
Universitat de Barcelona

Departament de Matemàtica Aplicada i Anlisi

Norm Generation in Multi-Agent

Systems

by

Jan Felix Koeppen

Master’s Course in Artificial Intelligence

Master’s Thesis

Supervised by:

Maite López Sánchez

September 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41798884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

List of Figures 1

List of Tables 1

1 Introduction 2
1.1 Agents and Multi-Agent Systems 2
1.2 Case-Based Reasoning . 7
1.3 Agent Based Simulation . 10

1.3.1 NetLogo . 11
1.3.2 Swarm . 12
1.3.3 MASON . 13
1.3.4 Repast and Repast Simphony 13

1.4 Normative MAS . 14
1.4.1 Norm Types . 15

1.5 How to Generate Norms in MAS 17

2 Norm Generation Methodology 18
2.1 Agent Behavior . 19
2.2 Intersection Zone . 21

2.2.1 Feeder Lanes . 22
2.2.2 Exit Lanes . 23
2.2.3 Intersection Area . 23

2.3 The Norm Layer . 24
2.4 Norm Generator . 26
2.5 Cased-Based Reasoning System . 27

2.5.1 The Process in Detail . 28
2.5.2 Traffic Description . 33
2.5.3 Solution Generation . 35

2.6 Measuring System . 36

3 Software Design 38
3.1 Package Overview . 38
3.2 Core Classes . 39
3.3 Norm and CBR subsystems . 42

3

3.4 User Interface . 42
3.4.1 Case Base Access . 42
3.4.2 Breakpoint Control . 44

4 Experiments 47
4.1 Global Approach . 47
4.2 Partial Approach . 50

5 Results 56

6 Related Work 58
6.1 Conclusions . 59
6.2 Future Work . 60

Bibliography 60

4

List of Figures

1.1 The CBR Cycle. 9

2.1 Intersection Map . 19

2.2 Structural Component Overview . 20

2.3 Feeder and Exit Lanes . 22

3.1 Package Diagram . 39

3.2 Core classes. 41

3.3 Relation between norm and cbr packages. 43

3.4 Example case tracer output. 44

3.5 Example case solution output. 45

3.6 The Intersection Tracer interface. 46

4.1 Example traffic situation in global mode 48

4.2 Example Case Base Content in Global Mode. 53

4.3 Simulation data for the global approach. 54

4.4 Simulation data for the partial approach. 55

5.1 Runtime comparision of global and partial approach. 57

1

List of Tables

4.1 Case status after 3 million steps (global mode) 50

5.1 Comparison of State Space for Case Descriptions 57

1

1 Introduction

Norm emergence and normative system are topics of many current investigations in

the area of artificial intelligence. This work will investigate a combined approaches

of normative multi-agent systems with an experiences based norm generation sys-

tem, based on case-based reasoning. Important concepts that are being utilized

in this work are those of agency and multi-agent systems, agent-based simulation,

case-based reasoning and normative MAS. The following sections will introduce

these areas.

1.1 Agents and Multi-Agent Systems

The way software is designed and implemented has come a long way since the

first machine instructions where programmed using microcode. In conventional

software engineering, imperative architectures are prevailing, where an algorithmic

structure processes instructions, starting from some given entry point. The most

popular paradigm nowadays is object oriented programming, which is characterized

by such an imperative style. A software program based on OOP abstracts a domain

model by creating classes and instances of its containing objects, i.e. a car or a

customer. These classes contain different properties (fields), which model their

state, and methods, which allow another component to manipulate and or query

its state. Execution of such a program usually is based on hard coded instructions,

i.e. send a mail to all customers that have bought a car in the last 3 months, delete

every file that has not been used for some time or similar.

With the rise of concepts and approaches revolving around the area of artificial

intelligence, the need for a more differentiated paradigm emerged. In artificial

2

1.1. Agents and Multi-Agent Systems 3

intelligence, simulations that react strictly imperative are not primarily desirable.

Instead of making a software component execute a given action at a given time,

one would expect of an intelligent system, that is chooses its actions independently;

more autonomy is required.

Based on this idea, the concept of software agents was introduced. The term

agent goes back to the concept of agency. Agency most broadly describes the

representation of someone, who takes action according to the interest of someone

else. In this context, i.e. an estate agent buys and sells estate on behalf of his/her

client. A software agent therefore can be described that gets introduced into a

software environment, where it takes actions on the behalf of its owner.

The actions that are taken by a software agent are not assigned upon the agent from

an external source, but rather are deliberated by the agent itself as a result of its

perception of the environment. The agent concept describes therefore a component

that solely has two interfaces to interact and percept a given environment; sensors

that are used to measure the state of its environment and actuators that are used

to manipulate it.

Agents can be categorized by their internal complexity and the level of awareness

of the environment they live in. The most basic type of an agent is a simple reflex

agent. This type of agent is not capable of storing historical data, but rather

reasons based on a set of rules, that lets him perform a given action based on the

current state of the world. An example would be some kind of climate control

for a room; when the temperature measured by the agent’s sensors drops below

a certain level the agent activates his actuator, which causes the climate control

to start heating. As soon as second temperature level is reached and the climate

control is still heating, the agent instructs it to stop heating.

The formerly introduced agent architecture can be extended in several ways. For

example, the reasoning could make use of a world model, which enables prediction of

the outcome of certain actions, which therefore allow for better-informed decisions.

Usually it is the case, that an agent has only limited access to it’s environment’s

state, e.g. it only ’sees’ the area around it or -like the previously mentioned agent-

only has access to the current state. A model can allow an agent to keep further

4 Chapter 1. Introduction

track of the world by remembering areas that are currently not visible or events

that took place in previous steps. For example, an agent could reason that a car

that is behind itself and is now nearer than before is about to overtake.

Another important aspect in the reasoning architecture of agents is defined by

goals. Neither the simple reflex- nor the model based reflex agents maintain infor-

mation about goals that are desirable for the agent. Goals describe a more abstract

structure of the decision finding process. While a simple reflex agent has only rules

what to do when a certain event occurs, the goal based agent might change its

actions based on experiences made in the past - it ’thinks’ in a where-i-want-to-go

manner. This kind of reasoning introduces the possibility to evaluate certain states

to be desirable or undesirable and therefore lets one differentiate between different

plans that pass those kinds of states. Planning and searching are subfields of AI

that are dedicated to create such plans. When the agent additionally makes use

of utility functions, its structure is evolved enough to demonstrate high-quality be-

havior. The utility of a plan (a sequence of actions) can differ, even though they

have the same terminal state. One plan could be considered to be of higher utility

for example, when it inhabits a smaller amount of steps or reaches a goal in less

time than another one.

Following rus the environment in which a single or a multitude of agents reside can

be categorized by a number of different attributes.

• Observability : An environment can either be fully or partially visible. In fully

visible environments an agent is capable of sensing the states of every ’field’,

whether its adjacent to his current position or not. Examples for such kinds

of environments could be a backgammon game or the analysis of an image.

In contrast the environment is partly visible, if the observability is limited

by certain factors that block access to the perception of some area of the

environment. A real world example can be walls or corners, but there are

many more possible obstacles in observation. Examples for partially visible

environments are a game of poker, where the participating players do not

have knowledge of other players cards or the navigation of a car through a

city, where the agent only seed the traffic situation around it.

1.1. Agents and Multi-Agent Systems 5

• Determinism: An environment is deterministic if the same action at a given

state always yields in the same outcome. In a deterministic environment it is

therefore possible to predict the state of the world in the next step. When an

environment contains uncertainty, for example if the execution of an action

by the agent might not succeed, it is referred to as a stochastic environment.

Non-determinism is also prevailing if the environment is populated by other

agents that take actions on their own and therefore manipulate the world state

in upcoming steps. Environments that are manipulated by several agents at

a time but are otherwise deterministic are referred to as strategic.

• Episodic and sequential : When the decisions taken by an agent in a certain

environment do not depend on actions from previous steps, the environment is

called episodic. On the other hand, when decisions need knowledge of further

steps, the environment is called sequential.

• Static and dynamic: The behavior of static environments can be described as

being round based. When an agent needs some time before taking a decision

and therefore acting, a static environment waits until the agents has executed

its action for the round. If the environments might change its state while

the agents is deliberating, it is dynamic. In this type of an environment the

agents has to consider the length of its deliberation process and might update

its sensors before the found action is executed to assure, that the world is still

in an appropriate state for the action.

• Discreteness : The discreteness of an environment is determined by the way it

handles time and space. Discreet environments usually only occur in simula-

tions, where more difficult states are abstracted to discreet states. Real-World

environments are always continuous, meaning it has continuous time and state

spaces. For the different scenarios for the agents, different characteristics have

to be chosen. Because some attribute choices may inflict a higher simulation

complexity, it is generally advisable to reduce the complexity of the run-time

environment to the point that is necessary to run it. Especially character-

istics like continuousness and non-determinism raise the difficulty from the

agents-perspective enormously and require techniques to handle them.

6 Chapter 1. Introduction

While a single agent in a simulation can be useful for basic research and prototyping,

much more interesting applications are possible when several agents are interacting

in one environment at the same time. Popular examples for multi-agent simulations

include online-trading, disaster response or the modeling of social and political

structures.

The current state of the art of multi-agent systems is influenced by a great number

of other disciplines, such as philosophy, logic, game theory, economics, social sci-

ences and ecology. While these interdisciplinary influences bring the advantage of

bringing well-founded methodologies into application, it inflicts also the draw back,

that there are many different views as to what the field is about.

Running in dynamic environments is a major difference to classic programs. When

a program executes in a static environment there is no need to recheck and update

its knowledge about it and hence does not necessarily has to supervise its own

success. Execution in dynamic environments and making use of at least partly

reliable sensors and actuators -like it is the case in real world situations- introduces

uncertainty that has to be taken care of. There are many different techniques

available to cope with this, many originating in the field of probabilistic theory.

The agent has to take the possibility of failure into account and has to decide

whether the execution of some action is worth the effort at the given moment.

Another essential aspect of agents that run in a multi-agent system is sociability.

To communicate, the agents that live together have to speak a common agent-

communication language that defines standards on how to exchange information.

This is especially the case when the agents are designed by different parties. The two

most popular standards in this domain are FIPA-ACL (Foundation for Intelligent

Physical Agents - Agent Communication Language) and KQML (Knowledge Query

and Manipulation Language). Both of these languages have definitions about how

a certain message has to be formatted. Since those languages are both based

on speech act theory, developed by John Searle in 1960, they cover overlapping

definitions for certain performatives.

• Representatives : Transfer knowledge as perceived by one agent, e.g. the door

is open. The receiver interprets this kind of information as ”Agent a thinks,

1.2. Case-Based Reasoning 7

that the door is open”. KQML and FIPA-ACL call this performative ”tell”

• Directives: Request to another agent to perform a certain task.

• Commisives : Expression of intention of the sending agent, e.g. ”I promise to

open the door”.

• Expressives : The sending agent tries to express something about its mental

state, e.g. ”thank you”

• Declarations: Expressing the declaration of war or christening. Along with

the performative of a message in an agent communication language a mes-

sage contains information about communication parameters (sender, receiver,

subject), the message content and message meta-data. The meta-data of the

message can be used to define information about how to interpret the content

by making statements about the content language (e.g. LISP, KIF, RDF,

FIPA-SL), the according ontology (e.g. stock market, pharmacy or social

networks) or encoding settings.

The agents used in this work are simple reflex agents, that react on a predefined

pattern. The environment utilized is partial observable (an agent only has access

to attributes of his current position), non-determinism (since the action in the

same state may lead to different results), episodic (knowledge about MAS system

is maintained externally, static (execution is synchronous) and discrete.

1.2 Case-Based Reasoning

Case-based reasoning is a technique that solves new problems based on experience

from the past (Aamodt and Plaza [1994]). The idea is inspired by the natural way of

solution finding that is used by humans on a day-by-day basis. As an example one

can imagine somebody who tries to solve a problem with no given knowledge. This

person would start to experiment by applying random solutions to the problem and

observe the outcome. When one sees that an applied solution resulted in better

performance as others with a similar problem, he is likely to reapply the same

8 Chapter 1. Introduction

solution or a slightly improved version to reachieve the formerly good results or

even improve them further.

The same trial and error approach can be found in case-based reasoning. The

process consists of four essential phases:

1. Retrieve: Given a target problem, retrieve cases from memory that are rele-

vant to solving it. A case consists of a problem, its solution, and, typically,

annotations about how the solution was derived. For example, suppose Fred

wants to prepare blueberry pancakes. Being a novice cook, the most relevant

experience he can recall is one in which he successfully made plain pancakes.

The procedure he followed for making the plain pancakes, together with jus-

tifications for decisions made along the way, constitutes Fred’s retrieved case.

2. Reuse: Map the solution from the previous case to the target problem. This

may involve adapting the solution as needed to fit the new situation. In

the pancake example, Fred must adapt his retrieved solution to include the

addition of blueberries.

3. Revise: Having mapped the previous solution to the target situation, test

the new solution in the real world (or a simulation) and, if necessary, revise.

Suppose Fred adapted his pancake solution by adding blueberries to the bat-

ter. After mixing, he discovers that the batter has turned blue - an undesired

effect. This suggests the following revision: delay the addition of blueberries

until after the batter has been ladled into the pan.

4. Retain: After the solution has been successfully adapted to the target prob-

lem, store the resulting experience as a new case in memory. Fred, accord-

ingly, records his newfound procedure for making blueberry pancakes, thereby

enriching his set of stored experiences, and better preparing him for future

pancake-making demands.

Figure 1.1 gives an overview of the CBR cycle.

Case-based reasoning is a common reasoning technique in experts systems but well

fits the domain of multi-agent simulations. It works with the premise that similar

problems have similar solutions.

1.2. Case-Based Reasoning 9

Retrieval

Revise

ReuseRetain

Similarity
knowledge

Vocabulary
knowledge

Adaptation
knowledgeCase

knowledge

Description
of a New
Situation

Retrieved
Case

Suggested
Solution

Insuficient
Solution

Confirmed
Solution

Learned
Case

General
Knowledge

Figure 1.1: The CBR Cycle.

10 Chapter 1. Introduction

1.3 Agent Based Simulation

The area of Multi agent Based Simulation (MABS) area which brings together

researchers active within the agent-based social simulation community (ABSS) and

the multi agent systems community (MAS).

The focus of ABSS is on simulating and synthesizing social behaviors in order to

understand observed social systems of humans, animals and even electronics. Their

research employs development and testing of new models and concepts.

MAS, on the other hand, focuses on the solution of hard engineering problems

related to the construction, deployment and efficient operation of multi agent-based

systems.

As became clearer over the last years, these two communities have much to learn

from each other. Real human societies are generally self-organizing, highly scal-

able, robust and open, and the ABSS community has developed a sizable set of

techniques, observations and models that give insight into some of the mechanisms

that underpin these kinds of systems.

However, ABSS has not concerned itself with applying these techniques to solve

engineering problems. Conversely, the MAS community is concerned with creat-

ing working agent systems that solve real problems. This focus has forced many

to abandon experimentation with large-scale systems (thousands of agents) com-

posed of smart autonomous agents (e.g., complex adaptive learners) due to the

lack of traditional techniques (and/or computational resources) for managing such

complexity.

There are held MABS workshops, that try to support the dialogue of the two

areas. Collaborations in this environment embraced among other things sociological

issues such as cooperation, trust and power hierarchies, being broached from an

engineering perspective. Hales [2003]

The different foci of the two approaches have led to different research methodolo-

gies. The development cycle of traditional multi-agent systems -especially when

distributed- require technical overhead on the intrinsic agent logic. To design an

1.3. Agent Based Simulation 11

agent that is capable to join a certain MAS there has to be some agreement on the

communication protocol and platform (usually based on FIPA-ACL or KQML).

The ABS approach tries to reduce this overhead and concentrates on the search for

patterns in the interaction between individual agents.

A fairly big set of tools and frameworks have evolved around the different disciplines.

Some examples for the frameworks that emerged from MAS research are BDI1 agent

platforms, such as JADEX2 , Jason3 or the 3APL platform4.

The tools and platforms on the ABS side usually stand out by their rapid proto-

typing capabilities. Their goal is to allow the fast implementation of simulations

that allow the analysis of emerging behaviors in agent interactions. Popular ABS

simulation environments are NetLogo5, Swarm6 and Repast7 and MASON8.

The effort to set up a simulation in an ABS environment usually only requires the

definition of the agents behavior and some settings on the environment. Since ABS

are vastly being utilized in non-technical areas such biology, ecology, economics,

political science, sociology and others, the researchers usually lack a computer

programming background. For this reason, many ABS platforms try to ease the

agent implementation process by supplying graphical user interfaces to support

the specification of agent logic. Also, many require powerful analysis features that

remove the focus from a single agent to a more holistic perspective.

1.3.1 NetLogo

NetLogo is a project originated at the Center for Connected Learning and Computer-

Based Modeling at Northwestern University, Illinois, USA. It is particularly well

suited for modeling complex systems developing over time. Modelers can give

1A software model to program agents based on belief, desire and intentions
2see http://jadex.informatik.uni-hamburg.de
3see http://jason.sf.net
4see http://www.cs.uu.nl/3apl
5see http://ccl.northwestern.edu/netlogo
6see http://www.swarm.org
7see http://repast.sourceforge.net
8see http://cs.gmu.edu/ eclab/projects/mason

12 Chapter 1. Introduction

instructions to hundreds or thousands of independent agents all operating concur-

rently. This makes it possible to explore the connection between the micro-level

behavior of individuals and the macro-level patterns that emerge from the interac-

tion of many individuals. Its huge user base makes it one of the most widely used

platforms for ABSs.

Netlogos is design as an educational tool, since it is the easies to use of the set.

Its programming language includes many high-level structures and primitives that

greatly reduce programming effort, and extensive documentation is provided. The

language contains many but not all the control and structuring capabilities of a

standard programming language. Further, NetLogo was clearly designed with a

specific type of model in mind: mobile agents acting concurrently on a grid space

with behavior dominated by local interactions over short times. While models of

this type are easiest to implement in NetLogo, the platform is by no means limited

to them.

1.3.2 Swarm

Swarm was designed as a general language and toolbox for ABMs, intended for

widespread use across scientific domains. Key to Swarm is the concept that the

software must both implement a model and, separately, provide a virtual laboratory

for observing and conducting experiments on the model. Another key concept is

designing a model as a hierarchy of swarms, a swarm being a group of objects and

a schedule of actions that the objects execute. One swarm can contain lower-level

swarms whose schedules are integrated into the higher-level swarms; simple models

have a lower-level model swarm within an observer swarm that attaches observer

tools to the model. The software design philosophy appears to have been to include

software that implements Swarms modeling concepts along with general tools likely

to be useful for many models, but not to include tools specific to any particular

domain. Swarm was designed before Javas emergence as a mature language. Swarm

uses its own data structures and memory management to represent model objects;

one consequence is that Swarm fully implements the concept of probes: tools that

allow users to monitor and control any simulation object, no matter how protected

1.3. Agent Based Simulation 13

it is, from the graphical interface or within the code.

Swarm is implemented as a library written in Objective-C. The reason for this was

this languages lack of strong typing (in contrast to, e.g., C++). It supports the

complex-systems philosophy of lack of centralized control; e.g., a models schedule

can tell a list of objects to execute some action without knowing what types of

object are on the list. A strong request in the user community to have access to

the Swarm library by using Java code motivated the development of Java Swarm.

Java Swarm is designed to build a bridge to allow this access with as little change

as possible. Java Swarm therefore simply allows Java to pass messages to the

Objective-C library, with work-arounds to accommodate Javas strong typing.

1.3.3 MASON

MASON was designed as a smaller and faster alternative to Repast, with a clear

focus on computationally demanding models with many agents executed over many

iterations. Design appears to have been driven largely by the objectives of maximiz-

ing execution speed and assuring complete reproducibility across hardware. The

abilities to detach and re-attach graphical interfaces and to stop a simulation and

move it among computers are considered a priority for long simulations. MASONs

developers appear intent on including only general, not domain-specific, tools. MA-

SON is the least mature of these platforms, with basic capabilities such as graphing

and random number distributions still being added.

1.3.4 Repast and Repast Simphony

Repast development appears to have been driven by several objectives. The initial

objective was to implement Swarm, or equivalent functionality, in Java. However,

Repast did not adopt all of Swarms design philosophy and does not implement

swarms. Repast was also clearly intended to support one domainsocial sciencein

particular and includes tools specific to that domain. The additional objective of

making it easier for inexperienced users to build models has been approached in

several ways by the Repast project. These approaches include a built-in simple

14 Chapter 1. Introduction

model, and interfaces through which menus and Python code can be used to begin

model construction.

Repast Simphony is the successor of Repast. It employs a comfortable user inter-

face that allows unexperienced users to design agent logic and simulation behavior

in flow-chart like interface. The simulation setting can be modified in a broad

spectrum.

Repast Simphony has made a big step toward supporting users with tools to trace

the course of a simulation. The simulation environment delivers an easy way to

create graphical output of the running simulation, runtime control (like step by step

execution, debugging, live modification of agent setting etc.) and has interfaces to

export data to a broad range of statistical and mathematical programs like MatLab

and S. Interfaces to terracotta, Grass and many more are available as well (rep

[2009]).

The simplified agent logic, even though it is well done and allows to setup complex

agents, is not sufficient for the simulation employed in this work. For this case,

Repast delivers an API that can be accessed by using Java or Groovy, which gives

a developer the full flexibility of hand tailored logic implementations.

1.4 Normative MAS

In their introduction to normative multi-agent systems Boella et al. [2007], Boella

et al. give the following definition:

A normative multi-agent system is a multi-agent system together with

normative systems in which agents on the one hand can decide whether

to follow the explicitly represented norms, and on the other the norma-

tive systems specify how and in which extent the agents can modify the

norms.”

This chapter first describes the distinction among various kinds of norms and later

discusses their possible integration in normative MAS.

1.4. Normative MAS 15

1.4.1 Norm Types

The definition of a norm is interpreted individually in different areas. For example,

in sociology, a norm is a rule or standard of behavior shared by members of a social

group (Encyclopedia Britannica). According to philosophy, a norm is an authori-

tative rule or standard by which something is judged and, on that basis, approved

or disapproved (Columbia Encyclopedia). Examples of norms include standards of

right and wrong, beauty and ugliness, and truth and falsehood. According to eco-

nomics, a norm (from norma, Latin for carpenters level) is a model of what should

exist or be followed, or an average of what currently does exist in some context,

such as an average salary among members of a large group.

From the normative system perspective, the literature distinguishes several kinds

of norms:

• constitutive norms that regulate the creation of institutional facts as well as

the modification of the normative system itself.

• Regulative norms that describe obligations, prohibitions and permissions (both

Boella et al. [2007])

• procedural norms are rules governing the way in which political decisions are

made; they are not concerned with the content of any decision except one

which alters decision-making procedures. Procedural norms have long been

considered a major component of political systems, particularly democratic

systems.

Constitutive norms

Following the above description, examples for constitutive norms are such as:

“X counts as a presiding official in a wedding ceremony”

“this bit of paper counts as a five euro bill”

“this piece of land counts as somebodies private property”

16 Chapter 1. Introduction

Cited from Boella and van der Torre [2006]

Boella et al the role of constitutive rules is not limited to the creation of an activity

and the construction of new abstract categories. Constitutive norms specify both

the behavior of a system and the evolution of the system... Boella and van der Torre

[2004].

Norm revision by dynamics of system, certain actions add norms (e.g. amand-

ments): the normative system must specify how the normative system itself can be

changed by introducing new regulative norms and new institutional categories, and

specify by whom the changes can be done Boella and van der Torre [2004].

Today US government agencies are required to invite public comment on proposed

rules Lau et al. [2005] This is done through the digital government interface and

allow revisions to be traced.

Another aspect of constitutive norms is organizational and structural, that is, how

roles define power and responsibilities and how various hierarchies structure groups

and individuals. Not only new norms are introduced by the agents playing a leg-

islative role, but also that ordinary agents create new obligations, prohibitions and

permissions concerning specific agents (Boella and van der Torre [2004]).

Regulative Norms

As stated by Boella et al., regulative norms are not categorical, but conditional:

they specify all their applicability conditions furthermore legal systems are often

modeled using regulative norms, like obligations and permissions. However, a large

part of the legal code does not contain prohibitions and permissions, but definitions

for classifying the commonsense world under legal categories, like contract, money,

property, marriage.

Regulative norms express permission, rights and powers, for example access rights

or voting right if you are resident for more than 5 years or born in the city for

Luxembourg. Another example is for creating an online library account on the

Paris internet site, a parents authorization is necessary if you are under 18 years

old.(Caire [2007])

1.5. How to Generate Norms in MAS 17

Procedural norms

Procedural norms can be distinguished by two kinds “objective procedural norms

are rules which describe how decisions are actually made in political systems; A

systems objective procedural norms are a primary determinant of the content of

political decisions in that they specify who actually makes decisions, who can try to

influence decision makers, what political resources are legitimate and how resources

may be used. Subjective procedural norms, on the other hand, are attitudes about

the way in which decisions should be made .

1.5 How to Generate Norms in MAS

The following chapter will explain how the mentioned techniques can be combined

to build a flexible multi-agent system that employs norm to reach certain mutual

goals.

Chapter 2 will describe the employed methodology. Details about the CBR setup

and the simulations environment will be explained here. Chapter 3 gives a brief

overview over the software design aspects of the implementation and introduce the

graphical user interface. Chapter 4 follows the steps of the experimental phase

while Chapter 5 compares and analyzes the experimental results. Finally, chapter

6 concludes the work, draws parallels to related works from the area and closes

with a section about future work.

2 Norm Generation Methodology

A popular approach to generate norms in multi-agent systems is norm emergence.

In norm emergence the agents experiment with the outcome of their actions in

an unsupervised manner to gain knowledge about what decision is optimal in any

given situation. When - after the simulation is running for some time- the learning

process of the agents yields to some common behavior amongst the agents, this is

called norm emergence. This paper, on the opposite, is exploring the approach of

supervised learning.

The scenario that underlies the supervised learning architecture is an intersection

that is populated by car agents, which try to traverse the intersection. The desired

resulting set of norms should allow for fluid car traffic with as few as possible

collision amongst the traffic participants. In order to achieve this result some

architectural building blocks are necessary:

• Car agents are the agents that are spawning on the entry points of the inter-

section and start moving toward their desired destination.

• The intersection zone is a square matrix, which contains two intersecting

roads. The roads have one lane in each direction and intersect in the middle

of the matrix.

• The norm layer serves as a communications infrastructure between the en-

vironment and the cars. The car agents have access to the norm layer and

consult the norms that the norm layer sets for a given square on the intersec-

tion.

• The norm generator is an interim piece between the norm layer and the case-

based reasoning system. It’s purpose is to make allow for more flexibility in

18

2.1. Agent Behavior 19

Figure 2.1: Intersection Map

the simulation. This will be discussed in detail later.

• The case-based reasoning system observes the current traffic situation and

determines the appropriate norms. The norms get then communicated to the

norm layer, where they are picked up by the agents.

• The measuring system is an additional part of the system that keeps track of

the fluidness and general condition of the current traffic. Other components

of the architecture, like the CBR subsystem, access the measuring system to

gain information of the success of applied norms.

Figure 2.2 shows a structural overview over the components and their interactions.

In the following sections, those different parts of the simulation set up will be

explained in detail.

2.1 Agent Behavior

In this scenario the agent behavior is simplified to the basic task of moving from one

point to another and acting according to the norms generated by the underlying

20 Chapter 2. Norm Generation Methodology

Car Agents

Intersection Zone

Norm Layer

Norm generator

CBR System

M
ea

su
re

m
en

t S
ys

te
m

Figure 2.2: Structural Component Overview

norm system. Car agents are getting spawned into the system at one of the entry

points, which are located at the beginning of each lane on the intersection scenario.

After one car agent is disposed on an entry point, it chooses a certain exit point as

a destination. The choice for the exit point is deliberated by a random function.

On every step of the simulation the car agent will try to advance one square into

the direction of his chosen destination. The car agent has access to the norm layer,

which gives the agent feedback on whether he is allowed to move in this step or

not. When the norm layer sets a norm that prohibits the agent to advance, he will

remain at his current position until the norm layer changes the norm and he can

proceed on its way.

The only way for an agent to leave the simulation is by entering an exit point or

when it occupies one square at the same time with another agent. The latter is

counted as a collision and the car agents will be removed from the field on the next

step.

The car agents themselves disregard one another, they will proceed their way even

if another car is straight in front of them or is approaching the same field from the

left or the right. Even though a collision might be probable, the responsibility to

2.2. Intersection Zone 21

avoid them is upon the norm system and its extensions.

The routing of the car is determined by the car itself by following the run of the

appropriate lanes. After the car has chosen a destination, it moves in his lane until

he reaches the intersection area. Once arrived it chooses the point where it has

to turn. When his desired destination requires a right-turn, it does this on the

first field of the intersection to stay on the right side of the street. If his desired

destination requires a left turn, it will choose its turning point to be on the second

field of the intersection. With this behavior, it always obeys the rules of right side

traffic.

2.2 Intersection Zone

Since the agents act independent, the agent behavior is to a great part determined

by the way the norms are applied to the environment. When analyzing the traffic

flow, different zones of the map can be identified by the way agents act. The first

area type is comprised of the feeder lanes, where the agents are heading toward the

center. On these feeder lanes the only possibility for collisions to occur is when a

car in front stops and a following car keeps driving without breaking. In this event

the cars eventually will end up on the same field and therefore they will collide.

The second area is the intersection area. The situation and interactions between

the agents are more sophisticated, since collision might me caused by a far broader

spectrum of events. Additionally to the previous condition, where a car in front

may break and the following car keeps driving, a collision also may be caused by

another car that comes from the sides and runs into a car that is halting on that

field or two cars collide while approaching the same field. Another problem that

may occur here is the ’deadlocking’ of traffic situations, where cars can constellate

in a circular traffic situation where only breaking avoids a collisions but by breaking

series of other cars behind are forced to break as well which might keep the target

field of the first car in the row blocked. Such a situation cannot be resolved until

one member of group causes a collision and the traffic can resume to flow. Finally,

the third and last area of distinct traffic behavior can be expected in the exit lanes

(the lanes that head from the center to the border of the map). Because the end of

22 Chapter 2. Norm Generation Methodology

the exit lanes will never be blocked, the cars are never forced to break and therefore

in these areas no application of norms is necessary.

Figure 2.3: Feeder and Exit Lanes

In the search for norms, different methodologies are feasible. One possibility is

to always consider the whole traffic situation and search for the optimal norms to

apply. This means that every position of every car is taken into account and later

a similarity between different scenarios is determined and a set of norms that was

applied previously with good outcome can later be reapplied. However, considering

the whole traffic situation inflicts a big state space since there are many possible

traffic situations.

When applying this approach of a global scope for norm generation, it is important

to try to reduce this state space as far as possible and the previously knowledge

about the different areas and their characteristics can give useful hints at this task.

The following list gives an overview of the distinct map areas.

2.2.1 Feeder Lanes

As mentioned before the feeder lanes display a rather simple traffic behavior. Col-

lisions can occur here, because the end of the feeder lanes lead into the intersection

2.2. Intersection Zone 23

area. Since it will be required for the norm generation system to temporarily block

cars from moving inside of the intersection area in certain situations and therefore

backlog may occur. This backlog can lead to the described behavior of rear-end

collisions caused by blocks of the feeder lanes. Avoiding these kinds of collisions is

trivial: stopping subsequent cars from keep driving when a car in front has ceased

to move. This area therefore is of less interest for the research of automatic norm

generation, since the optimal norm is obvious. If the control of this part of the traf-

fic can be encapsulated and later ignored by the central norm finding mechanism,

the state space of the traffic that is needed to be observed can be greatly reduced.

2.2.2 Exit Lanes

The situation in the exit lanes is even simpler as the situation in the feeder lanes.

As opposed to the feeder lanes, where backlogs can cause collisions, the exit lanes

lead to the border of the map. Since cars are not blocked from leaving the map no

backlogs and hence no collisions may occur. These exit lane areas can therefore be

ignored by the norm generation system and hereby the state space for the different

traffic situations can be reduced further.

2.2.3 Intersection Area

The intersection area comprises the centric part of the map. In this area, a broad

range of traffic situations are prone to occur and finding the optimal policy for fluid

traffic management is challenging. As mentioned before, there are two basic types of

problems, the avoidance of collisions and as well the avoidance of blockages. While

collisions are easier to predict, blockages need some more sophisticated technique

to be found and prevented.

On the part of the collisions there are two different atomic situations that may

cause collisions. Equal to the situation in the feeder lanes, the car ahead of another

car may stop and a following car can crash into its back. The second possibility

is when two cars approach the same field from orthogonal directions. While the

former(rear-end collisions), can occur almost on the whole map, the latter only can

24 Chapter 2. Norm Generation Methodology

occur on the four fields of the intersection area. Hence, the fields that are relevant

for the prediction and prevention the orthogonal collisions are the fields on the

intersection are as well as the fields that might feed cars into the intersection.

The scope for the second problem -circular blockages- is limited to the intersection

area (marked in blue above), since the fields of the exit lanes do not block at all

and possible blocks on the feeder lane do not affect cars that are already on the

intersection. A norm generation system that is able to reliably keep fluid traffic has

to be able to observe at least the fields of the intersection (blue) to avoid circular

blockags and in addition the spout fields of the feeder lanes (red).

Now that the observation space for the norm generation system is isolated, there

are several options on how to extract norms for this sector. The simulation will

experiment with two genuinely different approaches for this, the first being the gen-

eration of norms that considers the whole observation space as one traffic situation.

This approach is referred to as the global norm generation.

As opposed to this, there exists another possibility to generate the norms, which

is referred to as the partial norm generation. In the partial mode, the content of

the observation area is not considered as a whole, but is split apart based on the

perspectives of the individual cars.

2.3 The Norm Layer

The norm layer serves as a layer between the agents and the CBR system. It holds a

certain norm type for the whole map, which either permits or prohibits a car agent

to move. The norm types are categorized by two basic types, static and dynamic

norms. The dynamic norms are only used in the intersection area, while the static

norms are present on the surrounding fields.

Everywhere outside of the central area, the norm layer contains static norms. In

the process of applying norms to the norm layer, only the dynamic norms in the

center area might be modified by an external component such as the CBR system

while the fields with static norms are blocked from external access.

2.3. The Norm Layer 25

Static norms can either block or allow traffic, depending on its type. On the above

depiction, the fields outside of the center painted in green are static norms, that

never allow car movements. The ones in grey are static norms that always allow

the car agents to move.

The sub division between static and dynamic norms is transparent to the car agent.

The agent will only receive a true or false notification for its movement request

without having knowledge about the type of the underlying norm.

To address the previously mentioned issue of encapsulation of norm generation in

the feeder lane area from the norm generation system, the norm layer may overwrite

the existing norms in this area on its own behalf. While dynamic norms in the

intersection area passed to the agents as they are, without further reviewing the

outcome, the norm system may choose to return another value to an agent that

currently resides on a feeder lane. The norm layer therefore is responsible to avoid

collisions on the feeder lanes that lead to the center area and therefore liberates

the norm generation system from this task. The norm subsystem checks for the

car agents that are heading toward the center. If there is a car in front, which is

blocked by its current norm, the car behind will also receive a denial notification

for a movement request to keep it from moving and avoiding a collision with the

car in front. With this technique, no collisions occur on the feeder lanes, the actual

norm generation system does not have to cope with this area and the center area

gets a constant car supply.

To achieve this kind of behavior the norm layer makes use of a norm template which

inhabits one norm for every field. On every round, before any agents starts moving,

the norm layer receives a sub with values for the dynamic norms in the center from

the norm generation system and sets the values in a new norm map, according to

the previously mentioned template. Finally, it checks for the mentioned situations

on the feeder lanes to prevent car collisions there and afterwards it is prepared to

receive norm queries from the car agents and respond to them.

26 Chapter 2. Norm Generation Methodology

2.4 Norm Generator

According to the described differences in norm generation -the global and the par-

tial approach- the norm generator serves the function of encapsulating the different

requirements and behaviors from the higher layers. The main difference between

the two approaches lay within the handling of the underlying CBR system. When

utilizing the global approach - those where the CBR system takes the whole traf-

fic situation on the intersection as one single traffic description - and the partial

approach - where the CBR system extracts a traffic description for each car individ-

ually, based on its current point of view. Both execution methods differ essentially

in the way they have to be executed. While the global norm only requires one CBR

solution request per step, the partial execution needs to execute as many CBR re-

quests as there are cars currently present in the observation area. The same applies

for the evaluation phase of the CBR system, where the global execution mode only

requires the evaluation of a single case after every step, while in the partial mode

does as many evaluations as solutions have been applied in the previous step.

The second difference in the handling of the two approaches is those of the break

points. The break point system has been introduced to aid in the analysis of the

CBR behavior and is managed by the norm generation system. The breakpoints are

designed to allow pausing the execution of the simulation based on certain criteria.

The different types of break points are:

The modification for the activation and deactivation of distinct breakpoints is ac-

cessible over a specially designed user interface. (see section 3.4 for details)

The handling of this different kinds of breakpoints also introduces a distinct appli-

cation logic in the simulation execution.

To allow these different methods to coexist in the same simulation environment the

norm generation layer is necessary. Its purpose is to encapsulate the differences

between the the execution modes.

2.5. Cased-Based Reasoning System 27

2.5 Cased-Based Reasoning System

The CBR system is responsible for finding the optimal norm set. It does so by

applying random sets of norms to the intersection area and observing the resulting

traffic situation. In this process, it works in close cooperation with the norm layer

as well as with the measuring sub system.

The CBR component is designed to allow different modes of execution to allow

for the application of both approaches that will be investigated in this work. The

CBR system is designed in a flexible way and can easily be configured to work on

any subarea of the map. When the component is initialized it takes the relevant

parameters and creates the bases for the case storage.

On every turn, the behavior of the CBR system is as follows:

1. The CBR system is supplied with a sample of the relevant area of the map

(the traffic situation), which contains a set of cars with their positions and

directions.

2. The CBR system searches in its case base for an already existing case with

a case description that is similar to the given traffic situation. Depending on

the current mode, the given sample might be rotated to try to match it to

the current situation. 1

3. At this point two things might happen:

a. An appropriate case has been found and is passed for further processing.

Since every case contains a set of solutions, these solutions are crawled

to find the optimal selection to adapt it to the traffic situation

b. When no appropriate case could be found, a new case is generated and

a random solution is applied and associated.

4. After the relevant solution has been selected and patched into the norm layer

the car agents will be instructed to move according to their respective norms.

1Depending on the current execution mode -global or partial cases- this might affect one single
case/solution or several (one for every car).

28 Chapter 2. Norm Generation Methodology

5. In the next execution round, after all cars have made their moves, the traffic

situation is analyzed in terms of occurred collisions. The results are passed

to the solutions objects which evaluate their own rating score. 1

2.5.1 The Process in Detail

The different characteristics of the two execution methods of the simulation require

a slightly different handling by the CBR system. While the global mode conceives

the central traffic situation as a whole and does not implement ambiguities, one

applied solution will always lead to the same outcome, hence it executes in a de-

terministic manner. This characteristic brings some modification for the global

execution mode, which affects the way solutions are generated and evaluated. As

for the partial execution mode, the traffic situation is split into smaller overlapping

scopes that can occur in different combinations. Applying a solution as part of a

greater set of solutions for the whole intersection area can lead to different outcomes

every time one and the same solution is applied, depending largely on the solutions

that are applied to other cars that reside on a collision course with the other car.

This condition and its infliction for the simulation design is explained in detail in

the according section for the partial execution mode.

Global Execution Mode

As stated above, considering a traffic situation as a whole brings with it the ad-

vantage of non-ambiguous cases. According to Figure 4, the relevant area for the

case description consists of 8 fields. Fields on the map in general can have a set of

distinct states. They can be empty (no car), there can be a car heading in one of

four directions (ignoring the knowledge about the traffic flow) and they can host

a set of at least two cars that comprise a collision. The state space for the car

directions can greatly be reduced if the knowledge about the car routes is applied.

The maximum possible directions a car can have are two for the intersection area

and one on the feeder and exit lanes.

Since collided cars will be removed on the next step, they will not influence another

2.5. Cased-Based Reasoning System 29

car that approaches the said field on the next step. Hence the collision state can be

ignored in order to prepare traffic descriptions for the CBR system and the state

space is further reduced.

While examining the four fields in the centric intersection area individually, they

allow for three different states: no car, car heading in direction of an exit lane and

car heading in direction of another field of the intersection area). The four fields

that are the spout fields of the feeder lanes allow for two different states; no car

and car heading in direction of an intersection area field.

This constellation allows for 24 ∗ 34 = 1296 different states of the observation area

as a whole. This number is still very high to form the set of cases for a CBR

system, since the performance of the system depends largely on the reuse of made

experience.

A second measurement to further reduce the state space and hence the number

of possible case descriptions is to implement rotational invariance. If the traffic

description can be rotated to match another one, so that the states of the fields are

on the same position and their direction as well are rotated accordingly, a different

traffic situation can be considered equivalent. The according solution that gave

results for the original case will lead to the same results when rotated by the same

amount when applied to the rotational equivalent situation. The condition can be

exploited by merging one case and its traffic description with its three rotational

equivalents and share the gained experience of the applied solutions between them

to increase case re-use.

With the combined optimization the state space for the intersection area finally

can be reduced to 24∗34

4
= 324 individual combination possibilities.

As stated above, the second crucial component of the CBR architecture is comprised

by the solutions. Solutions are sets of norms that can be applied to the norm layer

and produce some outcome, which is measured by the number of collisions it caused

and number of cars it blocked. When a given solution is applied and results in

collision free traffic, it should be evaluated with a good score. Solutions that do

produce collision on the other hand, should be marked as improper, so that they

won’t be applied in future scenarios. Apart from collisions, the number of cars that

30 Chapter 2. Norm Generation Methodology

is blocked by norms is also an important part of the equation. A solution that

blocks all the cars in the intersection reaches the goal of collision minimization but

does not allow for traffic to occur. It is desirable to find a solution that evades

collisions and blocks as few cars as possible. For this reason the number of blocking

norms applied by a solution is part of the evaluation function. Herein the avoidance

of collisions is the first priority, after the minimization of block norms as a second.

Hence the evaluation function is designed as follows:

Evaluationglobal = −(5 ∗ col + b) (2.1)

Where col is the number of collisions occurred in the step and b the number of

blocking norms. Note that the measuring system (see 2.6) counts a collision between

two cars not as one, but two distinct collisions. This is done to distinguish collisions

between two and three cars. Hence, a solution that caused a collision will have an

evaluation of at least 2∗−5 = −10. The coefficient 5 therefore is chosen to give col

10 times the influence in comparison to b2. Since the observation area comprises a

eight fields, 10 norms never can be applied and any number of applicated norms is

to be prefered over a collision.

This function does not involve any form of history over a set of executions, this is

conditioned by the fact the global execution mode works in a deterministic way - a

solution that reached a certain score at one point will receive the same score every

other time it will be applied.

The total number of possible solutions that can be appended to a case is defined by

two factors: the number of cars in the case traffic description and a static constant,

that limits the number of solutions to a total maximum. The latter is defined as

5 as a trade off between flexibility (more solutions=greater variance) and length of

the learning phase (more solutions to experiment with=longer learning phase).

NumberOfPossibleNormCombinations = (2c)

2Collisions are calculated for every car separately, the minimum number of collisions per round
therefore is two

2.5. Cased-Based Reasoning System 31

Where c is the number of cars on the observed area. This function is limited by the

solution count maximum, which will be set to five to have a rapid transition out

of the learning phase and also allow for a sufficient number of different solutions to

find one that is suitable.

How solutions are build

Since the general situation is, that a traffic situation does not have cars that are

about to collide, a solution that does not restrict the traffic at all will be the opti-

mum in the most cases. This knowledge is used the tweak the solution generation

process by always trying to add and apply such a solution first. When a solution

scores SolutionEvalglobal = 0 (this can only be the case with solutions without

blocking norms), the case will be closed and end its learning phase. From now on

every time the case reoccurs, it will apply the empty solution.

The behavior in situations where no blocking norms are applied is different in

the aspect, that the first five times it is applied, it will always generate a new

random set of norms. The number of norms also is chosen randomly between

1 ≤ norms ≤ (numberofcars − 1). After it has been executed five times (and

hence has five associated solutions), it will choose the very solution with the best

score, delete the rest and flags itself as closed.

The simulation employs two different basic phases. The first one is the learning

phase, which is the timespan in the course of the simulation where the cases are

experimenting with their solutions. After the cases were executed a sufficient num-

ber of times, they will end their learning phase and go over to the test phase,

where they will exclusively make use of their best known solution. The definition

of learning and testing phase in this scenario differs from the common definition in

that the phase does not refer to the whole simulation, but to single cases. Hence,

many cases can already have reached the testing phase and the system may work

in a desirable fashion, but there are still cases that keep experimenting until they

gained sufficient experience.

Therefore the transition from the learning phase to the test phase is fluent. While

there still are cases in the case base that are not closed, collisions still are prone to

happen. This is especially a challenge in relation with cases that occur infrequently.

32 Chapter 2. Norm Generation Methodology

When a given traffic situation occurs every s steps on average, the case will take

s ∗maxSolutions steps on average to terminate its learning phase.

Partial Execution Mode

The approach for the implementation of the CBR handling for the partial approach

is different in a set of aspects. Firstly, the traffic situation will no longer be re-

garded as a whole, but extract a set of subareas of the map and consider them as

distinct traffic situations. After the norm generation has been completed for these

situations, a norm map is generated from the results of the partial CBR requests.

This inflicts some characteristic changes in comparison to the global norm gener-

ation approach, which will be discussed below. The following lists a step-by-step

overview over the process:

1. The norm generation system will extract a sub-area of the observation area

for every car on every round.

2. It will consider every single of these collected subareas as a distinct

traffic situation and requests solutions for them from the CBR system.

3. After the CBR system responded to every request (i.e. responses are single

norms), the norm generation system will build a map of norms and apply it

to a norm map. (The global approach does not have to do this, since the

output of the CBR system already is the norm map in the required size)

4. A reference to the used case solutions in the CBR system is stored, for later

evaluation.

5. After the norm generation system finishes its process, the car agents receive

clearance to make their moves, according to the norm map settings.

6. After cars have moved, the observation area is checked for collisions. When

the cars involved in collisions have been identified, the solutions stored in the

reference list (see step 4) that were involved in the norm generation for these

cars get evaluated accordingly. The case solutions that did not produce a

collisions get evaluated as well, but in a positive manner. (The difference to

2.5. Cased-Based Reasoning System 33

the global approach in this step is that multiple case solutions are involved,

not just a single one.)

As can be seen in the list, the main difference between the handling of the global

and the partial approach are the different cardinalities between steps and norm

requests. While the global approach has a 1 : 1 cardinality, the partial approach

has a 1 : n cardinality with n being the number of cars. The modifications to the

design of the partial approach to handle these difference are as follows:

• Every step requires n CBR requests instead of one.

• Every step requires n evaluations for the applied case solutions, instead of

one.

• The norm generation system has to construct a map of the norm results

• The application of this norm map is not deterministic anymore.

• Case solutions have to consider this non-determinism in their evaluation func-

tion, i.e. they have to consider a number of past experience (instead of only

the last execution in the global approach.

• The size of the traffic description has to change according to the scope of a

car.

2.5.2 Traffic Description

The choice of the point-of-view style design in the partial approach has been made

to emulate the natural way cars in traffic behave. We assume here, that there is a

driver inside of a car agent that looks in driving direction and has a certain range of

sight. The exact range of sight which combines simplicity and functionality will be

subject of the experimentation phase. It is therefore required that the architecture

for the traffic description allows for easy changes in the experimentation phase.

To allow this to happen the system will employ a two component approach which

consist of the traffic description and a range of sight mask. The traffic description,

34 Chapter 2. Norm Generation Methodology

or also traffic situation, refers to the current population of agents and their position

on the map. A traffic description contains the positions and directions of these car

agents. The size of the traffic description is defined as a fixed matrix TD with the

size of 5 ∗ 2 entries.

TD =

(
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

)

where aij ∈ C ∪ ∅

with C being the set of cars in the simulation. When executing, the norm generation

system fills this matrix with values for the cars in the 5*2 fields that lay in front of

the car.

The second component is the range of view mask M .

M =

(
m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

)

where mij ∈ {0, 1}

Before a simulation is executed, M will be initialized with a set of values 0 or 1,

where 0 will cause the system to remove the related element in TD, which will

lead the CBR system to simply ignore this field and only consider the fields of TD

where the according value in M is 1.

TD′ = mask(TD, M)

Since the matrices now don’t have the same height as width anymore, the rotation

mechanism of the global approach cannot be applied anymore. Instead, the traffic

description will be rotated before they are converted into traffic description with

orientation to north. In this process, the directions of the cars in the matrix have

to be rotated as well to maintain relative direction to the viewpoint of the car.

2.5. Cased-Based Reasoning System 35

Cars in C can have one of four states, which are determined by their directions.

Another state for the field can be its emptiness, summing the total number of

possible field states to five. Equally to the global approach the collision state can

be ignored for the named reasons. The complexity of the state space of TD′ is

therefore defined as

complexityTD′ = 5mf

With mf being the number of unmasked fields in M (i.e. containing 1).

This approach renders the rotation of cases in the CBR process unnecessary, since

the cases are already equally oriented before they enter the CBR system.

2.5.3 Solution Generation

The situation in the partial approach is different to the global approach in terms

of norm generation by the fact that the CBR system no longer responds with

a complete map of norms. Every request of a solution in the partial approach

contains only a single norm, which have to be combined into a single norm map

that fits the input of the norm layer. The received norms are placed on a norm

map template on the spots where the cars are residing that were the base of the

traffic description generation. The system therefore resembles more of a knowledge

base for the single car agents. While a solution request before gave a result that

is best for the whole map, the system now outputs solutions that are best for the

individual cars. A car agent can expect that his assigned norm on the norm layer

(which is the only thing it sees) reflects the best decision it can make in any given

situation. The optimizations from the global approach also are not applicable here.

The CBR system will only return a single norm in the partial mode; hence there

are only two possible solutions for every case: a blocking norm or a non-blocking

norm. To account for this fact, the process on the CBR side is designed as follows:

1. The CBR system receives the traffic description from the norm generation

system

36 Chapter 2. Norm Generation Methodology

2. The CBR system searches for a matching case but does not rotate the cases

like in the global approach.

a. If a case has been found, select it.

b. If no case has been found, a new case is created and two solutions

are created, one with a blocking and one with a non-blocking

norm.

3. Scan the selected case for the solution with the highest score and return it to

the norm system.

As mentioned, the non-determinism brings with it different requirements for the

evaluation of solutions. Since - unlike in the deterministic case - we can no longer

assume that the application of one solution always leads to the same result, the

evaluation function should be able to consider some knowledge about a greater set

of executions. The according evaluation function is defined as follows:

Evaluation′partial =
((averageScore ∗ ac) + currentScore)

ac

With ac being the total application count. score is generated as described in equa-

tion (2.1). This allows the solution selection function to choose the one that has

performed best over the entire course of the simulation. However, this function has

a severe impact on the performance of the entire process that it will be subject of

experimentation in the experimentation section.

2.6 Measuring System

The key metric for the simulation is number of collisions. The performance of the

two different approaches as well as variations of them will be judged by the number

of collided cars over time. Since the simulation’s performance will rise over time, a

sliding window metric is to prefer over a total count of collisions metric. For this

reason a metrics/measurement system will be implemented whose task will be to

2.6. Measuring System 37

keep track of this metric. It will record the ∆ of collisions in every step and sum

them up for the last n steps.

Along with the collisions other interesting metrics are those of the total number

of blocking norms applied. Furthermore, an indicator for the status of the CBR

system for the the total number of cases and solutions residing in the case base.

Since the latter two are not continuously rising they will not relay on the sliding

window system but will always reflect the current state.

The mentioned four values will be supplied to the runtime environment of Repast

Simphony, where they will be picked up and reused in two ways. Repast Simphony

can be configured to access this data in terms of a data set. Later, the runtime

environments interface allows the attachment of other elements to a data set. In

this scenario, the data set is used to display a constantly updated chart and a file

output. The data in the file output will be used to generate diagrams and tables

for the analysis in the experimentation phase.

3 Software Design

The described components from the methodology chapter reflect the architecture

of the simulation environment. The architecture contains a package for every men-

tioned building block: the norm subsystem (norm layer and the two different norm

generators), the CBR subsystem, the metrics subsystem and several others that

will be introduced in this chapter.

3.1 Package Overview

Figure 3.1 gives an overview of the package structure. The base package for the

simulation is the intersectionJ package, with a row of subordinate packages. Their

contents are as follows:

• intersectionJ: general utility classes, like the matrix class that is used through-

out the project, the agent classes and several support classes for the interac-

tion with Repast Simphony.

• norms: The static and dynamic norms, the two norm generators (global and

partial norm generator) the norm layer and several helper classes for the norm

generation.

• cbr: The contents of this package are made up by the four key elements of

the cbr system (case base, case, case description and case solution) and a

caseSolver, which is used for random norm generation in the global approach.

• test: jUnit test cases that were used in the development phase.

• gui: the traceFrame class which contains the user interface.

38

3.2. Core Classes 39

Figure 3.1: Package Diagram

• style: this package contains classes that are used to configure the visual output

generator of repast.

• metrics: the slidingWindowMetric class for the measurement of simulation

performance.

3.2 Core Classes

To get an overview of the relations between the core classes, see diagram 3.2

The architecture of the simulation environment is too complicated to implement

via the GUI-editor of Repast Simphony; therefore, the manual mode will be used

for the implementation. The manual mode allows the interaction with the Repast

Simphony runtime environment by supplying a user-defined set of Java (or groovy)

classes. For the interaction a custom context generator has to be provided that

creates a context with the necessary components. In automatic mode this would

have been done entirely by the Repast Simphony runtime environment based on

a configuration file (model.score). With repast comes a set of predefined compo-

nents that can be used in the context creation. The most important ones are the

predefined perspectives. The intersection simulation does not require the use of

40 Chapter 3. Software Design

continuous coordinates since it uses a grid with discreet (integer) coordinates. The

internal coordinates therefore will be mapped to a simple grid perspective.

The second important modification to the context builder is the creation of agents.

The simulation setup requires a distinct handling for the creation of car agents and

the orchestration of the partial norm retrieval phases on every step. The component

that does all this handling is the scene manager FSM. Enabling this class to receive a

call on every simulation step before the agents are able to move requires a special set

up, since only agents are being called by the Simphony scheduler. When employing

the scheduler there can be unpredictable variations on which agent gets called first

on every step. Even though the scheduler allows some control over the priorization

of agent calls by adding scheduler annotations, it is preferable to handle agent

execution manually to always assure that the norm layer is ready before the first

agent moves. For this reason, the FSM class is masked as an agent and added to

the context at initialization. Later it will create agents randomly and giving them

the clearance for movement manually, when the norm generation procedure has

terminated.

As a last component, the context is supplied with a value layer. Value layers in

Simphony serve the purpose of colorizing the map. This is used in the simulation to

graphically highlight certain fields on the map. The applied value layer is modified

by classes of the style package, which colors fields of the map in relation to the

norm that is currently active. The color codes are white for non-blocking norms,

red for (dynamic) blocking norms and green for static blocking norms. The final

result of this color coding can be seen in figure 4.1.

The two important components that are used by the FSM component are the

CarMap class and an implementation of the NormGenerator interface. The CarMap

is a helper class that encapsulates useful function to gain aggregated information

about the current traffic situation. The creation of new car agents and their place-

ment on the feeder lanes is also handled by the FSM.

3.2. Core Classes 41

Figure 3.2: Core classes.

42 Chapter 3. Software Design

3.3 Norm and CBR subsystems

In figure 3.3 the connection between the core class architecture (figure 3.2) and

the norm generation subsystem with its CBR appendage becomes clear. The two

implementations of the NormMapGenerator interface (GlobalNormMapGenerator

for the global approach and CarLinkNormMapGenerator for the partial approach)

handle the calls to the CBR system1 independently. Between the CaseBase and the

Case class consists a one to many cardinality. The individual cases contain a single

CaseDescription and maintain a one to many cardinality to a set of CaseSolutions

3.4 User Interface

The design of the graphical user interface is planned to give analysis information

on the state of the CBR system.

3.4.1 Case Base Access

The contents of the case base will be displayed in the user interface in a tree

structure (a JTree) with a “CaseBase -� Cases -� Solutions” hierarchy. Selecting

one item in the tree outputs the return value of its toString method in a text field on

the right of the interface. The information given for the case contents are its name,

it’s state (states may be ’open’ or ’closed’, see 4.1 for an explication), the number

of times the case has been applied to traffic situations and a string representation

of its assigned case description. The string representation of the case description

are 4x4 (respectively 5x2 in partial mode) lines of characters, with ’*’ representing

an empty field and four directional characters to represent car directions, if a car

agent is present on a field (’∧’ for up/north, ’>’ for right/east, ’∨’ for down/south’

and ’<’ for left/west).

When a case solution is selected, the output in the text field contains its name,

the number of applications and also a representation of its contents. In the global

1The CBR system is incorporated by the CaseBase class

3.4. User Interface 43

Figure 3.3: Relation between norm and cbr packages.

44 Chapter 3. Software Design

Global : Case 71 (Closed)
Appl : 91
Matrix p l o t ’ CaseDesc71 ’ (i n v e r s e) :
∗∗∗∗
∗v<∗
>∗∗∗
∗∗∗∗

P a r t i a l : Case123
Appl : 42
Matrix p l o t
’ CaseDesc123 ’ (i n v e r s e) :
∗∗ˆ∗∗
∗>∗∗∗

Figure 3.4: Example case tracer output.

approach the solution is represented by a 4x4 matrix, encoded with ’+’ for a non-

blocking and ’-’ for a blocking norm. In partial mode the solutions contain only a

single field with the same character encoding. See figure 3.6 for an example.

3.4.2 Breakpoint Control

Another function of the graphical user interface is the control of breakpoints. It

allows to set breakpoints of two different types; object related and collision related.

The object related breakpoint cause the simulation to halt, when either a case or a

certain solution gets applied in the current step. After the solution has halted, the

interface gets the focus and automatically selects the respective object in the tree.

The second type of breakpoint, the collision breakpoint, halts the simulation on

every collision that occurs. This is useful in the later phase of the simulation, where

collisions occur rarely and a step by step search for them would be time-consuming.

Similar to the object breakpoint, the activation causes the simulation to halt, focus

the interface and select the applied object. In this context it becomes important

to know, which solution was applied in the previous step when the system failed to

prevent the collision. For this reason the ’Prev Solution’ button was added which

3.4. User Interface 45

Global : So lu t i on ID=120
apps :86 avgScore :−2.0
Matrix p l o t ’ normInstance ’ (i n v e r s e) :
N++N
+−−+
++++
N++N

P a r t i a l : CaseSolut ion123
Appl : 42
Matrix p l o t
’ CaseSolut ion123 ’ (i n v e r s e) :

+

Figure 3.5: Example case solution output.

exposes the culpable solution in the tree.

46 Chapter 3. Software Design

Figure 3.6: The Intersection Tracer interface.

4 Experiments

This chapter gives an overview of the experiments that were done on the simulation

setup. The methodology described in chapter 2 represents to a great part the final

simulation structure, while many of the design decisions were based on experiments

that suggested the modification of parts of the simulation architecture.

The addition of functionality happened in the following order:

1. Phase 1: Rotation when searching for cases to reduce number of cases.

2. Phase 2: Ignoring collisions in case description.

3. Phase 3: Consider car directions

4. Phase 4: Closing of cases

The following sections will analyze the simulation behavior for the different ap-

proaches based on the definitions in chapter 2. The first section starts with the

description of a simulation execution in the global mode and discusses important

features in the metrics diagram. The subsequent section will display the charac-

teristics of the simulation in partial mode and experiment with different scopes for

the car agents.

4.1 Global Approach

The big scope of the traffic descriptions in the global approach has the ability to

work with patterns in a greater area than those in the partial approach. Its architec-

ture is designed to handle complex car constellations and resolve interdependencies.

47

48 Chapter 4. Experiments

Figure 4.1: Example traffic situation in global mode

Figure 4.1 shows a sample traffic situation from the learning phase which will be

used to demonstrate the occurrences inside the case base.

The chosen figure displays a rather tricky situation. The only way to prevent a

collision is to block the car that is approaching into the intersection from the lower

feeder lane (blue). The shown situation was captured at around step 460.000 in the

course of the simulation. This was the third time this traffic situation happened in

total. Please refer to figure 4.2 to see the contents of the case base to get information

about the car directions and the representation of this situation in the case base.

It can be seen that the algorithm was able to find the best possible solution for the

problem on this third step. Since the length of the learning phase per case is set

to five, the case will occur two more times, apply random solutions and finally will

close itself and chose solutions number 3 with id 409 as the standard solution for

this specific traffic situation. Please remember that situations that are rotational

equivalent are considered the same case and will apply a rotated version of the same

solution.

The mentioned case is one of the rarer ones, since it happens roughly around

every 150.000 steps. Given the five solutions limit, this case needs 750.000 steps

to terminate it’s learning phase. While this might be an acceptable value, an

4.1. Global Approach 49

observation of the contents of the case base after 3 million steps shows, that there

are still many cases, that just have a single solution applied. This means that their

traffic situations might occur every 1.5 million or more steps on a average.

Table 4.1 contains an overview of the case base status in the test simulation. The

first four lines of the table list the overall number of open and closed cased as

well as the total number of solutions. An open case is one, that is still in the

phase of experimenting with different solutions. After a case has been called five

times, it will chose the best solution and converts itself to a closed case (i.e. its

learning phase has terminated and it will not experiment any longer, but always

will apply the best known solution). Therefore the ’Cases’ are an aggregation of

open and closed cases (|Cases| = |Casesopen|+ |Casesclosed|). Solution contains the

total number of solutions, where |Casesclosed| of them are the only ones assigned to

one of the closed cases. The values in row 6 gives better insight over the solution

distribution of the open cases. The columns contain the number of open cases with

n assigned solutions. The first column ’1 sol.’ states that there is a total of 40 open

cases in the case base, that only have one assigned solution. This indicates that the

respective traffic situations for the cases are occurring rarely, but will also convert

into closed cases, given a sufficient amount of time to execute. The second column

’2 sol.’ contains the number of cases with 2 solutions and so forth.

The total number of solutions therefore comprised of

|Solutions| = |Casesclosed|+
i=n∑
i=1

|Casesi| ∗ i = 387

where Casesi is the number of open cases with i assigned solutions.

Rows 7-12 of Table 4.1 analyze the cases that are closed. The values for the indi-

cated attributes are split up by the number of cars the relevant case has. The first

value column contains the number of cases that contain 2 cars in total, the second

3 and so on. Row 8 (cases with impending collisions) are cases that contain a traffic

situation where a collision are imminent, if no norms blocking are applied. Line

9 shows the numbers of the above situations, where the norm generation system

was able to find an appropriate solution to avoid the collision. As can be seen, the

50 Chapter 4. Experiments

row attribute values
1 Cases 326
2 Cases (Open) 74
3 Cases (Closed) 252
4 Solutions 387
5 Open cases with n solutions 1 sol. 2 sol. 3 sol. 4 sol. 5 sol.
6 40 17 9 6 2
7 Closed cases with 2 cars 3 cars 4 cars 5 cars 6 cars
8 with impending collision 3 12 34 1
9 Resolved collisions 3 12 31 1
10 Unresolved collisions 0 0 3 0
11 Used unnesessary norms 0 0 7 0
12 Involve circular relations 0 1 7 0

Table 4.1: Case status after 3 million steps (global mode)

system was able to find adequate solutions for 47 out of 50 problematic cases. Also,

it is evident that the system seems to have problems with resolving 4-car-situations.

This underlines the fact, that the difficulty of resolving traffic situations raises with

the number of car agents involved.

Row 11 indicates the number of cases, where more solutions were applied than

necessary (e.g. a car was blocked, that was not involved in an impending collision).

Again, cases with fewer cars were more accurate with the appliance of blocking

norms. They found for all the cases the perfect solution with minimal blocks and

minimum collisions. Row 12 contains the number of cases, where circular relations

were involved. This means that a misplaced norm can block the whole intersection

area or cause a row of subsequent collisions. This row also points out that traffic

situation with 4 or more cars get much more complicated to solve, since traffic

situation with circular relations occur on a higher frequency.

4.2 Partial Approach

The experimentation with the partial approach began with a mid-size scope of the

three fields in front of the car (see formula 4.1 for the masking matrix). The idea is

to see, whether these three fields are sufficient to keep traffic fluid. In the negative

4.2. Partial Approach 51

case the mask ought to be enlarged, otherwise reduced to the minimum that is

possible.

Mfront3 =

(
0 0 0 0 0

0 1 1 1 0

)
(4.1)

I expected this three field approach to be inferior to the global approach due to the

fact that more complex traffic situation were not captured as a whole. Surprisingly,

the partial approach turned out to perform extraordinary good, displaying a steep

learning curve. The first three field mode led to the total avoidance of collisions just

after about 15.000 steps. Indeed, in several test runs the total number of collisions

was always between 20 and 35 before the 20.000 step mark was reached and stood

this way until the tests were aborted at 1.000.000 steps.

It could be observed that a certain structure of behavior had been emerged from

the cases based learning process. From a total of 31 cases after 1 million steps,

there where only 6 that favored a blocking norm over a non-blocking norm. Five

of those had one thing in common, the square in the front left of the car position

was occupied by a car heading (relatively) eastwards - in the direction of the field

the current car is steering. The system had by established a ’priority to left’ rule.

The test was repeated several times to see, whether it was just chance and that a

’priority to right’ rule might emerge as well, but in ten test runs always the same

occurred with minor variations. It is interesting that - unlike to real world traffic

systems, where driving on one side of the road usually comes along with a priority

to other participants approaching from the very same side - a ’cross over’ priority

emerged.

Seeing the results of this norm-set in action reveals an advantage of the ’cross-over’

priority: cars that come from the left are those that are already on the intersection

area. By letting them pass, the intersection area stays virtually blocking free, since

the occupying cars are always given priority to exit.

After observing that only the left field directly in front of the car seems to have an

influence on the norm generation, the logical consequence was to shrink the mask

52 Chapter 4. Experiments

to only this single field and let the system do a test run.

Indeed, the system worked as expected. The only difference was that the total

number of collision over one million was now one, instead of 20 and the learning

process was terminated after 25 steps. The system ran stable and did not result in

any other collision until the test was canceled at 1M steps.

4.2. Partial Approach 53

Case : Case 191
Appl : 3
Matrix p l o t ’ CaseDesc191 ’ (i n v e r s e) :
∗∗∗∗
∗v∗∗
∗>ˆ∗
∗∗ˆ∗

So lu t i on 1 : So lu t i on ID=272
apps : 1 avgScore :−10.0
Matrix p l o t ’ normInstance ’ (i n v e r s e) :
N++N
++++
++++
N++N

So lut i on 2 : So lu t i on ID=377
apps : 1 avgScore :−13.0
Matrix p l o t ’ normInstance ’ (i n v e r s e) :
N++N
+−++
++−+
N+−N

So lut i on 3 : So lu t i on ID=409
apps : 1 avgScore :−1.0
Matrix p l o t ’ normInstance ’ (i n v e r s e) :
N++N
++++
++++
N+−N

Figure 4.2: Example Case Base Content in Global Mode.

54 Chapter 4. Experiments

Figure 4.3: Simulation data for the global approach.

4.2. Partial Approach 55

Figure 4.4: Simulation data for the partial approach.

5 Results

The experimental setup employed two generally different approaches to investigate

the possibilities for the application of case-based reasoning for norm generation. For

both approaches the same objectives were given: optimizing traffic flow by avoiding

collisions and minimize the times cars are impeded on the way to their target. The

simulation was repeated several times for each scenario to assure permanence of

observed characteristics.

The first approach is based on a global traffic observation and employed a determin-

istic behavior with non-ambivalent case descriptions. Because of the deterministic

nature of this approach, the solution evaluation did not keep track of any experience

except the very last one. This approach was tailored especially to be able to cope

with complex traffic situations, that may or may not include circular relations.

The second approach, which employs a partial recognition of the traffic situation,

oriented at the view of the car agents is non-deterministic and therefore employs a

memory for the outcome of solutions based on the total experience that was gained

with any solution.

From the case-based reasoning perspective the main differences between the two

approaches is the size of the case description. The case description utilized by the

partial approach is far simpler than the one used by the global approach. Table

5.1 compares the state space complexity for the different approaches. As can be

seen, the 3 and 1 point scoped partial complexities are far smaller compared to the

global approach. Along with the the higher complexity of the latter comes the fact,

that certain traffic situations occur sporadic. The solution determination process

requires every case to be applied 5 times before the learning phase terminates which

resulted in a slowly converging learning phase.

56

57

global partial (3 point mask) partial (1 point mask)
state space complexity 324 32 2

Table 5.1: Comparison of State Space for Case Descriptions

Figure 5.1: Runtime comparision of global and partial approach.

The partial approach -even though considering a far smaller area the map- was

able to converge almost instantly and completely avoid collisions after the learning

phase was terminated. Results from the simulation execution showed a noticeable

pattern which could be used to optimized the scope to a single field approach.

The implementation based on this observation enabled further optimization of the

considered scope and brought an additional reduction of the convergence from from

learning to application phase. Figure 5.1 contrasts the course of the simulation and

the key indicators.

6 Related Work

The task of adaptation is usually assigned to agent. Agents that share the same

habitat have to find ways to interact in a socially compliant manner that minimize

their impact on their environment and does not harm the mutual goals of the MAS.

Also, they are responsible to reorganize when required to adapt to changes in their

assigned tasks or environment.

Based on this idea, some works in the area are the following. Excelente-Toledo and

Jennings (Excelente-Toledo [2003]) propose in their puplication a decision making

framework that enables agents to dynamically select the coordination mechanism

that is most appropriate to their circumstances. Hbner et al. Hübner et al. [2004]

propose a model for controlling adaptation by using the MOISE+ organization

model, and Gteau et al. Gâteau et al. [2005] propose MOISEInst as an extension

of MOISE+ as an institution organization specification of the rights and duties

of agents roles. In both models agents adapt their MAS organization to both

environmental changes and their own goals.

The stated works differ in the point that the reorganization is handled by the

agents itself. In this work, the organization and reorganization of agents is handled

by the norm generation system which takes responsibility for the coordination of

the individual agents

58

6.1. Conclusions 59

6.1 Conclusions

Chapter one gave an introduction to the underlaying concepts and technologies

employed in this work. Chapter two discussed the details of the methodology that

was employed, chapter 3 described the software design utilizing Repast Simphony

and Chapters 4 and 5 analyzed the observations made by execution the developed

simulation scenario.

This work tried to investigate the possibilities of norm application to a dynamic

multi-agent system by a specially tailored case-based reasoning approach. In the

course of the investigation process many interesting observation could be made and

it became clear the performance of the application of a CBR approach relies heavily

on the adjustment of key factors like case complexity and reuse.

The size of the case base is directly related to the case complexity. A high number

of possible case descriptions enlarges the timespan required to end the learning

phase and enter the test phase, given that no appropriate similarity function is

employed. The learning rate of a CBR system is strongly coupled to the case reuse

rate, which could well be observed in the course of the experimental phase.

Eventually can be stated that both, the global as well as the partial approaches,

performed good on their task to find optimal solutions to conflicting traffic situa-

tions.

The global approach was able to find optimal solutions for almost every conflicting

situation where 3 or less cars were involved and only showed weaknesses with sit-

uations involving more (mostly 4) cars. In situations were circular relations were

involved it managed in most of the cases to resolve the conflict without causing

intersection blockages.

The partial approach performed excellent on the task of traffic optimization with

a minimal set of case complexity and rapid learning phase termination.

Concluding it can be stated that a CBR approach is capable of managing the task of

norm application in conflict prone scenarios like the given intersection environment.

The approach bears a big area of possible extensions and adjustments that might

60 Chapter 6. Related Work

be able to transfer this approach to more complex multi-agent system.

6.2 Future Work

During the experimentation phase a set possible optimizations and extensions for

the used architecture became evident. It would be interesting to experiment with

the developed powerful, flexible and well observable framework on more complex

scenarios and compare the results with the ones gained in this work. The most

critical part of the application to more complex systems is the design of key com-

ponents like the similarity and evaluation function as well as the case description

and solution design.

One interesting source of information would be a comparison between the employed

techniques with a solution utilizing MARL (Multi-Agent Reinforcement Learning)

to retrieve insight about the differences in terms of the learning phase duration and

traffic performance in the given scenario.

The big differences in performance that where observed during the different sub-

phases of the experimentation phase gave an insight about the importance of men-

tioned key factors. The big number of possible adjustments suggest the appliance

of techniques like genetic algorithms. Genetic algorithms could be used to explore

a wider set of settings automatically or fine tune them. Tasks like the automated

search for the best possible masking matrix for case description in the partial ap-

proach in this direction is a subject of future work.

Bibliography

Repast simphony official reference, August 2009.

http://repast.sourceforge.net/docs/Reference.pdf.

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,

methodological variations, and system approaches. AI Commun., 7(1):39–59,

1994.

G. Boella and L. van der Torre. Constitutive norms in the design of normative

multiagent systems. In Computational Logic in Multi-Agent Systems, 6th In-

ternational Workshop (CLIMA VI), volume 3900. 3900 of LNCS, page 303319.

Springer, 2006.

Guido Boella and Leendert van der Torre. Regulative and constitutive norms in

normative multiagent systems. In IN PROCS. OF KR04, pages 255–265. AAAI

Press, 2004.

Guido Boella, Leendert van der Torre, and Harko Verhagen. Introduction to nor-

mative multiagent systems. In Guido Boella, Leon van der Torre, and Harko

Verhagen, editors, Normative Multi-agent Systems, number 07122 in Dagstuhl

Seminar Proceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs-

und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany. URL

http://drops.dagstuhl.de/opus/volltexte/2007/918.

Patrice Caire. A normative multi-agent systems approach to the use of conviviality

for digital cities. In Normative Multi-agent Systems, 2007.

61

62 Bibliography

C.B. Excelente-Toledo. The dynamic selection of coordination mechanisms in multi-

agent systems. February 2003. URL http://eprints.ecs.soton.ac.uk/7814/.

Benjamin Gâteau, Olivier Boissier, Djamel Khadraoui, and Eric Dubois. Moiseinst:

An organizational model for specifying rights and duties of autonomous agents.

In EUMAS, pages 484–485, 2005.

David Hales. Multi-agent-based simulation III : 4th international workshop, MABS

2003, Melbourne, Australia, July 14, 2003 : revised papers. Springer, Berlin ;

New York, 2003. MABS 2003 (2003 : Melbourne, Vic.) David Hales ... [et al.].

(eds.). ill. ; 24 cm. Lecture notes in computer science ; 2927. Lecture notes in

artificial intelligence.

Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Using the moise+

for a cooperative framework of mas reorganisation. In SBIA, pages 506–515,

2004.

Gloria T. Lau, Kincho H. Law, and Gio Wiederhold. Analyzing government regu-

lations using structural and domain information. Computer, 38(12):70–76, 2005.

ISSN 0018-9162. doi: http://dx.doi.org/10.1109/MC.2005.397.

