.Kernel.TypedElement.type>
<uml:Variable.selfOwner>
<uml:ExpressionInOcl xmi.idref = 'id2'/>
</uml:Variable.selfOwner>
</uml:Variable>

Definition 15.2: XMI representation for an initialization context construction

15.4.1.3 Preconditions, postconditions and body of operations

Finally, the last kind of constraints is the operation contexts. Concretely they are

preconditions, postconditions and body of operations.

We can remember their syntax looking at the next examples.

Precondition:
context Class::operation(list of parameters):Type

pre constraintName: <insert precondition expression here>

Body of operation:

context Class::operation(list of parameters):Type
body constraintName: = <insert body expression here>
Postcondition:

context Class::operation(list of parameters):Type

post constraintName: <insert postcondition expression here>

Example 15.11: Preconditions, postconditions and body of operations construction templates

Such constructions have the same metamodel instantiation than previous ones, but

in this case we use ‘pre’, ‘post’ or ‘body’ as values for the symbol attribute of

ExpressionInOcl instance. Furthermore, the constrained element here is always an

operation of the conceptual model.

Now we will introduce the instantiation diagram and the XMI representing such

instantiation for a common precondition.

Antonio Villegas Languages and Systems Department

338

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

constrainedElement| op : Operation

c : Constraint ‘

- specification | :
name = "constraintName" i——l _;elo : ExpressioninOcl

symbol = "pre"
bodyExpression contextVariable

' o : OclExpression ‘ ' v : Variable

Figure 15.4: Instantiation for a precondition construction

<uml2.Kernel.Constraint xmi.id = 'idl' name = 'constraintName'
visibility = 'public'>
<uml2.Kernel.Constraint.constrainedElement>
<uml2.Kernel.Operation xmi.idref = 'operationRef'/>
</uml2.Kernel.Constraint.constrainedElement>
<uml2.Kernel.Constraint.specification>

<uml:ExpressionInOcl xmi.id = 'id2' symbol = 'pre'>
<uml:ExpressionInOcl.bodyExpression>
<uml:BooleanlLiteralExp xmi.idref = 'bleRef'/>

</uml:ExpressionInOcl.bodyExpression>
<uml:ExpressionInOcl.contextVariable>
<uml:Variable xmi.idref = 'varl'/>
</uml:ExpressionInOcl.contextVariable>
</uml:ExpressionInOcl>
</uml2.Kernel.Constraint.specification>
</uml2.Kernel.Constraint>

<uml:Variable xmi.id = 'varl'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.Class xmi.idref = 'classRef'/>
</uml2.Kernel.TypedElement.type>
<uml:Variable.selfOwner>
<uml:ExpressionInOcl xmi.idref = 'id2'/>
</uml:Variable.selfOwner>
</uml:Variable>

Definition 15.3: XMI representation for a precondition context construction

Antonio Villegas Languages and Systems Department

339

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.4.2 TYPES

In this section we will describe the conversion process for the types used in the

OCL 2.0 language.

15.4.2.1 DataTypes

As was explained earlier, in the specification document of the OCL 2.0 language
there are four types: Integer, Real, String and Boolean. We use them as instances of

DataType metaclass as shown at next image.

dt1 : DataType J | dt2: DataType |
name = "Integer” ‘ name = "Real"
dt3 : DataType ‘ v dt4 : DataType ‘
name = "String" name = "Boolean”

Figure 15.5: Instantiation for DataTypes of basic types

The representation of such data types into the XMI language supported by the Eina

GMC conceptual modeling environment is as follows:

<uml2.Kernel.DataType xmi.id = 'dtl' name = 'Integer'
qualifiedName = '' isLeaf = 'false' isAbstract = 'false'>

</uml2.Kernel.DataType>

<uml2.Kernel.DataType xmi.id = 'dt2' name = 'Real’
qualifiedName = '' isLeaf = 'false' isAbstract = 'false'>

</uml2.Kernel.DataType>

<uml2.Kernel.DataType xmi.id = 'dt3' name = 'String'
qualifiedName = '' isLeaf = 'false' isAbstract = 'false'>

</uml2.Kernel.DataType>

<uml2.Kernel.DataType xmi.id = 'dt4' name = 'Boolean’
qualifiedName = '' isLeaf = 'false' isAbstract = 'false'>

</uml2.Kernel.DataType>

Definition 15.4: XMI representation for datatypes of basic types

Antonio Villegas 340 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.4.2.2 CollectionType

There exist four categories of collection types: BagType, SetType, OrderedSetType
and SequenceType. Each one contains a reference to the type of its elements. We

will show an example of BagType whose elements are Integers: Bag(Integer).

5 [:
bt : BagType | elementType dui Datalype
J name = "Integer”

Figure 15.6: Instantiation for a BagType whose element type is Integer

The previous instantiation has a direct conversion. It is important to note that
these types also contain a special field inside the XMI representation where all
elements with such types are referenced. This field is named _typedElementOfType

as we can see at next XMI code.

<uml:BagType xmi.id = 'btl' name = 'Bag(Integer)' isLeaf = 'false'
isAbstract = 'false'>
<uml2.Kernel.Type. typedElementOfType>
<uml:CollectionLiteralExp xmi.idref = 'cleRef'/>

</uml2.Kernel.Type. typedElementOfType>
<uml:CollectionType.elementType>
<uml2.Kernel.DataType xmi.idref = 'integerRef'/>
</uml:CollectionType.elementType>
</uml:BagType>

Definition 15.5: XMI representation for a Bag collection type

15.4.2.3 TupleType

We should remember here that a TupleType is a type that specifies a tuple and its
members. TupleType has the same structure than a UML class. Therefore its

members are instances of Property.

Antonio Villegas 341 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

At next image we can see an instantiation example for a TupleType that only has an

attribute named ‘a’: TupleType(a:Integer)

tt1 : TupleType | ownedAttribute| p1 : Property |
name = "TupleType(a:integer)" name = "a"

Figure 15.7: Instantiation for a tuple type with only one owned attribute

According to it, the representation of a TupleType with the XMI language is like the

code inside next definition.

<uml:TupleType xmi.id = 'ttl' name = 'TupleType(a:Integer)' isLeaf
= 'false' isAbstract = 'false'>
<uml2.Kernel.Type. typedElementOfType>
<uml:TuplelLiteralExp xmi.idref = 'tleRef'/>

</uml2.Kernel.Type. typedElementOfType>
<uml2.Kernel.Class.ownedAttribute>

<uml2.Kernel.Property xmi.id = 'pl' isUnique = 'false'
isOrdered = 'false' lower = '0' upper = '0' name = 'a'
isLeaf = 'false' isStatic = 'false' isReadOnly = 'false'
isDerived = 'false' isDerivedUnion = 'false' isComposite =
'false'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'integerRef'/>

</uml2.Kernel.TypedElement.type>
<uml2.Kernel.Property.tupleLiteralPart>
<uml:TupleLiteralPart xmi.idref = 'tlpRef'/>
</uml2.Kernel.Property.tupleLiteralPart>
</uml2.Kernel.Property>
</uml2.Kernel.Class.ownedAttribute>
</uml:TupleType>

Definition 15.6: XMI representation for a tuple type

Inside the main TupleType tag we find a section named _typedElementOfType
where all elements that have such type are referenced. Furthermore, there is
another section including all owned attributes. Such section contains the definition

of only one Property here due to in our example we only have one member. Such

Antonio Villegas Languages and Systems Department

342

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

Property contains its name, its type (a reference to the DataType Integer), and

finally a reference to the TupleLiteralPart that owns it.

15.4.3 LITERAL EXPRESSIONS

At this point we will describe the conversion process of the literal expressions of

the OCL 2.0 language.

15.4.3.1 Numeric literals

First literals to study are the numeric literals composed by both RealLiteralExp
and IntegerLiteralExp. They are the metaclasses that wrapp Real and Integer

constant values used inside OCL expressions.

' rie1 : RealliteralExp ‘ ' ile1 : IntegerLiteralExp ‘
realSymbol = 0.9 integerSymbol = 7

Figure 15.8: Instantiation for Real and Integer literals

It is important to note that in the XMI representation of such classes there exists a

link to the type reference of such instance. In our case, links to Real and Integer

data types.
<uml:RealLiteralExp xmi.id = 'rlel' name = '' realSymbol = '0.9'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'realRef'/>

</uml2.Kernel.TypedElement.type>
</uml:RealliteralExp>

<uml:IntegerLiteralExp xmi.id = 'ilel' name = ''
integerSymbol = '7'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'integerRef'/>

</uml:IntegerLiteralExp>

Definition 15.7: XMI representation for numeric literals

Antonio Villegas Languages and Systems Department

343

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Parser | 15

15.4.3.2 String literals

Similarly than with numeric literals, to store String constant values we use the

StringLiteralExp metaclass.

sle1 : StringLiteralExp
stringSymbol = “John"

Figure 15.9: Instantiation for an String literal representing the 'John' value

The instantiation for these cases is represented using the XMI language as shown

below.
<uml:StringLiteralExp xmi.id = 'slel' name = 'John'
stringSymbol = 'John'>
<uml2.Kernel.TypedElement.type>

<uml2.Kernel.DataType xmi.idref = 'stringRef'/>
</uml2.Kernel.TypedElement.type>
</uml:StringLiteralExp>

Definition 15.8: XMI representation for String literal

15.4.3.3 Boolean literals

To complete the instantiation of basic literals we have to specify how to convert a
Boolean constant value (true or false). To do this we use the BooleanLiteralExp

metaclass that stores such value.

blei : BooleanLiteralExp

booleanSymbol = true

Figure 15.10: Instantiation for a Boolean value

Antonio Villegas Languages and Systems Department

344

Barcelona School of Informatics Technical University of Catalonia

. .
gCBL P)r(gciz:frns The OCL 2.0 Parser | 15

The conversion of it into the XMI language of the Eina GMC is very similar than
other basic literal expressions. In this case the type reference links with the

Boolean data type.

<uml :BooleanLiteralExp xmi.id = 'blel' name = ''
booleanSymbol = 'true'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'booleanRef'/>

</uml2.Kernel.TypedElement.type>
</uml:StringLiteralExp>

Definition 15.9: XMI representation for Boolean literal

15.4.3.4 Enumeration literals

Another kind of literals is enumeration literal expressions. To use an enumeration
literal expression it is necessary to write the Enumeration name followed by a
double colon and the enumeration literal. In our example we can see the

instantiation of an Enumeration called Gender. It has two literals, male and female.

eni : Enumeration
name = "Gender"

type
ownedLiteral ownedLiteral
el1 : EnumerationLiteral ¢l2 : EnumerationLiteral
name = "male” name = “female”

referredEnumLiteral

ele1 : EnumlLiteralExp

Figure 15.11: Instantiation of an enumeration literal

Antonio Villegas 345 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

The previous instantiation shows a EnumlLiteralExp representing the
Gender::male literal expression. Note that the type of such expression is the
Enumeration used. Enumeration literal expressions can be used to initialize

attributes or in comparisons.

The next XMI code contains firstly the instantiation of the previous enumeration
according to the UML metamodel, and then the representation of the

EnumlLiteralExp according to the OCL metamodel.

<uml2.Kernel.Enumeration xmi.id = 'enl' name = 'Gender'
isLeaf = 'false' isAbstract = 'false'>
<uml2.Kernel.Type._typedElementOfType>
<uml2.Kernel.Property xmi.idref = 'refl'/>

</uml2.Kernel.Type. typedElementOfType>
<uml2.Kernel.Enumeration.ownedLiteral>

<uml2.Kernel.EnumerationLiteral xmi.id = 'ell'
name = 'male'/>
<uml2.Kernel.EnumerationLiteral xmi.id = 'el2'
name = 'female'/>
</uml2.Kernel.Enumeration.ownedLiteral>
</uml2.Kernel.Enumeration>
<uml :EnumLiteralExp xmi.id = 'elel' name = 'Gender'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.Enumeration xmi.idref = 'enl'/>

</uml2.Kernel.TypedElement.type>
<uml:EnumLiteralExp.referredEnumLiteral>
<uml2.Kernel.EnumerationLiteral xmi.idref = 'ell'/>
</uml:EnumLiteralExp.referredEnumLiteral>
</uml:EnumLiteralExp>

Definition 15.10: XMI representation for an enumeration literal

15.4.3.5 Collection literals

Collection literals provide the possibility of use collections as values to use inside
OCL expressions. To show how to convert a collection literal to the OCL metamodel

we will use an example of a Bag literal: Bag{1, 2 .. 5, 6}.

Antonio Villegas Languages and Systems Department

346

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Parser | 15

clei : CollectionLiteralExp

kind = Bag
part part
ci1 : Collectionitem ci2 : Collectionitem
part
cri : CollectionRange
item item
integerRef3 : integerRef4 :
IntegerLiteralExp IntegerLiteralExp
first
integerSymbol = 1 — integerSymbol =6
g y integerRef1 : 9 y

IntegerLiteralExp
integerSymbol = 2

last

IntegerRef2 :
IntegerLiteralExp

integerSymbol = 5

Figure 15.12: Instantiation for a Bag literal expression

Such Bag literal has three members in its definition. First and last ones are
Collectionltem instances whereas the second one is a CollectionRange. We can see
at previous image the instantiation inside the OCL metamodel for such Bag. It is
important to note that the kind of the collection is stored inside the correspondent
attribute of the CollectionLiteralExp. Allowed values for it are Bag, Set, OrderedSet

and Sequence.

<uml:CollectionLiteralExp xmi.id = 'clel' kind = 'Bag'>
<uml2.Kernel.TypedElement.type>
<uml:BagType xmi.idref = 'bagTypeRef'/>
</uml2.Kernel.TypedElement.type>
<uml:CollectionLiteralExp.part>

Antonio Villegas Languages and Systems Department

347

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

<uml:CollectionItem xmi.idref = 'cil'/>
<uml:CollectionRange xmi.idref = 'crl'/>
<uml:CollectionItem xmi.idref = 'ci2'/>

</uml:CollectionLiteralExp.part>
</uml:CollectionLiteralExp>

<uml:CollectionRange xmi.id = 'crl'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'integerTypeRef'/>

</uml2.Kernel.TypedElement.type>
<uml:CollectionLiteralPart.collectionLiteralExp>

<uml:CollectionLiteralExp xmi.idref = 'clel'/>
</uml:CollectionLiteralPart.collectionLiteralExp>
<uml:CollectionRange.first>

<uml:IntegerLiteralExp xmi.idref = 'integerRefl'/>
</uml:CollectionRange.first>
<uml:CollectionRange.last>

<uml:IntegerLiteralExp xmi.idref = 'integerRef2'/>
</uml:CollectionRange.last>

</uml:CollectionRange>

<uml:CollectionItem xmi.id = 'cil'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'integerTypeRef'/>
</uml2.Kernel.TypedElement.type>
<uml:CollectionLiteralPart.collectionLiteralExp>
<uml:CollectionLiteralExp xmi.idref = 'clel'/>
</uml:CollectionLiteralPart.collectionLiteralExp>
<uml:CollectionItem.item>
<uml:IntegerLiteralExp xmi.idref = 'integerRef3'/>
</uml:CollectionItem.item>
</uml:CollectionItem>

<uml:CollectionItem xmi.id = 'ci2'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'integerTypeRef'/>
</uml2.Kernel.TypedElement.type>
<uml:CollectionLiteralPart.collectionLiteralExp>
<uml:CollectionLiteralExp xmi.idref = 'clel'/>
</uml:CollectionLiteralPart.collectionLiteralExp>
<uml:CollectionItem.item>
<uml:IntegerLiteralExp xmi.idref = 'integerRef4'/>
</uml:CollectionItem.item>
</uml:CollectionItem>

Definition 15.11: XMI representation for a Bag collection literal

OCL| Expressions
2.8 | Processor

The OCL 2.0 Parser | 15

At previous XMI we can observe the direct representation of the OCL metamodel

instances showed before for our Bag literal example.

15.4.3.6 Tuple literals

A tuple literal expression provides the possibility of use a multi-attribute structure
inside the OCL expressions. In the next example of instantiation we will use a tuple

literal expression like this: Tuple{a:Integer=9, b:String='James’}

tle1 :
TupleLiteralExp
part | part
tip1: tip2 :
TupleLiteralPart TupleLiteralPart
name ="g" name ="b"
value value
integerRef1 : stringRef1 :
IntegerLiteralExp StringLiteralExp
integerSymbol =9 stringSymbol = "James"
p1i: Property p2 : Property
attribute name = "a" name = "b" attribute

Figure 15.13: Instantiation of a tuple literal expression

As explained when we described the OCL metamodel, the elements of a
TupleLiteralExp are instances of the TupleLiteralPart metaclass. Furthermore,

such instances store the value of the element in an OclExpression and its definition

Antonio Villegas 349 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

in an instance of Property. Following these rules, in the previous image we show

the instantiation for the tuple literal expression presented as example.

<uml:TupleLiteralExp xmi.id = 'tlel'>
<uml2.Kernel.TypedElement.type>
<uml:TupleType xmi.idref = 'tupleTypeRef'/>
</uml2.Kernel.TypedElement.type>
<uml:TuplelLiteralExp.part>

<uml:TupleLiteralPart xmi.idref = 'tlpl'/>
<uml:TupleLiteralPart xmi.idref = 'tlp2'/>
</uml:TuplelLiteralExp.part>
</uml:TuplelLiteralExp>
<uml:TupleLiteralPart xmi.id = 'tlp2' name = 'b'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'stringTypeRef'/>

</uml2.Kernel.TypedElement.type>
<uml:TuplelLiteralPart.tupleLiteralExp>
<uml:TuplelLiteralExp xmi.idref = 'tlel'/>
</uml:TuplelLiteralPart.tupleLiteralExp>
<uml:TuplelLiteralPart.value>
<uml:StringLiteralExp xmi.idref
</uml:TuplelLiteralPart.value>
<uml:TuplelLiteralPart.attribute>

'stringRefl'/>

<uml2.Kernel.Property xmi.idref = 'p2'/>
</uml:TuplelLiteralPart.attribute>
</uml:TuplelLiteralPart>
<uml:TupleLiteralPart xmi.id = 'tlpl' name = 'a'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'integerTypeRef'/>

</uml2.Kernel.TypedElement.type>
<uml:TuplelLiteralPart.tupleLiteralExp>

<uml:TuplelLiteralExp xmi.idref = 'tlel'/>
</uml:TuplelLiteralPart.tupleLiteralExp>
<uml:TuplelLiteralPart.value>

<uml:IntegerLiteralExp xmi.idref = 'integerRefl'/>
</uml:TuplelLiteralPart.value>
<uml:TuplelLiteralPart.attribute>

<uml2.Kernel.Property xmi.idref = 'pl'/>
</uml:TuplelLiteralPart.attribute>

</uml:TupleLiteralPart>

Definition 15.12: XMI representation for a tuple literal

Antonio Villegas Languages and Systems Department

350

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

The XMI conversion is very similar than the instantiation of the diagram. It is
important to understant how the elements are linked here using identifiers as

reference.

15.4.4 LET EXPRESSIONS

Let expressions allow us to define variables that will be used inside OCL
expressions in order to improve the readability of them. At next image we show
the instantiation for a let expression with only one variable defined. Remember
that it is possible to specify more than one variable in a let expression. For this case
the instantiation changes a little due to each variable is placed in a LetExp and the
set of LetExps are chained through the in relation. Therefore if we have two
variables declared in the same let expression, first one is placed in a LetExp whose

in expression is another LetExp that owns the second variable.

le1 : LetExp in | o1 : OclExpression ‘
variable
. Ve Vasiable initExpression| o2 OclExpression ‘
name = "g"

Figure 15.14: Instantiation for a let expression

It is important to note that at this image we have used OclExpression like instances
but it is a intentioned error. In real let expressions the in expression and the
initExpression of a variable are both concrete expressions. For example, in the XMI
representation is possible to see that the in expression is an OperationCallExp and

the initExpression of the declared variable is an IntegerLiteral Exp.

Antonio Villegas 351 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

<uml:LetExp xmi.id = 'lel' name = 'Let a'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'inTypeRef'/>

</uml2.Kernel.TypedElement.type>
<uml:LetExp.in>
<uml:OperationCallExp xmi.idref
</uml:LetExp.in>
<uml:LetExp.variable>
<uml:Variable xmi.idref = 'v1'/>
</uml:LetExp.variable>
</uml:LetExp>

'inRef'/>

<uml:Variable xmi.id = 'vl' name = 'a'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'integerRef'/>
</uml2.Kernel.TypedElement.type>
<uml:Variable.initExpression>
<uml:IntegerLiteralExp xmi.idref = 'ileRef'/>
</uml:Variable.initExpression>
<uml:Variable.letExp>
<uml:LetExp xmi.idref = 'lel'/>
</uml:Variable.letExp>
</uml:Variable>

Definition 15.13: XMI representation for a let expression

15.4.5 IF EXPRESSIONS

The if expressions are useful constructions that provides a simple instructions flow
control. It is important to remember here the notation for these expressions, so in

the next example we can observe it.

If expression:

if <boolean condition>
then <expression>
else <expression>

endif

Example 15.12: Notation for if expressions

Antonio Villegas Languages and Systems Department

352

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

Therefore the instantiation of an if expression consists in an instance of IfExp
metaclass linked with the three OclExpressions that represents the condition, the

then branch and the else branch.

ie1: fExp |

condition

cond : OclExpression

thenExpression

L then : OclExpression

elseExpression
else : OclExpression

Figure 15.15: Instantiation for an if expression

Finally we can observe in the XMI representation below that each of these three
OclExpression instances is an instance of a metaclass that is subclass of

OclExpression.

<uml:IfExp xmi.id = 'iel'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'datatypeRef'/>
</uml2.Kernel.TypedElement.type>
<uml:IfExp.condition>
<uml:BooleanLiteralExp xmi.idref
</uml:IfExp.condition>
<uml:IfExp.thenExpression>
<uml:BooleanLiteralExp xmi.idref
</uml:IfExp.thenExpression>
<uml:IfExp.elseExpression>
<uml:BooleanLiteralExp xmi.idref
</uml:IfExp.elseExpression>
</uml:IfExp>

'condRef ' />

'thenRef' />

'elseRef'/>

Definition 15.14: XMI representation for an if expression

Antonio Villegas Languages and Systems Department

353

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

The OCL 2.0 Parser | 15

15.4.6 ITERATOR EXPRESSIONS

Iterators, like forAll, select, exists, one, are constructions that provide the
functionality of process all the elements of a source collection. Remember that all

of them must be used preceded by the arrow -> operator as was explained earlier.

‘ ie1 : IteratorEx terator | v4 : Variable
name = "exists”

source body
source : OclExpression body : OclExpression

Figure 15.16: Instantiation for an iterator expression

For an iterator expression we can use more than one iterator variable. In such case
all iterator variables would appear in both the previous image and the next XMI

representation.

<uml:IteratorExp xmi.id = 'iel' name = 'exists'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref
</uml2.Kernel.TypedElement.type>
<uml:CallExp.source>
<uml:OperationCallExp xmi.idref
</uml:CallExp.source>

'booleanRef' />

'allInstancesRef'/>

<uml :LoopExp.body>

<uml:OperationCallExp xmi.idref = 'oceRef'/>
</uml :LoopExp.body>
<uml:LoopExp.iterator>

<uml:Variable xmi.idref = 'vl'/>

</uml :LoopExp.iterator>
</uml:IteratorExp>

Definition 15.15: XMI representation for an iterator expression

Antonio Villegas 354 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.4.7 ITERATE EXPRESSIONS

[terate expressions are a general construction similar than iterator expressions.
They can be used in the same places than iterators and also can have more than

one iterator variable.

ie1 : IterateExp iterator v1 : Variable 1
result‘
v2 : Variable
l
source body

{source: OclExpression ' \ body : OclExpression '

Figure 15.17: Instantiation for an iterate expression

The main difference between iterator instantiation is that iterate constructions
have a result variable that specifies the result of the expression. Therefore, we

must store it.

<uml:IterateExp xmi.id = 'iexpl' name = 'iterate'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'typeRef'/>
</uml2.Kernel.TypedElement.type>
<uml:CallExp.source>
<uml:PropertyCallExp xmi.idref = 'pceRef'/>
</uml:CallExp.source>
<uml : LoopExp.body>
<uml:OperationCallExp xmi.idref = 'oceRef'/>
</uml : LoopExp.body>
<uml:LoopExp.iterator>
<uml:Variable xmi.idref = 'v1'/>
</uml :LoopExp.iterator>
<uml:IterateExp.result>
<uml:Variable xmi.idref = 'v2'/>

</uml:IterateExp.result>
</uml:IterateExp>

Definition 15.16: XMI representation for an iterate expression

Languages and Systems Department

Antonio Villegas 355
Barcelona School of Informatics Technical University of Catalonia

. _
gcﬂl P?gi:frns The OCL 2.0 Parser | 15

15.4.8 PROPERTY CALL EXPRESSIONS

Property call expressions allow us to access to the attributes or association ends
from a source class. To use them we must follow the dot notation as in the next

example.

Access an attribute of class:

source.attributeName

Access an association end from a class:
source.associationEndName

source.classNameInLowerCase

a class name in lower case can be used to access association ends without
rolename

Example 15.13: Notation for property call expressions

To instantiate a property call expression we have to create a PropertyCallExp
instance and then link it to the property instance to access and to the previous

source expression like in the next image.

pcei : PropertyCallExp ‘

referredProperty source
p : Property ’ source : OclExpression

Figure 15.18: Instantiation for a property call expression

Once we have done this instantiation, the representation of it into the XMI

language owned by the Eina GMC environment is shown in the next piece of code.

Antonio Villegas 356 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser

15

<uml:PropertyCallExp xmi.id = 'pcel'>
<uml2.Kernel.TypedElement.type>
<uml2.Kernel.DataType xmi.idref = 'typeRef'/>
</uml2.Kernel.TypedElement.type>
<uml:CallExp.source>
<uml:VariableExp xmi.idref = 'vel'/>
</uml:CallExp.source>
<uml:PropertyCallExp.referredProperty>
<uml2.Kernel.Property xmi.idref = 'pl'/>
</uml:PropertyCallExp.referredProperty>
</uml:PropertyCallExp>

Definition 15.17: XMI representation for a property call expression

15.4.9 ASSOCIATION CLASS CALL EXPRESSIONS

Similarly than property call expressions, association class call expressions allow us

to access an association class from one of the members of such association. It is

necessary to use the same dot notation as before.

Access an association class from a member of such association:

source.associationClassNameInLowerCase

Example 15.14: Notation for association class call expressions

In this case, we have to create an instance of AssociationClassCallExp to represent

the association class call expression processed by our processor.

accei :
AssociationClassCallExp

source
oc : OclExpression

referredAssociationClass

' ac : AssociationClass ‘

Figure 15.19: Instantiation for an association class call expression

Antonio Villegas Languages and Systems Department

357

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

As we can observe in the previous image, such AssociationClassCallExp instance is
linked with an AssociationClass and also with a source expression. Therefore the

representation into XMI language is a direct conversion.

<uml:AssociationClassCallExp xmi.id = 'accel'>
<uml2.Kernel.TypedElement.type>
<uml:BagType xmi.idref = 'typeRef'/>

</uml2.Kernel.TypedElement.type>
<uml:CallExp.source>
<uml:PropertyCallExp xmi.idref = 'pce2'/>
</uml:CallExp.source>
<uml:AssociationClassCallExp.referredAssociationClass>
<uml2.AssociationClasses.AssociationClass xmi.idref = 'ac'/>
</uml:AssociationClassCallExp.referredAssociationClass>
</uml:AssociationClassCallExp>

Definition 15.18: XMI representation for an association class call expression

15.4.10 OPERATION CALL EXPRESSIONS

In the OCL 2.0 language it is important to call operations. In the next example we

can see the notation to do this task.

Use a mathematical or logical binary operation:
13 + 25

Use a mathematical or logical unary operation:
not true

Calling an operation of class with return:
source.operationName(list of parameters)
Calling an OCL specific dot operation:
source.operationName(list of parameters)
p.oclAsType (Customer)

Calling an OCL specific arrow operation:
source->operationName(list of parameters)
set{l1,2,3,4}->size()

Example 15.15: Notation for operation call expressions

Antonio Villegas 358 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

In all cases an operation call expressions have a source expression where it is
applied and an operation. If the operation call has parameters, they are stored into

the argument field of OperationCallExp instance.

Furthermore if we are calling an operation with a unary operator, the operand will
be stored as the source of the operator. In addition, when a binary operation is
called (like in 3 + 2), the left operand is stored as source of the OperationCallExp
instance whereas the right operand is stored like a parameter in the argument

field.

| accet : OperationCallExp “ oc: OclExpression ‘
source

argument | arp - OclExpression

referredOperation

' op : Operation ‘

Figure 15.20: Instantiation for an operation call expression

In the previous image we can observe the instantiation of an operation call
expression following the rules explained before, and then the conversion to the

XMI representation for this OperationCallExp instance is shown at next piece of

code.
<uml :OperationCallExp xmi.id = 'ocel'>
<uml2.Kernel.TypedElement.type>
<uml:SetType xmi.idref = 'typeRef'/>

</uml2.Kernel.TypedElement.type>
<uml:CallExp.source>
<uml:VariableExp xmi.idref = 'vel'/>
</uml:CallExp.source>
<uml:OperationCallExp.argument>
<uml:IntegerLiteralExp xmi.idref = 'ileRef'/>

Antonio Villegas 359 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

</uml:OperationCallExp.argument>
<uml:OperationCallExp.referredOperation>
<uml2.Kernel.Operation xmi.idref = 'opl'/>
</uml:OperationCallExp.referredOperation>
</uml:OperationCallExp>

<uml2.Kernel.Operation xmi.id = 'opl' name = 'including'
isLeaf = 'false' isStatic = 'false' upper = '0' isUnique = 'false'
isQuery = 'false' lower = '0' isOrdered = 'false'>
<uml2.Kernel.Operation.referringExp>
<uml:OperationCallExp xmi.idref = ‘'ocel'/>

</uml2.Kernel.Operation.referringExp>
</uml2.Kernel.Operation>

Definition 15.19: XMI representation for an operation call expression

15.5 INVERSE CONVERSION

At previous section we have studied the conversion process of our processor in
order to transform textual OCL 2.0 constraints into instances of the OCL 2.0
metamodel. Now, we will introduce the inverse conversion that returns such

metamodel instances into their original textual constraints.

To do this task we decided to implement another visitor class extending
ReflectiveVisitor explained before. With this architecture we follow a divide and
conquer strategy that simplifies the processing of the metamodel instances until

become textual constraints.

A new package is introduced here inside the Eina GMC project called converterOCL,
which contains the ConverterOCL.java file representing the inverse converter

component.

To know how it works we will adapt the Example 15.1 related to the Type Check
component with the own methods of this new component. We can see it in the next

example.

Antonio Villegas 360 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Ex

There exists a general method to be called for every element to process:

public String convert (Element e)

Such method can be called for an IfExp element:
// Imagine that conv is an instance of ConverterOCL class
// and ifexp an instance of IfExp metaclass

conv.convert(ifexp);

This invocation implies that Reflective Visitor searches and then has to
find a method with the next signature:

public String conversion(IfExp exp)

There exists a conversion method for every element of the metamodel.
This method is called for the ifexp instance of IfExp metaclass. Inside this
method we could do as follows:

OclExpression cond = exp.getCondition();
OclExpression thenBranch = exp.getThenExpression();

OclExpression elseBranch = exp.getElseExpression();

String condTxT convert(cond);

String thenTxT = convert(thenBranch);

String elseTxT convert (elseBranch);

Using this kind of visitor we only have to obtain the attributes of IfExp
metaclass and then call the convert method of each one to obtain their
textual representation. This recursive strategy simplifies the inverse
conversion process.

On this example, last step consists in to return the textual representation
of the whole IfExp.

return “if “ + condTxT + “ then “ + thenTxT +

" else “ + elseTxXT + ” endif”;

ample 15.16: Usage of the TypeCheck class as a subclass of the ReflectiveVisitor

Therefore to change the behaviour of a concrete conversion we only have to

ch

ange the conversion method of the element in question. This strategy provides

an easier changeability to our processor.

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

15.6 DELETE CONSTRAINTS

Inside package facadeOCL we can find the DeleteVisitor.java file that contains a
new ReflectiveVisitor implementation. This component provides the possibility of
delete a constraint previously processed and now instantiated into the OCL 2.0
metamodel of the metadata repository owned by the Eina GMC conceptual

modeling environment.

As we have seen when both TypeCheck and ReflectiveVisitor were explained, this
kind of visitor uses the Java Reflective API in order to discover the class type of the

elements to process.

Therefore, to explain the behaviour of the DeleteVisitor we will adapt the Example

15.1 with the own methods of this new component.

There exists a general method to be called for every element to process:

public boolean remove (Element e)

Such method can be called for an IfExp element:
// imagine that dv is an instance of DeleteVisitor class
// and ifexp an instance of IfExp metaclass

dv.remove(ifexp);

This invocation implies that Reflective Visitor searches and then has to
find a method with the next signature:

public boolean delete(IfExp exp)

This method is called for the ifexp instance of IfExp metaclass. Inside this
method we could do as follows:

OclExpression cond = exp.getCondition();
OclExpression thenBranch = exp.getThenExpression();

OclExpression elseBranch = exp.getElseExpression();

boolean condDeleted remove (cond) ;

boolean thenDeleted = remove(thenBranch);

Antonio Villegas 362 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

0CL
2.0

boolean elseDeleted = remove(elseBranch);
if (condDeleted && thenDeleted && elseDeleted) {

exp.refDelete();
return true

}

Using this kind of visitor we only have to obtain the attributes of IfExp
metaclass and then call the remove method for each one to delete them.
This recursive strategy simplifies the erasure process.

On this example, last step consists on to delete the IfExp instance from the
metadata repository. To do this we use the refDelete operation owned by
each element of the Eina GMC’s implementation for the UML and OCL

metamodels.

Example 15.17: Usage of the DeleteVisitor class as a subclass of the ReflectiveVisitor

Finally, there exists another way of delete a constraint. Similarly than we did with
the usage of the processor to parse constraints, we have provided an additional
facade method to simplify the usage of the DeleteVisitor. Such method is placed
inside the ParserFacade.java file of the facadeOCL package.

To delete a constraint using this method it is mandatory to know the name of the
constraint. It is important to remember here that every kind of constraint has the
possibility to be named using a name inside the structure of its context. At next
example we will show some examples of named constraints and then the method

to delete them.

A list of constraints previously parsed
context Employee
inv cl : salary > 1000
inv c2 : age > 0
context Employee::hasDescendants:Boolean
derive c3 : self.descendants->size() > 0
context Department::getEmployeeNames():Set(String)

post c4: result = self.employee.name->asSet()

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

context Person::address:String

init: ‘no address’

Then, to delete these constraints we must execute:

// Suppose that p is the actual Project instance with the
// XMI model containing the previous constraints
ParserFacade pf = new ParserFacade();
pf.deleteOclExpression(“cl”,p);
pf.deleteOclExpression(“c2”,p);
pf.deleteOclExpression(“c3”,p);
pf.deleteOclExpression(“c4”,p);

It is important to note that last constraint is not possible to delete with
this method because it does not contains a name to be identified.

Example 15.18: Usage of DeleteVisitor with the deleteOclExpression method owned by the
ParserFacade class

We recommend using a name in order to identify each constraint and then use the
facade method instead of directly the method of DeleteVisitor class. It is also
important to note that we are only able to delete complete constraints and not only

single elements or expressions. It is due to avoid inconsistent constraints.

15.7 XMICONVERTER AND OUR OCL PROCESSOR

When we introduced the Eina GMC conceptual modeling environment and its
complmentary tools we showed the XMIConverter as a tool that converts XMI files
from a format to another one. In our case we describe how to use it to convert a

Poseidon for UML XMI file into a file to be used by Eina GMC.

To provide a graphical way for modelling we said that we could construct a
conceptual schema directly in Poseidon for UML and then convert it to the Eina
GMC format. In order to help users to work with our OCL processor we have

extended the XMIConverter with a new feature that may be explained.

Antonio Villegas 364 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

Poseidon for UML provides a special section inside the specification menu of each
UML class to write constraints over such class. But we checked that such
information is not stored inside the XMI file when we export our diagrams as
explained in section 5.5.1 of the chapter 5. Furthermore, Poseidon does not verify

wether such constraints are well-formed expressions.

Therefore, we have have included a new conversion inside the XMIConverter that
deals with comment elements of Poseidon diagrams. Now, if we want to write an
OCL 2.0 constraint directly in a diagram of Poseidon we only have to write it inside
a comment of such diagram. XMIConverter searches for those comments and gets

their contents in order to pass them to our processor of OCL 2.0 expressions.

So we have made a link between the Poseidon, the XMIConverter and our tool to
parse OCL constraints directly inside the conversion process of the XMIConverter

from Poseidon format to EinaGMC format.

Person

-name:String context Person inv: Person.allinstances{)->isUnique{name)

-age:lnteger

Figure 15.21: Usage of constraints inside Poseidon to be checked by our OCL processor

In the previous figure we can see how to use a comment with a constraint. It is
important to note that if we decide to write our constraints directly in the
Poseidon diagram, errors found during the checking process made by our tool will
be thrown during the conversion process of the XMIConverter. Therefore, we will

have to solve such errors directly inside the comments.

Antonio Villegas 365 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

The OCL 2.0 Parser | 15

Antonio Villegas Languages and Systems Department

366

e
Barcelona School of Informatics Technical University of Catalonia

CASE STUDY: DBLP

OCL| Expressions
2.8 Processor

Case Study: DBLP | 16

16 CASE STUDY: DBLP

16.1 INTRODUCTION

The aim of this chapter is to show the instantiation result of the conversion
process made by our processor for OCL 2.0 expressions. We will select a little set of
constraints written in a well-known case study made inside the GMC Research

Group [GMCw].

Our tool will process such constraints and then we will show a diagram with the
resultant instances of this process. If any problem is found during the conversion it
will be explained here in order to help future users of the processor how to work

with it.

Finally, it is important to emphasize that this chapter will not be a correctness

checker for all constraints written in the case study that we will present here.

16.2 THE DBLP SYSTEM

The case study we will use in this chapter is the DBLP Case Study written by Elena
Planas and Antoni Olivé [PO06]. It contains parts of the conceptual schema of the

DBLP system, written in UML.

DBLP [DBLPw], also known as Digital Bibliography & Library Project, is a
computer science website hosted at Universitat Trier, in Germany. It was originally
a database and logic programming bibliography site, and has existed at least since
the 1980s. DBLP listed more than one million articles on computer science in

March 2008.

Antonio Villegas Languages and Systems Department

368

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor

ocL
2.0

Case Study: DBLP | 16

First of all we will show the conceptual schema presented in the case study

introduced before. Such schema deals with persons and their publications, which

may be edited books or authored publications such as authored books, book

chapters and journ

al papers.

Person
. w
+ editor -hame:String 1.
-homePage:String I :
: + author PublicationDetails
IsEditoroOf 1. -/numPublications:Integer
+effect():void
1.*
fPublishes
1”*
Book Publication
IsAuthorOf
-humPages:Integer -title:String
-homePage:String -Jyear:String
-publisher:String -Jedition:String
-publicationYear:String
-isbn:String o
Fay
w
EditedBook 0.1 AuthoredPublication
Fay
0.1 0.1
w 1”*
AuthoredBook BookChapter JournalPaper
BookSection
- 0.1 " -iniPage:Integer -iniPage:Integer
—tntle.St.rmg 1. -endPage:Integer -endPage:Integer
-order:integer -conferencePaper:Boolean -conferencePaper:Boolean
. 1.
1.* 1.*
0.1
- BookSeries
BookSerieslssue | «
- -id:String
-humber:integer 1' -publisher:string
0.1
0.1 - Journallssue
JournalSection
— w f -number:integer
—mle.St.rmg & -yearString
0.1 -order:integer 1 |-month:String
-humPages:Integer
ConferenceEdition 0.1
-title:String 0.1 ¥
-year:String
0.1 |-city:String
-country:String e
-homePage:String ——#§» ConferenceSeries Journal JournalVolume
-acronym:String -title:String w |-volume:lnteger
-hame:String -issn:String

Antonio Villegas

Figure 16.1: DBLP model used in the case study

369

Languages and Systems Department

Barcelona School of Infor

matics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

Case Study: DBLP | 16

To be honest we must affirm that this model has some changes in respect with the
original used in the case study. We have changed the Year type of year attributes
for the String data type because our processor does not support user-defined data

types by now.

Furthermore, we have changed aggregate associations to normal associations
because the converter tool that converts XMI models from Poseidon format to Eina

GMC format does not support this kind of associations.

After that, we export this conceptual model written in Poseidon for UML into the
XMI format. We have followed the steps shown at chapter 5, when we explained

the Eina GMC environment.

Once we have the model converted into the Eina GMC format we can start the
process of conversion for our selected constraints. Such constraints are written

inside the document of the case study.

16.3 CONVERSION EXAMPLES

In this section we will introduce a minimal set of constraints of the DBLP case
study document [PO06] with their instantiation diagrams of the instances created

by our processor of OCL 2.0 expressions.

16.3.1 IDENTIFICATION CONSTRAINTS

First constraint to process is a simple identification constraint that indicates wich

attribute is the primary key, using database language, of the contextual class.

context Person inv nameIsKey: -- First constraint
Person.allInstances()->isUnique(name)

Example 16.1: First constraint to check

Antonio Villegas Languages and Systems Department

370

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor Case Study: DBLP | 16

In this case we select this constraint that indicates each Person of the system must

have a different name.

e_lemgnt'l!pe_) Person pe _ __ __ __ __ __ ¥i:Variable
| - onstrainedElement ~ contextVariable
| | ~type :
I |
| c : Constraint specification | o : ExpressioninOcl
| name = "namelsKey" symbol = "inv"
I
I bodyExpression
| | dt : DataType by ie : IteratorExp
| | name = "Boolean" | name = "isUnique”
I
| | dt2 : DataType
v2 : Variable - "
| type
| _body
| oce1 : OperationCallExp]EOUfce : PropertyCallExp |
! fi O
type referredOperation
| referred ration referredPrbperty
- H H
st : SetType op1: Operation Rcos
name = "allinstances name = "name"
source
vel : vVariableexp
vei : VariableEx B LYPE) e
name = "Person”
type= source |
- Jype ve2 : VariableEx
- typel — — | ¥ec @ variableexp
~

referredVariable _ |
v3 : Variable | referredLariable

name = "contextual_classifier" — — .. __|wva:Vvariable

Figure 16.2: Complete instantiation for constraint "namelsKey"

The output instantiation that results of the parsing process made by our processor

of OCL expressions is shown at this image.

Antonio Villegas Languages and Systems Department

371

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Case Study: DBLP | 16

The main expression of the constraint is the isUnique iterator expression that has
the application of the alllnstances operation to the Person class as source.
Furthermore, the body of this iterator is a property call expression that references

the name Property of such class.

As we can see, even a simple constraint hides a complexity process of instantiation

that must be done properly.

16.3.2 INTEGRITY CONSTRAINTS

The second constraint selected is a common integrity constraint that allows
modellers to set an invariant to their models in order to specify a situation that

always must be true.

-- Second constraint:
-- The pages of the papers (JournalPaper) published in a journal
-- issue (JournallIssue) do not overlap among them.
context JournalIssue inv correctPagination:
self.journalPaper->forAll(pl,p2|pl<>p2 implies
pl.iniPage > p2.endPage or p2.iniPage > pl.endPage)

Example 16.2: Second constraint to check

Once we have processed such constraint we do not find any error because such
constraint is very common. It contains a main forAll iterator that controls pages of

papers.

We can use this structure of forAll iterator with two iterator variables that are
compared in order to verify a constraint over attributes of these variables. In this

case we control that pages of papers do not overlap among them.

To show the instantiation of this constraint we will use a hierarchical structure
instead of an instance diagram in order to improve the understandability of the

output XMI thrown by our processor. We have implemented a new Java class called

Antonio Villegas Languages and Systems Department

372

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Case Study: DBLP | 16

HumanOutputGenerator that generates our desired hierarchical structure of
constraints placed in a XMI file. The output for the instances created for this

second constraint is shown in the next tree.

Constraint correctPagination
ConstrainedElement
Class Journallssue
Specification
ExpressionInOcl inv
ContextVariable
Variable
Type
Class Journallssue
BodyExpression
forall

Variable pl
Type
Class JournalPaper
Variable p2
Type
Class JournalPaper

PropertyCallExp
ReferredProperty
Property
Type
Class JournalPaper
Source
VariableExp
ReferredVariable
Variable self
Type
Class Journallssue
Type
Class JournallIssue
Type
Class JournalPaper

OperationCallExp
ReferredOperation
Operation or
Argument

Operation >

PropertyCallExp
ReferredProperty
Property endPage
Type
DataType Integer
Source
VariableExp
Referredvariable
Variable pl
Type
Class JournalPaper

Antonio Villegas Languages and Systems Department

373

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Case Study: DBLP | 16

Type
Class JournalPaper
Type
DataType Integer

PropertyCallExp
ReferredProperty
Property iniPage
Type
DataType Integer
Source
VariableExp
Referredvariable
Variable p2
Type
Class JournalPaper
Type
Class JournalPaper
Type
DataType Integer

DataType Boolean
Source
OperationCallExp
ReferredOperation
Operation implies
Argument
OperationCallExp
ReferredOperation
Operation >
Argument
PropertyCallExp
ReferredProperty
Property endPage
Type
DataType Integer
Source
VariableExp
Referredvariable
Variable p2
Type
Class JournalPaper
Type
Class JournalPaper
Type
DataType Integer
Source
PropertyCallExp
ReferredProperty
Property iniPage
Type
DataType Integer
Source
VariableExp
Referredvariable
Variable pl
Type
Class JournalPaper
Type
Class JournalPaper
Type
DataType Integer

Antonio Villegas Languages and Systems Department

374

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Case Study: DBLP | 16

Type
DataType Boolean
Source
OperationCallExp
ReferredOperation
Operation <>
Argument
VariableExp
Referredvariable
Variable p2
Type
Class JournalPaper
Type
Class JournalPaper
Source
VariableExp
Referredvariable
Variable pl
Type
Class JournalPaper
Type
Class JournalPaper
Type
DataType Boolean
Type
DataType Boolean
Type
DataType Boolean

DataType Boolean

Example 16.3: Hierachical output for the constraint found in the Example 16.2

We have marked with the same color the same instance and its links in order to

improve the understandability of this output.

16.3.3 DERIVATION RULES

Another constraint of the selected set is a derivation rule for a derived attribute of
the previous model. In this case this rule uses an if expression to select between

two alternatives depending on a condition.

Once we processed this constraint we found a problem with the publicationYear

attribute of the EditedBook class due to the multiple inheritance of such class.

We use the XMIConverter tool of the Eina GMC environment in order to convert a

XMI model in Poseidon format to the Eina GMC format. Such tool has a little

Antonio Villegas 375 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Case Study: DBLP | 16

problem with models that contains examples of multiple inheritance because only
converts one of the superclass links. In our case, our DBLP model contains the
EditedBook class as subclass of both Book and Publication classes. But the
XMIConverter only stores inside EditedBook class a reference to its superclass

Publication but not Book.

-- The year of BookChapter publication is the publication year of
-- the book or journal issue that publishes it.
context BookChapter::year:String
derive: if self.editedBook->notEmpty ()
then self.editedBook.publicationYear
else self.bookSeriesIssue.publicationYear
endif

Example 16.4: Original third constraint

In the previous constraint we can see the original version of derivation rule and in
the constraint below we can observe the change in the attribute due to the

XMIConverter problem.

-- The year of BookChapter publication is the publication year of
-- the book or journal issue that publishes it.
context BookChapter::year:String
derive: if self.editedBook->notEmpty ()
then self.editedBook.year --This is the change
else self.bookSeriesIssue.publicationYear
endif

Example 16.5: Third constraint with changes

We decided to change the constraint in order to be processed because the XMI is
not correct due to the inheritance problem of the XMIConverter. In particular,
changing the attribute publicationYear for the attribute year, which is inherited
from Publication class, implies that the problem with the multiple inheritance is

avoided although the constraint is not semantically equal to the original.

Antonio Villegas 376 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Case Study: DBLP | 16

Nevertheless, our aim here is to present how the output of the process is made

instead of the semantics of the constraints selected. In the next output of the

HumanOutputGenerator tool we can observe the instantiation created for the

previous constraint.

Constraint
ConstrainedElement
Property year
DataType String
Specification
ExpressionInOcl derive
ContextVariable
Variable
Type
Class BookChapter
BodyExpression
IfExp
Condition
OperationCallExp
ReferredOperation
Operation notEmpty
Source
PropertyCallExp
ReferredProperty
Property
Type
Class EditedBook
Source
VariableExp
Referredvariable
Variable self
Type
Class BookChapter
Type
Class BookChapter
Type
Class EditedBook
Type
DataType Boolean
ThenExpression
PropertyCallExp
ReferredProperty
Property year
Type
DataType String
Source
PropertyCallExp
ReferredProperty
Property
Type
Class EditedBook
Source
VariableExp
Referredvariable
Variable self
Type
Class BookChapter

Antonio Villegas

377

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

Case Study: DBLP | 16

Type
Class BookChapter
Type
Class EditedBook
Type
DataType String
ElseExpression
PropertyCallExp
ReferredProperty
Property publicationYear
Type
DataType String
Source
PropertyCallExp
ReferredProperty
Property
Type
Class BookSeriesIssue
Source
VariableExp
Referredvariable
Variable self
Type
Class BookChapter
Type
Class BookChapter
Type
Class BookSeriesIssue
Type
DataType String
Type
DataType String

Example 16.6: Hierarchical output for the constraint found in the Example 16.5

16.3.4 QUERY SPECIFICATION

Finally we introduced in the model of the DBLP system an extra class named
PublicationDetails that given a person provides the information of the volume

issues and the papers published in each of them.

This information is given through a query method called effect that is part of the
behavioural schema of the DBLP.

At next description is possible to see the structure of the PublicationDetails class
including the answer attribute that will contain the information returned by the

effect method.

Antonio Villegas Languages and Systems Department

378

Barcelona School of Informatics Technical University of Catalonia

. :
gCaL Ptsi:frns Case Study: DBLP

16

Class: PublicationDetails
Attributes:
answer: Set (TupleType
(year: Year,
yearPublications:

Set (TupleType
authorsOrEditors: Set(String),
title: String,
edition: String)))

Operations:
effect()

context PublicationDetails::effect()
post:
answer =
self.person.publication.year -> asSet() -> collect(y |
Tuple
{year =y,
yearPublications =
self.person.publication -> select (p | p.year = y)
-> collect (p2 |
Tuple
{authorsOrEditors = p2.person.name,
title = p2.title,
edition = p2.edition})}) -> sortedBy(year)

Example 16.7: Specification for PublicationDetails class

Furthermore, we can also observe a postcondition for the effect method explaining

how to obtain the information required.

Our first step was to define the answer attribute inside the PublicationDetails class

because we cannot do it directly through Poseidon for UML.

context PublicationDetails
def answerAttribute:
answer:Set (
TupleType(year:String,
yearPublications:Set(

TupleType (
authorsOrEditors:Set(String),
title:String,
edition:String)))) = Set{}

Example 16.8: Fourth constraint to check

Antonio Villegas Languages and Systems Department

379

Barcelona School of Informatics Technical University of Catalonia

. _
gCaL P?EEE:?S Case Study: DBLP | 16

In this case we decided to use a definition constraint in which we define such

attribute including its type and the value of it as an empty set.

The output generated as instances tree is the hierarchychal structure shown here.

Constraint answerAttribute
ConstrainedElement
Property answer
SetType
ElementType
TupleType
OwnedAttribute
Property year
Type
DataType String
Property yearPublications
SetType
ElementType
TupleType
OwnedAttribute
Property authorsOrEditors
Type
SetType
ElementType
DataType String
Property title
Type
DataType String
Property edition
Type
DataType String
Specification
ExpressionInOcl def
ContextVariable
Variable
Type
Class PublicationDetails
BodyExpression
CollectionLiteralExp Set
Type
SetType

Example 16.9: Hierarchical structure for constraint found in the Example 16.8

Once we processed the postcondition we found some problems related to the
collection kinds. It is needed to include to asSet() operations after the two collect

iterators because the result of them is a Bag instead of a Set collection.

Antonio Villegas 380 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Case Study: DBLP | 16

Furthermore, in the original constraint appears a sortedBy iterator to indicate that
the resultant Tuples includes in the output Set are ordered by the year member of

these tuples.

It is an error because as specified in the OCL 2.0 specification document [Obj06],
the resultant type of the body of a sortedBy iterator must have defined the “<”
comparison operator. In our case, year is a String and it has no such operator

defined.

It is important to note here that we previously change the type of year attribute
from Year to String because our processor does not support custom DataTypes,

therefore it is possible to consider it as a correct usage in the original constraint.

context PublicationDetails::effect():Boolean
post pubdetails:
answer = self.person.publication.year->asSet()

->collect(y
Tuple{year = y,
yearPublications =
self.person.publication->select(p|p.year=y)->
collect(p2|
Tuple

{authorsOrEditors = p2.person.name->asSet(),
title=p2.title,
edition=p2.edition})->asSet ()}

)->asSet() --we can use ->asSequence()->asSet() instead

Example 16.10: Fifth constraint to check

In our case we decided to delete this operation from the constraint or to use a
previous asSequence operation before the last asSet needed for the first collect
iterator due to the asSequence specifies that the result will be ordered although it
does not indicates how the sorting is done. The final version of the constraint is

shown at previous OCL code.

Antonio Villegas 381 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

BEH Expressions Case Study: DBLP | 16

2.8 Processor

Finally, it is important to note that the output instance tree for this constraint is
too large, so we preferred to do not show it here. The models and selected
constraints can be found at my website [Villw] where are free to download and

test with the HumanOutputGenerator of our processor of OCL 2.0 expressions.

Antonio Villegas 382 Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

FUTURE WORK

OCL| Expressions
2.8 Processor

Future Work | 17

17 FUTURE WORK

17.1 WAYS TO IMPROVE THE PARSER

Once we have exposed how is made our processor of OCL 2.0 expressions and its
features, it is the moment of explain some possible extensions or changes to apply

this tool in order to improve it.

The Parser Subsystem of the Dresden OCLZ2 Toolkit has some limitations and
recognised bugs. For example, there are problems when navigating from an
associative class to their association ends, and we have to remember that such tool

only supports UML in its version 1.5.

In our processor we are fixed most of these problems and we have adapted it to
the last version of the UML. Nevertheless, our tool is not perfect and has some
problems that were introduced in previous examples. Our aim here is to show a

general view of these problems and possible solutions for them.

17.1.1 COMPLETE SOME OCL CONSTRUCTIONS

Our tool supports the OCL language in its version 2.0. We have taken care to
construct a processor that allows all possible OCL constructions to make

constraints, but finally we know that some constructions are not supported.

Principally, we decided to avoid support message expressions, i.e., constructions
that indicates the execution of a method in some part of an expression denoted
with # and *” tokens. It was a time problem because our planification was changed

due to external problems and we decided to do not support it. It is not a big

Antonio Villegas 384 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Future Work | 17

problem because such constructions are less important than others that are
supported by our tool. To support message expressions was not a main objective of

our development compared with other parts of the OCL language.

Other constructions not supported are the named-self constructions. It is a low
documented construction that allows defining a context construction where the
contextual classifier is named impliying that variable self is substituted by another

variable with the previous name. We can see a little example at next constraint.

context p:Person inv: p.age > 0 instead of

context Person inv: self.age > 0

Example 17.1: Named self context construction

To solve these problems should not be difficult because we only should to change
our grammar, generate the framework through SableCC-Ext and then complete the

methods that create the instances of these constructions.

17.1.2 TYPE CONFORMANCE EXTENDED

As explained earlier, the type checking process of our processor has a lack related
to the support of user data types. In this first version of our processor we only
support the data types specified in the OCL 2.0 specification document, i.e., Integer,
Real, String and Boolean data types.

It is possible that users want to create its owned data types, like Date or Hour, but
by now we cannot assure that our processor works properly with them. To solve it
there are different alternatives. One of them could be to add an extra case in the
type checker that would allow work with such types with only basic logical and

arithmetic operations like +, -, *, >, <, = or<>.

Antonio Villegas Languages and Systems Department

385

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Future Work | 17

This implementation has the problem that it is possible to have data types that are
not allowed to use with some of these operations, so the processor could have

problems with them.

The other solution is to define one operation for each data type. For example, we
could have two operations to do multiplications, one for Integers and one for Reals,
and if some other user data type need the * operator, they should create a new
operation whose parameters would be instances of such types. This solution

implies to have repeated operations impliying an increased size of XMI files.

By now, the type checker uses the name of the operation to verify if its operands
are correct. The new implementation should check its operands and then verify if
the operation name matches with an existing operation that is allowed with the
current types of the operands. To support it, we should change a big part of the

code of our type checker.

Finally, we have to indicate that the solution of this problem has to be decided by
both the users of our processor, and the designers and programmers of it. Once a
decision would be taken, we will implement its changes in order to support user

data types.

17.1.3 OCL INTERPRETATION

One of the most useful features for a compiler of OCL expressions is to interprete
expressions. As we seen when we explained USE [USEw] and MOVA tool [MOVw],
it is possible to execute or interprete OCL expressions in order to obtain the result

of their application.

To do this, we only have to implement a new visitor class that traverse the
instances tree result of the parsing process. Such class should be similar than the

classes that we use to delete constraints or to convert them into another format of

Antonio Villegas Languages and Systems Department

386

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Future Work | 17

representation. Therefore, we need a second sweep that works with the instances
of a conceptual schema and returns the correct result of the application of OCL
constraints previously checked. A possibility could be to study the interpretation

process done by USE and to adapt it to our processor.

This feature adds more complexity to the implementation process although it will
be well appreciated by users of our tool. Nevertheless, we cannot forget that now

this feature is secondary in our planification.

17.1.4 A FULL ENVIRONMENT

We have done improvements in the usability of our processor including simple
facade operations that allow us to call our tool directly with a high level of
abstraction. Furthermore, we also have adapted the XMIConverter to check
constraints placed inside comments of the diagrams made in CASE tools (in our

case, Poseidon for UML).

Although our work has been hard in order to improve this discipline, we think that
to create a full environment in which users cannot have to write program code to

use our tools should be a mandatory future task.

Since Eina GMC tool and its components are growing up, to have a main graphical
environment in which construct conceptual schemas, create instances, and write
and check OCL constraints would help and animate new users to get in touch and

work with a combination of all these tools.

Antonio Villegas 387 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Future Work | 17

Antonio Villegas Languages and Systems Department

388

e
Barcelona School of Informatics Technical University of Catalonia

PROJECT PLAN

Expressions .
Processor PrOJect Plan | 18

18 PROJECT PLAN

18.1 INTRODUCTION

This project formally began the 31st of January 2008 with its inscription and later
registration into the Barcelona School of Informatics. Nevertheless, it is important
to note that the study phase was started before it, during the spring quadrimester
of 2007, when the first contacts with the director Antoni Olivé occurs and the work

plan is established.

ACTIVITIES FINISHED BEFORE THE INSCRIPTION OF THE PROJECT

Study and knowledge adquisition about metamodeling

Study about existing OCL expressions processors

Decision about which processor use to be the basis of our project
Analysis of the chosen processor

Study of the OCL language and its metamodel

Study the conceptual modeling environment to use in order to know
how to load UML models and how to interact with them

Preparation of the development structure

Select a minimal subset of the OCL language to be implemented
(invariants with comparison operations with Integers)

Development of the full processing cycle for the minimal subset
chosen

Test the first version of the processor
Prepare the processor to add new OCL elements to the developed
subset (operations and class attributes)

Develop the processing of attributes and all arithmetical and logical
operations

Implement a first prototype of the inverse conversion process (from
instances to textual expressions)

Table 18.1: Activites finished before the inscription of the project

Antonio Villegas Languages and Systems Department

390

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Project Plan | 18

In the previous table we can see the activities finished before the inscription of the
project. As explained in such table, we had implemented a complete version of the
final system although it only supported a little subset of OCL elements to construct

expressions.

Anyways, although such version had a lot of limitations it helped us in order to

verify if our final users agree with the results achieved.

18.2 ESTIMATED PLAN

Here we will show a cronogram with the estimated planification of tasks for the
period between the inscription of the project until the presentation of it in the

presence of the board of professors that will evaluate it.

In such cronogram we can see both the development state of the project at the
moment when the preliminary report was delivered to the board members and the
planning until finishing all its tasks. This planification was done the first week of

March, as we can see in the shaded column in the chronogram.

We can observe yellow coloured tasks representing such tasks that are not
achieved a third of its work charge whereas blue coloured tasks represent task
with are planified but their start date is greater that actual date. Finally, green

coloured tasks indicate that their work has been done and they are finished.

It is important to note that at that time the dates for the administrative tasks were
provisional and has been changed according to the decisions and posiblities made

after this chronogram was done.

Antonio Villegas 391 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

18

Project Plan

Expressions
Processor

2.0

o uoiRIuasad 133foid
B uonensibas uocay
AV uoneuasaid 1d3foud a3yl Joj 33e|d pue BIBP 135
& uodas suiwiRig
@ suoneas|bas 13foig
& uondudsul :3foig
SHSB1 JAITBIISIUIWPY

1

@H_ Buiewioy
Show 57'7) uoEpay

L~ 4 uodas [euly

paysiuy J0ssad0id 100
159 abesn

1531 [pUOnRIAdQ
1531
SHIIM 7 Buiyr3yd apo)
[#1) suonesawnug
Hu!sw suoziado jo Apog
Q SUDIIPUOISOC PUR 3ig

SUOIIRALIAQ

SUONEZIRIIY|
SUONIMIISUDD Mau Buippy
SHIIME 53|GN: JO UOIIUY3P puE 3besn
$HIM E 5U01133]|02 JO UONIUYEP puR abesn
PR suoissaicxa 137
O oo
I ot

- wawdojarag

Jossadosd suoissaudxa 9z 100
'0E 90/ET 90/9T 90/60 90/T0 SO/9T SOBT SOUTT SO/SO vOS8T vOSTT WOPT pOJSLO EQSTE EOSVE EO/LT EQJOT EQJEQ 20/ST 2OS8T 2OSTT 20MV0 10/8T 1012 TOSVD 10440 T
|nf §00Z ownl 8007 oAew 800¢ |1g= 800¢ oziew §00T 042499y 007 0dzua

Languages and Systems Department
Technical University of Catalonia

ted plan

: Estima
392

Figure 18.1

Barcelona School of Informatics

Antonio Villegas

OCL| Expressions
2.8 Processor

Project Plan | 18

18.3 REAL PLAN

In this section we will show the real planification after finishing this final career

project with all changes made to the estimated planification.

In this new chronogram we can observe green coloured tasks representing tasks
that have been finished. We can also see that the milestone referencing the date of
the project presentation is marked in blue because the date of this final career
project is previous to the presentation date, therefore such task is planified

although its start date has not arrived yet.

It is important to emphasize that in the chronogram some shaded areas appear
behind the representation of finished tasks in order to denote the estimated times

planified in the previous chornogram showed in the Figure 18.1.

We can see delays in the planification tasks of the development phase and the tests
due to some problems that made me dedicate less time that needed to do the
necessary work. Anyways, such delays had not affected hardly the initial planning
because now we are able to affirm that our processor for OCL 2.0 expressions is
finished in its first complete release version and it is ready to be used for those that

are interested in our work.

Finally we can say that the estimated planification was a good guideline to follow
in order to achieve the deadlines of all tasks. Furthermore, due to the time
dedicated before the formally start of the project to begin it we had sufficient
security to feel that we would be able to finish the plan although some problems

happened.

Antonio Villegas 393 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

18

Project Plan

(%]
c
2
(%]
"
o
—_
a
x
w

Processor

o uonRuasaud 193(0ig
.‘u uonens|bas uocay
. uopeiuasaid 123loud 2yl Joj 33E|d pue BIRp 135
@& uodas sruiwiag

4 Buzwioy
uoIEPIY
wawmog
pausiug J0ssad0sd D0
1 1 3besn
1531 [2uOnRIACQ
FEETH
POEERE bupan o)
l suopeJaWNLg
uoneiado Jo Apog
UOI2IPU0ISOC puR aigd
suoRALRQ

suonez|=RIv|

SUOIIINJISUOI Mau Buippy

*

I s o ey s s
PG] s s s e e

SUO|ISSAUTXD 13

‘08 90/ET 90/91 90/60 90/20 SO/9T SO/6T SOUTT SOUSO vOU8T vOSTZ vOSYT POSZO0 EOSTE EOSVE EO/LT EO/OT EQJED 20/ST 2OM8T 2O/TT

£0 B800Z/90 B800Z/S0 8002/¥0 800Z/€0

B800Z/20

uoneasibas 1aloig
@ uondudsul 13f0ig
S SYSBI1 AAIRIISIUIWPY

siowiE|
suonebiaeN

wawdcoarag

J0s5320sd suoIssaidxa 0z 100

co/v0 TO/8T TO/TE TOMPT TOML0 TL

800Z/10

Real plan

Figure 18.2

Languages and Systems Department

Technical University of Catalonia

394

Antonio Villegas

Barcelona School of Informatics

OCL| Expressions
2.8 Processor

Cost | 19

19 COST

19.1 INTRODUCTION

To have an idea about the economical cost of the project we will show a little study

about the work dedication and the workers needed to do it.

At next sections we will introduce an approximate evaluation of the different
activities that conform this project including the computation of the number of

hours neede to complete them.

Then, with this number of hours we will be able to estimate the total cost of the
project by means of the average of salary that the participant workers could obtain

for doing their work.

19.2 WORK DEDICATION

First of all, we must note that our project can be divided into two parts according
to two different skills of workers. We will need the support of an analyst that will
work in the activities shown in the Table 19.1. In this table we can see every
activity with its duration in days and the dedication of the worker. Finally, we can
calculate the number of hours for each activity assuming that each day consists on

a period of eight hours.

For example, first activity takes five days that implies 40 hours (5 x 8), but the
dedication is not complete (80%) so finally we have 40 x 80% = 32 hours.

Antonio Villegas 396 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor Cost | 19

Activity Days | Dedication Hours

Analize existent OCL tools 5 80% 32

Analize the requirements of our 5 60% 24

system

Choose a tool to be the basis of 4 20% 22,4

our processor

Analize SableCC and SableCC- 5 80% 32

Ext

Adapt OCL 2.0 grammar 15 30% 36

Conceptual schema of genera- 4 60% 19,2

ted classes

Anallze future extensions and 3 40% 9,6

improvements

Final report 50 70% 280
TOTAL 455,2

Table 19.1: Work dedication for an analyst

Activity | Days | Dedication | Hours
Study Eina GMC 5 50% 20
Study Dresden tool 5 50% 20
Generate SableCC-Ext indepen-

dent release package adapted 5 70% 28
to Eina GMC

tDi(()el\qlelop constraints instantia- 100 80% 640
Develop type checking 40 40% 128
Develop facade methods 4 30% 9,6
Develop delete visitor 10 40% 32
Develop inverse converter 15 30% 36
Tests 5 60% 24

TOTAL 937,6

Table 19.2: Work dedication for a programmer

Antonio Villegas 397 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Cost | 19

On the other hand, we will also need a programmer to develop the processor
according to the indications of the analyst. In the Table 19.2 we have all the

activities with their needed hours that have been done by the programmer.

19.3 ECONOMIC REPORT

Once we have the number of hours for both the analyst and the programmer, we

only have to know how much have to pay to every one according to its salaries.

At [IJTw] we can obtain an approximate idea about the salary trends for analysts
and programmers. In the next figure extracted from that web we can see in red
colour the average of the analyst’s salary and in green colour the average of the

programmer’s salary.

32.500

30.000

27.500

25.000

22.500

20.000

17.500

Salario

15.000

12.500

10.000

7.500
5.000
2.500
0
julio-2007 septiembre-2007 noviembre-2007 enero-2008 marzo-2008
Tiempo

Figure 19.1: Comparison between salary evolutions of analyst versus programmer from July 2007
to March 2008 extracted from [IJTw]

Antonio Villegas 398 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 | Processor

Cost | 19

With this information we can decide that to calculate the cost of the project we

choose an approximate value of 30.000€ as the salary of an analyst per year, and a

value of 26.000€ as the salary of a programmer per year.

If we suppose that these amounts can be divided in 14 payments, and a month

consists on four weeks of five workable days, each one with eight hours, we should

divide the initial amounts by 14 x 4 x 5 x 8 = 2240. If we do it, we will obtain the

cost per hour for each of these workers.

Worker Hours Salary (€ / hour) Total

Analyst 455,2 13,40 6.099,68€

Programmer 937,6 11,60 10.876,16€
TOTAL 16.975,84€

Table 19.3: Final cost of the project

Finally, in the Table 19.3 we find such computations and the final cost of the

project that mixes the salaries of both workers. Therefore the approach to the

economical cost of our project consists on an approximate value of 16.975,84€.

Antonio Villegas

399

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

Cost | 19

Antonio Villegas Languages and Systems Department

400

e
Barcelona School of Informatics Technical University of Catalonia

CONCLUSIONS

OCL| Expressions

2.8 Processor Conclusions | 20

20 CONCLUSIONS

20.1 ABOUT THE FINAL CAREER PROJECT

¢ Final career project is the last activity in the university studies. It should be a
project in which we have to demonstrate the knowledge acquired during the

previous years in order to obtain the final diploma.

4 Students should choose a topic to investige that could motivate them in order

to obtain better results.

¢ My preferences about compilers and software engineering made me choose
this topic, in which [am able to mix these two study areas into the construction

of a processor of OCL 2.0 expressions.

20.2 ABOUT CONCEPTUAL MODELING

¢ Conceptual modeling is an important activity in software engineering. Its aim is

to obtain a conceptual schema for a software system.

¢ Conceptual schemas contain all the information needed of a software system.
Thet are useful to support the different phases of the software development

cycle.

4 All participants in a software development project have to collaborate in order
to create a correct conceptual schema. This union improves communication
between different members and helps finding problems in earlier stages of the

project construction.

Antonio Villegas 402 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Conclusions | 20

4 Although it could not be written in a physical document, all analysts, engineers,
programmers and more have their own vision of the conceptual schema of the
system. Therefore, to write such ideas in a common document is a solution for

to avoid different points of view.

20.3 ABOUT MODELING LANGUAGES

¢ Both UML and OCL are essential languages to use inside the conceptual

modeling area of software engineering.

4 UML is useful to construct the conceptual schema of a software system.
Nevertheless, it needs the power of the OCL to achieve a complete specification

due to the existent lacks of the UML covered by the OCL.

¢ Both languages are the basis of the Model Driven Architecture that will be the
future of the software development. MDA could be a new abstraction layer

upon the actual abstraction provided by the high-level programming languages.

¢ XMI language provides the possibility of sharing models in an standard way,
avoiding errors where information is exchanged between different modeling

tools.

20.4 ABOUT MODELING TOOLS

¢ There exist a lot of modeling tools to be used in order to simplify the

conceptual modeling activity.

¢ We have studied four of these tools to decide wich one could be the chosen tool

to be the basis of our development. It is important to note that nowadays to

Antonio Villegas Languages and Systems Department

403

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Conclusions | 20

start a new project from scratch is not a good idea. Therefore, we preferred to

base our processor in an existent desing.

¢ Before studying and evaluating a set of four tools containing the USE tool, the
Dresden OCL2 Toolkit, the MOVA tool and the IBM OCL Parser, we decided to
base our implementation in the parser subsystem of the Dresden OCL2 Toolkit

due to its architecture and features were more similar to ours than others.

20.5 ABOUT THE PROCESSOR OF OCL 2.0
EXPRESSIONS

4 Before our work, Eina GMC has a lack with the Object Constraint Language.
After the implementation of our processor, we can affirm that such lack has

been erased and now the bases of Eina GMC are completed.

¢ The processor of OCL 2.0 expressions provides Eina GMC with the processing of
OCL expressions, their instantiation into the UML and OCL metamodels, and a
correctness checking phase that feedbacks users if some errors are found into

such expressions.

¢ Furthermore, our processor provides the inverse conversion from metamodel
instances to original textual expressions. With all of it the OCL checking process

is finished.

¢ Our processor can be used in different ways according to the experience of the
users: directly through Java code calling the processor by means of facade
methods or constructing the processor components and making a main
program, opening a demo GUI in wich load XMI models and parse OCL
expressions, or even writing OCL constraints directly inside comments of the

Poseidon for UML CASE tool.

Antonio Villegas 404 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 Processor Conclusions | 20

¢ We have followed a modular design for our processor that simplifies the
changeability and makes easier to adapt it to future new versions of UML or

OCL.

20.6 ABOUT IMPROVEMENTS AND EXTENSIONS

¢ Our processor needs to be completed with secondary constructions like named
self or message expressions that although are not essential, to support them is

a needed task.

¢ Furthermore, the possibility of support user data types will be added once we
decide how to solve the problem that such elements introduce to the type

checking process.

¢ Finally, we have to join all the components of the Eina GMC in order to
construct a main GUI program in wich all users could get in touch with our
implementations in an easier way. Once we have all these components

completed to develop such program is only a time problem.

20.7 ABOUT THE ACQUIRED EXPERIENCE

¢ After finishing this document and therefore this final career project it is
important to emphasize that all different kinds of knowledge acquired during
the career classes, theoretical and practical, have been essential to start and

finish the project.

¢ Furthermore, during the development of the project I have acquired extra
knowledge about the deeply studied areas. In addition, the realization of a final

career project implies a high activity doing self-study and acquiring this new

Antonio Villegas Languages and Systems Department

405

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions

2.8 | Processor Conclusions | 20

knowledge by myself. It can be said that during this phase [have been my own

teacher.

¢ Finally, I have to say that I have obtained more than knowledge. Now I have
more security of being able to make important developments and to manage

complex projects.

Antonio Villegas 406 Languages and Systems Department
Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Glossary | A

A GLOSSARY

API

Abbreviation of application programming interface, a set of routines, protocols,
and tools for building software applications. A good API makes it easier to develop
a program by providing documentation and examples of usage related to its

libraries and structures.

Automaton

A graph structure made by states and edges that represents a language. It
processes words and indicates if each processed word belongs or not to the

represented language.

Command Line Interface (CLI)

A mechanism for interacting with a computer operating system or software by

typing commands to conduct the system.

Compiler

Software tool that translates code written in a language into another language.

Compilers compiler

Software tool that generates the source code for a parser, interpreter, or compiler

from a language description.

Context

The element specified in an UML model for which an OCL 2.0 expression is defined.

Constraint

An expression that restricts some characteristics, functionalities or behaviour of an

element.

Antonio Villegas Languages and Systems Department

408

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Glossary | A

Derivation rule

An expression that indicates how to compute the value of a derived element.

Diagram
A schematic drawing showing the relation between the elements of a model.

Graphical User Interface (GUI)

User interface that allows people to interact with a software system through direct
manipulation of graphical icons, visual indicators or special graphical elements

with a mouse peripheral.

Inherited attributes
Inherited attributes help pass semantic information down the parse tree from

parents to its descendants.

Interpreter

Software tool that executes code written in a language.

Invariant

A boolean expression that must be carry out for the element where it is defined.

Iterator

An object which allows an user to traverse through all the elements of a collection.

Iterator variable
A variable that is used within the body expression of a loop expression like an

iterator or the iterate construction. It has the value of the source collection

elements in which the loop expression is applied.

Language
A set of characters and symbols and syntactic rules for their combination and use

in a communication process.

Metaclass

A class belonging to a metamodel.

Antonio Villegas 409 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Glossary | A

Metadata repository

A database of data about data. It provides a consistent and reliable means of access

to data.

Metamodel

A model of models. It can also be defined as a model describing how to define

models.

Model

A simplified, consistent, unambiguous and coherent description of a complex

system or process. It contains model elements with features and restrictions.

Model Driven Architecture

Software development method that consists in the automated transformation of

platform-independent models into platform-specific models.

Navigation

The action of access to different elements from the contextual element through

associations.

Parser

One of the components in an interpreter or compiler, where it captures the implied
hierarchy of the input text and transforms it into a form suitable for further
processing (often some kind of parse tree, abstract syntax tree or other

hierarchical structure) and normally checks for syntax errors at the same time.

Platform-independent model (PIM)

A model of a software or business system that is independent of the specific

technological platform used to implement it

Platform-specific model (PSM)

A model of a software or business system that is linked to a specific technological

platform (e.g. a specific programming language, operating system or database).

Antonio Villegas Languages and Systems Department

410

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Glossary | A

Postcondition

A condition or predicate that must always be true just after the execution of some

section of code.
Precondition

A condition or predicate that must always be true just prior to the execution of

some section of code

Query operation

An operation without side effects. It can also be known as a read-only operation.

Semantics

The study of meaning.

Symbol table

A data structure used by a language translator such as a compiler or interpreter,
where each identifier in a program's source code is associated with information
relating to its declaration or appearance in the source, such as its type, scope level

and sometimes its location.

Syntactic sugar

Syntax of a computer language that do not affect its functionality but make it

"sweeter" or easier for humans to use.

Syntax

The grammatical rules and structural patterns governing the ordered use of

appropriate words and symbols in a particular language.

Synthesized attribute

The synthesized attributes are the result of the attribute evaluation rules, and may
also use the values of the inherited attributes. Synthesized attributes are used to

pass semantic information up the parse tree

System

Set of entities, real or abstract, comprising a whole.

Antonio Villegas Languages and Systems Department

411

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor Glossary | A

Type
A term that indicates a class, a data type or each subclass from the Type metaclass
of the UML and OCL 2.0 metamodels.

UML

A standardized visual specification language for object modeling.

Antonio Villegas 412 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL 2.0 GRAMMAR B

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

B OCL 2.0 GRAMMAR

In this appendix we show the complete grammar for the OCL 2.0 language used

within our processor of expressions. Note that it is written using SableCC Ext

syntax.

Package parser.sablecc;

Helpers
all
1f
cr
tab
space
enye
line terminator
input character
decimal digit
octal digit
hex digit
loweralpha
upperalpha
name_start character
name_ character
char e
sign
backslash
quote
tick
dot
minus
dbl dash
commentblock start
commentblock end
noasterisk
noslash
asterisk
string not unescaped
basic_escape code

octal escape code
hex escape code

escape_sequence

string literal part

Antonio Villegas

= 10;

[0 .. Oxffff];

= 13;
9;
= 241;
= cr 1f | cr 1f;
[all - [cr + 1f]];
['0' .. '9'];
['0' .. '7'1;
['0'" .. '9'1 | r'a'" .. "£'1 | 'a'" .. 'F'] ;
[['a'" .. '"z']+ enyel;
['a' .. '2'];

[loweralpha + upperalphal;

[[name start character + ' '] + decimal digit];

rer | rEr;

r+r | r_r;
r\r;

r/*l;

r*/l;

[all - '*'];
[all - '/"' 1;
[

[''"" + [backslash + [cr + 1f] 1 1;
lal I 'b' | 'f' | |n| | vrv | ltl | 'V' | tiCk
| quote | '?' | backslash ;

octal digit (octal digit octal digit?)?

'x' hex digit (hex digit (hex digit hex digit?
)2)7

backslash (basic_escape code |

octal escape code | hex escape code);

[all - string not unescaped] | escape sequence;

Languages and Systems Department

414

Barcelona School of Informatics

Technical University of Catalonia

Expressions
- [P OCL 2.0 Grammar | B
Tokens
! newline line terminator;
! blank = tab | space* ;
! commentline = dbl dash input character* line terminator;
! commentblock commentblock start (noasterisk | asterisk
noslash)* commentblock end;
tick e

paren_open
paren close
comma
arrow_right
dot

dbl_dot

colon

dbl colon
semi colon
equals
question mark
hash

at_pre

bag
collection
ordered_set
sequence

set

tuple

tuple type
bracket open
bracket close

. ~
~e = Ne Ne e ~o
~e

- .
~e
~e

- e
~e

I ~e oo oo o

e
'@pre';
'Bag’;
'Collection'
'OrderedSet’
'Sequence';
'Set';
'Tuple';
'TupleType';
"I

r]r;

aV)
Ne Ne Ne ~e

body 'body ' ;
context 'context';
def 'def';
derive 'derive’';
else 'else';
endif 'endif';
endpackage 'endpackage ' ;
false <Boolean> 'false';

! if "if';

! in 'in';

! init 'init';

! inv 'inv';

! let 'let';

! package 'package’;

! pre 'pre';

! post 'post’';

! then 'then';
true <Boolean> 'true';

! brace open {';

! brace close '}

! vertical bar s
integer literal <Integer> = decimal digit+;

real literal <Double>

= decimal digit+ dot decimal digit+
| decimal digit+ dot decimal digit+ char e
sign? decimal digit+;

string literal <String>
iterate =

Antonio Villegas

tick string literal part* tick;

'iterate';

415

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

select 'select';
reject = 'reject';
collect = 'collect';
for all = 'forAall';
any = 'any';
exists = 'exists';
one = 'one';
is_unique = 'isUnique';
sorted_ by = 'sortedBy';

'collectNested';
'oclIsTypeOf';
'oclIsKindOf';
'oclAsType';

collect nested
ocl op is type of
ocl op is kind of
ocl op as_type

minus = '=';
star = 'x';
slash ='/"';
plus = '+';
rel gt = '>"';
rel 1t = '<';
rel gte = '>="',
rel lte = '<="';
rel notequal = '<>"';
log and = 'and';
log or = 'or';
log xor = 'xor';
log implies = 'implies';
not = 'not';

simple name name_start character name character*;
Ignored Tokens
commentline, commentblock, newline, blank;

Productions
context declaration list cs <List> =
[context]:context declaration cs
[tail]:context_declaration_list cs? #nocreate

~e

context declaration cs <OclContextDeclaration> =

{classifier} <OclClassifierContextDecl>
context [context name]:path name cs
[constraints]:classifier constraint cs+
#customheritage

| {attr or assoc} <OclAttrOrAssocContextDecl>
context [context name]:path name cs
colon [type]:type specifier
[constraints]:init or der value cs+
#customheritage

| {operation} <OclOperationContextDecl>
context [context name]:path name cs
[signature]:operation signature cs
[constraints]:operation constraint cs+
#customheritage

~e

classifier constraint cs <OclClassifierConstraint> =
{invariant} <OclInvariantClassifierConstraint>

Antonio Villegas Languages and Systems Department

416

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

inv [name]:simple name? colon [invariant]:ocl expression cs
| {definition} <OclDefinitionClassifierConstraint>
def [name]:simple name? colon definition]:definition constraint cs

~e

definition constraint cs <OclDefinitionConstraint> =
[entity]:defined entity decl cs
lequals
[definition]:ocl_expression cs #customheritage

~e

defined entity decl cs <OclDefinedEntityDecl> =
{attribute} <OclAttributeDefinedEntityDecl>
[attribute]:formal parameter cs
| {operation} <OclOperationDefinedEntityDecl>
[operation name]:simple name
[operation]:operation signature cs

~e

operation signature cs <OclOperationSignature> =
paren open parameters]:formal parameter list cs?
paren close [return type]:operation return type specifier cs?

~e

operation return type specifier cs <Classifier> =
colon [return type]:type specifier #chain

~e

operation constraint cs <OclOperationConstraint> =
[stereotype]:op constraint stereotype cs
[name] :simple name? colon
[expression]:ocl expression cs #customheritage

~e

op constraint stereotype cs <OclOperationConstraintStereotype> =
{pre} pre #nocreate | {post} post #nocreate
{body} body #nocreate

~e

init or der value cs <OclAttrOrAssocConstraint> =
{init} <OclInitConstraint>
init [name]:simple name? colon [initializer]:ocl expression cs
| {derive} <OclDeriveConstraint>
derive [name]:simple name? colon
[derive expression]:ocl expression cs

~e

identifier cs <String> =
{simple} simple name #chain
| {iterate} iterate #chain
| {iterator name} iterator name cs #chain
{ocl_op_name} ocl_op_ name #chain

~e

path name cs <List> = [qualifier]:path name head cs*
[name]:identifier cs #nocreate;

Antonio Villegas Languages and Systems Department

417

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

path_name head cs <String> = identifier cs dbl_colon #chain;

iterator name cs <String> =

{select} T.select #chain | {reject} T.reject #chain
{collect} T.collect #chain | {for all} T.for_all #chain
{exists} T.exists #chain | {any} T.any #chain

{one} T.one #chain | {is_unique} T.is unique #chain
{sorted by} T.sorted_ by #chain

{collect_nested} T.collect_nested #chain

.
’

ocl op name <String> =

{kind_of} T.ocl_op_is_kind_of #chain
| {type of} T.ocl op is type of #chain
{as_type} T.ocl op as type #chain

.
’

ocl expression cs <OclExpression> =
{with let} let_exp_cs #chain
{without_let} logical_exp_cs #chain

.
’

let exp cs <LetExp> =
let [variables]:initialized variable list cs
in [expression]:expression #customheritage #nocreate

.
’

if exp cs <IfExp> =
if [condition]:logical exp cs
then [then branch]:ocl expression cs
else [else branch]:ocl expression cs
endif

.
’

logical exp cs <OclExpression> =
{chain} <OclExpression> [operand]:relational exp cs #chain
| {binary} <OperationCallExp> [operand]:relational exp cs
[tail]:logical exp tail cs+

.
’

logical exp tail cs <OclBinaryExpTail> =
[operator]:logic_op [operand]:relational exp cs

.
’

logic_op <String> =
{and} log and #chain | {or} log or #chain
{xor} log xor #chai | {implies} log implies #chain

.
’

relational exp cs <OclExpression> =
{chain} [operand]:additive exp cs #chain
| {binary} <OperationCallExp> [operand]:additive exp cs
[tail]:relational exp tail cs

.
’

relational exp tail cs <OclBinaryExpTail> =
[operator]:rel op [operand]:additive exp cs

Antonio Villegas 418 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

.
’

rel op <String> =

{eq} equals #chain | {ne} rel notequal #chain
| {gt} rel gt #chain | {1t} rel 1t #chain
{gte} rel gte #chain | {1te} rel 1lte #chain

.
’

additive exp cs <OclExpression> =
{chain} [operand]:multiplicative exp cs #chain
| {binary} <OperationCallExp> [operand]:multiplicative exp cs
[tail]:additive exp tail cs+

.
’

additive exp tail cs <OclBinaryExpTail> =
[operator]:add op [operand]:multiplicative exp cs

.
’

add_op <String> =
{plus} plus #chain | {minus} minus #chain

.
’

multiplicative exp cs <OclExpression> =
{chain} [operand]:unary exp cs #chain
| {binary} <OperationCallExp> [operand]:unary exp cCs
[tail]:multiplicative exp tail cs+

.
’

multiplicative exp tail cs <OclBinaryExpTail> =
[operator]:mult op [operand]:unary exp cCs

.
’

mult op <String> =
{mult} star #chain | {div} slash #chain

.
’

unary_ exp cs <OclExpression> =

{unary op} <OperationCallExp> [operator]:unary op
[operand] :postfix exp cs

{unary nop} [postfix]:postfix exp cs #chain

.
’

unary op <String> =
{minus} minus #chain | {not} not #chain

.
’

postfix exp cs <OclExpression> =
{primary} [primary]:primary exp cs #chain
| {with tail} [leftmost exp]:primary exp cs postfix exp tail cs+
#maketree #nocreate

.
’

postfix exp tail cs <OclExpression> =
{prop} dot [prop call]:property call exp cs #customheritage #nocreate
{arrow_prop} arrow_right [tail]:arrow_property call_exp cs #chain

Antonio Villegas Languages and Systems Department

419

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

primary exp cs <OclExpression> =
{literal} literal_exp_ cs #chain
| {parenthesized} paren open expression paren close #chain
| {property} [prop call]:property call exp cs #customheritage
#nocreate
{if} if exp_cs #chain

7
expression <OclExpression> = ocl expression cs #chain;

property call exp cs <OclExpression> =

{path time} <OclExpression> [name]:path name cs [time]:time exp cs?
#nocreate

| {arg_list} <OclExpression> [name]:path name cs [time]:time exp cs?
[parameters]:property call parameters cs #customheritage #nocreate

| {qualified} <OclExpression> [name]:path name cs
[qualifiers]:qualifiers #customheritage [time]:time exp cs?
#nocreate

~e

property call parameters cs <List> =
paren_open [param list]:actual_ parameter_list cs? #customheritage
paren_close #nocreate

~e

qualifiers <List> =
bracket open qualifiers_ list cs #customheritage bracket_close
#chain

~e

qualifiers list cs <List> =
[element]:qualifiers list element cs [tail]:qualifiers list tail cs?
#nocreate

.
’

qualifiers list element cs <String> =
{qualifier}simple name #chain

.
’

qualifiers list tail cs <List> =
comma [tail]:qualifiers_ list cs #chain

.
’

arrow property call exp cs <OclExpression> =
{iterate} <IterateExp>
T.iterate paren open [iterators]:iterate vars_cs? #customheritage

[accumulator]:initialized variable cs vertical bar
[body]:expression #customheritage paren close

| {iterator} <IteratorExp>
[name]:iterator name cs paren open
[iterators]:iterator vars_cs? #customheritage
[body]:expression #customheritage paren close

| {operation} <OperationCallExp>
[name] :simple name paren_ open
[parameters]:actual parameter list cs?
#customheritage paren close

~e

Antonio Villegas 420 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

iterate_vars_cs <List> =
[iterators]:actual_parameter_list cs #customheritage
semi_colon #chain

~e

iterator vars cs <List> =
[iterators]:actual_parameter_list cs #customheritage
vertical_bar #chain

~e

initialized variable list cs <List> =
[item]:initialized variable cs
[tail]:initialized_variable list_tail cs* #nocreate

~e

initialized variable list tail cs <Variable> =
comma [item]:initialized_variable_cs #chain

~e

initialized variable cs <Variable> =
[name and type]:formal parameter cs
[initializer]:variable initializer

~e

variable initializer <OclExpression> =
lequals [init_value]:ocl_expression_cs #chain

~e

actual parameter list cs <List> =
[element]:actual parameter list element cs
[tail]:actual_parameter list_tail cs? #nocreate

~e

actual parameter list tail cs <List> =
comma [tail]:actual_ parameter list_cs #chain

~e

actual parameter list element cs <OclActualParameterListItem> =
{untyped} [element]:expression
{typed} [param] :formal parameter cs

~e

formal parameter cs <OclFormalParameter> =
[name] :simple name [type]:formal parameter type specifier

~e

formal parameter type specifier <Classifier> =
colon [type]:type specifier #chain

~e

formal parameter list cs <List> =
[item] :formal parameter cs
[tail]:formal_ parameter list_tail cs ? #nocreate

~e

formal parameter list tail cs <List> =

Antonio Villegas Languages and Systems Department

421

Barcelona School of Informatics Technical University of Catalonia

Expressions
Processor

OCL 2.0 Grammar

Antonio Villegas

comma [tail]:formal parameter list_cs #chain

.
’

type specifier <Classifier> =
{simple type} simple type specifier cs #chain #nocreate
| {collection type} collection type specifier cs #chain #nocreate
| {tuple type} tuple type specifier cs #chain #nocreate

.
’

simple type specifier cs <Classifier> =
path_name cs #nocreate

.
’

collection type specifier cs <CollectionType> =
[kind]:collection type identifier cs paren open
[type]:type specifier paren close #nocreate

.
r

collection type identifier cs <CollectionKind> =
{set} set #nocreate | {bag} bag #nocreate
| {sequence} sequence #nocreate | {collection} collection #nocreate
| {ordered_set} ordered set #nocreate

.
r

tuple type specifier cs <TupleType> =
tuple type paren open [tuple members]:formal parameter list cs?
paren close #nocreate

.
’

time exp cs <OclTimeExp> =
is_marked pre_cs #chain

.
’

is marked pre cs <OclTimeExp> =
at_pre #nocreate

.
’

literal exp cs <LiteralExp> =

{lit_primitive} primitive_ literal exp cs #chain
| {lit collection} collection_literal exp cs #chain
| {lit tuple} tuple_literal exp cs #chain

.
r

primitive literal exp cs <PrimitiveLiteralExp> =
{numeric} numeric_literal exp cs #chain
| {string} string literal exp cs #chain
{boolean} boolean_literal exp cs #chain

.
’

numeric_ literal exp cs <NumericLiteralExp> =
{int} <IntegerLiteralExp> [integer]:integer literal
{real} <RealLiteralExp> [real]:real literal

.
’

string literal exp cs <StringLiteralExp> =
[value]:string literal

~e

422

Barcelona School of Informatics

Languages and Systems Department
Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

boolean literal exp cs <BooleanLiteralExp> =
{false} false #nocreate | {true} true #nocreate

~e

tuple literal exp cs <TupleLiteralExp> =
tuple
brace open
[tuple part]:tuple part list cs
brace close

~e

tuple part list cs <List> =
[item] :tuple part cs
[tail]:tuple part_ list tail cs* #nocreate

~e

tuple part list tail cs <Variable> =
comma
[item]:tuple part cs #chain

~e

tuple part cs <Variable> =
[name] :simple name
tuple part type?
[initializer]:variable initializer

~e

tuple part type <Classifier> =
!colon [type]:type specifier #chain

~e

collection literal exp cs <CollectionLiteralExp> =
[kind]:collection type identifier cs
brace open
[parts]:collection literal parts cs?
brace close

~e

collection literal parts cs <List> =
[part]:collection literal part cs
[tail]:collection_literal parts_tail cs? #nocreate

~e

collection literal parts tail cs <List> =
comma [tail]:collection_literal parts_cs #chain

~e

collection literal part cs <CollectionLiteralPart> =
{range} collection_range_cs #chain
{single exp} <CollectionItem> expression

~e

collection range cs <CollectionRange> =
[first]:expression dbl dot [last]:expression

~e

Antonio Villegas 423 Languages and Systems Department

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

OCL 2.0 Grammar | B

Antonio Villegas Languages and Systems Department

424

e
Barcelona School of Informatics Technical University of Catalonia

BIBLIOGRAPHY C

OCL| Expressions
2.8 Processor

Bibliography | C

[Dau04]

[CMO3]

[DBLPw]

[DOTw]

[ECLw]

[EINw]

[Gag98]

[GDBO02]

[GH95]

[GMCO7]

[GMCw]

[HKRO2]

Antonio Villegas

C BIBLIOGRAPHY

Berthold Daum. Professional Eclipse 3 for Java Developers. Wrox,
November 2004, 1st Edition.

Cases, R. i Marquez, L. Llenguatges, gramatiques i automats. Curs
basic. Edicions UPC, 2003.

Universitat Trier. Digital Bibliography & Library Project (Web Site).
http://www.informatik.uni-trier.de/~ley/db/

Dresden University of Technology, Department of Computer Scie-
nce. Dresden OCLZ2 Toolkit (Welcome Page). http://dresden-
ocl.sourceforge.net

Eclipse Community. Eclipse Integrated Development Environment.
(Home Page) http://www.eclipse.org

GMC: Research Group in Conceptual Modeling of Information Sys-
tems. Eina GMC (Eina GMC Project Page).
http://guifre.lsi.upc.edu/eina_GMC/index.html

Etienne Gagnon. SABLECC, an object-oriented compiler framework.
Master thesis. School of Computer Science, McGill University,
Montreal, 1998.

Timothy J. Grose, Gary C. Doney and Stephen A. Brodsky. Mastering
XMI: Java Programming with XMI, XML, and UML. Wiley Computer
Publishing, April 2002.

E. Gamma and R. Helm. Design Patterns, Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, 1995

GMC: Research Group in Conceptual Modeling of Information Sys-
tems. Eina GMC Start Guide. 2007.
http://guifre.lsi.upc.edu/eina_GMC/

GMC: Research Group in Conceptual Modeling of Information Sys-
tems. GMC (Home Page). http://guifre.lsi.upc.edu/index.html

Hammond], Keeney R. and Raiffa H. Smart Choices: A Practical
Guide to Making Better Decisions. Broadway, 2002

Languages and Systems Department

426

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions
2.8 Processor

Bibliography | C

[HMUO1]

(UTw]

[IOPw]

[JRAW]

[Kon05]

[MDAw]

[MDRw]

[MOVw]

[NETw]

[0bj02]

[Obj06]

[Obj07]

[Obj07x]

[0li07]

Antonio Villegas

Hopcroft, J.E.; Motwani, R. i Ullman,].D. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001. 2nd
Edition.

InfoJobs Trends Salarios. Informacién salarial (Web Site)
http://salarios.infojobs.net/index.cfm

Jos Warmer. IBM OCL Parser v.0.3. 1997 (Web Site)
http://www-306.ibm.com/software/awdtools/library/
standards/ocl-download.html

The Java Tutorials. The Java Reflection API (Web Page)
http://java.sun.com/docs/books/tutorial /reflect/index.html

Ansgar Konermann. The Parser Subsystem of the Dresden OCL2 To-
olkit: Design and Implementation. September 2005.
http://dresden-ocl.sourceforge.net/papers/ParserDesign.pdf

Object Management Group. Model-Driven Architecture (Web Site)
http://www.omg.org/mda

NetBeans Community. Metadata Repository Project (Project Home
page). http://mdr.netbeans.org/

Modeling and Validation (MOVA) Group. The MOVA Project Home
(Home Page). http://maude.sip.ucm.es/mova/

NetBeans Community. NetBeans Integrated Development Environ-
ment. (Home Page) http://www.netbeans.org

Object Management Group. Meta Object Facility (MOF) Spefication,
Version 1.4, April 2002
http://www.omg.org/cgi-bin/doc?formal /2002-04-03

Object Management Group. Object Constraint Language — OMG Av-
ailable Specification, Version 2.0, May 2006.
http://www.omg.org/cgi-bin/doc?ptc/06-05-01.

Object Management Group. Unified Modeling Language: Superstru-
cture — OMG Available Specification, Version 2.1.2, November 2007.
http://www.omg.org/spec/UML/2.1.2 /Superstructure/PDF/.

Object Management Group. XML Metadate Interchange - OMG Ava-
ilable Specification, Version 2.1, December 2007.
http://www.omg.org/spec/XMI/2.1.1/

Antoni Olivé. Conceptual Modeling of Information Systems, 2007.
Springer.

Languages and Systems Department

427

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor

Bibliography | C

[PDGPE]

[PFUW]

[POO06]

[RIBO4]

[SCCw]

[UOCw]

[UPCw]

[USEO7]

[USEw]

[Villw]

[WKO3]

[WMO95]

[XMLw]

Antonio Villegas

Notes about PDGPE subject. Presa de decisions i gestio de projectes
empresarials. Departament d’Organitzacié d’Empreses. Computer
Science studies of Barcelona School of Informatics.
http://www.fib.upc.edu/en/infoAca/estudis/assignatures/PDGPE

Gentleware. Poseidon for UML, Version 6.0. (Web Site).
http://www.gentleware.com/

Elena Planas, Antoni Olivé. The DBLP Case Study, 2006.
http://guifre.lsi.upc.edu/CaseStudies.html

James Rumbaugh, Ivar Jacobson ad Grady Booch. The Unified Mo-
deling Language: Reference Manual, Second Edition. July 2004.
Addison-Wesley

Etienne Gagnon. SableCC parser generator (Home Page).
http://sablecc.org

Open University of Catalonia. UOC (Web Site).
http://www.uoc.edu

Technical University of Catalonia. UPC (Web Site).
http://www.upc.edu/

Database Systems Group, Bremen University. USE, A UML based
Specification Environment, Preliminary Version 0.1, May 2007.
http://www.db.informatik.uni-bremen.de/projects/USE/use-
documentation.pdf

Database Systems Group, Bremen University. USE Project (Web
Site) http://www.db.informatik.uni-bremen.de/projects/USE/

Villegas Nifio, Antonio. Persona Web.
http://www.Isi.upc.edu/~avillegas

J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 2003. 2nd Edition.

R. Wilhelm, D. Maurer. Compiler Design: Theory, Constuction, Gene-
ration. Addison-Wesley, 1995.

World Wide Web Consortium (W3C). Extensible Markup Language
(XML) (Web Site). http://www.w3.org/XML

Languages and Systems Department

428

Barcelona School of Informatics Technical University of Catalonia

OCL| Expressions
2.8 Processor Index D
A Compiler, 129
Compilers
basis, 128

abstract syntax tree, 137, 150, 217, 238, 256, 410
AST, 137,138,139, 231, 233, 236, 237, 238,

243, 244, 246, 247, 248, 249, 250, 251, 257,
258,267,300, 308,309,310, 323, 329

Alphabet, 128,129, 132, 134

arithmetic, 385

AssociationClassCallExp, 120, 357, 358

Automaton, 128, 135

B

Bag, 75, 76, 78, 80, 81, 84, 92, 95, 285, 292, 341,
346,347,348, 349, 380, 415

BagType, 112, 341, 347, 358

body expresion, 30, 85, 90,99, 102,103, 116, 118,
246,264, 276,279,319, 336, 338, 409

Boolean, 32,57, 62,71,72,73,74,75,76,79, 80,
81, 83,88,90,100,103,114, 121, 123, 124,
284, 285, 287, 326, 332, 340, 344, 345, 363,
374,375,377, 381, 385, 415

BooleanlLiteralExp, 124, 289, 339, 344, 345, 353,
423

C

CallExp, 117, 118, 354, 355, 357, 358, 359
Classifier, 28, 29, 31, 62, 63, 260, 282, 283, 284,
285,290, 333,417,422,423
Collection operations
collect, 12, 86,379, 380, 381, 416,418
collectNested, 86,416
exists, 12,30, 51, 60, 68, 86,92, 118, 144, 157,
181, 202, 209, 229, 237, 242, 247, 265, 319,
323,324, 325,326,333,343,354, 361, 362,
363,416,418
forAll, 86, 90, 95, 104, 157, 265, 276, 354, 372,
373,416
reject, 86, 276,416,418
select, 54, 86, 95, 96, 105, 106, 156, 157, 163,
170, 276, 354,368,371, 375, 379, 381, 416,
418
Collectionltem, 126, 292, 347, 348, 424
CollectionKind, 422
CollectionLiteralExp, 126, 292, 341, 347, 348, 380,
423
collections, 75, 76,77, 78, 79, 80, 81, 83, 84, 85,
86, 87,126,346
CollectionType, 112, 113, 126, 285, 286, 341, 422

Antonio Villegas

430

compilation process, 128
Concatenation, 130, 131
conformance, 170,171, 179, 180, 181, 182, 183,
185, 188,192, 193, 194, 195, 312, 327, 331,
385
constraints
definition, 380
context, 17, 49, 90, 94, 95, 96,97, 98, 99, 100, 101,
102,103,104, 105,106,107,108, 116, 128,
135,136,137,147,162, 220, 224, 225, 229,
230, 242, 246, 257, 258, 260, 261, 300, 302,
303,328, 333, 334, 335, 336, 337, 338, 339,
363,364,370,372,376,379, 381, 385, 415,
416
contextual classifier, 385
invariant, 94, 95, 102, 158, 159, 262, 300, 334,
335
postcondition, 100, 101, 105, 106, 338, 379,
380
precondition, 7, 99, 105, 106, 216, 327, 338,
339

D

DataType, 31, 42, 43,57, 62,63, 64,111,112, 113,
114, 340, 341, 342, 343, 344, 345, 348, 350,
352,353,354, 355,357,373,374, 375,377,
378,380

DBLP, 368, 369, 370, 376,378, 428

DeleteVisitor, 362, 363, 364

Dresden tool, 149, 150, 153, 168, 182, 183, 193,
196, 200, 216, 236, 240, 242, 243, 256, 258,
277,282,296, 297, 298, 299, 300, 301, 316,
319, 320,384,397, 426,427

E

Eina GMC. See GMC

Element, 25, 28, 246, 361, 362

Enumeration, 32, 111, 345, 346

EnumlLiteralExp, 123, 346

Environment, 2, 48, 145, 168, 251, 319, 426, 428

evaluation, 17,112, 116, 120, 121, 146, 149, 152,
153,159, 166, 180, 181, 182, 183, 184, 192,
193,194, 195, 241, 243, 244, 246, 247, 251,
256,257,300,321,322,331,396, 411

ExpressionInOcl, 28, 115, 116, 335, 336, 337, 338,

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

Expressions
Processor

ocL
2.0

Index D

339,373,377,380

F

FeatureCallExp, 118, 119
forAll, 86, 90, 95, 104, 157, 265, 276, 354, 372,
373,416

G

GMC, 2, 24, 27, 45, 48, 49, 50, 51, 52, 53,55, 56,57,
110,111, 113,114, 126, 141, 167, 168, 298,
299, 300,317,320, 327,328, 331, 335, 340,
345, 356, 360, 362, 363, 364, 368,370, 375,
387,397,426
Eina GMC, 2, 5, 426
EinaGMC, 7

Grammars, 133
attribute grammar, 256
EBNF, 223

IBM OCL Parser, 159, 160, 161, 162, 163, 169, 184,
185, 195, 427

IfExp, 116, 121, 249, 250, 266, 324, 325, 353, 361,
362,363,377,418

Integer, 27,31, 42,43,57,62,69,71,72,73, 74,
76,77,78,79, 80,81, 82,83, 84,87,88,90,93,
94, 96,98, 100,102,106, 112, 114, 123, 126,
145, 284, 285, 287, 288, 326, 340, 341, 342,
343,349,373, 374, 385, 415

IntegerLiteralExp, 112, 124, 288, 289, 337, 343,
348, 350, 351, 352, 359, 423

iterate, 77, 104, 105, 118, 265, 276, 278, 279, 355,
409,416, 418,421

IterateExp, 118, 276, 355,421

IteratorExp, 276, 354, 373, 421

K

keyword, 87,101, 105, 106, 220, 246, 276, 285,
302

Kleene
plus, 132
star, 131, 132

L

Language, 134, 135, 136, 139, 141, 142
Alphabet, 133
Languages, 131,132,133
alphabet, 129
formal theory, 128
operation, 130
word, 129
LetExp, 122, 248, 266, 351, 352, 418
LiteralExp, 116, 287, 422
logical, 71, 249, 266, 268, 358, 385,418

Antonio Villegas

431

LoopExp, 118, 354, 355

M

MCDA, 166, 196

MDA, 18,19, 20

metamodel, 3, 4, 6,22, 23, 24, 25, 26, 27, 28, 29,
30,31, 32,33, 34,40,45,49,52,110, 111, 112,
113,114,115,116,117,118,119, 120, 121,
122,123,124,126,140,144,167,169, 170,
177,178,187, 238, 258, 285, 288, 296, 297,
299,300,301, 302,303,304, 316, 323, 324,
330, 331, 338, 346, 347, 349, 360, 361, 362,
409

MOF, 6, 22, 33, 34, 35,40, 41, 45, 141, 427

MOVA tool, 154, 155, 156, 157, 158, 159, 169, 183,
184,189, 194, 196, 386, 427

N

navigation, 17, 69,92, 95,108,118, 119, 120
to association class, 120
to association end, 323
NodeFactory, 299, 318, 325
NumericLiteralExp, 124, 289, 423

(0

Object Constraint Language, 2, 3, 5, 6, 17, 48, 66,
68,145,301, 427,428

0CL, 2,3,4,5,6,7,8,11,17, 18, 20, 24, 25, 28, 30,
32,40, 48,49, 50,52, 66,67, 69,70,75,77,78,
84, 85, 88, 89,90, 93,94, 96,97, 98,99, 101,
102,103,105,110,111,112,113,114, 115,
116,117,118,120,121,122,123, 124, 125,
126,128,141, 142, 144, 145, 146, 147, 149,
150,151, 152,153, 154, 156, 157, 159, 160,
161,162, 163,166,167,168, 169,170,171,
175,177,178,179, 180, 181, 182, 183, 184,
185,187, 188, 189, 192, 193, 194, 195, 196,
197, 200, 216, 236, 237, 238, 239, 240, 241,
242,243, 247,248, 249, 252, 256, 257, 258,
261,264, 266, 267,278, 281, 282, 284, 285,
287,288, 296, 297, 298, 299, 300, 301, 302,
303, 304, 305,306,310, 313,316,317, 318,
320,322,323, 324, 325, 326,327, 328, 329,
330, 331, 333, 340, 343, 346, 347, 349, 351,
358,360, 362, 363, 364, 365, 368,370, 371,
381, 382, 384, 385, 386, 387, 391, 393, 397,
408,412,414

oclAsType, 358, 416

OclExpression, 116,117, 118,119, 120, 121, 122,
125,126, 250, 266, 268, 269, 270,271, 272,
274,276,280, 304, 306,308, 309, 310, 311,
325,336,349, 351, 353,361, 362,418, 419,
420,421

oclIsKindOf, 96, 416

oclIsTypeOf, 95, 104, 105, 107, 416

Operation, 29, 30, 31, 71, 72, 73, 74,75, 79, 80, 81,
82, 83,84,94,99, 111, 119, 259, 339, 358, 360,

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

Expressions
Processor

ocL
2.0

Index D

373,374,375,377
OperationCallExp, 119, 268, 269, 270, 271, 272,
276,335, 336,351, 352, 354, 355, 359, 360,
373,374,375,377,418,419, 421
OrderedSetType, 112, 341

P

parser, 141, 142, 384
OCL parser, 128

parsing, 120, 137,163, 168, 257, 261, 277, 296,
301,318,319, 320, 323,332,371, 386

Poseidon, 50, 51, 52, 54, 55, 56, 327, 364, 365,
370,375,379, 387, 428

PrimitiveLiteralExp, 123, 124, 289, 423

Processor, 2, 3,4,5,6,7,8,11,17, 20, 24, 40, 49,
50,110, 126, 144, 145,163, 166,167,168, 169,
176,177,178, 184, 188, 196, 197, 216, 236,
237,238, 240, 252, 253, 256, 296, 297, 298,
299,302, 313,316,317,318, 322,323, 326,
327,328,330, 331, 333,357,360, 361, 363,
364, 365, 368,370,371, 372,381, 382, 384,
385, 386, 387, 393,397,398, 414
functionalities, 4

production, 134, 217, 223, 224, 226, 228, 229,
230, 243, 248, 249, 256, 257, 258, 260, 261,
262,273,276,278,279, 281, 282, 284, 285,
286, 287, 288, 290, 292, 304, 306, 308, 310,
320,322

Property, 31, 44, 58, 59, 60, 61, 62, 63, 64, 111,
114,120, 125,273,337, 341, 342, 346, 350,
356,357,372,373,374,377,378, 380
property, 242, 272,273,274, 275, 276, 306,

323,336,356,357,372,420

PropertyCallExp, 120, 355, 356, 357, 358, 373,

374,377,378

R

Real, 17,31, 57,62,70,71,72,73,74,76,78, 88,
89,96,114, 123, 146, 242, 285, 287, 288, 303,
326, 328, 340, 343, 385,393, 394

RealLiteralExp, 124, 288, 289, 343, 423

Regular expressions, 132, 133

reject, 86, 276,416,418

result, 12,71, 72,90,92,103, 104, 105, 106, 112,
116,118,124,129,130,131, 137, 148, 154,
174,191, 196,197, 203, 217, 238, 242, 248,
257,258,268, 269,270,271, 277,300, 304,
305, 306, 309, 310, 311, 320, 322, 323, 355,
363,368, 380, 381, 386, 411

rule, 17,90, 94,97, 100, 134, 186, 187, 188, 189,
224,229, 243,256,257, 258, 260, 267, 278,
279, 284, 285, 286, 287,304, 375, 376, 408

S

SableCC, 213, 216, 217, 218, 219, 220, 221, 222,
223, 224,225,226,227,229, 231, 232, 233,
235,236,237, 238, 240, 241, 242, 243, 244,

Antonio Villegas

432

245,248, 249, 250, 251, 256, 259, 260, 262,
263,264,265, 267, 268, 269, 270,271, 273,
274,275,277,278,279, 280, 282, 283, 284,
285, 286, 287, 288, 289, 291, 293, 296, 297,
298, 299, 300, 304, 306,307, 308,310, 318,
320,321,322,323,385,397,414, 428

SableCC-Ext, 213, 216, 231, 238, 240, 243, 256,
297,298, 299, 304, 306,321, 397

self, 101, 108, 147, 242, 246, 303, 320, 363, 372,
373,376,377,378,379, 381, 385

semantic, 138, 141, 221, 237, 246, 257, 285, 300,
331,409,411

Sequence, 75, 76, 78, 80, 82, 83, 84, 87, 285, 292,
347,415

SequenceType, 112, 341

Set, 58, 75,76,77,78,79, 80, 81, 82, 84, 88,90, 92,
95, 96,98, 104, 105, 285, 292, 347, 358, 363,
379, 380,381,411, 415

SetType, 112, 341, 359, 380

skeleton, 243, 246, 247, 250, 251, 296, 298, 300,
304, 306,308,318, 321, 322

SMART, 172,173,174,175,176,177,179

String, 31, 42, 43,57, 62,70,73,74,76,78, 87, 88,
90,94,97,99,101,106,107,114, 123, 124,
145, 146, 235, 263, 265, 275, 284, 285, 287,
288,299, 304, 318, 326,327, 328, 329, 330,
333, 340, 344, 349, 361, 363, 364, 370, 376,
377,378,379, 380, 381, 385,416,417, 418,
419,420

StringLiteralExp, 124, 288, 289, 344, 345, 350, 423

T

tool, 2,4,5,6,7,19, 24, 27, 45,49, 50, 52, 53, 54,
55,57,110,111, 144,149, 152, 154, 155, 156,
157,158,159, 160, 161, 166, 167, 168, 169,
170,175,176,177,178,179, 180, 181, 182,
183,184, 185, 186, 187, 188, 189, 190, 192,
196, 197, 200, 216, 217, 236, 241, 251, 252,
297,298, 299,316,317,327,364, 365, 368,
370, 375,377,384, 385, 386, 387,397, 408,
409

tuple, 87, 88, 89,90, 114, 124, 125, 126, 284, 286,
287,290, 291, 341, 342, 349, 350, 415, 422,
423

TupleLiteralExp, 124, 126, 290, 342, 349, 350, 423

TupleLiteralPart, 125, 126, 342, 343, 349, 350

TupleType, 88, 89, 114, 126, 286, 341, 342, 350,
379, 380, 415, 422

Type, 26, 29, 30, 31, 42, 62, 63, 78, 85, 86, 87, 102,
103,104,105,111,113,116,118,162,179,
180, 181, 182,183, 185,188,192, 193, 194,
195, 235, 282, 299, 301, 325, 334, 336, 338,
341, 342, 346,360,373,374,375,377, 378,
380, 385,412

TypeCheck, 301, 312, 324, 325,361, 362

U
UML, 3,4, 6,13,14,15,16,17, 18, 22, 24, 25, 26,

Languages and Systems Department

Barcelona School of Informatics

Technical University of Catalonia

OCL| Expressions

2.8/ Processor Index | D

27,28,29,30,31, 32,33, 35, 40, 41, 42, 43, 44, 377,378
45,48, 50,51, 52, 54, 55, 56, 57, 58, 66, 69, 78, visitor pattern, 200, 205, 206, 209, 210, 213, 231,
89,90, 91,94, 95,97,98,99, 101, 105, 111, 235, 238, 241, 249, 307, 312, 321, 329
112,113,114, 115,116,118, 119, 120, 141,
142,145,146, 149, 152, 153, 154, 155, 159, W
160, 161, 163, 167, 168, 169, 170, 171, 175,
177,179,180, 181, 182, 183, 184, 185, 186, well formed, 188
187,188,191, 192, 193, 194, 195, 237, 285, Word. See Languages
297,299, 300, 301, 318, 323, 327, 333, 341,
346,363, 364, 365,368, 370, 379, 384, 387,
408,412, 426, 427, 428 X

Union, 130

USE tool, 145, 146, 147, 148, 149, 168, 181, 182, XML, 6,33, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51,
183,184, 191, 192, 196, 386, 387, 428 52,54, 55,56, 57, 60, 64, 140, 141, 142, 145,

152,153,155, 161,163, 168,170,177, 182,
186,193, 316, 327, 328, 330, 333, 335, 336,

\Y) 337,338, 339, 340, 341, 342, 343, 344, 345,
, 346,348, 349, 350, 351, 352, 353, 354, 355,
Varlable, 116, 117, 118, 122, 280, 290, 335, 337, 356, 357, 358, 359' 360, 364—, 365, 370' 372'
338,339, 352, 354, 355, 373, 374, 375, 377, 375, 376, 386, 426, 427
378,380,421, 423 XMIConverter, 56, 364, 365, 375, 376, 387

VariableExp, 117, 118, 357, 359, 373, 374, 375,

Languages and Systems Department

Antonio Villegas 433
Barcelona School of Informatics Technical University of Catalonia

